Science.gov

Sample records for acid ans binding

  1. Identification and Characterization of Linoleic Acid as an Endogenous Modulator of in Vitro N-1-Naphthylphthalamic Acid Binding.

    PubMed Central

    Suttle, J. C.

    1997-01-01

    An endogenous inhibitor of the in vitro binding of the phytotropin N-1-naphthylphthalamic acid to microsomal membranes was detected in extracts prepared from etiolated pea (Pisum sativum L.) epicotyls. Following extensive purification, the inhibitor was identified as linoleic acid. Authentic linoleic acid inhibited N-1-naphthylphthalamic acid binding noncompetitively in a dose-dependent manner, exhibiting a 50% inhibitory concentration of approximately 24 ([mu]M. Using a variety of fatty acids and their derivatives, this inhibition was found to exhibit strict structural requirements, with both linoleic and linolenic acids being the most inhibitory. A variety of membrane-solubilizing detergents elicited no such inhibitory activity when tested at equivalent concentrations. The possible physiological significance of this interaction is discussed and it is proposed that linoleic acid serves as an intracellular modulator of phytotropin binding and therefore polar auxin transport. PMID:12223622

  2. Na+ Inhibits the Epithelial Na+ Channel by Binding to a Site in an Extracellular Acidic Cleft*

    PubMed Central

    Kashlan, Ossama B.; Blobner, Brandon M.; Zuzek, Zachary; Tolino, Michael; Kleyman, Thomas R.

    2015-01-01

    The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl−, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. PMID:25389295

  3. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer.

    PubMed

    Abney, C W; Das, S; Mayes, R T; Kuo, L-J; Wood, J; Gill, G; Piechowicz, M; Lin, Z; Lin, W; Dai, S

    2016-09-14

    The development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platforms for achieving this separation, yet the design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in the polymer. Samples exposed to seawater also display a feature consistent with a μ(2)-oxo-bridged transition metal, suggesting the formation of an in situ specific binding site. These findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials. PMID:27507226

  4. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    DOE PAGESBeta

    Abney, C. W.; Das, S.; Mayes, R. T.; Kuo, L. -J.; Wood, J.; Gill, G.; Piechowicz, M.; Lin, Z.; Lin, W.; Dai, S.

    2016-08-01

    Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposedmore » to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.« less

  5. A comparative study of europium, thorium and uranium binding to an aquatic fulvic acid

    SciTech Connect

    Norden, M.; Ephraim, H.J.; Allard, B.; Albinsson, Y.

    1993-12-31

    Advances in safe management and disposal of radioactive waste have shown that a comprehensive program requires the incorporation of dissolved organics into radwaste and transport effluent models, with respect to their binding of radionuclides. The binding of Eu{sup 3+}, Th{sup 4+} and UO{sub 2}{sup 2+} to a well-characterized aquatic fulvic acid has been studied using an ultrafiltration method at a bulk electrolyte concentration of 0.10 M NaClO{sub 4}, trace amounts of radionuclides and fulvic acid concentrations of 60 and 120 mg/l. The results expressed as the overall complex formation function, {beta}{sub ov}, versus pH show the following order: Th{sup 4+} > Eu{sup 3+} > UO{sub 2}{sup 2+}. The estimated {beta}{sub 0v} values have been discussed by considering the aqueous chemistry of Eu{sup 3+}, Th{sup 4+} and UO{sub 2}{sup 2+} vis-a-vis the solution chemistry of the fulvic acid sample.

  6. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed. PMID:19744666

  7. An analysis of [3H]gamma-aminobutyric acid (GABA) binding in the human brain.

    PubMed

    Lloyd, K G; Dreksler, S

    1979-03-01

    The binding of [3H]GABA to membranes prepared from human brains obtained post morten was examined. This binding was independent of patient sex, age (16--80 years), postmortem interval (4--33 h) or storage time when frozen (0-64 months). In preparations from cerebellar cortex various compounds displaced [3H]GABA binding with the following order of potency: muscimol greater than 3-aminopropanesulfonic acid greater than GABA greater than imidazoleacet acid greater than delta-amino-n-valeric acid greater than 3-hydroxyGABA greater than bicuculline. Other compounds active 'in vitro' included strychnine, homocarnosine and some (e.g. clozapine, thioridazine, pimozide) but not all (chlorpromazine, haloperiodol) neuroleptics. Compounds inactive 'in vitro' included aminooxyacetic acid, baclofen, picrotoxin, anticholinergics, metrazole, anticonvulsants and naloxone. Triton X-100 augmented the [3H]GABA binding (25 nM) by about 10--20-fold in most brain regions. [3H]GABA binding (IC50) was altered in Huntington's chorea and Reye's syndrome, but not in schizophrenics (4-neuroleptic-treated patients) or sudden infant death syndrome. The data presented strongly support the proposal that the measurement of [3H]GABA binding in postmortem human brain offers a reflection of the state of the physiologically relevant GABA receptor. PMID:218679

  8. Genetically Encoding an Electrophilic Amino Acid for Protein Stapling and Covalent Binding to Native Receptors

    PubMed Central

    2015-01-01

    Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled bioreactivity. Until now, Uaas have been developed to react mainly with cysteine in proteins. Here we genetically encoded an electrophilic Uaa capable of reacting with histidine and lysine, thereby expanding the diversity of target proteins and the scope of the proximity-enabled protein cross-linking technology. In addition to efficient cross-linking of proteins inter- and intramolecularly, this Uaa permits direct stapling of a protein α-helix in a recombinant manner and covalent binding of native membrane receptors in live cells. The target diversity, recombinant stapling, and covalent targeting of endogenous proteins enabled by this versatile Uaa should prove valuable in developing novel research tools, biological diagnostics, and therapeutics by exploiting covalent protein linkages for specificity, irreversibility, and stability. PMID:25010185

  9. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    PubMed

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-01

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes. PMID:24368211

  10. Characterization of an intracellular hyaluronic acid binding site in isolated rat hepatocytes

    SciTech Connect

    Frost, S.J.; Raja, R.H.; Weigel, P.H. )

    1990-11-13

    125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4{degrees}C increased greater than 10-fold at pH 5.0 as compared to pH 7.

  11. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  12. CO2-binding Organic Liquids, an Integrated Acid Gas Capture System

    SciTech Connect

    Heldebrant, David J; Koech, Phillip K; Rainbolt, James E; Zheng, Feng

    2011-04-01

    Amine systems are effective for CO2 capture, but they are still inefficient because the solvent regeneration energy is largely defined by the amount of water in the process. Most amines form heat-stable salts with SO2 and COS resulting in parasitic solvent loss and degradation. Stripping the CO2-rich solvent is energy intensive it requires temperatures above 100 °C due to the high specific heat and heat of vaporization of water. CO2-capture processes could be much more energy efficient in a water free amine process. In addition, if the capture-material is chemically compatible with other acid gases, less solvent would be lost to heat-stable salts and the process economics would be further improved. One such system that can address these concerns is Binding Organic Liquids (BOLs), a class of switchable ionic liquids.

  13. Substrate Binding Tunes Conformational Flexibility and Kinetic Stability of an Amino Acid Antiporter*

    PubMed Central

    Bippes, Christian A.; Zeltina, Antra; Casagrande, Fabio; Ratera, Merce; Palacin, Manuel; Muller, Daniel J.; Fotiadis, Dimitrios

    2009-01-01

    We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state. PMID:19419962

  14. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    NASA Astrophysics Data System (ADS)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  15. Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an AP1 binding site.

    PubMed Central

    Nicholson, R C; Mader, S; Nagpal, S; Leid, M; Rochette-Egly, C; Chambon, P

    1990-01-01

    Stromelysin is a member of the metalloproteinase family which plays an important role in extracellular matrix remodelling during many normal and disease processes. We show here that in polyomavirus-transformed rat embryo fibroblast cells (PyT21), the transcription from the stromelysin gene is repressed by the vitamin A derivative retinoic acid (RA). Furthermore, expression vectors encoding the human RA receptors hRAR-alpha, hRAR-beta and hRAR-gamma repress chloramphenicol acetyltransferase (CAT) expression from stromelysin promoter-CAT gene expression vectors in RA-treated PyT21 and human HeLa cells, as determined by transient transfection assays. Through mutation and deletion analysis, we show that the RA dependent repression is mediated by a 25 bp region from nucleotide positions -72 to -48 of the rat stromelysin 5'-flanking DNA sequence. Further mutation analysis of this region indicates that the DNA sequence required for RA dependent repression colocalizes with an AP1 binding site which is essential for promoter activity. We show also that RA represses the transcriptional activity of a reporter gene containing a TPA responding AP1 binding site driving the HSV tk promoter. Thus the RAR-RA complex appears to repress transcription of the stromelysin gene by blocking activation by positive regulatory factors. However, we found no evidence supporting the possibility that the RA dependent repression could be due to RAR binding to the AP1 binding site or to the AP1 components c-fos and c-jun. Images Fig. 1. Fig. 2. Fig. 4. Fig. 6. Fig. 7. Fig. 8. PMID:2176152

  16. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid.

    PubMed

    Waters, Christopher M; Hirt, Helmut; McCormick, John K; Schlievert, Patrick M; Wells, Carol L; Dunny, G M

    2004-05-01

    Aggregation substance (AS), a plasmid-encoded surface protein of Enterococcus faecalis, plays important roles in virulence and antibiotic resistance transfer. Previous studies have suggested that AS-mediated aggregation of enterococcal cells could involve the binding of this protein to cell wall lipoteichoic acid (LTA). Here, a method to purify an undegraded form of Asc10, the AS of the plasmid pCF10, is described. Using this purified protein, direct binding of Asc10 to purified E. faecalis LTA was demonstrated. Equivalent binding of Asc10 to LTA purified from INY3000, an E. faecalis strain that is incapable of aggregation, was also observed. Surprisingly, mutations in a previously identified aggregation domain from amino acids 473 to 683 that abolished aggregation had no effect on LTA binding. In frame deletion analysis of Asc10 was used to identify a second aggregation domain located in the N-terminus of the protein from amino acids 156 to 358. A purified Asc10 mutant protein lacking this domain showed reduced LTA binding, while a purified N-terminal fragment from amino acids 44-331 had high LTA binding. Like the previously described aggregation domain, the newly identified Asc10((156-358)) aggregation domain was also required for efficient internalization of E. faecalis into HT-29 enterocytes. Thus, Asc10 possess two distinct domains required for aggregation and eukaryotic cell internalization: an N-terminal domain that promotes binding to LTA and a second domain located near the middle of the protein. PMID:15130132

  17. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  18. Binding interaction of a gamma-aminobutyric acid derivative with serum albumin: an insight by fluorescence and molecular modeling analysis.

    PubMed

    Pal, Uttam; Pramanik, Sumit Kumar; Bhattacharya, Baisali; Banerji, Biswadip; C Maiti, Nakul

    2016-01-01

    gamma-Aminobutyric acid (GABA) is a naturally occurring inhibitory neurotransmitter and some of its derivatives showed potential to act as neuroprotective agents. With the aim of developing potential leads for anti-Alzheimer's drugs, in this study we synthesized a novel GABA derivative, methyl 4-(4-((2-(tert-butoxy)-2-oxoethyl)(4-methoxyphenyl)amino)benzamido)butanoate by a unique method of Buchwald-Hartwig cross coupling synthesis; with some modification the yield was significant (97 %) and spectroscopic analysis confirmed that the compound was highly pure (98.8 % by HPLC). The druglikeness properties such as logP, logS, and polar surface area were 3.87, -4.86 and 94.17 Å(2) respectively and it satisfied the Lipinski's rule of five. We examined the binding behavior of the molecule to human serum albumin (HSA) and bovine serum albumin (BSA) which are known as universal drug carrier proteins. The molecule binds to the proteins with low micromolar efficiency and the calculated binding constants were 3.85 and 2.75 micromolar for BSA and HSA, respectively. Temperature dependent study using van't Hoff equation established that the binding was thermodynamically favorable and the changes in the Gibb's free energy, ΔG for the binding process was negative. However, the binding of the molecule to HSA was enthalpy driven and the change of enthalpy (ΔH) was -10.63 kJ/mol, whereas, the binding to BSA was entropy driven and the change in entropy ΔS was 222 J/mol. The molecular docking analysis showed that the binding sites of the molecule lie in the groove between domain I and domain III of BSA, whereas it is within the domain I in case of HSA, which also supported the different thermodynamic nature of binding with HSA and BSA. Molecular dynamics analysis suggested that the binding was stable with time and provided further details of the binding interaction. Molecular dynamics study also highlighted the effect of this ligand binding on the serum albumin structure. PMID

  19. The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes.

    PubMed

    Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma

    2014-01-01

    In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949

  20. An Evidence-Based Approach to the Assessment of Heart-Type Fatty Acid Binding Protein in Acute Coronary Syndrome

    PubMed Central

    Viswanathan, Karthik; Hall, Alistair S; Barth, Julian H

    2012-01-01

    Cardiac troponins have been the biomarkers of choice for the diagnosis of acute coronary syndrome (ACS) for over a decade. There has, however, been considerable interest over the last two decades for newer biomarkers that would bring added value to the measurement of troponin such as the provision of prognosis and assistance in the choice of therapeutic interventions. In this manuscript, we review the development of heart-type fatty acid binding protein (H-FABP) in patients with ACS using the evidence-based laboratory medicine format. Phase I studies have established that H-FABP reference intervals and pre-analytical factors influencing H-FABP. Phase II studies have confirmed a) that H-FABP is elevated in patients with established myocardial infarction; b) that its serum concentration is related to the extent of infarction using survival as a surrogate; and c) that its use in chest pain patients can identify ACS patients and also provide prognostic information on survival. Furthermore, it is an independent prognostic marker for patients with suspected ACS who are troponin negative. Phase III studies involving randomised control trials for diagnosis and prognosis have not yet been performed and Phase IV studies await uptake of H-FABP in a routine service. PMID:22363093

  1. Reshaping an enzyme binding pocket for enhanced and inverted stereoselectivity: use of smallest amino acid alphabets in directed evolution.

    PubMed

    Sun, Zhoutong; Lonsdale, Richard; Kong, Xu-Dong; Xu, Jian-He; Zhou, Jiahai; Reetz, Manfred T

    2015-10-12

    Directed evolution based on saturation mutagenesis at sites lining the binding pocket is a commonly practiced strategy for enhancing or inverting the stereoselectivity of enzymes for use in organic chemistry or biotechnology. However, as the number of residues in a randomization site increases to five or more, the screening effort for 95 % library coverage increases astronomically until it is no longer feasible. We propose the use of a single amino acid for saturation mutagenesis at superlarge randomization sites comprising 10 or more residues. When used to reshape the binding pocket of limonene epoxide hydrolase, this strategy, which drastically reduces the search space and thus the screening effort, resulted in R,R- and S,S-selective mutants for the hydrolytic desymmetrization of cyclohexene oxide and other epoxides. X-ray crystal structures and docking studies of the mutants unveiled the source of stereoselectivity and shed light on the mechanistic intricacies of this enzyme. PMID:25891639

  2. Characterization of an Acidic-pH-Inducible Stress Protein (hsp70), a Putative Sulfatide Binding Adhesin, from Helicobacter pylori

    PubMed Central

    Huesca, Mario; Goodwin, Avery; Bhagwansingh, Arianna; Hoffman, Paul; Lingwood, Clifford A.

    1998-01-01

    The in vitro glycolipid binding specificity of the gastric pathogen Helicobacter pylori is altered to include sulfated glycolipids (sulfatides) following brief exposure of the organism to acid pH typical of the stomach. This change is prevented by anti-hsp70 antibodies, suggesting that hsp70 may be a stress-induced surface adhesin, mediating sulfatide recognition. To facilitate investigation of the role of hsp70 in attachment, we have cloned and sequenced the H. pylori hsp70 gene (dnaK). The hsp70 gene was identified by probing a cosmid DNA library made from H. pylori 439 with a PCR amplicon generated with oligonucleotides synthesized to highly conserved regions of dnaK. The 1.9-kb H. pylori hsp70 gene encodes a product of 616 amino acids. Primer extension analysis revealed a single transcription start site, while Northern blot analysis established that hsp70 was preferentially induced by low pH rather than by heat shock. The ability of H. pylori to alter its glycolipid binding specificity following exposure to low pH by upregulating hsp70 and by expressing hsp70 on the bacterial surface may provide a survival advantage during periods of high acid stress. PMID:9712748

  3. Photoaffinity labeling of retinoic acid-binding proteins.

    PubMed Central

    Bernstein, P S; Choi, S Y; Ho, Y C; Rando, R R

    1995-01-01

    Retinoid-binding proteins are essential mediators of vitamin A function in vertebrate organisms. They solubilize and stabilize retinoids, and they direct the intercellular and intracellular trafficking, transport, and metabolic function of vitamin A compounds in vision and in growth and development. Although many soluble retinoid-binding proteins and receptors have been purified and extensively characterized, relatively few membrane-associated enzymes and other proteins that interact with retinoids have been isolated and studied, due primarily to their inherent instabilities during purification. In an effort to identify and purify previously uncharacterized retinoid-binding proteins, it is shown that radioactively labeled all-trans-retinoic acid can be used as a photoaffinity labeling reagent to specifically tag two known retinoic acid-binding proteins, cellular retinoic acid-binding protein and albumin, in complex mixtures of cytosolic proteins. Additionally, a number of other soluble and membrane-associated proteins that bind all-trans-[11,12-3H]retinoic acid with high specificity are labeled utilizing the same photoaffinity techniques. Most of these labeled proteins have molecular weights that do not correspond to any known retinoid-binding proteins. Thus, photoaffinity labeling with all-trans-retinoic acid and related photoactivatable retinoids is a method that should prove extremely useful in the identification and purification of novel soluble and membrane-associated retinoid-binding proteins from ocular and nonocular tissues. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7846032

  4. Iodine binding to humic acid.

    PubMed

    Bowley, H E; Young, S D; Ander, E L; Crout, N M J; Watts, M J; Bailey, E H

    2016-08-01

    The rate of reactions between humic acid (HA) and iodide (I(-)) and iodate (IO3(-)) have been investigated in suspensions spiked with (129)I at concentrations of 22, 44 and 88 μg L(-1) and stored at 10 °C. Changes in the speciation of (129)I(-), (129)IO3(-) and mixed ((129)I(-) + (129)IO3(-)) spikes were monitored over 77 days using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). In suspensions spiked with (129)I(-) 25% of the added I(-) was transformed into organic iodine (Org-(129)I) within 77 days and there was no evidence of (129)IO3(-) formation. By contrast, rapid loss of (129)IO3(-) and increase in both (129)I(-) and Org-(129)I was observed in (129)IO3(-)-spiked suspensions. However, the rate of Org-(129)I production was greater in mixed systems compared to (129)IO3(-)-spiked suspensions with the same total (129)I concentration, possibly indicating IO3(-)I(-) redox coupling. Size exclusion chromatography (SEC) demonstrated that Org-(129)I was present in both high and low molecular weight fractions of the HA although a slight preference to bond with the lower molecular weight fractions was observed indicating that, after 77 days, the spiked isotope had not fully mixed with the native (127)I pool. Iodine transformations were modelled using first order rate equations and fitted rate coefficients determined. However, extrapolation of the model to 250 days indicated that a pseudo-steady state would be attained after ∼200 days but that the proportion of (129)I incorporated into HA was less than that of (127)I indicating the presence of a recalcitrant pool of (127)I that was unavailable for isotopic mixing. PMID:27231879

  5. Three-dimensional structural model analysis of the binding site of lithocholic acid, an inhibitor of DNA polymerase beta and DNA topoisomerase II.

    PubMed

    Mizushina, Y; Kasai, N; Sugawara, F; Iida, A; Yoshida, H; Sakaguchi, K

    2001-11-01

    The molecular action of lithocholic acid (LCA), a selective inhibitor of mammalian DNA polymerase beta (pol beta), was investigated. We found that LCA could also strongly inhibit the activity of human DNA topoisomerase II (topo II). No other DNA metabolic enzymes tested were affected by LCA. Therefore, LCA should be classified as an inhibitor of both pol beta and topo II. Here, we report the molecular interaction of LCA with pol beta and topo II. By three-dimensional structural model analysis and by comparison with the spatial positioning of specific amino acids binding to LCA on pol beta (Lys60, Leu77, and Thr79), we obtained supplementary information that allowed us to build a structural model of topo II. Modeling analysis revealed that the LCA-interaction interface in both enzymes has a pocket comprised of three amino acids in common, which binds to the LCA molecule. In topo II, the three amino acid residues were Lys720, Leu760, and Thr791. These results suggested that the LCA binding domains of pol beta and topo II are three-dimensionally very similar. PMID:11686928

  6. Investigating the Weak to Evaluate the Strong: An Experimental Determination of the Electron Binding Energy of Carborane Anions and the Gas phase Acidity of Carborane Acids

    SciTech Connect

    Meyer, Matthew M; Wang, Xue B; Reed, Christopher A; Wang, Lai S; Kass, Steven R

    2009-12-23

    Five CHB11X6Y5- carborane anions from the series X = Br, Cl, I and Y = H, Cl, CH3 were generated by electrospray ionization, and their reactivity with a series of Brønsted acids and electron transfer reagents were examined in the gas phase. The undecachlorocarborane acid, H(CHB11Cl11), was found to be far more acidic than the former record holder, (1-C4F9SO2)2NH (i.e., ΔH°acid = 241 ± 29 vs 291.1 ± 2.2 kcal mol-1) and bridges the gas-phase acidity and basicity scales for the first time. Its conjugate base, CHB11Cl11-, was found by photoelectron spectroscopy to have a remarkably large electron binding energy (6.35 ± 0.02 eV) but the value for the (1-C4F9SO2)2N- anion is even larger (6.5 ± 0.1 eV). Consequently, it is the weak H-(CHB11Cl11) BDE (70.0 kcal mol-1, G3(MP2)) compared to the strong BDE of (1-C4F9SO2)2N-H (127.4 ± 3.2 kcal mol-1) that accounts for the greater acidity of carborane acids.

  7. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein.

    PubMed

    Chaurasiya, Kathy R; McCauley, Micah J; Wang, Wei; Qualley, Dominic F; Wu, Tiyun; Kitamura, Shingo; Geertsema, Hylkje; Chan, Denise S B; Hertz, Amber; Iwatani, Yasumasa; Levin, Judith G; Musier-Forsyth, Karin; Rouzina, Ioulia; Williams, Mark C

    2014-01-01

    The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalysed DNA elongation. Here, we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription. PMID:24345943

  8. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid binding protein

    PubMed Central

    Chaurasiya, Kathy R.; McCauley, Micah J.; Wang, Wei; Qualley, Dominic F.; Wu, Tiyun; Kitamura, Shingo; Geertsema, Hylkje; Chan, Denise S.B.; Hertz, Amber; Iwatani, Yasumasa; Levin, Judith G.; Musier-Forsyth, Karin; Rouzina, Ioulia; Williams, Mark C.

    2014-01-01

    The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response and have broad activity against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalyzed DNA elongation. Here we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription. PMID:24345943

  9. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy R.; McCauley, Micah J.; Wang, Wei; Qualley, Dominic F.; Wu, Tiyun; Kitamura, Shingo; Geertsema, Hylkje; Chan, Denise S. B.; Hertz, Amber; Iwatani, Yasumasa; Levin, Judith G.; Musier-Forsyth, Karin; Rouzina, Ioulia; Williams, Mark C.

    2014-01-01

    The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalysed DNA elongation. Here, we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.

  10. Binding mode of an α-amino acid-linked quinoxaline-2,3-dione analogue at glutamate receptor subtype GluK1.

    PubMed

    Demmer, Charles S; Møller, Charlotte; Brown, Patricia M G E; Han, Liwei; Pickering, Darryl S; Nielsen, Birgitte; Bowie, Derek; Frydenvang, Karla; Kastrup, Jette S; Bunch, Lennart

    2015-06-17

    Two α-amino acid-functionalized quinoxalines, 1a (CNG-10301) and 1b (CNG-10300), of a quinoxaline moiety coupled to an amino acid moiety were designed, synthesized, and characterized pharmacologically. While 1a displayed low affinity at native AMPA, KA, and NMDA receptors, and at homomeric GluK1,3 receptors, the affinity for GluK2 was in the midmicromolar range (Ki = 136 μM), 1b displayed low to midmicromolar range binding affinity at all the iGluRs (Ki = 9-126 μM). In functional experiments (outside-out patches excised from transfected HEK293T cells), 100 μM 1a partially blocked GluK1 (33% peak response), while GluK2 was unaffected (96% peak response). Furthermore, 1a was shown not to be an agonist at GluK1 and GluK2 at 100 μM. On the other hand, 100 μM 1b fully antagonized GluK1 (8% peak response) but only partially blocked GluK2 (33% peak response). An X-ray structure at 2.3 Å resolution of 1b in the GluK1-LBD (ligand-binding domain) disclosed an unexpected binding mode compared to the predictions made during the design phase; the quinoxaline moiety remains to act as an amino acid bioisostere, but the amino acid moiety is oriented into a new area within the GluK1 receptor. The structure of the GluK1-LBD with 1b showed a large variation in domain openings of the three molecules from 25° to 49°, demonstrating that the GluK1-LBD is capable of undergoing major domain movements. PMID:25856736

  11. Structural and biochemical analyses reveal how ornithine acetyl transferase binds acidic and basic amino acid substrates.

    PubMed

    Iqbal, Aman; Clifton, Ian J; Chowdhury, Rasheduzzaman; Ivison, David; Domene, Carmen; Schofield, Christopher J

    2011-09-21

    Structural and biochemical analyses reveal how ornithine acetyl-transferases catalyse the reversible transfer of an acetyl-group from a basic (ornithine) to an acidic (glutamate) amino acid by employing a common mechanism involving an acetyl-enzyme intermediate but using different side chain binding modes. PMID:21796301

  12. Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA.

    PubMed Central

    Price, S R; Nightingale, M; Tsai, S C; Williamson, K C; Adamik, R; Chen, H C; Moss, J; Vaughan, M

    1988-01-01

    Three (two soluble and one membrane) guanine nucleotide-binding proteins (G proteins) that enhance ADP-ribosylation of the Gs alpha stimulatory subunit of the adenylyl cyclase (EC 4.6.1.1) complex by choleragen have recently been purified from bovine brain. To further define the structure and function of these ADP-ribosylation factors (ARFs), we isolated a cDNA clone (lambda ARF2B) from a bovine retinal library by screening with a mixed heptadecanucleotide probe whose sequence was based on the partial amino acid sequence of one of the soluble ARFs from bovine brain. Comparison of the deduced amino acid sequence of lambda ARF2B with sequences of peptides from the ARF protein (total of 60 amino acids) revealed only two differences. Whether these are cloning artifacts or reflect the existence of more than one ARF protein remains to be determined. Deduced amino acid sequences of ARF, Go alpha (the alpha subunit of a G protein that may be involved in regulation of ion fluxes), and c-Ha-ras gene product p21 show similarities in regions believed to be involved in guanine nucleotide binding and GTP hydrolysis. ARF apparently lacks a site analogous to that ADP-ribosylated by choleragen in G-protein alpha subunits. Although both the ARF proteins and the alpha subunits bind guanine nucleotides and serve as choleragen substrates, they must interact with the toxin A1 peptide in different ways. In addition to serving as an ADP-ribose acceptor, ARF interacts with the toxin in a manner that modifies its catalytic properties. PMID:3135549

  13. Probing the Binding Site of Bile Acids in TGR5.

    PubMed

    Macchiarulo, Antonio; Gioiello, Antimo; Thomas, Charles; Pols, Thijs W H; Nuti, Roberto; Ferrari, Cristina; Giacchè, Nicola; De Franco, Francesca; Pruzanski, Mark; Auwerx, Johan; Schoonjans, Kristina; Pellicciari, Roberto

    2013-12-12

    TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists. PMID:24900622

  14. A conserved acidic patch in the Myb domain is required for activation of an endogenous target gene and for chromatin binding

    PubMed Central

    Ko, Emily Ray; Ko, Dennis; Chen, Carolyn; Lipsick, Joseph S

    2008-01-01

    The c-Myb protein is a transcriptional regulator initially identified by homology to the v-Myb oncoprotein, and has since been implicated in human cancer. The most highly conserved portion of the c-Myb protein is the DNA-binding domain which consists of three imperfect repeats. Many other proteins contain one or more Myb-related domains, including a number of proteins that do not bind directly to DNA. We performed a phylogenetic analysis of diverse classes of Myb-related domains and discovered a highly conserved patch of acidic residues common to all Myb-related domains. These acidic residues are positioned in the first of three alpha-helices within each of the three repeats that comprise the c-Myb DNA-binding domain. Interestingly, these conserved acidic residues are present on a surface of the protein which is distinct from that which binds to DNA. Alanine mutagenesis revealed that the acidic patch of the third c-Myb repeat is essential for transcriptional activity, but neither for nuclear localization nor DNA-binding. Instead, these acidic residues are required for efficient chromatin binding and interaction with the histone H4 N-terminal tail. PMID:18840288

  15. An examination of binding motifs associated with inter-particle interactions between facetted nano-crystals of acetylsalicylic acid and ascorbic acid through the application of molecular grid-based search methods.

    PubMed

    Hammond, R B; Jeck, S; Ma, C Y; Pencheva, K; Roberts, K J; Auffret, T

    2009-12-01

    Grid-based intermolecular search methods using atom-atom force fields are used to assess the structural nature of potential crystal-crystal interfacial binding associated with the examination of representative pharmaceutical formulation components, viz acetylsalicylic acid (aspirin) and ascorbic acid (vitamin C). Molecular models of nano-sized molecular clusters for these two compounds, shaped in accordance with an attachment energy model of the respective particle morphologies, are constructed and used together with a grid-based search method to model the likely inter-particle interactions. The most-stable, mutual alignments of the respective nano-clusters based on their interaction energies are identified in the expectation that these are indicative of the most likely inter-particle binding configurations. The stable inter-particle binding configurations identified reveal that the number of interfacial hydrogen bonds formed between the binding particles is, potentially, an important factor in terms of the stability of inter-particle cohesion. All preferred inter-particle alignments are found to involve either the (1 0 0) or the (1 1 0) face of aspirin crystals interacting with a number of the growth forms of ascorbic acid. Four main types of interfacial hydrogen bonds are found to be associated with inter-particle binding and involve acceptor-donor interactions between hydroxyl, carbonyl, ester and lactone acceptor groups and hydroxyl donor groups. This hydrogen bonding network is found to be consistent with the surface chemistry of the interacting habit faces with, in general, the number of hydrogen bonds increasing for the more stable alignments. The likely usefulness of this approach for predicting solid-state formulation properties is reviewed. PMID:19544525

  16. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. PMID:17661353

  17. Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein.

    PubMed Central

    Stremmel, W; Strohmeyer, G; Berk, P D

    1986-01-01

    Several studies suggest that a portion of hepatocellular nonesterified fatty acid uptake may be carrier mediated. To further investigate this process, initial rates (Vo) of [14C]oleate uptake into rat hepatocytes, isolated by collagenase perfusion and incubated at 37 degrees C with oleate in the presence of bovine serum albumin, were studied as a function of the concentration of unbound [14C]oleate in the medium. Vo was saturable with increasing unbound oleate concentration (Km = 8.3 X 10(-8) M; Vmax = 197 pmol per min per 5 X 10(4) hepatocytes) and was not inhibited by up to 40 microM sulfobromophthalein, taurocholate, or cholic acid. Oleate uptake was sodium dependent. Vo was significantly diminished when Li+, K+, choline, or sucrose were substituted for Na+ in the incubation medium and was reduced 46% by 1 mM ouabain. Uptake was also markedly reduced after exposure of cells to metabolic inhibitors (e.g., 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, antimycin, KCN). To evaluate the physiologic significance of the previously isolated rat liver plasma membrane fatty acid-binding protein, the effect of an antibody directed against this protein on hepatocellular [14C]oleate uptake was examined. Preincubation of hepatocytes with the IgG fraction of this antiserum inhibited Vo of [14C]oleate by up to 65% in dose-related fashion, without altering Vo for [35S]sulfobromophthalein, [14C]taurocholate, or [3H]cholate. These data indicate that at least a portion of hepatocellular oleate uptake is energy dependent, sodium linked, and mediated by a specific liver plasma membrane-fatty acid-binding protein. PMID:3459144

  18. Sequence-specific DNA binding by long hairpin pyrrole-imidazole polyamides containing an 8-amino-3,6-dioxaoctanoic acid unit.

    PubMed

    Sawatani, Yoshito; Kashiwazaki, Gengo; Chandran, Anandhakumar; Asamitsu, Sefan; Guo, Chuanxin; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2016-08-15

    With the aim of improving aqueous solubility, we designed and synthesized five N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides capable of recognizing 9-bp sequences. Their DNA-binding affinities and sequence specificities were evaluated by SPR and Bind-n-Seq analyses. The design of polyamide 1 was based on a conventional model, with three consecutive Py or Im rings separated by a β-alanine to match the curvature and twist of long DNA helices. Polyamides 2 and 3 contained an 8-amino-3,6-dioxaoctanoic acid (AO) unit, which has previously only been used as a linker within linear Py-Im polyamides or between Py-Im hairpin motifs for tandem hairpin. It is demonstrated herein that AO also functions as a linker element that can extend to 2-bp in hairpin motifs. Notably, although the AO-containing unit can fail to bind the expected sequence, polyamide 4, which has two AO units facing each other in a hairpin form, successfully showed the expected motif and a KD value of 16nM was recorded. Polyamide 5, containing a β-alanine-β-alanine unit instead of the AO of polyamide 2, was synthesized for comparison. The aqueous solubilities and nuclear localization of three of the polyamides were also examined. The results suggest the possibility of applying the AO unit in the core of Py-Im polyamide compounds. PMID:27301681

  19. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans. PMID:25370009

  20. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4)

    PubMed Central

    González, Javier M.; Fisher, S. Zoë

    2015-01-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments. PMID:25664790

  1. Structural and Functional Studies of a Phosphatidic Acid-Binding Antifungal Plant Defensin MtDef4: Identification of an RGFRRR Motif Governing Fungal Cell Entry

    PubMed Central

    Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghu S.; Smith, Thomas J.; Shah, Dilip M.

    2013-01-01

    MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show that MtDef4 rapidly permeabilizes fungal plasma membrane and is internalized by the fungal cells where it accumulates in the cytoplasm. Furthermore, analysis of the structure of MtDef4 reveals the presence of a positively charged γ-core motif composed of β2 and β3 strands connected by a positively charged RGFRRR loop. Replacement of the RGFRRR sequence with AAAARR or RGFRAA abolishes the ability of MtDef4 to enter fungal cells, suggesting that the RGFRRR loop is a translocation signal required for the internalization of the protein. MtDef4 binds to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Amino acid substitutions in the RGFRRR sequence which abolish the ability of MtDef4 to enter fungal cells also impair its ability to bind PA. These findings suggest that MtDef4 is a novel antifungal plant defensin capable of entering into fungal cells and affecting intracellular targets and that these processes are mediated by the highly conserved cationic RGFRRR loop via its interaction with PA. PMID:24324798

  2. Heavy metal binding to heparin disaccharides. I. Iduronic acid is the main binding site.

    PubMed

    Whitfield, D M; Choay, J; Sarkar, B

    1992-06-01

    As model compounds for Ni(II)-binding heparin-like compounds isolated from human kidneys (Templeton, D.M. & Sarkar, B. (1985) Biochem. J. 230 35-42.), we investigated two disaccharides--4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-2,5-anhydro- D-mannitol, disodium salt (1a), and 4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-6-O- sulfo-2,5-anhydro-D-mannitol, trisodium salt (1b)--that were isolated from heparin after nitrous acid hydrolysis and reduction. The monosulfate (1a) was active whereas the disulfate (1b) was inactive in a high-performance liquid chromatography (HPLC) binding assay with the tracer ions 63Ni(II) 54Mn(II), 65Zn(II), and 109Cd(II). This result is in accord with the isolation of two 67Cu(II) and 63Ni(II) binding fractions from a complete pool of nitrous-acid-derived heparin disaccharides using sulfate gradients and a MonoQ anion exchange column on an FPLC system. One was identified as compound (1a) and the other as a tetrasulfated trisaccharide by high resolution FAB-MS, NMR and HPLC-PAD. Similarly, two synthetic disaccharides-methyl, 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-alpha-D-glucosamine, trisodium salt [IdopA2S(alpha 1,4)GlcNS alpha Me, 2a], and 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-6-O-sulfo- alpha-D-glucosamine, tetrasodium salt [IdopA2S (alpha 1,4)GlcNS6S alpha Me, 2b]--were shown to bind tracer amounts of 63Ni and 67Cu using chromatographic assays. Subsequently, 1H NMR titrations of 1a, 1b, 2a, and 2b with Zn (OAc)2 were analyzed to yield 1:1 Zn(II)-binding constants of 472 +/- 59, 698 +/- 120, 8,758 +/- 2,237 and 20,100 +/- 5,598 M-1, respectively. The values for 2a and 2b suggest chelation. It is suggested that the idopyranosiduronic acid residue is the major metal binding site. NMR evidence for this hypothesis comes from marked 1H and 13C chemical shift changes to the iduronic acid resonances after addition of diamagnetic Zn(II) ions. PMID:1643264

  3. Structural basis for the hydrolysis of ATP by a nucleotide binding subunit of an amino acid ABC transporter from Thermus thermophilus.

    PubMed

    Devi, Seenivasan Karthiga; Chichili, Vishnu Priyanka Reddy; Jeyakanthan, J; Velmurugan, D; Sivaraman, J

    2015-06-01

    ATP-binding cassette (ABC) transporters are a major family of small molecule transporter proteins, and their deregulation is associated with several diseases, including cancer. Here, we report the crystal structure of the nucleotide binding domain (NBD) of an amino acid ABC transporter from Thermus thermophilus (TTHA1159) in its apo form and as a complex with ADP along with functional studies. TTHA1159 is a putative arginine ABC transporter. The apo-TTHA1159 was crystallized in dimeric form, a hitherto unreported form of an apo NBD. Structural comparison of the apo and ADP-Mg(2+) complexes revealed that Phe14 of TTHA1159 undergoes a significant conformational change to accommodate ADP, and that the bound ADP interacts with the P-loop (Gly40-Thr45). Modeling of ATP-Mg(2+):TTHA1159 complex revealed that Gln86 and Glu164 are involved in water-mediated hydrogen bonding contacts and Asp163 in Mg(2+) ion-mediated hydrogen bonding contacts with the γ-phosphate of ATP, consistent with the findings of other ABC transporters. Mutational studies confirmed the necessity of each of these residues, and a comparison of the apo/ADP Mg(2+):TTHA1159 with its ATP-complex model suggests the likelihood of a key conformational change to the Gln86 side chain for ATP hydrolysis. PMID:25916755

  4. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  5. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol.

    PubMed

    Lagakos, William S; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E; Storch, Judith

    2013-07-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  6. Liver Fatty Acid-binding Protein Binds Monoacylglycerol in Vitro and in Mouse Liver Cytosol*

    PubMed Central

    Lagakos, William S.; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E.; Storch, Judith

    2013-01-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  7. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. PMID:26873273

  8. Aeromonas salmonicida binds differentially to mucins isolated from skin and intestinal regions of Atlantic salmon in an N-acetylneuraminic acid-dependent manner.

    PubMed

    Padra, János T; Sundh, Henrik; Jin, Chunsheng; Karlsson, Niclas G; Sundell, Kristina; Lindén, Sara K

    2014-12-01

    Aeromonas salmonicida subsp. salmonicida infection, also known as furunculosis disease, is associated with high morbidity and mortality in salmonid aquaculture. The first line of defense the pathogen encounters is the mucus layer, which is predominantly comprised of secreted mucins. Here we isolated and characterized mucins from the skin and intestinal tract of healthy Atlantic salmon and studied how A. salmonicida bound to them. The mucins from the skin, pyloric ceca, and proximal and distal intestine mainly consisted of mucins soluble in chaotropic agents. The mucin density and mucin glycan chain length from the skin were lower than were seen with mucin from the intestinal tract. A. salmonicida bound to the mucins isolated from the intestinal tract to a greater extent than to the skin mucins. The mucins from the intestinal regions had higher levels of sialylation than the skin mucins. Desialylating intestinal mucins decreased A. salmonicida binding, whereas desialylation of skin mucins resulted in complete loss of binding. In line with this, A. salmonicida also bound better to mammalian mucins with high levels of sialylation, and N-acetylneuraminic acid appeared to be the sialic acid whose presence was imperative for binding. Thus, sialylated structures are important for A. salmonicida binding, suggesting a pivotal role for sialylation in mucosal defense. The marked differences in sialylation as well as A. salmonicida binding between the skin and intestinal tract suggest interorgan differences in the host-pathogen interaction and in the mucin defense against A. salmonicida. PMID:25287918

  9. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    SciTech Connect

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  10. Local Unfolding of Fatty Acid Binding Protein to Allow Ligand Entry for Binding.

    PubMed

    Xiao, Tianshu; Fan, Jing-Song; Zhou, Hu; Lin, Qingsong; Yang, Daiwen

    2016-06-01

    Fatty acid binding proteins are responsible for the transportation of fatty acids in biology. Despite intensive studies, the molecular mechanism of fatty acid entry to and exit from the protein cavity is still unclear. Here a cap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the helical cap is locked to the β-barrel by a disulfide linkage. Structure determination shows that this variant adopts a closed conformation, but still uptakes fatty acids. Stopped-flow experiments indicate that a rate-limiting step exists before the ligand association and this step corresponds to the conversion of the closed form to the open one. NMR relaxation dispersion and H-D exchange data demonstrate the presence of two excited states: one is native-like, but the other adopts a locally unfolded structure. Local unfolding of helix 2 generates an opening for ligands to enter the protein cavity, and thus controls the ligand association rate. PMID:27105780

  11. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    PubMed

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  12. Characterization and amino acid sequence of a fatty acid-binding protein from human heart.

    PubMed

    Offner, G D; Brecher, P; Sawlivich, W B; Costello, C E; Troxler, R F

    1988-05-15

    The complete amino acid sequence of a fatty acid-binding protein from human heart was determined by automated Edman degradation of CNBr, BNPS-skatole [3'-bromo-3-methyl-2-(2-nitrobenzenesulphenyl)indolenine], hydroxylamine, Staphylococcus aureus V8 proteinase, tryptic and chymotryptic peptides, and by digestion of the protein with carboxypeptidase A. The sequence of the blocked N-terminal tryptic peptide from citraconylated protein was determined by collisionally induced decomposition mass spectrometry. The protein contains 132 amino acid residues, is enriched with respect to threonine and lysine, lacks cysteine, has an acetylated valine residue at the N-terminus, and has an Mr of 14768 and an isoelectric point of 5.25. This protein contains two short internal repeated sequences from residues 48-54 and from residues 114-119 located within regions of predicted beta-structure and decreasing hydrophobicity. These short repeats are contained within two longer repeated regions from residues 48-60 and residues 114-125, which display 62% sequence similarity. These regions could accommodate the charged and uncharged moieties of long-chain fatty acids and may represent fatty acid-binding domains consistent with the finding that human heart fatty acid-binding protein binds 2 mol of oleate or palmitate/mol of protein. Detailed evidence for the amino acid sequences of the peptides has been deposited as Supplementary Publication SUP 50143 (23 pages) at the British Library Lending Division, Boston Spa, Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5. PMID:3421901

  13. Spectrofluorimetric study of the binding of codeine to nucleic acids

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Huang, Wei; Su, Liang; Dong, Zijia; Zhang, Shuai

    2009-06-01

    The characteristics of the interaction between codeine (CD) and nucleic acids were studied by ultraviolet-visible spectra and fluorescent spectra. It shows that there is a powerful ability in nucleic acids to quench the fluorescence intensity of codeine. The fluorescence quenching data were analyzed according to Stern-Volmer equation and Förster's nonradiative energy transfer mechanism. Thus the binding constant and the thermodynamic parameters between codeine and nucleic acids were obtained. The results show that codeine interacts with nucleic acids in a mode of groove binding and -OCH 3 of the codeine molecular combines with the groove of nucleic acids through hydrogen bond or van der Waals force.

  14. /sup 113/Cd NMR studies of a 1:1 Cd adduct with an 18-residue finger peptide from HIV-1 nucleic acid binding protein, p7

    SciTech Connect

    South, T.L.; Kim, B.; Summers, M.F.

    1989-01-04

    The Zn/sup 2+/ and Cd/sup 2+/ adducts with the 18-residue peptide comprising the amino acid sequence of the first finger (residues 13 through 30) of retroviral nucleic acid binding proteins p7 from HIV-1 (the causative agent of AIDS) have been prepared. /sup 1/H NMR data indicate that the metal adducts are 1:1 compounds that are stable in aqueous solutions for at least a month. The /sup 113/Cd NMR spectral results for the adduct are presented and analyzed. 26 references, 3 figures.

  15. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted. PMID:19836400

  16. A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling.

    PubMed

    Chae, Min-Ju; Lee, Jung-Sook; Nam, Myung-Hee; Cho, Kun; Hong, Ji-Yeon; Yi, Sang-A; Suh, Seok-Cheol; Yoon, In-Sun

    2007-01-01

    By a differential cDNA screening technique, we have isolated a dehydration-inducible gene (designated OSRK1) that encodes a 41.8 kD protein kinase of SnRK2 family from Oryza sativa. The OSRK1 transcript level was undetectable in vegetative tissues, but significantly increased by hyperosmotic stress and Abscisic acid (ABA). To determine its biochemical properties, we expressed and isolated OSRK1 and its mutants as glutathione S-transferase fusion proteins in Escherichia coli. In vitro kinase assay showed that OSRK1 can phosphorylate itself and generic substrates as well. Interestingly, OSRK1 showed strong substrate preference for rice bZIP transcription factors and uncommon cofactor requirement for Mn(2+) over Mg(2+). By deletion of C-terminus 73 amino acids or mutations of Ser-158 and Thr-159 to aspartic acids (Asp) in the activation loop, the activity of OSRK1 was dramatically decreased. OSRK1 can transphosphorylate the inactive deletion protein. A rice family of abscisic acid-responsive element (ABRE) binding factor, OREB1 was phosphorylated in vitro by OSRK1 at multiple sites of different functional domains. MALDI-TOF analysis identified a phosphorylation site at Ser44 of OREB1 and mutation of the residue greatly decreased the substrate specificity for OSRK1. The recognition motif for OSRK1, RQSS is highly similar to the consensus substrate sequence of AMPK/SNF1 kinase family. We further showed that OSRK1 interacts with OREB1 in a yeast two-hybrid system and co-localized to nuclei by transient expression analysis of GFP-fused protein in onion epidermis. Finally, ectopic expression of OSRK1 in transgenic tobacco resulted in a reduced sensitivity to ABA in seed germination and root elongation. These findings suggest that OSRK1 is associated with ABA signaling, possibly through the phosphorylation of ABF family in vivo. The interaction between SnRK2 family kinases and ABF transcription factors may constitute an important part of cross-talk mechanism in the stress

  17. DNA binding proteins that alter nucleic acid flexibility

    NASA Astrophysics Data System (ADS)

    McCauley, Micah; Hardwidge, Philip R.; Maher, L. J., III; Williams, Mark C.

    2007-09-01

    Dual - beam optical tweezers experiments subject single molecules of DNA to high forces (~ 300 pN) with 0.1 pN accuracy, probing the energy and specificity of nucleic acid - ligand structures. Stretching phage λ-DNA reveals an increase in the applied force up to a critical force known as the overstretching transition. In this region, base pairing and stacking are disrupted as double stranded DNA (dsDNA) is melted. Proteins that bind to the double strand will tend to stabilize dsDNA, and melting will occur at higher forces. Proteins that bind to single stranded DNA (ssDNA) destabilize melting, provided that the rate of association is comparable to the pulling rate of the experiment. Many proteins, however, exhibit some affinity for both dsDNA and ssDNA. We describe experiments upon DNA + HMGB2 (box A), a nuclear protein that is believed to facilitate transcription. By characterizing changes in the structure of dsDNA with a polymer model of elasticity, we have determined the equilibrium association constant for HMGB2 to be K ds = 0.15 +/- 0.7 10 9 M -1 for dsDNA binding. Analysis of the melting transition reveals an equilibrium association constant for HMGB2 to ssDNA to be K ss = 0.039 +/- 0.019 10 9 M -1 for ssDNA binding.

  18. T-box binding protein type two (TBX2) is an immediate early gene target in retinoic-acid-treated B16 murine melanoma cells.

    PubMed

    Boskovic, Goran; Niles, Richard M

    2004-05-01

    Retinoic acid induces growth arrest and differentiation in B16 mouse melanoma cells. Using gene arrays, we identified several early response genes whose expression is altered by retinoic acid. One of the genes, tbx2, is a member of T-box nuclear binding proteins that are important morphogens in developing embryos. Increased TBX2 mRNA is seen within 2 h after addition of retinoic acid to B16 cells. The effect of retinoic acid on gene expression is direct since it does not require any new protein synthesis. We identified a degenerate retinoic acid response element (RARE) between -186 and -163 in the promoter region of the tbx2 gene. A synthetic oligonucleotide spanning this region was able to drive increased expression of a luciferase reporter gene in response to retinoic acid; however, this induction was lost when a point mutation was introduced into the RARE. This oligonucleotide also specifically bound RAR in nuclear extracts from B16 cells. TBX2 expression and its induction by retinoic acid was also observed in normal human and nonmalignant mouse melanocytes. PMID:15093729

  19. The liver fatty acid binding protein--comparison of cavity properties of intracellular lipid-binding proteins.

    PubMed

    Thompson, J; Ory, J; Reese-Wagoner, A; Banaszak, L

    1999-02-01

    The crystal and solution structures of all of the intracellular lipid binding proteins (iLBPs) reveal a common beta-barrel framework with only small local perturbations. All existing evidence points to the binding cavity and a poorly delimited 'portal' region as defining the function of each family member. The importance of local structure within the cavity appears to be its influence on binding affinity and specificity for the lipid. The portal region appears to be involved in the regulation of ligand exchange. Within the iLBP family, liver fatty acid binding protein or LFABP, has the unique property of binding two fatty acids within its internalized binding cavity rather than the commonly observed stoichiometry of one. Furthermore, LFABP will bind hydrophobic molecules larger than the ligands which will associate with other iLBPs. The crystal structure of LFABP contains two bound oleate molecules and provides the explanation for its unusual stoichiometry. One of the bound fatty acids is completely internalized and has its carboxylate interacting with an arginine and two serines. The second oleate represents an entirely new binding mode with the carboxylate on the surface of LFABP. The two oleates also interact with each other. Because of this interaction and its inner location, it appears the first oleate must be present before the second more external molecule is bound. PMID:10331654

  20. Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: an electrostatic model and experimental results.

