Science.gov

Sample records for acid antimicrobial peptide

  1. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  2. Effect of Fatty Acid Conjugation on Antimicrobial Peptide Activity

    DTIC Science & Technology

    2004-12-01

    killing mechanism of antimicrobial peptides makes them an interesting alternative to traditional antibiotics, as target bacteria may be less able...C14-AKK and C16-AKK to within a 7% error are 220 and 16mM respectively. Since amphipathicity is requisite for antimicrobial action KAK is not...Schnaare, 2000: Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length. Antimicrobial Agents

  3. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  4. Antimicrobial Peptides

    PubMed Central

    Bahar, Ali Adem; Ren, Dacheng

    2013-01-01

    The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics). PMID:24287494

  5. Antimicrobial Peptides Containing Unnatural Amino Acid Exhibit Potent Bactericidal Activity against ESKAPE Pathogens

    DTIC Science & Technology

    2013-01-01

    Antimicrobial peptides containing unnatural amino acid exhibit potent bactericidal activity against ESKAPE pathogens R. P. Hicks a, J. J. Abercrombie...tic classes, membrane-disruptors and non -membrane-disrup- tors.30,31 Five different mechanisms have been proposed at one time or another to explain...DATES COVERED - 4. TITLE AND SUBTITLE Antimicrobial Peptides Containing Unnatural Amino Acid Exhibit Potent Bactericidal Activity Against

  6. Antimicrobial Peptides Targeting Gram-negative Pathogens, Produced and Delivered by Lactic Acid Bacteria

    PubMed Central

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J.; Kaznessis, Yiannis N.

    2014-01-01

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella. In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis. Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter nisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host’s viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations. PMID:23808914

  7. Antimicrobial peptides incorporating non-natural amino acids as agents for plant protection.

    PubMed

    Ng-Choi, Iteng; Soler, Marta; Güell, Imma; Badosa, Esther; Cabrefiga, Jordi; Bardaji, Eduard; Montesinos, Emilio; Planas, Marta; Feliu, Lidia

    2014-04-01

    The control of plant pathogens is mainly based on copper compounds and antibiotics. However, the use of these compounds has some limitations. They have a high environmental impact and the use of antibiotics is not allowed in several countries. Moreover, resistance has been developed to these pathogens. The identification of new agents able to fight plant pathogenic bacteria and fungi will represent an alternative to currently used antibiotics or pesticides. Antimicrobial peptides are widely recognized as promising candidates, however naturally occurring sequences present drawbacks that limit their development. These include susceptibility to protease degradation and low bioavailability. To overcome these problems, research has focused on the introduction of unnatural amino acids into lead peptide sequences. In particular, we have improved the biological profile of antimicrobial peptides active against plant pathogenic bacteria and fungi by incorporating triazolyl, biaryl and D-amino acids into their sequence. These modifications and their influence on the biological activity are summarized.

  8. Peptides and Peptidomimetics for Antimicrobial Drug Design

    PubMed Central

    Mojsoska, Biljana; Jenssen, Håvard

    2015-01-01

    The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics. PMID:26184232

  9. Anti-antimicrobial Peptides

    PubMed Central

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J.; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F.; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G.

    2013-01-01

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance. PMID:23737519

  10. Antimicrobial Peptides in Reptiles

    PubMed Central

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  11. Peptide Antimicrobial Agents

    PubMed Central

    Jenssen, Håvard; Hamill, Pamela; Hancock, Robert E. W.

    2006-01-01

    Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents. PMID:16847082

  12. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  13. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  14. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method.

    PubMed

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian; Yang, Li

    2014-09-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections.

  15. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  16. Insect inducible antimicrobial peptides and their applications.

    PubMed

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  17. Antimicrobial peptides: therapeutic potentials.

    PubMed

    Kang, Su-Jin; Park, Sung Jean; Mishig-Ochir, Tsogbadrakh; Lee, Bong-Jin

    2014-12-01

    The increasing appearance of multidrug-resistant pathogens has created an urgent need for suitable alternatives to current antibiotics. Antimicrobial peptides (AMPs), which act as defensive weapons against microbes, have received great attention because of broad-spectrum activities, unique action mechanisms and rare antibiotic-resistant variants. Despite desirable characteristics, they have shown limitations in pharmaceutical development due to toxicity, stability and manufacturing costs. Because of these drawbacks, only a few AMPs have been tested in Phase III clinical trials and no AMPs have been approved by the US FDA yet. However, these obstacles could be overcome by well-known methods such as changing physicochemical characteristics and introducing nonnatural amino acids, acetylation or amidation, as well as modern techniques like molecular targeted AMPs, liposomal formulations and drug delivery systems. Thus, the current challenge in this field is to develop therapeutic AMPs at a reasonable cost as well as to overcome the limitations.

  18. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  19. Antimicrobial Peptides and Colitis

    PubMed Central

    Ho, Samantha; Pothoulakis, Charalabos; Koon, Hon Wai

    2013-01-01

    Antimicrobial peptides (AMPs) are important components of innate immunity. They are often expressed in response to colonic inflammation and infection. Over the last several years, the roles of several antimicrobial peptides have been explored. Gene expression of many AMPs (beta defensin HBD2-4 and cathelicidin) is induced in response to invasion of gut microbes into the mucosal barrier. Some AMPs are expressed in a constitutive manner (alpha defensin HD 5-6 and beta defensin HBD1), while others (defensin and bactericidal/permeability increasing protein BPI) are particularly associated with Inflammatory Bowel Disease (IBD) due to altered defensin expression or development of autoantibodies against Bactericidal/permeability increasing protein (BPI). Various AMPs have different spectrum and strength of antimicrobial effects. Some may play important roles in modulating the colitis (cathelicidin) while others (lactoferrin, hepcidin) may represent biomarkers of disease activity. The use of AMPs for therapeutic purposes is still at an early stage of development. A few natural AMPs were shown to be able to modulate colitis when delivered intravenously or intracolonically (cathelicidin, elafin and SLPI) in mouse colitis models. New AMPs (synthetic or artificial non-human peptides) are being developed and may represent new therapeutic approaches against colitis. This review discusses the latest research developments in the AMP field with emphasis in innate immunity and pathophysiology of colitis. PMID:22950497

  20. Design of self-processing antimicrobial peptides for plant protection.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    2000-08-01

    Small antimicrobial peptides are excellent candidates for inclusion in self-processing proteins that could be used to confer pathogen resistance in transgenic plants. Antimicrobial peptides as small as 22 amino acids in length have been designed to incorporate the residual amino acids left from protein processing by the tobacco etch virus'(TEVs') NIa protease. Also, by minimizing the length of these peptides and the number of highly hydrophobic residues, haemolytic activity was reduced without affecting the peptide's antimicrobial activity.

  1. Plant antimicrobial peptides.

    PubMed

    Nawrot, Robert; Barylski, Jakub; Nowicki, Grzegorz; Broniarczyk, Justyna; Buchwald, Waldemar; Goździcka-Józefiak, Anna

    2014-05-01

    Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.

  2. Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids.

    PubMed

    Carmona, G; Rodriguez, A; Juarez, D; Corzo, G; Villegas, E

    2013-08-01

    Cationic antimicrobial peptides (AMPs) have attracted a great interest as novel class of antibiotics that might help in the treatment of infectious diseases caused by pathogenic bacteria. However, some AMPs with high antimicrobial activities are also highly hemolytic and subject to proteolytic degradation from human and bacterial proteases that limit their pharmaceutical uses. In this work a D-diastereomer of Pandinin 2, D-Pin2, was constructed to observe if it maintained antimicrobial activity in the same range as the parental one, but with the purpose of reducing its hemolytic activity to human erythrocytes and improving its ability to resist proteolytic cleavage. Although, the hydrophobic and secondary structure characteristics of L- and D-Pin2 were to some extent similar, an important reduction in D-Pin2 hemolytic activity (30-40 %) was achieved compared to that of L-Pin2 over human erythrocytes. Furthermore, D-Pin2 had an antimicrobial activity with a MIC value of 12.5 μM towards Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae and two strains of Pseudomonas aeruginosa in agar diffusion assays, but it was half less potent than that of L-Pin2. Nevertheless, the antimicrobial activity of D-Pin2 was equally effective as that of L-Pin2 in microdilution assays. Yet, when D- and L-Pin2 were incubated with trypsin, elastase and whole human serum, only D-Pin2 kept its antimicrobial activity towards all bacteria, but in diluted human serum, L- and D-Pin2 maintained similar peptide stability. Finally, when L- and D-Pin2 were incubated with proteases from P. aeruginosa DFU3 culture, a clinical isolated strain, D-Pin2 kept its antibiotic activity while L-Pin2 was not effective.

  3. Spectral and biological evaluation of a synthetic antimicrobial peptide derived from 1-aminocyclohexane carboxylic acid.

    PubMed

    Abercrombie, J J; Leung, Kai P; Chai, Hanbo; Hicks, Rickey P

    2015-03-15

    Ac-GF(A6c)G(A6c)K(A6c)G(A6c)F(A6c)G(A6c)GK(A6c)KKKK-amide (A6c=1-aminocyclohexane carboxylic acid) is a synthetic antimicrobial peptide (AMP) that exhibits in vitro inhibitory activity against drug resistant strains of Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterococcus faecium at concentrations ranging from 10.9 to 43μM. Spectroscopic investigations were conducted to determine how this AMP interacts with simple membrane model systems in order to provide insight into possible mechanisms of action. CD and 2D-(1)H NMR experiments indicated this AMP on binding to SDS and DPC micelles adopts conformations with varying percentages of helical and random coil conformers. CD investigations in the presence of three phospholipid SUVs consisting of POPC, 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC revealed: (1) The interactions occurring with POPC SUVs have minimal effect on the conformational diversity of the AMP yielding conformations similar to those observed in buffer. (2) The interactions with 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC SUVs exhibited a greater influence on the percentage of different conformers contributing to the CD spectra. (3) The presence of a high of percentage of helical conformers was not observed in the presence of SUVs as was the case with micelles. This data indicates that the diversity of surface bound conformations adopted by this AMP are very different from the diversity of conformations adopted by this AMP on insertion into the lipid bilayer. CD spectra of this AMP in the presence of SUVs consisting of LPS isolated from P. aeruginosa, K. pneumoniae and Escherichia coli exhibited characteristics associated with various helical conformations.

  4. Human Antimicrobial Peptides and Proteins

    PubMed Central

    Wang, Guangshun

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to

  5. Antimicrobial peptides: properties and applicability.

    PubMed

    van 't Hof, W; Veerman, E C; Helmerhorst, E J; Amerongen, A V

    2001-04-01

    All organisms need protection against microorganisms, e. g. bacteria, viruses and fungi. For many years, attention has been focused on adaptive immunity as the main antimicrobial defense system. However, the adaptive immune system, with its network of humoral and cellular responses is only found in higher animals, while innate immunity is encountered in all living creatures. The turning point in the appreciation of the innate immunity was the discovery of antimicrobial peptides in the early eighties. In general these peptides act by disrupting the structural integrity of the microbial membranes. It has become clear that membrane-active peptides and proteins play a crucial role in both the innate and the adaptive immune system as antimicrobial agents. This review is focused on the functional and structural features of the naturally occurring antimicrobial peptides, and discusses their potential as therapeutics.

  6. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing.

    PubMed

    Xie, Zhiwei; Aphale, Nikhil V; Kadapure, Tejaswi D; Wadajkar, Aniket S; Orr, Sara; Gyawali, Dipendra; Qian, Guoying; Nguyen, Kytai T; Yang, Jian

    2015-12-01

    Wound healing is usually facilitated by the use of a wound dressing that can be easily applied to cover the wound bed, maintain moisture, and avoid bacterial infection. In order to meet all of these requirements, we developed an in situ forming biodegradable hydrogel (iFBH) system composed of a newly developed combination of biodegradable poly(ethylene glycol) maleate citrate (PEGMC) and poly(ethylene glycol) diacrylate (PEGDA). The in situ forming hydrogel systems are able to conform to the wound shape in order to cover the wound completely and prevent bacterial invasion. A 2(k) factorial analysis was performed to examine the effects of polymer composition on specific properties, including the curing time, Young's modulus, swelling ratio, and degradation rate. An optimized iFBH formulation was achieved from the systematic factorial analysis. Further, in vitro biocompatibility studies using adult human dermal fibroblasts (HDFs) confirmed that the hydrogels and degradation products are not cytotoxic. The iFBH wound dressing was conjugated and functionalized with antimicrobial peptides as well. Evaluation against bacteria both in vitro and in vivo in rats demonstrated that the peptide-incorporated iFBH wound dressing offered excellent bacteria inhibition and promoted wound healing. These studies indicated that our in situ forming antimicrobial biodegradable hydrogel system is a promising candidate for wound treatment.

  7. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  8. Novel formulations for antimicrobial peptides.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2014-10-09

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  9. Two novel antimicrobial peptides from centipede venoms.

    PubMed

    Peng, Kanfu; Kong, Yi; Zhai, Lei; Wu, Xiongfei; Jia, Peng; Liu, Jingze; Yu, Haining

    2010-01-01

    Centipede venoms are complex mixtures of biochemically and pharmacologically active components such as peptides and proteins. Very few are known about their pharmacological actions. The present work reports the structural and functional characterization of two antimicrobial peptides (scolopin 1 and -2) identified from centipede venoms of Scolopendra subspinipes mutilans by Sephadex gel filtration and reverse-phase high-performance liquid chromatography (RP-HPLC). The amino acid sequences of scolopin 1 and -2 were FLPKMSTKLRVPYRRGTKDYH and GILKKFMLHRGTKVYKMRTLSKRSH determined by Edman degradation and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Both scolopin 1 and -2 showed strong antimicrobial activities against tested microorganisms including Gram-positive/negative bacteria and fungi. They also showed moderate hemolytic activity against both human and rabbit red cells. This is the first report of antimicrobial peptides from centipedes.

  10. Prospects of In vivo Incorporation of Non-canonical Amino Acids for the Chemical Diversification of Antimicrobial Peptides

    PubMed Central

    Baumann, Tobias; Nickling, Jessica H.; Bartholomae, Maike; Buivydas, Andrius; Kuipers, Oscar P.; Budisa, Nediljko

    2017-01-01

    The incorporation of non-canonical amino acids (ncAA) is an elegant way for the chemical diversification of recombinantly produced antimicrobial peptides (AMPs). Residue- and site-specific installation methods in several bacterial production hosts hold great promise for the generation of new-to-nature AMPs, and can contribute to tackle the ongoing emergence of antibiotic resistance in pathogens. Especially from a pharmacological point of view, desirable improvements span pH and protease resistance, solubility, oral availability and circulation half-life. Although the primary focus of this report is on ribosomally synthesized and post-translationally modified peptides (RiPPs), we have included selected cases of peptides produced by solid phase peptide synthesis to comparatively show the potential and impact of ncAA introduction. Generally speaking, the introduction of ncAAs in recombinant AMPs delivers novel levels of chemical diversification. Cotranslationally incorporated, they can take part in AMP biogenesis either through direction interaction with elements of the post-translational modification (PTM) machinery or as untargeted sites with unique physicochemical properties and chemical handles for further modification. Together with genetic libraries, genome mining and processing by PTM machineries, ncAAs present not a mere addition to this process, but a highly diverse pool of building blocks to significantly broaden the chemical space of this valuable class of molecules. This perspective summarizes new developments of ncAA containing peptides. Challenges to be resolved in order to reach large-scale pharmaceutical production of these promising compounds and prospects for future developments are discussed. PMID:28210246

  11. Antimicrobial Peptides Under Clinical Trials.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata

    2017-01-01

    Today microbial drug resistance has become a serious problem not only within inpatient setting but also within outpatient setting. Repeated intake and unnecessary usage of antibiotics as well as the transfer of resistance genes are the most important factors that make the microorganisms resistant to conventional antibiotics. A large number of antimicrobials successfully used for prophylaxis and therapeutic purposes have now become ineffective [1, 2]. Therefore, new molecules are being studied to be used in the treatment of various diseases. Some of these molecules are structural compounds based on a combination of peptides, for example, naturally occurring endogenous peptide antibiotics and their synthetic analogues or molecules designed de novo using QSAR (quantitative structureproperty relationships)-based methods [3]. Trying to exploit numerous advantages of antimicrobial peptides such as high potency and selectivity, broad range of targets, potentially low toxicity and low accumulation in tissues, pharmaceutical industry aims to develop them as commercially available drugs and appropriate clinical trials are being conducted [4]. In this paper we define clinical trials steps and describe current status of several antimicrobial peptides under clinical development as well as briefly depict peptide drug formulation.

  12. Classification of antimicrobial peptides with imbalanced datasets

    NASA Astrophysics Data System (ADS)

    Camacho, Francy L.; Torres, Rodrigo; Ramos Pollán, Raúl

    2015-12-01

    In the last years, pattern recognition has been applied to several fields for solving multiple problems in science and technology as for example in protein prediction. This methodology can be useful for prediction of activity of biological molecules, e.g. for determination of antimicrobial activity of synthetic and natural peptides. In this work, we evaluate the performance of different physico-chemical properties of peptides (descriptors groups) in the presence of imbalanced data sets, when facing the task of detecting whether a peptide has antimicrobial activity. We evaluate undersampling and class weighting techniques to deal with the class imbalance with different classification methods and descriptor groups. Our classification model showed an estimated precision of 96% showing that descriptors used to codify the amino acid sequences contain enough information to correlate the peptides sequences with their antimicrobial activity by means of learning machines. Moreover, we show how certain descriptor groups (pseudoaminoacid composition type I) work better with imbalanced datasets while others (dipeptide composition) work better with balanced ones.

  13. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    PubMed Central

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  14. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5.

    PubMed

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João Arg; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity.

  15. Three new antimicrobial peptides from the scorpion Pandinus imperator.

    PubMed

    Zeng, Xian-Chun; Zhou, Lingli; Shi, Wanxia; Luo, Xuesong; Zhang, Lei; Nie, Yao; Wang, Jinwei; Wu, Shifen; Cao, Bin; Cao, Hanjun

    2013-07-01

    Three novel cysteine-free venom peptides, which were referred to as Pantinin-1, Pantinin-2 and Pantinin-3, respectively, have been identified from the scorpion Pandinus imperator by cDNA cloning strategy. The precursor of each peptide consists of a signal peptide, a mature peptide with no disulfide bridges, and an acidic propeptide with a typical processing signal. Each of the three peptides is an α-helical, cationic and amphipathic molecule with 13 or 14 amino acid residues. Their amino acid sequences are homologous to those of some 13-mer antimicrobial peptides isolated from scorpions. Antimicrobial assay showed that all the three peptides possess relatively strong activities against Gram-positive bacteria and a fungus, but have very weak antimicrobial activities against Gram-negative bacteria. Toxicity assay showed that the three peptides exhibit very low or mild hemolytic activities against human red blood cells. It is interesting to see that Pantinin-3 is able to potently inhibit the growth of vancomycin-resistant Enterococcus (VRE) S13, a pathogen that can cause a number of human infections; this suggests that Pantinin-3 has great potential to be applied in the treatment of VRE infections. Our findings gain new insights into the structure/function relationships of the small linear cationic antimicrobial peptides from scorpions, and provide new templates for designing of antimicrobial agents targeting antibiotic-resistant pathogenic bacteria.

  16. Antimicrobial peptides: clinical relevance and therapeutic implications.

    PubMed

    Pinheiro da Silva, Fabiano; Machado, Marcel Cerqueira César

    2012-08-01

    Antimicrobial peptides (AMPs) are molecules that provide protection against environmental pathogens, acting against a large number of microorganisms, including bacteria, fungi, yeast, virus and others. Two major groups of antimicrobial peptides are found in humans: cathelicidins and defensins. Recently, several studies have furnished information that besides their role in infection diseases, antimicrobial peptides play a role in diseases as diverse as inflammatory disorders, autoimmunity and cancer. Here, we discuss the role of antimicrobial peptides and vitamin D have in such complex diseases and propose their use should be more explored in the diagnosis and treatment of such conditions.

  17. Membrane disruption mechanism of antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee

    2012-04-01

    Largely distributed among living organisms, antimicrobial peptides are a class of small (<100 residues) host defense peptides that induce selective membrane lytic activity against microbial pathogens. The permeabilizing behavior of these diverse peptides has been commonly attributed to the formation of pores, and such pore formation has been categorized as barrel-stave, toroidal, or carpet-like. With the continuing discovery of new peptide species, many are uncharacterized and the exact mechanism is unknown. Through the use of atomic force microscopy, the disruption of supported lipid bilayer patches by protegrin-1 is concentration-dependent. The intercalation of antimicrobial peptide into the bilayer results in structures beyond that of pore formation, but with the formation of worm-like micelles at high peptide concentration. Our results suggest that antimicrobial peptide acts to lower the interfacial energy of the bilayer in a way similar to detergents. Antimicrobial peptides with structural differences, magainin-1 and aurein 1.1, exhibit a mechanistic commonality.

  18. Reversible liposome association induced by LAH4: a peptide with potent antimicrobial and nucleic acid transfection activities.

    PubMed

    Marquette, Arnaud; Lorber, Bernard; Bechinger, Burkhard

    2010-06-02

    We report on the reversible association of anionic liposomes induced by an antimicrobial peptide (LAH4). The process has been characterized for mixed membranes of POPC and POPS at molar ratios of 1:1, 3:1, and 9:1. Although the vesicles remain in suspension in the presence of excess amounts of peptide, the addition of more lipids results in surface charge neutralization, aggregation of the liposomes, and formation of micrometer-sized structures that coexist in equilibrium with vesicles in suspension. At low ratios of anionic lipids, vesicle aggregation is a reversible process, and vesicle disassembly is observed upon inversion of the surface charge by further supplementation with anionic vesicles. In contrast, a different process, membrane fusion, occurs in the presence of high phosphatidylserine concentrations. Upon binding to membranes containing low POPS concentrations, the peptide adopts an in-plane alpha-helical structure, a secondary structure that is conserved during vesicle association and dissociation. Our finding that peptides are essential for vesicle aggregation contributes to a better understanding of the activity of antimicrobial peptides, and suggests an additional layer of complexity in membrane-protein lipid interactions.

  19. Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities

    PubMed Central

    Marquette, Arnaud; Lorber, Bernard; Bechinger, Burkhard

    2010-01-01

    Abstract We report on the reversible association of anionic liposomes induced by an antimicrobial peptide (LAH4). The process has been characterized for mixed membranes of POPC and POPS at molar ratios of 1:1, 3:1, and 9:1. Although the vesicles remain in suspension in the presence of excess amounts of peptide, the addition of more lipids results in surface charge neutralization, aggregation of the liposomes, and formation of micrometer-sized structures that coexist in equilibrium with vesicles in suspension. At low ratios of anionic lipids, vesicle aggregation is a reversible process, and vesicle disassembly is observed upon inversion of the surface charge by further supplementation with anionic vesicles. In contrast, a different process, membrane fusion, occurs in the presence of high phosphatidylserine concentrations. Upon binding to membranes containing low POPS concentrations, the peptide adopts an in-plane α-helical structure, a secondary structure that is conserved during vesicle association and dissociation. Our finding that peptides are essential for vesicle aggregation contributes to a better understanding of the activity of antimicrobial peptides, and suggests an additional layer of complexity in membrane-protein lipid interactions. PMID:20513398

  20. The First Salamander Defensin Antimicrobial Peptide

    PubMed Central

    Jiang, Ke; Rong, Mingqiang; Lai, Ren

    2013-01-01

    Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its seqeuence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders. PMID:24386139

  1. The first salamander defensin antimicrobial peptide.

    PubMed

    Meng, Ping; Yang, Shilong; Shen, Chuanbin; Jiang, Ke; Rong, Mingqiang; Lai, Ren

    2013-01-01

    Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its sequence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders.

  2. Antimicrobial Peptides in Human Sepsis

    PubMed Central

    Martin, Lukas; van Meegern, Anne; Doemming, Sabine; Schuerholz, Tobias

    2015-01-01

    Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1–3 and human beta-defensins (HBDs) 1–3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1–3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1–3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1–11 (hLF 1–11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections

  3. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective

    PubMed Central

    Ginsburg, Isaac; van Heerden, Peter Vernon; Koren, Erez

    2017-01-01

    This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders PMID:28203100

  4. The Potential of Antimicrobial Peptides as Biocides

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2011-01-01

    Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections. PMID:22072905

  5. Antimicrobial peptides: an alternative for innovative medicines?

    PubMed

    da Costa, João Pinto; Cova, Marta; Ferreira, Rita; Vitorino, Rui

    2015-03-01

    Antimicrobial peptides are small molecules with activity against bacteria, yeasts, fungi, viruses, bacteria, and even tumor cells that make these molecules attractive as therapeutic agents. Due to the alarming increase of antimicrobial resistance, interest in alternative antimicrobial agents has led to the exploitation of antimicrobial peptides, both synthetic and from natural sources. Thus, many peptide-based drugs are currently commercially available for the treatment of numerous ailments, such as hepatitis C, myeloma, skin infections, and diabetes. Initial barriers are being increasingly overcome with the development of cost-effective, more stable peptides. Herein, we review the available strategies for their synthesis, bioinformatics tools for the rational design of antimicrobial peptides with enhanced therapeutic indices, hurdles and shortcomings limiting the large-scale production of AMPs, as well as the challenges that the pharmaceutical industry faces on their use as therapeutic agents.

  6. Antimicrobial peptides as potential new antifungals.

    PubMed

    Müller, F M; Lyman, C A; Walsh, T J

    1999-01-01

    Ribosomally synthesized natural antimicrobial peptides (AP) and their synthetic derivatives are small, cationic, amphipathic molecules of 12-50 amino acids with unusually broad activity spectra. These peptides kill microorganisms by a common mechanism, which involves binding to the lipid bilayer of biological membranes, forming pores, and ultimately followed by cell lysis. Several AP from mammals, amphibians, insects, plants and their synthetic derivatives demonstrate promising in vitro activity against various pathogenic fungi including azole-resistant Candida albicans strains. In addition to their antimicrobial activity, some AP such as lactoferrin, interact with a variety of host cells and can increase the activity of natural killer and lymphokine activated killer cells. Pretreatment of polymorphonuclear neutrophil leukocytes (PMN) or monocytes with these AP also may upregulate superoxide release. AP as potential new antifungal agents offer some advantages, such as rapid killing of pathogenic fungi and the difficulty to raise mutants resistant to these peptides. AP are limited by their nonselective toxicity, stability, immunogenicity and their costs of production. Potential clinical applications of AP in the future have to be further explored in preclinical and clinical studies to assess their impact as a new class of antifungals.

  7. Cationic Hydrophobic Peptides with Antimicrobial Activity

    PubMed Central

    Stark, Margareta; Liu, Li-Ping; Deber, Charles M.