    PubMed Central

    Denisov, G; Wanaski, S; Luan, P; Glaser, M; McLaughlin, S

    1998-01-01

    Direct fluorescence digital imaging microscopy observations demonstrate that a basic peptide corresponding to the effector region of the myristoylated alanine-rich C kinase substrate (MARCKS) self-assembles into membrane domains enriched in the acidic phospholipids phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). We show here that pentalysine, which corresponds to the first five residues of the MARCKS effector region peptide and binds to membranes through electrostatic interactions, also forms domains enriched in PS and PIP2. We present a simple model of domain formation that represents the decrease in the free energy of the system as the sum of two contributions: the free energy of mixing of neutral and acidic lipids and the electrostatic free energy. The first contribution is always positive and opposes domain formation, whereas the second contribution may become negative and, at low ionic strength, overcome the first contribution. Our model, based on Gouy-Chapman-Stern theory, makes four predictions: 1) multivalent basic ligands, for which the membrane binding is a steep function of the mole fraction of acidic lipid, form domains enriched in acidic lipids; domains break up at high concentrations of either 2) basic ligand or 3) monovalent salt; and 4) if multivalent anionic lipids (e.g., PIP2) are present in trace concentrations in the membrane, they partition strongly into the domains. These predictions agree qualitatively with experimental data obtained with pentalysine and spermine, another basic ligand. PMID:9533686

  1. A Vibrio cholerae Classical TcpA Amino Acid Sequence Induces Protective Antibody That Binds an Area Hypothesized To Be Important for Toxin-Coregulated Pilus Structure

    PubMed Central

    Taylor, Ronald K.; Kirn, Thomas J.; Meeks, Michael D.; Wade, Terri K.; Wade, William F.

    2004-01-01

    Vibrio cholerae is a gram-negative bacterium that has been associated with cholera pandemics since the early 1800s. Whole-cell, killed, and live-attenuated oral cholera vaccines are in use. We and others have focused on the development of a subunit cholera vaccine that features standardized epitopes from various V. cholerae macromolecules that are known to induce protective antibody responses. TcpA protein is assembled into toxin-coregulated pilus (TCP), a type IVb pilus required for V. cholerae colonization, and thus is a strong candidate for a cholera subunit vaccine. Polypeptides (24 to 26 amino acids) in TcpA that can induce protective antibody responses have been reported, but further characterization of their amino acid targets relative to tertiary or quaternary TCP structures has not been done. We report a refinement of the TcpA sequences that can induce protective antibody. One sequence, TcpA 15 (residues 170 to 183), induces antibodies that bind linear TcpA in a Western blot as well as weakly bind soluble TcpA in solution. These antibodies bind assembled pili at high density and provide 80 to 100% protection in the infant mouse protection assay. This is in sharp contrast to other anti-TcpA peptide sera (TcpA 11, TcpA 13, and TcpA 17) that bind very strongly in Western blot and solution assays yet do not provide protection or effectively bind TCP, as evidenced by immunoelectron microscopy. The sequences of TcpA 15 that induce protective antibody were localized on a model of assembled TCP. These sequences are centered on a site that is predicted to be important for TCP structure. PMID:15385509

  2. Characteristics of the binding of tacrine to acidic phospholipids.

    PubMed Central

    Lehtonen, J Y; Rytömaa, M; Kinnunen, P K

    1996-01-01

    Tacrine (1,2,3,4-tetrahydro-9-acridinamine monohydrate) is an inhibitor of acetylcholinesterase currently used in the treatment of the symptoms of Alzheimer's disease. The present study demonstrates preferential binding of this drug to acidic phospholipids, as revealed by fluorescence polarization, penetration into lipid monolayers, and effects on the thermal phase behavior of dimyristoyl phosphatidic acid (DMPA). A fivefold enhancement in the polarization of tacrine emission is evident above the main phase transition temperature (T(m)) of DMPA vesicles, whereas below T(m) only a 0.75-fold increase is observed. In contrast, the binding of tacrine to another acidic phospholipid, dimyristoylphosphatidylglycerol, did not exhibit strong dependence on T(m). In accordance with the electrostatic nature of the membrane association of tacrine, the extent of binding was augmented with increasing contents of egg PG in phosphatidylcholine liposomes. Furthermore, [NaCl] > 50 mM dissociates tacrine (albeit incompletely) from the liposomes composed of acidic phospholipids. Inclusion of the cationic amphiphile sphingosine in egg PG vesicles decreased the membrane association of tacrine until at 1:1 sphingosine: egg PG stoichiometry binding was no longer evident. Tacrine also penetrated into egg PG but not into egg PC monolayers. Together with broadening of the main transition and causing a shoulder on its high temperature side, the binding of tacrine to DMPA liposomes results in a concentration-dependent reduction both in the combined enthalpy delta H of the above overlapping endotherms and the main transition temperature T(m). Interestingly, these changes in the thermal phase behavior of DMPA as a function of the content of the drug in vesicles were strongly nonlinear. More specifically, upon increasing [tacrine], T(m) exhibited stepwise decrements. Simultaneously, sharp minima in delta H were observed at drug:lipid stoichiometries of approximately 2:100 and 25:100, whereas a

  3. Expression of gastric antisecretory and prostaglandin E receptor binding activity of misoprostol by misoprostol free acid.

    PubMed

    Tsai, B S; Kessler, L K; Stolzenbach, J; Schoenhard, G; Bauer, R F

    1991-05-01

    In enriched canine parietal cell preparations, misoprostol, an analog of prostaglandin E1 methyl ester, was rapidly deesterified to misoprostol free acid. Under this circumstance, misoprostol and misoprostol free acid exhibited equal antisecretory potency against histamine-stimulated acid secretion and bound equally well to prostaglandin E receptors. When the deesterification of misoprostol was inhibited by paraoxon, an esterase inhibitor, the antisecretory and receptor binding activity of misoprostol was markedly reduced, with potency much less than misoprostol free acid. These results indicate that misoprostol free acid is the active biological form of misoprostol that binds to prostaglandin E receptors and mediates the antisecretory action of misoprostol. PMID:1850690

  4. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  6. YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed.

    PubMed

    Sattlegger, Evelyn; Swanson, Mark J; Ashcraft, Emily A; Jennings, Jennifer L; Fekete, Richard A; Link, Andrew J; Hinnebusch, Alan G

    2004-07-16

    The general amino acid control (GAAC) enables yeast cells to overcome amino acid deprivation by activation of the alpha subunit of translation initiation factor 2 (eIF2alpha) kinase GCN2 and consequent induction of GCN4, a transcriptional activator of amino acid biosynthetic genes. Binding of GCN2 to GCN1 is required for stimulation of GCN2 kinase activity by uncharged tRNA in starved cells. Here we show that YIH1, when overexpressed, dampens the GAAC response (Gcn- phenotype) by suppressing eIF2alpha phosphorylation by GCN2. The overexpressed YIH1 binds GCN1 and reduces GCN1-GCN2 complex formation, and, consistent with this, the Gcn- phenotype produced by YIH1 overexpression is suppressed by GCN2 overexpression. YIH1 interacts with the same GCN1 fragment that binds GCN2, and this YIH1-GCN1 interaction requires Arg-2259 in GCN1 in vitro and in full-length GCN1 in vivo, as found for GCN2-GCN1 interaction. However, deletion of YIH1 does not increase eIF2alpha phosphorylation or derepress the GAAC, suggesting that YIH1 at native levels is not a general inhibitor of GCN2 activity. We discovered that YIH1 normally resides in a complex with monomeric actin, rather than GCN1, and that a genetic reduction in actin levels decreases the GAAC response. This Gcn- phenotype was partially suppressed by deletion of YIH1, consistent with YIH1-mediated inhibition of GCN2 in actin-deficient cells. We suggest that YIH1 resides in a YIH1-actin complex and may be released for inhibition of GCN2 and stimulation of protein synthesis under specialized conditions or in a restricted cellular compartment in which YIH1 is displaced from monomeric actin. PMID:15126500

  7. DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene: identification of an element with properties similar to known glucose-responsive elements.

    PubMed Central

    Foufelle, F; Lepetit, N; Bosc, D; Delzenne, N; Morin, J; Raymondjean, M; Ferré, P

    1995-01-01

    We have shown previously that fatty acid synthase (FAS) gene expression is positively regulated by glucose in rat adipose tissue and liver. In the present study, we have identified in the first intron of the gene a sequence closely related to known glucose-responsive elements such as in the L-pyruvate kinase and S14 genes, including a putative upstream stimulatory factor/major late transcription factor (USF/MLTF) binding site (E-box) (+ 292 nt to + 297 nt). Location of this sequence corresponds to a site of hypersensitivity to DNase I which is present in the liver but not in the spleen. Moreover, using this information from a preliminary report of the present work, others have shown that a + 283 nt to + 303 nt sequence of the FAS gene can confer glucose responsiveness to a heterologous promoter. The protein binding to this region has been investigated in vitro by a combination of DNase I footprinting and gel-retardation experiments with synthetic oligonucleotides and known nuclear proteins. DNase I footprinting experiments using a + 161 nt to + 405 nt fragment of the FAS gene demonstrate that a region from + 290 nt to + 316 nt is protected by nuclear extracts from liver and spleen. This region binds two ubiquitous nuclear factors, USF/MLTF and the CAAT-binding transcription factor/nuclear factor 1 (CTF/NF1). Binding of these factors is similar in nuclear extracts from liver which does or does not express the FAS gene as observed for glucose-responsive elements in the L-pyruvate kinase and S14 genes. This suggests a posttranslational modification of a factor of the complex after glucose stimulation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7772036

  8. Amino acid composition of cadmium-binding protein induced in a marine diatom

    SciTech Connect

    Maita, Y.; Kawaguchi, S. )

    1989-09-01

    Organisms living in environments polluted with heavy metals develop tolerance against these contaminants. The tolerance has been attributed to the ability to synthesize metal binding substances. These recent findings imply metal binding complexes from animals and plants, although having very similar functional properties, may have entirely different amino acid compositions. Researchers reported that cadystin from fission yeast, Schizosaccharomyces pombe was composed of only glutamic acid, cysteine, and glycine. A year later, a heavy metal binding substance was isolated from Rauwolfia serpetina which contains only Glu, Cys, and Gly. Heavy metal binding complexes isolated from the water hyacinth and morning glory Datura innoxia also showed an amino acid composition similar to cadystin or phytochelatin. In this study, the cadmium binding protein induced in the marine diatom, Phaeodactylum tricornutum, was isolated and purified and its amino acid composition determined.

  9. Development of an ultra-rapid diagnostic method based on heart-type fatty acid binding protein levels in the CSF of CJD patients.

    PubMed

    Matsui, Yuki; Satoh, Katsuya; Mutsukura, Kazuo; Watanabe, Takuya; Nishida, Noriyuki; Matsuda, Hideo; Sugino, Masaichi; Shirabe, Susumu; Eguchi, Katsumi; Kataoka, Yasufumi

    2010-10-01

    Creutzfeldt-Jakob disease (CJD) is a transmissible, fatal, neurodegenerative disease in humans. Recently, various drugs have been reported to be useful in the treatment of CJD; however, for such treatments to be useful it is essential to rapidly and accurately diagnose CJD. 124 CJD patients and 87 with other diseases causing rapid progressive dementia were examined. Cerebral spinal fluid (CSF) from CJD patients was analyzed by 2D-PAGE and the protein expression pattern was compared with that from healthy subjects. One of three CJD-specific spots was found to be fatty acid binding protein (FABP), and heart-type FABP (H-FABP) was analyzed as a new biochemical marker for CJD. H-FABP ELISA results were compared between CJD patients and patients with other diseases (n = 211). Visual readout accuracy of the Rapicheck(®) H-FABP test panel for CSF was analyzed using an independent measure of CSF H-FABP concentration. The distribution of H-FABP in the brains of CJD patients was examined by immunohistochemistry. ELISA sensitivity and specificity were 90.3% and 92.9%, respectively, and Rapicheck(®) H-FABP sensitivity and specificity were 87.9% and 96.0%, respectively. ELISA and Rapicheck(®) H-FABP assays provided comparable results for 14-3-3 protein and total tau protein. Elevated H-FABP levels were associated with an accumulation of abnormal prion protein, astrocytic gliosis, and neuronal loss in the cerebral cortices of CJD patients. In conclusion, Rapicheck(®) H-FABP of CSF specimens enabled quick and frequent diagnosis of CJD. H-FABP represents a new biomarker for CJD distinct from 14-3-3 protein and total tau protein. PMID:20499272

  10. Iodination of salicylic acid improves its binding to transthyretin.

    PubMed

    Gales, Luís; Almeida, Maria Rosário; Arsequell, Gemma; Valencia, Gregorio; Saraiva, Maria João; Damas, Ana Margarida

    2008-03-01

    Transthyretin (TTR) is a plasma homotetrameric protein associated with senile systemic amyloidosis and familial amyloidotic polyneuropathy. In theses cases, TTR dissociation and misfolding induces the formation of amyloidogenic intermediates that assemble into toxic oligomeric species and lead to the formation of fibrils present in amyloid deposits. The four TTR monomers associate around a central hydrophobic channel where two thyroxine molecules can bind simultaneously. In each thyroxine binding site there are three pairs of symmetry related halogen binding pockets which can accommodate the four iodine substituents of thyroxine. A number of structurally diverse small molecules that bind to the TTR channel increasing the protein stability and thereafter inhibiting amyloid fibrillogenesis have been tested. In order to take advantage of the high propensity to interactions between iodine substituents and the TTR channel we have identified two iodinated derivatives of salicylic acid, 5-iodosalicylic acid and 3,5-diiodosalicylic acid, available commercially. We report in this paper the relative binding affinities of salicylic acid and the two iodinated derivatives and the crystal structure of TTR complexed with 3,5-diiodosalicylic acid, to elucidate the higher binding affinity of this compound towards TTR. PMID:18155178

  11. Binding of oligosaccharides of hyaluronic acid to proteoglycans (Short Communication)

    PubMed Central

    Hardingham, Timothy E.; Muir, Helen

    1973-01-01

    Oligosaccharides derived from hyaluronic acid were shown to inhibit proteoglycan–hyaluronic acid interaction, as measured in a viscometer. The relative inhibition increased with the size of the oligosaccharide and the results suggested that decasaccharides were the smallest fragments able to bind strongly to the proteoglycan. PMID:4273187

  12. Folic acid binds DNA and RNA at different locations.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2015-03-01

    We located multiple binding sites for folic acid on DNA and tRNA at physiological conditions, using FTIR, CD, fluorescence spectroscopic methods and molecular modeling. Structural analysis revealed that folic acid binds DNA and tRNA at multiple sites via hydrophilic, hydrophobic and H-bonding contacts with overall binding constants of Kfolic acid-DNA=1.1 (±0.3)×10(4) M(-1) and Kfolic acid-tRNA=6.4 (±0.5)×10(3) M(-1). Molecular modeling showed the participation of several nucleobases in folic acid complexes with DNA and tRNA, stabilized by H-bonding network. Two types of complexes were located for folic acid-tRNA adducts, one at the major groove and the other with TΨC loop, while acid binding occurs at major and minor grooves of DNA duplex. Folic acid complexation induced more alterations of DNA structure than tRNA. PMID:25555838

  13. Fatty acid binding proteins 4 and 5 in overweight prepubertal boys: effect of nutritional counselling and supplementation with an encapsulated fruit and vegetable juice concentrate.

    PubMed

    Canas, Jose A; Damaso, L; Hossain, J; Balagopal, P Babu

    2015-01-01

    Elevated fatty acid binding proteins (FABP) may play a role in obesity and co-morbidities. The role of nutritional interventions in modulating these levels remains unclear. The aim of this post hoc study was to determine the effect of overweight (OW) on FABP4 and FABP5 in boys in relation to indices of adiposity, insulin resistance and inflammation, and to investigate the effects of a 6-month supplementation with an encapsulated fruit and vegetable juice concentrate (FVJC) plus nutritional counselling (NC) on FABP levels. A post hoc analysis of a double-blind, randomised, placebo-controlled study of children recruited from the general paediatric population was performed. A total of thirty age-matched prepubertal boys (nine lean and twenty-one OW; aged 6-10 years) were studied. Patients received NC by a registered dietitian and were randomised to FVJC or placebo capsules for 6 months. FABP4, FABP5, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), glucose-induced acute insulin response (AIR), lipid-corrected β-carotene (LCβC), adiponectin, leptin, high-sensitivity C-reactive protein (hs-CRP), IL-6 and body composition by dual-energy X-ray absorptiometry were determined before and after the intervention. FABP were higher (P < 0·01) in the OW v. lean boys and correlated directly with HOMA-IR, abdominal fat mass (AFM), hs-CRP, IL-6, and LCβC (P < 0·05 for all). FABP4 was associated with adiponectin and AIR (P < 0·05). FVJC plus NC reduced FABP4, HOMA-IR and AFM (P < 0·05 for all) but not FABP5. OW boys showed elevated FABP4 and FABP5, but only FABP4 was lowered by the FVJC supplement. PMID:26688725

  14. The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes1[W][OPEN

    PubMed Central

    Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma

    2014-01-01

    In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949

  15. Characterization of Naphthaleneacetic Acid Binding to Receptor Sites on Cellular Membranes of Maize Coleoptile Tissue 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Characteristics of and optimum conditions for saturable (“specific”) binding of [14C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a KD of 5 to 7 × 10−7m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg2+ or Ca2+ above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor (“supernatant factor”) found in maize tissue. PMID:16659851

  16. An intronic peroxisome proliferator-activated receptor-binding sequence mediates fatty acid induction of the human carnitine palmitoyltransferase 1A.

    PubMed

    Napal, Laura; Marrero, Pedro F; Haro, Diego

    2005-12-01

    The liver plays a central role in the response to fasting. The hormonal profile in this condition, low insulin, and high concentrations of glucagon in plasma, induce the release of large amounts of fatty acids from adipose tissue. Prolonged starvation can therefore induce a dramatic change in the fatty acid oxidative capacity of liver metabolism. Modulation of gene expression by PPARalpha plays a crucial role in this response. While a major role for PPARalpha in the liver is to produce ketone bodies as fuel through beta-oxidation for peripheral tissues during fast, its participation in the control of CPT1A, the rate-limiting step of the pathway, remains controversial. Using Web-based software (VISTA) combining transcription factor binding site database searches with comparative sequence analyses, we have localized a conserved functional PPAR responsive element downstream of the transcriptional start site of the human CPT1A gene. We have shown that this sequence is fundamental for fatty acids or PGC1-induced transcriptional activation of the CPT1A gene. These results corroborate the hypothesis that PPARalpha regulates the limiting step in the oxidation of fatty acids in liver mitochondria. PMID:16271724

  17. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  18. Unexpected binding of an octapeptide to the angiotensin II receptor

    SciTech Connect

    Soffer, R.L.; Bandyopadhyay, S.; Rosenberg, E.; Hoeprich, P.; Teitelbaum, A.; Brunck, T.; Colby, C.B.; Gloff, C.

    1987-12-01

    An octapeptide, TBI-22 (Lys-Gly-Val-Tyr-Ile, His-Ala-Leu), inhibited binding of angiotensin II by a solubilized angiotensin receptor partially purified from rabbit liver. This inhibition appears to result from competition for binding to the same receptor. Radioiodinated TBI-22, like angiotensin II, bound to the solubilized receptor with an affinity such that the binding was inhibited 50% by unlabeled TBI-22 or angiotensin II at nanomolar concentrations. The binding reaction, like that for angiotensin II, required p-chloromercuriphenylsulfonic acid and was reversed in the presence of dithiothreitol. TBI-22 and angiotensin II share the sequence Val-Tyr-Ile-His; this tetrapeptide alone, however, did not inhibit binding of angiotensin II. Replacement of the tyrosine residue by aspartic acid in TBI-22 greatly reduced the ability of the peptide to compete with angiotensin II for binding, suggesting an important contribution of this residue to the configuration required for recognition by the receptor.

  19. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    PubMed

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  20. BILE ACIDS REGULATE THE ONTOGENIC EXPRESSION OF ILEAL BILE ACID BINDING PROTEIN IN THE RAT VIA THE FARNESOID X RECEPTOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the rat, an increase in ileal bile acid binding protein (IBABP) expression occurs during the third postnatal week. In vitro studies suggest that bile acids (BAs) increase IBABP transcription by activating the BA receptor, farnesoid X receptor (FXR). Thus, we investigated the role of BAs on the on...

  1. Structural Basis of Fatty Acid Substrate Binding to Cyclooxygenase-2*

    PubMed Central

    Vecchio, Alex J.; Simmons, Danielle M.; Malkowski, Michael G.

    2010-01-01

    The cyclooxygenases (COX-1 and COX-2) are membrane-associated heme-containing homodimers that generate prostaglandin H2 from arachidonic acid (AA). Although AA is the preferred substrate, other fatty acids are oxygenated by these enzymes with varying efficiencies. We determined the crystal structures of AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) bound to Co3+-protoporphyrin IX-reconstituted murine COX-2 to 2.1, 2.4, and 2.65 Å, respectively. AA, EPA, and docosahexaenoic acid bind in different conformations in each monomer constituting the homodimer in their respective structures such that one monomer exhibits nonproductive binding and the other productive binding of the substrate in the cyclooxygenase channel. The interactions identified between protein and substrate when bound to COX-1 are conserved in our COX-2 structures, with the only notable difference being the lack of interaction of the carboxylate of AA and EPA with the side chain of Arg-120. Leu-531 exhibits a different side chain conformation when the nonproductive and productive binding modes of AA are compared. Unlike COX-1, mutating this residue to Ala, Phe, Pro, or Thr did not result in a significant loss of activity or substrate binding affinity. Determination of the L531F:AA crystal structure resulted in AA binding in the same global conformation in each monomer. We speculate that the mobility of the Leu-531 side chain increases the volume available at the opening of the cyclooxygenase channel and contributes to the observed ability of COX-2 to oxygenate a broad spectrum of fatty acid and fatty ester substrates. PMID:20463020

  2. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry

    SciTech Connect

    Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

    2013-12-04

    A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its γ-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the γ-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

  3. The effect of charge reversal mutations in the alpha-helical region of liver fatty acid binding protein on the binding of fatty-acyl CoAs, lysophospholipids and bile acids.

    PubMed

    Hagan, Robert M; Davies, Joanna K; Wilton, David C

    2002-10-01

    Liver fatty acid binding protein (LFABP) is unique among the various types of FABPs in that it can bind a variety of ligands in addition to fatty acids. LFABP is able to bind long chain fatty acids with a 2:1 stoichiometry and the crystal structure has identified two fatty acid binding sites in the binding cavity. The presumed primary site (site 1) involves the fatty acid binding with the carboxylate group buried in the cavity whereas the fatty acid at site 2 has the carboxylate group solvent-exposed within the ligand portal region and in the vicinity of alpha-helix II. The alpha-helical region contains three cationic residues, K20, K31, K33 and modelling studies suggest that K31 on alpha-helix II could make an electrostatic contribution to anionic ligands binding to site 2. The preparation of three charge reversal mutants of LFABP, K20E, K31E and K33E has allowed an investigation of the role of site 2 in ligand binding, particularly those ligands with a bulky anionic head group. The binding of oleoyl CoA, lysophosphatidic acid, lysophosphatidylcholine, lithocholic acid and taurolithocholate 3-sulphate to LFABP has been studied using the alpha-helical mutants. The results support the concept that such ligands bind at site 2 of LFABP where solvent exposure allows the accommodation of their bulky anionic group. PMID:12479568

  4. A Sialic Acid Binding Site in a Human Picornavirus

    PubMed Central

    Frank, Martin; Hähnlein-Schick, Irmgard; Ekström, Jens-Ola; Arnberg, Niklas; Stehle, Thilo

    2014-01-01

    The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC. PMID:25329320

  5. Endogenous fatty acids in olfactory hairs influence pheromone binding protein structure and function in Lymantria dispar.

    PubMed

    Nardella, Jason; Terrado, Mailyn; Honson, Nicolette S; Plettner, Erika

    2015-08-01

    The gypsy moth utilizes a pheromone, (7R,8S)-2-methyl-7,8-epoxyoctadecane, for mate location. The pheromone is detected by sensory hairs (sensilla) on the antennae of adult males. Sensilla contain the dendrites of olfactory neurons bathed in lymph, which contains pheromone binding proteins (PBPs). We have extracted and identified free fatty acids from lymph of sensory hairs, and we demonstrate that these function as endogenous ligands for gypsy moth PBP1 and PBP2. Homology modeling of both PBPs, and docking of fatty acids reveal multiple binding sites: one internal, the others external. Pheromone binding assays suggest that these fatty acids increase PBP-pheromone binding affinity. We show that fatty acid binding causes an increase in α-helix content in the N-terminal domain, but not in the C-terminal peptide of both proteins. The C-terminal peptide was shown to form a α-helix in a hydrophobic, homogeneous environment, but not in the presence of fatty acid micelles. Through partition assays we show that the fatty acids prevent adsorption of the pheromone on hydrophobic surfaces and facilitate pheromone partition into an aqueous phase. We propose that lymph is an emulsion of fatty acids and PBP that influence each other and thereby control the partition equilibria of hydrophobic odorants. PMID:26032337

  6. Selective polyamine-binding proteins. Spermine binding by an androgen-sensitive phosphoprotein.

    PubMed

    Liang, T; Mezzetti, G; Chen, C; Liao, S

    1978-09-01

    Rat ventral prostate contains an acidic protein which can bind spermine selectively. The relative binding affinities of various aliphatic amines for the protein are, in decreasing order, spermine greater than thermine greater than greater than putrecine greater than 1,10-diaminodecane, cadaverine and 1,12-diaminododecane. The binding protein has an isoelectric point at pH 4.3 and a sedimentation coefficient of 3 S. Its molecular weight is approx. 30 000. Histones and nuclear chromatin preparations of the prostate can interact with the binding protein. The spermine-binding activity of the purified prostate protein can be inactivated by treatment with intestinal alkaline phosphatases. The phosphatase treated preparation can then be reactivated by beef heart protein kinase in the presence of cyclic AMP and ATP. The spermine-binding activity of the prostate cytosol protein fraction decreases after castration, but increases very rapidly after the castrated rats are injected with 5alpha-dihydrotestosterone. This finding raises the possibility that, in the postate, certain androgen actions may be dependent on the androgen-induced increase in the acidic protein binding of polyamines and their translocation to a functional cellular site such as nuclear chromatin. In the prostate cytosol, spermine also binds to 4-S tRNAs and to a unique RNA which has a sedimentation coefficient of 1.5 S. PMID:28786

  7. Cation binding of antimicrobial sulfathiazole to leonardite humic acid.

    PubMed

    Richter, Merle K; Sander, Michael; Krauss, Martin; Christl, Iso; Dahinden, Manuel G; Schneider, Manuel K; Schwarzenbach, René P

    2009-09-01

    Sorption of sulfathiazole (STA) and three structural analogs to Leonardite humic acid (LHA) was investigated in single- and binary-solute systems to elucidate the sorption mechanism of sulfonamides to soil organic matter (SOM). Cation binding of STA+ to anionic sites A- in LHA governed sorption up to circumneutral pH, based on the following findings: (i) From pH 7.7 to 3.3, the increase in extent and nonlinearity (i.e., concentration dependence) of STA sorption paralleled the increase in STA+. (ii) From pH 3.3 to 1.7, sorption decreased and nonlinearity increased, consistent with strong competition of STA+ and H+ for A-. (iii) Replacement of the protonable aniline group in STA by an apolar methylbenzene group resulted in much weaker, linear, and pH-independent sorption. (iv) Only analogs with aniline moieties displaced STA from LHA in binary-solute systems. Displacement occurred up to pH 5.4, at which <1% of STA in solution was cationic. (v) STA sorption was well-described (R2 = 0.98) by the NICA-Donnan cation-binding model, yielding high median affinities for STA+ to carboxylic and phenolic A- (log K(STA+,1) = 3.25 +/- 0.08 log (L mol(-1)) and log K(STA+,2) = 8.76 +/- 0.11 log (L mol(-1)), respectively). High affinity cation binding explains sorption of polar sulfonamides in agricultural soils and the strong dependence of sorption on SOM content and pH. PMID:19764228

  8. CD36 Binds Oxidized Low Density Lipoprotein (LDL) in a Mechanism Dependent upon Fatty Acid Binding*

    PubMed Central

    Jay, Anthony G.; Chen, Alexander N.; Paz, Miguel A.; Hung, Justin P.; Hamilton, James A.

    2015-01-01

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes. PMID:25555908

  9. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  10. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  11. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  12. Relationship between binding affinities to cellular retinoic acid-binding protein and biological potency of a new series of retinoids.

    PubMed

    Sani, B P; Dawson, M I; Hobbs, P D; Chan, R L; Schiff, L J

    1984-01-01

    Binding affinities of a new and unusual series of retinoic acid analogues to cellular retinoic acid-binding protein, a possible mediator of their biological function in the control of differentiation and tumorigenesis, and to serum albumin, their plasma transport protein, were determined. Also, biological activity of these retinoids in the reversal of keratinization in hamster tracheal organ cultures was assessed and compared with their binding affinities. Analogues that possessed high biological activity showed high binding efficiency to cellular retinoic acid-binding protein. Those that were biologically less active were poor binders to the binding protein. Three retinoids, 4657-57, 3920-59, and 4445-75, which showed 90 to 100% binding efficiency of that of retinoic acid for cellular retinoic acid-binding protein expressed high biological activity detectable in the range of 10(-10) M as against 10(-11) M for retinoic acid. The correlation noticed in these two activities not only enhances the confidence in the two assay procedures but also paves the way for design and development of potential chemopreventive agents. No apparent differences were observed in the binding affinities of the retinoids to binding proteins of a normal tissue or a tumor tissue. No correlation existed between the binding affinities of these retinoids to serum albumin and their biological activity. Structure-activity relationships of the retinoids in relation to their binding affinities and biological activities have been discussed. PMID:6317169

  13. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  14. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures. PMID:27159329

  15. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  16. Direct photoaffinity labeling of cellular retinoic acid-binding protein I (CRABP-I) with all-trans-retinoic acid: identification of amino acids in the ligand binding site.

    PubMed

    Chen, G; Radominska-Pandya, A

    2000-10-17

    Cellular retinoic acid-binding proteins I and II (CRABP-I and -II, respectively) are transport proteins for all-trans-retinoic acid (RA), an active metabolite of vitamin A (retinol), and have been reported to be directly involved in the metabolism of RA. In this study, direct photoaffinity labeling with [11,12-(3)H]RA was used to identify amino acids comprising the ligand binding site of CRABP-I. Photoaffinity labeling of CRABP-I with [(3)H]RA was light- and concentration-dependent and was protected by unlabeled RA and various retinoids, indicating that the labeling was directed to the RA-binding site. Photolabeled CRABP-I was hydrolyzed with endoproteinase Lys-C to yield radioactive peptides, which were separated by reversed-phase HPLC for analysis by Edman degradation peptide sequencing. This method identified five modified amino acids from five separate HPLC fractions: Trp7, Lys20, Arg29, Lys38, and Trp109. All five amino acids are located within one side of the "barrel" structure in the area indicated by the reported crystal structure as the ligand binding site. This is the first direct identification of specific amino acids in the RA-binding site of CRABPs by photoaffinity labeling. These results provide significant information about the ligand binding site of the CRABP-I molecule in solution. PMID:11027136

  17. Optical property of iron binding to Suwannee River fulvic acid.

    PubMed

    Yan, Mingquan; Li, Mingyang; Wang, Dongsheng; Xiao, Feng

    2013-05-01

    In this work, absorbance and fluorescence spectra were used to study iron binding to standard Suwannee River fulvic acid (SRFA). The differential logarithm-transformed absorbance and fluorescence spectra of SRFA induced by iron binding were processed to examine the nature of the observed phenomena and to investigate the contributions of discrete binding sites present in SRFA. Both the Fe-differential log-transformed absorbance and fluorescence were well correlated to the bound iron concentrations predicted based on the Non-ideal Competitive Adsorption (NICA-Donnan) model at iron concentrations below 10.0μM (R(2)>0.99 for absorbance and R(2)>0.97 for fluorescence) and over a wide pH range of 3.5-8.0. At pH3.5, both the Fe-differential log-transformed absorbance and fluorescence vs. iron bound spectra exhibited significantly lower slopes than those at pH5.0, 7.0, and 8.0. These results suggest that a different set of complexation-active chromophores and fluorophores are responsible for iron binding at low pH values or that the NICA-Donnan model is limited at low pH. Because phenolic and carboxylic complex sites of different fluorophores respond to iron quenching, the fluorescence data indicate three stages of iron binding to phenolic, carboxylic, and Donnan gels (electrostatic interactions) in SRFA (with R(2)>0.99 at each stage). The agreement between observations from spectroscopic indices and established metal-binding models shows that the absorbance and fluorescence spectra provide important information about the involvement of metal complexation of specific functional groups typical for fulvic acids. PMID:23499223

  18. Distinct binding determinants for 9-cis retinoic acid are located within AF-2 of retinoic acid receptor alpha.

    PubMed Central

    Tate, B F; Allenby, G; Janocha, R; Kazmer, S; Speck, J; Sturzenbecker, L J; Abarzúa, P; Levin, A A; Grippo, J F

    1994-01-01

    Retinoids exert their physiological action by interacting with two families of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs), which regulate gene expression by forming transcriptionally active heterodimeric RAR/RXR or homodimeric RXR/RXR complexes on DNA. Retinoid receptor activity resides in several regions, including the DNA and ligand binding domains, a dimerization interface, and both a ligand-independent (AF-1) and a ligand-dependent (AF-2) transactivation function. While 9-cis retinoic acid (RA) alone is the cognate ligand for the RXRs, both 9-cis RA and all-trans RA (t-RA) compete for binding with high affinity to the RARs. This latter observation suggested to us that the two isomers may interact with a common binding site. Here we report that RAR alpha has two distinct but overlapping binding sites for 9-cis RA and t-RA. Truncation of a human RAR alpha to 419 amino acids yields a receptor that binds both t-RA and 9-cis RA with high affinity, but truncation to amino acid 404 yields a mutant receptor that binds only t-RA with high affinity. Remarkably, this region also defines a C-terminal boundary for AF-2, as addition of amino acids 405 to 419 restores receptor-mediated gene activity to a truncated human RAR alpha lacking this region. It is interesting to speculate that binding of retinoid stereoisomers to unique sites within an RAR may function with AF-2 to cause differential activation of retinoid-responsive gene pathways. Images PMID:8139538

  19. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  20. DBBP: database of binding pairs in protein-nucleic acid interactions

    PubMed Central

    2014-01-01

    Background Interaction of proteins with other molecules plays an important role in many biological activities. As many structures of protein-DNA complexes and protein-RNA complexes have been determined in the past years, several databases have been constructed to provide structure data of the complexes. However, the information on the binding sites between proteins and nucleic acids is not readily available from the structure data since the data consists mostly of the three-dimensional coordinates of the atoms in the complexes. Results We analyzed the huge amount of structure data for the hydrogen bonding interactions between proteins and nucleic acids and developed a database called DBBP (DataBase of Binding Pairs in protein-nucleic acid interactions, http://bclab.inha.ac.kr/dbbp). DBBP contains 44,955 hydrogen bonds (H-bonds) of protein-DNA interactions and 77,947 H-bonds of protein-RNA interactions. Conclusions Analysis of the huge amount of structure data of protein-nucleic acid complexes is labor-intensive, yet provides useful information for studying protein-nucleic acid interactions. DBBP provides the detailed information of hydrogen-bonding interactions between proteins and nucleic acids at various levels from the atomic level to the residue level. The binding information can be used as a valuable resource for developing a computational method aiming at predicting new binding sites in proteins or nucleic acids. PMID:25474259

  1. Affinity regression predicts the recognition code of nucleic acid binding proteins

    PubMed Central

    Pelossof, Raphael; Singh, Irtisha; Yang, Julie L.; Weirauch, Matthew T.; Hughes, Timothy R.; Leslie, Christina S.

    2016-01-01

    Predicting the affinity profiles of nucleic acid-binding proteins directly from the protein sequence is a major unsolved problem. We present a statistical approach for learning the recognition code of a family of transcription factors (TFs) or RNA-binding proteins (RBPs) from high-throughput binding assays. Our method, called affinity regression, trains on protein binding microarray (PBM) or RNA compete experiments to learn an interaction model between proteins and nucleic acids, using only protein domain and probe sequences as inputs. By training on mouse homeodomain PBM profiles, our model correctly identifies residues that confer DNA-binding specificity and accurately predicts binding motifs for an independent set of divergent homeodomains. Similarly, learning from RNA compete profiles for diverse RBPs, our model can predict the binding affinities of held-out proteins and identify key RNA-binding residues. More broadly, we envision applying our method to model and predict biological interactions in any setting where there is a high-throughput ‘affinity’ readout. PMID:26571099

  2. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  3. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation. PMID:6283503

  4. Characterization of phosphonic acid binding to zinc oxide

    SciTech Connect

    Hotchkiss, Peter J.; Malicki, Michał; Giordano, Anthony J.; Armstrong, Neal R.; Marder, Seth R.

    2011-01-24

    Radio Frequency (RF) sputter-deposited zinc oxide (ZnO) films have been modified with alkylphosphonic acids in order to study both the binding of the phosphonic acid (PA) group to the ZnO surface and the packing of the alkyl chain. The characterization of these PA-modified ZnO substrates by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM) and contact angle measurements is presented herein. The surface modification procedure is straightforward and was adapted from earlier work. XPS analysis shows that oxygen plasma (OP) treatment creates reactive oxygen species on the surface of ZnO, allowing for a more robust binding of PAs to the ZnO surface. IRRAS analysis indicates that octadecylphosphonic acid binds to the ZnO surface in a predominantly tridentate fashion, forming dense, well-packed monolayers with alkyl chains in a fully anti-conformation. AFM and contact angle measurements indicate good surface coverage of the PAs with little to no multilayer formation.

  5. Effects of microgravity on the binding of acetylsalicylic acid by Rhizobium leguminosarum bv. trifolii

    NASA Astrophysics Data System (ADS)

    Urban, James E.; Gerren, Richard; Zoelle, Jeffery

    1995-07-01

    Bacteroids can be induced in vitro by treating growing Rhizobium leguminosarum bv. trifolii with succinic acid or succinic acid structural analogs like acetylsalicylic acid. Quantitating bacteroid induction by measuring acetylsalicylic binding under normal (1 g) conditions showed two forms of binding to occur. In one form of binding cells immediately bound comparatively high levels of acetylsalicylic acid, but the binding was quickly reversed. The second form of binding increased with time by first-order kinetics, and reached saturation in 40 s. Similar experiments performed in the microgravity environment aboard the NASA 930 aircraft showed only one form of binding and total acetylsalicylic acid bound was 32% higher than at 1 g.

  6. Binding of Ca2+ to Glutamic Acid-Rich Polypeptides from the Rod Outer Segment

    PubMed Central

    Haber-Pohlmeier, S.; Abarca-Heidemann, K.; Körschen, H. G.; Dhiman, H. Kaur; Heberle, J.; Schwalbe, H.; Klein-Seetharaman, J.; Kaupp, U. B.; Pohlmeier, A.

    2007-01-01

    Rod photoreceptors contain three different glutamic acid-rich proteins (GARPs) that have been proposed to control the propagation of Ca2+ from the site of its entry at the cyclic nucleotide-gated channel to the cytosol of the outer segment. We tested this hypothesis by measuring the binding of Ca2+ to the following five constructs related to GARPs of rod photoreceptors: a 32-mer peptide containing 22 carboxylate groups, polyglutamic acid, a recombinant segment comprising 73 carboxylate groups (GLU), GARP1, and GARP2. Ca2+ binding was investigated by means of a Ca2+-sensitive electrode. In all cases, Ca2+ binds with low affinity; the half-maximum binding constant K1/2 ranges from 6 to 16 mM. The binding stoichiometry between Ca2+ ions and carboxylic groups is ∼1:1; an exception is GARP2, where a binding stoichiometry of ∼1:2 was found. Hydrodynamic radii of 1.6, 2.8, 3.3, 5.7, and 6.7 nm were determined by dynamic light scattering for the 32-mer, polyglutamic acid, GLU, GARP2, and GARP1 constructs, respectively. These results suggest that the peptides as well as GARP1 and GARP2 do not adopt compact globular structures. We conclude that the structures should be regarded as loose coils with low-affinity, high-capacity Ca2+ binding. PMID:17218469

  7. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-01

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  8. Modulation of FadR binding capacity for acyl-CoA fatty acids through structure-guided mutagenesis.

    PubMed

    Bacik, John-Paul; Yeager, Chris M; Twary, Scott N; Martí-Arbona, Ricardo

    2015-10-01

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is thus of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl-CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology. PMID:26385696

  9. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGESBeta

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  10. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    SciTech Connect

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.

  11. Cu(II) binding by a pH-fractionated fulvic acid

    USGS Publications Warehouse

    Brown, G.K.; Cabaniss, S.E.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The relationship between acidity, Cu(II) binding and sorption to XAD resin was examined using Suwannee River fulvic acid (SRFA). The work was based on the hypothesis that fractions of SRFA eluted from an XAD column at various pH's from 1.0 to 12.0 would show systematic variations in acidity and possibly aromaticity which in turn would lead to different Cu(II) binding properties. We measured equilibrium Cu(II) binding to these fractions using Cu2+ ion-selective electrode (ISE) potentiometry at pH 6.0. Several model ligands were also examined, including cyclopentane-1,2,3,4-tetracarboxylic acid (CP-TCA) and tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THF-TCA), the latter binding Cu(II) much more strongly as a consequence of the ether linkage. The SRFA Cu(II) binding properties agreed with previous work at high ionic strength, and binding was enhanced substantially at lower ionic strength, in agreement with Poisson-Boltzmann predictions for small spheres. Determining Cu binding constants (K(i)) by non-linear regression with total ligand concentrations (L(Ti)) taken from previous work, the fractions eluted at varying pH had K(i) similar to the unfractionated SRFA, with a maximum enhancement of 0.50 log units. We conclude that variable-pH elution from XAD does not isolate significantly strong (or weak) Cu(II)-binding components from the SRFA mixture. Copyright (C) 1999 Elsevier Science B.V.

  12. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs. PMID:26487699

  13. Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding

    SciTech Connect

    Maurer, F.; Christl, I; Kretzschmar, R

    2010-01-01

    Previous studies on proton and metal binding to humic substances have not considered a potential influence of reduction and oxidation of functional groups. Therefore, we investigated how proton binding of a purified soil humic acid was affected by reduction. Reduction of the humic acid was carried out using an electrochemical cell that allowed us to measure the amounts of electrons and protons involved in reduction reactions. We further applied spectroscopic methods (UV-vis, fluorescence, FT-IR, C-1s NEXAFS) to detect possible chemical changes in the humic acid induced by reduction and reoxidation. The effect of reduction on proton binding was determined with acid-base titrations in the pH range 4-10 under controlled redox conditions. During reduction, 0.54 mol kg{sup -1} protons and 0.55 mol kg{sup -1} electrons were transferred to humic acid. NICA-Donnan modeling revealed an equivalent increase in proton-reactive sites (0.52 mol kg{sup -1}) in the alkaline pH-range. Our results indicate that reduction of humic acid increased the amount of proton-reactive sites by 15% compared to the untreated state. Spectroscopic differences between the untreated and reduced humic acid were minor, apart from a lower UV-vis absorption of the reduced humic acid between 400 and 700 nm.

  14. Studies on fatty acid-binding proteins. The diurnal variation shown by rat liver fatty acid-binding protein.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1987-01-01

    The concentration of fatty acid-binding protein in rat liver was examined by SDS/polyacrylamide-gel electrophoresis, by Western blotting and by quantifying the fluorescence enhancement achieved on the binding of the fluorescent probe 11-(dansylamino)undecanoic acid. A 2-3-fold increase in the concentration of this protein produced by treatment of rats with the peroxisome proliferator tiadenol was readily detected; however, only a small variation in the concentration of the protein due to a diurnal rhythm was observed. This result contradicts the 7-10-fold variation previously reported for this protein [Hargis, Olson, Clarke & Dempsey (1986) J. Biol. Chem. 261, 1988-1991]. Images Fig. 1. Fig. 3. PMID:3593284

  15. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2016-08-01

    Interaction of the food colorant acid red 27 with double stranded DNA was investigated using spectroscopic and calorimetric methods. Absorbance and fluorescence studies suggested an intimate binding interaction between the dye and DNA. The quantum efficiency value testified an effective energy transfer from the DNA base pairs to the dye molecules. Minor groove displacement assay with Hoechst 33258 revealed that the binding occurs in the minor groove of DNA. Circular dichroism studies revealed that acid red 27 induces moderate conformational perturbations in DNA. Results of calorimetric studies suggested that the complexation process was driven largely by positive entropic contribution with a smaller favorable enthalpy contribution. The equilibrium constant of the binding was calculated to be (3.04 ± 0.09) × 10(4)  M(-1) at 298.15 K. Negative heat capacity value along with the enthalpy-entropy compensation phenomenon established the involvement of dominant hydrophobic forces in the binding process. Differential scanning calorimetry studies presented evidence for an increased thermal stability of DNA on binding of acid red 27. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26846192

  16. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    SciTech Connect

    Raza, H.; Chung, W.L.; Mukhtar, H. )

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  17. Nucleic acid-binding properties of the RRM-containing protein RDM1

    SciTech Connect

    Hamimes, Samia; Bourgeon, Dominique; Stasiak, Alicja Z.; Stasiak, Andrzej; Van Dyck, Eric . E-mail: Vandyck@iarc.fr

    2006-05-26

    RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L{sub 119}GF {sup {yields}} AAA mutation affects the mode of RDM1 binding to single-stranded DNA.

  18. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein.

    PubMed Central

    Kirk, W R; Kurian, E; Prendergast, F G

    1996-01-01

    1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity. PMID:8770188

  19. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  20. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    PubMed

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/. PMID:26671809

  1. The C-Terminal Acidic Region of Calreticulin Mediates Phosphatidylserine Binding and Apoptotic Cell Phagocytosis.

    PubMed

    Wijeyesakere, Sanjeeva Joseph; Bedi, Sukhmani Kaur; Huynh, David; Raghavan, Malini

    2016-05-01

    Calreticulin is a calcium-binding chaperone that is normally localized in the endoplasmic reticulum. Calreticulin is detectable on the surface of apoptotic cells under some apoptosis-inducing conditions, where it promotes the phagocytosis and immunogenicity of dying cells. However, the precise mechanism by which calreticulin, a soluble protein, localizes to the outer surface of the plasma membrane of dying cells is unknown, as are the molecular mechanisms that are relevant to calreticulin-induced cellular phagocytosis. Calreticulin comprises three distinct structural domains: a globular domain, an extended arm-like P-domain, and a C-terminal acidic region containing multiple low-affinity calcium binding sites. We show that calreticulin, via its C-terminal acidic region, preferentially interacts with phosphatidylserine (PS) compared with other phospholipids and that this interaction is calcium dependent. Additionally, exogenous calreticulin binds apoptotic cells via a higher-affinity calcium-dependent mode that is acidic region dependent. Exogenous calreticulin also binds live cells, including macrophages, via a second, lower-affinity P-domain and globular domain-dependent, but calcium-independent binding mode that likely involves its generic polypeptide binding site. Truncation constructs lacking the acidic region or arm-like P-domain of calreticulin are impaired in their abilities to induce apoptotic cell phagocytosis by murine peritoneal macrophages. Taken together, the results of this investigation provide the first molecular insights into the phospholipid binding site of calreticulin as a key anchor point for the cell surface expression of calreticulin on apoptotic cells. These findings also support a role for calreticulin as a PS-bridging molecule that cooperates with other PS-binding factors to promote the phagocytosis of apoptotic cells. PMID:27036911

  2. Molecular Switch Controlling the Binding of Anionic Bile Acid Conjugates to Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Rais, Rana; Acharya, Chayan; Tririya, Gasirat; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium-dependent bile acid transporter (hASBT) may serve as a prodrug target for oral drug absorption. Synthetic, biological, NMR and computational approaches identified the structure-activity relationships of mono- and dianionic bile acid conjugates for hASBT binding. Experimental data combined with a conformationally-sampled pharmacophore/QSAR modeling approach (CSP-SAR) predicted that dianionic substituents with intramolecular hydrogen bonding between hydroxyls on the cholane skeleton and the acid group on the conjugate's aromatic ring increased conjugate hydrophobicity and improved binding affinity. Notably, the model predicted the presence of a conformational molecular switch, where shifting the carboxylate substituent on an aromatic ring by a single position controlled binding affinity. Model validation was performed by effectively shifting the spatial location of the carboxylate by inserting a methylene adjacent to the aromatic ring, resulting in the predicted alteration in binding affinity. This work illustrates conformation as a determinant of ligand binding affinity to a biological transporter. PMID:20504026

  3. Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers

    SciTech Connect

    Hamilton, J.A. )

    1989-04-01

    Temperature-dependent (5-42{degree}C) {sup 13}C NMR spectra of albumin complexes with 90% isotopically substituted (1-{sup 13}C)octanoic or (1-{sup 13}C)decanoic acids showed a single peak at >30{degree}C but three peaks at lower temperatures. The chemical-shift differences result from different ionic and/or hydrogen-bonding interactions between amino acid side chains and the fatty acid carboxyl carbon. Rapid exchange of fatty acid among binding sites obscures these sites at temperatures >30{degree}C. Rate constants for exchange at 33{degree}C were 350 sec{sup {minus}1} for octanoate and 20 sec {sup {minus}1} for decanoate. Temperature-dependent data for octanoate showed an activation energy of 2 kcal/mol for exchange. Spectra of albumin complexes with the 12-carbon saturated fatty acid, lauric acid, had several narrow laurate carboxyl peaks at 35{degree}C, indicating longer lifetimes in the different binding sites. Fatty acid exchange between albumin and model membranes (phosphatidylcholine bilayers) occurred on a time scale comparable to that for exchange among albumin binding sites, following the order octanoate > decanoate > laurate. The equilibrium distribution of fatty acid between lipid bilayers and protein was measured directly from NMR spectra. Decreasing pH increased the relative affinity of fatty acid for the lipid bilayer. The results predict that the relative affinity of octanoic acid for albumin and membranes will be similar to that of long-chain fatty acids, but the rate of equilibration will be {approx} 10{sup 4} faster for octanoic acid.

  4. The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family.

    PubMed

    Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M

    1992-02-01

    The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs

  5. Towards the elucidation of molecular determinants of cooperativity in the liver bile acid binding protein.

    PubMed

    Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael

    2009-11-15

    Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex. PMID:19603488

  6. Synthesis of Nanoporous Iminodiacetic Acid Sorbents for Binding Transition Metals

    PubMed Central

    Busche, Brad; Wiacek, Robert; Davidson, Joseph; Koonsiripaiboon, View; Yantasee, Wassana; Addleman, R. Shane; Fryxell, Glen E.