    2002-01-01

    The MICs of cationic, hydrophobic peptides of the prototypic sequence KKAAAXAAAAAXAAWAAXAAAKKKK-amide (where X is one of the 20 commonly occurring amino acids) are in a low micromolar range for a panel of gram-negative and gram-positive bacteria, with no or low hemolytic activity against human and rabbit erythrocytes. The peptides are active only when the average segmental hydrophobicity of the 19-residue core is above an experimentally determined threshold value (where X is Phe, Trp, Leu, Ile, Met, Val, Cys, or Ala). Antimicrobial activity could be increased by using peptides that were truncated from the prototype length to 11 core residues, with X being Phe and with 6 Lys residues grouped at the N terminus. We propose a mechanism for the interaction between these peptides and bacterial membranes similar to the “carpet model,” wherein the Lys residues interact with the anionic phospholipid head groups in the bacterial membrane surface and the hydrophobic core portion of the peptide is then able to interact with the lipid bilayer, causing disruption of the bacterial membrane. PMID:12384369

  8. Structure-function relationships of antimicrobial peptides.

    PubMed

    Hwang, P M; Vogel, H J

    1998-01-01

    Antimicrobial peptides are ubiquitously produced throughout nature. Many of these relatively short peptides (6-50 residues) are lethal towards bacteria and fungi, yet they display minimal toxicity towards mammalian cells. All of the peptides are highly cationic and hydrophobic. It is widely believed that they act through nonspecific binding to biological membranes, even though the exact nature of these interactions is presently unclear. High-resolution nuclear magnetic resonance (NMR) has contributed greatly to knowledge in this field, providing insight about peptide structure in aqueous solution, in organic cosolvents, and in micellar systems. Solid-state NMR can provide additional information about peptide-membrane binding. Here we review our current knowledge about the structure of antimicrobial peptides. We also discuss studies pertaining to the mechanism of action. Despite the different three-dimensional structural motifs of the various classes, they all have similar amphiphilic surfaces that are well-suited for membrane binding. Many antimicrobial peptides bind in a membrane-parallel orientation, interacting only with one face of the bilayer. This may be sufficient for antimicrobial action. At higher concentrations, peptides and phospholipids translocate to form multimeric transmembrane channels that seem to contribute to the peptide's hemolytic activity. An understanding of the key features of the secondary and tertiary structures of the antimicrobial peptides and their effects on bactericidal and hemolytic activity can aid the rational design of improved analogs for clinical use.

  9. Antimicrobial peptides of multicellular organisms

    NASA Astrophysics Data System (ADS)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  10. Antimicrobial peptide action on parasites.

    PubMed

    Torrent, Marc; Pulido, David; Rivas, Luis; Andreu, David

    2012-08-01

    Diseases caused by protozoan parasites can pose a severe thread to human health and are behind some serious neglected tropical diseases like malaria and leishmaniasis. Though several different drugs have been developed in order to eradicate these diseases, a successful candidate has not yet been discovered. Among the most active compounds tested, antimicrobial peptides (AMPs) are particularly appealing because of their wide spectrum of action. AMPs have been described to perturb protozoan homeostasis by disrupting the cellular membranes but also by interfering with key processes in the parasite metabolism. In this review we describe the diverse mechanisms of action of AMPs on protozoan targets and how they can be exploited to treat diseases. Moreover, we describe with detail the antimicrobial action of AMPs on two major parasitical infections: leishmaniasis and malaria. All the features reviewed here show that AMPs are promising drugs to target protozoan parasites and that further understanding of the mechanism of action of these compounds will lead to improved drugs that could be worth to test in a clinical phase.

  11. De Novo Design of Potent Antimicrobial Peptides

    PubMed Central

    Frecer, V.; Ho, B.; Ding, J. L.

    2004-01-01

    Lipopolysaccharide (LPS), shed by gram-negative bacteria during infection and antimicrobial therapy, may lead to lethal endotoxic shock syndrome. A rational design strategy based on the presumed mechanism of antibacterial effect was adopted to design cationic antimicrobial peptides capable of binding to LPS through tandemly repeated sequences of alternating cationic and nonpolar residues. The peptides were designed to achieve enhanced antimicrobial potency due to initial bacterial membrane binding with a reduced risk of endotoxic shock. The peptides designed displayed binding affinities to LPS and lipid A (LA) in the low micromolar range and by molecular modeling were predicted to form amphipathic β-hairpin-like structures when they bind to LPS or LA. They also exhibited strong effects against gram-negative bacteria, with MICs in the nanomolar range, and low cytotoxic and hemolytic activities at concentrations significantly exceeding their MICs. Quantitative structure-activity relationship (QSAR) analysis of peptide sequences and their antimicrobial, cytotoxic, and hemolytic activities revealed that site-directed substitutions of residues in the hydrophobic face of the amphipathic peptides with less lipophilic residues selectively decrease the hemolytic effect without significantly affecting the antimicrobial or cytotoxic activity. On the other hand, the antimicrobial effect can be enhanced by substitutions in the polar face with more polar residues, which increase the amphipathicity of the peptide. On the basis of the QSARs, new analogs that have strong antimicrobial effects but that lack hemolytic activity can be proposed. The findings highlight the importance of peptide amphipathicity and allow a rational method that can be used to dissociate the antimicrobial and hemolytic effects of cationic peptides, which have potent antimicrobial properties, to be proposed. PMID:15328096

  12. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.

    PubMed

    Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal

    2016-02-01

    Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.

  13. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    PubMed Central

    McCloskey, Alice P.; Gilmore, Brendan F.; Laverty, Garry

    2014-01-01

    Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection. PMID:25436505

  14. (Lipo)polysaccharide interactions of antimicrobial peptides.

    PubMed

    Schmidtchen, Artur; Malmsten, Martin

    2015-07-01

    Due to rapidly increasing resistance development against conventional antibiotics, as well as problems associated with diseases either triggered or deteriorated by infection, antimicrobial and anti-inflammatory peptides have attracted considerable interest during the last few years. While there is an emerging understanding of the direct antimicrobial function of such peptides through bacterial membrane destabilization, the mechanisms of their anti-inflammatory function are less clear. We here summarize some recent results obtained from our own research on anti-inflammatory peptides, with focus on peptide-(lipo)polysaccharide interactions.

  15. Novel histone-derived antimicrobial peptides use different antimicrobial mechanisms.

    PubMed

    Pavia, Kathryn E; Spinella, Sara A; Elmore, Donald E

    2012-03-01

    The increase in multidrug resistant bacteria has sparked an interest in the development of novel antibiotics. Antimicrobial peptides that operate by crossing the cell membrane may also have the potential to deliver drugs to intracellular targets. Buforin 2 (BF2) is an antimicrobial peptide that shares sequence identity with a fragment of histone subunit H2A and whose bactericidal mechanism depends on membrane translocation and DNA binding. Previously, novel histone-derived antimicrobial peptides (HDAPs) were designed based on properties of BF2, and DesHDAP1 and DesHDAP3 showed significant antibacterial activity. In this study, their DNA binding, permeabilization, and translocation abilities were assessed independently and compared to antibacterial activity to determine whether they share a mechanism with BF2. To investigate the importance of proline in determining the peptides' mechanisms of action, proline to alanine mutants of the novel peptides were generated. DesHDAP1, which shows significant similarities to BF2 in terms of secondary structure, translocates effectively across lipid vesicle and bacterial membranes, while the DesHDAP1 proline mutant shows reduced translocation abilities and antimicrobial potency. In contrast, both DesHDAP3 and its proline mutant translocate poorly, though the DesHDAP3 proline mutant is more potent. Our findings suggest that a proline hinge can promote membrane translocation in some peptides, but that the extent of its effect on permeabilization depends on the peptide's amphipathic properties. Our results also highlight the different antimicrobial mechanisms exhibited by histone-derived peptides and suggest that histones may serve as a source of novel antimicrobial peptides with varied properties.

  16. Antimicrobial Peptides Targeting Gram-Positive Bacteria

    PubMed Central

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  17. Antimicrobial peptides and proteins of the horse - insights into a well-armed organism

    PubMed Central

    2011-01-01

    Antimicrobial peptides play a pivotal role as key effectors of the innate immune system in plants and animals and act as endogenous antibiotics. The molecules exhibit an antimicrobial activity against bacteria, viruses, and eukaryotic pathogens with different specificities and potencies depending on the structure and amino-acid composition of the peptides. Several antimicrobial peptides were comprehensively investigated in the last three decades and some molecules with remarkable antimicrobial properties have reached the third phase of clinical studies. Next to the peptides themselves, numerous organisms were examined and analyzed regarding their repertoire of antimicrobial peptides revealing a huge number of candidates with potencies and properties for future medical applications. One of these organisms is the horse, which possesses numerous peptides that are interesting candidates for therapeutical applications in veterinary medicine. Here we summarize investigations and knowledge on equine antimicrobial peptides, point to interesting candidates, and discuss prospects for therapeutical applications. PMID:21888650

  18. [Antimicrobial peptide in dentisty. Literature review].

    PubMed

    Sato, F Simain; Rompen, E; Heinen, E

    2009-12-01

    The use of antimicrobial substances has contributed to the development of multiple antimicrobial resistances (1), challenging the pharmaceutical industry to develop with new, innovative, and effective molecules. Discovered around 1980, molecules called natural antimicrobial peptides (AMPs) appear to hold great potential for the treatment of infections. These cationic peptides are able to stop the bacterial development and to control infections. The purpose of this review is to help improve the understanding of the way AMPs operate in the context of the development of new cures against viruses, bacteria, and mushrooms found in the human body in general and in the oral cavity in particular.

  19. Antimicrobial preservative effectiveness of natural peptide antibiotics.

    PubMed

    Kamysz, Wojciech; Turecka, Katarzyna

    2005-01-01

    The constantly growing resistance of microbes to drugs and other substances which fight microbial infections leads to search for new antimicrobial substances. Among substances which attract the scientists attention are antimicrobial peptides. Such compounds are quite common in nature and belong to the most important elements of the innate immune system of all living organisms. Numerous antimicrobial peptides have been isolated from insects, amphibians, mammals, plants and bacterial species. In this study we investigated the in vitro activity of two animal peptides, citropin 1.1 and protegrin 1 alone and in combination against microbial strains proposed for the evaluation of preservatives: Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9027, Candida albicans ATCC 10231, and Aspergillus niger ATCC 16404. The results of the antimicrobial preservative effectiveness were compared to the values received for benzalkonium chloride, popular preservative of medicines and cosmetics.

  20. Composite Membranes of Recombinant Silkworm Antimicrobial Peptide and Poly (L-lactic Acid) (PLLA) for biomedical application

    PubMed Central

    Li, Zhi; Liu, Xuan; Li, Yi; Lan, Xiqian; Leung, Polly Hangmei; Li, Jiashen; Li, Gang; Xie, Maobin; Han, Yanxia; Lin, Xiaofen

    2016-01-01

    Antimicrobial peptides, produced by innate immune system of hosts in response to invading pathogens, are capable of fighting against a spectrum of bacteria, viruses, fungi, parasites and cancer cells. Here, a recombinant silkworm AMP Bmattacin2 from heterologous expression is studied, indicating a broad spectrum of antibacterial activity and showing selective killing ability towards skin and colon cancer cells over their normal cell counterparts. For the purpose of biomedical application, the electrospinning fabrication technique is employed to load Bmattacin2 into PLLA nanofibrous membrane. In addition to a good compatibility with the normal cells, Bmattacin2 loaded nanofibrous membranes demonstrate instant antibacterial effects and sustained anticancer effects. The cancer cell and bacteria targeting dynamics of recombinant Bmattacin2 are investigated. With these characteristics, PLLA/Bmattacin2 composite membranes have a great potential for developing novel biomedical applications such as cancer therapies and wound healing treatments. PMID:27503270

  1. Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides.

    PubMed

    Wang, Lan; Liu, Qian; Chen, Jin-Chun; Cui, Yi-Xian; Zhou, Bing; Chen, Yong-Xiang; Zhao, Yu-Fen; Li, Yan-Mei

    2012-07-01

    Human islet amyloid polypeptide (hIAPP) shows an antimicrobial activity towards two types of clinically relevant bacteria. The potency of hIAPP varies with its aggregation states. Circular dichroism was employed to determine the interaction between hIAPP and bacteria lipid membrane mimic. The antimicrobial activity of each aggregate species is associated with their ability to induce membrane disruption. Our findings provide new evidence revealing the antimicrobial activity of amyloid peptide, which suggest a possible connection between amyloid peptides and antimicrobial peptides.

  2. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  3. A novel family of antimicrobial peptides from the skin of Amolops loloensis.

    PubMed

    Wang, Aili; Wang, Jiyuan; Hong, Jing; Feng, Hao; Yang, Hailong; Yu, Xiaodong; Ma, Yufang; Lai, Ren

    2008-06-01

    While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Sichuan region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the rufous-spotted torrent frog, Amolops loloensis. Members of the new peptide family named amolopins are composed of 18 amino acids with a unique sequence, for example, NILSSIVNGINRALSFFG. By BLAST search, amolopins did no show similarity to any known peptides. Among the tested microorganisms, native and synthetic peptides only showed antimicrobial activities against Staphylococcus aureus ATCC2592 and Bacillus pumilus, no effects on other microorganisms. The CD spectroscopy showed that it adopted a structure of random combined with beta-sheet in water, Tris-HCl or Tris-HCl-SDS. Several cDNAs encoding amolopins were cloned from the skin cDNA library of A. loloensis. The precursors of amolopin are composed of 62 amino acid residues including predicted signal peptides, acidic propieces, and mature antimicrobial peptides. The preproregion of amolopin precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature amolopins are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor.

  4. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models

    PubMed Central

    KWON, Ae Jeong; MOON, Ja Young; KIM, Won Kyong; KIM, Suk; HUR, Jin

    2016-01-01

    Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile PBS, group B mice were intraperitoneally (ip) immunized with 3 × 108 colony-forming units (CFUs) of B. abortus strain RB51, group C mice were immunized ip with 3 × 108 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 × 109 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) were significantly higher in groups B–D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice from systemic infection with virulent B. abortus. PMID:27349900

  5. Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships.

    PubMed

    Müller, Alex T; Kaymaz, Aral C; Gabernet, Gisela; Posselt, Gernot; Wessler, Silja; Hiss, Jan A; Schneider, Gisbert

    2016-12-01

    We present an adaptive neural network model for chemical data classification. The method uses an evolutionary algorithm for optimizing the network structure by seeking sparsely connected architectures. The number of hidden layers, the number of neurons in each layer and their connectivity are free variables of the system. We used the method for predicting antimicrobial peptide activity from the amino acid sequence. Visualization of the evolved sparse network structures suggested a high charge density and a low aggregation potential in solution as beneficial for antimicrobial activity. However, different training data sets and peptide representations resulted in greatly varying network structures. Overall, the sparse network models turned out to be less accurate than fully-connected networks. In a prospective application, we synthesized and tested 10 de novo generated peptides that were predicted to either possess antimicrobial activity, or to be inactive. Two of the predicted antibacterial peptides showed cosiderable bacteriostatic effects against both Staphylococcus aureus and Escherichia coli. None of the predicted inactive peptides possessed antibacterial properties. Molecular dynamics simulations of selected peptide structures in water and TFE suggest a pronounced peptide helicity in a hydrophobic environment. The results of this study underscore the applicability of neural networks for guiding the computer-assisted design of new peptides with desired properties.

  6. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica.

    PubMed

    Zhong, Jian; Wang, Wenhong; Yang, Xiaomei; Yan, Xiuwen; Liu, Rui

    2013-01-01

    Antimicrobial peptides (AMPs) are important components of the innate immunity. Many antimicrobial peptides have been found from marine mollusks. Little information about AMPs of mollusks living on land is available. A novel cysteine-rich antimicrobial peptide (mytimacin-AF) belonging to the peptide family of mytimacins was purified and characterized from the mucus of the snail of Achatina fulica. Its cDNA was also cloned from the cDNA library. Mytimacin-AF is composed of 80 amino acid residues including 10 cysteines. Mytimacin-AF showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria and the fungus Candida albicans. Among tested microorganisms, it exerted strongest antimicrobial activity against Staphylococcus aureus with a minimal peptide concentration (MIC) of 1.9 μg/ml. Mytimacin-AF had little hemolytic activity against human blood red cells. The current work confirmed the presence of mytimacin-like antimicrobial peptide in land-living mollusks.

  7. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.

    PubMed

    Malanovic, Nermina; Lohner, Karl

    2016-05-01

    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  8. A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli.

    PubMed

    Zhao, Chun-Xia; Dwyer, Mirjana Dimitrijev; Yu, Alice Lei; Wu, Yang; Fang, Sheng; Middelberg, Anton P J

    2015-05-01

    Antimicrobial peptides, as a new class of antibiotics, have generated tremendous interest as potential alternatives to classical antibiotics. However, the large-scale production of antimicrobial peptides remains a significant challenge. This paper reports a simple and low-cost chromatography-free platform technology for producing antimicrobial peptides in Escherichia coli (E. coli). A fusion protein comprising a variant of the helical biosurfactant protein DAMP4 and the known antimicrobial peptide pexiganan is designed by joining the two polypeptides, at the DNA level, via an acid-sensitive cleavage site. The resulting DAMP4(var)-pexiganan fusion protein expresses at high level and solubility in recombinant E. coli, and a simple heat-purification method was applied to disrupt cells and deliver high-purity DAMP4(var)-pexiganan protein. Simple acid cleavage successfully separated the DAMP4 variant protein and the antimicrobial peptide. Antimicrobial activity tests confirmed that the bio-produced antimicrobial peptide has the same antimicrobial activity as the equivalent product made by conventional chemical peptide synthesis. This simple and low-cost platform technology can be easily adapted to produce other valuable peptide products, and opens a new manufacturing approach for producing antimicrobial peptides at large scale using the tools and approaches of biochemical engineering.

  9. Characterization of diverse antimicrobial peptides in skin secretions of Chungan torrent frog Amolops chunganensis.

    PubMed

    Yang, Xiaohong; Xia, Jiangnan; Yu, Zhijun; Hu, Yuhong; Li, Fengjiao; Meng, Hao; Yang, Shujie; Liu, Jingze; Wang, Hui

    2012-11-01

    We have cloned, synthesized, and characterized 11 novel antimicrobial peptides from a skin derived cDNA library of the Chungan torrent frog, Amolops chunganensis. Seven of the 11 antimicrobial peptides were present in authentic A. chunganensis skin secretions. Sequence analysis indicated that the 11 peptides belonged to the temporin, esculentin-2, palustrin-2, brevinin-1, and brevinin-2 families. The peptides displayed potent antimicrobial activities against several strains of microorganisms. One peptide, brevinin-1CG5, demonstrated antimicrobial activity against all tested Gram-positive and Gram-negative bacteria and fungi, and showed high antimicrobial potency (MIC=0.6 μM) against Gram-positive bacterium Rhodococcus rhodochrous. Some peptides also demonstrated weak hemolytic activity against human erythrocytes in vitro. Phylogenetic analysis based on the amino acid sequences of brevinin-1, brevinin-2, and esculentin-2 peptides from family Ranidae confirmed that the current taxonomic status of A. chunganensis is correct.

  10. Insights into Antimicrobial Peptides from Spiders and Scorpions.

    PubMed

    Wang, Xiuqing; Wang, Guangshun

    2016-01-01

    The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider's and 63 scorpion's AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses.

  11. Insights into Antimicrobial Peptides from Spiders and Scorpions

    PubMed Central

    Wang, Xiuqing; Wang, Guangshun

    2015-01-01

    The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider’s and 63 scorpion’s AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses. PMID:27165405

  12. Design of novel analogues of short antimicrobial peptide anoplin with improved antimicrobial activity.

    PubMed

    Wang, Yang; Chen, Jianbo; Zheng, Xin; Yang, Xiaoli; Ma, Panpan; Cai, Ying; Zhang, Bangzhi; Chen, Yuan

    2014-12-01

    Currently, novel antibiotics are urgently required to combat the emergence of drug-resistant bacteria. Antimicrobial peptides with membrane-lytic mechanism of action have attracted considerable interest. Anoplin, a natural α-helical amphiphilic antimicrobial peptide, is an ideal research template because of its short sequence. In this study, we designed and synthesized a group of analogues of anoplin. Among these analogues, anoplin-4 composed of D-amino acids displayed the highest antimicrobial activity due to increased charge, hydrophobicity and amphiphilicity. Gratifyingly, anoplin-4 showed low toxicity to host cells, indicating high bacterial selectivity. Furthermore, the mortality rate of mice infected with Escherichia coli was significantly reduced by anoplin-4 treatment relative to anoplin. In conclusion, anoplin-4 is a novel anoplin analogue with high antimicrobial activity and enzymatic stability, which may represent a potent agent for the treatment of infection.

  13. Toxins and antimicrobial peptides: interactions with membranes

    NASA Astrophysics Data System (ADS)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  14. Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect.

    PubMed

    Boge, Lukas; Bysell, Helena; Ringstad, Lovisa; Wennman, David; Umerska, Anita; Cassisa, Viviane; Eriksson, Jonny; Joly-Guillou, Marie-Laure; Edwards, Katarina; Andersson, Martin

    2016-05-03

    The number of antibiotic-resistant bacteria is increasing worldwide, and the demand for novel antimicrobials is constantly growing. Antimicrobial peptides (AMPs) could be an important part of future treatment strategies of various bacterial infection diseases. However, AMPs have relatively low stability, because of proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are greatly needed, to achieve efficient treatments. In addition, the carrier system also must administrate the peptide in a controlled manner to match the therapeutic dose window. In this work, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for AMPs. These LC structures have the capability of solubilizing both hydrophilic and hydrophobic substances, as well as being biocompatible and biodegradable. Both bulk gels and discrete dispersed structures (i.e., cubosomes and hexosomes) have been studied. Three AMPs have been investigated with respect to phase stability of the LC structures and antimicrobial effect: AP114, DPK-060, and LL-37. Characterization of the LC structures was performed using small-angle X-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by ultra performance liquid chromatography. The antimicrobial effect of the LCNPs was investigated in vitro using minimum inhibitory concentration (MIC) and time-kill assay. The most hydrophobic peptide (AP114) was shown to induce an increase in negative curvature of the cubic LC system. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. Moreover, cubosomes loaded with peptides AP114 and DPK-060 showed preserved antimicrobial activity, whereas particles loaded

  15. Identification and characterization of antimicrobial peptides from the skin of the endangered frog Odorrana ishikawae.

    PubMed

    Iwakoshi-Ukena, Eiko; Ukena, Kazuyoshi; Okimoto, Aiko; Soga, Miyuki; Okada, Genya; Sano, Naomi; Fujii, Tamotsu; Sugawara, Yoshiaki; Sumida, Masayuki

    2011-04-01

    The endangered anuran species, Odorrana ishikawae, is endemic to only two small Japanese Islands, Amami and Okinawa. To assess the innate immune system in this frog, we investigated antimicrobial peptides in the skin using artificially bred animals. Nine novel antimicrobial peptides containing the C-terminal cyclic heptapeptide domain were isolated on the basis of antimicrobial activity against Escherichia coli. The peptides were members of the esculentin-1 (two peptides), esculentin-2 (one peptide), palustrin-2 (one peptide), brevinin-2 (three peptides) and nigrocin-2 (two peptides) antimicrobial peptide families. They were named esculentin-1ISa, esculentin-1ISb, esculentin-2ISa, palustrin-2ISa, brevinin-2ISa, brevinin-2ISb, brevinin-2ISc, nigrocin-2ISa and nigrocin-2ISb. Peptide primary structures suggest a close relationship with the Asian odorous frogs, Odorrana grahami and Odorrana hosii. These antimicrobial peptides possessed a broad-spectrum of growth inhibition against five microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis and Candida albicans). Nine different cDNAs encoding the precursor proteins were also cloned and showed that the precursor proteins exhibited a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and an antimicrobial peptide at the C-terminus.

  16. Antimicrobial Peptides for Use in Biosensing Applications

    DTIC Science & Technology

    2004-12-01

    S., Bevins, C. L., Brasseur, M. M., Tomassini, N., Turner, K., Eck, H. and Zasloff, M., 1991: Antimicrobial Peptides in the Stomach of Xenopus ... laevis , The Journal of Biological Chemistry, 266, 19851-19857. Steiner, H., Andreu, D. and Merrifield, R. B., 1988: Binding and action of cecropin

  17. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.

  18. Antimicrobial potency and selectivity of simplified symmetric-end peptides.

    PubMed

    Dong, Na; Zhu, Xin; Chou, Shuli; Shan, Anshan; Li, Weizhong; Jiang, Junguang

    2014-09-01

    Because antimicrobial peptides (AMPs) are potentially useful for the treatment of multidrug-resistant infections, more attention is being paid to the structural modification and structure-function relationship of both naturally occurring and synthetic AMPs. Previous studies indicated that Protegrin-1 (PG-1), isolated from porcine leukocytes, exhibited considerable antimicrobial activity and cytotoxicity. The β-turn of PG-1 floated on the surface of bacterial membrane, while its β-strand inserted into the bacterial membrane and formed pores that were dedicated to producing cytotoxicity. For reducing cytotoxicity and improving cells selectivity, we designed a series of simplified symmetric-end peptides by combining the β-turn of PG-1 with simple amino acid repeat sequences. The sequence of designed symmetric-end peptides is (XR)nH(RX)n, (n = 1,2; X represents I, F, W and P; H represents CRRRFC). The symmetric-end peptides displayed antimicrobial activity against both gram-positive and gram-negative bacteria. In particular, (XR)2H(RX)2 (X here is I, F and W) showed greater antimicrobial potency than PG-1. Hemolysis activity and cytotoxicity, detected by using human red blood cells (RBCs) and human embryonic lung fibroblasts MRC-5 cells, were observably lower than the native peptide PG-1. (IR)2H(RI)2 (IR2), folded into β-sheet structures, displayed the highest therapeutic index, suggesting its great cell selectivity. The fluorescence spectroscopy, flow cytometry, and electron microscopy observation indicated that IR2 exhibited great membrane penetration potential by inducing membrane blebbing, disruption and lysis. Collectively, generating symmetric-end β-sheet peptides is a promising strategy for designing effective AMPs with great antimicrobial activities and cell selectivity.

  19. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity.

    PubMed

    Maturana, P; Martinez, M; Noguera, M E; Santos, N C; Disalvo, E A; Semorile, L; Maffia, P C; Hollmann, A

    2017-05-01

    Antimicrobial peptides (AMPs) are small cationic molecules that display antimicrobial activity against a wide range of bacteria, fungi and viruses. For an AMP to be considered as a therapeutic option, it must have not only potent antibacterial properties but also low hemolytic and cytotoxic activities [1]. Even though many studies have been conducted in order to correlate the antimicrobial activity with affinity toward model lipid membranes, the use of these membranes to explain cytotoxic effects (especially hemolysis) has been less explored. In this context, we studied lipid selectivity in two related novel AMPs, peptide 6 (P6) and peptide 6.2 (P6.2). Each peptide was designed from a previously reported AMP, and specific amino acid replacements were performed in an attempt to shift their hydrophobic moment or net charge. P6 showed no antimicrobial activity and high hemolytic activity, and P6.2 exhibited good antibacterial and low hemolytic activity. Using both peptides as a model we correlated the affinity toward membranes of different lipid composition and the antimicrobial and hemolytic activities. Our results from surface pressure and zeta potential assays showed that P6.2 exhibited a higher affinity and faster binding kinetic toward PG-containing membranes, while P6 showed this behavior for pure PC membranes. The final position and structure of P6.2 into the membrane showed an alpha-helix conversion, resulting in a parallel alignment with the Trps inserted into the membrane. On the other hand, the inability of P6 to adopt an amphipathic structure, plus its lower affinity toward PG-containing membranes seem to explain its poor antimicrobial activity. Regarding erythrocyte interactions, P6 showed the highest affinity toward erythrocyte membranes, resulting in an increased hemolytic activity. Overall, our data led us to conclude that affinity toward negatively charged lipids instead of zwitterionic ones seems to be a key factor that drives from hemolytic to

  20. Sequence requirements and an optimization strategy for short antimicrobial peptides.

    PubMed

    Hilpert, Kai; Elliott, Melissa R; Volkmer-Engert, Rudolf; Henklein, Peter; Donini, Oreola; Zhou, Qun; Winkler, Dirk F H; Hancock, Robert E W

    2006-10-01

    Short antimicrobial host-defense peptides represent a possible alternative as lead structures to fight antibiotic resistant bacterial infections. Bac2A is a 12-mer linear variant of the naturally occurring bovine host defense peptide, bactenecin, and demonstrates moderate, broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria as well as against the yeast Candida albicans. With the assistance of a method involving peptide synthesis on a cellulose support, the primary sequence requirements for antimicrobial activity against the human pathogen Pseudomonas aeruginosa of 277 Bac2A variants were investigated by using a luciferase-based assay. Sequence scrambling of Bac2A led to activities ranging from superior or equivalent to Bac2A to inactive, indicating that good activity was not solely dependent on the composition of amino acids or the overall charge or hydrophobicity, but rather required particular linear sequence patterns. A QSAR computational analysis was applied to analyze the data resulting in a model that supported this sequence pattern hypothesis. The activity of selected peptides was confirmed by conventional minimal inhibitory concentration (MIC) analyses with a panel of human pathogen bacteria and fungi. Circular-dichroism (CD) spectroscopy with selected peptides in liposomes and membrane depolarization assays were consistent with a relationship between structure and activity. An additional optimization process was performed involving systematic amino acid substitutions of one of the optimal scrambled peptide variants, resulting in superior active peptide variants. This process provides a cost and time effective enrichment of new candidates for drug development, increasing the chances of finding pharmacologically relevant peptides.

  1. Discovery of novel antimicrobial peptides with unusual cysteine motifs in dandelion Taraxacum officinale Wigg. flowers.

    PubMed

    Astafieva, A A; Rogozhin, E A; Odintsova, T I; Khadeeva, N V; Grishin, E V; Egorov, Ts A

    2012-08-01

    Three novel antimicrobial peptides designated ToAMP1, ToAMP2 and ToAMP3 were purified from Taraxacum officinale flowers. Their amino acid sequences were determined. The peptides are cationic and cysteine-rich and consist of 38, 44 and 42 amino acid residues for ToAMP1, ToAMP2 and ToAMP3, respectively. Importantly, according to cysteine motifs, the peptides are representatives of two novel previously unknown families of plant antimicrobial peptides. ToAMP1 and ToAMP2 share high sequence identity and belong to 6-Cys-containing antimicrobial peptides, while ToAMP3 is a member of a distinct 8-Cys family. The peptides were shown to display high antimicrobial activity both against fungal and bacterial pathogens, and therefore represent new promising molecules for biotechnological and medicinal applications.

  2. Peptide consensus sequence determination for the enhancement of the antimicrobial activity and selectivity of antimicrobial peptides

    PubMed Central

    Almaaytah, Ammar; Ajingi, Ya’u; Abualhaijaa, Ahmad; Tarazi, Shadi; Alshar’i, Nizar; Al-Balas, Qosay

    2017-01-01

    The rise of multidrug-resistant bacteria is causing a serious threat to the world’s human population. Recent reports have identified bacterial strains displaying pan drug resistance against antibiotics and generating fears among medical health specialists that humanity is on the dawn of entering a post-antibiotics era. Global research is currently focused on expanding the lifetime of current antibiotics and the development of new antimicrobial agents to tackle the problem of antimicrobial resistance. In the present study, we designed a novel consensus peptide named “Pepcon” through peptide consensus sequence determination among members of a highly homologous group of scorpion antimicrobial peptides. Members of this group were found to possess moderate antimicrobial activity with significant toxicity against mammalian cells. The aim of our design method was to generate a novel peptide with an enhanced antimicrobial potency and selectivity against microbial rather than mammalian cells. The results of our study revealed that the consensus peptide displayed potent antibacterial activities against a broad range of Gram-positive and Gram-negative bacteria. Our membrane permeation studies displayed that the peptide efficiently induced membrane damage and consequently led to cell death through the process of cell lysis. The microbial DNA binding assay of the peptide was found to be very weak suggesting that the peptide is not targeting the microbial DNA. Pepcon induced minimal cytotoxicity at the antimicrobial concentrations as the hemolytic activity was found to be zero at the minimal inhibitory concentrations (MICs). The results of our study demonstrate that the consensus peptide design strategy is efficient in generating peptides. PMID:28096686

  3. Design and Application of Antimicrobial Peptide Conjugates

    PubMed Central

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  4. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA).

    PubMed

    Cruz, J; Flórez, J; Torres, R; Urquiza, M; Gutiérrez, J A; Guzmán, F; Ortiz, C C

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and <0.3 polydispersity index as determined by dynamic light scattering and scanning electron microscopy), having the zeta potential of >20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from -7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  5. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA)

    NASA Astrophysics Data System (ADS)

    Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J. A.; Guzmán, F.; Ortiz, C. C.

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and <0.3 polydispersity index as determined by dynamic light scattering and scanning electron microscopy), having the zeta potential of >20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from ‑7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  6. Antimicrobial peptides from the skins of North American frogs.

    PubMed

    Conlon, J Michael; Kolodziejek, Jolanta; Nowotny, Norbert

    2009-08-01

    North America is home to anuran species belonging to the families Bufonidae, Eleutherodactylidae, Hylidae, Leiopelmatidae, Ranidae, and Scaphiopodidae but antimicrobial peptides have been identified only in skin secretions and/or skin extracts of frogs belonging to the Leiopelmatidae ("tailed frogs") and Ranidae ("true frogs"). Eight structurally-related cationic alpha-helical peptides with broad-spectrum antibacterial activity, termed ascaphins, have been isolated from specimens of Ascaphus truei (Leiopelmatidae) occupying a coastal range. Characterization of orthologous antimicrobial peptides from Ascaphus specimens occupying an inland range supports the proposal that this population should be regarded as a separate species A. montanus. Ascaphin-8 shows potential for development into a therapeutically valuable anti-infective agent. Peptides belonging to the brevinin-1, esculentin-1, esculentin-2, palustrin-1, palustrin-2, ranacyclin, ranatuerin-1, ranatuerin-2, and temporin families have been isolated from North American ranids. It is proposed that "ranalexins" represent brevinin-1 peptides that have undergone a four amino acid residue internal deletion. Current taxonomic recommendations divide North American frogs from the family Ranidae into two genera: Lithobates and Rana. Cladistic analysis based upon the amino acid sequences of the brevinin-1 peptides provides strong support for this assignment.

  7. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  8. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  9. Hepcidins in amphibians and fishes: Antimicrobial peptides or iron-regulatory hormones?

    PubMed

    Shi, Jishu; Camus, Alvin C

    2006-01-01

    Hepcidin, originally identified as a 25 amino acid peptide antibiotic produced in the liver, is a key regulator of iron balance and recycling in humans and mice. Closely related hepcidin genes and peptides also have been identified in other mammals, amphibians, and a number of fish species. We hypothesize that hepcidin, the iron-regulatory hormone in humans, may have evolved from an antimicrobial peptide in fishes. In this review we will highlight the evidence that indicates hepcidin evolved from an antimicrobial peptide to an iron-regulatory hormone in vertebrate evolution. This evidence includes the discovery of hepcidin as an antimicrobial peptide and iron-regulatory hormone, structural comparison of mammalian hepcidins and nonmammalian hepcidins, and the cellular and molecular evidence indicating that, while some fish hepcidins may serve only as antimicrobial peptides, other fish and amphibian hepcidins may function as iron regulators.

  10. Design and Engineering Strategies for Synthetic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Tossi, Alessandro

    Thousands of antimicrobial peptides (AMPs) of prokaryotic, fungal, plant, or animal origin have been identified, and their potential as lead compounds for the design of novel therapeutic agents in the treatment of infection, for stimulating the immune system, or in countering septic shock has been widely recognized. Added to this is their possible use in prophylaxis of infectious diseases for animal or plant protection, for disinfection of surgical instruments or industrial surfaces, and for food preservation among other commercially important applications. Since the early eighties, AMPs have been subject to a vast number of studies aimed at understanding what determines their potency and spectrum of activities against bacterial or fungal pathogens, and at maximizing these while limiting cytotoxic activities toward host cells. Much research has also been directed toward understanding specific mechanisms of action underlying the antimicrobial activity and selectivity, to be able to redesign the peptides for optimal performance. A central theme in the mode of action of many AMPs is their dynamic interaction with biological membranes, which involves various properties of these peptides such as, among others, surface hydrophobicity and polarity, charge, structure, and induced conformational variations. These features are often intimately interconnected so that engineering peptides to independently adjust any one property in particular is not an easy task. However, solid-phase peptide synthesis allows the use of a large repertoire of nonproteinogenic amino acids that can be used in the rational design of peptides to finely tune structural and physicochemical properties and precisely probe structure-function relationships.

  11. Therapeutic antimicrobial peptides may compromise natural immunity

    PubMed Central

    Habets, Michelle G. J. L.; Brockhurst, Michael A.

    2012-01-01

    Antimicrobial peptides (AMPs) have been proposed as a promising new class of antimicrobials despite warnings that therapeutic use could drive the evolution of pathogens resistant to our own immunity peptides. Using experimental evolution, we demonstrate that Staphylococcus aureus rapidly evolved resistance to pexiganan, a drug-candidate for diabetic leg ulcer infections. Evolved resistance was costly in terms of impaired growth rate, but costs-of-resistance were completely ameliorated by compensatory adaptation. Crucially, we show that, in some populations, experimentally evolved resistance to pexiganan provided S. aureus with cross-resistance to human-neutrophil-defensin-1, a key component of the innate immune response to infection. This unintended consequence of therapeutic use could drastically undermine our innate immune system's ability to control and clear microbial infections. Our results therefore highlight grave potential risks of AMP therapies, with implications for their development. PMID:22279153

  12. Antimicrobial Peptides, Skin Infections and Atopic Dermatitis

    PubMed Central

    Hata, Tissa R.; Gallo, Richard L.

    2008-01-01

    The innate immune system evolved over 2 billion years ago to first recognize pathogens then eradicate them. Several distinct defects in this ancient but rapidly responsive element of human immune defense account for the increased incidence of skin infections in atopics. These defects include abnormalities in the physical barrier of the epidermis, alterations in microbial pattern recognition receptors such as toll receptors and NOD, and a diminished capacity to increase the expression of antimicrobial peptides during inflammation. Several antimicrobial peptides are affected including; cathelicidin, HBD-2, and HBD-3, which are lower in lesional skin of atopics compared to other inflammatory skin diseases, and dermcidin, which is decreased in sweat. Other defects in the immune defense barrier of atopics include a relative deficiency in plasmacytoid dendritic cells. In the future, understanding the cause of these defects may allow therapeutic intervention to reduce the incidence of infection in atopic individuals and potentially decrease the severity of this disorder. PMID:18620136

  13. Computational resources and tools for antimicrobial peptides.

    PubMed

    Liu, Shicai; Fan, Linlin; Sun, Jian; Lao, Xingzhen; Zheng, Heng

    2017-01-01

    Antimicrobial peptides (AMPs), as evolutionarily conserved components of innate immune system, protect against pathogens including bacteria, fungi, viruses, and parasites. In general, AMPs are relatively small peptides (<10 kDa) with cationic nature and amphipathic structure and have modes of action different from traditional antibiotics. Up to now, there are more than 19 000 AMPs that have been reported, including those isolated from nature sources or by synthesis. They have been considered to be promising substitutes of conventional antibiotics in the quest to address the increasing occurrence of antibiotic resistance. However, most AMPs have modest direct antimicrobial activity, and their mechanisms of action, as well as their structure-activity relationships, are still poorly understood. Computational strategies are invaluable assets to provide insight into the activity of AMPs and thus exploit their potential as a new generation of antimicrobials. This article reviews the advances of AMP databases and computational tools for the prediction and design of new active AMPs. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  14. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  15. Haemophilus ducreyi is resistant to human antimicrobial peptides.

    PubMed

    Mount, Kristy L B; Townsend, Carisa A; Bauer, Margaret E

    2007-09-01

    We examined the susceptibility of Haemophilus ducreyi to antimicrobial peptides likely to be encountered in vivo during human infection. H. ducreyi was significantly more resistant than Escherichia coli to the bactericidal effects of all peptides tested. Class I and II H. ducreyi strains exhibited similar levels of resistance to antimicrobial peptides.

  16. The role of antimicrobial peptides in animal defenses.

    PubMed

    Hancock, R E; Scott, M G

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  17. The role of antimicrobial peptides in animal defenses

    NASA Astrophysics Data System (ADS)

    Hancock, Robert E. W.; Scott, Monisha G.

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  18. Improvement of in vivo antimicrobial activity of HBcARD peptides by D-arginine replacement.

    PubMed

    Chen, Heng-Li; Su, Pei-Yi; Shih, Chiaho

    2016-11-01

    We previously identified a novel antimicrobial peptide with a broad spectrum bactericidal activity from human hepatitis B virus (HBV) core protein (HBc) arginine-rich domain (ARD). We compared the antimicrobial activities of HBcARD peptides from different hepadnaviruses which share similar amino acid sequences. In general, mammalian HBcARD peptides exhibited stronger antimicrobial activity than avian peptides. Using the strategy of D-amino acid substitutions, we improved the antimicrobial efficacy of human HBcARD peptide. This D-HBcARD peptide was much more resistant than L-HBcARD peptide to proteolytic degradation in vitro. Moreover, this D-HBcARD peptide maintained similar minimal bactericidal concentrations (MBC) against tested bacteria, and showed very low hemolytic activity. In the Staphylococcus aureus-infected mouse model, this D-HBcARD peptide was more protective than the L-HBcARD peptide. Repeated treatments with either L- or D-HBcARD peptides induced no significant immunogenicity. New derivatives of HBcARD peptides could serve as alternatives to the conventional antibiotics in clinical medicine in the future.

  19. Small cationic antimicrobial peptides delocalize peripheral membrane proteins

    PubMed Central

    Wenzel, Michaela; Chiriac, Alina Iulia; Otto, Andreas; Zweytick, Dagmar; May, Caroline; Schumacher, Catherine; Gust, Ronald; Albada, H. Bauke; Penkova, Maya; Krämer, Ute; Erdmann, Ralf; Metzler-Nolte, Nils; Straus, Suzana K.; Bremer, Erhard; Becher, Dörte; Brötz-Oesterhelt, Heike; Sahl, Hans-Georg; Bandow, Julia Elisabeth

    2014-01-01

    Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions. PMID:24706874

  20. A novel class of antimicrobial peptides from the scorpion Heterometrus spinifer.

    PubMed

    Nie, Yao; Zeng, Xian-Chun; Yang, Ye; Luo, Feng; Luo, Xuesong; Wu, Shifen; Zhang, Lei; Zhou, Jianping

    2012-12-01

    The venom peptides from the scorpion Heterometrus spinifer have been poorly characterized so far. Here, we identified a novel class of antimicrobial peptides from the venom gland of H. spinifer, which were referred to as HsAp, HsAp2, HsAp3 and HsAp4, respectively. Each of the four peptides consists of 29 amino acid residues, and is cationic and weakly amphipathic. They display no significant homology to any other known peptides, and thus represent a new family of venom peptides from scorpions. Antimicrobial assay showed that HsAp is able to inhibit the growth of both Gram-negative and Gram-positive bacteria with the MIC values of 11.8-51.2 μM. HsAp is also able to inhibit the growth of the tested fungus. Genomic analysis indicated that the genes of all the four peptides are intronless. Our studies expand the families of antimicrobial peptides from scorpions.

  1. Identification of antimicrobial peptides by using eigenvectors.

    PubMed

    Polanco, Carlos

    2016-01-01

    Antibacterial peptides are subject to broad research due to their potential application and the benefit they can provide for a wide range of diseases. In this work, a mathematical-computational method, called the Polarity Vector Method, is introduced that has a high discriminative level (>70%) to identify peptides associated with Gram (-) bacteria, Gram (+) bacteria, cancer cells, fungi, insects, mammalian cells, parasites, and viruses, taken from the Antimicrobial Peptides Database. This supervised method uses only eigenvectors from the incident polar matrix of the group studied. It was verified with a comparative study with another extensively verified method developed previously by our team, the Polarity Index Method. The number of positive hits of both methods was up to 98% in all the tests conducted.

  2. Peptides with Dual Antimicrobial and Anticancer Activities

    PubMed Central

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-01-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting toward intracellular targets, which increases their success compartively to one-target specific drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials. PMID:28271058

  3. Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms.

    PubMed

    Ahmad, Aqeel; Azmi, Sarfuddin; Srivastava, Saurabh; Kumar, Amit; Tripathi, Jitendra Kumar; Mishra, Nripendra N; Shukla, Praveen K; Ghosh, Jimut Kanti

    2014-11-01

    Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at 'a' and/or 'd' position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its 'a' and 'd' positions with D-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its D-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show

  4. Resistance to Antimicrobial Peptides in Vibrios

    PubMed Central

    Destoumieux-Garzón, Delphine; Duperthuy, Marylise; Vanhove, Audrey Sophie; Schmitt, Paulina; Wai, Sun Nyunt

    2014-01-01

    Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space. PMID:27025756

  5. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide

    PubMed Central

    Zhu, Xin; Ma, Zhi; Wang, Jiajun; Chou, Shuli; Shan, Anshan

    2014-01-01

    Here, we found that simple substitution of amino acids in the middle position of the hydrophobic face of an amphipathic peptide RI16 with tryptophan (T9W) considerably transformed into an antimicrobial peptide specifically targeting Pseudomonas aeruginosa. Minimal inhibitory concentration (MIC) results demonstrated that T9W had a strong and specifically antimicrobial activity against P. aeruginosa, including antibiotic-resistant strains, but was not active against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Staphyfococcus epidermidis. Fluorescent spectroscopic assays indicated that T9W interacted with the membrane of P. aeruginosa, depolarizing the outer and the inner membrane of bacterial cells. Salt susceptibility assay showed that T9W still maintained its strong anti-pseudomonas activity in the presence of salts at physiological concentrations, and in hemolytic and MTT assays T9W also showed no toxicity against human blood cells and macrophages. In vivo assay demonstrated that T9W also displayed no toxicity to Chinese Kun Ming (KM) mice. Furthermore, the strong antibiofilm activity was also observed with the peptide T9W, which decreased the percentage of biomass formation in a dose-dependent manner. Overall, these findings indicated that design of single-pathogen antimicrobial agents can be achieved by simple amino acid mutation in naturally occurring peptide sequences and this study suggested a model of optimization/design of anti-pseudomonas drugs in which the tryptophan residue was a conserved element. PMID:25494332

  6. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide.

    PubMed

    Zhu, Xin; Ma, Zhi; Wang, Jiajun; Chou, Shuli; Shan, Anshan

    2014-01-01

    Here, we found that simple substitution of amino acids in the middle position of the hydrophobic face of an amphipathic peptide RI16 with tryptophan (T9W) considerably transformed into an antimicrobial peptide specifically targeting Pseudomonas aeruginosa. Minimal inhibitory concentration (MIC) results demonstrated that T9W had a strong and specifically antimicrobial activity against P. aeruginosa, including antibiotic-resistant strains, but was not active against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Staphyfococcus epidermidis. Fluorescent spectroscopic assays indicated that T9W interacted with the membrane of P. aeruginosa, depolarizing the outer and the inner membrane of bacterial cells. Salt susceptibility assay showed that T9W still maintained its strong anti-pseudomonas activity in the presence of salts at physiological concentrations, and in hemolytic and MTT assays T9W also showed no toxicity against human blood cells and macrophages. In vivo assay demonstrated that T9W also displayed no toxicity to Chinese Kun Ming (KM) mice. Furthermore, the strong antibiofilm activity was also observed with the peptide T9W, which decreased the percentage of biomass formation in a dose-dependent manner. Overall, these findings indicated that design of single-pathogen antimicrobial agents can be achieved by simple amino acid mutation in naturally occurring peptide sequences and this study suggested a model of optimization/design of anti-pseudomonas drugs in which the tryptophan residue was a conserved element.

  7. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed

    Gough, M; Hancock, R E; Kelly, N M

    1996-12-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice.

  8. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  9. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans.

    PubMed

    Yoo, Won Gi; Lee, Joon Ha; Shin, Younhee; Shim, Jae-Young; Jung, Myunghee; Kang, Byeong-Chul; Oh, Jaedon; Seong, Jiyeon; Lee, Hak Kyo; Kong, Hong Sik; Song, Ki-Duk; Yun, Eun-Young; Kim, In-Woo; Kwon, Young-Nam; Lee, Dong Gun; Hwang, Ui-Wook; Park, Junhyung; Hwang, Jae Sam

    2014-06-01

    The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource.

  10. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  11. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata.

    PubMed

    Ma, Yufang; Liu, Cunbao; Liu, Xiuhong; Wu, Jing; Yang, Hailong; Wang, Yipeng; Li, Jianxu; Yu, Haining; Lai, Ren

    2010-01-01

    Much attention has been paid on amphibian peptides for their wide-ranging pharmacological properties, clinical potential, and gene-encoded origin. More than 300 antimicrobial peptides (AMPs) from amphibians have been studied. Peptidomics and genomics analysis combined with functional test including microorganism killing, histamine-releasing, and mast cell degranulation was used to investigate antimicrobial peptide diversity. Thirty-four novel AMPs from skin secretions of Rana nigrovittata were identified in current work, and they belong to 9 families, including 6 novel families. Other three families are classified into rugosin, gaegurin, and temporin family of amphibian AMP, respectively. These AMPs share highly conserved preproregions including signal peptides and spacer acidic peptides, while greatly diversified on mature peptides structures. In this work, peptidomics combined with genomics analysis was confirmed to be an effective way to identify amphibian AMPs, especially novel families. Some AMPs reported here will provide leading molecules for designing novel antimicrobial agents.

  12. DBAASP: database of antimicrobial activity and structure of peptides.

    PubMed

    Gogoladze, Giorgi; Grigolava, Maia; Vishnepolsky, Boris; Chubinidze, Mindia; Duroux, Patrice; Lefranc, Marie-Paule; Pirtskhalava, Malak

    2014-08-01

    The Database of Antimicrobial Activity and Structure of Peptides (DBAASP) is a manually curated database for those peptides for which antimicrobial activity against particular targets has been evaluated experimentally. The database is a depository of complete information on: the chemical structure of peptides; target species; target object of cell; peptide antimicrobial/haemolytic/cytotoxic activities; and experimental conditions at which activities were estimated. The DBAASP search page allows the user to search peptides according to their structural characteristics, complexity type (monomer, dimer and two-peptide), source, synthesis type (ribosomal, nonribosomal and synthetic) and target species. The database prediction algorithm provides a tool for rational design of new antimicrobial peptides. DBAASP is accessible at http://www.biomedicine.org.ge/dbaasp/.

  13. A cumulative experience examining the effect of natural and synthetic antimicrobial peptides vs. Chlamydia trachomatis.

    PubMed

    Yasin, B; Pang, M; Wagar, E A

    2004-08-01

    We tested the activity of 48 structurally diverse antimicrobial peptides against Chlamydia trachomatis, serovar L2. The peptides' activity against C. trachomatis, serovar L2 was measured in 48-h McCoy cell shell vial assays. Peptides of 16-20 amino acids were more active than larger peptides, such as defensins. Beta-sheet protegrins, as well as alpha-helical peptides such as novispirin (G-10) were equally active. Enantiomers were as active as native structures. Moderate-sized circular mini-defensins were less effective against C. trachomatis. Moderate-sized cationic peptides may be useful in microbicide preparations designed to prevent chlamydial infection.

  14. Safety and Efficacy of Antimicrobial Peptides against Naturally Acquired Leishmaniasis

    PubMed Central

    Alberola, J.; Rodríguez, A.; Francino, O.; Roura, X.; Rivas, L.; Andreu, D.

    2004-01-01

    Leishmaniases, which are important causes of morbidity and mortality in humans and dogs, are extremely difficult to treat. Antimicrobial peptides are rarely used as alternative treatments for naturally acquired parasitic diseases. Here we report that the acylated synthetic antimicrobial peptide Oct-CA(1-7)M(2-9) is safe and effective for treating naturally acquired canine leishmaniasis. PMID:14742227

  15. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

    PubMed Central

    Katzenback, Barbara A.

    2015-01-01

    Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection. PMID:26426065

  16. Cationic antimicrobial peptides in penaeid shrimp.

    PubMed

    Tassanakajon, Anchalee; Amparyup, Piti; Somboonwiwat, Kunlaya; Supungul, Premruethai

    2011-08-01

    Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.

  17. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.

    PubMed

    Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia

    2016-11-01

    Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G(1) LLKR(5) IKT(8) LL-NH2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly(1) , Arg(5) , and Thr(8) and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF(5) IKK(8) LL-NH2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  18. Research in practice: Antimicrobial peptides of the skin.

    PubMed

    Gläser, Regine

    2011-09-01

    Antimicrobial peptides represent evolutionary ancient molecules whose importance became evident within the last years. These highly effective peptides protect the skin and other epithelia against infection and form a fast acting "chemical barrier" also regulating the normal flora of the skin and mucosa. In the Department of Dermatology, University Hospital Kiel, various antimicrobial peptides have been discovered, characterized and investigated in healthy persons as well as in different skin diseases. Everyday clinical observations formed the background for several interesting hypotheses and findings.

  19. Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus.

    PubMed

    Liao, Zhi; Wang, Xin-chao; Liu, Hui-hui; Fan, Mei-hua; Sun, Jing-jing; Shen, Wang

    2013-02-01

    Antimicrobial peptides (AMPs) are components of the innate immune responses that form the first line of host defense against pathogens. Marine mussels can produce a surprising abundance of cysteine-rich AMPs pertaining to the defensin, myticin, mytilin and mytimycin families, particularly in the circulating hemocytes. In the current study, we purified and characterized a novel cysteine-rich peptide with remarkable antibacterial activity from Mytilus coruscus and designated with myticusin-1, a 104-amino acid long polypeptide including 10 cysteine residues forming an unusual cysteine pattern. Antimicrobial assays demonstrated that myticusin-1 exhibited stronger anti-microbial properties against Gram-positive bacteria more than Gram-negative bacteria and fungus. Furthermore, myticusin-1 caused significant morphological alterations in both Sarcina luteus and Escherichia coli as shown by transmission electron microscopy (TEM). The cDNA of myticusin-1 was cloned and sequenced from the hemocytes cDNA library of M. coruscus. The mRNA transcripts of myticusin-1 are mainly detected in hemocyte, which indicates that myticusin-1 are specifically synthesized and stored in circulating hemocytes. The expression level of myticusin-1 in hemocytes was up-regulated and reached the highest level at 36 h after S. luteus challenge, which was 20-fold increase compared to that of the control group. These results indicated that myticusin-1 was involved in the host immune response against bacterial infection and might contribute to the clearance of invading bacteria.

  20. Immunomodulatory effects of anti-microbial peptides.

    PubMed

    Otvos, Laszlo

    2016-09-01

    Anti-microbial peptides (AMPs) were originally thought to exert protecting actions against bacterial infection by disintegrating bacterial membranes. Upon identification of internal bacterial targets, the view changed and moved toward inhibition of prokaryote-specific biochemical processes. However, the level of none of these activities can explain the robust efficacy of some of these peptides in animal models of systemic and cutaneous infections. A rapidly growing panel of reports suggests that AMPs, now called host-defense peptides (HDPs), act through activating the immune system of the host. This includes recruitment and activation of macrophages and mast cells, inducing chemokine production and altering NF-κB signaling processes. As a result, both pro- and anti-inflammatory responses are elevated together with activation of innate and adaptive immunity mechanisms, wound healing, and apoptosis. HDPs sterilize the systemic circulation and local injury sites significantly more efficiently than pure single-endpoint in vitro microbiological or biochemical data would suggest and actively aid recovering from tissue damage after or even without bacterial infections. However, the multiple and, often opposing, immunomodulatory functions of HDPs require exceptional care in therapeutic considerations.

  1. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics

    PubMed Central

    Aoki, Wataru; Ueda, Mitsuyoshi

    2013-01-01

    Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs) have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety. PMID:24276381

  2. Sequence diversity and evolution of antimicrobial peptides in invertebrates.

    PubMed

    Tassanakajon, Anchalee; Somboonwiwat, Kunlaya; Amparyup, Piti

    2015-02-01

    Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms.