    2009-01-01

    Iminodiacetic acid (IDAA) forms strong complexes with a wide variety of metal ions. Using self-assembled monolayers in mesoporous supports (SAMMS) to present the IDAA ligand potentially allows for multiple metal-ligand interactions to enhance the metal binding affinity relative to that of randomly oriented polymer-based supports. This manuscript describes the synthesis of a novel nanostructured sorbent material built using self-assembly of a IDAA ligand inside a nanoporous silica, and demonstrates its use for capturing transition metal cations, and anionic metal complexes, such as PdCl4−2. PMID:22068901

  7. Effects of iron deficiency on iron binding and internalization into acidic vacuoles in Dunaliella salina.

    PubMed

    Paz, Yakov; Shimoni, Eyal; Weiss, Meira; Pick, Uri

    2007-07-01

    Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein (TTf), which binds and internalizes Fe(3+) ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of iron binding and internalization and identified the site of iron internalization. Iron deficiency induces a 4-fold increase in Fe binding, but only 50% enhancement in the rate of iron uptake and also increases the affinity for iron and bicarbonate, a coligand for iron binding. These results indicate that iron deprivation leads to accumulation and modification of iron-binding sites. Iron uptake in iron-sufficient cells is preceded by an apparent time lag, resulting from prebound iron, which can be eliminated by unloading iron-binding sites. Iron is tightly bound to surface-exposed sites and hardly exchanges with medium iron. All bound iron is subsequently internalized. Accumulation of iron inhibits further iron binding and internalization. The vacuolar inhibitor bafilomycin inhibits iron uptake and internalization. Internalized iron was localized by electron microscopy within vacuolar structures that were identified as acidic vacuoles. Iron internalization is accompanied by endocytosis of surface proteins into these acidic vacuoles. A novel kinetic mechanism for iron uptake is proposed, which includes two pools of bound/compartmentalized iron separated by a rate-limiting internalization stage. The major parameter that is modulated by iron deficiency is the iron-binding capacity. We propose that excessive iron binding in iron-deficient cells serves as a temporary reservoir for iron that is subsequently internalized. This mechanism is particularly suitable for organisms that are exposed to large fluctuations in iron availability. PMID:17513481

  8. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    PubMed

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  9. Carboxylic-Acid-passivated metal oxide nanocrystals: ligand exchange characteristics of a new binding motif.

    PubMed

    De Roo, Jonathan; Justo, Yolanda; De Keukeleere, Katrien; Van den Broeck, Freya; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2015-05-26

    Ligand exchange is central in the processing of inorganic nanocrystals (NCs) and requires understanding of surface chemistry. Studying sterically stabilized HfO2 and ZrO2 NCs using (1) H solution NMR and IR spectroscopy as well as elemental analysis, this paper demonstrates the reversible exchange of initial oleic acid ligands for octylamine and self-adsorption of oleic acid at NC surfaces. Both processes are incompatible with an X-type binding motif of carboxylic acids as reported for sulfide and selenide NCs. We argue that this behavior stems from the dissociative adsorption of carboxylic acids at the oxide surface. Both proton and carboxylate moieties must be regarded as X-type ligands yielding a combined X2 binding motif that allows for self-adsorption and exchange for L-type ligands. PMID:25866095

  10. Binding characteristics of gamma-hydroxybutyric acid as a weak but selective GABAB receptor agonist.

    PubMed

    Mathivet, P; Bernasconi, R; De Barry, J; Marescaux, C; Bittiger, H

    1997-02-19

    The aim of this study was to reexamine the concept that gamma-hydroxybutyric acid (GHB) is a weak but selective agonist at gamma-aminobutyric acidB (GABAB) receptors, using binding experiments with several radioligands. Ki values of GHB were similar (approximately equal to 100 microM) in three agonist radioligand assays for GABAB receptors, [3H]baclofen (beta-para-chlorophenyl-gamma-aminobutyric acid), [3H]CGP 27492 (3-aminopropyl-phosphinic acid) and [3H]GABA, in the presence of the GABAA receptor agonist isoguvacine with rat cortical, cerebellar and hippocampal membranes. In competition experiments between GHB and the GABAB receptor antagonist, [3H]CGP 54626 (3-N [1-{(S)-3,4-dichlorophenyl}-ethylamino]-2-(S)-hydroxypropyl cyclo-hexylmethyl phosphinic acid), the IC50 values were significantly increased with 300 microM of 5'-guanyl-imidodiphosphate (Gpp(NH)p), which suggested that guanine nucleotide binding proteins (G-proteins) modulate GHB binding on GABAB receptors. The inhibition by GHB of [3H]CGP 27492 binding in cortical membranes was not altered in the presence of 0.3 or 3 mM of the two GHB dehydrogenase inhibitors, valproate and ethosuximide. Thus, GHB is not reconverted into GABA by GHB dehydrogenase. Taken together, the results of this study demonstrated that GHB is an endogenous weak but selective agonist at GABAB receptors. PMID:9083788

  11. Group A Streptococci Bind to Mucin and Human Pharyngeal Cells through Sialic Acid-Containing Receptors

    PubMed Central

    Ryan, Patricia A.; Pancholi, Vijaykumar; Fischetti, Vincent A.

    2001-01-01

    The first step in the colonization of group A streptococci (Streptococcus pyogenes) is adherence to pharyngeal epithelial cells. Prior to adherence to their target tissue, the first barrier that the streptococci encounter is the mucous layer of the respiratory tract. The present study was undertaken to characterize the interaction between mucin, the major glycoprotein component of mucus, and streptococci. We report here that S. pyogenes is able to bind to bovine submaxillary mucin in solid-phase microtiter plate assays. Western blots probed with 125I-labeled mucin and a panel of monoclonal antibodies revealed that the streptococcal M protein is one of two cell wall-associated proteins responsible for this binding. The binding was further localized to the N-terminal portion of the M molecule. Further analysis revealed that the M protein binds to the sialic acid moieties on mucin, and this interaction seems to be based on M-protein conformation rather than specific amino acid sequences. We found that sialic acid also plays a critical role in the adherence of an M6 streptococcal strain to the Detroit 562 human pharyngeal cell line and have identified α2-6-linked sialic acid as an important sialylated linkage for M-protein recognition. Western blot analysis of extracted pharyngeal cell membrane proteins identified three potential sialic acid-containing receptors for the M protein. The results are the first to show that sialic acid not only is involved in the binding of the streptococci to mucin but also plays an important role in adherence of group A streptococci to the pharyngeal cell surface. PMID:11705914

  12. Biochemical and Structural Characterization of Lysophosphatidic Acid Binding by a Humanized Monoclonal Antibody

    SciTech Connect

    J Fleming; J Wojciak; M Campbell; T Huxford

    2011-12-31

    Lysophosphatidic acid (LPA) is a common product of glycerophospholipid metabolism and an important mediator of signal transduction. Aberrantly high LPA concentrations accompany multiple disease states. One potential approach for treatment of these diseases, therefore, is the therapeutic application of antibodies that recognize and bind LPA as their antigen. We have determined the X-ray crystal structure of an anti-LPA antibody (LT3015) Fab fragment in its antigen-free form to 2.15 {angstrom} resolution and in complex with two LPA isotypes (14:0 and 18:2) to resolutions of 1.98 and 2.51 {angstrom}, respectively. The variable CDR (complementarity-determining region) loops at the antigen binding site adopt nearly identical conformations in the free and antigen-bound crystal structures. The crystallographic models reveal that the LT3015 antibody employs both heavy- and light-chain CDR loops to create a network of eight hydrogen bonds with the glycerophosphate head group of its LPA antigen. The head group is almost completely excluded from contact with solvent, while the hydrocarbon tail is partially solvent-exposed. In general, mutation of amino acid residues at the antigen binding site disrupts LPA binding. However, the introduction of particular mutations chosen strategically on the basis of the structures can positively influence LPA binding affinity. Finally, these structures elucidate the exquisite specificity demonstrated by an anti-lipid antibody for binding a structurally simple and seemingly unconstrained target molecule.

  13. Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic proc...

  14. Stacking interaction and its role in kynurenic acid binding to glutamate ionotropic receptors.

    PubMed

    Zhuravlev, Alexander V; Zakharov, Gennady A; Shchegolev, Boris F; Savvateeva-Popova, Elena V

    2012-05-01

    Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation. PMID:21833825

  15. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  16. Interaction of LY171883 and other peroxisome proliferators with fatty-acid-binding protein isolated from rat liver.

    PubMed Central

    Cannon, J R; Eacho, P I

    1991-01-01

    Fatty-acid-binding protein (FABP) is a 14 kDa protein found in hepatic cytosol which binds and transports fatty acids and other hydrophobic ligands throughout the cell. The purpose of this investigation was to determine whether LY171883, a leukotriene D4 antagonist, and other peroxisome proliferators bind to FABP and displace an endogenous fatty acid. [3H]Oleic acid was used to monitor the elution of FABP during chromatographic purification. [14C]LY171883 had a similar elution profile when substituted in the purification, indicating a common interaction with FABP. LY171883 and its structural analogue, LY189585, as well as the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate, bezafibrate and WY14,643, displaced [3H]oleic acid binding to FABP. Analogues of LY171883 that do not induce peroxisome proliferation only weakly displaced oleate binding. [3H]Ly171883 bound directly to FABP with a Kd of 10.8 microM, compared with a Kd of 0.96 microM for [3H]oleate. LY171883 binding was inhibited by LY189585, clofibric acid, ciprofibrate and bezafibrate. These findings demonstrate that peroxisome proliferators, presumably due to their structural similarity to fatty acids, are able to bind to FABP and displace an endogenous ligand from its binding site. Interaction of peroxisome proliferators with FABP may be involved in perturbations of fatty acid metabolism caused by these agents as well as in the development of the pleiotropic response of peroxisome proliferation. Images Fig. 2. PMID:1747111

  17. Treatment with oleic acid reduces IgE binding to peanut and cashew allergens.

    PubMed

    Chung, Si-Yin; Mattison, Christopher P; Reed, Shawndrika; Wasserman, Richard L; Desormeaux, Wendy A

    2015-08-01

    Oleic acid (OA) is known to bind and change the bioactivities of proteins, such as α-lactalbumin and β-lactoglobulin in vitro. The objective of this study was to determine if OA binds to allergens from a peanut extract or cashew allergen and changes their allergenic properties. Peanut extract or cashew allergen (Ana o 2) was treated with or without 5mM sodium oleate at 70°C for 60 min (T1) or under the same conditions with an additional overnight incubation at 37°C (T2). After treatment, the samples were dialyzed and analyzed by SDS-PAGE and for OA content. IgE binding was evaluated by ELISA and western blot, using a pooled serum or plasma from individuals with peanut or cashew allergies. Results showed that OA at a concentration of 5mM reduced IgE binding to the allergens. Peanut sample T2 exhibited a lower IgE binding and a higher OA content (protein-bound) than T1. Cashew allergen T2 also showed a reduction in IgE binding. We conclude that OA reduces the allergenic properties of peanut extract and cashew allergen by binding to the allergens. Our findings indicate that OA in the form of sodium oleate may be potentially useful as a coating to reduce the allergenic properties of peanut and cashew allergens. PMID:25766831

  18. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-01

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  19. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    SciTech Connect

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  20. Dynamics of cellular retinoic acid binding protein I on multiple time scales with implications for ligand binding.

    PubMed

    Krishnan, V V; Sukumar, M; Gierasch, L M; Cosman, M

    2000-08-01

    Cellular retinoic acid binding protein I (CRABPI) belongs to the family of intracellular lipid binding proteins (iLBPs), all of which bind a hydrophobic ligand within an internal cavity. The structures of several iLBPs reveal minimal structural differences between the apo (ligand-free) and holo (ligand-bound) forms, suggesting that dynamics must play an important role in the ligand recognition and binding processes. Here, a variety of nuclear magnetic resonance (NMR) spectroscopy methods were used to systematically study the dynamics of both apo and holo CRABPI at various time scales. Translational and rotational diffusion constant measurements were used to study the overall motions of the proteins. Both apo and holo forms of CRABPI tend to self-associate at high (1.2 mM) concentrations, while at low concentrations (0.2 mM), they are predominantly monomeric. Rapid amide exchange rate and laboratory frame relaxation rate measurements at two spectrometer field strengths (500 and 600 MHz) were used to probe the internal motions of the individual residues. Several residues in the apo form, notably within the ligand recognition region, exhibit millisecond time scale motions that are significantly arrested in the holo form. In contrast, no significant differences in the high-frequency motions were observed between the two forms. These results provide direct experimental evidence for dynamics-induced ligand recognition and binding at a specifically defined time scale. They also exemplify the importance of dynamics in providing a more comprehensive understanding of how a protein functions. PMID:10924105

  1. Cellular retinol-binding protein and retinoic acid-binding protein in rat testes: effect of retinol depletion.

    PubMed

    Ong, D E; Tsai, C H; Chytil, F

    1976-02-01

    Testes of rats contain two cellular binding proteins of interest in vitamin A metabolism. One protein binds retinoic acid with high specificity; the other binds retinol with high specificity. When the cellular retinol-binding protein was partially purified from rat testes, it exhibited fluorescence excitation and emission spectra similar to that of all-trans-retinol in hexane. Exposure of this preparation to UV light destroyed this fluorescence but spectra identical to the original were obtained after addition of retinol. Hexane extracts of the binding protein had fluorescence spectra identical to all-trans-retinol, suggesting that this compound is bound to the protein in vivo. Extracts of testes from retinol depleted rats were submitted to gel filtration but failed to show a retinol-like fluorescence at the elution position of retinol binding protein. This fluorescence was observed in the preparations from pair fed control animals. However, after addition of all-trans-retinol to the extracts from the depleted rats, fluorescence at that elution position was observed. This indicates that in testes of retinol depleted rats the cellular retinol binding protein is present but without bound retinol, in contrast to the non-depleted rats where 30-43% of the binding protein had bound retinol. The amounts of cellular retinol binding protein and retinoic acid binding protein in testes, as determined by sucrose gradient centrifugation, were found to be similar for retinol depleted and pair fed control rats. PMID:942996

  2. EHD3 Protein Is Required for Tubular Recycling Endosome Stabilization, and an Asparagine-Glutamic Acid Residue Pair within Its Eps15 Homology (EH) Domain Dictates Its Selective Binding to NPF Peptides.

    PubMed

    Bahl, Kriti; Xie, Shuwei; Spagnol, Gaelle; Sorgen, Paul; Naslavsky, Naava; Caplan, Steve

    2016-06-24

    An elaborate network of dynamic lipid membranes, termed tubular recycling endosomes (TRE), coordinates the process of endocytic recycling in mammalian cells. The C-terminal Eps15 homology domain (EHD)-containing proteins have been implicated in the bending and fission of TRE, thus regulating endocytic recycling. EHD proteins have an EH domain that interacts with proteins containing an NPF motif. We found that NPF-containing EHD1 interaction partners such as molecules interacting with CasL-like1 (MICAL-L1) and Syndapin2 are essential for TRE biogenesis. Also crucial for TRE biogenesis is the generation of phosphatidic acid, an essential lipid component of TRE that serves as a docking point for MICAL-L1 and Syndapin2. EHD1 and EHD3 have 86% amino acid identity; they homo- and heterodimerize and partially co-localize to TRE. Despite their remarkable identity, they have distinct mechanistic functions. EHD1 induces membrane vesiculation, whereas EHD3 supports TRE biogenesis and/or stabilization by an unknown mechanism. While using phospholipase D inhibitors (which block the conversion of glycerophospholipids to phosphatidic acid) to deplete cellular TRE, we observed that, upon inhibitor washout, there was a rapid and dramatic regeneration of MICAL-L1-marked TRE. Using this "synchronized" TRE biogenesis system, we determined that EHD3 is involved in the stabilization of TRE rather than in their biogenesis. Moreover, we identify the residues Ala-519/Asp-520 of EHD1 and Asn-519/Glu-520 of EHD3 as defining the selectivity of these two paralogs for NPF-containing binding partners, and we present a model to explain the atomic mechanism and provide new insight for their differential roles in vesiculation and tubulation, respectively. PMID:27189942

  3. Monomeric Yeast Frataxin is an Iron Binding Protein†

    PubMed Central

    Cook, Jeremy D.; Bencze, Krisztina Z.; Jankovic, Ana D.; Crater, Anna K.; Busch, Courtney N.; Bradley, Patrick B.; Stemmler, Ann J.; Spaller, Mark R.; Stemmler, Timothy L.

    2008-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50,000 humans, is caused by decreased levels of the protein frataxin. Although nuclear encoded, frataxin is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting monomeric frataxin might function as the common iron donor. In order to provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron loaded monomer and the protein can bind 2 ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal binding sites is consistent with a 6 coordinate iron-(oxygen and nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. Based on our results, we have developed a model for how we believe yeast frataxin interacts with iron. PMID:16784228

  4. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra.

    PubMed

    Xu, Jinling; Tan, Wenfeng; Xiong, Juan; Wang, Mingxia; Fang, Linchuan; Koopal, Luuk K

    2016-07-01

    Binding of Cu(II) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through NICA-Donnan modeling and conditional affinity spectrum (CAS). It is to extend the knowledge of copper binding by soil humic substances (HS) both in respect of enlarging the database of metal ion binding to HS and obtaining a good insight into Cu binding to the functional groups of FA and HA by using the NICA-Donnan model to unravel the intrinsic and conditional affinity spectra. Results showed that Cu binding to HS increased with increasing pH and decreasing ionic strength. The amount of Cu bound to the HAs was larger than the amount bound to JGFA. Milne's generic parameters did not provide satisfactory predictions for the present soil HS samples, while material-specific NICA-Donnan model parameters described and predicted Cu binding to the HS well. Both the 'low' and 'high' concentration fitting procedures indicated a substantial bidentate structure of the Cu complexes with HS. By means of CAS underlying NICA isotherm, which was scarcely used, the nature of the binding at different solution conditions for a given sample and the differences in binding mode were illustrated. It was indicated that carboxylic group played an indispensable role in Cu binding to HS in that the carboxylic CAS had stronger conditional affinity than the phenolic distribution due to its large degree of proton dissociation. The fact was especially true for JGFA and JLHA which contain much larger amount of carboxylic groups, and the occupation of phenolic sites by Cu was negligible. Comparable amounts of carboxylic and phenolic groups on PAHA and JGHA, increased the occupation of phenolic type sites by Cu. The binding strength of PAHA-Cu and JGHA-Cu was stronger than that of JGFA-Cu and JLHA-Cu. The presence of phenolic groups increased the chance of forming more stable complexes, such as the salicylate-Cu or catechol-Cu type structures. PMID:27061366

  5. Fatty Acid- and Retinoid-binding Proteins Have Distinct Binding Pockets for the Two Types of Cargo*

    PubMed Central

    Jordanova, Rositsa; Groves, Matthew R.; Kostova, Elena; Woltersdorf, Christian; Liebau, Eva; Tucker, Paul A.

    2009-01-01

    Parasitic nematodes cause serious diseases in humans, animals, and plants. They have limited lipid metabolism and are reliant on lipid-binding proteins to acquire these metabolites from their hosts. Several structurally novel families of lipid-binding proteins in nematodes have been described, including the fatty acid- and retinoid-binding protein family (FAR). In Caenorhabditis elegans, used as a model for studying parasitic nematodes, eight C. elegans FAR proteins have been described. The crystal structure of C. elegans FAR-7 is the first structure of a FAR protein, and it exhibits a novel fold. It differs radically from the mammalian fatty acid-binding proteins and has two ligand binding pockets joined by a surface groove. The first can accommodate the aliphatic chain of fatty acids, whereas the second can accommodate the bulkier retinoids. In addition to demonstrating lipid binding by fluorescence spectroscopy, we present evidence that retinol binding is positively regulated by casein kinase II phosphorylation at a conserved site near the bottom of the second pocket. far-7::GFP (green fluorescent protein) expression shows that it is localized in the head hypodermal syncytia and the excretory cell but that this localization changes under starvation conditions. In conclusion, our study provides the basic structural and functional information for investigation of inhibitors of lipid binding by FAR proteins. PMID:19828452

  6. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4.

    PubMed

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V

    2010-04-01

    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM. PMID:19911253

  7. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations

    PubMed Central

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-01-01

    Predicting the effect of amino acid substitutions on protein–protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/. PMID:27077847

  8. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    PubMed

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-01-01

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/. PMID:27077847

  9. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule.

    PubMed

    Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh

    2016-05-01

    We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. PMID:26872685

  10. Bile acid salt binding with colesevelam HCl is not affected by suspension in common beverages.

    PubMed

    Hanus, Martin; Zhorov, Eugene

    2006-12-01

    It has been previously reported that anions in common beverages may bind to bile acid sequestrants (BAS), reducing their capacity for binding bile acid salts. This study examined the ability of the novel BAS colesevelam hydrochloride (HCl), in vitro, to bind bile acid sodium salts following suspension in common beverages. Equilibrium binding was evaluated under conditions of constant time and varying concentrations of bile acid salts in simulated intestinal fluid (SIF). A stock solution of sodium salts of glycochenodeoxycholic acid (GCDC), taurodeoxycholic acid (TDC), and glycocholic acid (GC), was added to each prepared sample of colesevelam HCl. Bile acid salt binding was calculated by high-performance liquid chromatography (HPLC) analysis. Kinetics experiments were conducted using constant initial bile acid salt concentrations and varying binding times. The affinity, capacity, and kinetics of colesevelam HCl binding for GCDC, TDC, and GC were not significantly altered after suspension in water, carbonated water, Coca-Cola, Sprite, grape juice, orange juice, tomato juice, or Gatorade. The amount of bile acid sodium salt bound as a function of time was unchanged by pretreatment with any beverage tested. The in vitro binding characteristics of colesevelam HCl are unchanged by suspension in common beverages. PMID:16937334

  11. An essential role of the CAAT/enhancer binding protein-alpha in the vitamin D-induced expression of the human steroid/bile acid-sulfotransferase (SULT2A1).

    PubMed

    Song, Chung S; Echchgadda, Ibtissam; Seo, Young-Kyo; Oh, Taesung; Kim, Soyoung; Kim, Sung-A; Cho, Sunghwan; Shi, Liheng; Chatterjee, Bandana

    2006-04-01

    The vitamin D receptor (VDR) regulates steroid and drug metabolism by inducing the genes encoding phase I and phase II enzymes. SULT2A1 is a liver- and intestine-expressed sulfo-conjugating enzyme that converts the alcohol-OH of neutral steroids, bile acids, and drugs to water-soluble sulfated metabolites. 1alpha,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] induces SULT2A1 gene transcription after the recruitment of VDR to the vitamin D-responsive chromatin region of SULT2A1. A composite element in human SULT2A1 directs the 1,25-(OH)2D3-mediated induction of natural and heterologous promoters. This element combines a VDR/retinoid X receptor-alpha-binding site [vitamin D response element (VDRE)], which is an imperfect inverted repeat 2 of AGCTCA, and a CAAT/enhancer binding protein (C/EBP)-binding site located 9 bp downstream to VDRE. The binding sites were identified by EMSA, antibody supershift, and deoxyribonuclease I footprinting. C/EBP-alpha at the composite element plays an essential role in the VDR regulation of SULT2A1, because 1) induction was lost for promoters with inactivating mutations at the VDRE or C/EBP element; 2) SULT2A1 induction by 1,25-(OH)2D3 in C/EBP-alpha-deficient cells required the expression of cotransfected C/EBP-alpha; and 3) C/EBP-beta did not substitute for C/EBP-alpha in this regulation. VDR and C/EBP-alpha were recruited concurrently to the composite element along with the coactivators p300, steroid receptor coactivator 1 (SRC-1), and SRC-2, but not SRC-3. VDR and C/EBP-alpha associated endogenously as a DNA-dependent, coimmunoprecipitable complex, which was detected at a markedly higher level in 1,25-(OH)2D3-treated cells. These results provide the first example of the essential role of the interaction in cis between C/EBP-alpha and VDR in directing 1,25-(OH)2D3-induced expression of a VDR target gene. PMID:16357103

  12. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis.

    PubMed

    Beck-Fruchter, Ronit; Shalev, Eliezer; Weiss, Amir

    2016-03-01

    The human oocyte is surrounded by hyaluronic acid, which acts as a natural selector of spermatozoa. Human sperm that express hyaluronic acid receptors and bind to hyaluronic acid have normal shape, minimal DNA fragmentation and low frequency of chromosomal aneuploidies. Use of hyaluronic acid binding assays in intracytoplasmic sperm injection (ICSI) cycles to improve clinical outcomes has been studied, although none of these studies had sufficient statistical power. In this systematic review and meta-analysis, electronic databases were searched up to June 2015 to identify studies of ICSI cycles in which spermatozoa able to bind hyaluronic acid was selected. The main outcomes were fertilization rate and clinical pregnancy rate. Secondary outcomes included cleavage rate, embryo quality, implantation rate, spontaneous abortion and live birth rate. Seven studies and 1437 cycles were included. Use of hyaluronic acid binding sperm selection technique yielded no improvement in fertilization and pregnancy rates. A meta-analysis of all available studies showed an improvement in embryo quality and implantation rate; an analysis of prospective studies only showed an improvement in embryo quality. Evidence does not support routine use of hyaluronic acid binding assays in all ICSI cycles. Identification of patients that might benefit from this technique needs further study. PMID:26776822

  13. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    PubMed

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-01

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids. PMID:21797258

  14. Modeling nucleic acid structure in the presence of single-stranded binding proteins

    NASA Astrophysics Data System (ADS)

    Forties, Robert; Bundschuh, Ralf

    2009-03-01

    There are many important proteins which bind single-stranded nucleic acids, such as the nucleocapsid protein in HIV, the RecA DNA repair protein in bacteria, and all proteins involved in mRNA splicing and translation. We extend the Vienna Package for quantitatively modeling the secondary structure of nucleic acids to include proteins which bind to unpaired portions of the nucleic acid. All parameters needed to model nucleic acid secondary structures in the absence of proteins have been previously measured. This leaves the footprint and sequence dependent binding affinity of the protein as adjustable parameters of our model. Using this model we are able to predict the probability of the protein binding at any position in the nucleic acid sequence, the impact of the protein on nucleic acid base pairing, the end-to-end distance distribution for the nucleic acid, and FRET distributions for fluorophores attached to the nucleic acid.

  15. Regulation of GABA-modulin phosphorylation and GABA receptor binding by excitatory amino acids

    SciTech Connect

    Vaccarino, F.; Guidotti, A.

    1987-05-01

    Primary cultures of cerebellar granule cells phosphorylate numerous proteins including GABA-modulin (GM), which is a putative allosteric modulator of GABA receptors. Cell depolarization and treatment with dicarboxylic excitatory amino acids, which activate PI turnover, Ca/sup 2 +/ influx and guanylate cyclase in granule cells increase the phosphorylation of specific proteins. To determine GM phosphorylation by endogenous protein kinases in living granule cell cultures, GM was isolated by immunoprecipitation and reverse-phase HPLC. High K/sup +/, veratridine, glutamate and NMDA treatment stimulated GM phosphorylation over 2-fold. This increase was abolished by the absence of extracellular Ca/sup 2 +/ and was antagonized by Mg/sup 2 +/ ions and by AVP. The excitatory amino acid action was mimicked by phorbol esters but not by forskolin or by cGMP, and thus may be mediated by an activation of protein kinase C (PKC). Moreover, excitatory amino acids increase /sup 3/H-labelled phorbol ester binding sites in granule cell membrane. The same cultures, treated with glutamate or kainate, showed a 50-fold greater efficacy of muscimol for the stimulation of benzodiazepine (BZ) binding. These data-suggest that excitatory amino acid stimulation of neurons triggers PKC translocation and the activated enzyme phosphorylates GM. The extent of GM phosphorylation may regulate the coupling between GABA and BZ binding sites.

  16. Binding of /sup 14/C-5-aminolevulinic acid to a stromal protein from developing pea chloroplasts

    SciTech Connect

    Thayer, S.S.; Castelfranco, P.A.; Wilkinson, J.; Benson, G.

    1987-04-01

    /sup 14/-5-Aminolevulinic acid (/sup 14/C-ALA) binds to a stromal protein with an apparent molecular weight of 42-43 KD on LDS and non-denaturing gels. The reaction is rapid. Binding is inhibited by sulfhydryl reagents, mM concentrations of levulinic, dihydroxy heptanoic acids and gabaculine, 10 ..mu..M N-methylprotoporphyrin. Dicarboxilic acids, such as deltaKG, Glu, OAA, do not inhibit. Chloramphenicol, ATP, protoporphyrin, anoxia, light, darkness have no effect. The product, once formed, is stable to treatment with 5% conc. HCl in cold acetone. It can be chased in a second incubation with unlabeled ALA, but not with levulinic acid. No activity was detected in the subplastidic membrane fractions. Western blot analysis failed to reveal any homology between the labeled protein and either cytochrome for ALA dehydratase. This ALA-binding protein was not formed in chloroplasts isolated from fully expanded pea leaves. Therefore, it is deemed likely to participate in ALA metabolism during chloroplast development.

  17. Investigation of metal binding sites on soil fulvic acid using Eu(III) luminescence spectroscopy

    SciTech Connect

    Yoon, T.H.; Moon, H. ); Park, Y.J.; Park, K.K. )

    1994-11-01

    The [sup 7]F[sub 0] [yields] [sup 5]D[sub 0] excitation spectra of Eu(III) complexed with soil fulvic acid (FA) were acquired over a range of solution pH (2.9-7.8) and FA concentrations (800-3200 mg L[sup [minus]1]) using a pulsed tunable dye laser system. The broad asymmetric excitation spectra were well-fitted to a sum of two conventional Lorentzian-shaped curves, revealing the existence of two types of carboxylate moieties for the binding of metal ions on FA which formed 1:1 (EuL[sup 2+]; L = carboxylate) and 1:2 complexes (EuL[sub 2][sup +]). The weaker binding species, EuL[sup 2+], seemed to be quite abundant and showed a rapid increase as the pH was raised from 2.9 to 6.3, but it was susceptible to hydrolysis at pH higher than 7 while the stronger binding species, EuL[sub 2][sup +], showed only a modest growth with an increase in pH. By contrast, on a more flexible synthetic linear polymer, poly(acrylic acid) (PAA) and poly(vinylbenzoic acid) (PVBA) as model polymers, EuL[sub 2][sup +] was seen as the dominant species except in acidic media. 28 refs., 10 figs., 3 tabs.

  18. Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein.

    PubMed

    Long, Dong; Mu, Yuguang; Yang, Daiwen

    2009-01-01

    The mechanisms of how ligands enter and leave the binding cavity of fatty acid binding proteins (FABPs) have been a puzzling question over decades. Liver fatty acid binding protein (LFABP) is a unique family member which accommodates two molecules of fatty acids in its cavity and exhibits the capability of interacting with a variety of ligands with different chemical structures and properties. Investigating the ligand dissociation processes of LFABP is thus a quite interesting topic, which however is rather difficult for both experimental approaches and ordinary simulation strategies. In the current study, random expulsion molecular dynamics simulation, which accelerates ligand motions for rapid dissociation, was used to explore the potential egress routes of ligands from LFABP. The results showed that the previously hypothesized "portal region" could be readily used for the dissociation of ligands at both the low affinity site and the high affinity site. Besides, one alternative portal was shown to be highly favorable for ligand egress from the high affinity site and be related to the unique structural feature of LFABP. This result lends strong support to the hypothesis from the previous NMR exchange studies, which in turn indicates an important role for this alternative portal. Another less favored potential portal located near the N-terminal end was also identified. Identification of the dissociation pathways will allow further mechanistic understanding of fatty acid uptake and release by computational and/or experimental techniques. PMID:19564911

  19. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  20. The endothelial cell binding determinant of human factor IX resides in the. gamma. -carboxyglutamic acid domain

    SciTech Connect

    Toomey, J.R.; Roberts, H.R.; Stafford, D.W. ); Smith, K.J. United Blood Services, Albuquerque, NM )

    1992-02-18

    The blood coagulation factor IX(a) binds specifically to a site on endothelial cells with a K{sub d} of 2.0-3.0 nM. A number of previous studies have attempted to define the region(s) of factor IX(a) that mediate this interaction. These studies suggested that there are two regions of factor IX(a), the {gamma}-carboxyglutamic acid (Gla) domain and the epidermal growth factor like (EGF-like) domains, that mediate high-affinity binding to endothelial cells. Recently, however, the participation of the EGF1 domain has been excluded from the interaction. This indicated that if there was an EGF component of factor IX contributing to the binding affinity, then it must be in the second EGF-like domain. In order to further evaluate this relationship, the authors performed competitive binding experiments between {sup 125}I plasma factor IX and a set of six chimeric proteins composed of portions of factor VII and factor IX. The data suggest that the high-affinity interaction between factor IX and the endothelial cell binding site is mediated by the factor IX Gla domain and that the factor IX EGF domains are not involved in binding specificity.

  1. Single amino acid substitutions at 2 of 14 positions in an ultra-conserved region of the androgen receptor yield an androgen-binding domain that is reversibly thermolabile

    SciTech Connect

    Vasiliou, M.; Lumbroso, R.; Alvarado, C.

    1994-09-01

    The stereochemistry of the androgen receptor (AR) that is responsible for androgen-specific binding and for its contribution to the transregulatory attributes of an androgen-receptor complex are unknown. Our objective is to define structure-function relations of the human AR by correlating germline missense mutations at its X-linked locus with its resultant misbehavior. Subjects with Arg773Cys have complete androgen insensitivity. We and several other laboratories have reported that their genital skin fibroblasts (GSF) have negligible androgen-binding activity at 37{degrees}. We have found that Phe763Leu also causes CAI, but with approximately 10 fmol/mg protein androgen-binding activity at 37{degrees} (R-deficient). Within COS-1 cells transfected with each mutant AR cDNA, Phe763Leu and Arg773Cys androgen-binding activities are reversibly thermolabile, by a factor of 2, at 37{degrees} versus 22{degrees}, only in the presence of androgen; in the absence of androgen they are thermostable at 37{degrees}. We have discovered that (for a reason yet unknown) the GSF from a third family with Arg773Cys (and no other coding sequence mutation) have 20-40 mol/mg protein of androgen-binding activity at 37{degrees} when measured with 3-6 nFM androgen. This activity reversibly doubles at 22{degrees}. The reversible thermolability of an AR with Arg773Cys (and probably with Phe763Leu) is demonstrable within GSF. Ligand-dependence of this thermolability implies that ligand induces these mutant AR to undergo a deviant conformational change in, or near, a 14-aa region that shares 90% identity/similarity with its closest receptor relatives.

  2. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP-oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution.

    PubMed

    Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A

    2016-03-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface. PMID:27006775

  3. Retinoic acid-binding protein, rhombomeres and the neural crest.

    PubMed

    Maden, M; Hunt, P; Eriksson, U; Kuroiwa, A; Krumlauf, R; Summerbell, D

    1991-01-01

    We have investigated by immunocytochemistry the spatial and temporal distribution of cellular retinoic acid-binding protein (CRABP) in the developing nervous system of the chick embryo in order to answer two specific questions: do neural crest cells contain CRABP and where and when do CRABP-positive neuroblasts first arise in the neural tube? With regard to the neural crest, we have compared CRABP staining with HNK-1 staining (a marker of migrating neural crest) and found that they do indeed co-localise, but cephalic and trunk crest behave slightly differently. In the cephalic region in tissues such as the frontonasal mass and branchial arches, HNK-1 immunoreactivity is intense at early stages, but it disappears as CRABP immunoreactivity appears. Thus the two staining patterns do not overlap, but are complementary. In the trunk, HNK-1 and CRABP stain the same cell populations at the same time, such as those migrating through the anterior halves of the somites. In the neural tube, CRABP-positive neuroblasts first appear in the rhombencephalon just after the neural folds close and then a particular pattern of immunoreactivity appears within the rhombomeres of the hindbrain. Labelled cells are present in the future spinal cord, the posterior rhombencephalon up to rhombomere 6 and in rhombomere 4 thus producing a single stripe pattern. This pattern is dynamic and gradually changes as anterior rhombomeres begin to label. The similarity of this initial pattern to the arrangement of certain homeobox genes in the mouse stimulated us to examine the expression of the chicken Hox-2.9 gene. We show that at stage 15 the pattern of expression of this gene is closely related to that of CRABP. The relationship between retinoic acid, CRABP and homeobox genes is discussed. PMID:1707786

  4. Biological characterization of liver fatty acid binding gene from miniature pig liver cDNA library.

    PubMed

    Gao, Y H; Wang, K F; Zhang, S; Fan, Y N; Guan, W J; Ma, Y H

    2015-01-01

    Liver fatty acid binding proteins (L-FABP) are a family of small, highly conserved, cytoplasmic proteins that bind to long-chain fatty acids and other hydrophobic ligands. In this study, a full-length enriched cDNA library was successfully constructed from Wuzhishan miniature pig, and then the L-FABP gene was cloned from this cDNA library and an expression vector (pEGFP-N3-L-FABP) was constructed in vitro. This vector was transfected into hepatocytes to test its function. The results of western blotting analysis demonstrated that the L-FABP gene from our full-length enriched cDNA library regulated downstream genes, including the peroxisome proliferator-activated receptor family in hepatocytes. This study provides a theoretical basis and experimental evidence for the application of L-FABP for the treatment of liver injury. PMID:26345909

  5. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  6. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  7. Deciphering the binding patterns and conformation changes upon the bovine serum albumin-rosmarinic acid complex.

    PubMed

    Peng, Xin; Wang, Xiangchao; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-08-01

    Rosmarinic acid (RA) is an importantly and naturally occurring polyphenol from plants of the mint family with potent biological activities. Here, the in vitro interaction of RA with bovine serum albumin (BSA) has been investigated using various biophysical approaches as well as molecular modeling methods, to ascertain its binding mechanism and conformational changes. The fluorescence results demonstrated that the fluorescence quenching of BSA by RA was mainly the result of the formation of a ground state BSA-RA complex, and BSA had one high affinity RA binding site with a binding constant of 4.18 × 10(4) mol L(-1) at 298 K. Analysis of thermodynamic parameters revealed that hydrophobic and hydrogen bond interactions were the dominant intermolecular force in the complex formation. The primary binding site of RA in BSA (site I) had been identified by site marker competitive experiments. The distance between RA and the tryptophan residue of BSA was evaluated at 3.12 nm based on Förster's theory of non-radiation energy transfer. The UV-vis absorption, synchronous fluorescence, three-dimensional fluorescence, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectra confirmed that the conformation and structure of BSA were altered in the presence of RA. Moreover, the nuclear magnetic spectroscopy showed that the aromatic groups of RA took part in the binding reaction during the BSA-RA complexation. In addition, the molecular picture of the interaction mechanism between BSA and RA at the atomic level was well examined by molecular docking and dynamics studies. In brief, RA can bind to BSA with noncovalent bonds in a relatively stable way, and these findings will be beneficial to the functional food research of RA. PMID:26146359

  8. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I.

    PubMed

    Sayahi, Halimah; Pugliese, Kaitlin M; Zimhony, Oren; Jacobs, William R; Shekhtman, Alexander; Welch, John T

    2012-11-01

    Analogs of pyrazinamide (=pyrazine-2-carboxamide; PZA), an essential component of short-course antituberculous chemotherapy, such as 5-chloropyrazinamide (5-Cl-PZA) act as competitive inhibitors of NADPH binding to purified mycobacterial fatty acid synthase I (FAS I) as shown by Saturation Transfer Difference (STD) NMR studies. In addition, pyrazinoic acid esters (POE) and 5-Cl-POE reversibly bind to FAS I with the relatively greater affinity of longer-chain esters for FAS I, clear from the STD amplification factors. The competitive binding of PZA and 5-Cl-PZA clearly illustrates that both agents bind FAS. In contrast to PZA, at low NADPH concentrations 5-Cl-PZA is a cooperative inhibitor of NADPH binding. PMID:23161636

  9. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.

    PubMed

    Panja, Subrata; Santiago-Frangos, Andrew; Schu, Daniel J; Gottesman, Susan; Woodson, Sarah A

    2015-11-01

    Hfq facilitates gene regulation by small non-coding RNAs (sRNAs), thereby affecting bacterial attributes such as biofilm formation and virulence. Escherichia coli Hfq recognizes specific U-rich and AAN motifs in sRNAs and target mRNAs, after which an arginine patch on the rim promotes base pairing between their complementary sequences. In the cell, Hfq must discriminate between many similar RNAs. Here, we report that acidic amino acids lining the sRNA binding channel between the inner pore and rim of the Hfq hexamer contribute to the selectivity of Hfq's chaperone activity. RNase footprinting, in vitro binding and stopped-flow fluorescence annealing assays showed that alanine substitution of D9, E18 or E37 strengthened RNA interactions with the rim of Hfq and increased annealing of non-specific or U-tailed RNA oligomers. Although the mutants were less able than wild-type Hfq to anneal sRNAs with wild-type rpoS mRNA, the D9A mutation bypassed recruitment of Hfq to an (AAN)4 motif in rpoS, both in vitro and in vivo. These results suggest that acidic residues normally modulate access of RNAs to the arginine patch. We propose that this selectivity limits indiscriminate target selection by E. coli Hfq and enforces binding modes that favor genuine sRNA and mRNA pairs. PMID:26196441

  10. Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea.

    PubMed

    Pérez-Gálvez, Raúl; García-Moreno, Pedro J; Morales-Medina, Rocío; Guadix, Antonio; Guadix, Emilia M

    2015-04-01

    Fish protein hydrolysates (FPH), produced from the six main discard species from the West Mediterranean Sea (sardine, horse mackerel, axillary seabream, bogue, small-spotted catshark and blue whiting) were tested for their bile acid binding capacity. This capacity is directly linked to the ability to inhibit bile reabsorption in the ileum and therefore to lower cholesterol levels in the bloodstream. From each species, FPH were obtained by three different enzymatic treatments employing two serine endoproteases (subtilisin and trypsin) sequentially or in combination. The results show statistically significant differences among the fish species, attaining interesting average values of bile acid binding capacity for blue whiting (27.32% relative to cholestyramine on an equal protein basis) and horse mackerel (27.42% relative to cholestyramine on an equal protein basis). The enzymatic treatments did not significantly affect the ability of a given species to bind bile acids. These results are similar to other protein sources, such as soy protein or casein, of proven hypocholesterolemic effect. It can be concluded that fish protein hydrolysates from these discard species are suitable as ingredients in the formulation of cholesterol-lowering supplements. PMID:25756593

  11. Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors.

    PubMed

    Vallette, G; Vanet, A; Sumida, C; Nunez, E A

    1991-09-01

    Binding of the synthetic glucocorticoid dexamethasone to the rat liver cytosol glucocorticoid receptor was inhibited by physiological concentrations of nonesterified fatty acids as a function of increasing dose, degree of unsaturation, and chain length of the fatty acid. Polyunsaturated fatty acids were the most potent inhibitors. Scatchard analysis and Line-weaver-Burk plots of the binding data revealed that both the association constants and number of binding sites decreased and that polyunsaturated fatty acids inhibition was of a mixed non-competitive type. The dissociation rate constant of [3H]dexamethasone from glucocorticoid receptors was increased by up to 10 times in the presence of docosahexaenoic acid, whereas a competitive inhibitor like the glucocorticoid antagonist RU 38486 had no effect. Moreover, sucrose density gradient analysis showed that docosahexaenoic acid inhibited the binding of [3H] dexamethasone to both the 8.8S and 4S forms. The results strongly suggest that unsaturated fatty acids are interacting at a site on the receptor different from the hormone binding site and the heat shock protein and that by binding to a second site unsaturated fatty acids greatly change the conformation of the hormone binding site to reduce its affinity for the hormone, either partially or completely depending on the concentration and the class of the fatty acid. PMID:1874175

  12. A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity

    PubMed Central

    Glaser, Laurel; Stevens, James; Zamarin, Dmitriy; Wilson, Ian A.; García-Sastre, Adolfo; Tumpey, Terrence M.; Basler, Christopher F.; Taubenberger, Jeffery K.; Palese, Peter

    2005-01-01

    The receptor binding specificity of influenza viruses may be important for host restriction of human and avian viruses. Here, we show that the hemagglutinin (HA) of the virus that caused the 1918 influenza pandemic has strain-specific differences in its receptor binding specificity. The A/South Carolina/1/18 HA preferentially binds the α2,6 sialic acid (human) cellular receptor, whereas the A/New York/1/18 HA, which differs by only one amino acid, binds both the α2,6 and the α2,3 sialic acid (avian) cellular receptors. Compared to the conserved consensus sequence in the receptor binding site of avian HAs, only a single amino acid at position 190 was changed in the A/New York/1/18 HA. Mutation of this single amino acid back to the avian consensus resulted in a preference for the avian receptor. PMID:16103207

  13. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance.

    PubMed

    Li, Ya-Ying; Zhang, Yue-Jiao; Zhou, Yuan; Yang, Jian-Li; Zheng, Shao-Jian

    2009-06-01

    Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major Al resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify Al in the growth medium is frequently questioned. The genotypes of Al-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the Al activities in the solution were 10, 20, and 50 muM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm(2) per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate Al toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of Al adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding Al. These findings suggest that protection of cell walls from binding Al by organic acids may contribute significantly to Al resistance. PMID:19522816

  14. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    SciTech Connect

    Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E.; MacCarthy, P.

    1998-08-15

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  15. A novel polymorphism in the chicken adipocyte fatty acid-binding protein gene (FABP4) that alters ligand-binding and correlates with fatness.

    PubMed

    Wang, Qigui; Guan, Tianzhu; Li, Hui; Bernlohr, David A

    2009-11-01

    Similar to the mammalian FABP4 gene, the chicken (Gallus gallus) FABP4 gene consists of four exons separated by three introns and encodes a 132 amino acid protein termed the adipocyte fatty acid-binding protein (AFABP). In the current study, a novel G/A polymorphism in exon 3 of the chicken FABP4 gene was identified associated with different chicken breeds that leads to either Ser or Asn at amino acid 89 of the AFABP protein. The Baier chicken averages 0.89+/-0.12% abdominal fat and expresses the G allele (Ser 89 isoform) while the Broiler chicken typically has 3.74+/-0.23% abdominal fat and expresses the A allele (Asn 89 isoforms). cDNAs corresponding to the two AFABP isoforms were cloned and expressed in Escherichia coli as GST fusions, purified by using glutathione sepharose 4B chromatography and evaluated for lipid binding using the fluorescent surrogate ligand 1-anilinonaphthalene 8-sulphonic acid (1,8-ANS). The results showed that AFABP Ser89 exhibited a lower ligand-binding affinity with apparent dissociation constants (Kd) of 7.31+/-3.75 microM, while the AFABP Asn89 isoform bound 1,8-ANS with an apparent dissociation constant of 2.99+/-1.00 microM (P=0.02). These results suggest that the Ser89Asn polymorphism may influence chicken AFABP function and ultimately lipid deposition through changing the ligand-binding activity of AFABP. PMID:19595785

  16. Titration and exchange studies of liver fatty acid-binding protein with 13C-labeled long-chain fatty acids.

    PubMed

    Wang, Hsin; He, Yan; Kroenke, Christopher D; Kodukula, Sarala; Storch, Judith; Palmer, Arthur G; Stark, Ruth E

    2002-04-30

    Uniformly (13)C-labeled long-chain fatty acids were used to probe ligand binding to rat liver fatty acid-binding protein (LFABP), an atypical member of the fatty acid-binding protein (FABP) family that binds more than one molecule of long-chain fatty acid, accommodates a variety of diverse ligands, and exhibits diffusion-mediated lipid transport to membranes. Two sets of (1)H-(13)C resonances were found in a titration series of NMR spectra for oleate-LFABP complexes, indicating that two molecules of the fatty acid are situated in the protein cavity. However, no distinct resonances were observed for the excess fatty acid in solution, suggesting that at least one ligand undergoes rapid exchange with oleate in the bulk solution. An exchange rate of 54 +/- 6 s(-1) between the two sets of resonances was measured directly using (13)C z,z-exchange spectroscopy. In light of these NMR measurements, possible molecular mechanisms for the ligand-exchange process are evaluated and implications for the anomalous fatty acid transport mechanism of LFABP are discussed. PMID:11969406

  17. Liver fatty acid binding protein: species variation and the accommodation of different ligands.

    PubMed

    Thompson, J; Reese-Wagoner, A; Banaszak, L

    1999-11-23

    The crystal structure of rat liver fatty acid binding protein (LFABP) and an alignment of amino acid sequences of all known species have been used to demonstrate two groups or sub-classes. Based on estimates at neutral pH and the electrostatic field calculated using the crystal coordinates, some evidence of changes that occur in going from holo- to apo-forms has been obtained. LFABP belongs to a large family frequently referred to as the intracellular lipid binding proteins or iLBPs. LFABP, unlike other family members, has two fatty acid binding sites. The two cavity sites have been reviewed and arguments for interactions between the sites are presented. Based on the crystal structure of rat LFABP, differences between the A and B groups have been postulated. Last of all, hypothetical models have been built of complexes of LFABP and heme, and LFABP and oleoyl CoA. In both cases, the stoichiometry is one to one and the models show why this is likely. PMID:10570240

  18. The development and amino acid binding ability of nano-materials based on azo derivatives: theory and experiment.

    PubMed

    Shang, Xuefang; Du, Jinge; Yang, Wancai; Liu, Yun; Fu, Zhiyuan; Wei, Xiaofang; Yan, Ruifang; Yao, Ningcong; Guo, Yaping; Zhang, Jinlian; Xu, Xiufang

    2014-05-01

    Two nano-material-containing azo groups have been designed and developed, and the binding ability of nano-materials with various amino acids has been characterized by UV-vis and fluorescence titrations. Results indicated that two nano-materials showed the strongest binding ability for homocysteine among twenty normal kinds of amino acids (alanine, valine, leucine, isoleucine, methionine, aspartic acid, glutamic acid, arginine, glycine, serine, threonine, asparagine, phenylalanine, histidine, tryptophan, proline, lysine, glutamine, tyrosine and homocysteine). The reason for the high sensitivity for homocysteine was that two nano-materials containing an aldehyde group reacted with SH in homocysteine and afforded very stable thiazolidine derivatives. Theoretical investigation further illustrated the possible binding mode in host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. Thus, the two nano-materials can be used as optical sensors for the detection of homocysteine. PMID:24656358

  19. Binding and cleavage of nucleic acids by the "hairpin" ribozyme.

    PubMed

    Chowrira, B M; Burke, J M

    1991-09-01

    The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+. PMID:1909564

  20. Hyaluronic acid binding, endocytosis and degradation by sinusoidal liver endothelial cells

    SciTech Connect

    McGary, C.T.

    1988-01-01

    The binding, endocytosis, and degradation of {sup 125}I-hyaluronic acid ({sup 125}I-HA) by liver endothelial cells (LEC) was studied under several conditions. The dissociation of receptor-bound {sup 125}I-HA was rapid, with a half time of {approx}31 min and a K{sub off} of 6.3 {times} 10{sup {minus}4}/sec. A large reversible increase in {sup 125}I-HA binding to LEC at pH 5.0 was due to an increase in the observed affinity of the binding interaction. Pronase digestion suggested the protein nature of the receptor and the intracellular location of the digitonin exposed binding activity. Binding and endocytosis occur in the presence of 10 mM EGTA indicating that divalent cations are not required for receptor function. To study the degradation of {sup 125}I-HA by LEC, a cetylpyridinium chloride (CPC) precipitation assay was characterized. The minimum HA length required for precipitation was elucidated. The fate of the LEC HA receptor after endocytosis was examined.

  1. Electrostatic binding and hydrophobic collapse of peptide-nucleic acid aggregates quantified using force spectroscopy.