  3. Membrane-active Antimicrobial Peptides as Template Structures for Novel Antibiotic Agents.

    PubMed

    Lohner, Karl

    2017-01-01

    The increase of pathogens being resistant to antibiotics represents a global health problem and therefore it is a pressing need to develop antibiotics with novel mechanisms of action. Host defense peptides, which have direct antimicrobial activity (also termed antimicrobial peptides) or immune modulating activity, are valuable template structures for the development of such compounds. Antimicrobial peptides exhibit remarkably different structures as well as biological activity profiles with multiple targets. A large fraction of these peptides interfere physically with the cell membrane of bacteria (focus of this review), but can also translocate into the cytosol, where they interact with nucleic acids, ribosomes and proteins. Several potential interaction sites have to be considered on the route of the peptides from the environment to the cytoplasmic membrane. Translocation of peptides through the cell wall may not be impaired by the thick but relatively porous peptidoglycan layer. However, interaction with lipopolysaccharides of the outer membrane of Gram-negative bacteria and (lipo)teichoic acids of Gram-positive bacteria may reduce the effective concentration at the cytoplasmic membrane, where supposedly the killing event takes place. On a molecular level several mechanisms are discussed, which are important for the rational design of improved antimicrobial compounds: toroidal pore formation, carpet model (coverage of membrane surface by peptides), interfacial activity, void formation, clustering of lipids and effects of membrane curvature. In summary, many of these models just represent special cases that can be interrelated to each other and depend on both the nature of lipids and peptides.

  4. A lesson from Bombinins H, mildly cationic diastereomeric antimicrobial peptides from Bombina skin.

    PubMed

    Mangoni, Maria Luisa

    2013-12-01

    Gene-encoded peptide antibiotics represent fascinating molecules for the development of new antimicrobials with a new mode of action: and one of the richest sources is amphibian skin. In particular, the skin of the fire-bellied toad Bombina genus contains mildly cationic antimicrobial peptides (AMPs), named bombinins H, with attractive properties. Indeed, some members of this peptide family coexist in skin secretions as isomers in which a single D-amino acid (alloisoleucine or leucine) is incorporated as a result of a post-translational modification of the respective gene-encoded Lamino acid. Here, a brief overview of the genes coding for these peptides, their spectrum of antimicrobial activities, mechanism of action and interactions with biological or model membranes is reported. Remarkably, a single D-amino acid substitution represents a unique approach developed by Nature not only to modulate the peptide stability in vivo, but also to confer the all-L peptide and its diastereomer distinctive biological features. Overall, such findings should assist in the generation of new peptide-based anti-infective agents, which are urgently needed because of the growing emergence of microbial strains resistant to conventional antimicrobials.

  5. Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa.

    PubMed

    Dolashka, Pavlina; Moshtanska, Vesela; Borisova, Valika; Dolashki, Aleksander; Stevanovic, Stefan; Dimanov, Tzvetan; Voelter, Wolfgang

    2011-07-01

    Hemolymph of Rapana venosa snails is a complex mixture of biochemically and pharmacologically active components such as peptides and proteins. Antimicrobial peptides are gaining attention as antimicrobial alternatives to chemical food preservatives and commonly used antibiotics. Therefore, for the first time we have explored the isolation, identification and characterisation of 11 novel antimicrobial peptides produced by the hemolymph of molluscs. The isolated peptides from the hemolymph applying ultrafiltration and reverse-phase high-performance liquid chromatography (RP-HPLC) have molecular weights between 3000 and 9500 Da, determined by mass spectrometric analysis. The N-terminal sequences of the peptides identified by Edman degradation matched no peptides in the MASCOT search database, indicating novel proline-rich peptides. UV spectra revealed that these substances possessed the characteristics of protein peptides with acidic isoelectric points. However, no Cotton effects were observed between 190 and 280 nm by circular dichroism spectroscopy. Four of the pro-rich peptides also showed strong antimicrobial activities against tested microorganisms including Gram-positive and Gram-negative bacteria.

  6. Halocyntin and papillosin, two new antimicrobial peptides isolated from hemocytes of the solitary tunicate, Halocynthia papillosa.

    PubMed

    Galinier, Richard; Roger, Emmanuel; Sautiere, Pierre-Eric; Aumelas, Andre; Banaigs, Bernard; Mitta, Guillaume

    2009-01-01

    We report here the screening of five marine invertebrate species from two taxa (tunicates and echinoderms) for the presence of cationic antimicrobial peptides (AMP) in defence cells (hemocytes). Antimicrobial activities were detected only in the two tunicates Microcosmus sabatieri and Halocynthia papillosa. In addition, we report the isolation and characterization of two novel peptides from H. papillosa hemocytes. These molecules display antibacterial activity against Gram-positive and Gram-negative bacteria. Complete peptide characterization was obtained by a combination of Edman degradation and mass spectrometry. The mature molecules, named halocyntin and papillosin, comprise 26 and 34 amino acid residues, respectively. Their primary structure display no significant similarities with previously described AMP.

  7. Mechanical properties that influence antimicrobial peptide activity in lipid membranes.

    PubMed

    Marín-Medina, Nathaly; Ramírez, Diego Alejandro; Trier, Steve; Leidy, Chad

    2016-12-01

    Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.

  8. Antimicrobial peptides in oyster hemolymph: the bacterial connection.

    PubMed

    Defer, Diane; Desriac, Florie; Henry, Joël; Bourgougnon, Nathalie; Baudy-Floc'h, Michèle; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-06-01

    We have explored antimicrobial compounds in oyster hemolymph and purified four active peptides with molecular masses of 4464, 3158, 655 and 636 Da. While no exploitable structural elements were obtained for the former three, a partial amino acid sequence (X-P-P-X-X-I-V) was obtained for the latter, named Cg-636. Due to both its low MM and the presence of exotic amino acid residue (X), we suspected a bacterial origin and tracked cultivable hemolymph-resident bacteria of oyster for their antimicrobial abilities. Supernatants of 224 hemolymph resident bacteria coming from 60 oysters were screened against 10 target bacteria including aquaculture pathogens. Around 2% (5 strains) revealed antimicrobial activities. They belong to Pseudoalteromonas and Vibrio genera. Two closely related strains named hCg-6 and hCg-42 have been shown to produce Bacteriocin-Like Inhibitory Substances (BLIS) even in oyster hemolymph. We report herein first BLIS-producing bacteria isolated from bivalve hemolymph. These results strongly suggest that hemolymph resident bacteria may prevent pathogen establishment and pave the way for considering a role of resident bacteria into bivalve defense.

  9. Bacterial Evasion of Host Antimicrobial Peptide Defenses

    PubMed Central

    Cole, Jason N.; Nizet, Victor

    2015-01-01

    SUMMARY Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections. PMID:26999396

  10. Influence of the Length and Charge on the Activity of α-Helical Amphipathic Antimicrobial Peptides.

    PubMed

    Gagnon, Marie-Claude; Strandberg, Erik; Grau-Campistany, Ariadna; Wadhwani, Parvesh; Reichert, Johannes; Bürck, Jochen; Rabanal, Francesc; Auger, Michèle; Paquin, Jean-François; Ulrich, Anne S

    2017-03-21

    Hydrophobic mismatch is important for pore-forming amphipathic antimicrobial peptides, as demonstrated recently [Grau-Campistany, A., et al. (2015) Sci. Rep. 5, 9388]. A series of different length peptides have been generated with the heptameric repeat sequence KIAGKIA, called KIA peptides, and it was found that only those helices sufficiently long to span the hydrophobic thickness of the membrane could induce leakage in lipid vesicles; there was also a clear length dependence of the antimicrobial and hemolytic activities. For the original KIA sequences, the cationic charge increased with peptide length. The goal of this work is to examine whether the charge also has an effect on activity; hence, we constructed two further series of peptides with a sequence similar to those of the KIA peptides, but with a constant charge of +7 for all lengths from 14 to 28 amino acids. For both of these new series, a clear length dependence similar to that of KIA peptides was observed, indicating that charge has only a minor influence. Both series also showed a distinct threshold length for peptides to be active, which correlates directly with the thickness of the membrane. Among the longer peptides, the new series showed activities only slightly lower than those of the original KIA peptides of the same length that had a higher charge. Shorter peptides, in which Gly was replaced with Lys, showed activities similar to those of KIA peptides of the same length, but peptides in which Ile was replaced with Lys lost their helicity and were less active.

  11. A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae.

    PubMed

    Amiche, Mohamed; Ladram, Ali; Nicolas, Pierre

    2008-11-01

    A growing number of cationic antimicrobial peptides have been isolated from the skin of hylid frogs belonging to the Phyllomedusinae subfamily. The amino acid sequences of these peptides are currently located in several databases under identifiers with no consistent system of nomenclature to describe them. In order to provide a workable terminology for antimicrobial peptides from Phyllomedusid frogs, we have made a systematic effort to collect, analyze, and classify all the Phyllomedusid peptide sequences available in databases. We propose that frogs belonging to the Phyllomedusinae subfamily should be described by the species names set out in Amphibian Species of the World: http://research.amnh.org/herpetology/amphibia/index.php, American Museum of Natural History, New York, USA. Multiple alignments analysis of at least 80 antimicrobial peptides isolated from 12 Phyllomedusinae species were distributed in seven distinct peptide families including dermaseptin, phylloseptin, plasticin, dermatoxin, phylloxin, hyposin and orphan peptides, and will be considered as the name of the headgroup of each family. The parent peptide's name should be followed by the first upper letter of the species for orthologous peptides and publication date determines priority. For example, the abbreviation B for bicolor and H for hypochondrialis. When two species begin with the same letter, two letters in upper case should be used (the first letter followed by the second or the third letter and so on). For example, the abbreviation DI for distincta, DU for duellmani, VA for vaillanti and VN for vanzolinii. Paralogous peptides should bear letter(s) in upper case followed by numbers.

  12. Antimicrobial activity of the scolopendrasin V peptide identified from the centipede, Scolopendra subspinipes mutilans.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Kim, Mi-Ae; Ahn, Mi-Young; Yun, Eun-Young; Hwang, Jae Sam

    2016-10-25

    In a previous study, we analyzed the transcriptome of Scolopendra subspinipes mutilans using next generation sequencing technology and identified several antimicrobial peptide candidates. One of peptides, scolopendrasin V, was selected based on the physicochemical properties of antimicrobial peptides using a bioinformatics strategy. In this study, we assessed the antimicrobial activities of scolopendrasin V by using radial diffusion assay and colony count assay. We also investigated the mode of action of scolopendrasin V using flow cytometry. We found that scolopendrasin V's mechanism of action involved binding to the surface of microorganisms via a specific interaction with lipopolysaccharides, lipoteichoic acid, and peptidoglycans, which are components of the bacterial membrane. These results provide a basis for developing peptide antibiotics.

  13. The role of antimicrobial peptides in chronic inflammatory skin diseases

    PubMed Central

    Majewski, Sławomir

    2016-01-01

    Antimicrobial peptides (AMPs) are effector molecules of the innate immune system of the skin. They present an activity against a broad spectrum of Gram-positive and Gram-negative bacteria as well as some fungi, parasites and enveloped viruses. Several inflammatory skin diseases including psoriasis, atopic dermatitis, acne vulgaris and rosacea are characterized by a dysregulated expression of AMPs. Antimicrobial peptides are excessively produced in lesional psoriatic scales or rosacea in contrast to the atopic skin that shows lower AMP levels when compared with psoriasis. The importance of the AMPs contribution to host immunity is indisputable as alterations in the antimicrobial peptide expression have been associated with various pathologic processes. This review discusses the biology and clinical relevance of antimicrobial peptides expressed in the skin and their role in the pathogenesis of inflammatory skin diseases. PMID:26985172

  14. Interaction of antimicrobial peptide with mycolyl transferase in Mycobacterium tuberculosis.

    PubMed

    Banerjee, Devjani I; Gohil, Tejas P

    2016-03-01

    It is estimated that about 40% of the Indian population are infected with tuberculosis (TB) and that ∼3,000,000 people die as a result of TB annually. TB is caused by Mycobacterium tuberculosis. In 2011, the World Health Organization declared India as having the highest TB burden worldwide. An important criteria for pathogenicity is the presence of mycolic acid linked to the protective outer membrane of bacteria. Mycolyl transferase catalyzes the transfer of mycolic acid and promotes cell wall synthesis. This is also considered as a novel target for drug-mediated intervention strategies. Here, we have attempted to understand the interaction between the antimicrobial peptide (AMP), dermcidin, and mycolyl transferase in M. tuberculosis using a computational approach. The present study was undertaken in order to elucidate the capability of AMPs to treat this bacteria, which is less sensitive to available antibiotics, and to design a novel method for new therapies.

  15. De-novo design of antimicrobial peptides for plant protection.

    PubMed

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.

  16. De-Novo Design of Antimicrobial Peptides for Plant Protection

    PubMed Central

    Zeitler, Benjamin; Herrera Diaz, Areli; Dangel, Alexandra; Thellmann, Martha; Meyer, Helge; Sattler, Michael; Lindermayr, Christian

    2013-01-01

    This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of “healthy” food, these peptides might serve as templates for novel antibacterial and antifungal agents. PMID:23951222

  17. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria.

    PubMed

    Hale, John D F; Hancock, Robert E W

    2007-12-01

    Cationic antimicrobial peptides are a novel type of antibiotic offering much potential in the treatment of microbial-related diseases. They offer many advantages for commercial development, including a broad spectrum of action and modest size. However, despite the identification or synthetic production of thousands of such peptides, the mode of action remains elusive, except for a few examples. While the dogma for the mechanism of action of antimicrobial peptides against bacteria is believed to be through pore formation or membrane barrier disruption, some peptides clearly act differently and other intracellular target sites have been identified. This article presents an updated review of how cationic antimicrobial peptides are able to affect bacterial killing, with a focus on internal targets.

  18. Characterization of a novel antimicrobial peptide with chitin-biding domain from Mytilus coruscus.

    PubMed

    Qin, Chuan-li; Huang, Wei; Zhou, Shi-quan; Wang, Xin-chao; Liu, Hui-hui; Fan, Mei-hua; Wang, Ri-xin; Gao, Peng; Liao, Zhi

    2014-12-01

    Using reverse phase high performance liquid chromatography (RP-HPLC), a novel antimicrobial peptide with 55 amino acid residues was isolated from the hemolymph of Mytilus coruscus. This new antimicrobial peptide displays predominant antimicrobial activity against fungi and Gram-positive bacteria. The molecular mass and the N-terminal sequence of this peptide were analyzed by Mass Spectrometry and Edman degradation, respectively. This antimicrobial peptide, with molecular mass of 6621.55 Da, is characterized by a chitin-biding domain and by 6 Cysteine residues engaged in three intra-molecular disulfide bridges. The full-length of cDNA sequence of this new peptide was obtained by rapid amplification of cDNA ends (RACE) and the encoded precursor was turn out to be a chitotriosidase-like protein. Therefore, we named the precursor with mytichitin-1 and the new antimicrobial peptide (designated as mytichitin-CB) is the carboxyl-terminal part of mytichitin-1. The mRNA transcripts of mytichitin-1 are mainly detected in gonad and the expression level of mytichitin-1 in gonad was up-regulated and reached the highest level at 12 h after bacterial challenge, which was 9-fold increase compared to that of the control group. These results indicated that mytichitin-1 was involved in the host immune response against bacterial infection and might contribute to the clearance of invading bacteria.

  19. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb.

    PubMed

    Jang, Su A; Kim, Hyun; Lee, Ju Young; Shin, Ju Ri; Kim, Da Jung; Cho, Ju Hyun; Kim, Sun Chang

    2012-04-01

    Buforin IIb-a synthetic analog of buforin II that contains a proline hinge between the two α-helices and a model α-helical sequence at the C-terminus (3× RLLR)-is a potent cell-penetrating antimicrobial peptide. To develop novel antimicrobial peptides with enhanced activities and specificity/therapeutic index, we designed several analogs (Buf III analogs) by substitutions of amino acids in the proline hinge region and two α-helices of buforin IIb, and examined their antimicrobial activity and mechanism of action. The substitution of hydrophobic residues ([F(6)] and [V(8)]) in the proline hinge region with other hydrophobic residues ([W(6)] and [I(8)]) did not affect antimicrobial activity, while the substitution of the first four amino acids RAGL with a model α-helical sequence increased the antimicrobial activity up to 2-fold. Like buforin IIb, Buf III analogs penetrated the bacterial cell membranes without significantly permeabilizing them and were accumulated inside Escherichia coli. Buf III analogs were shown to bind DNA in vitro and the DNA binding affinity of the peptides correlated linearly with their antimicrobial potency. Among the Buf III analogs, the therapeutic index of Buf IIIb and IIIc (RVVRQWPIG[RVVR](3) and KLLKQWPIG[KLLK](3), respectively) were improved 7-fold compared to that of buforin IIb. These results indicate that Buf III analogs appear to be promising candidates for future development as novel antimicrobial agents.

  20. Biofilm induced tolerance towards antimicrobial peptides.

    PubMed

    Folkesson, Anders; Haagensen, Janus A J; Zampaloni, Claudia; Sternberg, Claus; Molin, Søren

    2008-04-02

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.

  1. Biofilm Induced Tolerance towards Antimicrobial Peptides

    PubMed Central

    Folkesson, Anders; Haagensen, Janus A. J.; Zampaloni, Claudia; Sternberg, Claus; Molin, Søren

    2008-01-01

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms. PMID:18382672

  2. Antimicrobial peptides: Possible anti-infective agents.

    PubMed

    Lakshmaiah Narayana, Jayaram; Chen, Jyh-Yih

    2015-10-01

    Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents.

  3. Use of Peptide Libraries for Identification and Optimization of Novel Antimicrobial Peptides.

    PubMed

    Ashby, Martin; Petkova, Asya; Gani, Jurnorain; Mikut, Ralf; Hilpert, Kai

    2017-01-01

    The increasing rates of resistance among bacteria and to a lesser extent fungi have resulted in an urgent need to find new molecules that hold therapeutic promise against multidrug-resistant strains. Antimicrobial peptides have proven very effective against a variety of multidrug-resistant bacteria. Additionally, the low levels of resistance reported towards these molecules are an attractive feature for antimicrobial drug development. Here we summarise information on diverse peptide libraries used to discover or to optimize antimicrobial peptides. Chemical synthesized peptide libraries, for example split and mix method, tea bag method, multi-pin method and cellulose spot method are discussed. In addition biological peptide library screening methods are summarized, like phage display, bacterial display, mRNA-display and ribosomal display. A few examples are given for small peptide libraries, which almost exclusively follow a rational design of peptides of interest rather than a combinatorial approach.

  4. A novel antifungal peptide designed from the primary structure of a natural antimicrobial peptide purified from Argopecten purpuratus hemocytes.

    PubMed

    Arenas, Gloria; Guzmán, Fanny; Cárdenas, Constanza; Mercado, Luis; Marshall, Sergio H

    2009-08-01

    We have isolated and purified a natural antimicrobial peptide from Argopecten purpuratus hemocytes. 47 residues were determined from its primary structure representing the N-terminal of the complete sequence. This peptide of 5100.78Da was chemically synthesized and named Ap. The peptide has 25% of hydrophobic amino acids with a net charge of +1, and partial homology with known active antimicrobial peptides. Based on that sequence, a new peptide was designed and modeled to increase hydrophobicity and cationicity. The designed 30-residue peptide was chemically synthesized resulting in a novel 38% hydrophobic molecule named peptide Ap-S, with a net charge of +5 and 3028Da. A secondary structure was shown by circular dichroism, thus exposing a hydrophobic epitope toward the N-terminus and a hydrophilic one toward the C-terminus, improving amphipathicity. Ap-S was much more active than the parental Ap. Ap-S up to 100microM has no cytotoxic effect against fish cell line CHSE-214. We demonstrated that the chemical modification of a natural peptide and the chemical synthesis of derived molecules may be a powerful tool for obtaining substitutes to conventional antibiotics, displaying the many advantages of antimicrobial peptides and overcoming the limitations of natural peptides for large-scale production and application, such as the low specific activity and the minute amounts recovered in vivo. This peptide may have a relevant application in aquaculture by controlling Saprolegna sp., a parasitic pathogen fungus that attacks the culture of fish in different stages of their growth, from egg to adult.

  5. DRAMP: a comprehensive data repository of antimicrobial peptides

    PubMed Central

    Fan, Linlin; Sun, Jian; Zhou, Meifeng; Zhou, Jie; Lao, Xingzhen; Zheng, Heng; Xu, Hanmei

    2016-01-01

    The growing problem of antibiotic-resistant microorganisms results in an urgent need for substitutes to conventional antibiotics with novel modes of action and effective activities. Antimicrobial peptides (AMPs), produced by a wide variety of living organisms acting as a defense mechanism against invading pathogenic microbes, are considered to be such promising alternatives. AMPs display a broad spectrum of antimicrobial activity and a low propensity for developing resistance. Therefore, a thorough understanding of AMPs is essential to exploit them as antimicrobial drugs. Considering this, we developed a comprehensive user-friendly data repository of antimicrobial peptides (DRAMP), which holds 17349 antimicrobial sequences, including 4571 general AMPs, 12704 patented sequences and 74 peptides in drug development. Entries in the database have detailed annotations, especially detailed antimicrobial activity data (shown as target organism with MIC value) and structure information. Annotations also include accession numbers crosslinking to Pubmed, Swiss-prot and Protein Data Bank (PDB). The website of the database comes with easy-to-operate browsing as well as searching with sorting and filtering functionalities. Several useful sequence analysis tools are provided, including similarity search, sequence alignment and conserved domain search (CD-Search). DRAMP should be a useful resource for the development of novel antimicrobial peptide drugs. PMID:27075512

  6. DRAMP: a comprehensive data repository of antimicrobial peptides.

    PubMed

    Fan, Linlin; Sun, Jian; Zhou, Meifeng; Zhou, Jie; Lao, Xingzhen; Zheng, Heng; Xu, Hanmei

    2016-04-14

    The growing problem of antibiotic-resistant microorganisms results in an urgent need for substitutes to conventional antibiotics with novel modes of action and effective activities. Antimicrobial peptides (AMPs), produced by a wide variety of living organisms acting as a defense mechanism against invading pathogenic microbes, are considered to be such promising alternatives. AMPs display a broad spectrum of antimicrobial activity and a low propensity for developing resistance. Therefore, a thorough understanding of AMPs is essential to exploit them as antimicrobial drugs. Considering this, we developed a comprehensive user-friendly data repository of antimicrobial peptides (DRAMP), which holds 17349 antimicrobial sequences, including 4571 general AMPs, 12704 patented sequences and 74 peptides in drug development. Entries in the database have detailed annotations, especially detailed antimicrobial activity data (shown as target organism with MIC value) and structure information. Annotations also include accession numbers crosslinking to Pubmed, Swiss-prot and Protein Data Bank (PDB). The website of the database comes with easy-to-operate browsing as well as searching with sorting and filtering functionalities. Several useful sequence analysis tools are provided, including similarity search, sequence alignment and conserved domain search (CD-Search). DRAMP should be a useful resource for the development of novel antimicrobial peptide drugs.

  7. Nanomechanical Response of Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Parg, Richard; Dutcher, John

    2014-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and our study introduces an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of Pseudomonas aeruginosa PAO1 bacterial cells upon exposure to two different but structurally related antimicrobial peptides: polymyxin B and polymyxin B nonapeptide. We observed a distinctive signature for the loss of integrity of the bacterial cell envelope following exposure to the peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different concentrations, revealed large changes to the viscoelastic parameters that are consistent with differences in the membrane permeabilizing effects of the peptides. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  8. Antimicrobial peptides from skin secretions of Hypsiboas pulchellus (Anura: Hylidae).

    PubMed

    Siano, Alvaro; Húmpola, María Verónica; de Oliveira, Eliandre; Albericio, Fernando; Simonetta, Arturo C; Lajmanovich, Rafael; Tonarelli, Georgina G

    2014-04-25

    The skin of many amphibians produces a large repertoire of antimicrobial peptides that are crucial in the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, knowledge about peptides with antimicrobial properties is limited to a few species. Here we used LC-MS-MS to analyze samples of Hypsiboas pulchellus skin with the aim to identify antimicrobial peptides in the mass range of 1000 to 2000 Da. Twenty-three novel sequences were identified by MS, three of which were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Hp-1971, P2-Hp-1935, and P3-Hp-1891, inhibited the growth of two ATCC strains: Escherichia coli (MIC: 16, 33, and 17 μM, respectively) and Staphylococcus aureus (MIC: 8, 66, and 17 μM, respectively). P1-Hp-1971 and P3-Hp-1891 were the most active peptides. P1-Hp-1971, which showed the highest therapeutic indices (40 for E. coli and 80 for S. aureus), is a proline-glycine-rich peptide with a highly unordered structure, while P3-Hp-1891 adopts an amphipathic α-helical structure in the presence of 2,2,2-trifluoroethanol and anionic liposomes. This is the first peptidomic study of Hypsiboas pulchellus skin secretions to allow the identification of antimicrobial peptides.

  9. Role of Arginine and Lysine in the Antimicrobial Mechanism of Histone-derived Antimicrobial Peptides

    PubMed Central

    Cutrona, Kara J.; Kaufman, Bethany A.; Figueroa, Dania M.; Elmore, Donald E.

    2015-01-01

    Translocation of cell-penetrating peptides is often promoted by increased content of arginine or other guanidinum groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. This study compared the activity of three histone-derived antimicrobial peptides—buforin II, DesHDAP1, and parasin— with variants that contain only lysine or arginine cationic residues. These peptides operate via different mechanisms as parasin causes membrane permeabilization while buforin II and DesHDAP1 translocate into bacteria. For all peptides, antibacterial activity increased with increased arginine content. Higher arginine content increased permeabilization for parasin while it improved translocation for buforin II and DesHDAP1. These observations provide insight into the relative importance of arginine and lysine in these antimicrobial peptides. PMID:26555191

  10. Cationic Antimicrobial Peptide Resistance in Neisseria meningitidis

    PubMed Central

    Tzeng, Yih-Ling; Ambrose, Karita D.; Zughaier, Susu; Zhou, Xiaoliu; Miller, Yoon K.; Shafer, William M.; Stephens, David S.

    2005-01-01

    Cationic antimicrobial peptides (CAMPs) are important components of the innate host defense system against microbial infections and microbial products. However, the human pathogen Neisseria meningitidis is intrinsically highly resistant to CAMPs, such as polymyxin B (PxB) (MIC ≥ 512 μg/ml). To ascertain the mechanisms by which meningococci resist PxB, mutants that displayed increased sensitivity (≥4-fold) to PxB were identified from a library of mariner transposon mutants generated in a meningococcal strain, NMB. Surprisingly, more than half of the initial PxB-sensitive mutants had insertions within the mtrCDE operon, which encodes proteins forming a multidrug efflux pump. Additional PxB-sensitive mariner mutants were identified from a second round of transposon mutagenesis performed in an mtr efflux pump-deficient background. Further, a mutation in lptA, the phosphoethanolamine (PEA) transferase responsible for modification of the lipid A head groups, was identified to cause the highest sensitivity to PxB. Mutations within the mtrD or lptA genes also increased meningococcal susceptibility to two structurally unrelated CAMPs, human LL-37 and protegrin-1. Consistently, PxB neutralized inflammatory responses elicited by the lptA mutant lipooligosaccharide more efficiently than those induced by wild-type lipooligosaccharide. mariner mutants with increased resistance to PxB were also identified in NMB background and found to contain insertions within the pilMNOPQ operon involved in pilin biogenesis. Taken together, these data indicated that meningococci utilize multiple mechanisms including the action of the MtrC-MtrD-MtrE efflux pump and lipid A modification as well as the type IV pilin secretion system to modulate levels of CAMP resistance. The modification of meningococcal lipid A head groups with PEA also prevents neutralization of the biological effects of endotoxin by CAMP. PMID:16030233

  11. Antimicrobial Peptides of Meat Origin - An In silico and In vitro Analysis.

    PubMed

    Keska, Paulina; Stadnik, Joanna

    2017-01-01

    The aim of this study was to evaluate the antimicrobial activity of meat protein-derived peptides against selected Gram-positive and Gram-negative bacteria. The in silico and in vitro approach was combined to determine the potency of antimicrobial peptides derived from pig (Sus scrofa) and cow (Bos taurus) proteins. The in silico studies consisted of an analysis of the amino acid composition of peptides obtained from the CAMPR database, their molecular weight and other physicochemical properties (isoelectric point, molar extinction coefficient, instability index, aliphatic index, hydropathy index and net charge). The degree of similarity was estimated between the antimicrobial peptide sequences derived from the slaughtered animals and the main meat proteins. Antimicrobial activity of peptides isolated from dry-cured meat products was analysed (in vitro) against two strains of pathogenic bacteria using the disc diffusion method. There was no evidence of growthinhibitory properties of peptides isolated from dry-cured meat products against Escherichia coli K12 ATCC 10798 and Staphylococcus aureus ATCC 25923.

  12. Chlamydia-secreted protease CPAF degrades host antimicrobial peptides.

    PubMed

    Tang, Lingli; Chen, Jianlin; Zhou, Zhiguang; Yu, Ping; Yang, Zhangsheng; Zhong, Guangming

    2015-06-01

    Chlamydia trachomatis infection in the lower genital tract, if untreated, can ascend to the upper genital tract, potentially leading to complications such as tubal factor infertility. The ascension involves cell-to-cell spreading, which may require C. trachomatis organisms to overcome mucosal extracellular effectors such as antimicrobial peptides. We found that among the 8 antimicrobial peptides tested, the cathelicidin LL-37 that is produced by both urogenital epithelial cells and the recruited neutrophils possessed a most potent antichlamydial activity. Interestingly, this antichlamydial activity was completely inhibited by CPAF, a C. trachomatis-secreted serine protease. The inhibition was dependent on CPAF's proteolytic activity. CPAF selectively degraded LL-37 and other antimicrobial peptides with an antichlamydial activity. CPAF is known to secrete into and accumulate in the infected host cell cytoplasm at the late stage of chlamydial intracellular growth and may be released to confront the extracellular antimicrobial peptides before the intra-inclusion organisms are exposed to extracellular environments during host cell lysis and chlamydial spreading. Thus, the finding that CPAF selectively targets host antimicrobial peptides that possess antichlamydial activities for proteolysis suggests that CPAF may contribute to C. trachomatis pathogenicity by aiding in ascending infection.

  13. Novel family of antimicrobial peptides from the skin of Rana shuchinae.

    PubMed

    Zheng, Ruiqiang; Yao, Bin; Yu, Haining; Wang, Hanjin; Bian, Jianmin; Feng, Feifei

    2010-09-01

    So far numerous antimicrobial peptides have been characterized from amphibians. In this work, a new family of antimicrobial peptides, named shuchin, was purified and characterized from skin secretions of the frog, Rana shuchinae that lives in freezing mountains. Totally two members of shuchin (shuchin 1 and 2) were identified with the amino acid sequence of NALSMPRNKCNRALMCFG and NALSSPRNKCDRASSCFG, respectively. cDNAs encoding shuchins were cloned from the skin cDNA library of R. shuchinae. The precursors of shuchin are composed of 62 amino acid residues including the conserved signal peptides, acidic propieces, and mature antimicrobial peptides. Synthetic shuchins showed strong and broad antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus, and Bacillus cereus; MICs<12.5 microg/ml), Gram-negative bacteria (Escherichia coli, Bacillus dysenteriae, Pseudomonas aeruginosa; most MICs from 3.1 to 12.5 microg/ml), and yeast (Candida albicans; MICs of 6.25 microg/ml), but no hemolytic activity under the effective concentration, thereby provide more leading templates for designing novel anti-infection agents.

  14. Borinic acid catalysed peptide synthesis.

    PubMed

    El Dine, Tharwat Mohy; Rouden, Jacques; Blanchet, Jérôme

    2015-11-18

    The catalytic synthesis of peptides is a major challenge in the modern organic chemistry hindered by the well-established use of stoichiometric coupling reagents. Herein, we describe for the first time that borinic acid is able to catalyse this reaction under mild conditions with an improved activity compared to our recently developed thiophene-based boronic acid. This catalyst is particularly efficient for peptide bond synthesis affording dipeptides in good yields without detectable racemization.

  15. Derivatives of the Mouse Cathelicidin-Related Antimicrobial Peptide (CRAMP) Inhibit Fungal and Bacterial Biofilm Formation

    PubMed Central

    De Brucker, Katrijn; Delattin, Nicolas; Robijns, Stijn; Steenackers, Hans; Verstraeten, Natalie; Landuyt, Bart; Luyten, Walter; Schoofs, Liliane; Dovgan, Barbara; Fröhlich, Mirjam; Michiels, Jan; Vanderleyden, Jos; Thevissen, Karin

    2014-01-01

    We identified a 26-amino-acid truncated form of the 34-amino-acid cathelicidin-related antimicrobial peptide (CRAMP) in the islets of Langerhans of the murine pancreas. This peptide, P318, shares 67% identity with the LL-37 human antimicrobial peptide. As LL-37 displays antimicrobial and antibiofilm activity, we tested antifungal and antibiofilm activity of P318 against the fungal pathogen Candida albicans. P318 shows biofilm-specific activity as it inhibits C. albicans biofilm formation at 0.15 μM without affecting planktonic survival at that concentration. Next, we tested the C. albicans biofilm-inhibitory activity of a series of truncated and alanine-substituted derivatives of P318. Based on the biofilm-inhibitory activity of these derivatives and the length of the peptides, we decided to synthesize the shortened alanine-substituted peptide at position 10 (AS10; KLKKIAQKIKNFFQKLVP). AS10 inhibited C. albicans biofilm formation at 0.22 μM and acted synergistically with amphotericin B and caspofungin against mature biofilms. AS10 also inhibited biofilm formation of different bacteria as well as of fungi and bacteria in a mixed biofilm. In addition, AS10 does not affect the viability or functionality of different cell types involved in osseointegration of an implant, pointing to the potential of AS10 for further development as a lead peptide to coat implants. PMID:24982087

  16. De Novo Designed Synthetic Mimics of Antimicrobial Peptides

    PubMed Central

    Scott, Richard W.; DeGrado, William F.; Tew, Gregory N.

    2008-01-01

    Summary Antimicrobial peptides are small cationic amphiphiles that play an important role in the innate immune system. Given their broad specificity, they appear to be ideal therapeutic agents. As a result, over the last decade, there has been considerable interest in developing them as intravenously administered antibiotics. However, it has proven difficult to accomplish this goal with peptide-based structures. While it has been possible to solve some relatively simple problems such as susceptibility to proteolysis, more severe problems have included the expense of the materials, toxicity, limited efficacy, and limited tissue distribution. As a result, we developed small synthetic oligomers designed to adopt amphiphilic conformations and exhibit potent antimicrobial activity while being non-toxic to host cells. One class of these synthetic mimics of antimicrobial peptides (SMAMPs) is being developed as intravenous antibiotics PMID:18996193

  17. [Solution structure and antibacterial mechanism of two synthetic antimicrobial peptides].

    PubMed

    Yang, Lin; Fan, Meihua; Liu, Xuezhu; Wu, Mei; Shi, Ge; Liao, Zhi

    2011-11-01

    Mytilin-derived-peptide-1 (MDP-1) and mytilin-derived-peptide-2 (MDP-2) are two truncated decapeptides with reversed sequence synthesized corresponding to the residues 20-29 of mytilin-1 (GenBank Accession No. FJ973154) from M. coruscus. The objective of this study is to characterize the structural basis of these two peptides for their antimicrobial activities and functional differences, and to investigate the inhibitory mechanism of MDPs on Escherichia coli and Sarcina lutea. The structures of MDP-1 and MDP-2 in solution were determined by 1H 2D NMR methods; the antibactericidal effects of MDPs on E. coli and S. lutea were observed by transmitted electron microscopy (TEM). Both MDP-1 and MDP-2 have a well-defined loop structure stabilized by two additional disulfide bridges, which resemble the-hairpin structure of mytilin-1 model. The surface profile of MDPs' structures was characterized by protruding charged residues surrounded by hydrophobic residues. TEM analysis showed that MDPs destroyed cytoplasmic membrane and cell wall of bacteria and the interface between the cell wall and membrane was blurred. Furthermore, some holes were observed in treated bacteria, which resulted in cell death. Structural comparison between MDP-1 and MDP-2 shows that the distribution of positively charged amino acids on the loop of MDPs is topologically different significantly, which might be the reason why MDP-2 has higher activity than MDP-1. Furthermore, TEM results suggested that the bactericidal mechanisms of MDPs against E. coli and S. lutea were similar. Both MDP-1 and MDP-2 could attach to the negatively charged bacterial wall by positively charged amino acid residues and destroy the bacteria membrane in a pore-forming manner, thus cause the contents of the cells to release and eventually cell death.

  18. Antimicrobial peptide coatings for hydroxyapatite: electrostatic and covalent attachment of antimicrobial peptides to surfaces.

    PubMed

    Townsend, Leigh; Williams, Richard L; Anuforom, Olachi; Berwick, Matthew R; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A H; Webber, Mark; Peacock, Anna F A; Belli, Antonio; Logan, Ann; de Cogan, Felicity

    2017-01-01

    The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria.

  19. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs

    PubMed Central

    Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae

    2016-01-01

    Lactophoricin (LPcin), a component of proteose peptone (113–135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing 1H-15N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting 15N 1D and 2D 1H-15N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built 1H-15N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55–75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. PMID:26789765

  20. Fungicidal mechanisms of the antimicrobial peptide Bac8c.

    PubMed

    Lee, Wonyoung; Lee, Dong Gun

    2015-02-01

    Bac8c (RIWVIWRR-NH2) is an analogue peptide derived through complete substitution analysis of the linear bovine host defense peptide variant Bac2A. In the present study, the antifungal mechanism of Bac8c against pathogenic fungi was investigated, with a particular focus on the effects of Bac8c on the cytoplasmic membrane. We used bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] staining and 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)] assays to show that Bac8c induced disturbances in the membrane potential of Candida albicans. An increase in membrane permeability and suppression of cell wall regeneration were also observed in Bac8c-treated C. albicans. We studied the effects of Bac8c treatment on model membranes to elucidate its antifungal mechanism. Using calcein and FITC-labeled dextran leakage assays from Bac8c-treated large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs), we found that Bac8c has a pore-forming action on fungal membranes, with an estimated pore radius of between 2.3 and 3.3 nm. A membrane-targeted mechanism of action was also supported by the observation of potassium release from the cytosol of Bac8c-treated C. albicans. These results indicate that Bac8c is considered as a potential candidate to develop a novel antimicrobial agent because of its low-cost production characteristics and high antimicrobial activity via its ability to induce membrane perturbations in fungi.

  1. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides

    PubMed Central

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-01-01

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1–35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation. PMID:27681920

  2. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides.

    PubMed

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-08-10

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1-35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation.

  3. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60.

    PubMed

    Zhao, Jing; Guo, Lihua; Zeng, Hongmei; Yang, Xiufen; Yuan, Jingjing; Shi, Huaixing; Xiong, Yehui; Chen, Mingjia; Han, Lei; Qiu, Dewen

    2012-02-01

    A novel antimicrobial peptide, with molecular mass of 1602.0469Da, produced by Brevibacillus laterosporus strain A60 was isolated and purified from the soil of mango plants. The purification procedure consisted of ammonium sulfate precipitation, cation exchange chromatography on an HiTrap SP HP column, thin layer chromatography and High Performance Liquid Chromatography (HPLC) on C18 reversed-phase column. After the four isolation procedures, one peptide with antimicrobial activity was obtained and named BL-A60. The determination of the complete amino acid sequences of this peptide showed that it contains eleven amino acid residues, L-Y-K-L-V-K-V-V-L-N-M, and a choline connected to the N-terminal and a tenuazonic acid modified of the C-terminal. This peptide shows relatively low identification to other antimicrobial peptides from bacteria. Purified BL-A60 showed high pH and thermal stability and a strong inhibition of different stages of the life cycle of Phytophthora capsici, including mycelial growth, sporangia formation and cystospore germination, with EC(50) values of 7.89, 0.60 and 21.96 μg ml(-1), respectively.

  4. IQ-motif peptides as novel anti-microbial agents.

    PubMed

    McLean, Denise T F; Lundy, Fionnuala T; Timson, David J

    2013-04-01

    The IQ-motif is an amphipathic, often positively charged, α-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic α-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited.

  5. The dynamic action mechanism of small cationic antimicrobial peptides.

    PubMed

    Lopez Cascales, J J; Garro, A; Porasso, R D; Enriz, R D

    2014-10-21

    Antimicrobial peptides form part of the immune system as protection against the action of external pathogens. The differences that exist between mammalian and microbial cell membrane architectures are key aspects of the ability of these peptides to discriminate between pathogens and host cells. Given that the pathogen membrane is the non-specific target of these cationic peptides, different molecular mechanisms have been suggested to describe the rules that permit them to distinguish between pathogens and mammalian cells. In this context, and setting aside the old fashion idea that cationic peptides act through one mechanism alone, this work will provide insight into the molecular action mechanism of small antimicrobial peptides, based on molecular dynamics simulations of phospholipid bilayers that mimic different cell membrane architectures. After measuring different properties of these lipid bilayers, in the absence and presence of peptides, a four-step action mechanism was suggested on the basis of the formation of phospholipid rafts induced by the presence of these cationic peptides. Thus, this work shows how differences in the bending modulus (k(b)) of these lipid rafts and differences in the free energy profiles (ΔG(z)) associated with the insertion of these peptides into these lipid rafts are key aspects for explaining the action mechanism of these cationic peptides at the molecular level.

  6. Three novel antimicrobial peptides from the skin of the Indian bronzed frog Hylarana temporalis (Anura: Ranidae).

    PubMed

    Reshmy, V; Preeji, V; Parvin, A; Santhoshkumar, K; George, S

    2011-05-01

    Amphibian skin secretion is considered as a rich source of bioactive peptides. The present work describes the successful identification of three novel peptides named brevinin-1TEa, brevinin-2TEa and brevinin-2TEb present in the skin secretion of Indian bronzed frog Hylarana temporalis. The deduced open reading frame encoding the biosynthetic precursor of brevinin-1TEa consisted of 70 amino acid residues and brevinin-2TEa and brevinin-2TEb consisted of 71 and 72 amino acids, respectively. All the three peptides showed higher antimicrobial activity against Gram-negative than against Gram-positive bacteria. On the basis of the antibacterial and haemolytic activity, brevinin-2TEb is the most potent peptide reported in the present study. Further research on these peptides may provide potential clue towards newer drug development to combat various microbial diseases.

  7. Discovering new in silico tools for antimicrobial peptide prediction.

    PubMed

    Torrent, Marc; Nogués, M Victòria; Boix, Ester

    2012-08-01

    Antimicrobial peptides (AMPs) are important effectors of the innate immune system and play a vital role in the prevention of infections. Due to the increased emergence of new antibiotic-resistant bacteria, new drugs are constantly under investigation. AMPs in particular are recognized as promising candidates because of their modularity and wide antimicrobial spectrum. However, the mechanisms of action of AMPs, as well as their structure-activity relationships, are not completely understood. AMPs display no conserved three-dimensional structure and poor sequence conservation, which hinders rational design. Several bioinformatics tools have been developed to generate new templates with appealing antimicrobial properties with the aim of finding highly active peptide compounds with low cytotoxicity. The current tools reviewed here allow for the prediction and design of new active peptides with reasonable accuracy. However, a reliable method to assess the antimicrobial activity of AMPs has not yet been developed. The standardization of procedures to experimentally evaluate the antimicrobial activity of AMPs, together with the constant growth of current well-established databases, may allow for the future development of new bioinformatics tools to accurately predict antimicrobial activity.

  8. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    SciTech Connect

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M.; Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R.; Castanho, Miguel A.R.B.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view

  9. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides

    PubMed Central

    Rashid, Rafi; Veleba, Mark; Kline, Kimberly A.

    2016-01-01

    Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction. PMID:27376064

  10. Purification, characterisation and cDNA cloning of an antimicrobial peptide from Macadamia integrifolia.

    PubMed

    Marcus, J P; Goulter, K C; Green, J L; Harrison, S J; Manners, J M

    1997-03-15

    An antimicrobial peptide with no significant amino acid sequence similarity to previously described peptides has been isolated from the nut kernels of Macadcamia integrifolia. The peptide, termed MiAMP1, is highly basic with an estimated pI of 10.1, a mass of 8.1 kDa and contains 76 amino acids including 6 cysteine residues. A cDNA clone containing the entire coding region corresponding to the peptide was obtained. The deduced amino acid sequence of the cDNA indicated a 26-amino-acid signal peptide at the N-terminus of the preprotein. Purified MiAMP1 inhibited the growth of a variety of fungal, oomycete and gram-positive bacterial phytopathogens in vitro. Some pathogens exhibited close to 100% inhibition in less than 1 microM peptide (5 microg/ml). Antimicrobial activity was diminished against most, but not all, microbes in the presence of calcium and potassium chloride salts (1 mM and 50 mM, respectively). MiAMP1 was active against bakers yeast, was inactive against Escherichia coli and was non-toxic to plant and mammalian cells. Analysis of genomic DNA indicated that MiAMP1 was encoded on a single copy gene containing no introns. The MiAMP1 gene may prove useful in genetic manipulations to increase disease resistance in transgenic plants.

  11. Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics.

    PubMed

    Sang, Yongming; Blecha, Frank

    2008-12-01

    Antimicrobial peptides (AMPs) are ubiquitous, gene-encoded natural antibiotics that have gained recent attention in the search for new antimicrobials to combat infectious disease. In multicellular organisms, AMPs, such as defensins and cathelicidins, provide a coordinated protective response against infection and are a principal component of innate immunity in vertebrates. In unicellular organisms, AMPs, such as bacteriocins, function to suppress competitor species. Because many AMPs kill bacteria by disruption of membrane integrity and are thus thought to be less likely to induce resistance, AMPs are being extensively evaluated as novel antimicrobial drugs. This review summarizes and discusses the antibiotic properties of AMPs highlighting their potential as alternatives to conventional antibiotics.

  12. Imaging the action of antimicrobial peptides on living bacterial cells

    PubMed Central

    Gee, Michelle L.; Burton, Matthew; Grevis-James, Alistair; Hossain, Mohammed Akhter; McArthur, Sally; Palombo, Enzo A.; Wade, John D.; Clayton, Andrew H. A.

    2013-01-01

    Antimicrobial peptides hold promise as broad-spectrum alternatives to conventional antibiotics. The mechanism of action of this class of peptide is a topical area of research focused predominantly on their interaction with artificial membranes. Here we compare the interaction mechanism of a model antimicrobial peptide with single artificial membranes and live bacterial cells. The interaction kinetics was imaged using time-lapse fluorescence lifetime imaging of a fluorescently-tagged melittin derivative. Interaction with the synthetic membranes resulted in membrane pore formation. In contrast, the interaction with bacteria led to transient membrane disruption and corresponding leakage of the cytoplasm, but surprisingly with a much reduced level of pore formation. The discovery that pore formation is a less significant part of lipid-peptide interaction in live bacteria highlights the mechanistic complexity of these interactions in living cells compared to simple artificial systems. PMID:23532056

  13. Thermodynamics of RTA3 peptide binding to membranes and consequences for antimicrobial activity☆

    PubMed Central

    Hawrani, Ayman; Howe, Robin A.; Walsh, Timothy R.; Dempsey, Christopher E.

    2010-01-01

    RTA3 is an α-helical, amphipathic peptide with broad-spectrum activity against Gram-negative bacteria and low mammalian cell toxicity. RTA3 contains a cysteine residue, replacement of which with an alanine or serine (RTA3-C15S) virtually abolishes antimicrobial activity. Much of the activity of RTA3 can be recovered in RTA3-C15L, indicating that the C15 residue functions largely as a bulky hydrophobic side chain promoting target cell membrane interactions. The poorly active RTA3-C15S is a useful variant for assessing the mechanistic aspects of RTA3 activity. Binding and membrane perturbation in vesicles containing different proportions of negative surface charge are analyzed in terms of amino acid-specific free energy contributions to interfacial binding, which likely underlie variations in antimicrobial activity amongst RTA3 variants. Comparison with published free energy scales indicates that the reduced electrostatic contribution to binding to membranes having reduced negative surface charge can be compensated in RTA3 (but not RTA3-C15S) by a slightly deeper insertion of the C-terminus of the peptide to maximize hydrophobic contributions to binding. Analysis of inner membrane (IM)- and outer membrane (OM)-selective permeabilization of Escherichiacoli demonstrates a broad similarity between peptide effects on vesicles with low negative surface charge (20% negatively charged lipids), E.coli membrane perturbation, and antimicrobial activity, supporting a role for membrane perturbation in the killing mechanism of RTA3. The results demonstrate that large variations in antimicrobial activity on subtle changes in amino acid sequence in helical amphipathic peptides can be rationalized in terms of the thermodynamics of peptide binding to membranes, allowing a more systematic understanding of antimicrobial activity in these peptides. PMID:20346912

  14. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits.

    PubMed

    Daneshmand, Fatemeh; Zare-Zardini, Hadi; Ebrahimi, Leila

    2013-01-01

    Snakin-Z is a novel antimicrobial peptide (AMP) that is identified from the fruit of Zizyphus jujuba. This peptide is composed of 31 amino acids which is determined with the sequence of CARLNCVPKGTSGNTETCPCYASLHSCRKYG and molecular weight of 3318.82 Da. Snakin-Z is not identical to any AMP in the peptide database. According to this study, Snakin-Z potentially has antimicrobial property against bacteria and fungi. Minimal inhibitory concentration (MIC) value of this peptide is suitable for antimicrobial activity. We assessed that Snakin-Z could affect Phomopsis azadirachtae with the MIC value of 7.65 μg/mL and vice versa Staphylococcus aureus with the MIC value of 28.8 μg/mL. Interestingly, human red blood cells also showed good tolerance to the Snakin-Z. On the basis of this study, Snakin-Z can be an appropriate candidate for therapeutic applications in the future due to its antimicrobial property.

  15. Antimicrobial peptides: a new class of antimalarial drugs?

    PubMed Central

    Vale, Nuno; Aguiar, Luísa; Gomes, Paula

    2014-01-01

    A range of antimicrobial peptides (AMP) exhibit activity on malaria parasites, Plasmodium spp., in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity, and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs. PMID:25566072

  16. Identification of candidate antimicrobial peptides derived from abalone hemocyanin.

    PubMed

    Zhuang, Jun; Coates, Christopher J; Zhu, Hongtao; Zhu, Ping; Wu, Zujian; Xie, Lianhui

    2015-03-01

    Hemocyanins present in invertebrate hemolymph are multifunctional proteins, responsible for oxygen transport and contributing to innate immunity through phenoloxidase-like activity. In arthropods, hemocyanin has been identified as a source of broad-spectrum antimicrobial peptides during infection. Conversely, no hemocyanin-derived antimicrobial peptides have been reported for molluscs. The present study describes a putative antimicrobial region, termed haliotisin, located within the linking sequence between the α-helical domain and β-sheet domain of abalone (Haliotis tuberculata) hemocyanin functional unit E. A series of synthetic peptides based on overlapping fragments of the haliotisin region were tested for their bactericidal potential. Incubating Gram-positive and Gram-negative bacteria in the presence of certain haliotisin peptides, notably peptides 3-4-5 (DTFDYKKFGYRYDSLELEGRSISRIDELIQQRQEKDRTFAGFLLKGFGTSAS) led to reductions in microbial growth. Furthermore, transmission electron micrographs of haliotisin-treated bacteria revealed damages to the microbial cell wall. Data discussed here provides the first evidence to suggest that molluscan hemocyanin may act as a source of anti-infective peptides.

  17. Linear antimicrobial peptides from Ectatomma quadridens ant venom.

    PubMed

    Pluzhnikov, Kirill A; Kozlov, Sergey A; Vassilevski, Alexander A; Vorontsova, Olga V; Feofanov, Alexei V; Grishin, Eugene V

    2014-12-01

    Venoms from three poneromorph ant species (Paraponera clavata, Ectatomma quadridens and Ectatomma tuberculatum) were investigated for the growth inhibition of Gram-positive and Gram-negative bacteria. It was shown that the venom of E. quadridens and its peptide fraction in particular possess marked antibacterial action. Three linear antimicrobial peptides sharing low similarity to the well-known ponericin peptides were isolated from this ant venom by means of size-exclusion and reversed-phase chromatography. The peptides showed antimicrobial activity at low micromolar concentrations. Their primary structure was established by direct Edman sequencing in combination with mass spectrometry. The most active peptide designated ponericin-Q42 was chemically synthesized. Its secondary structure was investigated in aqueous and membrane-mimicking environment, and the peptide was shown to be partially helical already in water, which is unusual for short linear peptides. Analysis of its activity on different bacterial strains, human erythrocytes and chronic myelogenous leukemia K562 cells revealed that the peptide shows broad spectrum cytolytic activity at micromolar and submicromolar concentrations. Ponericin-Q42 also possesses weak toxic activity on flesh fly larvae with LD50 of ∼105 μg/g.

  18. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Jaeho; Kim, Jae Il; Lee, Dong Gun

    2015-02-01

    Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane.

  19. Selected antimicrobial peptides inhibit in vitro growth of Campylobacter spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel alternatives to traditional antibiotics are urgently needed for food-animal production. A goal of our laboratory is to develop and evaluate antimicrobial peptides (AMP) to control and reduce foodborne pathogens in poultry. AMP have been found in most every class of living organism where they h...

  20. Original involvement of antimicrobial peptides in mussel innate immunity.

    PubMed

    Mitta, G; Vandenbulcke, F; Roch, P

    2000-12-15

    Recently, the existence and extended diversity of antimicrobial peptides has been revealed in two mussel species. These molecules are classified into four groups according to common features of their primary structure: defensins, mytilins, myticins and mytimycin. In Mytilus galloprovincialis, gene structure reveals synthesis as precursors in circulating hemocytes. Synthesised even in absence of challenge, the precursors mature and the peptides are stored in granules as active forms. The different peptides are engaged in the destruction of bacteria inside phagocytes, before being released into hemolymph to participate in systemic responses. Such involvement in anti-infectious responses is unique, and apparently more related to those of mammalian phagocytes than to those of insects.

  1. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity.

    PubMed

    Zhu, Xin; Zhang, Licong; Wang, Jue; Ma, Zhi; Xu, Wei; Li, Jianping; Shan, Anshan

    2015-05-01

    Antimicrobial peptides (AMPs) serve as a defense mechanism within multicellular organisms and are attracting increasing attention because of their potential application in the treatment of multidrug-resistant infections. Amphipathicity has long been believed to be the most important consideration for the structural modification and design of both naturally occurring and synthetic AMPs. Previous studies indicated that disruptive amphipathicity formed by replacing the paired charged amino acid residues on the polar face of an amphipathic helix with tryptophan residues linked with hydrogen bonds on the basis of α-helical protein folding principles endowed the AMPs with increased cell selectivity. In an attempt to augment and hone this strategy further, we designed a series of imperfect amphipathic peptides by placing different types of amino acid residues at the hydrogen bond linked positions of α-helix structures to characterize their antimicrobial properties and mechanism of action. The d-Trp-substituted sequence (PRW4-d) showed greater antimicrobial potency than Cys-(C4), Asp-(D4), Ile-(I4), and Pro-(P4) substituted sequences, comparable to the l-Trp-substituted parent sequence (PRW4). Furthermore, the total replacement of Lys residues with Arg residues along the peptide sequence (PRW4-R) exhibited enhanced antimicrobial activity and cell selectivity. In addition, no cytotoxicity was observed among these synthetic peptides. PRW4-d and PRW4-R maintained their activities in the presence of physiological salts and human serum. The fluorescence spectroscopy, flow cytometry, and electron microscopy observations indicated that the optimized sequences exhibited excellent antimicrobial potency by inducing cytoplasmic membrane potential loss, membrane permeabilization and disruption. Collectively, the results could be useful for designing short AMPs with great antimicrobial activity and cell selectivity.

  2. Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin.