    PubMed

    Camunas-Soler, Joan; Frutos, Silvia; Bizarro, Cristiano V; de Lorenzo, Sara; Fuentes-Perez, Maria Eugenia; Ramsch, Roland; Vilchez, Susana; Solans, Conxita; Moreno-Herrero, Fernando; Albericio, Fernando; Eritja, Ramón; Giralt, Ernest; Dev, Sukhendu B; Ritort, Felix

    2013-06-25

    Knowledge of the mechanisms of interaction between self-aggregating peptides and nucleic acids or other polyanions is key to the understanding of many aggregation processes underlying several human diseases (e.g., Alzheimer's and Parkinson's diseases). Determining the affinity and kinetic steps of such interactions is challenging due to the competition between hydrophobic self-aggregating forces and electrostatic binding forces. Kahalalide F (KF) is an anticancer hydrophobic peptide that contains a single positive charge that confers strong aggregative properties with polyanions. This makes KF an ideal model to elucidate the mechanisms by which self-aggregation competes with binding to a strongly charged polyelectrolyte such as DNA. We use optical tweezers to apply mechanical forces to single DNA molecules and show that KF and DNA interact in a two-step kinetic process promoted by the electrostatic binding of DNA to the aggregate surface followed by the stabilization of the complex due to hydrophobic interactions. From the measured pulling curves we determine the spectrum of binding affinities, kinetic barriers, and lengths of DNA segments sequestered within the KF-DNA complex. We find there is a capture distance beyond which the complex collapses into compact aggregates stabilized by strong hydrophobic forces and discuss how the bending rigidity of the nucleic acid affects this process. We hypothesize that within an in vivo context, the enhanced electrostatic interaction of KF due to its aggregation might mediate the binding to other polyanions. The proposed methodology should be useful to quantitatively characterize other compounds or proteins in which the formation of aggregates is relevant. PMID:23706043

  2. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  3. A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W.; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M.; Castro, L. Filipe C.; Bourguet, William

    2014-01-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  4. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    PubMed Central

    2011-01-01

    Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA). It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin. PMID:21501503

  5. Expression of liver fatty acid binding protein in hepatocellular carcinoma.

    PubMed

    Cho, Soo-Jin; Ferrell, Linda D; Gill, Ryan M

    2016-04-01

    Loss of expression of liver fatty acid binding protein (LFABP) by immunohistochemistry has been shown to be characteristic of a subset of hepatocellular adenomas (HCAs) in which HNF1A is inactivated. Transformation to hepatocellular carcinoma is thought to be a very rare phenomenon in the HNF1A-inactivated variant of HCA. However, we recently observed 2 cases at our institution, 1 definite hepatocellular carcinoma and 1 possible hepatocellular carcinoma, with loss of LFABP staining, raising the possibility that LFABP down-regulation may be associated with hepatocellular carcinogenesis. Our aim was to evaluate hepatocellular carcinomas arising in various backgrounds and with varying degrees of differentiation for loss of LFABP staining. Twenty total cases of hepatocellular carcinoma were examined. Thirteen cases arose in a background of cirrhosis due to hepatitis C (n = 8) or steatohepatitis (n = 5); 7 cases arose in a noncirrhotic background, with 2 cases arising within HNF1A-inactivated variant HCA and 2 cases arising within inflammatory variant HCA. Complete loss of expression of LFABP was seen in 6 of 20 cases, including 2 cases of hepatocellular carcinoma arising within HNF1A-inactivated variant HCA. Thus, loss of staining for LFABP appears to be common in hepatocellular carcinoma and may be seen in well-differentiated hepatocellular carcinoma. Therefore, LFABP loss should not be interpreted as evidence for hepatocellular adenoma over carcinoma, when other features support a diagnosis of hepatocellular carcinoma. The findings raise consideration for a role of HNF1A inactivation in hepatocellular carcinogenesis, particularly in less differentiated tumors. PMID:26997447

  6. Pharmacokinetics, tissue distribution, and plasma protein binding study of chicoric acid by HPLC-MS/MS.

    PubMed

    Wang, Yutang; Xie, Guo; Liu, Qian; Duan, Xiang; Liu, Zhigang; Liu, Xuebo

    2016-09-15

    Chicoric acid is a major active constituent of Echinacea purpurea and has a variety of biological functions. In this study, a liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) approach was developed and validated for the determination of chicoric acid in rat plasma and various tissues using ferulic acid as an internal standard (IS). This method was successfully applied to pharmacokinetics, tissue distribution, and plasma protein binding (PPB) study of chicoric acid in Sprague-Dawley (SD) rats dosed with 50mg/kg by gastric gavage. The pharmacokinetic parameters were determined and showed a half-life (t1/2) of 4.53±1.44h, an apparent volume of mean residual time (MRT) of 18.58±4.43h, and an area under the curve (AUC) of 26.14 mghL(-1). The tissue distribution of chicoric acid in rats after gavage administration showed a decreasing tendency in different tissues (liver>lung>kidney>heart>spleen>brain). The PPB rates in rat plasma, human plasma, and bovine serum albumin were 98.3, 96.9, and 96.6%, respectively. These results provide insight for the further pharmacological investigation of chicoric acid. PMID:27479684

  7. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    PubMed Central

    Howard, E. I.; Guillot, B.; Blakeley, M. P.; Haertlein, M.; Moulin, M.; Mitschler, A.; Cousido-Siah, A.; Fadel, F.; Valsecchi, W. M.; Tomizaki, Takashi; Petrova, T.; Claudot, J.; Podjarny, A.

    2016-01-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader’s quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface. PMID:27006775

  8. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    PubMed

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the

  9. Identification of a Soluble, High-Affinity Salicylic Acid-Binding Protein in Tobacco.

    PubMed Central

    Du, H.; Klessig, D. F.

    1997-01-01

    Salicylic acid (SA) is a key component in the signal transduction pathway(s), leading to the activation of certain defense responses in plants after pathogen attack. Previous studies have identified several proteins, including catalase and ascorbate peroxidase, through which the SA signal might act. Here we describe a new SA-binding protein. This soluble protein is present in low abundance in tobacco (Nicotiana tabacum) leaves and has an apparent molecular weight of approximately 25,000. It reversibly binds SA with an apparent dissociation constant of 90 nM, an affinity that is 150-fold higher than that between SA and catalase. The ability of most analogs of SA to compete with labeled SA for binding to this protein correlated with their ability to induce defense gene expression and enhanced resistance. Strikingly, benzothiadiazole, a recently described chemical activator that induces plant defenses and disease resistance at very low rates of application, was the strongest competitor, being much more effective than unlabeled SA. The possible role of this SA-binding protein in defense signal transduction is discussed. PMID:12223676

  10. Effect of d-amino acids on IgE binding to peanut allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    D-amino acids are formed when L-amino acids are exposed to heat. The objective was to determine the existence of D-amino acids in roasted peanut and their effect on IgE binding. Raw and roasted peanut protein extracts were hydrolyzed in 6 N HCL under vacuum. The hydrolysates were then analyzed for D...

  11. Concomitant increase in hepatic triacylglycerol biosynthesis and cytosolic fatty-acid-binding-protein content after feeding rats with a cholestyramine-containing diet.

    PubMed Central

    Kempen, H J; Glatz, J F; de Lange, J; Veerkamp, J H

    1983-01-01

    Cholestyramine feeding of rats increased the rate of palmitate and glycerol incorporation into triacylglycerols of isolated hepatocytes. Concomitantly an increase of fatty-acid binding by hepatic cytosolic proteins was observed, which could be attributed to an elevation of the content of the fatty-acid-binding protein (Mr 12000). The involvement of this protein in cholesterol, bile-acid and triacylglycerol metabolism is discussed. PMID:6661214

  12. NMR-based modeling and binding studies of a ternary complex between chicken liver bile acid binding protein and bile acids.

    PubMed

    Tomaselli, Simona; Ragona, Laura; Zetta, Lucia; Assfalg, Michael; Ferranti, Pasquale; Longhi, Renato; Bonvin, Alexandre M J J; Molinari, Henriette

    2007-10-01

    Chicken liver bile acid binding protein (cL-BABP) is involved in bile acid transport in the liver cytosol. A detailed study of the mechanism of binding and selectivity of bile acids binding proteins towards the physiological pool of bile salts is a key issue for the complete understanding of the role of these proteins and their involvement in cholesterol homeostasis. In the present study, we modeled the ternary complex of cL-BABP with two molecules of bile salts using the data driven docking program HADDOCK on the basis of NMR and mass spectrometry data. Docking resulted in good 3D models, satisfying the majority of experimental restraints. The docking procedure represents a necessary step to help in the structure determination and in functional analysis of such systems, in view of the high complexity of the 3D structure determination of a ternary complex with two identical ligands. HADDOCK models show that residues involved in binding are mainly located in the C-terminal end of the protein, with two loops, CD and EF, playing a major role in ligand binding. A spine, comprising polarresidues pointing toward the protein interior and involved in motion communication, has a prominent role in ligand interaction. The modeling approach has been complemented with NMR interaction and competition studies of cL-BABP with chenodeoxycholic and cholic acids. A higher affinity for chenodeoxycholic acid was observed and a Kd upper limit estimate was obtained. The binding is highly cooperative and no site selectivity was detected for the different bile salts, thus indicating that site selectivity and cooperativity are not correlated. Differences in physiological pathways and bile salt pools in different species is discussed in light of the binding results thus enlarging the body of knowledge of BABPs biological functions. PMID:17607743

  13. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  14. Standard in vitro assays for protein-nucleic acid interactions--gel shift assays for RNA and DNA binding.

    PubMed

    Mitchell, Sarah F; Lorsch, Jon R

    2014-01-01

    The characterization of protein-nucleic acid interactions is necessary for the study of a wide variety of biological processes. One straightforward and widely used approach to this problem is the electrophoretic mobility shift assay (EMSA), in which the binding of a nucleic acid to one or more proteins changes its mobility through a nondenaturing gel matrix. Usually, the mobility of the nucleic acid is reduced, but examples of increased mobility do exist. This type of assay can be used to investigate the affinity of the interaction between the protein and nucleic acid, the specificity of the interaction, the minimal binding site, and the kinetics of the interaction. One particular advantage of EMSA is the ability to analyze multiple proteins, or protein complexes, binding to nucleic acids. This assay is relatively quick and easy and utilizes equipment available in most laboratories; however, there are many variables that can only be determined empirically; therefore, optimization is necessary and can be highly dependent upon the system. The protocol described here is for the poly(A)-binding protein (PABP) binding to an unstructured RNA probe of 43 bases. While this may be a useful protocol for some additional assays, it is recommended that both reaction conditions and gel running conditions be tailored to the individual interaction to be probed. PMID:24674072

  15. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors

    PubMed Central

    Urano-Tashiro, Yumiko; Takahashi, Yukihiro; Oguchi, Riyo; Konishi, Kiyoshi

    2016-01-01

    Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2) of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N) or Arg365 to Asn (R365N) substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins. PMID:27101147

  16. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors.

    PubMed

    Urano-Tashiro, Yumiko; Takahashi, Yukihiro; Oguchi, Riyo; Konishi, Kiyoshi

    2016-01-01

    Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2) of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N) or Arg365 to Asn (R365N) substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins. PMID:27101147

  17. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53.

    PubMed Central

    Xiao, H; Pearson, A; Coulombe, B; Truant, R; Zhang, S; Regier, J L; Triezenberg, S J; Reinberg, D; Flores, O; Ingles, C J

    1994-01-01

    Acidic transcriptional activation domains function well in both yeast and mammalian cells, and some have been shown to bind the general transcription factors TFIID and TFIIB. We now show that two acidic transactivators, herpes simplex virus VP16 and human p53, directly interact with the multisubunit human general transcription factor TFIIH and its Saccharomyces cerevisiae counterpart, factor b. The VP16- and p53-binding domains in these factors lie in the p62 subunit of TFIIH and in the homologous subunit, TFB1, of factor b. Point mutations in VP16 that reduce its transactivation activity in both yeast and mammalian cells weaken its binding to both yeast and human TFIIH. This suggests that binding of activation domains to TFIIH is an important aspect of transcriptional activation. Images PMID:7935417

  18. Structural basis of nucleic acid recognition by FK506-binding protein 25 (FKBP25), a nuclear immunophilin

    PubMed Central

    Prakash, Ajit; Shin, Joon; Rajan, Sreekanth; Yoon, Ho Sup

    2016-01-01

    The nuclear immunophilin FKBP25 interacts with chromatin-related proteins and transcription factors and is suggested to interact with nucleic acids. Currently the structural basis of nucleic acid binding by FKBP25 is unknown. Here we determined the nuclear magnetic resonance (NMR) solution structure of full-length human FKBP25 and studied its interaction with DNA. The FKBP25 structure revealed that the N-terminal helix-loop-helix (HLH) domain and C-terminal FK506-binding domain (FKBD) interact with each other and that both of the domains are involved in DNA binding. The HLH domain forms major-groove interactions and the basic FKBD loop cooperates to form interactions with an adjacent minor-groove of DNA. The FKBP25–DNA complex model, supported by NMR and mutational studies, provides structural and mechanistic insights into the nuclear immunophilin-mediated nucleic acid recognition. PMID:26762975

  19. Influence of ligand binding on structure and thermostability of human α1-acid glycoprotein.

    PubMed

    Kopecký, Vladimír; Ettrich, Rüdiger; Pazderka, Tomáš; Hofbauerová, Kateřina; Řeha, David; Baumruk, Vladimír

    2016-02-01

    Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1-acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β-barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are -18.2, -14.5, and -11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10-95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α-helical content is observed that coincides with an increase in β-sheet content. Above 45 °C, also β-strands tend to unfold, and the observed decrease in β-sheet coincides with an increase of β-turns accompanied by a conformational shift of the nearby disulfide bridge from high-energy trans-gauche-trans to more relaxed gauche-gauche-trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β-sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein-ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone-like function of AGP. PMID:26400697

  20. Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology.

    PubMed

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-07-27

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function. PMID:22661711

  1. Binding-Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids.

    PubMed

    Zhang, Hongquan; Lai, Maode; Zuehlke, Albert; Peng, Hanyong; Li, Xing-Fang; Le, X Chris

    2015-11-23

    We introduce the concept and operation of a binding-induced DNA nanomachine that can be activated by proteins and nucleic acids. This new type of nanomachine harnesses specific target binding to trigger assembly of separate DNA components that are otherwise unable to spontaneously assemble. Three-dimensional DNA tracks of high density are constructed on gold nanoparticles functionalized with hundreds of single-stranded oligonucleotides and tens of an affinity ligand. A DNA swing arm, free in solution, is linked to a second affinity ligand. Binding of a target molecule to the two ligands brings the swing arm to AuNP and initiates autonomous, stepwise movement of the swing arm around the AuNP surface. The movement of the swing arm, powered by enzymatic cleavage of conjugated oligonucleotides, cleaves hundreds of oligonucleotides in response to a single binding event. We demonstrate three nanomachines that are specifically activated by streptavidin, platelet-derived growth factor, and the Smallpox gene. Substituting the ligands enables the nanomachine to respond to other molecules. The new nanomachines have several unique and advantageous features over DNA nanomachines that rely on DNA self-assembly. PMID:26457803

  2. Retinoic Acid Receptors Recognize the Mouse Genome through Binding Elements with Diverse Spacing and Topology*

    PubMed Central

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-01-01

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function. PMID:22661711

  3. Water-Mediated Differential Binding of Strontium and Cesium Cations in Fulvic Acid.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2015-08-27

    The migration of potentially harmful radionuclides, such as cesium ((137)Cs) and strontium ((90)Sr), in soil is governed by the chemical and biological reactivity of soil components. Soil organic matter (SOM) that can be modeled through fulvic acid (FA) is known to alter the mobility of radionuclide cations, Cs(+) and Sr(2+). Shedding light on the possible interaction mechanisms at the atomic level of these two ions with FA is thus vital to explain their transport behavior and for the design of new ligands for the efficient extraction of radionuclides. Here we have performed molecular dynamics, metadynamics simulations, and density-functional-theory-based calculations to understand the binding mechanism of Sr(2+) and Cs(+) cations with FA. Our studies predict that interaction of Cs(+) to FA is very weak as compared with Sr(2+). While the water-FA interaction is largely responsible for the weak binding of Cs(+) to FA, leading to the outer sphere complexation of the ion with FA, the interaction between Sr(2+) and FA is stronger and thus can surpass the existing secondary nonbonding interaction between coordinated waters and FA, leading to inner sphere complexation of the ion with FA. We also find that entropy plays a dominant role for Cs(+) binding to FA, whereas Sr(2+) binding is an enthalpy-driven process. Our predicted results are found to be in excellent agreement with the available experimental data on complexation of Cs(+) and Sr(2+) with SOM. PMID:25794241

  4. Molecular Dynamic Simulations Reveal the Structural Determinants of Fatty Acid Binding to Oxy-Myoglobin

    PubMed Central

    Chintapalli, Sree V.; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L.; van Rossum, Damian B.; Anishkin, Andriy; Adams, Sean H.

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a “U” shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  5. Molecular dynamic simulations reveal the structural determinants of Fatty Acid binding to oxy-myoglobin.

    PubMed

    Chintapalli, Sree V; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L; van Rossum, Damian B; Anishkin, Andriy; Adams, Sean H

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a "U" shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  6. Evaluating Healthful Properties of Cereals and Cereal Fractions by Their Bile-Acid-Binding Potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The healthful, cholesterol-lowering (atherosclerosis amelioration) or detoxification of harmful metabolites (cancer prevention) potential of cereals and cereal fractions could be predicted by evaluating their in vitro bile acid binding under physiological conditions. Using equal dry matter per incu...

  7. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  8. Possible involvement of lipoic acid in binding protein-dependent transport systems in Escherichia coli.

    PubMed

    Richarme, G

    1985-04-01

    We describe the properties of the binding protein dependent-transport of ribose, galactose, and maltose and of the lactose permease, and the phosphoenolpyruvate-glucose phosphotransferase transport systems in a strain of Escherichia coli which is deficient in the synthesis of lipoic acid, a cofactor involved in alpha-keto acid dehydrogenation. Such a strain can grow in the absence of lipoic acid in minimal medium supplemented with acetate and succinate. Although the lactose permease and the phosphoenolypyruvate-glucose phosphotransferase are not affected by lipoic acid deprivation, the binding protein-dependent transports are reduced by 70% in conditions of lipoic acid deprivation when compared with their activity in conditions of lipoic acid supply. The remaining transport is not affected by arsenate but is inhibited by the uncoupler carbonylcyanide-m-chlorophenylhydrazone; however the lipoic acid-dependent transport is completely inhibited by arsenate and only weakly inhibited by carbonylcyanide-m-chlorophenylhydrazone. The known inhibitor of alpha-keto acid dehydrogenases, 5-methoxyindole-2-carboxylic acid, completely inhibits all binding protein-dependent transports whether in conditions of lipoic supply or deprivation; the results suggest a possible relation between binding protein-dependent transport and alpha-keto acid dehydrogenases and shed light on the inhibition of these transports by arsenicals and uncouplers. PMID:3920206

  9. Ascorbic acid reduction of compound I of mammalian catalases proceeds via specific binding to the NADPH binding pocket.

    PubMed

    Korth, Hans-Gert; Meier, Ann-Cathérine; Auferkamp, Oliver; Sicking, Willi; de Groot, Herbert; Sustmann, Reiner; Kirsch, Michael

    2012-06-12

    Mammalian (Clade 3) catalases utilize NADPH as a protective cofactor to prevent one-electron reduction of the central reactive intermediate Compound I (Cpd I) to the catalytically inactive Compound II (Cpd II) species by re-reduction of Cpd I to the enzyme's resting state (ferricatalase). It has long been known that ascorbate/ascorbic acid is capable of reducing Cpd I of NADPH-binding catalases to Cpd II, but the mode of this one-electron reduction had hitherto not been explored. We here demonstrate that ascorbate-mediated reduction of Cpd I, generated by addition of peroxoacetic acid to NADPH-free bovine liver catalase (BLC), requires specific binding of the ascorbate anion to the NADPH binding pocket. Ascorbate-mediated Cpd II formation was found to be suppressed by added NADPH in a concentration-dependent manner, for the achievement of complete suppression at a stoichiometric 1:1 NADPH:heme concentration ratio. Cpd I → Cpd II reduction by ascorbate was similarly inhibited by addition of NADH, NADP(+), thio-NADP(+), or NAD(+), though with 0.5-, 0.1-, 0.1-, and 0.01-fold reduced efficiencies, respectively, in agreement with the relative binding affinities of these dinucleotides. Unexpected was the observation that although Cpd II formation is not observed in the presence of NADP(+), the decay of Cpd I is slightly accelerated by ascorbate rather than retarded, leading to direct regeneration of ferricatalase. The experimental findings are supported by molecular mechanics docking computations, which show a similar binding of NADPH, NADP(+), and NADH, but not NAD(+), as found in the X-ray structure of NADPH-loaded human erythrocyte catalase. The computations suggest that two ascorbate molecules may occupy the empty NADPH pocket, preferably binding to the adenine binding site. The biological relevance of these findings is discussed. PMID:22616883

  10. A nuclear magnetic resonance-based structural rationale for contrasting stoichiometry and ligand binding site(s) in fatty acid-binding proteins.

    PubMed

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E

    2011-03-01

    Liver fatty acid-binding protein (LFABP) is a 14 kDa cytosolic polypeptide, differing from other family members in the number of ligand binding sites, the diversity of bound ligands, and the transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional (1)H-(15)N nuclear magnetic resonance (NMR) signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without determining the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and an R122L/S124A mutant in which electrostatic interactions viewed as being essential to fatty acid binding were removed. For wild-type LFABP, the results compared favorably with the data for previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, (1)H and (15)N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535

  11. Treatment with oleic acid reduces IgE binding to peanut and cashew allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid (OA) is known to bind and change the bioactivities of proteins, such as a-lactalbumin and ß-lactoglobulin in vitro. The objective of this study was to determine if OA binds to allergens from a peanut extract or cashew allergen and changes their allergenic properties. Peanut extract or c...

  12. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.

    PubMed

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-05-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin. PMID:26883595

  13. Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    SciTech Connect

    Kashyap, Sanjay; Woehl, Taylor; Valverde-Tercedor, Carmen; Sanchez-Quesada, Miguel; Lopez, Concepcion Jimenez; Prozorov, Tanya

    2014-03-07

    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus, strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formation of biotemplated inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.

  14. Binding of L-branched-chain amino acids causes a conformational change in BkdR.

    PubMed Central

    Madhusudhan, K T; Huang, N; Braswell, E H; Sokatch, J R

    1997-01-01

    BkdR is the positive transcriptional activator of the inducible bkd operon of Pseudomonas putida. Evidence is accumulating that L-branched-chain amino acids are the inducers of the operon, and the data obtained in this study show that they induce a conformational change in BkdR. Addition of L-branched-chain amino acids increased the susceptibility of BkdR to trypsin with the cleavage between Arg-51 and Gln-52 on the C-terminal side of the DNA-binding domain. L-Valine also caused an increased fluorescence emission intensity and produced significant changes in the circular dichroism spectrum of BkdR. Analytical ultracentrifugation confirmed earlier data obtained from gel filtration that BkdR was a tetramer with a Stokes radius of 32 +/- 3 A and an axial ratio of 2:1. PMID:8982009

  15. Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    DOE PAGESBeta

    Kashyap, Sanjay; Woehl, Taylor; Valverde-Tercedor, Carmen; Sánchez-Quesada, Miguel; Jiménez López, Concepción; Prozorov, Tanya

    2014-01-01

    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus , strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formationmore » of biotemplated inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.« less

  16. Novel binding patterns between ganoderic acids and neuraminidase: Insights from docking, molecular dynamics and MM/PBSA studies.

    PubMed

    Yang, Zhiwei; Wu, Fei; Yuan, Xiaohui; Zhang, Lei; Zhang, Shengli

    2016-04-01

    Recently, ganoderic acids (GAs) give rise to the attractive candidates of novel neuraminidase (NA) inhibitors. However, there is still no evident conclusion about their binding patterns. To this end, docking, molecular dynamics and MM/PBSA methods were combined to study the binding profiles of GAs with the N1 protein and familiar H274Y and N294S mutations (A/Vietnam/1203/04 stain). It was found that the binding affinities of ganoderic acid DM and Z (ΔGbind, -16.83 and -10.99 kcal mol(-1)) are comparable to that of current commercial drug oseltamivir (-23.62 kcal mol(-1)). Electrostatic interaction is the main driving force, and should be one important factor to evaluate the binding quality and rational design of NA inhibitors. The 150-loop residues Asp151 and Arg152 played an important role in the binding processes. Further analysis revealed that ganoderic acid DM is a potential source of anti-influenza ingredient, with novel binding pattern and advantage over oseltamivir. It had steric hindrance on the 150 cavity of N1 protein, and exerted activities across the H274Y and N294S mutations. This work also pointed out how to effectively design dual-site NA inhibitors and reinforce their affinities. These findings should prove valuable for the in-depth understanding of interactions between NA and GAs, and warrant the experimental aspects to design novel anti-influenza drugs. PMID:26905206

  17. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice.

    PubMed

    Matsumoto, Kenji; Yokoyama, Shin-ichiro; Gato, Nobuki

    2010-02-01

    The hypolipidemic effects and bile acid-binding properties of young persimmon (Diospyros kaki) fruit were examined. In an animal experiment, male C57BL/6.Cr mice (n = 5) were fed an AIN-76-modified high fat diet supplemented with 2% or 5% (w/w) dried young persimmon fruit (YP) for 10 weeks. The intake of YP significantly enhanced fecal bile acid excretion and lowered the concentration of hepatic lipids and plasma cholesterol. Analysis of gene expression in liver tissue showed that 2% or 5% YP up-regulated the expression of the sterol regulatory element-binding protein-2 gene. In the 5% group, there were increased expressions of the genes for cholesterol 7alpha-hydroxylase and the low-density lipoprotein receptor. Next, the bile acid-binding ability of YP was analysed in vitro using cholic acid (CA). In 100-2000 microM CA solutions, 1% (w/v) YP adsorbed approximately 60% of CA, while dried mature persimmon fruit adsorbed approximately 20% of CA. The positive control, cholestyramine, adsorbed approximately 80% of CA in the 100-2000 microM CA solutions. A crude tannin extract from YP, which contained 54.7% condensed tannins, adsorbed approximately 78% of CA in the 2000 microM CA solutions. These results suggest that the ability of YP to bind bile acid contributes to its hypolipidemic effect in mice. PMID:19585467

  18. Amphipathic Benzoic Acid Derivativies: Synthesis and Binding in the Hydrophobic Tunnel of the Zinc Deacetylase LpxC

    SciTech Connect

    Shin,H.; Gennadios, H.; Whittington, D.; Christianson, D.

    2007-01-01

    The first committed step in lipid A biosynthesis is catalyzed by uridine diphosphate-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase (LpxC), a zinc-dependent deacetylase, and inhibitors of LpxC may be useful in the development of antibacterial agents targeting a broad spectrum of Gram-negative bacteria. Here, we report the design of amphipathic benzoic acid derivatives that bind in the hydrophobic tunnel in the active site of LpxC. The hydrophobic tunnel accounts for the specificity of LpxC toward substrates and substrate analogues bearing a 3-O-myristoyl substituent. Simple benzoic acid derivatives bearing an aliphatic 'tail' bind in the hydrophobic tunnel with micromolar affinity despite the lack of a glucosamine ring like that of the substrate. However, although these benzoic acid derivatives each contain a negatively charged carboxylate 'warhead' intended to coordinate to the active site zinc ion, the 2.25 {angstrom} resolution X-ray crystal structure of LpxC complexed with 3-(heptyloxy)benzoate reveals 'backward' binding in the hydrophobic tunnel, such that the benzoate moiety does not coordinate to zinc. Instead, it binds at the outer end of the hydrophobic tunnel. Interestingly, these ligands bind with affinities comparable to those measured for more complicated substrate analogue inhibitors containing glucosamine ring analogues and hydroxamate 'warheads' that coordinate to the active site zinc ion. We conclude that the intermolecular interactions in the hydrophobic tunnel dominate enzyme affinity in this series of benzoic acid derivatives.

  19. Quest for the binding mode of malachite green with humic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Yin, Mingxing; Shi, Jinghua; Wang, Yanqing

    2015-02-01

    The association of malachite green (MG) with humic acid (HA) was investigated by using fluorescence, UV-vis spectroscopy and molecular Modelling method. The fluorescence spectral results indicated that the binding between MG and HA occurred by mainly hydrophobic and electrostatic forces with association constants of KA (298 K) = 6.24 × 105 L/mol and KA (310 K) = 10.20 × 105 L/mol. There were more than one binding sites on HA to bind with MG. The binding sites of MG with HA primarily located at the aromatic rings of HA. MG could enter into the hydrophobic cavities of HA to quench the fluorescence of HA. On the contrary, HA binding caused MG to a coplanar conformation with more extended π bond distribution by π-π stacking interactions. The experiment and calculation data both showed that the hydrophobic binding cavities in HA played a key role in its binding with MG.

  20. Uranium Binding Mechanisms of the Acid-Tolerant Fungus Coniochaeta fodinicola.

    PubMed

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Collins, Richard N; Neilan, Brett A; Aoyagi, Noboru; Waite, T David

    2015-07-21

    The uptake and binding of uranium [as (UO2)(2+)] by a moderately acidophilic fungus, Coniochaeta fodinicola, recently isolated from a uranium mine site, is examined in this work in order to better understand the potential impact of organisms such as this on uranium sequestration in hydrometallurgical systems. Our results show that the viability of the fungal biomass is critical to their capacity to remove uranium from solution. Indeed, live biomass (viable cells based on vital staining) were capable of removing ∼16 mg U/g dry weight in contrast with dead biomass (autoclaved) which removed ∼45 mg U/g dry weight after 2 h. Furthermore, the uranium binds with different strength, with a fraction ranging from ∼20-50% being easily leached from the exposed biomass by a 10 min acid wash. Results from X-ray absorption spectroscopy measurements show that the strength of uranium binding is strongly influenced by cell viability, with live cells showing a more well-ordered uranium bonding environment, while the distance to carbon or phosphorus second neighbors is similar in all samples. When coupled with time-resolved laser fluorescence and Fourier transformed infrared measurements, the importance of organic acids, phosphates, and polysaccharides, likely released with fungal cell death, appear to be the primary determinants of uranium binding in this system. These results provide an important progression to our understanding with regard to uranium sequestration in hydrometallurgical applications with implications to the unwanted retention of uranium in biofilms and/or its mobility in a remediation context. PMID:26106944

  1. Comparison of the autoradiographic binding distribution of [3H]-gabapentin with excitatory amino acid receptor and amino acid uptake site distributions in rat brain.

    PubMed Central

    Thurlow, R. J.; Hill, D. R.; Woodruff, G. N.

    1996-01-01

    1. Gabapentin is a novel anticonvulsant with an unknown mechanism of action. Recent homogenate binding studies with [3H]-gabapentin have suggested a structure-activity relationship similar to that shown for the amino acid transport system responsible for the uptake of large neutral amino acids (LNAA). 2. The autoradiographic binding distribution of [3H]-gabapentin in rat brain was compared with the distributions for excitatory amino acid receptor subtypes and the uptake sites for excitatory and large neutral amino acids in consecutive rat brain sections. 3. Densitometric measurement of the autoradiographic images followed by normalisation with respect to the hippocampus CA1 stratum radiatum, was carried out before comparison of each binding distribution with that of [3H]-gabapentin by linear regression analysis. The correlation coefficients observed showed no absolute correlation was observed between the binding distributions of [3H]-gabapentin and those of the excitatory amino acid receptor subtypes. The acidic and large neutral amino acid uptake site distributions demonstrated a much closer correlation to the [3H]-gabapentin binding site distribution. The correlation coefficients for D-[3H]-aspartate, L-[3H]-leucine and L-[3H]-isoleucine binding site distributions were 0.76, 0.90 and 0.88 respectively. 4. Concentration-dependent inhibition by unlabelled gabapentin of autoradiographic binding of L-[3H]-leucine and L-[3H]-isoleucine was observed, with non-specific binding levels being reached at concentrations between 10 and 100 microM. 5. Excitotoxic quinolinic acid lesion studies in rat brain caudate putamen and autoradiography were carried out for the amino acid uptake sites mentioned above. The resulting glial infiltration of the lesioned areas was visualized by autoradiography using the peripheral benzodiazepine receptor specific ligand [3H]-PK11195. A significant decrease in binding density in the lesioned area compared with sham-operated animals was observed

  2. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2010-03-01

    The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10 -4 to 2.7 × 10 -2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK 2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that logKdREE patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the logKdREE atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the logKdREE pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L -1 and 4

  3. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  4. Capture and release of mixed acid gasses with binding organic liquids

    DOEpatents

    Heldebrant, David J.; Yonker, Clement R.

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  5. Arginine-glycine-aspartic acid- and fibrinogen gamma-chain carboxyterminal peptides inhibit platelet adherence to arterial subendothelium at high wall shear rates. An effect dissociable from interference with adhesive protein binding.

    PubMed Central

    Lawrence, J B; Kramer, W S; McKeown, L P; Williams, S B; Gralnick, H R

    1990-01-01

    Arg-Gly-Asp (RGD)- and fibrinogen gamma-chain carboxyterminal (GQQHHLGGAKQAGDV) peptides inhibit fibrinogen, fibronectin (Fn), vitronectin, and von Willebrand factor (vWF) binding to the platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa). GP IIb-IIIa, vWF, and Fn are essential for normal platelet adherence to subendothelium. We added peptides to normal citrated whole blood before perfusion over human umbilical artery subendothelium and evaluated platelet adherence morphometrically at high (2,600 s-1) and low (800 s-1) wall shear rates. We also examined the effects of the peptides on platelet adhesion to collagen in a static system. At the high wall shear rate, RGDS and GQQHHLGGAKQAGDV caused dose-dependent reduction in the surface coverage with spread and adherent platelets. Amino acid transposition and conservative substitutions of RGD peptides and the AGDV peptide significantly inhibited platelet adherence at 2,600 s-1. By contrast, the modified RGD peptides and AGDV do not affect adhesive protein binding to platelets. None of the native or modified RGD- or fibrinogen gamma-chain peptides significantly inhibited either platelet adherence to subendothelium at 800 s-1 or platelet adhesion to collagen. Our findings demonstrate that peptides that interfere with adhesive protein binding to GP IIb-IIIa inhibit platelet adherence to vascular subendothelium with flowing blood only at high wall shear rates. Platelet adherence to subendothelium at high wall shear rates appears to be mediated by different recognition specificities from those required for fluid-phase adhesive protein binding or static platelet adhesion. PMID:2243140

  6. VOLTAMMETRIC METHODS FOR DETERMINATION OF METAL BINDING BY FULVIC ACID

    EPA Science Inventory

    The use of anodic stripping voltammetry (ASV) and differential pulse polarography (DPP) for the measurement of the concentrations of aquo ions in the presence of fulvic acid, and the subsequent use of these data for estimation of the metal--fulvic acid conditional stability const...

  7. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades

    USGS Publications Warehouse

    Reddy, M.M.; Aiken, G.R.

    2001-01-01

    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  8. In situ detection of salicylic acid binding sites in plant tissues.

    PubMed

    Liu, Jing-Wen; Deng, Da-Yi; Yu, Ying; Liu, Fang-Fei; Lin, Bi-Xia; Cao, Yu-Juan; Hu, Xiao-Gang; Wu, Jian-Zhong

    2015-02-01

    The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS-CdSe QDs were used to detect SA-binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS-CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS-CdSe QDs on cytosolic Ca(2+) levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS-CdSe QDs had similar effects on the trend in cytosolic-free Ca(2+) concentrations, suggesting that the PAS-CdSe QDs maintained the bioactivity of SA. To summarize, PAS-CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants. PMID:24833131

  9. Kinetic properties of the binding of alpha-lytic protease to peptide boronic acids.

    PubMed

    Kettner, C A; Bone, R; Agard, D A; Bachovchin, W W

    1988-10-01

    The kinetic parameters for peptide boronic acids in their interaction with alpha-lytic protease were determined and found to be similar to those of other serine proteases [Kettner, C., & Shenvi, A. B. (1984) J. Biol. Chem. 259, 15106-15114]. alpha-Lytic protease hydrolyzes substrates with either alanine or valine in the P1 site and has a preference for substrate with a P1 alanine. The most effective inhibitors are tri- and tetrapeptide analogues that have a -boroVal-OH residue in the P1 site. At pH 7.5, MeOSuc-Ala-Ala-Pro-boroVal-OH has a Ki of 6.4 nM and Boc-Ala-Pro-boroVal-OH has a Ki of 0.35 nM. Ac-boroVal-OH and Ac-Pro-boroVal-OH are 220,000- and 500-fold less effective, respectively, than the tetrapeptide analogue. The kinetic properties of the tri- and tetrapeptide analogues are consistent with the mechanism for slow-binding inhibition, E + I in equilibrium EI in equilibrium EI*, while the less effective inhibitors are simple competitive inhibitors. MeO-Suc-Ala-Ala-Pro-boroAla-OH is a simple competitive inhibitor with a Ki of 67 nM at pH 7.5. Other peptide boronic acids, which are analogues of nonsubstrates, are less effective than substrate analogues but still are effective competitive inhibitors. For example, MeOSuc-Ala-Ala-Pro-boroPhe-OH has a Ki of 0.54 microM although substrates with a phenylalanine in the P1 position are not hydrolyzed. Binding for boronic acid analogues of both substrate and nonsubstrate analogues is pH dependent with higher affinity near pH 7.5. Similar binding properties have been observed for pancreatic elastase. Both enzymes have almost identical requirements for an extended peptide inhibitor sequence in order to exhibit highly effective binding and slow-binding characteristics.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3207699

  10. A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding

    SciTech Connect

    Kaye, F.J.; Gerster, J.L. Uniformed Services Univ. of Health Sciences, Bethesda, MD ); Kratzke, R.A. ); Horowitz, J.M. )

    1990-09-01

    The authors have previously identified a small-cell lung cancer cell line (NCI-H209) that expresses an aberrant, underphosphorylated form of the retinoblastoma protein RB1. Molecular analysis of RB1 mRNA from this cell line revealed a single point mutation within exon 21 that resulted in a nonconservative amino acid substitution (cysteine to phenylalanine) at codon 706. Stable expression of this mutant RB1 cDNA in a human cell line lacking endogenous RB1 demonstrated that this amino acid change was sufficient to inhibit phosphorylation. In addition, this cysteine-to-phenylalanine substitution also resulted in loss of RB1 binding to the simian virus 40 large tumor and adenovirus E1A transforming proteins. These results confirm the importance of exon 21 coding sequences and suggest that the cysteine residue at codon 706 may play a role in achieving a specific protein conformation essential for protein-protein interactions.

  11. In vitro bile acid binding and short-chain fatty acid profile of flax fiber and ethanol co-products.

    PubMed

    Fodje, Adele M L; Chang, Peter R; Leterme, Pascal

    2009-10-01

    Fibers from flaxseed and co-products from ethanol production could be potential sources of dietary fiber in human diet. In vitro fermentation and bile acid binding models were used to investigate the metabolic effects of lignaMax (Bioriginal Food and Science Corp., Saskatoon, SK, Canada) flax meal, spent flax meal, soluble flax gum, wheat insoluble fiber (WIF), and rye insoluble fiber (RIF). Wheat and rye bran were used as reference samples. Bile acid binding of substrates was analysed at taurocholate ([(14)C]taurocholate) concentration of 12.5 mM. Soluble flax gum showed the highest bile acid binding (0.57 micromol/mg of fiber) (P acid binding between wheat bran (0.2 micromol/mg of fiber) and WIF (0.26 micromol/mg of fiber). RIF had higher (P acid binding (0.20 micromol/mg of fiber) than rye bran (0.13 micromol/mg of fiber). Substrates were hydrolyzed and incubated with pig fecal samples. Short-chain fatty acid (SCFA) profile and gas accumulation (G(f)) were compared. Soluble flax gum generated the highest amount of acetic and propionic acids. SCFA profiles of wheat/rye brans and WIF/RIF were similar (except for butyric acid). G(f) for soluble flax gum was greater (P < .001) than that of spent flax meal. G(f) values of the wheat samples were similar, whereas the G(f) of the rye bran was higher (P < .001) than that of RIF. Fractional degradation rate (micro(t = T/2)) (P < .001) was also recorded. The highest mu(t = T/2) was observed for the soluble flax gum. Oil-depleted flaxseed fractions and WIF/RIF (co-products from ethanol production) could be potential sources of dietary fiber in human nutrition. PMID:19857071

  12. An ultrasensitive photoelectrochemical nucleic acid biosensor

    PubMed Central

    Gao, Zhiqiang; Tansil, Natalia C.

    2005-01-01

    A simple and ultrasensitive procedure for non-labeling detection of nucleic acids is described in this study. It is based on the photoelectrochemical detection of target nucleic acids by forming a nucleic acid/photoreporter adduct layer on an ITO electrode. The target nucleic acids were hybridized with immobilized oligonucleotide capture probes on the ITO electrode. A subsequent binding of a photoreporter—a photoactive threading bis-intercalator consisting of two N,N′-bis(3-propyl-imidazole)-1,4,5,8-naphthalene diimides (PIND) linked by a Ru(bpy)22+ (bpy = 2,2′-bipyridine) complex (PIND–Ru–PIND)—allowed for photoelectrochemical detection of the target nucleic acids. The extremely low dissociation rate of the adduct and the highly reversible photoelectrochemical response under visible light illumination (490 nm) make it possible to conduct nucleic acid detection, with a sensitivity enhancement of four orders of magnitude over voltammetry. These results demonstrate for the first time the potential of photoelectrochemical biosensors for PCR-free ultrasensitive detection of nucleic acids. PMID:16061935

  13. Chemical composition and bile acid binding activity of products obtained from amaranth (Amaranthus cruentus) seeds.

    PubMed

    Tiengo, Andréa; Motta, Eliana Maria Pettirossi; Netto, Flavia Maria

    2011-11-01

    Cardiovascular diseases are currently the greatest cause of mortality in the world, and dislipidemia is appearing as one of the most important risk factors. The binding of bile acids (BAs) has been hypothesized as a possible mechanism by which dietary fibers lower blood cholesterol levels. Besides the fibers, other components in the amaranth seeds may be related to this hypocholesterolemic effect. The objective of the present study was to evaluate the BA binding capacity of some products obtained from defatted amaranth flour (DAF) and from the amaranth protein concentrate (APC). The alkaline residue, rich in fibers (8.6%), presented the lowest binding activity for the BAs tested, with the exception of glycocholic acid. The DAF showed intermediary binding activity for all the BAs tested, although similar to that of the APC for deoxycholic acid, and to that of the amaranth protein hydrolysate (APH) for taurocholic acid. The DAF and APC showed binding activity for secondary bile acids toxic to the intestinal mucus. From the results, amaranth products were shown to have the ability to bind BAs, but it was not possible to affirm whether the main component responsible for this activity was the proteins, fibers or eventually some other non-evaluated component. PMID:21901402

  14. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; Boulton, Stephen; Zanzoni, Serena; Melacini, Giuseppe; Molinari, Henriette; Ragona, Laura

    2015-11-01

    Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off. PMID:26260520

  15. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    PubMed Central

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    SUMMARY Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have difference functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. PMID:25458898

  16. Surface lysine residues modulate the collisional transfer of fatty acid from adipocyte fatty acid binding protein to membranes.

    PubMed

    Herr, F M; Matarese, V; Bernlohr, D A; Storch, J

    1995-09-19

    The transfer of unesterified fatty acids (FA) from adipocyte fatty acid binding protein (A-FABP) to phospholipid membranes is proposed to occur via a collisional mechanism involving transient ionic and hydrophobic interactions [Wootan & Storch (1994) J. Biol. Chem. 269, 10517-10523]. In particular, it was suggested that membrane acidic phospholipids might specifically interact with basic residues on the surface of A-FABP. Here we addressed whether lysine residues on the surface of the protein are involved in this collisional transfer mechanism. Recombinant A-FABP was acetylated to neutralize all positively charged surface lysine residues. Protein fluorescence, CD spectra, and chemical denaturant data indicate that acetylation did not substantially alter the conformational integrity of the protein, and nearly identical affinities were obtained for binding of the fluorescently labeled FA [12-(9-anthroyloxy)oleate] to native and acetylated protein. Transfer of 2-(9-anthroyloxy)palmitate (2AP) from acetylated A-FABP to small unilamellar vesicles (SUV) was 35-fold slower than from native protein. In addition, whereas the 2AP transfer rate from native A-FABP was directly dependent on SUV concentration, 2AP transfer from acetylated protein was independent on the concentration of acceptor membranes. Factors which alter aqueous-phase solubility of FA, such as ionic strength and acyl chain length and saturation, affected the AOFA transfer rate from acetylated but not native A-FABP. Finally, an increase in the negative charge density of the acceptor SUV resulted in a marked increase in the rate of transfer from native A-FABP but did not increase the rate from acetylated A-FABP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7547918

  17. Role of surface lysine residues of adipocyte fatty acid-binding protein in fatty acid transfer to phospholipid vesicles.

    PubMed

    Liou, H L; Storch, J

    2001-05-29

    The tertiary structure of murine adipocyte fatty acid-binding protein (AFABP) is a flattened 10-stranded beta-barrel capped by a helix-turn-helix segment. This helical domain is hypothesized to behave as a "lid" or portal for ligand entry into and exit from the binding cavity. Previously, we demonstrated that anthroyloxy-labeled fatty acid (AOFA) transfer from AFABP to phospholipid membranes occurs by a collisional process, in which ionic interactions between positively charged lysine residues on the protein surface and negatively charged phospholipid headgroups are involved. In the present study, the role of specific lysine residues located in the portal and other regions of AFABP was directly examined using site-directed mutagenesis. The results showed that isoleucine replacement for lysine in the portal region, including the alphaI- and alphaII-helices and the beta C-D turn, resulted in much slower 2-(9-anthroyloxy)palmitate (2AP) transfer rates to acidic membranes than those of native AFABP. An additive effect was found for mutant K22,59I, displaying the slowest rates of FA transfer. Rates of 2AP transfer from "nonportal" mutants on the beta-G and I strands were affected only moderately; however, a lysine --> isoleucine mutation in the nonportal beta-A strand decreased the 2AP transfer rate. These studies suggest that lysines in the helical cap domain are important for governing ionic interactions between AFABP and membranes. Furthermore, it appears that more than one distinct region, including the alphaI-helix, alphaII-helix, beta C-D turn, and the beta-A strand, is involved in these charge-charge interactions. PMID:11371211

  18. Human serum albumin-mimetic chromatography based hexadecyltrimethylammonium bromide as a novel direct probe for protein binding of acidic drugs.

    PubMed

    Salary, Mina; Hadjmohammadi, Mohammadreza

    2015-10-10

    Human serum albumin (HSA) is the most important drug carrier in humans mainly binding acidic drugs. Negatively charged compounds bind more strongly to HSA than it would be expected from their lipophilicity alone. With the development of new acidic drugs, there is a high need for rapid and simple protein binding screening technologies. Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography, which can be used as an in vitro system to model the biopartitioning process of drugs when there are no active processes. In this study, a new kind of BMC using hexadecyltrimethylammonium bromide (CTAB) as micellar mobile phases was used for the prediction of protein binding of acidic drugs based on the similar property of CTAB micelles to HSA. The use of BMC is simple, reproducible and can provide key information about the pharmacological behavior of drugs such as protein binding properties of new compounds during the drug discovery process. The relationships between the MLC retention data of a heterogeneous set of 17 acidic and neutral drugs and their plasma protein binding parameter were studied and second-order polynomial models obtained in two different concentrations (0.07 and 0.09M) of CTAB. However, the developed models are only being able to distinguish between strongly and weakly binding drugs. Also, the developed models were characterized by both the descriptive and predictive ability (R(2)=0.885, RCV(2)=0.838 and R(2)=0.898, RCV(2)=0.859 for 0.07 and 0.09M CTAB, respectively). The application of the developed model to a prediction set demonstrated that the model was also reliable with good predictive accuracy. PMID:25988296

  19. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  20. Lipin 2 binds phosphatidic acid by the electrostatic hydrogen bond switch mechanism independent of phosphorylation.

    PubMed

    Eaton, James M; Takkellapati, Sankeerth; Lawrence, Robert T; McQueeney, Kelley E; Boroda, Salome; Mullins, Garrett R; Sherwood, Samantha G; Finck, Brian N; Villén, Judit; Harris, Thurl E

    2014-06-27

    Lipin 2 is a phosphatidic acid phosphatase (PAP) responsible for the penultimate step of triglyceride synthesis and dephosphorylation of phosphatidic acid (PA) to generate diacylglycerol. The lipin family of PA phosphatases is composed of lipins 1-3, which are members of the conserved haloacid dehalogenase superfamily. Although genetic alteration of LPIN2 in humans is known to cause Majeed syndrome, little is known about the biochemical regulation of its PAP activity. Here, in an attempt to gain a better general understanding of the biochemical nature of lipin 2, we have performed kinetic and phosphorylation analyses. We provide evidence that lipin 2, like lipin 1, binds PA via the electrostatic hydrogen bond switch mechanism but has a lower rate of catalysis. Like lipin 1, lipin 2 is highly phosphorylated, and we identified 15 phosphosites. However, unlike lipin 1, the phosphorylation of lipin 2 is not induced by insulin signaling nor is it sensitive to inhibition of the mammalian target of rapamycin. Importantly, phosphorylation of lipin 2 does not negatively regulate either membrane binding or PAP activity. This suggests that lipin 2 functions as a constitutively active PA phosphatase in stark contrast to the high degree of phosphorylation-mediated regulation of lipin 1. This knowledge of lipin 2 regulation is important for a deeper understanding of how the lipin family functions with respect to lipid synthesis and, more generally, as an example of how the membrane environment around PA can influence its effector proteins. PMID:24811178

  1. Lipin 2 Binds Phosphatidic Acid by the Electrostatic Hydrogen Bond Switch Mechanism Independent of Phosphorylation*

    PubMed Central

    Eaton, James M.; Takkellapati, Sankeerth; Lawrence, Robert T.; McQueeney, Kelley E.; Boroda, Salome; Mullins, Garrett R.; Sherwood, Samantha G.; Finck, Brian N.; Villén, Judit; Harris, Thurl E.

    2014-01-01

    Lipin 2 is a phosphatidic acid phosphatase (PAP) responsible for the penultimate step of triglyceride synthesis and dephosphorylation of phosphatidic acid (PA) to generate diacylglycerol. The lipin family of PA phosphatases is composed of lipins 1–3, which are members of the conserved haloacid dehalogenase superfamily. Although genetic alteration of LPIN2 in humans is known to cause Majeed syndrome, little is known about the biochemical regulation of its PAP activity. Here, in an attempt to gain a better general understanding of the biochemical nature of lipin 2, we have performed kinetic and phosphorylation analyses. We provide evidence that lipin 2, like lipin 1, binds PA via the electrostatic hydrogen bond switch mechanism but has a lower rate of catalysis. Like lipin 1, lipin 2 is highly phosphorylated, and we identified 15 phosphosites. However, unlike lipin 1, the phosphorylation of lipin 2 is not induced by insulin signaling nor is it sensitive to inhibition of the mammalian target of rapamycin. Importantly, phosphorylation of lipin 2 does not negatively regulate either membrane binding or PAP activity. This suggests that lipin 2 functions as a constitutively active PA phosphatase in stark contrast to the high degree of phosphorylation-mediated regulation of lipin 1. This knowledge of lipin 2 regulation is important for a deeper understanding of how the lipin family functions with respect to lipid synthesis and, more generally, as an example of how the membrane environment around PA can influence its effector proteins. PMID:24811178

  2. Uterocalin, a lipocalin provisioning the preattachment equine conceptus: fatty acid and retinol binding properties, and structural characterization.