    PubMed

    Gueguen, Yannick; Bernard, Romestand; Julie, Fievet; Paulina, Schmitt; Delphine, Destoumieux-Garzón; Franck, Vandenbulcke; Philippe, Bulet; Evelyne, Bachère

    2009-02-01

    A cDNA sequence that encodes a 61-amino acid polypeptide precursor with homologies to proline-rich antimicrobial peptides (AMPs) was identified in the oyster Crassostrea gigas. After release of a hydrophobic signal peptide, the resulting 37-amino acid peptide, Cg-Prp, is composed of an acidic region and a cationic proline-rich region. To evaluate the biological properties of Cg-Prp, multiple proline-rich peptides corresponding to putative processing of the full-length Cg-Prp were synthesized. A limited antimicrobial activity was observed for two of them, which also showed strong synergistic antimicrobial activity with Cg-Def, a defensin from C. gigas. To our knowledge, this is the first evidence of synergy between a defensin and another AMP in an invertebrate. By in situ hybridization, the expression of Cg-prp was found to be restricted to hemocytes and induced following bacterial challenge. Cg-prp transcripts were also detected in hemocytes infiltrating mantle, where Cg-Def is expressed. Additionally, by immunocytochemistry, we showed that Cg-Prp or one of its variants is present in some hemocytes together with defensins. In conclusion, we described here the first proline-rich AMP from mollusk. From our study, it is likely to provide a first line of defense against bacterial invasion by acting through synergy with defensins.

  3. Antimicrobial activity of the synthetic peptide Lys-a1 against oral streptococci.

    PubMed

    da Silva, Bruno Rocha; de Freitas, Victor Aragão Abreu; Carneiro, Victor Alves; Arruda, Francisco Vassiliepe Sousa; Lorenzón, Esteban Nicolás; de Aguiar, Andréa Silvia Walter; Cilli, Eduardo Maffud; Cavada, Benildo Sousa; Teixeira, Edson Holanda

    2013-04-01

    The peptide LYS-[TRP(6)]-Hy-A1 (Lys-a1) is a synthetic derivative of the peptide Hy-A1, initially isolated from the frog species Hypsiboas albopunctatus. According to previous research, it is a molecule with broad antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of the synthetic peptide Lys-a1 (KIFGAIWPLALGALKNLIK-NH2) on the planktonic and biofilm growth of oral bacteria. The methods used to evaluate antimicrobial activity include the following: determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in microtiter plates for growth in suspension and quantification of biomass by crystal violet staining and counting of colony forming units for biofilm growth. The microorganisms Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus were grown in Brain Heart Infusion broth at 37°C under atmospheric pressure with 10% CO2. The peptide was solubilized in 0.1% acetic acid (v/v) at various concentrations (500-1.9 μg mL(-1)). Chlorhexidine gluconate 0.12% was used as the positive control, and BHI culture medium was used as the negative control. The tested peptide demonstrated a remarkable antimicrobial effect, inhibiting the planktonic and biofilm growth of all strains tested, even at low concentrations. Thus, the peptide Lys-a1 is an important source for potential antimicrobial agents, especially for the control and prevention of microbial biofilms, which is one of the most important factors in cariogenic processes.

  4. Engineering of a linear inactive analog of human β-defensin 4 to generate peptides with potent antimicrobial activity.

    PubMed

    Sharma, Himanshu; Mathew, Basil; Nagaraj, Ramakrishnan

    2015-06-01

    Human β-defensins (HBDs) are cationic antimicrobial peptides constrained by three disulfide bridges. They have diverse range of functions in the innate immune response. It is of interest to investigate whether linear analogs of defensins can be generated, which possess antimicrobial activity. In this study, we have designed linear peptides with potent antimicrobial activity from an inactive peptide spanning the N-terminus of HBD4. Our results show that l-arginine to d-arginine substitution imparts considerable antimicrobial activity against both bacteria and Candida albicans. Increase in hydrophobicity by fatty acylation of the peptides with myristic acid further enhances their potency. In the presence of high concentrations of salt, antimicrobial activity of the myristoylated peptide with l-arginine is attenuated relatively to a lesser extent as compared with the linear active peptide with d-arginine. Substitution of cysteine with the hydrophobic helix-promoting amino acid α-aminoisobutyric acid favors candidacidal activity but not antibacterial activity. The mechanism of killing by d-arginine substituted unacylated analog involves transient interaction with the bacterial membrane followed by translocation into the cytoplasm without membrane permeabilization. Accumulation of peptides in the cytoplasm can affect various cellular processes that lead to cell death. However, the peptide causes membrane permeabilization in case of C. albicans. Myristoylation results in greater interaction of the peptide chain with the microbial cell surface and causes membrane permeabilization. Results described in the study demonstrate that it is possible to generate highly active linear analogs of defensins by selective introduction of d-amino acids and fatty acids, which could be attractive candidates for development as therapeutic agents.

  5. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA.

    PubMed

    Lande, Roberto; Chamilos, Georgios; Ganguly, Dipyaman; Demaria, Olivier; Frasca, Loredana; Durr, Sophie; Conrad, Curdin; Schröder, Jens; Gilliet, Michel

    2015-01-01

    Psoriasis is a T-cell-mediated skin autoimmune disease characterized by the aberrant activation of dermal dendritic cells (DCs) and the sustained epidermal expression of antimicrobial peptides. We have previously identified a link between these two events by showing that the cathelicidin antimicrobial peptide LL37 has the ability to trigger self-nucleic acid mediated activation of plasmacytoid DCs (pDCs) in psoriatic skin. Whether other cationic antimicrobial peptides exert similar activities is unknown. By analyzing heparin-binding HPLC fractions of psoriatic scales, we found that human beta-defensin (hBD)2, hBD3, and lysozyme are additional triggers of pDC activation in psoriatic skin lesions. Like LL37, hBD2, hBD3, and lysozyme are able to condense self-DNA into particles that are endocytosed by pDCs, leading to activation of TLR9. In contrast, other antimicrobial peptides expressed in psoriatic skin including elafin, hBD1, and psoriasin (S100A7) did not show similar activities. hBD2, hBD3, and lysozyme were detected in psoriatic skin lesions in the vicinity of pDCs and found to cooperate with LL37 to induce high levels of IFN production by pDCs, suggesting their concerted role in the pathogenesis of psoriasis.

  6. S. Typhimurium strategies to resist killing by cationic antimicrobial peptides.

    PubMed

    Matamouros, Susana; Miller, Samuel I

    2015-11-01

    S. Typhimurium is a broad host range Gram-negative pathogen that must evade killing by host innate immune systems to colonize, replicate, cause disease, and be transmitted to other hosts. A major pathogenic strategy of Salmonellae is entrance, survival, and replication within eukaryotic cell phagocytic vacuoles. These phagocytic vacuoles and gastrointestinal mucosal surfaces contain multiple cationic antimicrobial peptides (CAMPs) which control invading bacteria. S. Typhimurium possesses several key mechanisms to resist killing by CAMPs which involve sensing CAMPs and membrane damage to activate signaling cascades that result in remodeling of the bacterial envelope to reduce its overall negative charge with an increase in hydrophobicity to decrease binding and effectiveness of CAMPs. Moreover Salmonellae have additional mechanisms to resist killing by CAMPs including an outer membrane protease which targets cationic peptides at the surface, and specific efflux pumps which protect the inner membrane from damage. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  7. Chemical immobilization of antimicrobial peptides on biomaterial surfaces.

    PubMed

    Silva, Rafael R; Avelino, Karen Y P S; Ribeiro, Kalline L; Franco, Octavio L; Oliveira, Maria D L; Andrade, Cesar A S

    2016-01-01

    The hospital infections associated with surgical procedures and implants still represents a severe problem to modern society. Therefore, new strategies to combat bacterial infections mainly caused by microorganisms resistant to conventional antibiotics are extremely necessary. In this context, antimicrobial peptides have gained prominence due their biocompatibility, low toxicity and effectiveness. The immobilization of antimicrobial peptides (AMPs) onto a biomaterial surface is an excellent alternative to the development of new biodevices with microbicide properties. Herein, we describe reports related to physical-chemical characterization, in vitro/in vivo studies and clinical applicability. In this review, we focused on the AMPs mechanisms of action, different peptide immobilization strategies on solid surface and their microbicide effectiveness.

  8. Characterization and structural analysis of hepcidin like antimicrobial peptide from Schizothorax richardsonii (Gray).

    PubMed

    Chaturvedi, Preeti; Dhanik, Meenakshi; Pande, Amit

    2014-02-01

    Innate immune system is a primary line of defense in fish that protects it from the invading pathogens. Antimicrobial peptides (AMPs) are widely distributed in nature and are essential components of innate immunity. These molecules enable the host's innate immune system to fight against a variety of infectious agents. One such AMP, hepcidin, is a cysteine rich amphipathic peptide. We have amplified, cloned and characterized hepcidin like AMP from Schizothorax richardsonii that inhabits one of the most difficult aquatic ecosystems in the Indian Himalayas. The cDNA encoding hepcidin like peptide was amplified as a 371 bp fragment with an open reading frame (ORF) of 279 nucleotides flanked by 5' and 3' UTRs of 70 and 22 bases respectively. This ORF encodes a peptide of 93 amino acids with a signal peptide of 24 amino acids and a mature peptide of 25 amino acids. The mature hepcidin like peptide of S. richardsonii has eight cystine residues that participate in the formation of four disulfide bonds, a unique feature of hepcidin like AMPs. A 3D model of hepcidin like mature peptide was generated using Modeller 9.10 which was validated using PROCHECK and ERRAT. Phylogenetic analysis of hepcidin like AMP from S. richardsonii revealed that it was closely related to hepcidin from olive barb (Puntius sarana).

  9. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents.

    PubMed

    Wiradharma, Nikken; Khoe, Ulung; Hauser, Charlotte A E; Seow, See Voon; Zhang, Shuguang; Yang, Yi-Yan

    2011-03-01

    Antimicrobial peptides (AMPs) secreted by the innate immune system are prevalent as the effective first-line of defense to overcome recurring microbial invasions. They have been widely accepted as the blueprints for the development of new antimicrobial agents for the treatment of drug resistant infections. However, there is also a growing concern that AMPs with a sequence that is too close to the host organism's AMP may inevitably compromise its own natural defense. In this study, we design a series of synthetic (non-natural) short α-helical AMPs to expand the arsenal of the AMP families and to gain further insights on their antimicrobial activities. These cationic and amphiphilic peptides have a general sequence of (XXYY)(n) (X: hydrophobic residue, Y: cationic residue, and n: the number of repeat units), and are designed to mimic the folding behavior of the naturally-occurring α-helical AMPs. The synthetic α-helical AMPs with 3 repeat units, (FFRR)(3), (LLRR)(3), and (LLKK)(3), are found to be more selective towards microbial cells than rat red blood cells, with minimum inhibitory concentration (MIC) values that are more than 10 times lower than their 50% hemolytic concentrations (HC(50)). They are effective against Gram-positive B. subtilis and yeast C. albicans; and the studies using scanning electron microscopy (SEM) have elucidated that these peptides possess membrane-lytic activities against microbial cells. Furthermore, non-specific immune stimulation assays of a typical peptide shows negligible IFN-α, IFN-γ, and TNF-α inductions in human peripheral blood mononuclear cells, which implies additional safety aspects of the peptide for both systemic and topical use. Therefore, the peptides designed in this study can be promising antimicrobial agents against the frequently-encountered Gram-positive bacteria- or yeast-induced infections.

  10. Lacrain: the first antimicrobial peptide from the body extract of the Brazilian centipede Scolopendra viridicornis.

    PubMed

    Chaparro, E; da Silva, P I

    2016-09-01

    Antimicrobial activities have previously been described by traditional Eastern medicine in Chilopoda body extracts, but until now no bioactive peptides have been described. In this study, a novel antimicrobial peptide, lacrain, was isolated from the body extract of the Brazilian Chilopoda Scolopendra viridicornis. The peptide was isolated by reverse-phase high-performance liquid chromatography (RP-HPLC). Its activity was tested using a liquid growth inhibition assay and the peptide was characterised using mass spectrometry. Lacrain has a sequence composed of eight amino acid residues and a molecular mass of 925.5 Da. A synthetic peptide of the native lacrain had identical characteristics to those of the isolated material, confirming its sequence. The synthetic peptide was active only against Gram-negative bacteria, showing strong bactericidal activity. Moreover, the peptide did not present haemolytic activity against human erythrocytes. Lacrain represents a novel molecule with powerful antibacterial activity that could be used as a new template for the development of drugs against clinically resistant bacterial strains.

  11. Antimicrobial peptides with atypical structural features from the skin of the Japanese brown frog Rana japonica.

    PubMed

    Isaacson, Todd; Soto, AnaMaria; Iwamuro, Shawichi; Knoop, Floyd C; Conlon, J Michael

    2002-03-01

    Japonicin-1 (FFPIGVFCKIFKTC) and japonicin-2 (FGLPMLSILPKALCILLKRKC), two peptides with differential growth-inhibitory activity against the Gram-negative bacterium, Escherichia coli and the Gram-positive bacterium Staphylococcus aureus, were isolated from an extract of the skin of the Japanese brown frog Rana japonica. Both peptides show little amino acid sequence similarity to previously characterized antimicrobial peptides isolated from the skins of Ranid frogs. Circular dichroism studies, however, demonstrate that japonicin-2 adopts an alpha-helical conformation in 50% trifluoroethanol in common with many other cationic antimicrobial peptides synthesized in amphibian skin. Peptides belonging to the brevinin-1, brevinin-2, and tigerinin families, previously identified in the skins of Asian Ranid frogs, were not detected but a temporin-related peptide (ILPLVGNLLNDLL.NH(2); temporin-1Ja), that atypically bears no net positive charge, was isolated from the extract. The minimum inhibitory concentrations (MICs) of the peptides against E. coli were japonicin-1, 30 microM; japonicin-2, 12 microM; and temporin-1Ja > 100 microM. The MICs against S. aureus were japonicin-1, > 100 microM; japonicin-2, 20 microM; and temporin-1Ja, > 100 microM.

  12. Antimicrobial peptide, hdMolluscidin, purified from the gill of the abalone, Haliotis discus.

    PubMed

    Seo, Jung-Kil; Go, Hye-Jin; Kim, Chan-Hee; Nam, Bo-Hye; Park, Nam Gyu

    2016-05-01

    A 4.7 kDa antimicrobial peptide was purified from the acidified gill extract of the Abalone, Haliotis discus, by cation-exchange and C18 reversed-phase high performance liquid chromatography (HPLC). Comparison of the amino acid sequences and molecular weight of this peptide with those of other known antimicrobial peptides revealed that this antimicrobial peptide have high sequence homology with that of cgMolluscidin and was designated hdMolluscidin. hdMolluscidin is composed of 46 amino acid residues containing several dibasic residue repeats like KK or K-R. hdMolluscidin showed potent antimicrobial activity against both Gram-positive bacteria including Bacillus subtilis and Staphylococcus aureus (minimal effective concentrations [MECs]; 0.8-19.0 μg/mL) and Gram-negative bacteria including Aeromonas hydrophila, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Shigella flexneri, and Vibrio parahemolyticus ([MECs]; 1.0-4.0 μg/mL) without hemolytic activity. However, hdMolluscidin did not show any significant activity against Candida albicans. The secondary structural prediction suggested that hdMolluscidin might not form an ordered or an amphipathic structure. hdMolluscidin did not show membrane permeabilization or leakage ability. The full-length hdMolluscidin cDNA contained 566-bp, including a 5'-untranslated region (UTR) of 63-bp, a 3'-UTR of 359-bp, and an open reading frame of 144-bp encoding 47 amino acids (containing Met). cDNA study of hdMolluscidin suggests that it is expressed as a mature peptide. Our results indicate that hdMolluscidin could relate to the innate immune defenses in abalone and it may not act directly on bacterial membrane.

  13. Structural Insights into and Activity Analysis of the Antimicrobial Peptide Myxinidin

    PubMed Central

    Cantisani, Marco; Finamore, Emiliana; Mignogna, Eleonora; Falanga, Annarita; Nicoletti, Giovanni Francesco; Pedone, Carlo; Morelli, Giancarlo; Leone, Marilisa

    2014-01-01

    The marine environment has been poorly explored in terms of potential new molecules possessing antibacterial activity. Antimicrobial peptides (AMPs) offer a new potential class of pharmaceuticals; however, further optimization is needed if AMPs are to find broad use as antibiotics. We focused our studies on a peptide derived from the epidermal mucus of hagfish (Myxine glutinosa L.), which was previously characterized and showed high antimicrobial activity against human and fish pathogens. In the present work, the activities of myxinidin peptide analogues were analyzed with the aim of widening the original spectrum of action of myxinidin by suitable changes in the peptide primary structure. The analysis of key residues by alanine scanning allowed for the design of novel peptides with increased activity. We identified the amino acids that are of the utmost importance for the observed antimicrobial activities against a set of pathogens comprising both Gram-negative and Gram-positive bacteria. Overall, optimized bactericidal potency was achieved by adding a tryptophan residue at the N terminus and by the simultaneous substitution of residues present in positions 3, 4, and 11 with arginine. These results indicate that the myxinidin analogues emerge as an attractive alternative for treating drug-resistant infectious diseases and provide key insights into a rational design for novel agents against these pathogens. PMID:24957834

  14. Purification and characterization of an antimicrobial peptide, insect defensin, from immunized house fly (Diptera: Muscidae).

    PubMed

    Dang, X L; Wang, Y S; Huang, Y D; Yu, X Q; Zhang, W Q

    2010-11-01

    The house fly, Musca domestica L. (Diptera: Muscidae), is involved in phoretic movement of pathogenic agents, but it has a very efficient defense mechanism against infection. It is believed that antimicrobial peptides play a significant role in the defense system of the house fly. Here, we isolated a peptide from the immunized house fly pupae, measured its molecular mass (3987.6 Da) by matrix-assisted laser desorption ionization/time of flight-mass spectrometry, and determined its amino acid sequence by using the Procise Protein Sequencing System (Applied Biosystems, Foster City, CA). The peptide was confirmed as a member of the insect defensin family. It displayed high activity against gram-positive bacteria but lower activity against gram-negative bacteria and fungi. Reverse transcription-polymerase chain reaction showed that the house fly defensin gene was constitutively expressed in naive pupae and strongly up-regulated after immunization. House fly defensin is an amphiphilic peptide with a structure similar to that of the CSalphabeta scaffold of insect defensin A from the flesh fly, Phormia terraenovae Robineau-Desvoidy. To our knowledge, this is the first isolated and characterized house fly antimicrobial peptide, and our work may provide useful information for developing pharmacologically active antimicrobial agents.

  15. Correlation of charge, hydrophobicity, and structure with antimicrobial activity of S1 and MIRIAM peptides.

    PubMed

    Leptihn, Sebastian; Har, Jia Yi; Wohland, Thorsten; Ding, Jeak Ling

    2010-11-02

    Antimicrobial peptides are key elements of the innate immune system. Many of them interact with membranes of bacteria leading to perturbation of the lipid bilayer and eventually to inactivation of the pathogen. The emergence of multidrug-resistant bacteria has necessitated innovations of new and more powerful classes of antimicrobials. Here we present the in-depth study of an antimicrobial peptide, MIRIAM, derived from Sushi1 (S1), a well-characterized peptide from the horseshoe crab. MIRIAM interacts strongly with negatively charged lipids, forming an α-helical structure. MIRIAM was found to neutralize LPS and kill Gram-negative bacteria with high efficiency, while not releasing LPS. The promising therapeutic potential of MIRIAM is shown by hemolytic assays, which demonstrate that eukaryotic membranes are unaffected at bactericidal concentrations. Nanoparticle-conjugated MIRIAM used in single-molecule fluorescence and electron microscopy experiments showed that MIRIAM targets bacterial membranes to kill bacteria similarly to parental S1. Furthermore, fragments derived from MIRIAM and S1 provided insights on their molecular mechanisms of action, in particular, the relationships of functional motifs comprised by charge, hydrophobicity, and structure within each peptide. We conclude that the combination of charge, hydrophobicity, and length of the peptide is important. A close interaction of amino acids in a single molecule in a carefully balanced ensemble of sequence position and secondary structure is crucial.

  16. Lipid membrane structure and dynamics in the presence of tamoxifen and antimicrobial peptides

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Samuel; Khadka, Nawal; Pan, Jianjun

    2015-03-01

    Lipids are organic molecules composed of hydrophobic fatty acid tails and hydrophilic head groups that can form a multitude of structures, including lipid vesicles which provides an excellent model representing cell membranes. In this study, we examine the effects of antimicrobial peptides and drugs on lipid vesicles. Fourier transform infrared spectroscopy measurements are performed with and without the antimicrobial peptide. A change in absorbance corresponding to the wavenumber regimes associated with the stretching of the carbonyl and phosphate groups is observed. Also, a dye leakage assay is performed with vesicles composed of neutral and charged lipids. Calcein dye is enclosed within these vesicles in solution. Different concentrations of the active and inactive antimicrobial peptides, and tamoxifen are incubated with the vesicles. Concentration dependent dye leakage is determined by measuring fluorescence intensity before and after the addition of the peptides and tamoxifen. Different leakage behavior is observed for the active and inactive peptides, and the lipid composition of the vesicle is found to have a large effect. Supported by an NSF grant.

  17. The Medical Potential of Antimicrobial Peptides from Insects.

    PubMed

    Tonk, Miray; Vilcinskas, Andreas

    2017-01-01

    Antimicrobial peptides (AMPs) are peptide-based effector molecules produced by the innate immune system to combat microbes. Insects produce the broadest repertoire of AMPs, and their potent antimicrobial activity in vitro and in vivo has promoted their development as alternatives to conventional antibiotics, in an attempt to address the threat of multidrug-resistant pathogens. Here we discuss current obstacles that hinder the therapeutic development of novel insect-derived AMPs, including potential cytotoxic, immunogenic and allergenic side effects, and the high costs of large-scale production. These challenges may be overcome by the falling costs of synthetic peptide analogs and the heterologous production of recombinant peptides in insect cells or plants (molecular pharming). Insect AMPs offer a promising alternative for the treatment of skin, eye and lung infections, and could also restore the susceptibility of multidrug-resistant pathogens to conventional antibiotics when used as combinatorial treatments. Insect AMPs can also be used as templates for the rational design of peptide mimetics to overcome the drawbacks of natural therapeutic peptides.

  18. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae.

    PubMed

    Ramírez-Carreto, Santos; Quintero-Hernández, Verónica; Jiménez-Vargas, Juana María; Corzo, Gerardo; Possani, Lourival D; Becerril, Baltazar; Ortiz, Ernesto

    2012-04-01

    From the cDNA libraries made from the venom glands of two scorpions belonging to the Vaejovidae family, four different putative non disulfide-bridged antimicrobial peptides were identified: VmCT1 and VmCT2 from Vaejovis mexicanus smithi plus VsCT1 and VsCT2 from Vaejovis subcristatus. These short peptides (with only 13 amino acid residues each) share important amino acid sequence similarities among themselves and with other reported antimicrobial peptides, but their biological activities vary dramatically. This communication reports the cloning, chemical synthesis and characterization of these peptides. Two peptides, VmCT1 and VmCT2 showed broad-spectrum antibacterial activity with minimum inhibitory concentrations MICs in the range of 5-25 μM and 10-20 μM respectively, whereas their hemolytic activity at these concentrations was low. Structure-function relationships that might determine the differences in activities are discussed.

  19. Defensins and Other Antimicrobial Peptides at the Ocular Surface

    PubMed Central

    McDermott, Alison M.

    2006-01-01

    Although constantly exposed to the environment and “foreign bodies” such as contact lenses and unwashed fingertips, the ocular surface succumbs to infection relatively infrequently. This is, in large part, due to a very active and robust innate immune response mounted at the ocular surface. Studies over the past 20 years have revealed that small peptides with antimicrobial activity are a major component of the human innate immune response system. The ocular surface is no exception, with peptides of the defensin and cathelicidin families being detected in the tear film and secreted by corneal and conjunctival epithelial cells. There is also much evidence to suggest that the role of some antimicrobial peptides is not restricted to direct killing of pathogens, but, rather, that they function in various aspects of the immune response, including recruitment of immune cells, and through actions on dendritic cells provide a link to adaptive immunity. A role in wound healing is also supported. In this article, the properties, mechanisms of actions and functional roles of antimicrobial peptides are reviewed, with particular emphasis on the potential multifunctional roles of defensins and LL-37 (the only known human cathelicidin) at the ocular surface. PMID:17216098

  20. The therapeutic applications of antimicrobial peptides (AMPs): a patent review.

    PubMed

    Kang, Hee-Kyoung; Kim, Cheolmin; Seo, Chang Ho; Park, Yoonkyung

    2017-01-01

    Antimicrobial peptides (AMPs) are small molecules with a broad spectrum of antibiotic activities against bacteria, yeasts, fungi, and viruses and cytotoxic activity on cancer cells, in addition to anti-inflammatory and immunomodulatory activities. Therefore, AMPs have garnered interest as novel therapeutic agents. Because of the rapid increase in drug-resistant pathogenic microorganisms, AMPs from synthetic and natural sources have been developed using alternative antimicrobial strategies. This article presents a broad analysis of patents referring to the therapeutic applications of AMPs since 2009. The review focuses on the universal trends in the effective design, mechanism, and biological evolution of AMPs.

  1. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria

    PubMed Central

    Band, Victor I.; Weiss, David S.

    2014-01-01

    Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance. PMID:25927010

  2. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria.

    PubMed

    Band, Victor I; Weiss, David S

    2015-03-01

    Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance.

  3. Common structural properties specifically found in the CSalphabeta-type antimicrobial peptides in nematodes and mollusks: evidence for the same evolutionary origin?

    PubMed

    Zhang, Hong; Kato, Yusuke

    2003-01-01

    The structural properties of the Ascaris suum antibacterial factor (ASABF)-type antimicrobial peptides, isolated from nematodes, were compared with the CSalphabeta-type antimicrobial peptides found in other organisms. The spacing of the half-cystine residues, cysteine pairings, and organization of the precursor were different from the 'classical' CSalphabeta-type antimicrobial peptides, such as drosomycin and plant defensins, and identical only to the MGD and myticin in mollusks. In addition, ABF-5, a member of the ASABF-type antimicrobial peptides in Caenorhabditis elegans, is predicted to contain a basic mature region and an acidic pro-region, similar to MGD and myticin. These results suggest that the ASABF-type antimicrobial peptides, MGD and myticin are similar in their structure.

  4. Characterization of the Antimicrobial Peptide Penisin, a Class Ia Novel Lantibiotic from Paenibacillus sp. Strain A3

    PubMed Central

    Baindara, Piyush; Chaudhry, Vasvi; Mittal, Garima; Liao, Luciano M.; Matos, Carolina O.; Khatri, Neeraj; Franco, Octavio L.; Patil, Prabhu B.

    2015-01-01

    Attempts to isolate novel antimicrobial peptides from microbial sources have been on the rise recently, despite their low efficacy in therapeutic applications. Here, we report identification and characterization of a new efficient antimicrobial peptide from a bacterial strain designated A3 that exhibited highest identity with Paenibacillus ehimensis. Upon purification and subsequent molecular characterization of the antimicrobial peptide, referred to as penisin, we found the peptide to be a bacteriocin-like peptide. Consistent with these results, RAST analysis of the entire genome sequence revealed the presence of a lantibiotic gene cluster containing genes necessary for synthesis and maturation of a lantibiotic. While circular dichroism and one-dimension nuclear magnetic resonance experiments confirmed a random coil structure of the peptide, similar to other known lantibiotics, additional biochemical evidence suggests posttranslational modifications of the core peptide yield six thioether cross-links. The deduced amino acid sequence of the putative biosynthetic gene penA showed approximately 74% similarity with elgicin A and 50% similarity with the lantibiotic paenicidin A. Penisin effectively killed methicillin-resistant Staphylococcus aureus (MRSA) and did not exhibit hemolysis activity. Unlike other lantibiotics, it effectively inhibited the growth of Gram-negative bacteria. Furthermore, 80 mg/kg of body weight of penisin significantly reduced bacterial burden in a mouse thigh infection model and protected BALB/c mice in a bacteremia model entailing infection with Staphylococcus aureus MTCC 96, suggesting that it could be a promising new antimicrobial peptide. PMID:26574006

  5. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents

    PubMed Central

    Mahlapuu, Margit; Håkansson, Joakim; Ringstad, Lovisa; Björn, Camilla

    2016-01-01

    Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs. PMID:28083516

  6. Structure-function studies of Bubalus bubalis lingual antimicrobial peptide analogs.

    PubMed

    Kalita, Dhruba Jyoti; Kumar, Ashok; Kumar, Satish

    2009-02-01

    Antimicrobial peptides expressed on different epithelial lining are major components of the innate immune system. Based on the deduced amino acid sequence of Bubalus bubalis lingual antimicrobial peptide (LAP) cDNA (Accession No. DQ458768), five overlapping peptides LAP(23-55), LAP(42-64), LAP(21-64), LAP(1-26) and LAP(1-64) were synthesized using solid phase fluorenylmethoxycarbonyl (Fmoc) chemistry. Circular Dichroism spectroscopy of synthesized peptides revealed predominantly beta-structure for LAP(23-55,) LAP(42-64) and LAP(21-64) with less alpha-helix in different solutions. Quantitation of secondary structure indicated the highest beta-structure for all these three peptides in membrane mimetic SDS solution. The helicogenic solvent TFE could not induce helix in LAP(23-55) however TFE induced helical propensity was observed in LAP(42-64) and LAP(21-64). The quantitation of secondary structure indicated the highest ordered structure for LAP(23-55) followed by LAP(42-64) and LAP(21-64). The antibacterial activity of LAP(23-55) was found to be more potent against Staphylococcus aureus, Listeria monocytogens, Escherichia coli and Salmonella typhimurium followed by LAP(42-64) and LAP(21-64). Minimum inhibitory concentration (MIC) also showed similar trend with lowest value for LAP(23-55) followed by LAP(42-64) and LAP(21-64). Haemolysis and cytotoxicity was observed above 3 fold for LAP(21-64,) above six fold for LAP(23-55) and LAP(42-64) of their MIC. The LAP(1-26) and LAP(1-64) could not produce any characteristic CD spectra and did not show any antimicrobial activity, indicating that N- terminal of the peptide negates the antimicrobial activity.

  7. Elucidation of structural and functional integration of a novel antimicrobial peptide from Antheraea mylitta.

    PubMed

    Dutta, Suhrid R; Gauri, Samiran S; Ghosh, Twisa; Halder, Suman K; DasMohapatra, Pradeep K; Mondal, Keshab C; Ghosh, Ananta K

    2017-03-03

    We report here the amino acid sequence of an antimicrobial peptide of Antheraea mylitta (peptide fraction II) effectively killed urinary tract associated MDR E. coli (Dutta et al., 2016), as Gly-Gly-Gly-Gly-Gly-Gly-His-Leu-Val-Ala. The physicochemical and biological properties of this peptide were evaluated by computational analysis and its isoelectric point, grand average of hydropathicity and Boman index values were found to be 6.74, 0.42 and -1.17kcal/mol, respectively. One valid model of peptide fraction II was constructed, that contains two antiparallel β sheets with a hairpin and appeared as 'U' shaped structure. The glycine rich composition (Gly1, Gly5, Gly6 and Ala10) facilitates mostly for its flexibility or dynamicity, and in its other wing, aggregation prone residues (Leu8, Val9, Ala10) triggered its auto-aggregations when contacted only with the microbial membrane. We employed simulation of peptide binding on the membrane, showed stable and deep insertion of peptide fraction II into the membrane through its hydrophobic tail (up to 3.3±1.46Å). Molecular docking study with Patchdock server revealed that this peptide could interact with the lipid aliphatic chain of 1-palmitoyl-2-oleoyl-phosphoethanolamine (POPE) bilayer and may linked to membrane distortion as we have reported earlier. Further, the studied peptide has been predicted not to exhibit any antigenicity and non-responsive to RBC membrane. These data for the first time provide new insights of an antimicrobial peptide from silkworm A. mylitta and it may serve as the template for the design of novel peptide antibiotics from this group of insect against MDR Gram-negative bacteria.

  8. Antimicrobial Peptides with Differential Bacterial Binding Characteristics

    DTIC Science & Technology

    2013-03-01

    screened also displayed discriminatory binding to pathogenic E. coli O157:H7 relative to non -pathogenic E. coli ML35. The three fragments that were...screened for binding to pathogenic and non -pathogenic Escherichia coli (a Gram- negative bacterium) as well as Staphylococcus aureus (a Gram-positive...strain-specific (pathogenic vs. non -pathogenic E. coli). Several of the peptide fragments demonstrated the ability to discriminate between

  9. Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity.

    PubMed

    Ramírez-Carreto, Santos; Jiménez-Vargas, Juana María; Rivas-Santiago, Bruno; Corzo, Gerardo; Possani, Lourival D; Becerril, Baltazar; Ortiz, Ernesto

    2015-11-01

    The antimicrobial potential of two new non-disulfide bound peptides, named VpAmp1.0 (LPFFLLSLIPSAISAIKKI, amidated) and VpAmp2.0 (FWGFLGKLAMKAVPSLIGGNKSSSK) is here reported. These are 19- and 25-aminoacid-long peptides with +2 and +4 net charges, respectively. Their sequences correspond to the predicted mature regions from longer precursors, putatively encoded by cDNAs derived from the venom glands of the Mexican scorpion Vaejovis punctatus. Both peptides were chemically synthesized and assayed against a variety of microorganisms, including pathogenic strains from clinical isolates and strains resistant to conventional antibiotics. Two shorter variants, named VpAmp1.1 (FFLLSLIPSAISAIKKI, amidated) and VpAmp2.1 (FWGFLGKLAMKAVPSLIGGNKK), were also synthesized and tested. The antimicrobial assays revealed that the four synthetic peptides effectively inhibit the growth of both Gram-positive (Staphylococcus aureus and Streptococcus agalactiaea) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria, with MICs in the range of 2.5-24.0 μM; yeasts (Candida albicans and Candida glabrata) with MICs of 3.1-50.0 μM; and two clinically isolated strains of Mycobacterium tuberculosis-including a multi-drug resistant one- with MICs in the range of 4.8-30.5 μM. A comparison between the activities of the original peptides and their derivatives gives insight into the structural/functional role of their distinctive residues.

  10. Boosting Antimicrobial Peptides by Hydrophobic Oligopeptide End Tags*

    PubMed Central

    Schmidtchen, Artur; Pasupuleti, Mukesh; Mörgelin, Matthias; Davoudi, Mina; Alenfall, Jan; Chalupka, Anna; Malmsten, Martin

    2009-01-01

    A novel approach for boosting antimicrobial peptides through end tagging with hydrophobic oligopeptide stretches is demonstrated. Focusing on two peptides derived from kininogen, GKHKNKGKKNGKHNGWK (GKH17) and HKHGHGHGKHKNKGKKN (HKH17), tagging resulted in enhanced killing of Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and fungal Candida albicans. Microbicidal potency increased with tag length, also in plasma, and was larger for Trp and Phe stretches than for aliphatic ones. The enhanced microbicidal effects correlated to a higher degree of bacterial wall rupture. Analogously, tagging promoted peptide binding to model phospholipid membranes and liposome rupture, particularly for anionic and cholesterol-void membranes. Tagged peptides displayed low toxicity, particularly in the presence of serum, and resisted degradation by human leukocyte elastase and by staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo and in vivo in porcine S. aureus skin infection models. The generality of end tagging for facile boosting of antimicrobial peptides without the need for post-synthesis modification was also demonstrated. PMID:19398550

  11. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents.

    PubMed

    Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian

    2015-10-01

    The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents.

  12. Identification of multiple antimicrobial peptides from the skin of fine-spined frog, Hylarana spinulosa (Ranidae).

    PubMed

    Yang, Xiaolong; Hu, Yuhong; Xu, Shiqi; Hu, Yonghong; Meng, Hao; Guo, Chao; Liu, Yuliang; Liu, Jingze; Yu, Zhijun; Wang, Hui

    2013-12-01

    In this study, peptidomics and genomics analyses were used to study antimicrobial peptides from the skin of Hylarana spinulosa. Twenty-nine different antimicrobial peptide precursors were characterized from the skin of H. spinulosa, which produce 23 mature antimicrobial peptides belonging to 12 different families. To confirm the actual presence and characteristics of these antimicrobial peptides in the skin tissue extractions from H. spinulosa, we used two distinct methods, one was peptide purification method that combined gel filtration chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), and the other was peptidomics approach based on liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS). In the peptidomics approach, incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase peptidome coverage and reproducibility of peptide ion selection. Multiple species of microorganisms were chosen to test and analyze the antimicrobial activities and spectrum of these antimicrobial peptides.

  13. Comparative study of antimicrobial peptides to control citrus postharvest decay caused by Penicillium digitatum.

    PubMed

    Muñoz, Alberto; López-García, Belén; Marcos, Jose F

    2007-10-03

    The objective of this study was to investigate and compare the in vitro efficacy and in vivo potential of eight distinct short antimicrobial peptides to control the postharvest green mold disease of oranges caused by the fungus Penicillium digitatum. The L-amino acid versions of the four peptides PAF26, PAF38, PAF40, and BM0, previously obtained by combinatorial approaches, were examined. The study included two antibacterial peptides formerly identified by rational design, BP15 and BP76, and it is demonstrated that they also have in vitro antifungal properties. The natural antimicrobial peptides melittin and indolicidin were also selected for comparison, due to their well-known properties and modes of action. In vitro and in vivo results indicated differential behaviors among peptides, regarding the inhibitory potency in growth media, selectivity against distinct microorganisms, fungicidal activity towards nongerminated conidia of P. digitatum, and efficacy in fruit inoculation assays. Interestingly, a high in vitro inhibitory activity did not necessarily associate with an effective control of fruit infection by P. digitatum. The short tryptophan-rich cationic peptides PAF26, PAF38, PAF40, and BM0 were lethal to conidia of P. digitatum, and this property is correlated with better protection in the decay control test.

  14. Antimicrobial peptide precursor structures suggest effective production strategies.

    PubMed

    Vassilevski, Alexander A; Kozlov, Sergey A; Grishin, Eugene V

    2008-01-01

    Antimicrobial peptides (AMPs) constitute a diverse group of compounds that serve a common goal that is host organism defense from infection. Due to their antimicrobial properties, these molecules attract practical interest as potential antibiotics for medical and veterinary use as well as enhancers of plant disease resistance for agriculture. Broad AMP utilization is restricted by the expensiveness of their production using conventional chemical synthesis. For this reason, a number of chimeric genes have been developed for recombinant AMP production in prokaryotes. However, recombinant peptide instability and/or high toxicity to host cells dramatically reduce the yields. In this paper, we review patented strategies of fusion protein design for AMP production. In several cases, the proposed strategies clearly mimic the organization of natural AMP precursor proteins. We describe the main principals of natural AMP precursor organization and fusion constructs adopted and/or artificially designed by man.

  15. A cactus-derived toxin-like cystine knot Peptide with selective antimicrobial activity.

    PubMed

    Aboye, Teshome L; Strömstedt, Adam A; Gunasekera, Sunithi; Bruhn, Jan G; El-Seedi, Hesham; Rosengren, K Johan; Göransson, Ulf

    2015-05-04

    Naturally occurring cystine knot peptides show a wide range of biological activity, and as they have inherent stability they represent potential scaffolds for peptide-based drug design and biomolecular engineering. Here we report the discovery, sequencing, chemical synthesis, three-dimensional solution structure determination and bioactivity of the first cystine knot peptide from Cactaceae (cactus) family: Ep-AMP1 from Echinopsis pachanoi. The structure of Ep-AMP1 (35 amino acids) conforms to that of the inhibitor cystine knot (or knottin) family but represents a novel diverse sequence; its activity was more than 500 times higher against bacterial than against eukaryotic cells. Rapid bactericidal action and liposome leakage implicate membrane permeabilisation as the mechanism of action. Sequence homology places Ec-AMP1 in the plant C6-type of antimicrobial peptides, but the three dimensional structure is highly similar to that of a spider neurotoxin.

  16. Nanomechanical Response of Bacterial Cells to Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Parg, Richard; Dutcher, John

    2015-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and we have developed an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of bacterial cells upon exposure to antimicrobial peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different antimicrobial concentrations, revealed large changes to the viscoelastic parameters including a distinctive signature for the loss of integrity of the bacterial cell envelope. Our previous experiments have focused on Pseudomonas aeruginosaPAO1 bacterial cells in Milli-Q water, for which the cells can withstand the large osmotic pressure. In the present study we have focused on performing the measurements in buffer to obtain more biologically relevant results. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  17. Primary structure and cellular localization of callinectin, an antimicrobial peptide from the blue crab.

    PubMed

    Noga, Edward J; Stone, Kathryn L; Wood, Abbey; Gordon, William L; Robinette, David

    2011-04-01

    We report the complete amino acid sequence of callinectin, a 32 amino acid, proline-, arginine-rich antimicrobial peptide (AMP) with four cysteines and having the sequence WNSNRRFRVGRPPVVGRPGCVCFRAPCPCSNY-amide. The primary structure of callinectin is highly similar to arasins, AMPs recently identified in the small spider crab (Hyas araneus). Callinectin exists in three isomers that vary in the functional group on the tryptophan (W) residue. The most prevalent isomer had a hydroxy-N-formylkynurenine group, while the other two isomers had either N-formylkynurenine or hydroxy-tryptophan. Using a sequence highly similar to native callinectin, we chemically synthesized a peptide which we called callinectin-like peptide (CLP). Via immuno-electron microscopy, affinity-purified rabbit antibodies raised to CLP successfully localized the site of callinectin in blue crab hemocytes to the large electron-dense granules that are found primarily in large granule hemocytes.

  18. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.

    PubMed

    Schmitt, Paulina; Rosa, Rafael D; Destoumieux-Garzón, Delphine

    2016-05-01

    Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due to their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  19. iTRAQ-Based Quantitative Proteomic Analysis of the Antimicrobial Mechanism of Peptide F1 against Escherichia coli.

    PubMed

    Miao, Jianyin; Chen, Feilong; Duan, Shan; Gao, Xiangyang; Liu, Guo; Chen, Yunjiao; Dixon, William; Xiao, Hang; Cao, Yong

    2015-08-19

    Antimicrobial peptides have received increasing attention in the agricultural and food industries due to their potential to control pathogens. However, to facilitate the development of novel peptide-based antimicrobial agents, details regarding the molecular mechanisms of these peptides need to be elucidated. The aim of this study was to investigate the antimicrobial mechanism of peptide F1, a bacteriocin found in Tibetan kefir, against Escherichia coli at protein levels using iTRAQ-based quantitative proteomic analysis. In response to treatment with peptide F1, 31 of the 280 identified proteins in E. coli showed alterations in their expression, including 10 down-regulated proteins and 21 up-regulated proteins. These 31 proteins all possess different molecular functions and are involved in different molecular pathways, as is evident in referencing the Kyoto Encyclopedia of Genes and Genomes pathways. Specifically, pathways that were significantly altered in E. coli in response to peptide F1 treatment include the tricarboxylic acid cycle, oxidative phosphorylation, glycerophospholipid metabolism, and the cell cycle-caulobacter pathways, which was also associated with inhibition of the cell growth, induction of morphological changes, and cell death. The results provide novel insights into the molecular mechanisms of antimicrobial peptides.

  20. Bacterial Labionin-Containing Peptides and Sactibiotics: Unusual Types of Antimicrobial Peptides with Potential Use in Clinical Settings (A Review).

    PubMed

    Coelho, Marcus Lívio Varella; de Souza Duarte, Andreza Freitas; do Carmo de Freire Bastos, Maria

    2016-09-30

    One of the biggest challenges faced presently by clinicians is the emergence of multi drug--resistant pathogens that can infect humans and animals.To control the infections caused by such pathogens the development of new drugs is required. Bacteria are a rich source of ribosomally-synthesized antimicrobial peptides known as bacteriocins, which are characterized by the presence of a self-defense immunity system. Labionin-containing lantibiotics and sactibiotics are post-translationally modified bacteriocins with peculiar features. Labionin-containing peptides belong tosubclass Iclantibiotics in which the carbacyclic triamino triacid labionin, a structural variant of lanthionine,and a methyl-substitute labionin derivative are found, giving the molecule a labyrinthine structure. Sactibiotics are circular or linear peptides belonging to a distinct bacteriocin class (class V) which is characterized by the presence of cross-linkages formed by the thiol group of cysteine residues and the α-carbon of acceptor amino acids. A few examples of these bacteriocins have been described in the literature to date, although putative gene clusters with the potential to encode such peptides can be found in the genome of many bacterial species. Some peptides already under study exhibit potential biotechnological applications because of their remarkable antibacterial or antiviral activities, as well as their analgesic activity. Therefore, in this review, the main findings concerning these peptides will be addressed and discussed, with anemphasis on their potential use in clinical settings.

  1. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety.

    PubMed

    Snyder, Abigail B; Worobo, Randy W

    2014-01-15

    Antimicrobial peptides are produced across all domains of life. Among these diverse compounds, those produced by bacteria have been most successfully applied as agents of biocontrol in food and agriculture. Bacteriocins are ribosomally synthesized, proteinaceous compounds that inhibit the growth of closely related bacteria. Even within the subcategory of bacteriocins, the peptides vary significantly in terms of the gene cluster responsible for expression, and chemical and structural composition. The polycistronic gene cluster generally includes a structural gene and various combinations of immunity, secretion, and regulatory genes and modifying enzymes. Chemical variation can exist in amino acid identity, chain length, secondary and tertiary structural features, as well as specificity of active sites. This diversity posits bacteriocins as potential antimicrobial agents with a range of functions and applications. Those produced by food-grade bacteria and applied in normally occurring concentrations can be used as GRAS-status food additives. However, successful application requires thorough characterization.

  2. Insect Antimicrobial Peptide Complexes Prevent Resistance Development in Bacteria

    PubMed Central

    Chernysh, Sergey; Gordya, Natalia; Suborova, Tatyana

    2015-01-01

    In recent decades much attention has been paid to antimicrobial peptides (AMPs) as natural antibiotics, which are presumably protected from resistance development in bacteria. However, experimental evolution studies have revealed prompt resistance increase in bacteria to any individual AMP tested. Here we demonstrate that naturally occurring compounds containing insect AMP complexes have clear advantage over individual peptide and small molecule antibiotics in respect of drug resistance development. As a model we have used the compounds isolated from bacteria challenged maggots of Calliphoridae flies. The compound isolated from blow fly Calliphora vicina was found to contain three distinct families of cell membrane disrupting/permeabilizing peptides (defensins, cecropins and diptericins), one family of proline rich peptides and several unknown antimicrobial substances. Resistance changes under long term selective pressure of the compound and reference antibiotics cefotaxime, meropenem and polymyxin B were tested using Escherichia coli, Klebsiella pneumonia and Acinetobacter baumannii clinical strains. All the strains readily developed resistance to the reference antibiotics, while no signs of resistance growth to the compound were registered. Similar results were obtained with the compounds isolated from 3 other fly species. The experiments revealed that natural compounds containing insect AMP complexes, in contrast to individual AMP and small molecule antibiotics, are well protected from resistance development in bacteria. Further progress in the research of natural AMP complexes may provide novel solutions to the drug resistance problem. PMID:26177023

  3. Novel imidazolium salt--peptide conjugates and their antimicrobial activity.

    PubMed

    Reinhardt, A; Horn, M; Schmauck, J Pieper Gen; Bröhl, A; Giernoth, R; Oelkrug, C; Schubert, A; Neundorf, I

    2014-12-17

    Our study presents innovative research dealing with the synthesis and biological evaluation of conjugates out of antimicrobial peptides (AMPs) and imidazolium cations that are derived from ionic liquids. AMPs are considered as promising alternatives to common antibiotics due to their different activity mechanisms. Antibacterial effects have also been described for ionic liquids bearing imidazolium cations . Besides single coupling of carboxy-functionalized imidazolium cations to the peptide N-terminal we also developed conjugates bearing multiple copies of imidazolium cations. The combination of both compounds resulted in synergistic effects that were most pronounced when more imidazolium cations were attached to the peptides. In addition, antibacterial activity even in drug-resistant bacterial strains could be observed. Moreover, the novel compounds showed good selectivity only against bacterial cells, an observation that was further proven by lipid interaction studies using giant unilamellar vesicles.

  4. Expression systems for heterologous production of antimicrobial peptides.

    PubMed

    Parachin, Nádia Skorupa; Mulder, Kelly Cristina; Viana, Antônio Américo Barbosa; Dias, Simoni Campos; Franco, Octávio Luiz

    2012-12-01

    Antimicrobial peptides (AMPs) consist of molecules that act on the defense systems of numerous organisms toward multiple pathogens such as bacteria, fungi, parasites and viruses. These compounds have become extremely significant due to the increasing resistance of microorganisms to common antibiotics. However, the low quantity of peptides obtained from direct purification is, to date, still a remarkable bottleneck for scientific and industrial research development. Therefore, this review describes the main heterologous systems currently used for AMP production, including bacteria, fungi and plants, and also the related strategies for reaching greater functional peptide production. The main difficulties of each system are also described in order to provide some directions for AMP production. In summary, data revised here indicate that large-scale production of AMPs can be obtained using biotechnological tools, and the products may be applied in the pharmaceutical industry as well as in agribusiness.

  5. The Antimicrobial and Antiviral Applications of Cell-Penetrating Peptides.

    PubMed

    Pärn, Kalle; Eriste, Elo; Langel, Ülo

    2015-01-01

    Over the past two decades, cell-penetrating peptides (CPPs) have become increasingly popular both in research and in application. There have been numerous studies on the physiochemical characteristics and behavior of CPPs in various environments; likewise, the mechanisms of entry and delivery capabilities of these peptides have also been extensively researched. Besides the fundamental issues, there is an enormous interest in the delivery capabilities of the peptides as the family of CPPs is a promising and mostly non-toxic delivery vector candidate for numerous medical applications such as gene silencing, transgene delivery, and splice correction. Lately, however, there has been an emerging field of study besides the high-profile gene therapy applications-the use of peptides and CPPs to combat various infections caused by harmful bacteria, fungi, and viruses.In this chapter, we aim to provide a short overview of the history and properties of CPPs which is followed by more thorough descriptions of antimicrobial and antiviral peptides. To achieve this, we analyze the origin of such peptides, give an overview of the mechanisms of action and discuss the various practical applications which are ongoing or have been suggested based on research.

  6. Transmembrane Pores Formed by Human Antimicrobial Peptide LL-37

    SciTech Connect

    Qian, Shuo

    2011-01-01

    Human LL-37 is a multifunctional cathelicidin peptide that has shown a wide spectrum of antimicrobial activity by permeabilizing microbial membranes similar to other antimicrobial peptides; however, its molecular mechanism has not been clarified. Two independent experiments revealed LL-37 bound to membranes in the {alpha}-helical form with the axis lying in the plane of membrane. This led to the conclusion that membrane permeabilization by LL-37 is a nonpore carpet-like mechanism of action. Here we report the detection of transmembrane pores induced by LL-37. The pore formation coincided with LL-37 helices aligning approximately normal to the plane of the membrane. We observed an unusual phenomenon of LL-37 embedded in stacked membranes, which are commonly used in peptide orientation studies. The membrane-bound LL-37 was found in the normal orientation only when the membrane spacing in the multilayers exceeded its fully hydrated value. This was achieved by swelling the stacked membranes with excessive water to a swollen state. The transmembrane pores were detected and investigated in swollen states by means of oriented circular dichroism, neutron in-plane scattering, and x-ray lamellar diffraction. The results are consistent with the effect of LL-37 on giant unilamellar vesicles. The detected pores had a water channel of radius 2333 {angstrom}. The molecular mechanism of pore formation by LL-37 is consistent with the two-state model exhibited by magainin and other small pore-forming peptides. The discovery that peptide-membrane interactions in swollen states are different from those in less hydrated states may have implications for other large membrane-active peptides and proteins studied in stacked membranes.

  7. APD3: the antimicrobial peptide database as a tool for research and education

    PubMed Central

    Wang, Guangshun; Li, Xia; Wang, Zhe

    2016-01-01

    The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/) is an original database initially online in 2003. The APD2 (2009 version) has been regularly updated and further expanded into the APD3. This database currently focuses on natural antimicrobial peptides (AMPs) with defined sequence and activity. It includes a total of 2619 AMPs with 261 bacteriocins from bacteria, 4 AMPs from archaea, 7 from protists, 13 from fungi, 321 from plants and 1972 animal host defense peptides. The APD3 contains 2169 antibacterial, 172 antiviral, 105 anti-HIV, 959 antifungal, 80 antiparasitic and 185 anticancer peptides. Newly annotated are AMPs with antibiofilm, antimalarial, anti-protist, insecticidal, spermicidal, chemotactic, wound healing, antioxidant and protease inhibiting properties. We also describe other searchable annotations, including target pathogens, molecule-binding partners, post-translational modifications and animal models. Amino acid profiles or signatures of natural AMPs are important for peptide classification, prediction and design. Finally, we summarize various database applications in research and education. PMID:26602694

  8. Membrane-active antimicrobial peptides and human placental lysosomal extracts are highly active against mycobacteria.

    PubMed

    Jena, Prajna; Mishra, Bibhuti; Leippe, Matthias; Hasilik, Andrej; Griffiths, Gareth; Sonawane, Avinash

    2011-05-01

    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, manifests discreet strategies to subvert host immune responses, which enable the pathogen to survive and multiply inside the macrophages. This problem is further worsened by the emergence of multidrug resistant mycobacterial strains, which make most of the anti-tuberculous drugs ineffective. It is thus imperative to search for and design better therapeutic strategies, including employment of new antibiotics. Recently, naturally produced antimicrobial molecules such as enzymes, peptides and their synthetic analogs have emerged as compounds with potentially significant therapeutical applications. Although, many antimicrobial peptides have been identified only very few of them have been tested against mycobacteria. A major limitation in using peptides as therapeutics is their sensitivity to enzymatic degradation or inactivity under certain physiological conditions such as relatively high salt concentration. Here, we show that NK-2, a peptide representing the cationic core region of the lymphocytic effector protein NK-lysin, and Ci-MAM-A24, a synthetic salt-tolerant peptide derived from immune cells of Ciona intestinalis, efficiently kill Mycobacterium smegmatis and Mycobacterium bovis-BCG. In addition, NK-2 and Ci-MAM-A24 showed a synergistic killing effect against M. smegmatis, no cytotoxic effect on mouse macrophages at bactericidal concentrations, and were even found to kill mycobacteria residing inside the macrophages. We also show that human placental lysosomal contents exert potent killing effect against mycobacteria under acidic and reducing growth conditions. Electron microscopic studies demonstrate that the lysosomal extract disintegrate bacterial cell membrane resulting in killing of mycobacteria.

  9. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    PubMed

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10.

  10. The New Antimicrobial Peptide SpHyastatin from the Mud Crab Scylla paramamosain with Multiple Antimicrobial Mechanisms and High Effect on Bacterial Infection

    PubMed Central

    Shan, Zhongguo; Zhu, Kexin; Peng, Hui; Chen, Bei; Liu, Jie; Chen, Fangyi; Ma, Xiaowan; Wang, Shuping; Qiao, Kun; Wang, Kejian

    2016-01-01

    SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain. PMID:27493644

  11. Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis.