    PubMed Central

    Suire, S; Stewart, F; Beauchamp, J; Kennedy, M W

    2001-01-01

    The equine conceptus is surrounded by a fibrous capsule that persists until about day 20 of pregnancy, whereupon the capsule is lost, the conceptus attaches to the endometrium and placentation proceeds. Before attachment, the endometrium secretes in abundance a protein of the lipocalin family, uterocalin. The cessation of secretion coincides with the end of the period during which the conceptus is enclosed in its capsule, suggesting that uterocalin is essential for the support of the embryo before direct contact between maternal and foetal tissues is established. Using recombinant protein and fluorescence-based assays, we show that equine uterocalin binds the fluorescent fatty acids 11-(dansylamino)undecanoic acid, dansyl-D,L-alpha-amino-octanoic acid and cis-parinaric acid, and, by competition, oleic, palmitic, arachidonic, docosahexaenoic, gamma-linolenic, cis-eicosapentaenoic and linoleic acids. Uterocalin also binds all-trans-retinol, the binding site for which is coincident or interactive with that for fatty acids. Molecular modelling and intrinsic fluorescence analysis of the wild-type protein and a Trp-->Glu mutant protein indicated that uterocalin has an unusually solvent-exposed Trp side chain projecting from its large helix directly into solvent. This feature is unusual among lipocalins and might relate to binding to, and uptake by, the trophoblast. Uterocalin therefore has the localization and binding activities for the provisioning of the equine conceptus with lipids including those essential for morphogenesis and pattern formation. The possession of a fibrous capsule surrounding the conceptus might be an ancestral condition in mammals; homologues of uterocalin might be essential for early development in marsupials and in eutherians in which there is a prolonged preimplantation period. PMID:11368763

  3. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed. PMID:19519376

  4. Exploration of Gated Ligand Binding Recognizes an Allosteric Site for Blocking FABP4-Protein Interaction

    PubMed Central

    Li, Yan; Li, Xiang; Dong, Zigang

    2015-01-01

    Fatty acid binding protein 4 (FABP4), reversibly binding to fatty acids and other lipids with high affinities, is a potential target for treatment of cancers. The binding site of FABP4 is buried in an interior cavity and thereby ligand binding/unbinding is coupled with opening/closing of FABP4. It is a difficult task both experimentally and computationally to illuminate the entry or exit pathway, especially with the conformational gating. In this report we combine extensive computer simulations, clustering analysis, and Markov state model to investigate the binding mechanism of FABP4 and troglitazone. Our simulations capture spontaneous binding and unbinding events as well as the conformational transition of FABP4 between the open and closed states. An allosteric binding site on the protein surface is recognized for development of novel FABP4 inhibitors. The binding affinity is calculated and compared with the experimental value. The kinetic analysis suggests that ligand residence on the protein surface may delay the binding process. Overall, our results provide a comprehensive picture of ligand diffusion on the protein surface, ligand migration into the buried cavity, and the conformational change of FABP4 at an atomic level. PMID:26580122

  5. Identification of multiple salicylic acid-binding proteins using two high throughput screens

    PubMed Central

    Manohar, Murli; Tian, Miaoying; Moreau, Magali; Park, Sang-Wook; Choi, Hyong Woo; Fei, Zhangjun; Friso, Giulia; Asif, Muhammed; Manosalva, Patricia; von Dahl, Caroline C.; Shi, Kai; Ma, Shisong; Dinesh-Kumar, Savithramma P.; O'Doherty, Inish; Schroeder, Frank C.; van Wijk, Klass J.; Klessig, Daniel F.

    2014-01-01

    Salicylic acid (SA) is an important hormone involved in many diverse plant processes, including floral induction, stomatal closure, seed germination, adventitious root initiation, and thermogenesis. It also plays critical functions during responses to abiotic and biotic stresses. The role(s) of SA in signaling disease resistance is by far the best studied process, although it is still only partially understood. To obtain insights into how SA carries out its varied functions, particularly in activating disease resistance, two new high throughput screens were developed to identify novel SA-binding proteins (SABPs). The first utilized crosslinking of the photo-reactive SA analog 4-AzidoSA (4AzSA) to proteins in an Arabidopsis leaf extract, followed by immuno-selection with anti-SA antibodies and then mass spectroscopy-based identification. The second utilized photo-affinity crosslinking of 4AzSA to proteins on a protein microarray (PMA) followed by detection with anti-SA antibodies. To determine whether the candidate SABPs (cSABPs) obtained from these screens were true SABPs, recombinantly-produced proteins were generated and tested for SA-inhibitable crosslinking to 4AzSA, which was monitored by immuno-blot analysis, SA-inhibitable binding of the SA derivative 3-aminoethylSA (3AESA), which was detected by a surface plasmon resonance (SPR) assay, or SA-inhibitable binding of [3H]SA, which was detected by size exclusion chromatography. Based on our criteria that true SABPs must exhibit SA-binding activity in at least two of these assays, nine new SABPs are identified here; nine others were previously reported. Approximately 80 cSABPs await further assessment. In addition, the conflicting reports on whether NPR1 is an SABP were addressed by showing that it bound SA in all three of the above assays. PMID:25628632

  6. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3.

    PubMed

    Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M

    1999-01-01

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions. PMID:9874803

  7. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins αvβ3 and αIIbβ3

    PubMed Central

    Stockbauer, Kathryn E.; Magoun, Loranne; Liu, Mengyao; Burns, Eugene H.; Gubba, Siddeswar; Renish, Sarah; Pan, Xi; Bodary, Sarah C.; Baker, Elizabeth; Coburn, Jenifer; Leong, John M.; Musser, James M.

    1999-01-01

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin αvβ3 (also known as the vitronectin receptor) or αIIbβ3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin αIIbβ3. Defined β3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing αvβ3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions. PMID:9874803

  8. Ellagic acid metabolism and binding to DNA in organ explant cultures of the rat.

    PubMed

    Teel, R W; Martin, R M; Allahyari, R

    1987-08-01

    Ellagic acid (EA) is a plant phenolic compound with postulated antimutagenic and anticarcinogenic activity. In this study, explants of esophagus, forestomach, colon, bladder, trachea, lung and liver from male Sprague-Dawley rats (130-140 g) were incubated in culture medium containing [3H]EA (20 microM, 4.5 microCi/ml) for 24 h at 37 degrees C. After extraction, purification and quantitation of explant DNA significant differences in the binding of EA to the DNA was observed. The most binding occurred in esophagus and the least in lung. Analysis of the organsoluble fraction of the culture medium by high performance liquid chromatography yielded 3 metabolites of EA. None of the metabolites were identified. Elution of water-soluble metabolites from an alumina column showed that there were sulfate ester, glucuronide and glutathione conjugates of EA in the explant culture medium from all the organs. The profile of water-soluble conjugates was very similar between colon and forestomach and between trachea and lung. These results indicate that EA binds to DNA in different tissues and that tissues metabolize EA to both organosoluble and water-soluble products. PMID:3621152

  9. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R.

    2012-10-01

    Few transition metal complexes of tetradentate N2O2 donor Schiff base ligands containing 2-hydroxybenzylidene-4-aminoantipyrine and amino acids (alanine/valine) abbreviated to KHL1/KHL2 have been synthesized. All the metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The Schiff bases KHL1/KHL2 are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around the metal ions. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The DNA binding constants reveal that all these complexes interact with DNA through minor groove binding mode. The studies on mechanism of photocleavage reveal that singlet oxygen (1O2) and superoxide anion radical (O2rad -) may play an important role in the photocleavage. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae and antifungal activities against Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola and Candida albicans by MIC method.

  10. Binding of Folic Acid Induces Specific Self-Aggregation of Lactoferrin: Thermodynamic Characterization.

    PubMed

    Tavares, Guilherme M; Croguennec, Thomas; Lê, Sébastien; Lerideau, Olivia; Hamon, Pascaline; Carvalho, Antônio F; Bouhallab, Saïd

    2015-11-17

    In the study presented here, we investigated the interaction at pH 5.5 between folic acid (FA) and lactoferrin (LF), a positively charged protein. We found a binding constant Ka of 10(5) M(-1) and a high stoichiometry of 10 mol of FA/mol of LF. The size and charge of the complexes formed evolved during titration experiments. Increasing the ionic strength to 50 mM completely abolished the isothermal titration calorimetry (ITC) signal, suggesting the predominance of electrostatic interactions in the exothermic binding obtained. We developed a theoretical model that explains the complex triphasic ITC profile. Our results revealed a two-step mechanism: FA/LF interaction followed by self-association of the complexes thus formed. We suggest that 10 FA molecules bind to LF to form saturated reactive complexes (FA10/LF) that further self-associate into aggregates with a finite size of around 15 nm. There is thus a critical saturation degree of the protein, above which the self-association can take place. We present here the first results that provide comprehensive details of the thermodynamics of FA/LF complexation-association. Given the high stoichiometry, allowing a load of 55 mg of FA/g of LF, we suggest that FA/LF aggregates would be an effective vehicle for FA in fortified drinks. PMID:26488446

  11. Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses

    PubMed Central

    Wan, Hongquan; Perez, Daniel R.

    2016-01-01

    There is growing evidence that some terrestrial avian species may play a role in the genesis of influenza viruses with pandemic potential. In the present investigation, we examined whether quail, a widespread-farmed poultry, possess the proper characteristics for serving as an intermediate host for the zoonotic transmission of influenza viruses. Using a lectin-based staining based on specific agglutinins, we found that, in addition to the presence of sialic acid α2,3-galactose (SAα2,3-gal) linked receptors, there are abundant sialic acid α2,6-galactose (SAα2,6-gal) linked receptors in quail trachea and intestine. The presence of abundant SAα2,6-gal-linked receptors explains, at least in part, the circulation of avian influenza viruses with human-like receptor specificity in quail. In quail trachea, SAα2,3-gal linked receptors are present primarily in non-ciliated cells, while SAα2,6-gal linked receptors are localized predominantly on the surface of ciliated cells. In quail intestine, both types of receptors were found on epithelial cells as well as in crypts. In a solid-phase overlay binding assay, both avian and human influenza viruses bind to plasma membranes prepared from epithelial cells of quail trachea and intestine, strongly suggesting that these receptors are functional for binding of influenza viruses from different species. Together with previous observations, these results are consistent with the notion that quail could provide an environment for the spread of reassortants between avian and human influenza viruses, thus acting as a potential intermediate host. PMID:16325879

  12. Identification and binding mechanism of phage displayed peptides with specific affinity to acid-alkali treated titanium.

    PubMed

    Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo

    2016-10-01

    Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. PMID:27371890

  13. A Novel Fatty Acid-Binding Protein-Like Carotenoid-Binding Protein from the Gonad of the New Zealand Sea Urchin Evechinus chloroticus

    PubMed Central

    Pilbrow, Jodi; Sabherwal, Manya; Garama, Daniel; Carne, Alan

    2014-01-01

    A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9′-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid. PMID:25192378

  14. A novel fatty acid-binding protein-like carotenoid-binding protein from the gonad of the New Zealand sea urchin Evechinus chloroticus.

    PubMed

    Pilbrow, Jodi; Sabherwal, Manya; Garama, Daniel; Carne, Alan

    2014-01-01

    A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9'-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid. PMID:25192378

  15. Sonochemical destruction of free and metal-binding ethylenediaminetetraacetic acid.

    PubMed

    Frim, J Aaron; Rathman, James F; Weavers, Linda K

    2003-07-01

    This study focused on the sonochemical degradation of ethylenediaminetetraacetic acid (EDTA) and chromium-EDTA complexes. Degradation of the copper(II)-EDTA complex was also investigated as a comparison metal complex. A 90% degradation of a 150-microM EDTA solution with continuous O2-bubbling was shown for the 20-kHz system in approximately 3 h (kpseudo-first order = 1.22 x 10(-2) min-1) and less than 1 h for the 354-kHz system (kpseudo-first order = 5.42 x 10(-2) min-1). These results are consistent with the higher concentrations of hydrogen peroxide found in the higher frequency system and an expected oxidation of EDTA in bulk solution. The presence of a chelated metal decreased the rate of degradation at both frequencies. Cr(III)-EDTA degraded the slowest, supporting the theory that the extremely slow ligand exchange rate of chromium is the determining factor in how fast degradation by hydroxyl radical can occur. The 354-kHz system showed a 17% decrease in the original 150-microM Cr(III)-EDTA complex after 3 h of sonication. All of the chromium from the degraded EDTA complex existed as a combination of oxidized Cr(VI) and possibly small amounts of a new Cr(III)-organic complex (Cr(III)-Y). The 20-kHz system showed a similar extent of degradation (16%) after 3 h of sonication, despite lower hydroxyl radical production. Fifty percent of the chromium from the degraded EDTA complex was found as free Cr3+ ion, with the remaining 50% existing as both Cr(III)-Y and Cr(VI). Varying degrees of bulk oxidation, near-bubble thermolysis, and perhaps different degradation pathways at the two frequencies are responsible for these differences. PMID:14509702

  16. Receptor Binding by Cholera Toxin B-Subunit and Amino Acid Modification Improves Minimal Peptide Immunogenicity

    PubMed Central

    Boberg, Andreas; Stålnacke, Alexandra; Bråve, Andreas; Hinkula, Jorma; Wahren, Britta; Carlin, Nils

    2012-01-01

    We increase our understanding of augmenting a cellular immune response, by using an HIV-1 protease-derived epitope (PR75–84), and variants thereof, coupled to the C-terminal, of the B subunit of cholera toxin (CTB). Fusion proteins were used for immunizations of HLA-A0201 transgenic C57BL/6 mice. We observed different capacities to elicit a cellular immune response by peptides with additions of five to ten amino acids to the PR epitope. There was a positive correlation between the magnitude of the elicited cellular immune response and the capacity of the fusion protein to bind GM-1. This binding capacity is affected by its ability to form natural pentamers of CTB. Our results suggest that functional CTB pentamers containing a foreign amino acid-modified epitope is a novel way to overcome the limited cellular immunogenicity of minimal peptide antigens. This way of using a functional assay as readout for improved cellular immunogenicity might become highly valuable for difficult immunogens such as short peptides (epitopes).

  17. Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy

    PubMed Central

    Bottasso Arias, Natalia M.; García, Marina; Bondar, Constanza; Guzman, Luciana; Redondo, Agustina; Chopita, Nestor; Córsico, Betina; Chirdo, Fernando G.

    2015-01-01

    Celiac disease (CD) is an immune-mediated enteropathy that develops in genetically susceptible individuals following exposure to dietary gluten. Severe changes at the intestinal mucosa observed in untreated CD patients are linked to changes in the level and in the pattern of expression of different genes. Fully differentiated epithelial cells express two isoforms of fatty acid binding proteins (FABPs): intestinal and liver, IFABP and LFABP, respectively. These proteins bind and transport long chain fatty acids and also have other important biological roles in signaling pathways, particularly those related to PPARγ and inflammatory processes. Herein, we analyze the serum levels of IFABP and characterize the expression of both FABPs at protein and mRNA level in small intestinal mucosa in severe enteropathy and normal tissue. As a result, we observed higher levels of circulating IFABP in untreated CD patients compared with controls and patients on gluten-free diet. In duodenal mucosa a differential FABPs expression pattern was observed with a reduction in mRNA levels compared to controls explained by the epithelium loss in severe enteropathy. In conclusion, we report changes in FABPs' expression pattern in severe enteropathy. Consequently, there might be alterations in lipid metabolism and the inflammatory process in the small intestinal mucosa. PMID:26346822

  18. Inhibition of Fatty Acid Binding Proteins Elevates Brain Anandamide Levels and Produces Analgesia

    PubMed Central

    Kaczocha, Martin; Rebecchi, Mario J.; Ralph, Brian P.; Teng, Yu-Han Gary; Berger, William T.; Galbavy, William; Elmes, Matthew W.; Glaser, Sherrye T.; Wang, Liqun; Rizzo, Robert C.; Deutsch, Dale G.; Ojima, Iwao

    2014-01-01

    The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s) that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics. PMID:24705380

  19. Intramuscular fat content and genetic variants at fatty acid-binding protein loci in Austrian pigs.

    PubMed

    Nechtelberger, D; Pires, V; Söolknet, J; Stur; Brem, G; Mueller, M; Mueller, S

    2001-11-01

    Intramuscular fat is an important meat quality trait in pig production. Previously, genetic variants of the heart fatty acid-binding protein (H-FABP) gene and the adipocyte fatty acid-binding protein (A-FABP) gene were suggested to be associated with intramuscular fat content. The objective of this investigation was to study these associations in the three most important Austrian breeding populations (Piétrain, Large White, and Landrace). Restriction fragment length polymorphism analysis of the H-FABP gene revealed a new MspI polymorphic site and genetic variation in all three breeds. Microsatellite analysis of the A-FABP locus showed up to nine different microsatellite alleles segregating. In Austrian breeds, no significant influence of the A-FABP and H-FABP gene polymorphisms on intramuscular fat could be detected. We also evaluated possible associations between the genetic variations at the H-FABP and A-FABP loci and other growth and carcass traits (average daily gain, feed conversion ratio, lean meat content, pH values, meat color, and drip loss). With regard to the extent of the effects, these genetic markers cannot be recommended for selection on growth and carcass traits in Austrian breeding populations. PMID:11768107

  20. Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy.

    PubMed

    Bottasso Arias, Natalia M; García, Marina; Bondar, Constanza; Guzman, Luciana; Redondo, Agustina; Chopita, Nestor; Córsico, Betina; Chirdo, Fernando G

    2015-01-01

    Celiac disease (CD) is an immune-mediated enteropathy that develops in genetically susceptible individuals following exposure to dietary gluten. Severe changes at the intestinal mucosa observed in untreated CD patients are linked to changes in the level and in the pattern of expression of different genes. Fully differentiated epithelial cells express two isoforms of fatty acid binding proteins (FABPs): intestinal and liver, IFABP and LFABP, respectively. These proteins bind and transport long chain fatty acids and also have other important biological roles in signaling pathways, particularly those related to PPARγ and inflammatory processes. Herein, we analyze the serum levels of IFABP and characterize the expression of both FABPs at protein and mRNA level in small intestinal mucosa in severe enteropathy and normal tissue. As a result, we observed higher levels of circulating IFABP in untreated CD patients compared with controls and patients on gluten-free diet. In duodenal mucosa a differential FABPs expression pattern was observed with a reduction in mRNA levels compared to controls explained by the epithelium loss in severe enteropathy. In conclusion, we report changes in FABPs' expression pattern in severe enteropathy. Consequently, there might be alterations in lipid metabolism and the inflammatory process in the small intestinal mucosa. PMID:26346822

  1. Discovery of arjunolic acid as a novel non-zinc binding carbonic anhydrase II inhibitor.

    PubMed

    Kalyanavenkataraman, Subhalakshmi; Nanjan, Pandurangan; Banerji, Asoke; Nair, Bipin G; Kumar, Geetha B

    2016-06-01

    Elevated levels of carbonic anhydrase II (CA II) have been shown to be associated with cardiac hypertrophy and heart failure. Although arjunolic acid (AA) has a diverse range of therapeutic applications including cardio-protection, there have been no reports on the effect of AA on CA II. The present study describes for the first time, the novel zinc independent inhibition of CA II by AA. The molecular docking studies of AA indicated that the hydroxyl group at C2 of the A-ring, which hydrogen bonds with the catalytic site residues (His64, Asn62 and Asn67), along with the gem-dimethyl group at C20 of the E-ring, greatly influences the inhibitory activity, independent of the catalytic zinc, unlike the inhibition observed with most CA II inhibitors. Among the triterpenoids tested viz. arjunolic acid, arjunic acid, asiatic acid, oleanolic acid and ursolic acid, AA was the most potent in inhibiting CA II in vitro with an IC50 of 9μM. It was interesting to note, that in spite of exhibiting very little differences in their structures, these triterpenoids exhibited vast differences in their inhibitory activities, with IC50 values ranging from 9μM to as high as 333μM. Furthermore, AA also inhibited the cytosolic activity of CA in H9c2 cardiomyocytes, as reflected by the decrease in acidification of the intracellular pH (pHi). The decreased acidification reduced the intracellular calcium levels, which further prevented the mitochondrial membrane depolarization. Thus, these studies provide a better understanding for establishing the novel molecular mechanism involved in CA II inhibition by the non-zinc binding inhibitor AA. PMID:27038848

  2. A glycoprotein binding retinoids and fatty acids is present in Drosophila.

    PubMed

    Duncan, T; Kutty, G; Chader, G J; Wiggert, B

    1994-07-01

    In the search for a possible Drosophila melanogaster homolog of interphotoreceptor retinoid-binding protein (IRBP), a approximately 140-kDa retinoid- and fatty acid-binding glycoprotein found in vertebrates, the 110,000 g supernatant fraction prepared from homogenates of fly heads was analyzed for the presence of proteins capable of binding radiolabeled retinol and palmitic acid. A soluble protein, which binds concanavalin A and has a retention time on size-exclusion high-performance liquid chromatography identical to that of purified bovine IRBP, was identified as binding both ligands. As assessed by fluorescence titration, the protein fraction obtained by concanavalin A-Sepharose affinity chromatography and size-exclusion chromatography of fly head supernatant had apparent dissociation constants of 2.9 x 10(-7) +/- 0.6 M for all-trans retinol, with the number (n) of independent ligand binding sites per protein molecule = 2, and 3.5 x 10(-7) +/- 0.1 M for 16-[9-anthroyloxy] palmitic acid with n = 7. High-performance liquid chromatography of hexane extracts of this protein fraction resolved several peaks with polarity and relative retention times similar, but not identical to all-trans retinol and retinal and their 9-, 11-, and 13-cis isomers. Gas chromatography/mass spectrometry analysis of fatty acid methyl esters prepared following lipid extraction of the protein identified lauric, myristic, palmitic, palmitoleic, and oleic acids as being covalently bound. Laurate, myristate, palmitate, and stearate were noncovalently bound. The apparent molecular mass of the Drosophila protein as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the retinoid- and fatty acid-binding peak obtained by hydrophobic interaction chromatography of the size-exclusion fraction was approximately 70 kDa. PMID:8031123

  3. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor

    PubMed Central

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K.; Gorska, Magdalena; Tuszynski, Jack A.; Wozniak, Michal

    2016-01-01

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  4. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2016-01-19

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  5. Binding of ascorbic acid and α-tocopherol to bovine serum albumin: a comparative study.

    PubMed

    Li, Xiangrong; Wang, Gongke; Chen, Dejun; Lu, Yan

    2014-02-01

    Binding of ascorbic acid (water-soluble antioxidant) and α-tocopherol (lipid-soluble antioxidant) to bovine serum albumin (BSA) has been studied using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Thermodynamic investigations reveal that ascorbic acid/α-tocopherol binding to BSA is driven by favorable enthalpy and unfavorable entropy, and the major driving forces are hydrogen bonding and van der Waals forces. For ascorbic acid, the interaction is characterized by a high number of binding sites, which suggests that binding occurs by a surface adsorption mechanism that leads to coating of the protein surface. For α-tocopherol, one molecule of α-tocopherol combines with one molecule of BSA and no more α-tocopherol binding to BSA occurs at concentration ranges used in this study. Fluorescence experiments suggest that ascorbic acid has predominantly a "sphere of action" quenching mechanism, whereas, for α-tocopherol, the quenching mechanism is "static quenching" and due to the formation of a ground state complex. Additionally, as shown by the UV-vis absorption, synchronous fluorescence spectroscopy, and FT-IR, ascorbic acid and α-tocopherol may induce conformational and microenvironmental changes of BSA. PMID:24310979

  6. 5'-azido-N-1-naphthylphthalamic acid, a photolabile analog of the auxin transport inhibitor, N-1-naphthylphthalamic acid: synthesis and binding properties

    SciTech Connect

    Voet, J.G.; Howley, K.; Shumsky, J.S.

    1987-05-01

    The polar transport of the plant growth regulator, auxin (indole-3-acetic acid, IAAH), is thought to involve the participation of several proteins in the plasma membrane, including a specific, saturable, voltage independent H/sup +//IAA/sup -/ efflux carrier located preferentially at the basal end of each cell. Auxin transport is specifically inhibited by the herbicide, N-1-naphthylphthalamic acid (NPA), which binds specifically to a protein in the plasma membrane, thought to be either the IAA/sup -/ efflux carrier or an allosteric effector protein. They have synthesized and characterized a photolabile analog of NPA, 5'-azido-N-1-naphthylphthalamic acid (Az-NPA). This potential photoaffinity label for the NPA binding protein competes with /sup 3/H-NPA for binding sites on Curcurbita pepo L. (zucchini) stem cell membranes with K/sub j/ = 1.5 x 10/sup -7/ M. The K/sub i/ for NPA under these conditions is 2 x 10/sup -8/M, indicating that the affinity of Az-NPA for the membranes is only 7.5 fold lower than NPA. While the binding of 4.6 x 10/sup -6/ M Az-NPA to NPA binding sites is reversible in the dark, exposure to light results in a 30% loss in /sup 3/H-NPA binding ability. Pretreatment with 10/sup -4/ M NPA protects the membranes against photodestruction of /sup 3/H-NPA binding sites by Az-NPA, supporting the conclusion that Az-NPA destroys these sites by specific covalent attachment.

  7. Analysis of a nucleotide-binding site of 5-lipoxygenase by affinity labelling: binding characteristics and amino acid sequences.

    PubMed Central

    Zhang, Y Y; Hammarberg, T; Radmark, O; Samuelsson, B; Ng, C F; Funk, C D; Loscalzo, J

    2000-01-01

    5-Lipoxygenase (5LO) catalyses the first two steps in the biosynthesis of leukotrienes, which are inflammatory mediators derived from arachidonic acid. 5LO activity is stimulated by ATP; however, a consensus ATP-binding site or nucleotide-binding site has not been found in its protein sequence. In the present study, affinity and photoaffinity labelling of 5LO with 5'-p-fluorosulphonylbenzoyladenosine (FSBA) and 2-azido-ATP showed that 5LO bound to the ATP analogues quantitatively and specifically and that the incorporation of either analogue inhibited ATP stimulation of 5LO activity. The stoichiometry of the labelling was 1.4 mol of FSBA/mol of 5LO (of which ATP competed with 1 mol/mol) or 0.94 mol of 2-azido-ATP/mol of 5LO (of which ATP competed with 0.77 mol/mol). Labelling with FSBA prevented further labelling with 2-azido-ATP, indicating that the same binding site was occupied by both analogues. Other nucleotides (ADP, AMP, GTP, CTP and UTP) also competed with 2-azido-ATP labelling, suggesting that the site was a general nucleotide-binding site rather than a strict ATP-binding site. Ca(2+), which also stimulates 5LO activity, had no effect on the labelling of the nucleotide-binding site. Digestion with trypsin and peptide sequencing showed that two fragments of 5LO were labelled by 2-azido-ATP. These fragments correspond to residues 73-83 (KYWLNDDWYLK, in single-letter amino acid code) and 193-209 (FMHMFQSSWNDFADFEK) in the 5LO sequence. Trp-75 and Trp-201 in these peptides were modified by the labelling, suggesting that they were immediately adjacent to the C-2 position of the adenine ring of ATP. Given the stoichiometry of the labelling, the two peptide sequences of 5LO were probably near each other in the enzyme's tertiary structure, composing or surrounding the ATP-binding site of 5LO. PMID:11042125

  8. Identification and Pharmacological Characterization of Multiple Allosteric Binding Sites on the Free Fatty Acid 1 Receptor

    PubMed Central

    Lin, Daniel C.-H.; Guo, Qi; Luo, Jian; Zhang, Jane; Nguyen, Kathy; Chen, Michael; Tran, Thanh; Dransfield, Paul J.; Brown, Sean P.; Houze, Jonathan; Vimolratana, Marc; Jiao, Xian Yun; Wang, Yingcai; Birdsall, Nigel J. M.

    2012-01-01

    Activation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium- and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity. Analysis of functional data reveals positive functional cooperativity between the full agonists and partial agonists in various functional assays (in vitro and ex vivo) and also in vivo. Furthermore, the endogenous fatty acid docosahexaenoic acid (DHA) shows negative or neutral cooperativity with members of both series of agonists in binding assays but displays positive cooperativity in functional assays. Another synthetic agonist is allosteric with members of both agonist series, but apparently competitive with DHA. Therefore, there appear to be three allosterically linked binding sites on FFA1 with agonists specific for each of these sites. Activation of free fatty acid 1 receptor (FFAR1) by each of these agonists is differentially affected by mutations of two arginine residues, previously found to be important for FFAR1 binding and activation. These ligands with their high potencies and strong positive functional cooperativity with endogenous fatty acids, demonstrated in vitro and in vivo, have the potential to deliver therapeutic benefits. PMID:22859723

  9. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor.

    PubMed

    Lin, Daniel C-H; Guo, Qi; Luo, Jian; Zhang, Jane; Nguyen, Kathy; Chen, Michael; Tran, Thanh; Dransfield, Paul J; Brown, Sean P; Houze, Jonathan; Vimolratana, Marc; Jiao, Xian Yun; Wang, Yingcai; Birdsall, Nigel J M; Swaminath, Gayathri

    2012-11-01

    Activation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium- and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity. Analysis of functional data reveals positive functional cooperativity between the full agonists and partial agonists in various functional assays (in vitro and ex vivo) and also in vivo. Furthermore, the endogenous fatty acid docosahexaenoic acid (DHA) shows negative or neutral cooperativity with members of both series of agonists in binding assays but displays positive cooperativity in functional assays. Another synthetic agonist is allosteric with members of both agonist series, but apparently competitive with DHA. Therefore, there appear to be three allosterically linked binding sites on FFA1 with agonists specific for each of these sites. Activation of free fatty acid 1 receptor (FFAR1) by each of these agonists is differentially affected by mutations of two arginine residues, previously found to be important for FFAR1 binding and activation. These ligands with their high potencies and strong positive functional cooperativity with endogenous fatty acids, demonstrated in vitro and in vivo, have the potential to deliver therapeutic benefits. PMID:22859723

  10. Saturated fatty-acids regulate retinoic acid signaling and suppress tumorigenesis by targeting fatty-acid-binding protein 5

    PubMed Central

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L.; Noy, Noa

    2015-01-01

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes, and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5 which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer. PMID:26592976

  11. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5.

    PubMed

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L; Noy, Noa

    2015-01-01

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5, which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting the activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer. PMID:26592976

  12. Structural Insights Into Amino Acid Binding and Gene Control by a Lysine Riboswitch

    SciTech Connect

    Serganov, A.; Huang, L; Patel, D

    2008-01-01

    In bacteria, the intracellular concentration of several amino acids is controlled by riboswitches1, 2, 3, 4. One of the important regulatory circuits involves lysine-specific riboswitches, which direct the biosynthesis and transport of lysine and precursors common for lysine and other amino acids. To understand the molecular basis of amino acid recognition by riboswitches, here we present the crystal structure of the 174-nucleotide sensing domain of the Thermotoga maritima lysine riboswitch in the lysine-bound (1.9 A) and free (3.1 A) states. The riboswitch features an unusual and intricate architecture, involving three-helical and two-helical bundles connected by a compact five-helical junction and stabilized by various long-range tertiary interactions. Lysine interacts with the junctional core of the riboswitch and is specifically recognized through shape-complementarity within the elongated binding pocket and through several direct and K+-mediated hydrogen bonds to its charged ends. Our structural and biochemical studies indicate preformation of the riboswitch scaffold and identify conformational changes associated with the formation of a stable lysine-bound state, which prevents alternative folding of the riboswitch and facilitates formation of downstream regulatory elements. We have also determined several structures of the riboswitch bound to different lysine analogues5, including antibiotics, in an effort to understand the ligand-binding capabilities of the lysine riboswitch and understand the nature of antibiotic resistance. Our results provide insights into a mechanism of lysine-riboswitch-dependent gene control at the molecular level, thereby contributing to continuing efforts at exploration of the pharmaceutical and biotechnological potential of riboswitches.

  13. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A.; Alvarez, Susana; de Lera, Angel R.; Kuraku, Shigehiro; Bourguet, William; Laudet, Vincent

    2016-01-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication–degeneration–complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor–ligand interactions of NRs following WGDs. PMID:27069642

  14. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A; Alvarez, Susana; de Lera, Angel R; Kuraku, Shigehiro; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2016-03-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs. PMID:27069642

  15. Impact of Dry Solids and Bile Acid Concentrations on Bile Acid Binding Capacity of Extruded Oat Cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extruded breakfast cereals (EBC), processed from two oat lines, N979-5-2-4 (N979) and ‘Jim’, with beta-glucan concentrations of 8.7 and 4.9%, respectively, were used to determine the impact of dry solids (DS) and bile acid (BA) concentrations on in vitro BA binding efficiency. A full fractional fact...

  16. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1986-01-01

    Fatty acid-binding protein from rat liver is shown to bind the fluorescent fatty acid probe dansyl undecanoic acid. Binding is accompanied by a shift in the fluorescence emission maximum from 550 nm to 500 nm and a 60-fold fluorescence enhancement at 500 nm. These spectral properties have allowed the use of this probe to detect and quantify microgram amounts of liver fatty acid-binding protein during purification procedures. In conjunction with h.p.l.c. the method allows the rapid estimation of liver fatty acid-binding protein in biological samples. The validity of the method is demonstrated by measuring the concentration of fatty acid-binding protein in livers from control and hypolipidaemic-drug-treated rats. The dramatic diurnal rhythm previously reported for this protein [Dempsey (1984) Curr. Top. Cell. Regul. 24, 63-86] was not observed with this method. Images Fig. 1. PMID:3800946

  17. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  18. An Electrostatic Funnel in the GABA-Binding Pathway.

    PubMed

    Carpenter, Timothy S; Lightstone, Felice C

    2016-04-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  19. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue.

    PubMed Central

    Hauschka, P V; Lian, J B; Gallop, P M

    1975-01-01

    A direct approach has been developed for quantitative identification of the calcium-binding amino acid, gamma-carboxyglutamate, in proteins. This should be advantageous for the study of numerous systems where specific roles for the binding of calcium or other divalent cations are suspected. Investigation of mineralized tissue, where calcium-binding proteins are implicated in the mineralization process, revealed that gamma-carboxyglutamate was present in proteins solubilized from chicken bone with neutral aqueous ethylenediamine tetraacetic acid. This was established by direct isolation of the amino acid from alkaline hydrolysates and its quantitative conversion to glutamic acid by decarboxylation in 0.05 M HCl at 100 degrees. The kinetics of decarboxylation and chromatographic behavior are identical to those of gamma-carboxyglutamate from human prothrombin. After resolution of the soluble bone proteins by phosphate gradient elution from hydroxyapatite, gamma-carboxyglutamate was found to be concentrated primarily in one BaSO4-adsorbable anionic protein species; bone collagen was devoid of the amino acid. In view of the recently discovered requirement of vitamin K for generation of calcium binding sites (gamma-carboxyglutamate) by gamma-carboxylation of specific glutamic acid residues in prothrombin, our findings may implicate vitamin K metabolism in normal bone development and suggest a role for the gamma-carboxyglutamate-rich protein in regulation of calcium salt deposition in mineralized tissues. PMID:1060074

  20. Biochemical studies of olfaction: binding specificity of radioactively labeled stimuli to an isolated olfactory preparation from rainbow trout (Salmo gairdneri).

    PubMed

    Cagan, R H; Zeiger, W N

    1978-10-01

    The extent of binding of 10 radioactively labeled odorant amino acids to a sedimentable fraction (fraction P2) derived from the olfactory rosettes of the rainbow trout Salmo gairdneri corresponded closely with their reported relative stimulatory effectiveness measured electrophysiologically. L isomers were bound to a greater extent than their respective D isomers. Binding of L-alanine was strongly and irreversibly inhibited by mercurials but was not affected by sulfhydryl-blocking reagents. Binding was saturable and reversible. Scatchard analyses gave evidence of two types of binding sites for most of the amino acids studied. The Kd values of the higher-affinity binding sites were similar among the amino acids, being in the range of 10(-6) M; differences occurred in the relative numbers of sites, n. These results, coupled with those from competition experiments, lead to the postulate that a multiplicity of types of olfactory binding sites exist in the trout: site TSA, which binds L-threonine, L-serine, and L-alanine; site L, which binds L-lysine; and site AB which binds beta-alanine. Tentative assignments are: site V, which binds L-valine; site H, which binds L-histidine; and site AD, which binds D-alanine. Site AD may be a lower affinity site for L-alanine. Binding of olfactory stimulus molecules appears to be an initial discrimination step in olfaction. PMID:283385

  1. Comparative study of the fatty acid binding process of a new FABP from Cherax quadricarinatus by fluorescence intensity, lifetime and anisotropy.

    PubMed

    Li, Jiayao; Henry, Etienne; Wang, Lanmei; Delelis, Olivier; Wang, Huan; Simon, Françoise; Tauc, Patrick; Brochon, Jean-Claude; Zhao, Yunlong; Deprez, Eric

    2012-01-01

    Fatty acid-binding proteins (FABPs) are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression), the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS), a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16), respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities of several fatty

  2. Comparative Study of the Fatty Acid Binding Process of a New FABP from Cherax quadricarinatus by Fluorescence Intensity, Lifetime and Anisotropy

    PubMed Central

    Li, Jiayao; Henry, Etienne; Wang, Lanmei; Delelis, Olivier; Wang, Huan; Simon, Françoise; Tauc, Patrick; Brochon, Jean-Claude; Zhao, Yunlong; Deprez, Eric

    2012-01-01

    Fatty acid-binding proteins (FABPs) are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression), the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS), a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16), respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities of several fatty

  3. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results.

    PubMed Central

    Ben-Tal, N; Honig, B; Peitzsch, R M; Denisov, G; McLaughlin, S

    1996-01-01

    We measured directly the binding of Lys3, Lys5, and Lys7 to vesicles containing acidic phospholipids. When the vesicles contain 33% acidic lipids and the aqueous solution contains 100 mM monovalent salt, the standard Gibbs free energy for the binding of these peptides is 3, 5, and 7 kcal/mol, respectively. The binding energies decrease as the mol% of acidic lipids in the membrane decreases and/or as the salt concentration increases. Several lines of evidence suggest that these hydrophilic peptides do not penetrate the polar headgroup region of the membrane and that the binding is mainly due to electrostatic interactions. To calculate the binding energies from classical electrostatics, we applied the nonlinear Poisson-Boltzmann equation to atomic models of the phospholipid bilayers and the basic peptides in aqueous solution. The electrostatic free energy of interaction, which arises from both a long-range coulombic attraction between the positively charged peptide and the negatively charged lipid bilayer, and a short-range Born or image charge repulsion, is a minimum when approximately 2.5 A (i.e., one layer of water) exists between the van der Waals surfaces of the peptide and the lipid bilayer. The calculated molar association constants, K, agree well with the measured values: K is typically about 10-fold smaller than the experimental value (i.e., a difference of about 1.5 kcal/mol in the free energy of binding). The predicted dependence of K (or the binding free energies) on the ionic strength of the solution, the mol% of acidic lipids in the membrane, and the number of basic residues in the peptide agree very well with the experimental measurements. These calculations are relevant to the membrane binding of a number of important proteins that contain clusters of basic residues. Images FIGURE 2 FIGURE 3 PMID:8842196

  4. Hybridoma antibodies to the lipid-binding site(s) in the amino-terminal region of fibronectin inhibits binding of streptococcal lipoteichoic acid.

    PubMed

    Stanislawski, L; Courtney, H S; Simpson, W A; Hasty, D L; Beachey, E H; Robert, L; Ofek, I

    1987-08-01

    In this report, we present evidence to suggest that streptococci and lipoteichoic acid (LTA) interact with a fatty acid binding site located near the NH2-terminus of fibronectin. The evidence is based on the following observations. Antibodies directed against a synthetic peptide (residues 1-30 of the amino-terminus of fibronectin) reacted with the two thermolysin-generated peptides (24 and 28 kilodaltons [kDa]) that were adsorbed by and eluted from streptococci. The adsorption of the 24- and 28-kDa peptides to streptococci was inhibited by LTA. The two monoclonal antibodies that inhibited the binding of LTA to fibronectin reacted only with the 24- and 28-kDa fragments of fibronectin. Conversely, LTA, as well as lauric acid and oleic acid, blocked the binding of the same monoclonal antibodies to fibronectin. LTA had no effect on the binding of hybridoma antibodies directed against the collagen or cell-binding domain. PMID:3298457

  5. Drug-binding energetics of human α-1-acid glycoprotein assessed by isothermal titration calorimetry and molecular docking simulations

    PubMed Central

    Huang, Johnny X.; Cooper, Matthew A.; Baker, Mark A.; Azad, Mohammad A.K.; Nation, Roger L.; Li, Jian; Velkov, Tony

    2012-01-01

    This study utilizes sensitive, modern isothermal titration calorimetric (ITC) methods to characterize the microscopic thermodynamic parameters that drive the binding of basic drugs to α-1-acid glycoprotein (AGP) and thereby rationalize the thermodynamic data in relation to docking models and crystallographic structures of the drug-AGP complexes. The binding of basic compounds from the tricyclic antidepressant series, together with miaserine, chlorpromazine, disopyramide and cimetidine all displayed an exothermically driven binding interaction with AGP. The impact of protonation/deprotonation events, ionic strength, temperature and the individual selectivity of the A and F1*S AGP variants on drug-binding thermodynamics were characterized. A correlation plot of the thermodynamic parameters for all of the test compounds revealed enthalpy-entropy compensation is in effect. The exothermic binding energetics of the test compounds were driven by a combination of favorable (negative) enthalpic (ΔH°) and favorable (positive) entropic (ΔS°) contributions to the Gibbs free energy (ΔG°). Collectively, the data imply that the free energies that drive drug binding to AGP and its relationship to drug-serum residency evolve from the complex interplay of enthalpic and entropic forces from interactions with explicit combinations of hydrophobic and polar side-chain sub-domains within the multi-lobed AGP ligand binding cavity. PMID:23192962

  6. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose.

    PubMed

    Thorn, K A; Kennedy, K R

    2002-09-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined. PMID:12322752

  7. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  8. Temporal profile of intestinal tissue expression of intestinal fatty acid-binding protein in a rat model of necrotizing enterocolitis

    PubMed Central

    Simões, Ana Leda Bertoncini; Figueira, Rebeca Lopes; Gonçalves, Frances Lilian Lanhellas; Mitidiero, Luís Felipe Tsuyoshi; Silva, Orlando Castro e; Peiró, José Luis; Sbragia, Lourenço

    2016-01-01

    OBJECTIVES: Necrotizing enterocolitis is a severe multifactorial intestinal disorder that primarily affects preterm newborns, causing 20-40% mortality and morbidity. Intestinal fatty acid-binding protein has been reported to be a biomarker for the detection of intestinal injuries. Our aim was to assess intestinal tissue injury and the molecular expression of intestinal fatty acid-binding protein over time in a necrotizing enterocolitis model. METHODS: A total of 144 Newborn rats were divided into two groups: 1) Control, which received breastfeeding (n=72) and 2) Necrotizing Enterocolitis, which received formula feeding and underwent hypoxia and hypothermia (n=72). A total of six time points of ischemia (2 times a day for 3 days; 12 pups for each time point) were examined. Samples were collected for analysis of body weight, morphological and histological characteristics, intestinal weight, intestinal weight/body weight ratio, injury grade, and intestinal fatty acid-binding protein levels. RESULTS: Body and intestinal weights were lower in the Necrotizing Enterocolitis group than in the Control group (p<0.005 and p<0.0005, respectively). The intestinal weight/body weight ratio was higher in the Necrotizing Enterocolitis group than in the Control group (p<0.005) only at the sixth ischemia time point. The Necrotizing Enterocolitis group displayed higher expression of intestinal fatty acid-binding protein (p<0.0005) and showed greater tissue damage than the Control group. CONCLUSION: Intestinal fatty acid-binding protein was an efficient marker of ischemic injury to the intestine and a good correlation was demonstrated between the time of ischemic injury and the grade of intestinal injury. PMID:27464299

  9. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-12-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  10. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  11. Lead and calcium binding to fulvic acids: Salt effect and competition

    SciTech Connect

    Pinheiro, J.P.; Mota, A.M.; Benedetti, M.F.

    1999-10-01

    Knowledge of the speciation of Pb in natural aquatic systems is important if the authors want to understand the bioavailability and mobility of Pb in polluted and natural environments. The results given in this paper were obtained under conditions as close as possible to natural conditions. These new data show that Pb strongly binds to fulvic acids. The authors also show that the competitive effect of Pb on Ca binding to the same fulvic acid is smaller than the salt effect on Ca binding to fulvic acids as pH varies from 4 to 8. All the data were analyzed with the NICCA-Donnan model developed to describe metal ion binding to natural organic matter. The model predictions of competitive and salt effects are excellent. Comparison of their results with previously published data suggests that metal ion binding strength is similar for fulvic acids from different origins. Thus, all data sets could be interpreted within the framework of a unified modeling approach.

  12. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes.

    PubMed Central

    Stremmel, W; Strohmeyer, G; Borchard, F; Kochwa, S; Berk, P D

    1985-01-01

    When [14C]oleate-bovine serum albumin complexes were incubated in vitro with rat liver plasma membranes (LPM), specific, saturable binding of oleate to the membranes was observed. Maximal heat-sensitive (i.e., specific) binding was 3.2 nmol/mg of membrane protein. Oleate-agarose affinity chromatography of Triton X-100-solubilized LPM was used to isolate a single 40-kDa protein with high affinity for oleate. On gel filtration, the protein comigrated with various fatty acids but not with [14C]bilirubin, [35S]sulfobromophthalein, [14C]taurocholate, [14C]phosphatidylcholine, or [14C]cholesteryloleate. A rabbit antibody to this membrane fatty acid-binding protein gave a single precipitin line with the antigen but no reactivity with concentrated cytosolic proteins, LPM bilirubin/sulfobromophthalein-binding protein, or rat albumin or other rat plasma proteins. The antibody selectively inhibited heat-sensitive binding of [14C]oleate to LPM. Immunofluorescence studies localized the antigen in liver-cell plasma membranes as well as in other major sites of fatty acid transport. These data are compatible with the hypothesis that this protein may act as a receptor in a hepatocellular uptake mechanism for fatty acids. Images PMID:3881757

  13. Be an acid rain detective

    SciTech Connect

    Atwill, L.

    1982-07-01

    Acid rain is discussed in a question and answer format. The article is aimed at educating sport fishermen on the subject, and also to encourage them to write their congressmen, senators, and the President about the acid rain problem. The article also announces the availability of an acid rain test kit available through the magazine, ''Sports Afield.'' The kit consists of pH-test paper that turns different shades of pink and blue according to the pH of the water tested. The color of the test paper is then compared to a color chart furnished in the kit and an approximate pH can be determined.

  14. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor.

    PubMed

    Van Zeebroeck, Griet; Bonini, Beatriz Monge; Versele, Matthias; Thevelein, Johan M

    2009-01-01

    Transporter-related nutrient sensors, called transceptors, mediate nutrient activation of signaling pathways through the plasma membrane. The mechanism of action of transporting and nontransporting transceptors is unknown. We have screened 319 amino acid analogs to identify compounds that act on Gap1, a transporting amino acid transceptor in yeast that triggers activation of the protein kinase A pathway. We identified competitive and noncompetitive inhibitors of transport, either with or without agonist action for signaling, including nontransported agonists. Using substituted cysteine accessibility method (SCAM) analysis, we identified Ser388 and Val389 as being exposed into the amino acid binding site, and we show that agonist action for signaling uses the same binding site as used for transport. Our results provide the first insight, to our knowledge, into the mechanism of action of transceptors. They indicate that signaling requires a ligand-induced specific conformational change that may be part of but does not require the complete transport cycle. PMID:19060912

  15. Preliminary study of the metal binding site of an anti-DTPA-indium antibody by equilibrium binding immunoassays and immobilized metal ion affinity chromatography.

    PubMed

    Boden, V; Colin, C; Barbet, J; Le Doussal, J M; Vijayalakshmi, M

    1995-01-01

    Creating metal coordination sites by modifying an existing enzyme or by eliciting antibodies against metal chelate haptens is of great interest in biotechnology to create enzyme catalysts with novel specificities. Here, we investigate the metal binding potential of a monoclonal antibody raised against a DTPA-In(III) hapten (mAb 734). We study its relative binding efficiency to metals of biological relevance by equilibrium binding immunoassays and immobilized metal ion affinity chromatography, two approaches which can give complementary information regarding composition and/or structure of the metal binding site(s). Fe(III), Fe(II), Cu(II), Mg(II), Ca(II), and Zn(II) binding was compared to In(III). All of them were shown to displace indium, but their affinity for mAb 734 decreased by 100-fold compared to indium. Competitive metal binding immunoassays between Zn(II) and In(III) revealed an unusual behavior by Zn(II) which remains to be explained. Moreover, IMAC allowed us to predict the metal binding amino acids involved in the antibody paratope. The antibody metal binding site was shown to contain at least two histidine residues in a cluster, and the presence of aspartic and glutamic acid as well as cysteine residues could not be excluded. Thus, simple competition studies allows us to obtain some partial information on the metal binding structural features of this anti-metal chelate antibody and to guide our screening of its catalytic potential. PMID:7578356

  16. Purification and properties of two binding proteins for branched-chain amino acids in Salmonella typhimurium.

    PubMed

    Ohnishi, K; Kiritani, K

    1983-08-01

    Two leucine-binding proteins isolated from osmotic shock fluid of Salmonella typhimurium LT2 were purified by DEAE-cellulose and DEAE-Sephadex A-50 chromatography, and subsequent isoelectric focusing. These purified binding proteins could be crystallized by adding 2-methyl-2,4-pentanediol. One of the binding proteins, designated as LIVT-binding protein, binds L-leucine, L-isoleucine, L-valine, and L-threonine, while the other, L-binding protein, binds only L-leucine. The level of LIVT-binding protein in the shock fluid was about three-fold higher than that of L-binding protein. The molecular weight of the LIVT-binding protein was estimated to be 35,000 by gel filtration, and 39,000 by gel electrophoresis. The isoelectric point was pH 4.94. The dissociation constants of this protein for leucine, isoleucine, and valine were 0.43, 0.15, and 0.89 microM, respectively. For the L-binding protein, molecular weights of 34,000 (gel filtration), and 38,000 (gel electrophoresis) were obtained. The isoelectric point was pH 4.74. The dissociation constant of this protein for leucine was 0.54 microM. The LIVT-binding protein was more heat-stable than the L-binding protein. These two binding proteins showed an antigenic similarity, they could cross-react with each other's antiserum. This similarity was also found between the binding proteins of Salmonella typhimurium and Escherichia coli K-12. Both LIVT- and L-binding proteins in a regulatory mutant, KA2313, were found to be about three-fold the levels in the wild-type strain. PMID:6355077

  17. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls.

    PubMed

    Butler, J H; Hu, S; Brady, S R; Dixon, M W; Muday, G K

    1998-02-01

    The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo. PMID:11536873

  18. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls

    NASA Technical Reports Server (NTRS)

    Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.

    1998-01-01

    The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.

  19. Iron-binding characterization and polysaccharide production by Klebsiella oxytoca strain isolated from mine acid drainage

    PubMed Central

    Baldi, F; Marchetto, D; Battistel, D; Daniele, S; Faleri, C; De Castro, C; Lanzetta, R

    2009-01-01

    Aims: To investigate Klebsiella oxytoca strain BAS-10 growth on ferric citrate under anaerobic conditions for exopolysaccharide (EPS) production and localization on cell followed by the purification and the EPS determination of the iron-binding stability constant to EPS or biotechnological applications. Methods and Results: Klebsiella oxytoca ferments ferric citrate under anaerobic conditions and produces a ferric hydrogel, whereas ferrous ions were formed in solution. During growth, cells precipitate and a hydrogel formation was observed: the organic material was constituted of an EPS bound to Fe(III) ions, this was found by chemical analyses of the iron species and transmission electron microscopy of the cell cultures. Iron binding to EPS was studied by cyclic voltammetric measurements, either directly on the hydrogel or in an aqueous solutions containing Fe(III)-citrate and purified Fe(III)-EPS. From the voltammetric data, the stability constant for the Fe(III)-EPS complex can be assumed to have values of approx. 1012–1013. It was estimated that this is higher than for the Fe(III)-citrate complex. Conclusions: The production of Fe(III)-EPS under anaerobic conditions is a strategy for the strain to survive in mine drainages and other acidic conditions. This physiological feature can be used to produce large amounts of valuable Fe(III)-EPS, starting from a low cost substrate such as Fe(III)-citrate. Significant and Impact of the Study: The data herein demonstrates that an interesting metal-binding molecule can be produced as a novel catalyst for a variety of potential applications and the EPS itself is a valuable source for rhamnose purification. PMID:19508299

  20. Selective binding of C-6 OH sulfated hyaluronic acid to the angiogenic isoform of VEGF(165).

    PubMed

    Lim, Dong-Kwon; Wylie, Ryan G; Langer, Robert; Kohane, Daniel S

    2016-01-01

    Vascular endothelial growth factor 165 (VEGF165) is an important extracellular protein involved in pathological angiogenesis in diseases such as cancer, wet age-related macular degeneration (wet-AMD) and retinitis pigmentosa. VEGF165 exists in two different isoforms: the angiogenic VEGF165a, and the anti-angiogenic VEGF165b. In some angiogenic diseases the proportion of VEGF165b may be equal to or higher than that of VEGF165a. Therefore, developing therapeutics that inhibit VEGF165a and not VEGF165b may result in greater anti-angiogenic activity and therapeutic benefit. To this end, we report the selective binding properties of sulfated hyaluronic acid (s-HA). Selective biopolymers offer several advantages over antibodies or aptamers including cost effective and simple synthesis, and the ability to make nanoparticles or hydrogels for drug delivery applications or VEGF165a sequestration. Limiting sulfation to the C-6 hydroxyl (C-6 OH) in the N-acetyl-glucosamine repeat unit of hyaluronic acid (HA) resulted in a polymer with strong affinity for VEGF165a but not VEGF165b. Increased sulfation beyond the C-6 OH (i.e. greater than 1 sulfate group per HA repeat unit) resulted in s-HA polymers that bound both VEGF165a and VEGF165b. The C-6 OH sulfated HA (Mw 150 kDa) showed strong binding properties to VEGF165a with a fast association rate constant (Ka; 2.8 × 10(6) M(-1) s(-1)), slow dissociation rate constant (Kd; 2.8 × 10(-3) s(-1)) and strong equilibrium binding constant (KD; ∼1.0 nM)), which is comparable to the non-selective VEGF165 binding properties of the commercialized therapeutic anti-VEGF antibody (Avastin(®)). The C-6 OH sulfated HA also inhibited human umbilical vein endothelial cell (HUVEC) survival and proliferation and human dermal microvascular endothelial cell (HMVEC) tube formation. These results demonstrate that the semi-synthetic natural polymer, C-6 OH sulfated HA, may be a promising biomaterial for the treatment of angiogenesis

  1. The Phosphatidic Acid Binding Site of the Arabidopsis Trigalactosyldiacylglycerol 4 (TGD4) Protein Required for Lipid Import into Chloroplasts*

    PubMed Central

    Wang, Zhen; Anderson, Nicholas Scott; Benning, Christoph

    2013-01-01

    Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, -2, and -3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1–80 and 110–145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N terminus and contains dimerization domains at its C terminus. PMID:23297418

  2. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1

    PubMed Central

    Ivie, Susan E.; McClain, Mark S.

    2012-01-01

    Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1. PMID:22938730

  3. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1.

    PubMed

    Ivie, Susan E; McClain, Mark S

    2012-09-25

    Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1. PMID:22938730

  4. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury.

    PubMed

    Figueroa, Johnny D; Serrano-Illan, Miguel; Licero, Jenniffer; Cordero, Kathia; Miranda, Jorge D; De Leon, Marino

    2016-08-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA-mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN(+) neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP(+), APC(+), and NG2(+)) and precursor cells (DCX(+), nestin(+)). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the

  5. Neurologic syndrome associated with homozygous mutation at MAG sialic acid binding site.

    PubMed

    Roda, Ricardo H; FitzGibbon, Edmond J; Boucekkine, Houda; Schindler, Alice B; Blackstone, Craig

    2016-08-01

    The MAG gene encodes myelin-associated glycoprotein (MAG), an abundant protein involved in axon-glial interactions and myelination during nerve regeneration. Several members of a consanguineous family with a clinical syndrome reminiscent of Pelizaeus-Merzbacher disease and demyelinating leukodystrophy on brain MRI were recently found to harbor a homozygous missense p.Ser133Arg MAG mutation. Here, we report two brothers from a nonconsanguineous family afflicted with progressive cognitive impairment, neuropathy, ataxia, nystagmus, and gait disorder. Exome sequencing revealed the homozygous missense mutation p.Arg118His in MAG. This Arg118 residue in immunoglobulin domain 1 is critical for sialic acid binding, providing a compelling mechanistic basis for disease pathogenesis. PMID:27606346

  6. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    PubMed

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  7. Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer.

    PubMed Central

    Zimmermann, G R; Wick, C L; Shields, T P; Jenison, R D; Pardi, A

    2000-01-01

    An RNA aptamer containing a 15-nt binding site shows high affinity and specificity for the bronchodilator theophylline. A variety of base modifications or 2' deoxyribose substitutions in binding-site residues were tested for theophyllinebinding affinity and the results were compared with the previously determined three-dimensional structure of the RNA-theophylline complex. The RNA-theophylline complex contains a U6-A28-U23 base triple, and disruption of this A28-U23 Hoogsteen-pair by a 7-deaza, 2'-deoxy A28 mutant reduces theophylline binding >45-fold at 25 degrees C. U24 is part of a U-turn in the core of the RNA, and disruption of this U-turn motif by a 2'-deoxy substitution of U24 also reduces theophylline binding by >90-fold. Several mutations outside the "conserved core" of the RNA aptamer showed reduced binding affinity, and these effects could be rationalized by comparison with the three-dimensional structure of the complex. Divalent ions are absolutely required for high-affinity theophylline binding. High-affinity binding was observed with 5 mM Mg2+, Mn2+, or Co2+ ions, whereas little or no significant binding was observed for other divalent or lanthanide ions. A metal-binding site in the core of the complex was revealed by paramagnetic Mn2+-induced broadening of specific RNA resonances in the NMR spectra. When caffeine is added to the aptamer in tenfold excess, the NMR spectra show no evidence for binding in the conserved core and instead the drug stacks on the terminal helix. The lack of interaction between caffeine and the theophylline-binding site emphasizes the extreme molecular discrimination of this RNA aptamer. PMID:10836787

  8. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    PubMed

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  9. Binding and solubility of oleic acid to laboratory materials: A possible artifact

    SciTech Connect

    Mailman, D.; Rose, C. )

    1990-01-01

    The possibility that significant amounts of fatty acids were dissolved in or bound to the surfaces of common laboratory materials was examined. The uptake or adsorption of radioisotopically labeled oleic acid and cholic acid by plastic tubing of Tygon{trademark}, Teflon{trademark}, and polyethylene, and Pyrex{trademark}, and borosilicate glass, and steel was measured. {sup 3}H-oleic acid and {sup 14}C-cholic acid were used in the presence of different concentration of unlabeled oleic acid, cholic acid, and/or bovine serum albumin. Concentrations, composition, pH, and perfusion rates were varied. Relatively large amounts of oleic acid were lost by dissolving in plastic and adsorption to glass or metal. The degree of losses decreased in the presence of compounds in the perfusion solution which could bind or dissolve oleic acid. In contrast, cholic acid was not lost to plastic, glass or metal. The magnitude of and influence of perfusion rate, composition, pH, and sequence of perfusion solutions on oleic acid losses were sufficiently large that the results of certain studies, such as those of unstirred water layers or albumin-stimulated fatty acid uptake by hepatocytes may need to be reexamined.

  10. Effects of fatty acids and growth hormone on liver fatty acid binding protein and PPARalpha in rat liver.

    PubMed

    Carlsson, L; Lindén, D; Jalouli, M; Oscarsson, J

    2001-10-01

    The aim of this study was to investigate the interaction between long-chain fatty acids (LCFA) and growth hormone (GH) in the regulation of liver fatty acid binding protein (LFABP) and peroxisome proliferator-activated receptor-alpha (PPARalpha). Cultured rat hepatocytes were given oleic acid (OA; 500 microM) and GH (100 ng/ml) for 3 days. LFABP mRNA increased 3.6-fold by GH and 5.7-fold by OA, and combined incubation with GH and OA increased LFABP mRNA 17.6-fold. PPARalpha mRNA was decreased 50% by GH, but OA had no effect. Hypophysectomized (Hx) female rats were treated with L-thyroxine, cortisol, GH, and dietary fat for 7 days. PPARalpha mRNA levels were three- to fourfold higher in Hx than in normal female rats. GH decreased PPARalpha mRNA 50% in Hx rats. Dietary triglycerides (10% corn oil) increased LFABP mRNA and cytosolic LFABP about twofold but had no effect on PPARalpha mRNA in Hx rats. GH and dietary triglycerides had an additive effect on LFABP expression. Dietary triglycerides increased mitochondrial hydroxymethylglutaryl-CoA synthase mRNA only in the presence of GH. The diet increased serum triglycerides in Hx rats, and GH treatment prevented this increase. Addition of cholesterol to the diet did not influence LFABP levels but mitigated increased hepatic triglyceride content. In summary, these studies show that GH regulates LFABP expression independently of PPARalpha. Moreover, GH has different effects on PPARalpha-responsive genes and does not counteract the effect of LCFA on the expression of these gene products. PMID:11551854

  11. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    PubMed

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. PMID:24740818

  12. Simultaneous determination of Ca, Cu, Ni, Zn and Cd binding strengths with fulvic acid fractions by Schubert's method

    USGS Publications Warehouse

    Brown, G.K.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The equilibrium binding of Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ with unfractionated Suwannee river fulvic acid (SRFA) and an enhanced metal binding subfraction of SRFA was measured using Schubert's ion-exchange method at pH 6.0 and at an ionic strength (??) of 0.1 (NaNO3). The fractionation and subfractionation were directed towards obtaining an isolate with an elevated metal binding capacity or binding strength as estimated by Cu2+ potentiometry (ISE). Fractions were obtained by stepwise eluting an XAD-8 column loaded with SRFA with water eluents of pH 1.0 to pH 12.0. Subfractions were obtained by loading the fraction eluted from XAD-8 at pH 5.0 onto a silica gel column and eluting with solvents of increasing polarity. Schuberts ion exchange method was rigorously tested by measuring simultaneously the conditional stability constants (K) of citric acid complexed with the five metals at pH 3.5 and 6.0. The logK of SRFA with Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ determined simultaneously at pH 6.0 follow the sequence of Cu2+>Cd2+>Ni2+>Zn2+>Ca2+ while all logK values increased for the enhanced metal binding subfraction and followed a different sequence of Cu2+>Cd2+>Ca2+>Ni2+>Zn2+. Both fulvic acid samples and citric acid exhibited a 1:1 metal to ligand stochiometry under the relatively low metal loading conditions used here. Quantitative 13C nuclear magnetic resonance spectroscopy showed increases in aromaticity and ketone content and decreases in aliphatic carbon for the elevated metal binding fraction while the carboxyl carbon, and elemental nitrogen, phosphorus, and sulfur content did not change. The more polar, elevated metal binding fraction did show a significant increase in molecular weight over the unfractionated SRFA. Copyright (C) 1999 Elsevier Science B.V.

  13. A Photocytes-Associated Fatty Acid-Binding Protein from the Light Organ of Adult Taiwanese Firefly, Luciola cerata

    PubMed Central

    Goh, King-Siang; Li, Chia-Wei

    2011-01-01

    Background Intracellular fatty acid-binding proteins (FABPs) are considered to be an important energy source supplier in lipid metabolism; however, they have never been reported in any bioluminescent tissue before. In this study, we determined the structural and functional characteristics of a novel FABP (lcFABP) from the light organ of adult Taiwanese firefly, Luciola cerata, and showed anatomical association of lcFABP with photocytes. Principal Findings Our results demonstrated the primary structure of lcFABP deduced from the cDNA clone of light organ shares structural homologies with other insect and human FABPs. In vitro binding assay indicated the recombinant lcFABP binds saturated long chain fatty acids (C14-C18) more strongly than other fatty acids and firefly luciferin. In addition, tissue distribution screening assay using a rabbit antiserum specifically against the N-terminal sequence of lcFABP confirmed the light organ-specific expression of lcFABP. In the light organ, the lcFABP constituted about 15% of total soluble proteins, and was detected in both cytosol and nucleus of photocytes. Conclusions The specific localization of abundant lcFABP in the light organ suggests that sustained bioluminescent flashes in the light organ might be a high energy demanding process. In photocytes, lcFABP might play a key role in providing long chain fatty acids to peroxisomes for the luciferase-catalyzed long chain acyl-CoA synthetic reaction. PMID:22242133

  14. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because phenolic compounds can precipitate or complex with proteins, we postulated that interactions of phenolics with IgE antibodies help enhance IgE binding to peanut allergens in Western blots. Three different phenolics, such as, ferulic, caffeic and chlorogenic acids were examined. Each was mixe...

  15. [Chemico-physical property and bile acid binding capacity of several antacids].

    PubMed

    Salvioli, G; Tambara, E; Gaetti, E; Lugli, R

    1989-01-01

    Liquid alginate (Gaviscon) binds small amount of bile acids. At pH 7 its viscosity (at low shear rate) is higher than that of other antiacids. High viscosity reduces the diffusion rate of bile salts and glucose and this property can play a role in the treatment of gastro-esophageal and duodeno-gastric refluxes. PMID:2548124

  16. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters

    SciTech Connect

    Drosos, M.; Jerzykiewicz, M.; Deligiannakis, Y.

    2009-04-15

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. {sup 13}C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation < 3 (equiv kg{sup -1}) while lignite HAs showed a higher charge variation > 3.5 (equiv kg{sup -1}).

  17. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters.

    PubMed

    Drosos, Marios; Jerzykiewicz, Maria; Deligiannakis, Yiannis

    2009-04-01

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. (13)C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation <3 [equiv kg(-1)] while lignite HAs showed a higher charge variation >3.5 [equiv kg(-1)]. PMID:19144349

  18. The influence of fatty acids on theophylline binding to human serum albumin. Comparative fluorescence study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.

    2012-04-01

    Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).

  19. A receptor-binding protein of Campylobacter jejuni bacteriophage NCTC 12673 recognizes flagellin glycosylated with acetamidino-modified pseudaminic acid.

    PubMed

    Javed, Muhammad Afzal; van Alphen, Lieke B; Sacher, Jessica; Ding, Wen; Kelly, John; Nargang, Cheryl; Smith, David F; Cummings, Richard D; Szymanski, Christine M

    2015-01-01

    Bacteriophage receptor-binding proteins (RBPs) confer host specificity. We previously identified a putative RBP (Gp047) from the campylobacter lytic phage NCTC 12673 and demonstrated that Gp047 has a broader host range than its parent phage. While NCTC 12673 recognizes the capsular polysaccharide (CPS) of a limited number of Campylobacter jejuni isolates, Gp047 binds to a majority of C. jejuni and related Campylobacter coli strains. In this study, we demonstrate that Gp047 also binds to acapsular mutants, suggesting that unlike the parent phage, CPS is not the receptor for Gp047. Affinity chromatography and far-western analyses of C. jejuni lysates using Gp047 followed by mass spectrometry indicated that Gp047 binds to the major flagellin protein, FlaA. Because C. jejuni flagellin is extensively glycosylated, we investigated this binding specificity further and demonstrate that Gp047 only recognizes flagellin decorated with acetamidino-modified pseudaminic acid. This binding activity is localized to the C-terminal quarter of the protein and both wild-type and coccoid forms of C. jejuni are recognized. In addition, Gp047 treatment agglutinates vegetative cells and reduces their motility. Because Gp047 is highly conserved among all campylobacter phages sequenced to date, it is likely that this protein plays an important role in the phage life cycle. PMID:25354466

  20. PcExl1 a Novel Acid Expansin-Like Protein from the Plant Pathogen Pectobacterium carotovorum, Binds Cell Walls Differently to BsEXLX1

    PubMed Central

    Olarte-Lozano, Miguel; Mendoza-Nuñez, Mario A.; Pastor, Nina; Segovia, Lorenzo; Folch-Mallol, Jorge; Martínez-Anaya, Claudia

    2014-01-01

    Microbial expansins act on plant cell walls similarly to plant expansins, albeit their loosening activity levels are tenfold lesser compared to plant expansins. We report the characterization of an expansin-like gene from the plant pathogen Pectobacterium carotovorum, named exl1. PcExl1 is an acidic protein that binds cellulose (Avicel), and weakens filter paper. The acidic nature of PcExl1 confers different binding properties when compared to Bacillus subtilis BsEXLX1, which is a basic protein. PcExl1 binding to wheat cell wall increased when acidic components were depleted, reaching a similar level to the binding to Avicel, indicating that cellulose is the target of PcExl1. PMID:24755657

  1. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus

    PubMed Central

    Rey-Burusco, M. Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R.; Roe, Andrew J.; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W.; Córsico, Betina; Smith, Brian O.

    2015-01-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein–ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  2. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus.

    PubMed

    Rey-Burusco, M Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R; Roe, Andrew J; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W; Córsico, Betina; Smith, Brian O

    2015-11-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  3. Fatty Acid Binding Proteins FABP9 and FABP10 Participate in Antibacterial Responses in Chinese Mitten Crab, Eriocheir sinensis

    PubMed Central

    Li, Shuang; Guo, Xiao-Nv; Wang, Juan; Gong, Ya-Nan; He, Lin; Wang, Qun

    2013-01-01

    Invertebrates rely solely on the innate immune system for defense against pathogens and other stimuli. Fatty acid binding proteins (FABP), members of the lipid binding proteins superfamily, play a crucial role in fatty acid transport and lipid metabolism and are also involved in gene expression induced by fatty acids. In the vertebrate immune system, FABP is involved in inflammation regulated by fatty acids through its interaction with peroxidase proliferator activate receptors (PPARs). However, the immune functions of FABP in invertebrates are not well characterized. For this reason, we investigated the immune functionality of two fatty acid binding proteins, Es-FABP9 and Es-FABP10, following lipopolysaccharide (LPS) challenge in the Chinese mitten crab (Eriocheir sinensis). An obvious variation in the expression of Es-FABP9 and Es-FABP10 mRNA in E. sinensis was observed in hepatopancreas, gills, and hemocytes post-LPS challenge. Recombinant proteins rEs-FABP9 and rEs-FABP10 exhibited distinct bacterial binding activity and bacterial agglutination activity against Escherichia coli and Staphylococcus aureus. Furthermore, bacterial growth inhibition assays demonstrated that rEs-FABP9 responds positively to the growth inhibition of Vibrio parahaemolyticuss and S. aureus, while rEs-FABP10 responds positively to the growth inhibition of Aeromonas hydrophila and Bacillus subtilis. Coating of agarose beads with recombinant rEs-FABP9 and rEs-FABP10 dramatically enhanced encapsulation of the beads by crab hemocytes in vitro. In conclusion, the data presented here demonstrate the participation of these two lipid metabolism-related proteins in the innate immune system of E. sinensis. PMID:23365646

  4. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A.; Wepasnick, Kevin A.; McDonnell, Peter; Elisseeff, Jennifer H.

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  5. Amino acid sequence of a vitamin K-dependent Ca2+-binding peptide from bovine prothrombin.

    PubMed

    Howard, J B; Fausch, M D

    1975-08-10

    The amino acid sequence of a 31-residue peptide from bovine prothrombin has been determined. This peptide has been shown to contain the vitamin K-dependent modification required for Ca2+ binding (Nelsestuen, G. L., and Suttie, J. W. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 3366-3370) and the modified amino acid, gamma-carboxyglutamic acid (Nelsestuen, G. L., Zytkovicz, T., and Howard, J. B. (1974) J. Biol. Chem. 249, 6347-6350). The peptide was shown to correspond to residues 12 to 42 of prothrombin. PMID:807581

  6. Identification of a nucleic acid-binding region within the largest subunit of Drosophila melanogaster RNA polymerase II.

    PubMed Central

    Kontermann, R. E.; Kobor, M.; Bautz, E. K.

    1993-01-01

    The largest and the second-largest subunit of the multisubunit eukaryotic RNA polymerases are involved in interaction with the DNA template and the nascent RNA chain. Using Southwestern DNA-binding techniques and nitrocellulose filter binding assays of bacterially expressed fusion proteins, we have identified a region of the largest, 215-kDa, subunit of Drosophila RNA polymerase II that has the potential to bind nucleic acids nonspecifically. This nucleic acid-binding region is located between amino acid residues 309-384 and is highly conserved within the largest subunits of eukaryotic and bacterial RNA polymerases. A homology to a region of the DNA-binding cleft of Escherichia coli DNA polymerase I involved in binding of the newly synthesized DNA duplex provides indirect evidence that the nucleic acid-binding region of the largest subunit participates in interaction with double-stranded nucleic acids during transcription. The nonspecific DNA-binding behavior of the region is similar to that observed for the native enzyme in nitrocellulose filter binding assays and that of the separated largest subunit in Southwestern assays. A high content of basic amino acid residues is consistent with the electrostatic nature of nonspecific DNA binding by RNA polymerases. PMID:8443600

  7. Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment.

    PubMed

    Guazzaroni, María-Eugenia; Morgante, Verónica; Mirete, Salvador; González-Pastor, José E

    2013-04-01

    Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions. PMID:23145860

  8. Aluminium competitive effect on rare earth elements binding to humic acid

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline; Bouhnik-Le Coz, Martine

    2012-07-01

    Competitive mechanisms between rare earth elements (REE) and aluminium for humic acid (HA) binding were investigated by combining laboratory experiments and modeling to evaluate the effect of Al on REE-HA complexation. Results indicates that Al3+ competes more efficiently with heavy REE (HREE) than with light REE (LREE) in acidic (pH = 3) and low REE/HA concentration ratio conditions providing evidence for the Al high affinity for the few HA multidentate sites. Under higher pH - 5 to 6 - and high REE/HA conditions, Al is more competitive for LREE suggesting that Al is bound to HA carboxylic rather than phenolic sites. PHREEQC/Model VI Al-HA binding parameters were optimized to simulate precisely both Al binding to HA and Al competitive effect on REE binding to HA. REE-HA binding pattern is satisfactorily simulated for the whole experimental conditions by the ΔLK1A optimization (i.e. ΔLK1A controls the distribution width of log K around log KMA). The present study provides fundamental knowledge on Al binding mechanisms to HA. Aluminium competitive effect on other cations binding to HA depends clearly on its affinity for carboxylic, phenolic or chelate ligands, which is pH dependent. Under circumneutral pH such as in natural waters, Al should lead to LREE-depleted patterns since Al is expected to be bound to weak HA carboxylic groups. As deduced from the behavior of Al species, other potential competitor cations are expected to have their own competitive effect on REE-HA binding. Therefore, in order to reliably understand and model REE-HA patterns in natural waters, a precise knowledge of the exact behavior of the different REE competitor cations is required. Finally, this study highlights the ability of the REE to be used as a “speciation probe” to precisely describe cation interactions with HA as here evidenced for Al.

  9. Receptor binding characteristics of tritiated misoprostol free acid in enriched canine parietal cells

    SciTech Connect

    Tsai, B.S.; Kessler, L.K.; Conway, R.G.; Schoenhard, G.; Stolzenbach, J.; Collins, P.; Kramer, S.; Butchko, G.M.; Bauer, R.F.

    1986-03-01

    Misoprostol (MISO) is a synthetic prostaglandin (PG) E/sub 1/ methyl ester with gastric antisecretory and mucosal protective properties. MISO is rapidly de-esterified to misoprostol free acid (MISO-FA) in enriched (65-80%) canine parietal cell preparations. Both forms appear to possess equivalent antisecretory potency and (/sup 3/H) MISO-FA is stable in these preparations. (/sup 3/H) MISO-FA binding was reversible and saturable with a maximal number of binding sites estimated at 8138 +/- 1893 per cell. The scatchard plot was linear, indicating a single, high affinity receptor population with a dissociation constant of 11 +/- 2.6 x 10/sup -9/ M. Unlabeled MISO-FA and MISO were equally potent inhibitors (IC/sub 50/, approx. 10/sup -8/M) of (/sup 3/H) MISO-FA binding. At 10/sup -5/ M, the dinor and tetranor ..beta..-oxidation metabolites of MISO were weak binding inhibitors. Strict stereospecific binding was shown by MISO stereoisomers, and the 11R, 16S isomer was most active. Both PGE/sub 1/ and 16,16 dimethyl PGE/sub 2/ were potent binding inhibitors, but PGF/sub 1/..cap alpha.. (10/sup -6/ M) and Hoe 892 (10/sup -5/ M), a stable PGI/sub 2/ analog, were weak inhibitors. Neither histamine or cimetidine competed for binding sites. These data indicate the presence of stereospecific E-type prostaglandin receptors in enriched canine parietal cell preparations.

  10. Gallic acid binding to Spatholobus parviflorus lectin provides insight to its quaternary structure forming.

    PubMed

    Surya, Sukumaran; Geethanandan, Krishnan; Sadasivan, Chittalakkottu; Haridas, Madhathilkovilakathu

    2016-10-01

    Therapeutic effects of gallic acid (GA) have already been extensively studied. However, its interaction with lectins has not gained much attention. It is of interest to validate the binding profile of GA with Spatholobus parviflorus seed lectin. A combination of Isothermal Titration Calorimetry (ITC), haemagglutination assay and molecular docking was applied on SPL-GA interaction. ITC results showed four binding sites, stoichiometry, n=4, irrespective of the ratio of SPL:GA taken for titration. Difference among the four binding sites of a single molecule of SPL with regard to GA binding kinetic parameters was consistently varying. Similarly, the glide scores obtained for GA in the four different binding clefts of SPL were also conformed to the ITC. The binding of GA on SPL without affecting its sugar binding property could be considered as a boon for glycobiological research. From the presented studies, it could be proposed that the SPL-GA interactions may facilitate drug delivery by specific targeting/attachment by profiling of cell-surface glycans, followed by controlled release of drugs. PMID:27283232

  11. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum.

    PubMed

    Fairfax, Keke C; Vermeire, Jon J; Harrison, Lisa M; Bungiro, Richard D; Grant, Wayne; Husain, Sohail Z; Cappello, Michael

    2009-12-01

    Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anaemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesise essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real-time PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant (40-47%) reduction in intestinal worm burden compared with controls immunized with antigen or adjuvant alone. Together, these data suggest a potential role for AceFAR-1 in hookworm biology, making it a potentially valuable target for drug and vaccine development. PMID:19591834

  12. In situ fluorescence labelling of jasmonic acid binding sites in plant tissues with cadmium-free quantum dots.

    PubMed

    Liao, Qiumei; Yu, Ying; Cao, Yujuan; Lin, Bixia; Wei, Jingjing

    2015-02-01

    The fluorescence labelling of plant hormone binding sites is an important analytical technique in research on the molecular mechanisms of plant hormone activities. The authors synthesised a jasmonic acid (JA)-conjugated ZnS:Mn quantum dot (QD) probe, with a cubic structure and average hydrodynamic sizes of about 17.0 nm. The maximum fluorescence emission of the probe was recorded at about 585 nm. The probe was used for fluorescence labelling of JA binding sites in mung bean seedling tissues. Analysis revealed that the probe exhibited high selectivity to JA binding sites and good performance in eliminating interference from background fluorescence in plant tissues. In addition, the probe did not exhibit any apparent biotoxicity, and is much more suitable than probes constructed from CdTe QDs for the analysis of biological samples. PMID:25650324

  13. Rapid, Structure-Based Exploration of Pipecolic Acid Amides as Novel Selective Antagonists of the FK506-Binding Protein 51.

    PubMed

    Gaali, Steffen; Feng, Xixi; Hähle, Andreas; Sippel, Claudia; Bracher, Andreas; Hausch, Felix

    2016-03-24

    The FK506-binding protein 51 (FKBP51) is a key regulator of stress hormone receptors and an established risk factor for stress-related disorders. Drug development for FKBP51 has been impaired by the structurally similar but functionally opposing homologue FKBP52. High selectivity between FKBP51 and FKBP52 can be achieved by ligands that stabilize a recently discovered FKBP51-favoring conformation. However, drug-like parameters for these ligands remained unfavorable. In the present study, we replaced the potentially labile pipecolic ester group of previous FKBP51 ligands by various low molecular weight amides. This resulted in the first series of pipecolic acid amides, which had much lower molecular weights without affecting FKBP51 selectivity. We discovered a geminally substituted cyclopentyl amide as a preferred FKBP51-binding motif and elucidated its binding mode to provide a new lead structure for future drug optimization. PMID:26954324

  14. Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution

    NASA Astrophysics Data System (ADS)

    van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter

    2010-02-01

    Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.

  15. Roles played by acidic lipids in HIV-1 Gag membrane binding

    PubMed Central

    Olety, Balaji; Ono, Akira

    2014-01-01

    The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids. PMID:24998886

  16. Using spin labels to study molecular processes in soils: Covalent binding of aromatic amines to humic acids of soils

    NASA Astrophysics Data System (ADS)

    Aleksandrova, O. N.; Kholodov, V. A.; Perminova, I. V.

    2015-08-01

    Interactions of aliphatic and aromatic amines with soil and humic acids isolated from it are studied by means of spin labels and electron paramagnetic resonance (EPR) spectroscopy. Nitroxyl radicals containing amino groups are used as spin labels. It is found experimentally that aromatic amines are instantaneously converted to the bound state. It is shown that the microareas of their incorporation are characterized by a significant delay in the reduction of the nitroxyl fragment of spin-label molecules, indicating the formation of condensed structures typical of an oxidative binding mechanism. It is concluded that aliphatic amines do not bind to humic acids. It is noted that the studied process allows elucidating the formation of bound xenobiotic residues in soils.

  17. In Vitro bile acid binding of kale, mustard greens, broccoli, cabbage and green bell pepper improves with microwave cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acid binding potential of foods and food fractions has been related to lowering the risk of heart disease and that of cancer. Sautéing or steam cooking has been observed to significantly improve bile acid binding of green/leafy vegetables. It was hypothesized that microwave cooking could impr...

  18. Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells

    SciTech Connect

    Montoudis, Alain; Delvin, Edgard; Menard, Daniel

    2006-01-06

    Intestinal-fatty acid binding protein (I-FABP) is a 14-15 kDa cytoplasmic molecule highly expressed in the enterocyte. Although different functions have been proposed for various FABP family members, the specific function of I-FABP in human intestine remains unclear. Here, we studied the role of I-FABP in molecularly modified normal human intestinal epithelial cells (HIEC-6). cDNA transfection resulted in 90-fold I-FABP overexpression compared to cells treated with empty pQCXIP vector. The high-resolution immunogold technique revealed labeling mainly in the cytosol and confirmed the marked phenotype abundance of I-FABP in cDNA transfected cells. I-FABP overexpression was not associated with alterations in cell proliferation and viability. Studies using these transfected cells cultured with [{sup 14}C]oleic acid did not reveal higher efficiency in de novo synthesis or secretion of triglycerides, phospholipids, and cholesteryl esters compared to cells treated with empty pQCXIP vector only. Similarly, the incubation with [{sup 35}S]methionine did not disclose a superiority in the biogenesis of apolipoproteins (apo) A-I, A-IV, B-48, and B-100. Finally, cells transfected with I-FABP did not exhibit an increased production of chylomicrons, VLDL, LDL, and HDL. Our observations establish that I-FABP overexpression in normal HIEC-6 is not related to cell proliferation, lipid esterification, apo synthesis, and lipoprotein assembly, and, therefore, exclude its role in intestinal fat transport.

  19. Comparison of a qualitative measurement of heart-type fatty acid-binding protein with other cardiac markers as an early diagnostic marker in the diagnosis of non-ST - segment elevation myocardial infarction

    PubMed Central

    Gerede, Demet Menekşe; Güleç, Sadi; Kılıçkap, Mustafa; Kaya, Cansın Tulunay; Vurgun, Veysel Kutay; Özcan, Özgür Ulaş; Göksülük, Hüseyin; Erol, Çetin

    2015-01-01

    Summary Objective: Heart-type fatty acid-binding protein (H-FABP) is a novel cardiac marker used in the early diagnosis of acute myocardial infarction (AMI), which shows myocyte injury. Our study aimed to compare bedside H-FABP measurements with routine creatine kinase-MB (CK-MB) and troponin I (TnI) tests for the early diagnosis of non-ST-elevation MI (NSTEMI), as well as for determining its exclusion capacity. Methods A total of 48 patients admitted to the emergency room within the first 12 hours of onset of ischaemic-type chest pain lasting more than 30 minutes and who did not have ST-segment elevation on electrocardiography (ECG) were included in the study. Definite diagnoses of NSTEMI were made in 24 patients as a result of 24-hour follow up, and the remaining 24 patients did not develop MI. Results When various subgroups were analysed according to admission times, H-FABP was found to be a better diagnostic marker compared to CK-MB and TnI (accuracy index 85%), with a high sensitivity (79%) and specificity (93%) for early diagnosis (≤ six hours). The respective sensitivities of bedside H-FABP and TnI tests were 89 vs 33% (p < 0.05) for patients presenting within three hours of onset of symptoms. Conclusion Bedside H-FABP measurements may contribute to correct early diagnoses, as its levels are elevated soon following MI, and measurement is easy, with a rapid result. PMID:26212703

  20. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    D-amino acids (D-aas) are reported to bind to IgE antibodies from people with allergy and asthma. The objectives of this study were to determine if D-aas bind or inhibit IgE binding to peanut allergens, and if they are more effective than L-amino acids (L-aas) in this respect. Several D-aa cocktails...

  1. Determination of the binding properties of the uremic toxin phenylacetic acid to human serum albumin.

    PubMed

    Saldanha, Juliana F; Yi, Dan; Stockler-Pinto, Milena B; Soula, Hédi A; Chambert, Stéphane; Fouque, Denis; Mafra, Denise; Soulage, Christophe O

    2016-06-01

    Uremic toxins are compounds normally excreted in urine that accumulate in patients with chronic kidney disease as a result of decreased renal clearance. Phenylacetic acid (PAA) has been identified as a new protein bound uremic toxin. The purpose of this study was to investigate in vitro the interaction between PAA and human serum albumin (HSA) at physiological and pathological concentrations. We used ultrafiltration to show that there is a single high-affinity binding site for PAA on HSA, with a binding constant on the order of 3.4 × 10(4) M(-1) and a maximal stoichiometry of 1.61 mol per mole. The PAA, at the concentration reported in end-stage renal patients, was 26% bound to albumin. Fluorescent probe competition experiments demonstrated that PAA did not bind to Sudlow's site I (in subdomain IIA) and only weakly bind to Sudlow's site II (in subdomain IIIA). The PAA showed no competition with other protein-bound uremic toxins such as p-cresyl-sulfate or indoxyl sulfate for binding to serum albumin. Our results provide evidence that human serum albumin can act as carrier protein for phenylacetic acid. PMID:26945842

  2. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria.

    PubMed

    Peltonen, K; el-Nezami, H; Haskard, C; Ahokas, J; Salminen, S

    2001-10-01

    Various food commodities including dairy products may be contaminated with aflatoxins, which, even in small quantities, have detrimental effects on human and animal health. Several microorganisms have been reported to bind or degrade aflatoxins in foods and feeds. This study assessed the binding of aflatoxin B1 (AFB1) from contaminated solution by 20 strains of lactic acid bacteria and bifidobacteria. The selected strains are used in the food industry and comprised 12 Lactobacillus, five Bifidobacterium, and three Lactococcus strains. Bacteria and AFB1 were incubated (24 h, +37 degrees C) and the amount of unbound AFB1 was quantitated by HPLC. Between 5.6 and 59.7% AFB1 was bound from solution by these strains. Two Lactobacillus amylovorus strains and one Lactobacillus rhamnosus strain removed more than 50% AFB1 and were selected for further study. Bacterial binding of AFB1 by these strains was rapid, and more than 50% AFB1 was bound throughout a 72-h incubation period. Binding was reversible, and AFB1 was released by repeated aqueous washes. These findings further support the ability of specific strains of lactic acid bacteria to bind selected dietary contaminants. PMID:11699445

  3. Synthesis and labeling of α-(2,9)-trisialic acid with cyanine dyes for imaging of glycan-binding receptors on living cells.

    PubMed

    Zhang, Xiao-tai; Gu, Zhen-yuan; Liu, Libing; Wang, Shu; Xing, Guo-wen

    2015-05-21

    A sugar epitope, α-(2,9)-trisialic acid, was synthesized and labeled by cyanine dyes through Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The cyanine tagged oligosialic acid can be utilized as an efficient fluorescent probe to image the glycan-binding receptors on PC-12 cells. The distribution of Sia-binding immunoglobulin-like lectins (Siglecs) for α-(2,9)-trisialic acid was visualized by Cy3/Cy5 or FRET channel fluorescence imaging. PMID:25896133

  4. Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin

    SciTech Connect

    Hamilton, J.A.; Era, S.; Bhamidipati, S.P. ); Reed, R.G. )

    1991-03-15

    Binding of {sup 13}C-enriched oleic acid to bovine serum albumin and to three large proteolytic fragments of albumin - two complementary fragments corresponding to the two halved of albumin and one fragment corresponding to the carboxyl-terminal domain - yielded unique patterns of NMR resonances (chemical shifts and relative intensities) that were used to identify the locations of binding of the first 5 mol of oleic acid to the multidomain albumin molecule. The first 3 mol of oleic acid added to intact albumin generated three distinct NMR resonances as a result of simultaneous binding of oleic acid to three heterogeneous sites (primary sites). This distribution suggests albumin to be a less symmetrical binding molecule than theoretical models predict. This work also demonstrates the power of NMR for the study of microenvironments of individual fatty acid binding sites in specific domain.

  5. Single-Molecule Imaging Reveals That Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides

    PubMed Central

    Salomon, William E.; Jolly, Samson M.; Moore, Melissa J.; Zamore, Phillip D.; Serebrov, Victor

    2015-01-01

    SUMMARY Argonaute proteins repress gene expression and defend against foreign nucleic acids using short RNAs or DNAs to specify the correct target RNA or DNA sequence. We have developed single-molecule methods to analyze target binding and cleavage mediated by the Argonaute:guide complex, RISC. We find that both eukaryotic and prokaryotic Argonaute proteins reshape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization: a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Argonautes distinguish substrates from targets with similar complementarity. Mouse AGO2, for example, binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved product contains more base pairs. By re-writing the rules for nucleic acid hybridization, Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than of RNA or DNA. PMID:26140592

  6. Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides.

    PubMed

    Salomon, William E; Jolly, Samson M; Moore, Melissa J; Zamore, Phillip D; Serebrov, Victor

    2015-07-01

    Argonaute proteins repress gene expression and defend against foreign nucleic acids using short RNAs or DNAs to specify the correct target RNA or DNA sequence. We have developed single-molecule methods to analyze target binding and cleavage mediated by the Argonaute:guide complex, RISC. We find that both eukaryotic and prokaryotic Argonaute proteins reshape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization—a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Argonautes distinguish substrates from targets with similar complementarity. Mouse AGO2, for example, binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved product contains more base pairs. By re-writing the rules for nucleic acid hybridization, Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than of RNA or DNA. PMID:26140592

  7. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs.

    PubMed Central

    Wang, S; Kool, E T

    1994-01-01

    We report the synthesis and nucleic acid binding properties of two cyclic RNA oligonucleotides designed to bind single-stranded nucleic acids by pyr.pur.pyr-type triple helix formation. The circular RNAs are 34 nucleotides in size and were cyclized using a template-directed nonenzymatic ligation. To ensure isomeric 3'-5' purity in the ligation reaction, one nucleotide at the ligation site is a 2'-deoxyribose. One circle (1) is complementary to the sequence 5'-A12, and the second (2) is complementary to 5'-AAGAAAGAAAAG. Results of thermal denaturation experiments and mixing studies show that both circles bind complementary single-stranded DNA or RNA substrates by triple helix formation, in which two domains in a pyrimidine-rich circle sandwich a central purine-rich substrate. The affinities of these circles with their purine complements are much higher than the affinities of either the linear precursors or simple Watson-Crick DNA complements. For example, circle 1 binds rA12 (pH 7.0, 10 mM MgCl2, 100 mM NaCl) with a Tm of 48 degrees C and a Kd (37 degrees C) of 4.1 x 10(-9) M, while the linear precursor of the circle binds with a Tm of 34 degrees C and a Kd of 1.2 x 10(-6) M. The complexes of circle 2 are pH-dependent, as expected for triple helical complexes involving C(+)G.C triads, and mixing plots for both circles reveal one-to-one stoichiometry of binding either to RNA or DNA substrates. Comparison of circular RNAs with previously synthesized circular DNA oligonucleotides of the same sequence reveals similar behavior in the binding of DNA, but strikingly different behavior in the binding of RNA. The cyclic DNAs show high DNA-binding selectivity, giving relatively weaker duplex-type binding with complementary RNAs. The relative order of thermodynamic stability for the four types of triplex studied here is found to be DDD >> RRR > RDR >> DRD. The results are discussed in the context of recent reports of strong triplex dependence on RNA versus DNA backbones

  8. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs.

    PubMed

    Wang, S; Kool, E T

    1994-06-25

    We report the synthesis and nucleic acid binding properties of two cyclic RNA oligonucleotides designed to bind single-stranded nucleic acids by pyr.pur.pyr-type triple helix formation. The circular RNAs are 34 nucleotides in size and were cyclized using a template-directed nonenzymatic ligation. To ensure isomeric 3'-5' purity in the ligation reaction, one nucleotide at the ligation site is a 2'-deoxyribose. One circle (1) is complementary to the sequence 5'-A12, and the second (2) is complementary to 5'-AAGAAAGAAAAG. Results of thermal denaturation experiments and mixing studies show that both circles bind complementary single-stranded DNA or RNA substrates by triple helix formation, in which two domains in a pyrimidine-rich circle sandwich a central purine-rich substrate. The affinities of these circles with their purine complements are much higher than the affinities of either the linear precursors or simple Watson-Crick DNA complements. For example, circle 1 binds rA12 (pH 7.0, 10 mM MgCl2, 100 mM NaCl) with a Tm of 48 degrees C and a Kd (37 degrees C) of 4.1 x 10(-9) M, while the linear precursor of the circle binds with a Tm of 34 degrees C and a Kd of 1.2 x 10(-6) M. The complexes of circle 2 are pH-dependent, as expected for triple helical complexes involving C(+)G.C triads, and mixing plots for both circles reveal one-to-one stoichiometry of binding either to RNA or DNA substrates. Comparison of circular RNAs with previously synthesized circular DNA oligonucleotides of the same sequence reveals similar behavior in the binding of DNA, but strikingly different behavior in the binding of RNA. The cyclic DNAs show high DNA-binding selectivity, giving relatively weaker duplex-type binding with complementary RNAs. The relative order of thermodynamic stability for the four types of triplex studied here is found to be DDD > RRR > RDR > DRD. The results are discussed in the context of recent reports of strong triplex dependence on RNA versus DNA backbones. Triplex

  9. Pb(II) binding to humic substances: an equilibrium and spectroscopic study.

    PubMed

    Orsetti, Silvia; Marco-Brown, Jose L; Andrade, Estela M; Molina, Fernando V

    2013-08-01

    The binding of Pb(II) to humic acids is studied through an approach combining equilibrium and spectroscopic measurements. The methods employed are potentiometric and fluorometric titrations, fluorescence excitation-emission matrices (EEM) and IR spectroscopy. Potentiometric titration curves are analyzed using the NICA equations and an electrostatic model treating the humic particles as an elastic polyelectrolyte network. EEMs are analyzed using parallel factor analysis, decomposing the signal in its independent components and finding their dependence on Pb(II) activity. Potentiometric results are consistent with bimodal affinity distributions for Pb(II) binding, whereas fluorometric titrations are explained by monomodal distributions. EEM analysis is consistent with three independent components in the humic fluorescence response, which are assigned to moieties with different degree of aromaticity. All three components show a similar quenching behavior upon Pb(II) binding, saturating at relatively low Pb(II) concentrations. This is attributed to metal ion induced aggregation of humic molecules, resulting in the interaction between the aromatic groups responsible for fluorescence; this is also consistent with IR spectroscopy results. The observed behavior is interpreted considering that initial metal binding (observed as strongly binding sites), correspond to bi- or multidentate complexation to carboxylate groups, including binding between groups of different humic molecules, promoting aggregation; further metal ions (observed as weakly binding sites) bind to single ligand groups. PMID:23805795

  10. Identification of IgE-binding peptide and critical amino acids of Jatropha curcas allergen involved in allergenic response.

    PubMed

    Crespo, Livia Maia; de Oliveira, Natalia Deus; Damatta, Renato Augusto; do Nascimento, Viviane Veiga; Soares, Thais Pacheco; Machado, Olga Lima Tavares

    2016-01-01

    Increasing energy demand has spurred interest in the use of biofuels. Jatropha curcas (physic nut), an inedible oilseed, is a potential source of bioenergy. The seeds, however, contain allergens such as Jat c 1, a 2S albumin that can induce hypersensitivity reactions in humans and result in allergic diseases. Recent advances in identifying and characterizing plant allergens and, in particular, their immunoglobulin E (IgE)-binding epitopes have produced a wealth of information. We identified IgE-binding regions and the critical amino acids involved in the degranulation of mast cells and the release of histamine, preliminary steps for the prevention and treatment of this allergy. Four IgE-binding regions were identified in the sequence of Jat c 1. We identified and demonstrated the fundamental role of two glutamic acid residues in IgE binding. The sequence LEKQLEEGEVGS produces a random loop on the most exposed part of Jat c 1. This region is important to the stimulation of the allergic response. The possibility of using this information to produce vaccines and other pharmacological agents for allergy treatment is discussed. PMID:27119058

  11. Cell cytotoxicity and serum albumin binding capacity of the morin-Cu(ii) complex and its effect on deoxyribonucleic acid.

    PubMed

    Roy, Atanu Singha; Samanta, Sintu Kumar; Ghosh, Pooja; Tripathy, Debi Ranjan; Ghosh, Sudip Kumar; Dasgupta, Swagata

    2016-08-16

    The dietary components, flavonoids, are important for their anti-oxidant properties and the ability to act as metal ion chelators. The characterization of the morin-Cu(ii) complex is executed using elemental analysis, FTIR and mass spectroscopy. DNA cleaving and cell cytotoxicity properties followed by serum albumin binding have been investigated in this report. The morin-Cu(ii) complex was found to cleave plasmid pBR322 DNA via an oxidative pathway as revealed by agarose gel based assay performed in the presence of some scavengers and reactive oxygen species. The breaking of the deoxyribose ring of calf thymus DNA (ct-DNA) was also confirmed by the formation of thiobarbituric acid reacting species (TBARS) between thiobarbituric acid and malonaldehyde. The morin-Cu(ii) complex is able to inhibit the growth of human HeLa cells. Fluorescence studies revealed that the morin-Cu(ii) complex can quench the intrinsic fluorescence of serum albumins (SAs) via a static quenching method. The binding constants were found to be in the order of 10(5) M(-1) and observed to increase with temperature. Both ΔH° and ΔS° are positive for the binding of the morin-Cu(ii) complex with serum albumins which indicated the presence of hydrophobic forces. Site-selectivity studies reveal that the morin-Cu(ii) complex binds to both site 1 (subdomain IIA) and site 2 (subdomain IIIA) of human serum albumin (HSA) and bovine serum albumin (BSA). Circular dichroism (CD) studies showed the structural perturbation of SAs during binding with the morin-Cu(ii) complex. The results from binding studies confirmed that after complexation with the Cu(ii) ion, morin alters its mode of interaction with SAs which could have differential implications on its other biological and pharmaceutical properties. PMID:27345944

  12. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site.

    PubMed

    Kanno, Takeshi; Yamamoto, Hideyuki; Yaguchi, Takahiro; Hi, Rika; Mukasa, Takeshi; Fujikawa, Hirokazu; Nagata, Tetsu; Yamamoto, Satoshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-06-01

    This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation. PMID:16520488

  13. QSAR studies on benzodiazepine receptor binding of purines and amino acid derivatives.

    PubMed

    Saha, R N; Meera, J; Agrawal, N; Gupta, S P

    1991-01-01

    Quantitative structure-activity relationship (QSAR) studies are reported on the benzodiazepine receptor binding of a series of substituted 9-benzyl-6-dimethylamino-9H-purines and N-(indol-3-ylglyoxylyl)amino acid derivatives. The nitrogen of the five membered heterocyclic ring and the polar substituent in the aromatic ring, present in both series of compounds, form important centres in the binding interaction. We conclude that the receptor must possess a strong nucleophilic centre and a polar site, and that a hydrophobic pocket exists to accommodate hydrophobic moieties. PMID:1654919

  14. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  15. Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter.

    PubMed

    Khwaja, Abdul R; Bloom, Paul R; Brezonik, Patrick L

    2006-02-01

    Distribution coefficients (K(OC)) for Hg2+ binding by IHSS Pahokee peat humic acid (PHA) and humic acids separated from O-horizons and peats in a northern temperate forest were determined using a competitive ligand-exchange method. All measurements were made at low ratios of added Hg2+ to reduced S. The commonly used chelating agents, EGTA and DTPA, were found to be ineffective competitive ligands; thus, we used DL-penicillamine, a synthetic amino acid with a thiol group. Calculated free [Hg2+] at equilibrium is very low, ranging from 10(-26.4) at pH 1.9 to 10(-36.9) at pH 5.8. Corresponding log Koc values ranged from 22.6 to 32.8. The slope of the plot of pH versus log K(OC) was 2.68, suggesting that two or more protons are released when each Hg2+ is bound. This is consistent with binding of Hg2+ to bidentate thiol sites with some participation of a third weak-acid group, presumably a thiol. The 1:2 stoichiometry is consistent with X-ray spectroscopy data for Hg2+ bound to HA and with other pH-dependency results showing release of two protons with the binding of each Hg2+. Our K(OC) values are much greater than indicated by the data from most previous studies. PMID:16509327

  16. Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties

    PubMed Central

    Mitra, Mithun; Hercík, Kamil; Byeon, In-Ja L.; Ahn, Jinwoo; Hill, Shawn; Hinchee-Rodriguez, Kathyrn; Singer, Dustin; Byeon, Chang-Hyeock; Charlton, Lisa M.; Nam, Gabriel; Heidecker, Gisela; Gronenborn, Angela M.; Levin, Judith G.

    2014-01-01

    Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A’s deaminase and nucleic acid binding activities. We find that A3A binds ssRNA, but the RNA and DNA binding interfaces differ and no deamination of ssRNA is detected. Surprisingly, with only one exception (G105A), alanine substitution mutants with changes in residues affected by specific ssDNA binding retain deaminase activity. Furthermore, A3A binds and deaminates ssDNA in a length-dependent manner. Using catalytically active and inactive A3A mutants, we show that the determinants of A3A deaminase activity and anti-LINE-1 activity are not the same. Finally, we demonstrate A3A’s potential to mutate genomic DNA during transient strand separation and show that this process could be counteracted by ssDNA binding proteins. Taken together, our studies provide new insights into the molecular properties of A3A and its role in multiple cellular and antiviral functions. PMID:24163103

  17. Sulfate inhibits ( sup 14 C)phosphonoformic acid binding to renal brush-border membranes

    SciTech Connect

    Tenenhouse, H.S.; Lee, J. )

    1990-08-01

    To examine the specificity of the phosphonoformic acid (PFA) interaction with the Na(+)-dependent phosphate transporter of mouse renal brush-border membrane vesicles, we compared the effects of anions on Na(+)-dependent (14C)PFA binding and Na(+)-dependent phosphate transport. Inhibition of PFA binding was achieved by PFA (% control = 0 +/- 1), sulfate (15 +/- 2), arsenate (35 +/- 1), phosphate (59 +/- 2), and nitrate (68 +/- 4), whereas inhibition of phosphate transport was only apparent with phosphate (0 +/- 1), PFA (22 +/- 4), and arsenate (37 +/- 5). Succinate and gluconate had no effect on either Na(+)-dependent process. Under conditions where Na(+)-dependent PFA binding was maximally inhibited by phosphate (% control = 65 +/- 4), further inhibition could be achieved by sulfate (26 +/- 5%). Na(+)-dependent PFA binding was competitively inhibited by phosphate (apparent Ki = 8.9 +/- 1.2 mM) and noncompetitively inhibited by sulfate (apparent Ki = 2.6 +/- 0.5 mM). We found that PFA inhibited Na(+)-dependent sulfate transport (50% inhibition at 9 mM PFA) as well as Na(+)-dependent phosphate transport (50% inhibition at 0.5 mM PFA). We also examined the pH dependence of Na(+)-dependent PFA binding and Na(+)-dependent phosphate and sulfate transport. PFA binding was optimal at pH = 7.4, whereas phosphate transport increased with increasing pH, and sulfate transport increased with decreasing pH.

  18. Arabidopsis ACBP6 is an acyl-CoA-binding protein associated with phospholipid metabolism

    PubMed Central

    Chen, Qin-Fang; Xiao, Shi

    2008-01-01

    In our recent paper in Plant Physiology, we showed that the Arabidopsis thaliana 10-kD acyl-CoA-binding protein, ACBP6, is subcellularly localized to the cytosol and that the overexpression of ACBP6 in transgenic Arabidopsis enhanced freezing tolerance. ACBP6-conferred freezing tolerance was independent of induced cold-regulated (COLD-RESPONSIVE) gene expression, but was correlated to an enhanced expression of phospholipase Dδ (PLDδ). Lipid analyses on cold-acclimated freezing-treated ACBP6-overexpressors revealed a decline in phosphatidylcholine (PC) and an elevation of phosphatidic acid (PA) in comparison to wild type. Furthermore, the His-tagged ACBP6 recombinant protein was observed using in vitro filter-binding assays to bind PC, but not PA or lysophosphatidylcholine. Taken together, our results implicate roles for ACBP6 in phospholipid metabolism that is related to gene regulation and PC-binding/transfer. This represents the first report demonstrating the in vitro binding of an ACBP to a phospholipid. The effect of ACBP6 on PLDδ expression is reminiscent of yeast 10-kD ACBP function in the regulation of genes associated with stress responses, fatty acid synthesis and phospholipid synthesis. However, the yeast ACBP regulates the expression of genes involved in phospholipid synthesis by donation of acyl-CoA esters and its binding to phospholipids remains to be demonstrated. PMID:19704440

  19. ANS fluorescence: potential to augment the identification of the external binding sites of proteins.

    PubMed

    Gasymov, Oktay K; Glasgow, Ben J

    2007-03-01

    8-anilino-1-naphthalenesulfonic acid (ANS) is believed to strongly bind cationic groups of proteins and polyamino acids through ion pair formation. A paucity of data exists on the fluorescent properties of ANS in these interactions. ANS binding to arginine and lysine derivatives was studied by fluorescence and circular dichroism spectroscopies to augment published information attained by isothermal titration calorimetry (ITC). Fluorescence enhancement with a hypsochromic shift results from the interaction of the charged group of lysine and arginine with the sulfonate group of ANS. Ion pairing between Arg (or Lys) and the sulfonate group of ANS reduce the intermolecular charge transfer (CT) rate constant that leads to enhancement of fluorescence. A positive charge near the -NH group of ANS changes the intramolecular CT process producing a blue shift of fluorescence. The Arg side chain compared to that of Lys more effectively interacts with both the -NH and sulfonate groups of ANS. ANS binding also induces a random coil-alpha helix transition in poly-Arg. Our data, in contrast to ITC results, indicate that electrostatic interactions between ANS derivatives and positively charged side chains do not account for binding affinity in the micromolar range. In addition to ion pairing complementary interactions, such as van der Waals, should be considered for high affinity (K(d)<1 mM) external binding sites of proteins. PMID:17321809

  20. ANS Fluorescence: Potential to Augment the Identification of the External Binding Sites of Proteins

    PubMed Central

    Gasymov, Oktay K.; Glasgow, Ben J.

    2007-01-01

    8-anilino-1-naphthalenesulfonic acid (ANS) is believed to strongly bind cationic groups of proteins and polyamino acids through ion pair formation. A paucity of data exists on the fluorescent properties of ANS in these interactions. ANS binding to arginine and lysine derivatives was studied by fluorescence and circular dichroism spectroscopies to augment published information attained by isothermal titration calorimetry (ITC). Fluorescence enhancement with a hypsochromic shift results from the interaction of the charged group of lysine and arginine with the sulfonate group of ANS. Ion pairing between Arg (or Lys) and the sulfonate group of ANS reduce the intermolecular charge transfer (CT) rate constant that leads to enhancement of fluorescence. A positive charge near the -NH group of ANS changes the intramolecular CT process producing a blue shift of fluorescence. The Arg side chain compared to that of Lys more effectively interacts with both the -NH and sulfonate groups of ANS. ANS binding also induces a random coil-alpha helix transition in poly-Arg. Our data, in contrast to ITC results, indicate that electrostatic interactions between ANS derivatives and positively charged side chains do not account for binding affinity in the micromolar range. In addition to ion pairing complementary interactions, such as van der Waals, should be considered for high affinity (Kd < 1mM) external binding sites of proteins. PMID:17321809

  1. Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive components.

    PubMed

    Li, Hongliang; Wu, Fan; Tan, Jing; Wang, Kai; Zhang, Cuiping; Zheng, Huoqing; Hu, Fuliang

    2016-04-15

    Caffeic acid phenethyl ester (CAPE), as one of the major bioactive components present in propolis, exhibits versatile bioactivities, especially for its potent cytotoxic effects on several cancer cell models. To understand the pharmacokinetic characteristics of CAPE, the binding interaction between CAPE and human serum albumin (HSA) was investigated in vitro using multiple spectroscopic methods and molecular docking. The results reveal that CAPE exhibits a distinctive binding interaction with HSA comparing with other propolis components. The association constant K(A) (L mol(-1)) of the binding reaches 10(6) order of magnitude, which is significantly stronger than the other components of propolis. Based on the theory of fluorescence resonance energy transfer, the binding distance was calculated as 5.7 nm, which is longer than that of the other components of propolis. The thermodynamic results indicate that the binding is mainly driven by hydrogen bonds and van der Waals force. The docking and drugs (warfarin and ibuprofen) competitive results show that CAPE is located in the subdomain IIA (Sudlow's site I, FA7) of HSA, and Gln196 and Lys199 contribute to the hydrogen bonds. Circular dichroism spectra suggest an alteration of the secondary structure of HSA due to its partial unfolding in the presence of CAPE. PMID:26829518

  2. Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays

    PubMed Central

    Mukherjee, Sourav; Hanson, Alicia M.; Shadrick, William R.; Ndjomou, Jean; Sweeney, Noreena L.; Hernandez, John J.; Bartczak, Diana; Li, Kelin; Frankowski, Kevin J.; Heck, Julie A.; Arnold, Leggy A.; Schoenen, Frank J.; Frick, David N.

    2012-01-01

    Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma’s Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50 = 1.4 μM), suramin sodium salt (IC50 = 3.6 μM), NF 023 hydrate (IC50 = 6.2 μM) and tyrphostin AG 538 (IC50 = 3.6 μM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors. PMID:22740655

  3. An on-line high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-deoxyribonucleic acid-4',6-diamidino-2-phenylindole-fluorescence detector system for screening the DNA-binding active compounds in Fufang Banbianlian Injection.

    PubMed

    Li, Sensen; Jiang, Haixiu; Lin, Zongtao; Deng, Shanshan; Guan, Yanqing; Wang, Hong; Chen, Shizhong

    2015-12-11

    Fufang Banbianlian Injection (FBI), a well-known traditional Chinese medicine formula, has been recently approved and extensively used as a newly anti-inflammatory and anti-tumor drug. This prescription comprises an equal ratio of three traditional Chinese herbs, Lobelia chinensis Lour, Scutellaria barbata D. Don and Hedyotis diffusa Willd. The relationships between its chemical compositions and activities have not been understood well yet. To investigate the ingredients and their DNA-binding activities in FBI, an on-line high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-deoxyribonucleic acid-4',6-diamidino-2-phenylindole-fluorescence detector (HPLC-DAD-MS(n)-DNA-DAPI-FLD) system was developed using a combination of chromatographic, mass spectrometric and fluorescent detection techniques. 4',6-Diamidino-2-phenylindole (DAPI) specifically binds to three ATT base pairs on the DNA minor groove, and thus can be used as a fluorescent probe for screening active compounds that compete ATT sequences with DAPI. Using this system, 21 of 58 identified or tentatively characterized compounds in FBI showed DNA-binding activities, with most of the active compounds being flavone glycosides. In addition, the structure-activity relationships of these active compounds suggested that conjugated planar structures are favorable for DNA-binding activities, and adjacent hydroxyl groups in flavonoids can significantly improve their activities. This is, to the best of our knowledge, the first application of DAPI as a fluorescent probe for the screening of DNA-binding active compounds in complex samples. PMID:26592560

  4. Purified membrane and soluble folate binding proteins from cultured KB cells have similar amino acid compositions and molecular weights but differ in fatty acid acylation.

    PubMed Central

    Luhrs, C A; Pitiranggon, P; da Costa, M; Rothenberg, S P; Slomiany, B L; Brink, L; Tous, G I; Stein, S

    1987-01-01

    A membrane-associated folate binding protein (FBP) and a soluble FBP, which is released into the culture medium, have been purified from human KB cells using affinity chromatography. By NaDodSO4/PAGE, both proteins have an apparent Mr of approximately 42,000. However, in the presence of Triton X-100, the soluble FBP eluted from a Sephadex G-150 column with an apparent Mr of approximately 40,000 (similar to NaDodSO4/PAGE) but the membrane-associated FBP eluted with an apparent Mr of approximately 160,000, indicating that this species contains a hydrophobic domain that interacts with the detergent micelles. The amino acid compositions of both forms of FBP were similar, especially with respect to the apolar amino acids. In addition, the 18 amino acids at the amino termini of both proteins were identical. The membrane FBP, following delipidation with chloroform/methanol, contained 7.1 mol of fatty acid per mol of protein, of which 4.7 mol was amide-linked and 2.4 mol was ester-linked. The soluble FBP contained only 0.05 mol of fatty acid per mol of protein. These studies indicate that the membrane FBP of KB cells contains covalently bound fatty acids that may serve to anchor the protein in the cell membrane. Images PMID:3476960

  5. BEDAM Binding Free Energy Predictions for the SAMPL4 Octa-Acid Host Challenge

    PubMed Central

    Gallicchio, Emilio; Chen, Haoyuan; Chen, He; Fitzgerald, Michael; Gao, Yang; He, Peng; Kalyanikar, Malathi; Kao, Chuan; Lu, Beidi; Niu, Yijie; Pethe, Manasi; Zhu, Jie; Levy, Ronald M.

    2015-01-01

    The Binding Energy Distribution Analysis Method (BEDAM) protocol has been employed as part of the SAMPL4 blind challenge to predict the binding free energies of a set of octa-acid host-guest complexes. The resulting predictions were consistently judged as some of the most accurate predictions in this category of the SAMPL4 challenge in terms of quantitative accuracy and statistical correlation relative to the experimental values, which were not known at the time the predictions were made. The work has been conducted as part of a hands-on graduate class laboratory session. Collectively the students, aided by automated setup and analysis tools, performed the bulk of the calculations and the numerical and structural analysis. The success of the experiment confirms the reliability of the BEDAM methodology and it shows that physics-based atomistic binding free energy estimation models, when properly streamlined and automated, can be successfully employed by non-specialists. PMID:25726024

  6. Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding.

    PubMed

    He, Kuo; Zhang, Xiuyuan; Wang, Lixia; Du, Xinjun; Wei, Dong

    2016-06-15

    Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection. PMID:26772159

  7. Unraveling the binding mechanism of asiatic acid with human serum albumin and its biological implications.

    PubMed

    Gokara, Mahesh; Malavath, Tirupathi; Kalangi, Suresh Kumar; Reddana, Pallu; Subramanyam, Rajagopal

    2014-01-01

    Asiatic acid (AsA), a naturally occurring pentacyclictriterpenoid found in Centella asiatica, plays a major role in neuroprotection, anticancer, antioxidant, and hepatoprotective activities. Human serum albumin (HSA), a blood plasma protein, participates in the regulation of plasma osmotic pressure and transports endogenous and exogenous substances. The study undertaken to analyze the drug-binding mechanisms of HSA is crucial in understanding the bioavailability of drugs. In this study, we analyzed the cytotoxic activity of AsA on HepG2 (human hepatocellular carcinoma) cell lines and its binding, conformational, docking, molecular simulation studies with HSA under physiological pH 7.2. These studies revealed a clear decrease in the viability of HepG2 cells upon exposure to AsA in a dose-dependent manner with an IC50 of 45 μM. Further studies showed the quenching of intrinsic fluorescence of HSA by AsA with a binding constant of KAsA = 3.86 ± 0.01 × 10(4) M(-1), which corresponds to the free energy of (ΔG) -6.3 kcal M(-1) at 25 °C. Circular dichroism (CD) studies revealed that there is a clear decrease in the α-helical content from 57.50 ± 2.4 to 50% ± 2.3 and an increase in the β-turns from 25 ± 0.65 to 29% ± 0.91 and random coils from 17.5% ± 0.95 to 21% ± 1.2, suggesting partial unfolding of HSA. Autodock studies revealed that the AsA is bound to the subdomain IIA with hydrophobic and hydrophilic interactions. From molecular dynamics, simulation data (RMSD, Rg and RMSF) emphasized the local conformational changes and rigidity of the residues of both HSA and HSA-AsA complexes. PMID:23844909

  8. Rhizobium meliloti mutants that overproduce the R. meliloti acidic Calcofluor-binding exopolysaccharide

    SciTech Connect

    Doherty, D.; Glazebrook, J.; Walker, G.C. ); Leigh, J.A. )

    1988-09-01

    The acidic Calcofluor-binding exopolysaccharide of Rhizobium meliloti Rm1021 plays one or more critical roles in nodule invasion and possible in nodule development. Two loci, exoR and exoS, that effect the regulation of synthesis of this exopolysaccharide were identified by screening for derivatives of strain Rm1021 that formed mucoid colonies that fluoresced extremely brightly under UV light when grown on medium containing Calcofluor. The exopolysaccharide produced in large quantities by the exoR95::Tn5 and exoS96::Tn5 strains was indistinguishable from that produced by the parental strain Rm1021, and its synthesis required the function of at least the exoA, exoB, and exoF genes. Both the exoR and exoS loci were located on the chromosome, and the exo96::Tn5 mutation was 84% linked to the trp-33 mutation by {Phi}M12 transduction. Synthesis of the Calcofluor-binding exopolysaccharide by strain Rm1021 was greatly stimulated by starvation for ammonia. In contrast, the exoR95::Tn5 mutant produced high levels of exopolysaccharide regardless of the presence or absence of ammonia in the medium. The exoS96::Tn5 mutant produced elevated amounts of exopolysaccharide in the presence of ammonia, but higher amounts were observed after starvation for ammonia. The presence of either mutation increased the level of expression of exoF::TnphoA and exoP::TnphoA fusions. Analyses of results obtained when alfalfa seedlings were inoculated with the exoR95::Tn5 strain indicated that the mutant strain could not invade nodules. However, pseudorevertants that retained the original exoR95::Tn5 mutant but acquired unlinked suppressors so that they produced an approximately normal amount of exopolysaccharide were able to invade nodules and fix nitrogen.

  9. Binding of actin to thioglycolic acid modified superparamagnetic nanoparticles for antibody conjugation.

    PubMed

    Maltas, Esra; Ertekin, Betul

    2015-01-01

    Thioglycolic acid modified superparamagnetic iron oxide nanoparticles (TG-APTS-SPION) were synthesized by using (3-aminopropyl) triethoxysilane (APTS) and thioglycolic acid (TG). Actin was immobilized on the nanoparticle surfaces. Binding amount of the actin (Act) on TG-APTS-SPIONs was determined by using a calibration curve equation that was drawn using fluorescence spectra at 280 and 342 nm of excitation and emission wavelengths. Anti-Actin (anti-Act) was interacted with the actin immobilized TG-APTS-SPIONs as primary antibody. Horse radish peroxidase (HRP) was also interacted with antibody conjugated nanoparticles as secondary antibody. The binding capacity of primary and secondary antibodies was also estimated by fluorescence spectroscopy. Scanning electron microscopy (SEM), Infrared spectroscopy (FTIR) and energy dispersive X-ray (EDX) analysis were also clarified binding of the protein and antibodies to the nanoparticles' surfaces. Western blot analysis was also done for actin conjunction with anti Act antibody to confirm binding of the antibody to the protein. PMID:25451750

  10. Crystal structures of complexes of vitamin D receptor ligand-binding domain with lithocholic acid derivatives

    PubMed Central

    Masuno, Hiroyuki; Ikura, Teikichi; Morizono, Daisuke; Orita, Isamu; Yamada, Sachiko; Shimizu, Masato; Ito, Nobutoshi

    2013-01-01

    The secondary bile acid lithocholic acid (LCA) and its derivatives act as selective modulators of the vitamin D receptor (VDR), although their structures fundamentally differ from that of the natural hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3)]. Here, we have determined the crystal structures of the ligand-binding domain of rat VDR (VDR-LBD) in ternary complexes with a synthetic partial peptide of the coactivator MED1 (mediator of RNA polymerase II transcription subunit 1) and four ligands, LCA, 3-keto LCA, LCA acetate, and LCA propionate, with the goal of elucidating their agonistic mechanism. LCA and its derivatives bind to the same ligand-binding pocket (LBP) of VDR-LBD that 1,25(OH)2D3 binds to, but in the opposite orientation; their A-ring is positioned at the top of the LBP, whereas their acyclic tail is located at the bottom of the LBP. However, most of the hydrophobic and hydrophilic interactions observed in the complex with 1,25(OH)2D3 are reproduced in the complexes with LCA and its derivatives. Additional interactions between VDR-LBD and the C-3 substituents of the A-ring are also observed in the complexes with LCA and its derivatives. These may result in the observed difference in the potency among the LCA-type ligands. PMID:23723390

  11. Nucleomorphin. A novel, acidic, nuclear calmodulin-binding protein from dictyostelium that regulates nuclear number.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2002-05-31

    Probing of Dictyostelium discoideum cell extracts after SDS-PAGE using (35)S-recombinant calmodulin (CaM) as a probe has revealed approximately three-dozen Ca(2+)-dependent calmodulin binding proteins. Here, we report the molecular cloning, expression, and subcellular localization of a gene encoding a novel calmodulin-binding protein (CaMBP); we have called nucleomorphin, from D. discoideum. A lambdaZAP cDNA expression library of cells from multicellular development was screened using a recombinant calmodulin probe ((35)S-VU1-CaM). The open reading frame of 1119 nucleotides encodes a polypeptide of 340 amino acids with a calculated molecular mass of 38.7 kDa and is constitutively expressed throughout the Dictyostelium life cycle. Nucleomorphin contains a highly acidic glutamic/aspartic acid inverted repeat (DEED) with significant similarity to the conserved nucleoplasmin domain and a putative transmembrane domain in the carboxyl-terminal region. Southern blotting reveals that nucleomorphin exists as a single copy gene. Using gel overlay assays and CaM-agarose we show that bacterially expressed nucleomorphin binds to bovine CaM in a Ca(2+)-dependent manner. Amino-terminal fusion to the green fluorescence protein (GFP) showed that GFP-NumA localized to the nucleus as distinct arc-like patterns similar to heterochromatin regions. GFP-NumA lacking the acidic DEED repeat still showed arc-like accumulations at the nuclear periphery, but the number of nuclei in these cells was increased markedly compared with control cells. Cells expressing GFP-NumA lacking the transmembrane domain localized to the nuclear periphery but did not affect nuclear number or gross morphology. Nucleomorphin is the first nuclear CaMBP to be identified in Dictyostelium. Furthermore, these data present the first identification of a member of the nucleoplasmin family as a calmodulin-binding protein and suggest nucleomorphin has a role in nuclear structure in Dictyostelium. PMID:11919178

  12. Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

    PubMed Central

    2015-01-01

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure–activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines. PMID:25126694

  13. Urinary liver-type fatty acid-binding protein change in gestational diabetes mellitus.

    PubMed

    Fu, Wen-Jin; Wang, Du-Juan; Deng, Ren-Tang; Huang, Zhi-Hong; Chen, Mei-Lian; Jang, You-Ming; Wen, Shu; Yang, Hong-Ling; Huang, Xian-zhang

    2015-09-01

    We compared urinary liver-type fatty acid-binding protein (L-FABP) among non-pregnant and pregnant women with and without gestational diabetes mellitus (GDM). Higher urinary L-FABP was found in pregnant with and without GDM, and considerably higher urinary L-FABP was found in the GDM group compared with the non-GDM group. Hyperglycemia and anemia were related with high urinary L-FABP expression. PMID:26254248

  14. Spin Labeling ESR Investigation of a Role of Humic Acids at Covalent Binding of Xenobiotics to Soil

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga

    2014-05-01

    The environmental risk of organic xenobiotic chemicals released into soils is controlled by their sorption and binding processes. However, the molecular mechanisms of reversible and irreversible interactions of xenobiotics with soil constituents and an influence of humic substances on this interaction are only partly understood. New methods and approaches aimed at understanding of molecular mechanisms in the soil environment and a role of humic substances in the sorption and binding processes are today required to manage and keep the quality of soil used and fertilized in agricultural industry. The paper presents a new approach of using stable ESR spin labels to investigate a role of humic substances in the interactions of organic xenobiotic chemicals with constituents of natural soil via the typical functional groups of xenobiotics, such as Amines. At the experiment, the nitroxide spin labels, such as TEMPO (2,2,6,6-Tetramethylpiperidin-1-oxyl), Amino-TEMPO (4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl) and Aniline spin labels (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl), were added to samples of different natural soils, such luvisol, cambisol and chernozem. Amino-TEMPO and Aniline spin labels include the aliphatic amino and aromatic amino functional groups, respectively. A significant broadening of the ESR spectrum of Aniline spin labels incubated in different soils indicated a stable effect of covalent binding of the spin labels to soil constituents via the aromatic amino, whereas the ESR spectra of the other two spin labels were not broadened that pointed at the absence of covalent binding of spin labels via the aliphatic amino. As shown, a part of bound spin labels via the aromatic amino increased with increasing of the concentration of humic acids in soil. The same broadened signals were also be detected with the humic acids extracted from the investigated soils. A strong covalent binding of spin labels to humic substances via the aromatic amines was

  15. Binding of [alpha, alpha]-Disubstituted Amino Acids to Arginase Suggests New Avenues for Inhibitor Design

    SciTech Connect

    Ilies, Monica; Di Costanzo, Luigi; Dowling, Daniel P.; Thorn, Katherine J.; Christianson, David W.

    2011-10-21

    Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of {alpha},{alpha}-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase I and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional {alpha}-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.

  16. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications.

    PubMed

    Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A

    2014-10-31

    Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. PMID:25263062

  17. Interactions between water soluble porphyrin-based star polymer and amino acids: Spectroscopic evidence of molecular binding

    NASA Astrophysics Data System (ADS)

    Angelini, Nicola; Micali, Norberto; Villari, Valentina; Mineo, Placido; Vitalini, Daniele; Scamporrino, Emilio

    2005-02-01

    Molecular interactions giving rise to stable complexes between an uncharged water soluble cobalt-porphyrin and amino acids are investigated by time-resolved fluorescence, uv-vis, and circular dichroism measurements. This metalloporphyrin seems to act, by means of the coordination site of the cobalt of the core, as a recognition host, preferentially, with amino acids possessing aromatic groups. The binding with aliphatic amino acids requires longer time scales to be efficient and likely involves a slow kinetic process. The experimental findings suggest that, besides the metal(host)-N(guest) coordination bond, which is the common requisite for all amino acids, a preferential interaction with aromatic groups exists there. The solubility in water of the molecule, guaranteed by the polyethylene glycol arms as peripheral substituents, in the absence of electric charges, allows for a more selective discrimination of the binding process with respect to other water-soluble charged porphyrins. The interest devoted to the porphyrin-based star polymer and its recognition properties is, therefore, founded on the potential use either in polymeric matrices for material science or in aqueous solution for bioscience.

  18. Cloning and sequencing of a gene coding for an actin binding protein of Saccharomyces exiguus.

    PubMed

    Lange, U; Steiner, S; Grolig, F; Wagner, G; Philippsen, P

    1994-03-01

    The actin binding protein Abp1p of the yeast Saccharomyces cervisiae is thought to be involved in the spatial organisation of cell surface growth. It contains a potential actin binding domain and an SH-3 region, a common motif of many signal transduction proteins [1]. We have cloned and sequenced an ABP1 homologous gene of Saccharomyces exiguus, a yeast which is only distantly related to S. cerevisiae. The protein encoded by this gene is slightly larger than the respective S. cerevisiae protein (617 versus 592 amino acids). The two genes are 67.4% identical and the deduced amino acid sequences share an overall identity of 59.8%. The most conserved regions are the 148 N-terminal amino acids containing the potential actin binding site and the 58 C-terminal amino acids including the SH3 domain. In addition, both proteins contain a repeated motif of unknown function which is rich in glutamic acids with the sequence EEEEEEEAPAPSLPSR in the S. exiguus Abp1p. PMID:8110838

  19. Binding Modes of Zaragozic Acid A to Human Squalene Synthase and Staphylococcal Dehydrosqualene Synthase*

    PubMed Central

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H.-J.

    2012-01-01

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr248 in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors. PMID:22474324

  20. Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase.

    PubMed

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H-J

    2012-05-25

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr(248) in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors. PMID:22474324

  1. Identification of gamma-aminobutyric acid and its binding sites in Caenorhabditis elegans

    SciTech Connect

    Schaeffer, J.M.; Bergstrom, A.R.

    1988-01-01

    Gamma-aminobutyric acid (GABA), glutamate decarboxylase and GABA-transaminase were identified in the nematode Caenorhabditis elegans. The concentration of GABA in C. elegans is approximately 10-fold lower than the concentration of GABA in rat brain. Glutamate decarboxylase and GABA-transaminase, the GABA anabolic and catabolic enzymes, are also present in C. elegans. Crude membrane fractions were prepared from C. elegans and used to study specific (/sup 3/H) GABA binding sites. GABA binds to C. elegans membranes with high affinity and low capacity. Muscimol is a competitive inhibitor of specific GABA binding with a K/sub I/ value of 120 nM. None of the other GABA agonists or antagonists inhibited greater than 40% of the specific GABA binding at concentrations up to 10/sup -4/M. Thirteen spider venoms were examined as possible GABA agonists or antagonists, the venom from Calilena agelenidae inhibits specific GABA binding with a K/sub I/ value of 6 nl/ml. These results suggest that GABA has a physiological role as a neurotransmitter in C. elegans.

  2. Health promoting potential of cereals, grain fractions and beans as determined by their in vitro bile acid binding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Health promoting potential (Cholesterol lowering and cancer risk reduction) of foods have been determined by in-vitro bile acid binding under physiological conditions. Lowered bile acids result in reduced fat absorption, conversion of cholesterol to bile acids and reduced cancer causing secondary b...

  3. Isolation and immunological characterization of fatty acid binding protein isoforms from Fasciola hepatica.

    PubMed

    Espino, A M; Rodríguez Medina, J R; Hillyer, G V

    2001-10-01

    A combination of molecular sieving chromatography and 2-step preparative isoelectric focusing showed that native Fh12, a fatty acid-binding protein isolated from Fasciola hepatica adult worms, is a protein complex of at least 8 isoforms with identical molecular mass but different isoelectric points. Using enzyme-linked immunosorbent assay (ELISA) and inhibition ELISA assays, immunological differences were observed between native (nFh12) and a recombinant molecule denoted rFh15 that was obtained after screening a cDNA library from F. hepatica adult worms with an anti-Fh12 monospecific polyclonal antibody. It was confirmed that in infected rabbits, antibodies to nFh12 appear by the second week postinfection, whereas antibodies to rFh15 appear much later, by 6 wk postinfection. Four acidic forms (Fh12(1-4)) showed more immunological identity with rFh15 than with nFh12, based on the observation that they inhibited ELISA activity by nearly 50% when they were added to the anti-rFh15 polyclonal antibody at 20 microg/ml of protein concentration. Moreover, the Fh12(1-4) isoforms were poorly reactive with sera from rabbits 2-4 wk postinfection. However, the 2 acidic forms, denoted Fh12(5) and Fh12(6), and the neutral/basic forms, denoted Fh12(7) and Fh12(8), showed more immunological identity with the native nFh12 molecule than with the recombinant rFh15 because they were highly reactive with sera of rabbits with early 2-wk F. hepatica infection and inhibited ELISA activity nearly 50% when they were quantitatively added to the anti-nFh12 polyclonal antibody. These results suggest that rFh15 could be one of the acidic forms of nFh12, and that it, in fact, may be one of the less immunogenic or immunoprotective members, or both, of the nFh12 protein complex. PMID:11695360

  4. Nonstationary disposition of valproic acid during prolonged intravenous infusion: contributions of unbound clearance and protein binding.

    PubMed

    Arens, T L; Pollack, G M

    2001-09-01

    Circadian variations in disposition have been observed for a variety of agents, including anticonvulsants. Valproic acid (VPA), an anticonvulsant used to control generalized and partial seizures, has exhibited diurnal oscillations in steady-state concentrations during long-term administration to humans and non-human primates. The present study was conducted to assess potential diurnal changes in the disposition of VPA during prolonged i.v. infusion in rats. Animals, maintained on a strict 12-h per day light cycle, were equipped with venous cannulae and an arterial microdialysis probe. VPA was administered as a 50-mg/kg loading dose followed by a 42 mg/kg/h infusion for 70 h. Blood and microdialysate samples were obtained at timed intervals after establishment of steady-state throughout two complete light/dark cycles; and total (serum) and unbound (microdialysate) VPA was determined by gas chromatography. Modest oscillations (6-7 h period) in total and unbound VPA were observed; clearance and binding parameters were not different between light and dark periods. However, unbound clearance increased, and unbound fraction decreased, with time over the course of the infusion. These results suggest that time-dependent changes in VPA disposition occur in rats, although oscillations in steady-state concentrations do not appear to be diurnal in nature. PMID:11754040

  5. Mutational Insights into the Roles of Amino Acid Residues in Ligand Binding for Two Closely Related Family 16 Carbohydrate Binding Modules

    SciTech Connect

    Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan; Bae, Brian; Mackie, Roderick I.; Nair, Satish K.; Cann, Isaac K.O.

    2010-11-22

    Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues that flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.

  6. Two Distinctive Binding Modes of Endonuclease Inhibitors to the N-Terminal Region of Influenza Virus Polymerase Acidic Subunit.

    PubMed

    Fudo, Satoshi; Yamamoto, Norio; Nukaga, Michiyoshi; Odagiri, Takato; Tashiro, Masato; Hoshino, Tyuji

    2016-05-10

    Influenza viruses are global threat to humans, and the development of new antiviral agents are still demanded to prepare for pandemics and to overcome the emerging resistance to the current drugs. Influenza polymerase acidic protein N-terminal domain (PAN) has endonuclease activity and is one of the appropriate targets for novel antiviral agents. First, we performed X-ray cocrystal analysis on the complex structures of PAN with two endonuclease inhibitors. The protein crystallization and the inhibitor soaking were done at pH 5.8. The binding modes of the two inhibitors were different from a common binding mode previously reported for the other influenza virus endonuclease inhibitors. We additionally clarified the complex structures of PAN with the same two endonuclease inhibitors at pH 7.0. In one of the crystal structures, an additional inhibitor molecule, which chelated to the two metal ions in the active site, was observed. On the basis of the crystal structures at pH 7.0, we carried out 100 ns molecular dynamics (MD) simulations for both of the complexes. The analysis of simulation results suggested that the binding mode of each inhibitor to PAN was stable in spite of the partial deviation of the simulation structure from the crystal one. Furthermore, crystal structure analysis and MD simulation were performed for PAN in complex with an inhibitor, which was already reported to have a high compound potency for comparison. The findings on the presence of multiple binding sites at around the PAN substrate-binding pocket will provide a hint for enhancing the binding affinity of inhibitors. PMID:27088785

  7. An Overview of the Prediction of Protein DNA-Binding Sites

    PubMed Central

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-01-01

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications. PMID:25756377

  8. Acidic pH changes receptor binding specificity of Helicobacter pylori: a binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization.

    PubMed Central

    Huesca, M; Borgia, S; Hoffman, P; Lingwood, C A

    1996-01-01

    The gastric pathogen helicobacter pylori is one of a number of bacteria which bind specifically to gangliotetraosylceramide, gangliotriaosylceramide, and phosphatidylethanolamine in vitro at neutral pH. Since this organism encounters an acid pH during initial infection of the stomach, we have monitored the effect of pH on receptor binding specificity and found induction of specific binding to sulfoglycolipids (sulfatide) following brief treatment at low pH. We have previously shown that heat shock proteins (hsps) bind to sulfatide, and the suspicion that this was a stress-induced response is supported by the fact that a similar change in H. pylori binding specificity was observed if the organisms were briefly exposed to heat shock treatment. Following the stress stimulus, the change in glycolipid binding specificity was prevented by the inclusion of inhibitors of protein synthesis or by incubation with anti-hsp antibodies. Expression of hsps in the surface extract and surface reactivity with anti-hsp antibodies correlated with the change in glycolipid binding specificity. Despite the presence of high levels of H. pylori cell surface urease activity which may neutralize the microenvironmental pH, the acid-induced change in binding specificity was enhanced in the presence of urea. These studies suggest that cell surface hsps mediate sulfatide recognition by this organism under stress conditions. A binary receptor model is proposed for gastric colonization by H. pylori. PMID:8698490

  9. From fatty-acid sensing to chylomicron synthesis: role of intestinal lipid-binding proteins.

    PubMed

    Buttet, Marjorie; Traynard, Véronique; Tran, Thi Thu Trang; Besnard, Philippe; Poirier, Hélène; Niot, Isabelle

    2014-01-01

    Today, it is well established that the development of obesity and associated diseases results, in part, from excessive lipid intake associated with a qualitative imbalance. Among the organs involved in lipid homeostasis, the small intestine is the least studied even though it determines lipid bioavailability and largely contributes to the regulation of postprandial hyperlipemia (triacylglycerols (TG) and free fatty acids (FFA)). Several Lipid-Binding Proteins (LBP) are expressed in the small intestine. Their supposed intestinal functions were initially based on what was reported in other tissues, and took no account of the physiological specificity of the small intestine. Progressively, the identification of regulating factors of intestinal LBP and the description of the phenotype of their deletion have provided new insights into cellular and molecular mechanisms involved in fat absorption. This review will discuss the physiological contribution of each LBP in the main steps of intestinal absorption of long-chain fatty acids (LCFA): uptake, trafficking and reassembly into chylomicrons (CM). Moreover, current data indicate that the small intestine is able to adapt its lipid absorption capacity to the fat content of the diet, especially through the coordinated induction of LBP. This adaptation requires the existence of a mechanism of intestinal lipid sensing. Emerging data suggest that the membrane LBP CD36 may operate as a lipid receptor that triggers an intracellular signal leading to the modulation of the expression of LBP involved in CM formation. This event could be the starting point for the optimized synthesis of large CM, which are efficiently degraded in blood. Better understanding of this intestinal lipid sensing might provide new approaches to decrease the prevalence of postprandial hypertriglyceridemia, which is associated with cardiovascular diseases, insulin resistance and obesity. PMID:23958439

  10. Thermodynamic analysis of the binding of a hepatoprotectant drug, thioctic acid, by beta-cyclodextrin.

    PubMed

    Junquera, E; Aicart, E

    1999-06-01

    Spectroscopic and thermodynamic studies of the binding of a hepatoprotectant drug, thioctic acid, by beta-cyclodextrin (beta-CD) have been carried out using UV-vis and pH potentiometric measurements. The UV-vis spectra and the pH of the aqueous solutions of the drug were measured (i) as a function of total drug concentration in the absence of cyclodextrin, and (ii) as a function of cyclodextrin concentration at constant drug concentration. The spectroscopic study was done at pH = 7 and 25 degrees C, while the potentiometric study was performed at several temperatures ranging from 15 to 40 degrees C. From the spectroscopic data, the molar absorption coefficient, epsilon, for the pure drug in aqueous media and the stoichiometry of the inclusion complex with beta-CD were determined. The dissociation constant, Ka, of the pure drug (which is a weak acid), and the association constants of the complexes formed by beta-cyclodextrin and both the nonionized (HTIO) and ionized (TIO-) forms of the drug, have been simultaneously determined at several temperatures from the pH data, without the necessity of working with buffered solutions. The nonionic forms are complexed by the beta-CD with higher affinity than their ionic counterparts. From the dependency of the association constants on temperature (van't Hoff analysis), the inclusion complexes formed by HTIO or TIO- and the beta-CD were found to be enthalpy driven, with a favorable enthalpic term dominant over an unfavorable entropic term. Both contributions were found to show a possible dependence with temperature (DeltaCpo not equal 0). This pattern may reveal the contribution of van der Waals interactions, hydrophobic effect, and solvent reorganization as the main driving forces promoting the complexation. PMID:10350499

  11. A novel injection strategy of flurbiprofen axetil by inhibiting protein binding with 6-methoxy-2-naphthylacetic acid.

    PubMed

    Ogata, Kenji; Takamura, Norito; Tokunaga, Jin; Ikeda, Tetsuya; Setoguchi, Nao; Tanda, Kazuhiro; Yamasaki, Tetsuo; Nishio, Toyotaka; Kawai, Keiichi

    2016-04-01

    Flurbiprofen axetil (FPA) is an injection product and a prodrug of a non-steroidal anti-inflammatory drug (NSAID). After injection, it is rapidly hydrolyzed to the active form, flurbiprofen (FP). Since frequent injections of FPA can lead to abnormal physiology, an administration strategy is necessary to ensure there is enhancement of the analgesic efficiency of FP after a single dose and to reduce the total number of doses. FP strongly binds to site II of albumin, and thus the free (unbound) FP concentration is low. This study focused on 6-methoxy-2-naphthylacetic acid (6-MNA), the active metabolite of nabumetone (a prodrug of NSAID). We performed ultrafiltration experiments and pharmacokinetics analysis in rats to investigate whether the inhibitory effect of 6-MNA on FP binding to albumin increased the free FP concentration in vitro and in vivo. Results indicated that 6-MNA inhibited the binding of FP to albumin competitively. When 6-MNA was injected in rats, there was a significant increase in the free FP concentration and the area under concentration-time curve (AUC) calculated from the free FP concentration, while there was a significant decrease in the total (bound + free) FP concentration and the AUC calculated from the total FP concentration. These findings indicate that 6-MNA inhibits the protein binding of FP in vivo. This suggests that the frequency of FPA injections can be reduced when administered with nabumetone, as there is increase in the free FP concentration associated with pharmacological effect. PMID:25537338

  12. Cholesterol-lowering effect of rice bran protein containing bile acid-binding proteins.

    PubMed

    Wang, Jilite; Shimada, Masaya; Kato, Yukina; Kusada, Mio; Nagaoka, Satoshi

    2015-01-01

    Dietary plant protein is well known to reduce serum cholesterol levels. Rice bran is a by-product of rice milling and is a good source of protein. The present study examined whether feeding rats a high-cholesterol diet containing 10% rice bran protein (RBP) for 10 d affected cholesterol metabolism. Rats fed dietary RBP had lower serum total cholesterol levels and increased excretion of fecal steroids, such as cholesterol and bile acids, than those fed dietary casein. In vitro assays showed that RBP strongly bound to taurocholate, and inhibited the micellar solubility of cholesterol, compared with casein. Moreover, the bile acid-binding proteins of the RBP were eluted by a chromatographic column conjugated with cholic acid, and one of them was identified as hypothetical protein OsJ_13801 (NCBI accession No. EAZ29742) using MALDI-TOF mass spectrometry analysis. These results suggest that the hypocholesterolemic action of the RBP may be caused by the bile acid-binding proteins. PMID:25374002

  13. Sex Differences in Long Chain Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Burnett, David A.; Lysenko, Nina; Manning, Joan A.

    1979-01-01

    Female sex and estrogen administration are associated with increased hepatic production of triglyceride-rich lipoproteins; the basis for this has not been fully elucidated. Inasmuch as hepatic lipoprotein production is also influenced by FFA availability and triglyceride biosynthesis, we investigated sex differences in FFA utilization in rat hepatocyte suspensions and in the components of the triglyceride biosynthetic pathway. Isolated adult rat hepatocyte suspensions were incubated with albumin-bound [14C]oleate for up to 15 min. At physiological and low oleate concentrations, cells from females incorporated significantly more 14C into glycerolipids, especially triglycerides, and into oxidation products than did male cells, per milligram cell protein. At 0.44 mM oleate, incorporation into triglycerides in female cells was approximately twice that in male cells. Comparable sex differences were observed in cells from fasted animals and when [14C]-glycerol incorporation was measured. At higher oleate concentrations, i.e., fatty acid:albumin mole ratios in excess of 2:1, these sex differences were no longer demonstrable, suggesting that maximal rates of fatty acid esterification and oxidation were similar in female and male cells. In female and male hepatic microsomes, specific activities of long chain acyl coenzyme A synthetase, phosphatidate phosphohydrolase, and diglyceride acyltransferase were similar, but glycerol-3-phosphate acyltransferase activity was slightly greater in females at certain substrate concentrations. Microsomal incorporation of [14C]oleate into total glycerolipids was not significantly greater in females. In further contrast to intact cells, microsomal incorporation of [14C]oleate into triglycerides, although significantly greater in female microsomes, accounted for only a small fraction of the fatty acid esterified. The binding affinity and stoichiometry of partially purified female hepatic fatty acid binding protein (FABP) were similar to

  14. Changes in Dynamics upon Oligomerization Regulate Substrate Binding and Allostery in Amino Acid Kinase Family Members

    PubMed Central

    Marcos, Enrique; Crehuet, Ramon; Bahar, Ivet

    2011-01-01

    Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities. PMID:21980279

  15. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels

    PubMed Central

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m2; all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  16. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels.

    PubMed

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m(2); all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  17. Synthesis, gp120 binding and anti-HIV activity of fatty acid esters of 1,1-linked disaccharides

    PubMed Central

    Bachan, Stewart; Fantini, Jacques; Joshi, AnJali; Garg, Himanshu; Mootoo, David R.

    2011-01-01

    Inspired by the anti-human immunodeficiency virus (HIV) activity of analogues of β-galactosylceramide (GalCer), a set of mono- and di- saccharide fatty acid esters were designed as GalCer mimetics and their binding to the V3 loop peptide of HIV-1 and anti-HIV activity evaluated. 1,1-linked Gal-Man and Glu-Man disaccharides with an ester on the Man subunit bound the V3 loop peptide and inhibited HIV infectivity in single round infection assays with the TZM-bl cell line. IC50's were in the 50 μM range with no toxicity to the cells at concentrations up to 200 μM. These compounds appear to inhibit virus entry at early steps in viral infection since they were inactive if added post viral entry. Although these compounds were found to bind to the V3 loop peptide of gp120, it is not clear that this interaction is responsible for their anti-HIV activity because the relative binding affinity of closely related analogues did not correlate with their antiviral behavior. The low cytotoxicity of these 1,1-linked disaccharide fatty acid esters, combined with the easy accessibility to structurally diverse analogues make these molecules attractive leads for new topical anti-viral agents. PMID:21783371

  18. Impact of size, secondary structure, and counterions on the binding of small ribonucleic acids to layered double hydroxide nanoparticles.

    PubMed

    Rodriguez, Blanca V; Pescador, Jorge; Pollok, Nicole; Beall, Gary W; Maeder, Corina; Lewis, L Kevin

    2015-01-01

    Use of ribonucleic acid (RNA) interference to regulate protein expression has become an important research topic and gene therapy tool, and therefore, finding suitable vehicles for delivery of small RNAs into cells is of crucial importance. Layered double metal hydroxides such as hydrotalcite (HT) have shown great promise as nonviral vectors for transport of deoxyribose nucleic acid (DNA), proteins, and drugs into cells, but the adsorption of RNAs to these materials has been little explored. In this study, the binding of small RNAs with different lengths and levels of secondary structure to HT nanoparticles has been analyzed and compared to results obtained with small DNAs in concurrent experiments. Initial experiments established the spectrophotometric properties of HT in aqueous solutions and determined that HT particles could be readily sedimented with near 100% efficiencies. Use of RNA+HT cosedimentation experiments as well as electrophoretic mobility shift assays demonstrated strong adsorption of RNA 25mers to HT, with twofold greater binding of single-stranded RNAs relative to double-stranded molecules. Strong affinities were also observed with ssRNA and dsRNA 54mers and with more complex transfer RNA molecules. Competition binding and RNA displacement experiments indicated that RNA-HT associations were strong and were only modestly affected by the presence of high concentrations of inorganic anions. PMID:26620852

  19. Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5.

    PubMed

    Létourneau, Danny; Lorin, Aurélien; Lefebvre, Andrée; Cabana, Jérôme; Lavigne, Pierre; LeHoux, Jean-Guy

    2013-11-01

    STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7α-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA>LCA>CDCA>GDCA>TDCA>CA>UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligand chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role. PMID:23872533

  20. Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding

    PubMed Central

    Jones, Christopher P.; Datta, Siddhartha A. K.; Rein, Alan; Rouzina, Ioulia; Musier-Forsyth, Karin

    2011-01-01

    Retroviruses replicate by reverse transcribing their single-stranded RNA genomes into double-stranded DNA using specific cellular tRNAs to prime cDNA synthesis. In HIV-1, human tRNA3Lys serves as the primer and is packaged into virions during assembly. The viral Gag protein is believed to chaperone tRNA3Lys placement onto the genomic RNA primer binding site; however, the timing and possible regulation of this event are currently unknown. Composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains, the multifunctional HIV-1 Gag polyprotein orchestrates the highly coordinated process of virion assembly, but the contribution of these domains to tRNA3Lys annealing is unclear. Here, we show that NC is absolutely essential for annealing and that the MA domain inhibits Gag's tRNA annealing capability. During assembly, MA specifically interacts with inositol phosphate (IP)-containing lipids in the plasma membrane (PM). Surprisingly, we find that IPs stimulate Gag-facilitated tRNA annealing but do not stimulate annealing in Gag variants lacking the MA domain or containing point mutations involved in PM binding. Moreover, we find that IPs prevent MA from binding to nucleic acids but have little effect on NC or Gag. We propose that Gag binds to RNA either with both NC and MA domains or with NC alone and that MA-IP interactions alter Gag's binding mode. We propose that MA's interactions with the PM trigger the switch between these two binding modes and stimulate Gag's chaperone function, which may be important for the regulation of events such as tRNA primer annealing. PMID:21123373

  1. Fatty acid binding protein 7 and n-3 poly unsaturated fatty acid supply in early rat brain development.

    PubMed

    Maximin, Elise; Langelier, Bénédicte; Aïoun, Josiane; Al-Gubory, Kaïs H; Bordat, Christian; Lavialle, Monique; Heberden, Christine

    2016-03-01

    Fatty acid binding protein 7 (FABP7), abundant in the embryonic brain, binds with the highest affinity to docosahexaenoic acid (DHA) and is expressed in the early stages of embryogenesis. Here, we have examined the consequences of the exposure to different DHA levels and of the in utero depletion of FABP7 on early rat brain development. Neurodevelopment was evaluated through the contents of two proteins, connexin 43 (Cx43) and cyclin-dependent kinase 5 (CDK5), both involved in neuroblast proliferation, differentiation, and migration. The dams were fed with diets presenting different DHA contents, from deficiency to supplementation. DHA brain embryos contents already differed at embryonic day 11.5 and the differences kept increasing with time. Cx43 and CDK5 contents were positively associated with the brain DHA levels. When FABP7 was depleted in vivo by injections of siRNA in the telencephalon, the enhancement of the contents of both proteins was lost in supplemented animals, but FABP7 depletion did not modify phospholipid compositions regardless of the diets. Thus, FABP7 is a necessary mediator of the effect of DHA on these proteins synthesis, but its role in DHA uptake is not critical, although FABP7 is localized in phospholipid-rich areas. Our study shows that high contents of DHA associated with FABP7 are necessary to promote early brain development, which prompted us to recommend DHA supplementation early in pregnancy. PMID:26037116

  2. Structural and Binding Analysis of Pyrimidinol Carboxylic Acid and N-Hydroxy Quinazolinedione HIV-1 RNase H Inhibitors▿

    PubMed Central

    Lansdon, Eric B.; Liu, Qi; Leavitt, Stephanie A.; Balakrishnan, Mini; Perry, Jason K.; Lancaster-Moyer, Candra; Kutty, Nilima; Liu, Xiaohong; Squires, Neil H.; Watkins, William J.; Kirschberg, Thorsten A.

    2011-01-01

    HIV-1 RNase H breaks down the intermediate RNA-DNA hybrids during reverse transcription, requiring two divalent metal ions for activity. Pyrimidinol carboxylic acid and N-hydroxy quinazolinedione inhibitors were designed to coordinate the two metal ions in the active site of RNase H. High-resolution (1.4 Å to 2.1 Å) crystal structures were determined with the isolated RNase H domain and reverse transcriptase (RT), which permit accurate assessment of the metal and water environment at the active site. The geometry of the metal coordination suggests that the inhibitors mimic a substrate state prior to phosphodiester catalysis. Surface plasmon resonance studies confirm metal-dependent binding to RNase H and demonstrate that the inhibitors do not bind at the polymerase active site of RT. Additional evaluation of the RNase H site reveals an open protein surface with few additional interactions to optimize active-site inhibitors. PMID:21464257

  3. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    PubMed

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment. PMID:26852781

  4. Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures.

    PubMed

    Kurz, Michael; Brachvogel, Volker; Matter, Hans; Stengelin, Siegfried; Thüring, Harald; Kramer, Werner

    2003-02-01

    Bile acids are generated in vivo from cholesterol in the liver, and they undergo an enterohepatic circulation involving the small intestine, liver, and kidney. To understand the molecular mechanism of this transportation, it is essential to gain insight into the three-dimensional (3D) structures of proteins involved in the bile acid recycling in free and complexed form and to compare them with homologous members of this protein family. Here we report the solution structure of the human ileal lipid-binding protein (ILBP) in free form and in complex with cholyltaurine. Both structures are compared with a previously published structure of the porcine ILBP-cholylglycine complex and with related lipid-binding proteins. Protein structures were determined in solution by using two-dimensional (2D)- and 3D-homo and heteronuclear NMR techniques, leading to an almost complete resonance assignment and a significant number of distance constraints for distance geometry and restrained molecular dynamics simulations. The identification of several intermolecular distance constraints unambiguously determines the cholyltaurine-binding site. The bile acid is deeply buried within ILBP with its flexible side-chain situated close to the fatty acid portal as entry region into the inner ILBP core. This binding mode differs significantly from the orientation of cholylglycine in porcine ILBP. A detailed analysis using the GRID/CPCA strategy reveals differences in favorable interactions between protein-binding sites and potential ligands. This characterization will allow for the rational design of potential inhibitors for this relevant system. PMID:12486725

  5. Model of β-Sheet of Muscle Fatty Acid Binding Protein of Locusta migratoria Displays Characteristic Topology

    PubMed Central

    Kizilbash, Nadeem A; Hai, Abdul; Alruwaili, Jamal

    2013-01-01

    The β-sheet of muscle fatty acid binding protein of Locusta migratoria (Lm-FABP) was modeled by employing 2-D NMR data and the Rigid Body Assembly method. The model shows the β-sheet to comprise ten β-strands arranged anti-parallel to each other. There is a β-bulge between Ser 13 and Gln 14 which is a difference from the published structure of β-sheet of bovine heart Fatty Acid Binding Protein. Also, a hydrophobic patch consisting of Ile 45, Phe 51, Phe 64 and Phe 66 is present on the surface which is characteristic of most Fatty Acid Binding Proteins. A “gap” is present between βD and βE that provides evidence for the presence of a portal or opening between the polypeptide chains which allows ligand fatty acids to enter the protein cavity and bind to the protein. PMID:24497726

  6. Gas phase acidity measurement of local acidic groups in multifunctional species: controlling the binding sites in hydroxycinnamic acids.

    PubMed

    Guerrero, Andres; Baer, Tomas; Chana, Antonio; González, Javier; Dávalos, Juan Z

    2013-07-01

    The applicability of the extended kinetic method (EKM) to determine the gas phase acidities (GA) of different deprotonable groups within the same molecule was tested by measuring the acidities of cinnamic, coumaric, and caffeic acids. These molecules differ not only in the number of acidic groups but in their nature, intramolecular distances, and calculated GAs. In order to determine independently the GA of groups within the same molecule using the EKM, it is necessary to selectively prepare pure forms of the hydrogen-bound heterodimer. In this work, the selectivity was achieved by the use of solvents of different vapor pressure (water and acetonitrile), as well as by variation of the drying temperature in the ESI source, which affected the production of heterodimers with different solvation energies and gas-phase dissociation energies. A particularly surprising finding is that the calculated solvation enthalpies of water and the aprotic acetonitrile are essentially identical, and that the different gas-phase products generated are apparently the result of their different vapor pressures, which affects the drying mechanism. This approach for the selective preparation of heterodimers, which is based on the energetics, appears to be quite general and should prove useful for other studies that require the selective production of heterodimers in ESI sources. The experimental results were supported by density functional theory (DFT) calculations of both gas-phase and solvated species. The experimental thermochemical parameters (deprotonation ΔG, ΔH, and ΔS) are in good agreement with the calculated values for the monofunctional cinnamic acid, as well as the multifunctional coumaric and caffeic acids. The measured GA for cinnamic acid is 334.5 ± 2.0 kcal/mol. The measured acidities for the COOH and OH groups of coumaric and caffeic acids are 332.7 ± 2.0, 318.7 ± 2.1, 332.2 ± 2.0, and 317.3 ± 2.2 kcal/mol, respectively. PMID:23799241

  7. Isolation and characterization of a fatty acid- and retinoid-binding protein from the cereal cyst nematode Heterodera avenae.

    PubMed

    Le, Xiuhu; Wang, Xuan; Guan, Tinglong; Ju, Yuliang; Li, Hongmei

    2016-08-01

    A gene encoding fatty acid- and retinoid-binding protein was isolated from the cereal cyst nematode Heterodera avenae and the biochemical function of the protein that it encodes was analysed. The full-length cDNA of the Ha-far-1 gene is 827 bp long and includes a 22- nucleotide trans-spliced leader sequence (SL1) at its 5-end. The genomic clone of Ha-far-1 consists of eight exons separated by seven introns, which range in size from 48 to 186 bp. The Ha-far-1 cDNA contains an open reading frame encoding a 191 amino acid protein, with a predicted secretory signal peptide. Sequence analysis showed that Ha-FAR-1 has highest similarity to the Gp-FAR-1 protein from the potato cyst nematode, Globodera pallida and that the protein was grouped with all homologues from other plant-parasitic nematodes in a phylogenetic analysis. Fluorescence-based ligand binding analysis confirmed that the recombinant Ha-FAR-1 protein was able to bind fatty acids and retinol. Spatial and temporal expression assays showed that the transcripts of Ha-far-1 accumulated mainly in the hypodermis and that the gene is most highly expressed in third-stage juveniles of H. avenae. Fluorescence immunolocalization showed that the Ha-FAR-1 protein was present on the surface of the infective second-stage juveniles of H. avenae. Nematodes treated with dsRNA corresponding to Ha-far-1 showed significantly reduced reproduction compared to nematodes exposed to dsRNA from a non-endogenous gene, suggesting that Ha-far-1 may be an effective target gene for control of H. avenae using an RNAi strategy. PMID:27240755

  8. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    PubMed Central

    Pasternak, Anna; Hernandez, Frank J.; Rasmussen, Lars M.; Vester, Birte; Wengel, Jesper

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation. PMID:20870750

  9. Thermodynamic characterization of the interaction between the human Y-box binding protein YB-1 and nucleic acids.

    PubMed

    Tanabe, Yumiko; Nagatoishi, Satoru; Tsumoto, Kouhei

    2015-09-01

    Y-box binding protein 1 (YB-1) binds to both RNA and DNA to control transcription and translation for the regulation of various cellular systems. YB-1 is overexpressed in some cancer cells and is a potential target for treatment of cancer. Herein, we describe isothermal titration calorimetry analyses of the interaction between a number of recombinant YB-1 domains and nucleic acids to identify the RNA and DNA binding sites and their binding mechanisms. These results demonstrated that the C-terminal domain of the protein interacts with single-stranded DNA and RNA by exothermic and endothermic reactions, respectively. The highly conserved cold-shock domain (CSD) also bound to single-stranded RNA and DNA by exothermic and endothermic reactions, respectively. The specific binding manner for RNA is in the CSD, whereas DNA binds with the most affinity to the C-terminal region (amino acids 130-219). We found further that the C-terminal region (amino acids 220-324) regulates the binding stoichiometry of RNA. These quantitative thermodynamic results provide a preliminary indication on the molecular mechanism of binding of the multifunctional protein YB-1 to nucleic acids to regulate its biological function. PMID:26126888

  10. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    PubMed

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. PMID:26206084

  11. Physicochemical properties and amino acid composition of highly purified preparation of distinctive estrogen-binding protein from rat liver

    SciTech Connect

    Shchelkunova, T.A.; Smirnov, A.N.; Rozen, V.B.

    1986-12-10

    The structure and properties of a distinctive estrogen-binding protein (DEBP) from the livers of male rats, purified with the aid of an affinity sorbent, was investigated. A high degree of purification of the DEBP obtained (> 99%), associated with the pronounced microheterogeneity, was found. Apparently, this microheterogeneity is the result of partial proteolysis of the protein from the N-end during isolation. Purified DEBP molecules have the following parameters: molecular weight 31,000 (according to the data of electrophoresis in polyacrylamide gel in the presence of SDS), sedimentation coefficient 3.765, Stokes' radius 25.6 A, frictional ratio 1.11. Absorption maximum of the protein in the ultraviolet region 276 nm; extinction coefficient 26; content of ..cap alpha..-helical segments 25-30%. The equilibrium constant of the association with estradiol is 5 x 10/sup 7/ M/sup -1/. Estriol (> 100%) and, to a lesser degree, estrone and testosterone (approx. 10%) compete for the protein-binding sites on (/sup 3/H) estradiol, whereas androsterone has practically no competitive effect. A study of the amino acid composition of the DEBP showed that the protein contains a large number of residues with hydrophobic side groups (34.4%), it has more acidic than basic amino acids, and possesses a low content of cysteine, threonine, and histidine.

  12. An Umbrella for Acid Rain.

    ERIC Educational Resources Information Center

    Randal, Judith

    1979-01-01

    The Environmental Protection Agency has awarded several grants to study effects of and possible solutions to the problem of "acid rain"; pollution from atmospheric nitric and sulfuric acids. The research program is administered through North Carolina State University at Raleigh and will focus on biological effects of acid rain. (JMF)

  13. Proton-Binding Sites of Acid-Sensing Ion Channel 1

    PubMed Central

    Ishikita, Hiroshi

    2011-01-01

    Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission. Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein conformations of the subunits. His74 possessed a pKa of ≈6–7. Conservation of His74 in the proton-sensitive ASIC3 that lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs. PMID:21340031

  14. Buffer interference with protein dynamics: a case study on human liver fatty acid binding protein.

    PubMed

    Long, Dong; Yang, Daiwen

    2009-02-18

    Selection of suitable buffer types is often a crucial step for generating appropriate protein samples for NMR and x-ray crystallographic studies. Although the possible interaction between MES buffer (2-(N-morpholino)ethanesulfonic acid) and proteins has been discussed previously, the interaction is usually thought to have no significant effects on the structures of proteins. In this study, we demonstrate the direct, albeit weak, interaction between MES and human liver fatty acid binding protein (hLFABP). Rather than affecting the structure of hLFABP, we found that the dynamics of hLFABP, which were previously proposed to be relevant to its functions, were significantly affected by the binding of hLFABP with MES. Buffer interference with protein dynamics was also demonstrated with Bis-Tris buffer, which is quite different from MES and fatty acids in terms of their molecular structures and properties. This result, to our knowledge, is the first published report on buffer interference with protein dynamics on a microsecond to millisecond timescale and could represent a generic problem in the studies of functionally relevant protein dynamics. Although being a fortuity, our finding of buffer-induced changes in protein dynamics offers a clue to how hLFABP accommodates its ligands. PMID:19217864

  15. Tethering in RNA: An RNA-Binding Fragment Discovery Tool

    PubMed Central

    Tran, Kiet; Arkin, Michelle R.; Beal, Peter A.

    2016-01-01

    Tethering has been extensively used to study small molecule interactions with proteins through reversible disulfide bond forming reactions to cysteine residues. We describe the adaptation of Tethering to the study of small molecule binding to RNA using a thiol-containing adenosine analog (ASH). Among 30 disulfide-containing small molecules screened for efficient Tethering to ASH-bearing RNAs derived from pre-miR21, a benzotriazole-containing compound showed prominent adduct formation and selectivity for one of the RNAs tested. The results of this screen demonstrate the viability of using thiol-modified nucleic acids to discover molecules with binding affinity and specificity for the purpose of therapeutic compound lead discovery. PMID:25749683

  16. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin.

    PubMed

    Anguizola, Jeanethe; Debolt, Erin; Suresh, D; Hage, David S

    2016-05-15

    The primary endogenous ligands of human serum albumin (HSA) are non-esterified fatty acids, with 0.1-2mol of fatty acids normally being bound to HSA. In type II diabetes, fatty acid levels in serum are often elevated, and the presence of high glucose results in an increase in the non-enzymatic glycation of HSA. High-performance affinity chromatography (HPAC) was used to examine the combined effects of glycation and the presence of long chain fatty acids on the binding of HSA with R-warfarin and l-tryptophan (i.e., probes for Sudlow sites I and II, the major sites for drugs on this protein). Zonal elution competition studies were used to examine the interactions of myristic acid, palmitic acid and stearic acid with these probes on HSA. It was found that all these fatty acids had direct competition with R-warfarin at Sudlow site I of normal HSA and glycated HSA, with the glycated HSA typically having stronger binding for the fatty acids at this site. At Sudlow site II, direct competition was observed for all the fatty acids with l-tryptophan when using normal HSA, while glycated HSA gave no competition or positive allosteric interactions between these fatty acids and l-tryptophan. These data indicated that glycation can alter the interactions of drugs and fatty acids at specific binding sites on HSA. The results of this study should lead to a better understanding of how these interactions may change during diabetes and demonstrate how HPAC can be used to examine drug/solute-protein interactions in complex systems. PMID:26468085

  17. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria.

    PubMed

    Fazeli, Mohammad R; Hajimohammadali, M; Moshkani, Azamossadat; Samadi, Nasrin; Jamalifar, Hossein; Khoshayand, Mohammad R; Vaghari, Elham; Pouragahi, Samieh

    2009-01-01

    Some foods are prone to contamination with aflatoxins, with detrimental effect on human health. Lactic acid bacteria have been reported to bind aflatoxins and remove them from foods and feeds. Reduction of aflatoxin B1 (AFB1) from the liquid media by the autochthonous lactic acid bacteria (Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus fermentum) isolated from traditional Iranian sourdough and dairy products is reported in the current study. The effect of incubation time on the binding capacity of the strains to AFB1 was also investigated. Duplicates of individual bacteria with population equivalent to 2 X 10(10) CFU/ml were incubated in the presence of AFB1 at 37 degrees C for a period of 72 h, and the amounts of unbound AFB1 were quantitated by reverse-phase high-performance liquid chromatography. All the strains were capable of removal of AFB1, and the reduction of AFB1 ranged from 25 to 61% throughout the incubation period. Removal of AFB1 was a rapid process, with approximately 61 and 56% of the toxin taken instantly by L. fermentum and L. plantarum, respectively. Binding was of a reversible nature, and some of the bound AFB1 was released into the media by the repeated centrifugation and resuspension of the cell pellets. The stability of the bacteria-toxin complex was strain dependent, and L. casei was a stronger binder of AFB1 compared with the other bacteria. No toxin release was observed after 24 h. These findings tend to suggest that certain novel probiotic bacteria with high aflatoxin binding capacity could be selected for detoxification of foods. PMID:19205485

  18. Binding of the substrate UDP-glucuronic acid induces conformational changes in the xanthan gum glucuronosyltransferase.

    PubMed

    Salinas, S R; Petruk, A A; Brukman, N G; Bianco, M I; Jacobs, M; Marti, M A; Ielpi, L

    2016-06-01

    GumK is a membrane-associated glucuronosyltransferase of Xanthomonas campestris that is involved in xanthan gum biosynthesis. GumK belongs to the inverting GT-B superfamily and catalyzes the transfer of a glucuronic acid (GlcA) residue from uridine diphosphate (UDP)-GlcA (UDP-GlcA) to a lipid-PP-trisaccharide embedded in the membrane of the bacteria. The structure of GumK was previously described in its apo- and UDP-bound forms, with no significant conformational differences being observed. Here, we study the behavior of GumK toward its donor substrate UDP-GlcA. Turbidity measurements revealed that the interaction of GumK with UDP-GlcA produces aggregation of protein molecules under specific conditions. Moreover, limited proteolysis assays demonstrated protection of enzymatic digestion when UDP-GlcA is present, and this protection is promoted by substrate binding. Circular dichroism spectroscopy also revealed changes in the GumK tertiary structure after UDP-GlcA addition. According to the obtained emission fluorescence results, we suggest the possibility of exposure of hydrophobic residues upon UDP-GlcA binding. We present in silico-built models of GumK complexed with UDP-GlcA as well as its analogs UDP-glucose and UDP-galacturonic acid. Through molecular dynamics simulations, we also show that a relative movement between the domains appears to be specific and to be triggered by UDP-GlcA. The results presented here strongly suggest that GumK undergoes a conformational change upon donor substrate binding, likely bringing the two Rossmann fold domains closer together and triggering a change in the N-terminal domain, with consequent generation of the acceptor substrate binding site. PMID:27099353

  19. Acidic extracellular pH of tumors induces octamer-binding transcription factor 4 expression in murine fibroblasts in vitro and in vivo

    PubMed Central

    Som, Avik; Bloch, Sharon; Ippolito, Joseph E.; Achilefu, Samuel

    2016-01-01

    Octamer-binding transcription factor 4 (OCT-4) is an important marker of cellular de-differentiation that can be induced by environmental stressors, such as acidity. Here we demonstrate that chronic acidic stress in solid tumors induced OCT-4 expression in fibroblasts and other stromal cells in four tumor models. The results have implications for how tumors utilize pH modulation to recruit associated stromal cells, induce partial reprogramming of tumor-associated stromal cells, and respond to therapy. PMID:27302093

  20. Ligand binding site of tear lipocalin: contribution of a trigonal cluster of charged residues probed by 8-anilino-1-naphthalenesulfonic acid.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2008-02-01

    Human tear lipocalin (TL) exhibits diverse functions, most of which are linked to ligand binding. To map the binding site of TL for some amphiphilic ligands, we capitalized on the hydrophobic and hydrophilic properties of 8-anilino-1-naphthalenesulfonic acid (ANS). In single Trp mutants, resonance energy transfer from Trp to ANS indicates that the naphthalene group of ANS is proximate to Leu105 in the cavity. Binding energies of TL to ANS and its analogues reveal contributions from electrostatic interactions. The sulfonate group of ANS interacts strongly with the nonconserved intracavitary residue Lys114 and less with neighboring residues His84 and Glu34. This trigonal cluster of residues may play a role in the ligand recognition site for some negatively charged ligands. Because many drugs possess sulfonate groups, the trigonal cluster-sulfonate interaction can also be exploited as a lipocalin-based drug delivery mechanism. The binding of lauric acid and its analogues shows that fatty acids assume heterogeneous orientations in the cavity of TL. Predominantly, the hydrocarbon tail is buried in the cavity of TL and the carboxyl group is oriented toward the mouth. However, TL can also interact, albeit relatively weakly, with fatty acids oriented in the opposite direction. As the major lipid binding protein of tears, the ability to accommodate fatty acids in two opposing orientations may have functional implications for TL. At the aqueous-lipid interface, fatty acids whose carboxyl groups are positioned toward the aqueous phase are available for interaction with TL that could augment stability of the tear film. PMID:18179255

  1. Reciprocal mutations of neuropeptide Y receptor Y2 in human and chicken identify amino acids important for antagonist binding.

    PubMed

    Berglund, Magnus M; Fredriksson, Robert; Salaneck, Erik; Larhammar, Dan

    2002-05-01

    The neuropeptide Y (NPY) receptor Y2 antagonist BIIE0246 has sub-nanomolar affinity for the human Y2 (hY2) receptor but binds very poorly to chicken Y2 (chY2) with micromolar affinity. Sequence comparisons identified several amino acids for investigation by mutagenesis. Reciprocal mutagenesis between hY2 and chY2 revealed that three of these, individually and in combination, are important for BIIE0246 binding, namely positions Gln(135) in transmembrane (TM) 3, Leu(227) in TM5, and Leu(284) in TM6. Mutagenesis of hY2 to the corresponding amino in chY2 (generating hY2[Q135H,L227Q,L284F]) made the affinity of BIIE0246 as low as for chY2. Introduction into chY2 of the three human residues resulted in antagonist affinity almost as high as for hY2. To distinguish between direct and indirect effects, each of the three residues in hY2 was replaced with alanine. BIIE0246 bound with 28-fold lower affinity to hY2[L227A], suggesting the Leu(227) interacts directly with the antagonist. The other two alanine mutants bound with unaltered affinity, suggesting that the corresponding chY2 residues abolish binding through steric hindrance or charge repulsion. Thus, three amino acid residues can in an additive manner completely account for the difference in antagonist binding between the hY2 and chY2 receptors. These results will be useful for construction of three-dimensional models of the widely divergent NPY receptor subtypes. PMID:11997008

  2. Zosuquidar and an albumin-binding prodrug of zosuquidar reverse multidrug resistance in breast cancer cells of doxorubicin and an albumin-binding prodrug of doxorubicin.

    PubMed

    Abu Ajaj, Khalid; Graeser, Ralph; Kratz, Felix

    2012-07-01

    The P-glycoprotein (P-gp) is a 170-kDa protein that acts as an energy dependent, transmembrane efflux pump and is encoded by the MDR1 gene. It has been shown to be responsible for multidrug resistance (MDR) in a defined subpopulation of breast cancer patients and thus represents a molecular target for circumventing MDR in this tumor indication. MDR modulators have been developed and demonstrated high selectivity for P-gp with inhibitory activities in the low nanomolar range. Although some objective responses were achieved in clinical trials, combination therapy with these MDR modulators, such as Ca2+ antagonists caused unacceptable toxicity. Targeting P-gp inhibitors to the tumor site is a mean to increase their therapeutic index, and in this context binding of tailor-made prodrugs to circulating albumin is an established technology to reduce the toxicity and enhance the efficacy of anticancer drugs. In this study, we consequently developed an acid-sensitive albumin-binding prodrug of the P-gp inhibitor zosuquidar (LY335979) in a two-step synthesis using a maleimide hydrazone linker system established in our laboratory that first introduces acetylbenzoic acid at the HO-group of zosuquidar followed by derivatization with 6-maleimidocaproyl hydrazide to form the acid-sensitive hydrazone bond. The maleimide group enables the prodrug to bind rapidly and selectively to the cysteine-34 position of endogenous albumin after intravenous administration. HPLC analysis demonstrated rapid albumin binding of the zosuquidar prodrug as well as the quantitative release of the acetylbenzoic ester derivative of zosuquidar at pH 5.0. Subsequently, its ability to circumvent MDR was tested in two doxorubicin-resistant breast carcinoma cell lines (MCF-7/ADR and MT-3/ADR). The MDR status of these cell lines can be reversed by zosuquidar which was confirmed in a rhodamine 123 assay using fluorescence microscopy and FACS analysis. Furthermore, zosuquidar as well its acid-sensitive albumin

  3. An additional substrate binding site in a bacterial phenylalanine hydroxylase

    PubMed Central

    Ronau, Judith A.; Paul, Lake N.; Fuchs, Julian E.; Corn, Isaac R.; Wagner, Kyle T.; Liedl, Klaus R.; Abu-Omar, Mahdi M.; Das, Chittaranjan

    2014-01-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes phenylalanine oxidation to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH features a regulatory domain where binding of the substrate leads to allosteric activation of the enzyme. However, existence of PAH regulation in evolutionarily distant organisms, such as certain bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum (cPAH), a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site, 15.7Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 µM for phenylalanine. Under the same conditions, no detectable binding was observed in ITC for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) lead to impaired binding, consistent with the presence of distal site binding in solution. Kinetic analysis reveals that the distal site mutants suffer a discernible loss in their catalytic activity. However, x-ray structures of Y155A and F258A, two of the mutants showing more noticeable defect in their activity, show no discernible change in their active site structure, suggesting that the effect of distal binding may transpire through protein dynamics in solution. PMID:23860686

  4. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    PubMed Central

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-01-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/. PMID:26482832

  5. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  6. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues.

    PubMed

    Kelm, S; Brossmer, R; Isecke, R; Gross, H J; Strenge, K; Schauer, R

    1998-08-01

    The siglecs, formerly called sialoadhesins, are a family of I-type lectins binding to sialic acids on the cell surface. Five members of this family have been identified: sialoadhesin, myelin-associated glycoprotein (MAG), Schwann cell myelin protein (SMP), CD22 and CD33. We have investigated the relevance of substituents at position C-9 and in the N-acetyl group of N-acetylneuraminic acid, using a series of synthetic sialic-acid analogues either on resialylated human erythrocytes or as free alpha-glycosides in hapten inhibition. All five siglecs require the hydroxy group at C-9 for binding, suggesting hydrogen bonding of this substituent with the binding site. Remarkable differences were found among the proteins in their specificity for modifications of the N-acetyl group. Whereas sialoadhesin, MAG and SMP do not tolerate a hydroxy group as in N-glycolylneuraminic acid, they bind to halogenated acetyl residues. In the case of MAG, N-fluoroacetylneuraminic acid is bound about 17-fold better than N-acetylneuraminic acid. In contrast, human and murine CD22 both show good affinity for N-glycolylneuraminic acid, but only human CD22 bound the halogenated compounds. In conclusion, our data indicate that interactions of the hydroxy group at position 9 and the N-acyl substituent contribute significantly to the binding strength. PMID:9738906

  7. Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus

    SciTech Connect

    Reichert, A.; Nagy, J.O.; Spevak, W.; Charych, D. )

    1995-01-18

    In this paper we have demonstrated that polymerized liposomes are biomolecular materials that provide a molecular recognition function (sialic acid) and a detection element (polydiacetylene backbone), all within a single supramolecular assembly. The binding event is transduced to a visible color change, readily seen with the naked eye and quantified by absorption spectroscopy. Specificity of the color change was demonstrated by competitive inhibition studies. In addition, nonspecific adsorption, if it occurs. does not appear to affect the color of the liposome solutions. 28 refs., 2 figs.

  8. Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages.

    PubMed

    Moore, Sherri M; Holt, Vivian V; Malpass, Lillie R; Hines, Ian N; Wheeler, Michael D

    2015-10-01

    The beginning stages of liver damage induced by various etiologies (i.e. high fat diet, alcohol consumption, toxin exposure) are characterized by abnormal accumulation of lipid in liver. Alterations in intracellular lipid transport, storage, and metabolism accompanied by cellular insult within the liver play an important role in the pathogenesis of liver disease, often involving a sustained inflammatory response. The intracellular lipid transporter, fatty acid binding protein 5 (FABP5), is highly expressed in macrophages and may play an important role in the hepatic inflammatory response after endotoxin exposure in mice. This study tested the hypothesis that FABP5 regulates macrophage response to LPS in male C57bl/6 (wild type) and FABP5 knockout mice, both in vitro and in vivo. Treatment with LPS revealed that loss of FABP5 enhances the number of hepatic F4/80(+) macrophages in the liver despite limited liver injury. Conversely, FABP5 knock out mice display higher mRNA levels of anti-inflammatory cytokines IL-10, arginase, YM-1, and Fizz-1 in liver compared to wild type mice. Bone marrow derived macrophages stimulated with inflammatory (LPS and IFN-γ) or anti-inflammatory (IL-4) mediators also showed significantly higher expression of anti-inflammatory/regulatory factors. These findings reveal a regulatory role of FABP5 in the acute inflammatory response to LPS-induced liver injury, which is consistent with the principle finding that FABP5 is a regulator of macrophage phenotype. Specifically, these findings demonstrate that loss of FABP5 promotes a more anti-inflammatory response. PMID:26105806

  9. Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma.

    PubMed

    Liu, S; Baracos, V E; Quinney, H A; Clandinin, M T

    1994-05-01

    Feeding animals with diets high in saturated fat induces insulin resistance, and replacing saturated fat isocalorically with poly-unsaturated fat, especially long-chain omega-3 fatty acids, will prevent the development of insulin resistance in skeletal-muscle tissue. To investigate the mechanism, rats were fed on high-fat (20%, w/w) semipurified diets for 6 weeks. Diets containing ratios of polyunsaturated/saturated (P/S) fatty acid of 0.25 (low-P/S diet) and 1.0 (high-P/S diet) were used to study the effect of the level of saturated fat. To study the effects of omega-3 fatty acids, diets with a low-P/S ratio containing either 0 (low-omega-3 diet) or 3.3% (high-omega-3 diet) long-chain omega-3 fatty acids from fish oil were fed. Plasma membrane from skeletal muscle was purified. The content of fatty acids in sarcolemmal phospholipid was significantly related to the dietary composition. Insulin binding to intact sarcolemmal vesicles prepared from rats fed on diets high in omega-3 fatty acids increased 14-fold compared with animals fed on the low-omega-3 diet (P < 0.0001). Feeding rats on a diet with a high P/S ratio increased sarcolemmal insulin binding by 2.3-fold (P < 0.05). Increased insulin binding was due to increased receptor number at the low-affinity high-capacity binding site. Dietary effects on insulin binding were eliminated when studies were carried out on detergent-solubilized membranes, indicating the importance of the phospholipid fatty acyl composition for insulin binding. The results suggest that dietary omega-3 and polyunsaturated fatty acids increase insulin binding to sarcolemma by changing the fatty acyl composition of phospholipid surrounding the insulin receptor, and this might be the mechanism by which dietary fatty acids modify insulin action. PMID:8192673

  10. The phosphate clamp: sequence selective nucleic acid binding profiles and conformational induction of endonuclease inhibition by cationic Triplatin complexes

    PubMed Central

    Prisecaru, Andreea; Molphy, Zara; Kipping, Ralph G.; Peterson, Erica J.; Qu, Yun; Kellett, Andrew; Farrell, Nicholas P.

    2014-01-01

    The substitution-inert polynuclear platinum(II) complex (PPC) series, [{trans-Pt(NH3)2(NH2(CH2)nNH3)}2-μ-(trans-Pt(NH3)2(NH2(CH2)nNH2)2}](NO3)8, where n = 5 (AH78P), 6 (AH78 TriplatinNC) and 7 (AH78H), are potent non-covalent DNA binding agents where nucleic acid recognition is achieved through use of the ‘phosphate clamp' where the square-planar tetra-am(m)ine Pt(II) coordination units all form bidentate N–O–N complexes through hydrogen bonding with phosphate oxygens. The modular nature of PPC–DNA interactions results in high affinity for calf thymus DNA (Kapp ∼5 × 107 M−1). The phosphate clamp–DNA interactions result in condensation of superhelical and B-DNA, displacement of intercalated ethidium bromide and facilitate cooperative binding of Hoechst 33258 at the minor groove. The effect of linker chain length on DNA conformational changes was examined and the pentane-bridged complex, AH78P, was optimal for condensing DNA with results in the nanomolar region. Analysis of binding affinity and conformational changes for sequence-specific oligonucleotides by ITC, dialysis, ICP-MS, CD and 2D-1H NMR experiments indicate that two limiting modes of phosphate clamp binding can be distinguished through their conformational changes and strongly suggest that DNA condensation is driven by minor-groove spanning. Triplatin-DNA binding prevents endonuclease activity by type II restriction enzymes BamHI, EcoRI and SalI, and inhibition was confirmed through the development of an on-chip microfluidic protocol. PMID:25414347

  11. Structure and function of Plasmodium falciparum malate dehydrogenase: role of critical amino acids in co-substrate binding pocket.

    PubMed

    Pradhan, Anupam; Tripathi, Abhai K; Desai, Prashant V; Mukherjee, Prasenjit K; Avery, Mitchell A; Walker, Larry A; Tekwani, Babu L

    2009-01-01

    The malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our laboratory have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal glycine motif, which forms a characteristic Rossman dinucleotide-binding fold in the co-substrate binding pocket, differentiates PfMDH (GlyXGlyXXGly) from other eukaryotic and prokaryotic malate dehydrogenases (GlyXXGlyXXGly). The amino acids lining the co-substrate binding pocket are completely conserved in MDHs from different species of human, primate and rodent malaria parasites. Based on this knowledge and conserved domains among prokaryotic and eukaryotic MDH, the role of critical amino acids lining the co-substrate binding pocket was analyzed in catalytic functions of PfMDH using site-directed mutagenesis. Insertion of Ala at the 9th or 10th position, which converts the N-terminal GlyXGlyXXGly motif (characteristic of malarial MDH and LDH) to GlyXXGlyXXGly (as in bacterial and eukaryotic MDH), uncoupled regulation of the enzyme through substrate inhibition. The dinucleotide fold GlyXGlyXXGly motif seems not to be responsible for the distinct affinity of PfMDH to 3-acetylpyridine-adenine dinucleotide (APAD, a synthetic analog of NAD), since Ala9 and Ala10 insertion mutants still utilized APADH. The Gln11Met mutation, which converts the signature glycine motif in PfMDH to that of PfLDH, did not change the enzyme function. However, the Gln11Gly mutant showed approximately a 5-fold increase in catalytic activity, and higher susceptibility to inhibition with gossypol. Asn119 and His174 participate in binding of both co-substrate and substrate. The Asn119Gly mutant exhibited approximately a 3-fold decrease in catalytic efficiency, while mutation of His174 to Asn or Ala resulted in an inactive enzyme. These studies provide critical insights into the co

  12. The studies on substrate, product and inhibitor binding to a wild-type and neuronopathic form of human acid-beta-glucosidase.

    PubMed

    Zubrzycki, Igor Z; Borcz, Agnieszka; Wiacek, Magdalena; Hagner, Wojciech

    2007-11-01

    Gaucher disease is a lysosomal storage disorder caused by deficiency of human acid beta-glucosidase. Recent x-ray structural elucidation of the enzyme alone and in the presence of its inhibitor was done, which provided an excellent template for further studies on the binding of substrate, product and inhibitor. To draw correlations between the clinical manifestation of the disease driven by point mutations, L444P and L444R, and the placement and function of putative S-binding sites, the presented theoretical studies were undertaken, which comprised of molecular dynamics and molecular docking methods. The obtained results indicate the D443 and D445 residues as extremely important for physiological functionality of an enzyme. They also show, although indirectly, that binding of the substrate is influenced by an interplay of E235 and E334 residues, constituting putative substrate binding site, and the region flanked by D435 and D445 residues. PMID:17713797

  13. Design of an actively controlled snow ski release binding.

    PubMed

    Hull, M L; Allen, K W

    1981-08-01

    A new electronic ski binding has been designed which may better protect skiers from lower extremity injuries. A four-step procedure for developing binding release criteria aimed at preventing specific injuries is outlined. Using simplified biomechanical models, the release criteria for tibia fracture in both torsion and flexion are derived. A binding design which embodies the derived release criteria is described. The binding consists of three subsystems: 1) a dynamometer, 2) an analog computer controller, and 3) an electromechanical release mechanism. The strain gage dynamometer directly measures torsion and bending moments between the boot and ski. An analog computer controlled processes dynamometer signals. Dual release mode capability is achieved by parallel solution of differential equations which model the leg in both medial-lateral rotation and flexion. When the model solution reaches a critical value, the controller actuates the release mechanism. The release mechanism incorporates a unique closed circuit hydraulic system which rigidly locks the boot to the ski until release. Laboratory tests on a prototype confirm that the computer-controlled binding prevents inadvertent release under noninjurious high-magnitude, short-duration loads but releases before quasi-static loads reach injurious levels. PMID:7278190

  14. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    SciTech Connect

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon; Houtman, Jon C.D.; Turner, Keith H.; Zaleski, Anthony; Ramaswamy, S.; Gibson, Bradford W.; Apicella, Michael A.

    2012-11-14

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.

  15. Steam Cooking Significantly Improves in Vitro Bile Acid Binding of Beets, Eggplant, Asparagus, Carrots, Green Beans and Cauliflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative healthful potential of cooked beets, okra, eggplant, asparagus, carrots, green beans, cauliflower and turnips was evaluated by determining their in vitro bile acid binding using a mixture of bile acids secreted in human bile at a duodenal physiological pH of 6.3. Six treatments and two...

  16. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function.

    PubMed Central

    Fabian, J R; Vojtek, A B; Cooper, J A; Morrison, D K

    1994-01-01

    Ras and Raf-1 are key proteins involved in the transmission of developmental and proliferative signals generated by receptor and nonreceptor tyrosine kinases. Genetic and biochemical studies demonstrate that Raf-1 functions downstream of Ras in many signaling pathways. Although Raf-1 directly associates with GTP-bound Ras, an effect of this interaction on Raf-1 activity in vivo has not been established. To examine the biological consequence of the Ras/Raf-1 interaction in vivo, we set out to identify key residues of Raf-1 required for Ras binding. In this report, we show that a single amino acid mutation in Raf-1 (Arg89 to Leu) disrupted the interaction with Ras in vitro and in the yeast two-hybrid system. This mutation prevented Ras-mediated but not tyrosine kinase-mediated enzymatic activation of Raf-1 in the baculovirus/Sf9 expression system. Furthermore, kinase-defective Raf-1 proteins containing the Arg89-->Leu mutation were no longer dominant-inhibitory or capable of blocking Ras-mediated signal transduction in Xenopus laevis oocytes. These results demonstrate that the association of Raf-1 and Ras modulates both the kinase activity and the biological function of Raf-1 and identify Arg89 as a critical residue involved in this interaction. In addition, the finding that tyrosine kinases can stimulate the enzymatic activity of Raf-1 proteins containing a mutation at the Ras-interaction site suggests that Raf-1 can be activated by Ras-independent pathways. Images PMID:8016101

  17. Fatty Acid Binding Protein 4 Deficiency Protects against Oxygen-Induced Retinopathy in Mice

    PubMed Central

    Saint-Geniez, Magali; Ghelfi, Elisa; Liang, Xiaoliang; Yu, Chenwei; Spencer, Carrie; Abend, Stephanie; Hotamisligil, Gokhan; Cataltepe, Sule

    2014-01-01

    Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR). We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4−/− mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4−/− OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies. PMID:24802082

  18. Fatty acid-binding proteins and peribronchial angiogenesis in bronchopulmonary dysplasia.

    PubMed

    Ghelfi, Elisa; Karaaslan, Cagatay; Berkelhamer, Sara; Akar, Serra; Kozakewich, Harry; Cataltepe, Sule

    2011-09-01

    Inflammation plays a key role in the pathogenesis of bronchopulmonary dysplasia (BPD). Fatty acid-binding proteins (FABPs) 4 and 5 regulate the inflammatory activity of macrophages. Whether FABPs 4 and 5 could play a role in the pathogenesis of BPD via the promotion of macrophage inflammatory activity is unknown. This study sought to examine whether the expression levels of FABP4 and FABP5 were altered in bronchoalveolar lavage fluid and lung tissue in a baboon model of BPD. This study also sought to characterize the cell types that express these proteins. Real-time PCR, immunoblotting, immunohistochemistry, and double immunofluorescence were used to examine the expression of FABPs in samples of BPD. Morphometric analysis was used to quantify FABP4-positive peribronchial blood vessels in lung sections. FABP4 was primarily expressed in macrophages in samples of BPD. In addition, FABP4 was expressed in the endothelial cells of blood vessels in peribronchial areas and the vasa vasorum, but not in the alveolar vasculature in samples of BPD. FABP4 concentrations were significantly increased in lungs and bronchoalveolar lavage fluid samples with BPD. An increased density of FABP4-positive peribronchial blood vessels was evident in both baboon and human BPD sections. FABP5 was expressed in several cell types, including alveolar epithelial cells and macrophages. FABP5 concentrations did not show any significant alterations in BPD. In conclusion, FABP4 but not FABP5 levels are increased in BPD. FABP4 is differentially expressed in endothelial cells of the bronchial microvasculature, which demonstrates a previously unrecognized expansion in BPD. PMID:21177979

  19. Fatty acid binding protein 4 deficiency protects against oxygen-induced retinopathy in mice.

    PubMed

    Saint-Geniez, Magali; Ghelfi, Elisa; Liang, Xiaoliang; Yu, Chenwei; Spencer, Carrie; Abend, Stephanie; Hotamisligil, Gokhan; Cataltepe, Sule

    2014-01-01

    Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR). We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4-/- mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4-/- OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies. PMID:24802082

  20. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides.

    PubMed Central

    Asseline, U; Delarue, M; Lancelot, G; Toulmé, F; Thuong, N T; Montenay-Garestier, T; Hélène, C

    1984-01-01

    Oligodeoxyribonucleotides covalently linked to an intercalating agent via a polymethylene linker were synthesized. Oligothymidylates attached to an acridine dye (Acr) through the 3'-phosphate group [(Tp)n(CH2) mAcr ] specifically interact with the complementary sequence. The interaction is strongly stabilized by the intercalating agent. By using absorption and fluorescence spectroscopies, it is shown that complex formation between (Tp)n(CH2) mAcr and poly(rA) involves the formation of n A X T base pairs, where n is the number of thymines in the oligonucleotide. The acridine ring intercalates between A X T base pairs. Fluorescence excitation spectra reveal the existence of two environments for the acridine ring, whose relative contributions depend on the linker length (m). The binding of (Tp)4(CH2) mAcr to poly(rA) is analyzed in terms of site binding and cooperative interactions between oligonucleotides along the polynucleotide lattice. Thermodynamic parameters show that the covalent attachment of the acridine ring strongly stabilizes the binding of the oligonucleotide to its complementary sequence. The stabilization depends on the linker length; the compound with m = 5 gives a more stable complex than that with m = 3. These results open the way to the synthesis of a family of molecules exhibiting both high-affinity and high-specificity for a nucleic acid base sequence. PMID:6587350

  1. Inclusion of an RGD Motif Alters Invasin Integrin-Binding Affinity and Specificity.

    PubMed

    Khan, Tarik A; Wang, Xianzhe; Maynard, Jennifer A

    2016-04-12

    Invasin is a key adhesin displayed on the outer membrane of Yersinia enterocolitica and Y. pseudotuberculosis that mediates the initial stages of infection. Invasin specifically targets microfold (M) cells in the small intestine by binding β1 integrins and is sufficient to trigger eukaryotic uptake of invasin-coated particles, including Yersinia, Escherichia coli, and latex beads. As a result, invasin has generated interest to mediate oral delivery of vaccines and other biologics. Integrin binding affinity has been shown to correlate with particle uptake; thus we hypothesized that invasin variants with higher affinity would confer enhanced internalization. We first performed alanine scanning of surface-exposed tyrosine residues to identify those contributing to integrin binding. We identified two residues, which, when substituted with alanine, reduced binding to soluble α5β1 integrin. Next, we constructed four targeted mutagenesis libraries spanning these and other residues known to contribute to binding, followed by enrichment of variants able to mediate Caco-2 cellular invasion and to bind soluble α5β1 integrin. We identified three amino acid substitutions that increased α5β1 integrin binding affinity as measured by flow cytometry and ELISA assays, two of which created a novel RGD motif surrounding the D911 residue critical for binding. This variant confers enhanced internalization into CHO cells but not Caco-2 cells when expressed on the E. coli surface. Further analysis showed that inclusion of an RGD expands invasin-integrin specificity, thereby impacting cellular selectivity. This work provides a molecular explanation for the lack of an RGD motif in invasin that is present in many other adhesins. PMID:27015583

  2. Acid Rain: An Educational Opportunity?

    ERIC Educational Resources Information Center

    Marion, James I.

    1984-01-01

    Deals with how educators can handle the subject of acid rain; illustrates suggestions with experiences of grade nine students visiting Frost Valley Environmental Education Center (Oliverea, New York) to learn scientific concepts through observation of outdoor phenomena, including a stream; and discusses acid rain, pH levels, and pollution control…

  3. Inhibition of specific binding of okadaic acid to protein phosphatase 2A by microcystin-LR, calyculin-A and tautomycin: method of analysis of interactions of tight-binding ligands with target protein.

    PubMed Central

    Takai, A; Sasaki, K; Nagai, H; Mieskes, G; Isobe, M; Isono, K; Yasumoto, T

    1995-01-01

    Several groups have reported that okadaic acid (OA) and some other tight-binding protein phosphatase inhibitors including microcystin-LR (MCLR), calyculin-A and tautomycin prevent each other from binding to protein phosphatase 2A (PP2A). In this paper, we have introduced an improved procedure for examining to what extent the affinity of an enzyme for a labelled tight-binding ligand is reduced by binding of an unlabelled tight-binding, ligand to the enzyme. Using this procedure, we have analysed the dose-dependent reduction of PP2A binding of [24-3H]OA by addition of OA, MCLR, calyculin-A and tautomycin. The results indicate that the binding of the unlabelled inhibitors to the PP2A molecule causes a dramatic (10(6)-10(8)-fold) increase in the dissociation constant associated with the interaction of [24-3H]OA and PP2A. This suggests that OA and the other inhibitors bind to PP2A in a mutually exclusive manner. The protein phosphatase inhibitors may share the same binding site on the PP2A molecule. We have also measured values of the dissociation constant (Ki) for the interaction of these toxins with protein phosphatase 1 (PP1). For MCLR and calyculin-A, the ratio of the Ki value obtained for PP1 to that for PP2A was in the range 4-9, whereas it was 0.01-0.02 for tautomycin. The value of tautomycin is considerably smaller than that (0.4) calculated from previously reported Ki values. PMID:7702557

  4. Allosteric Sensing of Fatty Acid Binding by NMR: Application to Human Serum Albumin.

    PubMed

    Jafari, Naeimeh; Ahmed, Rashik; Gloyd, Melanie; Bloomfield, Jonathon; Britz-McKibbin, Philip; Melacini, Giuseppe

    2016-08-25

    Human serum albumin (HSA) serves not only as a physiological oncotic pressure regulator and a ligand carrier but also as a biomarker for pathologies ranging from ischemia to diabetes. Moreover, HSA is a biopharmaceutical with a growing repertoire of putative clinical applications from hypovolemia to Alzheimer's disease. A key determinant of the physiological, diagnostic, and therapeutic functions of HSA is the amount of long chain fatty acids (LCFAs) bound to HSA. Here, we propose to utilize (13)C-oleic acid for the NMR-based assessment of albumin-bound LCFA concentration (CONFA). (13)C-Oleic acid primes HSA for a LCFA-dependent allosteric transition that modulates the frequency separation between the two main (13)C NMR peaks of HSA-bound oleic acid (ΔνAB). On the basis of ΔνAB, the overall [(12)C-LCFA]Tot/[HSA]Tot ratio is reproducibly estimated in a manner that is only minimally sensitive to glycation, albumin concentration, or redox potential, unlike other methods to quantify HSA-bound LCFAs such as the albumin-cobalt binding assay. PMID:27429126

  5. Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

    PubMed Central

    Baek, Yu Mi; Yoon, Soojin; Hwang, Yeo Eun

    2016-01-01

    Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I. PMID:27574504

  6. Heart type fatty acid binding protein response and subsequent development of atherosclerosis in insulin resistant polycystic ovary syndrome patients

    PubMed Central

    2012-01-01

    Background Women with polycystic ovary syndrome (PCOS) have higher risk for cardiovascular disease (CVD). Heart type fatty acid binding protein (HFABP) has been found to be predictive for myocardial ischemia.Wet ested whether HFABP is the predictor for CVD in PCOS patients, who have an increased risk of cardiovascular disease. Methods This was a prospective, cross sectional controlled study conducted in a training and research hospital.The study population consisted of 46 reproductive-age PCOS women and 28 control subjects. We evaluated anthropometric and metabolic parameters, carotid intima media thickness and HFABP levels in both PCOS patients and control group. Results Mean fasting insulin, homeostasis model assessment insulin resistance index (HOMA-IR), triglyceride, total cholesterol, low density lipoprotein cholesterol, free testosterone, total testosterone, carotid intima media thickness (CIMT) levels were significantly higher in PCOS patients. Although HFABP levels were higher in PCOS patients, the difference did not reach statistically significant in early age groups. After adjustment for age and body mass index, HFABP level was positive correlated with hsCRP, free testosterone levels, CIMT and HOMA-IR. Conclusions Heart type free fatty acid binding protein appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, hyperandrogenemic PCOS patients. PMID:23249450

  7. Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response.

    PubMed

    Baek, Yu Mi; Yoon, Soojin; Hwang, Yeo Eun; Kim, Dong-Eun

    2016-08-01

    Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I. PMID:27574504

  8. Energy-transfer studies of the distance between the high-affinity metal binding site and the colchicine and 8-anilino-1-naphthalenesulfonic acid binding sites on calf brain tubulin.

    PubMed

    Ward, L D; Timasheff, S N

    1988-03-01

    The high-affinity metal divalent cation Mg2+, associated with the exchangeable guanosine 5'-triphosphate (GTP) binding site (E site) on purified tubulin, has been replaced by the transition metal ion Co2+ on tubulin as well as on the tubulin-colchicine, tubulin-allocolchicine and tubulin-8-anilino-1-naphthalenesulfonic acid (tubulin-ANS) complexes. While pure native tubulin readily incorporated 0.8 atom of Co2+ per tubulin alpha-beta dimer, incorporation was reduced to 0.4 atom of Co2+ per mole of tubulin when it was complexed with colchicine, indicating that the conformational change induced in tubulin by the binding of colchicine leads to a reduced accessibility of the divalent cation binding site linked to the E site without necessarily changing the intrinsic binding constant. The fluorescence emission spectra of tubulin-bound colchicine, allocolchicine, and ANS displayed a strong overlap with the Co2+ absorption spectrum, identifying these as adequate donor-acceptor pairs. Fluorescence energy-transfer measurements were carried out between tubulin-bound colchicine (or allocolchicine) and ANS as donors and tubulin-complexed Co2+ as acceptor. It was found that the distance between the ANS and the high-affinity divalent cation binding sites is greater than 28 A, while that between the colchicine and the divalent cation binding sites is greater than 24 A.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3365404

  9. Attenuated murine cytomegalovirus binds to N-acetylglucosamine, and shift to virulence may involve recognition of sialic acids.

    PubMed Central

    Ravindranath, R M; Graves, M C

    1990-01-01

    Treatment of cells with lectins specific for N-acetylglucosamine (GlcNAc) blocked infection by mouse cytomegalovirus (MCMV), and GlcNAc pretreatment of the lectin blocked this effect. MCMV failed to infect N-acetylglucosaminidase (GlcNAcase)-treated mouse embryo fibroblasts (MEF). GlcNAc and GlcNAc-containing synthetic oligosaccharides directly inhibited viral infectivity. Ulex lectin inhibition of infection was shown to be due to inhibition of surface adsorption of 35S-labeled virus. Also, GlcNAcase eluted 35S-labeled virus adsorbed to MEF at 4 degrees C and inhibited plaque formation if added after adsorption at this temperature. These findings indicate that GlcNAc binding is involved in attachment rather than in some later step in infection. High-performance thin-layer chromatography overlay of [35S]MCM