    PubMed

    Li, Chun; Haug, Tor; Moe, Morten K; Styrvold, Olaf B; Stensvåg, Klara

    2010-09-01

    As immune effector molecules, antimicrobial peptides (AMPs) play an important role in the invertebrate immune system. Here, we present two novel AMPs, named centrocins 1 (4.5kDa) and 2 (4.4kDa), purified from coelomocyte extracts of the green sea urchin, Strongylocentrotus droebachiensis. The native peptides are cationic and show potent activities against Gram-positive and Gram-negative bacteria. The centrocins have an intramolecular heterodimeric structure, containing a heavy chain (30 amino acids) and a light chain (12 amino acids). The cDNA encoding the peptides and genomic sequences were cloned and sequenced. One putative isoform (centrocin 1b) was identified and one intron was found in the genes coding for the centrocins. The full length protein sequence of centrocin 1 consists of 119 amino acids, whereas centrocin 2 consists of 118 amino acids which both include a preprosequence of 51 or 50 amino acids for centrocins 1 and 2, respectively, and an interchain of 24 amino acids between the heavy and light chain. The difference of molecular mass between the native centrocins and the deduced sequences from cDNA indicates that the native centrocins contain a post-translational brominated tryptophan. In addition, two amino acids at the C-terminal, Gly-Arg, were removed from the light chains during the post-translational processing. The separate peptide chains of centrocin 1 were synthesized and the heavy chain alone was shown to be sufficient for antimicrobial activity. The genome of the closely related species, the purple sea urchin (S. purpuratus), was shown to contain two putative proteins with high similarity to the centrocins.

  12. Electrostatics and Flexibility Drive Membrane Recognition and Early Penetration by Antimicrobial Peptide Dendrimer bH1

    SciTech Connect

    Ravi, Harish Kumar; Stach, Michaela; Soares, Thereza A.; Darbre, Tamis; Reymond, Jean-Louis; Cascella, Michele

    2013-08-01

    Molecular dynamics simulation of polycationic antimicrobial peptide dendrimer bH1 (Leu)8(DapLeu)4(DapPhe)2DapLys- NH2 binding to membranes suggest that electrostatic 10 interactions with the polyanionic lipopolysaccharide (LPS) and conformational flexibility of the 2,3-diaminopropanoic acid (Dap) branching units drive its selective insertion into microbial membranes.

  13. Diversity, evolution and medical applications of insect antimicrobial peptides

    PubMed Central

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged

    2016-01-01

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus. We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides. The article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160593

  14. Roles of Hydrophobicity and Charge Distribution of Cationic Antimicrobial Peptides in Peptide-Membrane Interactions*

    PubMed Central

    Yin, Lois M.; Edwards, Michelle A.; Li, Jessica; Yip, Christopher M.; Deber, Charles M.

    2012-01-01

    Cationic antimicrobial peptides (CAPs) occur as important innate immunity agents in many organisms, including humans, and offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to membrane lysis and eventually cell death. In this work, we studied the biophysical and microbiological characteristics of designed CAPs varying in hydrophobicity levels and charge distributions by a variety of biophysical and biochemical approaches, including in-tandem atomic force microscopy, attenuated total reflection-FTIR, CD spectroscopy, and SDS-PAGE. Peptide structural properties were correlated with their membrane-disruptive abilities and antimicrobial activities. In bacterial lipid model membranes, a time-dependent increase in aggregated β-strand-type structure in CAPs with relatively high hydrophobicity (such as KKKKKKALFALWLAFLA-NH2) was essentially absent in CAPs with lower hydrophobicity (such as KKKKKKAAFAAWAAFAA-NH2). Redistribution of positive charges by placing three Lys residues at both termini while maintaining identical sequences minimized self-aggregation above the dimer level. Peptides containing four Leu residues were destructive to mammalian model membranes, whereas those with corresponding Ala residues were not. This finding was mirrored in hemolysis studies in human erythrocytes, where Ala-only peptides displayed virtually no hemolysis up to 320 μm, but the four-Leu peptides induced 40–80% hemolysis at the same concentration range. All peptides studied displayed strong antimicrobial activity against Pseudomonas aeruginosa (minimum inhibitory concentrations of 4–32 μm). The overall findings suggest optimum routes to balancing peptide hydrophobicity and charge distribution that allow efficient penetration and disruption of the bacterial membranes without damage to mammalian (host) membranes. PMID:22253439

  15. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    PubMed Central

    Ebbensgaard, Anna; Mordhorst, Hanne; Overgaard, Michael Toft; Nielsen, Claus Gyrup; Aarestrup, Frank Møller; Hansen, Egon Bech

    2015-01-01

    Analysis of a Selected Set of Antimicrobial Peptides The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. Cap18 Shows a High Broad Spectrum Antimicrobial Activity Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our

  16. Mammalian antimicrobial peptide influences control of cutaneous Leishmania infection

    PubMed Central

    Kulkarni, Manjusha M.; Barbi, Joseph; McMaster, W. Robert; Gallo, Richard L.; Satoskar, Abhay R.; McGwire, Bradford S.

    2011-01-01

    Summary Cathelicidin-type antimicrobial peptides (CAMP) are important mediators of innate immunity against microbial pathogens acting through direct interaction with and disruption of microbial membranes and indirectly through modulation of host cell migration and activation. Using a mouse knock-out model in CAMP we studied the role of this host peptide in control of dissemination of cutaneous infection by the parasitic protozoan Leishmania. The presence of pronounced host inflammatory infiltration in lesions and lymph nodes of infected animals was CAMP-dependent. Lack of CAMP expression was associated with higher levels of IL-10 receptor expression in bone marrow, splenic and lymph node macrophages as well as higher anti-inflammatory IL-10 production by bone marrow macrophages and spleen cells but reduced production of the pro-inflammatory cytokines IL-12 and IFN-γ by lymph nodes. Unlike wild-type mice, local lesions were exacerbated and parasites were found largely disseminated in CAMP knockouts. Infection of CAMP knockouts with parasite mutants lacking the surface metalloprotease virulence determinant resulted in more robust disseminated infection than in control animals suggesting that CAMP activity is negatively regulated by parasite surface proteolytic activity. This correlated with the ability of the pro-tease to degrade CAMP in vitro and co-localization of CAMP with parasites within macrophages. Our results highlight the interplay of antimicrobial peptides and Leishmania that influence the host immune response and the outcome of infection. PMID:21501359

  17. Unveiling antimicrobial peptide-generating human proteases using PROTEASIX.

    PubMed

    Bastos, Paulo; Trindade, Fábio; Ferreira, Rita; Casteleiro, Mercedes Arguello; Stevens, Robert; Klein, Julie; Vitorino, Rui

    2017-02-27

    Extracting information from peptidomics data is a major current challenge, as endogenous peptides can result from the activity of multiple enzymes. Proteolytic enzymes can display overlapping or complementary specificity. The activity spectrum of human endogenous peptide-generating proteases is not fully known. Hence, the indirect study of proteolytic enzymes through the analysis of its substrates is largely hampered. Antimicrobial peptides (AMPs) represent a primordial set of immune defense molecules generated by proteolytic cleavage of precursor proteins. These peptides can be modulated by host and microorganismal stimuli, which both dictate proteolytic enzymes' expression and activity. Peptidomics is an attractive approach to identify peptides with a biological role and to assess proteolytic activity. However, bioinformatics tools to deal with peptidomics data are lacking. PROTEASIX is an excellent choice for the prediction of AMPs-generating proteases based on the reconstitution of a substrate's cleavage sites and the crossing of such information with known proteases' specificity retrieved by several publicly available databases. Therefore, the focus of the present tutorial is to explore the potential of PROTEASIX when gather information concerning proteases involved in the generation of human AMPs and to teach the user how to make the most out of peptidomics results using PROTEASIX.

  18. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  19. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    SciTech Connect

    Wada, Akihiro; Wong, Pooi-Fong; Hojo, Hironobu; Hasegawa, Makoto; Ichinose, Akitoyo; Llanes, Rafael; Kubo, Yoshinao; Senba, Masachika; Ichinose, Yoshio

    2013-05-03

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.

  20. AP-57/C10orf99 is a new type of multifunctional antimicrobial peptide.

    PubMed

    Yang, Meijia; Tang, Mei; Ma, Xianjun; Yang, Lijia; He, Jiangpeng; Peng, Xirui; Guo, Gang; Zhou, Liangxue; Luo, Na; Yuan, Zhu; Tong, Aiping

    2015-02-13

    Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune response that provides host defence at skin and mucosal surfaces. Here, we report the identification and characterization of a new type human AMPs, termed AP-57 (Antimicrobial Peptide with 57 amino acid residues), which is also known as C10orf99 (chromosome 10 open reading frame 99). AP-57 is a short basic amphiphilic peptide with four cysteines and a net charge +14 (MW = 6.52, PI = 11.28). The highest expression of AP-57 were detected in the mucosa of stomach and colon through immunohistochemical assay. Epithelium of skin and esophagus show obvious positive staining and strong positive staining were also observed in some tumor and/or their adjacent tissues, such as esophagus cancer, hepatocellular carcinoma, squamous cell carcinoma and invasive ductal carcinoma. AP-57 exhibited broad-spectrum antimicrobial activities against Gram-positive Staphylococcus aureus, Actinomyce, and Fungi Aspergillus niger as well as mycoplasma and lentivirus. AP-57 also exhibited DNA binding capacity and specific cytotoxic effects against human B-cell lymphoma Raji. Compared with other human AMPs, AP-57 has its distinct characteristics, including longer sequence length, four cysteines, highly cationic character, cell-specific toxicity, DNA binding and tissue-specific expressing patterns. Together, AP-57 is a new type of multifunctional AMPs worthy further investigation.

  1. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica.

    PubMed

    Kumaresan, Venkatesh; Bhatt, Prasanth; Ganesh, Munuswamy-Ramanujam; Harikrishnan, Ramasamy; Arasu, MariadhasValan; Al-Dhabi, Naif Abdullah; Pasupuleti, Mukesh; Marimuthu, Kasi; Arockiaraj, Jesu

    2015-12-01

    In aquaculture, accumulation of antibiotics resulted in development of resistance among bacterial pathogens. Consequently, it became mandatory to find alternative to synthetic antibiotics. Antimicrobial peptides (AMPs) which are described as evolutionary ancient weapons have been considered as promising alternates in recent years. In this study, a novel antimicrobial peptide had been derived from goose type lysozyme (LyzG) which was identified from the cDNA library of freshwater fish Channa striatus (Cs). The identified lysozyme cDNA contains 585 nucleotides which encodes a protein of 194 amino acids. CsLyzG was closely related to Siniperca chuatsi with 92.8% homology. The depicted protein sequence contained a GEWL domain with conserved GLMQ motif, 7 active residues and 2 catalytic residues. Gene expression analysis revealed that CsLyzG was distributed in major immune organs with highest expression in head kidney. Results of temporal expression analysis after bacterial (Aeromonas hydrophila) and fungal (Aphanomyces invadans) challenges indicated a stimulant-dependent expression pattern of CsLyzG. Two antimicrobial peptides IK12 and TS10 were identified from CsLyzG and synthesized. Antibiogram showed that IK12 was active against Salmonella enterica, a major multi-drug resistant (MDR) bacterial pathogen which produces beta lactamase. The IK12 induced loss of cell viability in the bacterial pathogen. Flow cytometry assay revealed that IK12 disrupt the membrane of S. enterica which is confirmed by scanning electron microscope (SEM) analysis that reveals blebs around the bacterial cell membrane. Conclusively, CsLyzG is a potential innate immune component and the identified antimicrobial peptide has great caliber to be used as an ecofriendly antibacterial substance in aquaculture.

  2. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms.

  3. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    SciTech Connect

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; Rai, Durgesh K.; Urban, Volker S.; Sharma, V. K.

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.

  4. Machine learning in the rational design of antimicrobial peptides.

    PubMed

    Rondón-Villarreal, Paola; Sierra, Daniel A; Torres, Rodrigo

    2014-01-01

    One of the most important public health issues is the microbial and bacterial resistance to conventional antibiotics by pathogen microorganisms. In recent years, many researches have been focused on the development of new antibiotics. Among these, antimicrobial peptides (AMPs) have raised as a promising alternative to combat antibioticresistant microorganisms. For this reason, many theoretical efforts have been done in the development of new computational tools for the rational design of both better and effective AMPs. In this review, we present an overview of the rational design of AMPs using machine learning techniques and new research fields.

  5. Assays for Identifying Inducers of the Antimicrobial Peptide LL-37.

    PubMed

    Nylén, Frank; Bergman, Peter; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2017-01-01

    One promising approach to meet the growing problem of antibiotic resistance is to modulate host defense mechanisms, i.e., host-directed therapy (HDT), in the fight against infections. Induction of endogenous antimicrobial peptides (AMPs) via small molecular compounds, such as 1,25-dihydroxyvitamin D3 or phenylbutyrate, could provide one such HDT-based approach.We have developed a cell-based screening assay for the identification of novel compounds with the capacity to induce AMP expression and here follows the detailed protocol.

  6. Antimicrobial Peptides and Wound Healing: Biological and Therapeutic Considerations

    PubMed Central

    Mangoni, Maria Luisa; McDermott, Alison M.; Zasloff, Michael

    2016-01-01

    Repair of tissue wounds is a fundamental process to re-establish tissue integrity and regular function. Importantly, infection is a major factor that hinders wound healing. Multicellular organisms have evolved an arsenal of host-defence molecules, including antimicrobial peptides (AMPs), aimed at controlling microbial proliferation and at modulating the host's immune response to a variety of biological or physical insults. In this brief review we provide the evidence for a role of AMPs as endogenous mediators of wound healing and their promising therapeutic potential for treatment of non-life threatening skin and other epithelial injuries. PMID:26738772

  7. Differential distribution and defence involvement of antimicrobial peptides in mussel.

    PubMed

    Mitta, G; Vandenbulcke, F; Noël, T; Romestand, B; Beauvillain, J C; Salzet, M; Roch, P

    2000-08-01

    In previous papers, we characterised 3 types of 4-kDa, cysteine-rich, cationic antimicrobial peptides: MGDs (for Mytilus galloprovincialis defensins), mytilins and myticins, which are abundant in the mussel hemocytes. In the present work, we revealed a differential distribution of the cells expressing the different genes. In addition, using confocal and electron microscopy, we confirmed that defensins and mytilins were partially located in different sub-types of circulating hemocytes although the peptides can be located in the same cell, and even in the same granule. We also demonstrated that mytilins exert their microbicidal effect within the cells through the process of phagosome-mytilin granule fusion leading to the co-location of ingested bacteria and mytilins.

  8. Mining antimicrobial peptides from small open reading frames in Ciona intestinalis.

    PubMed

    Lu, Yongzhong; Zhuang, Yu; Liu, Jie

    2014-01-01

    Though being able to encode various kinds of bioactive peptides, small open reading frames (sORFs) are poorly annotated in many genomic data. The present study was conducted to evaluate the potential of sORFs in encoding antimicrobial peptides (AMPs) in the basal chordate model Ciona intestinalis. About 4.8 m genomic sequence was first retrieved for sORFs mining by the program sORF finder, then the sORFs were translated into amino acid sequences for AMP prediction via CAMP server, and thereafter, ten putative AMPs were selected for expression and antimicrobial activity validation. In total, over 180 peptides deduced from the sORFs were predicted to be AMPs. Among the ten tested peptides, six were found to have significant expressed sequence tag matches, providing strong evidence for gene expression; five were proved to be active against the bacterial strains. These results indicate that many sORFs in C. intestinalis genome contain AMP information. This work can serve as an important initial step to investigate the role of sORFs in the innate defense of C. intestinalis.

  9. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap.

    PubMed

    Mohanram, Harini; Bhattacharjya, Surajit

    2014-01-01

    Host defense antimicrobial peptides (AMPs) are a promising source of antibiotics for the treatment of multiple-drug-resistant pathogens. Lipopolysaccharide (LPS), the major component of the outer leaflet of the outer membrane of Gram-negative bacteria, functions as a permeability barrier against a variety of molecules, including AMPs. Further, LPS or endotoxin is the causative agent of sepsis killing 100,000 people per year in the United States alone. LPS can restrict the activity of AMPs inducing aggregations at the outer membrane, as observed for frog AMPs, temporins, and also in model AMPs. Aggregated AMPs, "trapped" by the outer membrane, are unable to traverse the cell wall, causing their inactivation. In this work, we show that these inactive AMPs can overcome LPS-induced aggregations while conjugated with a short LPS binding β-boomerang peptide motif and become highly bactericidal. The generated hybrid peptides exhibit activity against Gram-negative and Gram-positive bacteria in high-salt conditions and detoxify endotoxin. Structural and biophysical studies establish the mechanism of action of these peptides in LPS outer membrane. Most importantly, this study provides a new concept for the development of a potent broad-spectrum antibiotic with efficient outer membrane disruption as the mode of action.

  10. Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha.

    PubMed

    Lorenzón, E N; Cespedes, G F; Vicente, E F; Nogueira, L G; Bauab, T M; Castro, M S; Cilli, E M

    2012-06-01

    It is well known that cationic antimicrobial peptides (cAMPs) are potential microbicidal agents for the increasing problem of antimicrobial resistance. However, the physicochemical properties of each peptide need to be optimized for clinical use. To evaluate the effects of dimerization on the structure and biological activity of the antimicrobial peptide Ctx-Ha, we have synthesized the monomeric and three dimeric (Lys-branched) forms of the Ctx-Ha peptide by solid-phase peptide synthesis using a combination of 9-fluorenylmethyloxycarbonyl (Fmoc) and t-butoxycarbonyl (Boc) chemical approaches. The antimicrobial activity assay showed that dimerization decreases the ability of the peptide to inhibit growth of bacteria or fungi; however, the dimeric analogs displayed a higher level of bactericidal activity. In addition, a dramatic increase (50 times) in hemolytic activity was achieved with these analogs. Permeabilization studies showed that the rate of carboxyfluorescein release was higher for the dimeric peptides than for the monomeric peptide, especially in vesicles that contained sphingomyelin. Despite different biological activities, the secondary structure and pore diameter were not significantly altered by dimerization. In contrast to the case for other dimeric cAMPs, we have shown that dimerization selectively decreases the antimicrobial activity of this peptide and increases the hemolytic activity. The results also show that the interaction between dimeric peptides and the cell wall could be responsible for the decrease of the antimicrobial activity of these peptides.

  11. Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei AN5.

    PubMed

    Alkotaini, Bassam; Anuar, Nurina; Kadhum, Abdul Amir Hassan; Sani, Asmahani Azira Abdu

    2013-06-01

    An antimicrobial substance produced by the Paenibacillus alvei strain AN5 was detected in fermentation broth. Subsequently, cell-free culture supernatant (CFCS) was obtained by medium centrifugation and filtration, and its antimicrobial activity was tested. This showed a broad inhibitory spectrum against both Gram-positive and -negative bacterial strains. The CFCS was then purified and subjected to SDS-PAGE and infrared spectroscopy, which indicated the proteinaceous nature of the antimicrobial compound. Some de novo sequencing using an automatic Q-TOF premier system determined the amino acid sequence of the purified antimicrobial peptide as Y-S-K-S-L-P-L-S-V-L-N-P (1,316 Da). The novel peptide was designated as peptide AN5-1. Its mode of action was bactericidal, inducing cell lysis in E. coli ATCC 29522 and S. aureus, and non-cell lysis in both S. marcescens and B. cereus ATCC 14579. Peptide AN5-1 displayed stability at a wide range of pH values (2-12) and remained active after exposure to high temperatures (100 °C). It also maintained its antimicrobial activity after incubation with chemicals such as SDS, urea and EDTA.

  12. Synthesis of hybrid hydrazino peptides: protected vs unprotected chiral α-hydrazino acids.

    PubMed

    Suć, Josipa; Jerić, Ivanka

    2015-01-01

    Peptidomimetics based on hydrazino derivatives of α-amino acids represent an important class of peptidic foldamers with promising biological activities, like protease inhibition and antimicrobial activity. However, the lack of straightforward method for the synthesis of optically pure hydrazino acids and efficient incorporation of hydrazino building blocks into peptide sequence hamper wider exploitation of hydrazino peptidomimetics. Here we described the utility of N (α)-benzyl protected and unprotected hydrazino derivatives of natural α-amino acids in synthesis of peptidomimetics. While incorporation of N (α)-benzyl-hydrazino acids into peptide chain and deprotection of benzyl moiety proceeded with difficulties, unprotected hydrazino acids allowed fast and simple construction of hybrid peptidomimetics.

  13. Expression profiles of seven channel catfish antimicrobial peptides in response to Edwardsiella ictaluri infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using quantitative PCR technique, the relative transcriptional levels of seven channel catfish antimicrobial peptide (AMP) genes [NK-lysin type 1, NK-lysin type 2, NK-lysin type 3, bactericidal permeability-increasing protein (BPI), cathepsin D, hepcidin, and liver-expressed antimicrobial peptide 2 ...

  14. Searching for Synthetic Antimicrobial Peptides: An Experiment for Organic Chemistry Students

    ERIC Educational Resources Information Center

    Vasquez, Thomas E., Jr.; Saldan~a, Cristina; Muzikar, Katy A.; Mashek, Debra; Liu, Jane M.

    2016-01-01

    This laboratory experiment provides undergraduate students enrolled in organic chemistry the opportunity to design and synthesize their own peptide, which is then tested for antimicrobial activity. After reading a primary scientific paper on antimicrobial peptides, students design and synthesize their own hexapeptide that they hypothesize will…

  15. Spacer-free BODIPY fluorogens in antimicrobial peptides for direct imaging of fungal infection in human tissue

    PubMed Central

    Mendive-Tapia, Lorena; Zhao, Can; Akram, Ahsan R.; Preciado, Sara; Albericio, Fernando; Lee, Martin; Serrels, Alan; Kielland, Nicola; Read, Nick D; Lavilla, Rodolfo; Vendrell, Marc

    2016-01-01

    Fluorescent antimicrobial peptides are promising structures for in situ, real-time imaging of fungal infection. Here we report a fluorogenic probe to image Aspergillus fumigatus directly in human pulmonary tissue. We have developed a fluorogenic Trp-BODIPY amino acid with a spacer-free C-C linkage between Trp and a BODIPY fluorogen, which shows remarkable fluorescence enhancement in hydrophobic microenvironments. The incorporation of our fluorogenic amino acid in short antimicrobial peptides does not impair their selectivity for fungal cells, and enables rapid and direct fungal imaging without any washing steps. We have optimized the stability of our probes in human samples to perform multi-photon imaging of A. fumigatus in ex vivo human tissue. The incorporation of our unique BODIPY fluorogen in biologically relevant peptides will accelerate the development of novel imaging probes with high sensitivity and specificity. PMID:26956772

  16. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates.

    PubMed

    Faccone, Diego; Veliz, Omar; Corso, Alejandra; Noguera, Martin; Martínez, Melina; Payes, Cristian; Semorile, Liliana; Maffía, Paulo Cesar

    2014-01-01

    Antibiotic resistance is one of the main problems concerning public health or clinical practice. Antimicrobial peptides appear as good candidates for the development of new therapeutic drugs. In this study we de novo designed a group of cationic antimicrobial peptides, analyzed its physicochemical properties, including its structure by circular dichroism and studied its antimicrobial properties against a panel of clinical isolates expressing different mechanisms of resistance. Three cationic alpha helical peptides exhibited antimicrobial activity comparable to, or even better than the comparator omiganan (MBI-226).

  17. Antimicrobial peptides from the skin secretions of the South-East Asian frog Hylarana erythraea (Ranidae).

    PubMed

    Al-Ghaferi, Nadia; Kolodziejek, Jolanta; Nowotny, Norbert; Coquet, Laurent; Jouenne, Thierry; Leprince, Jérôme; Vaudry, Hubert; King, Jay D; Conlon, J Michael

    2010-04-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions of the South-East Asian frog Hylarana erythraea (formerly Rana erythraea partim) has led to the identification of multiple peptides with antimicrobial activity. Structural characterization of the peptides demonstrated that they belong to the brevinin-1 (3), brevinin-2 (2), esculentin-2 (4), and temporin (1) families. The values in parentheses indicate the number of paralogs. In addition, a peptide (GVIKSVLKGVAKTVALG ML.NH(2)) was isolated that shows some structural similarity to the brevinin-2-related peptides (B2RP) previously isolated from North American frogs of the genus Lithobates. A synthetic replicate of the species B2RP showed broad-spectrum growth inhibitory activity against reference strains of Escherichia coli (MIC=12.5 microM), Staphylococcus aureus (MIC=12.5 microM) and Candida albicans (MIC=50 microM) and was active against multidrug-resistant clinical isolates of Acetinobacter baumannii (MIC in the range 6-12.5 microM). The hemolytic activity of the peptide was relatively low (LC(50)=280 microM). Phylogenetic analysis based upon the amino acid sequences of 47 brevinin-2 peptides from 17 Asian species belonging to the family Ranidae provides support for the placement of H. erythraea in the genus Hylarana.

  18. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.

    PubMed

    Conlon, J Michael; Al-Ghaferi, Nadia; Abraham, Bency; Leprince, Jérôme

    2007-08-01

    The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.

  19. Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X

    PubMed Central

    Gjetting, Torben; Andresen, Thomas L.

    2014-01-01

    The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the “antibiotic era”. Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further optimization is needed if AMPs are to find broad use as antibiotics. In the present work, eight analogues of mastoparan-X (MPX) were investigated, having side chain modifications in position 1, 8 and 14 to modulate peptide hydrophobicity. The self-association properties of the peptides were characterized, and the peptide-membrane interactions in model membranes were compared with the bactericidal and haemolytic properties. Alanine substitution at position 1 and 14 resulted in higher target selectivity (red blood cells versus bacteria), but also decreased bactericidal potency. For these analogues, the gain in target selectivity correlated to biophysical parameters showing an increased effective charge and reduction in the partitioning coefficient for membrane insertion. Introduction of an unnatural amino acid, with an octyl side chain by amino acid substitution, at positions 1, 8 and 14 resulted in increased bactericidal potency at the expense of radically reduced membrane target selectivity. Overall, optimized membrane selectivity or bactericidal potency was achieved by changes in side chain hydrophobicity of MPX. However, enhanced potency was achieved at the expense of selectivity and vice versa in all cases. PMID:24621994

  20. Antimicrobial Peptide Mimicking Primary Amine and Guanidine Containing Methacrylamide Copolymers Prepared by Raft Polymerization

    PubMed Central

    Exley, Sarah E.; Paslay, Lea C.; Sahukhal, Gyan S.; Abel, Brooks A.; Brown, Tyler D.; McCormick, Charles L.; Heinhorst, Sabine; Koul, Veena; Choudhary, Veena; Elasri, Mohamed O.; Morgan, Sarah E.

    2016-01-01

    Naturally occurring antimicrobial peptides (AMPs) display the ability to eliminate a wide variety of bacteria, without toxicity to the host eukaryotic cells. Synthetic polymers containing moieties mimicking lysine and arginine components found in AMPs have been reported to show effectiveness against specific bacteria, with the mechanism of activity purported to depend on the nature of the amino acid mimic. In an attempt to incorporate the antimicrobial activity of both amino acids into a single water-soluble copolymer, a series of copolymers containing lysine mimicking aminopropyl methacrylamide (APMA) and arginine mimicking guanadinopropyl methacrylamide (GPMA) were prepared via aqueous RAFT polymerization. Copolymers were prepared with varying ratios of the comonomers, with degree of polymerization of 35–40 and narrow molecular weight distribution to simulate naturally occurring AMPs. Antimicrobial activity was determined against Gram-negative and Gram-positive bacteria under conditions with varying salt concentration. Toxicity to mammalian cells was assessed by hemolysis of red blood cells and MTT assays of MCF-7 cells. Antimicrobial activity was observed for APMA homopolymer and copolymers with low concentrations of GPMA against all bacteria tested, with low toxicity toward mammalian cells. PMID:26558609

  1. Antimicrobial peptides in marine invertebrate health and disease.

    PubMed

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.

  2. Cationic antimicrobial peptides disrupt the Streptococcus pyogenes ExPortal.

    PubMed

    Vega, Luis Alberto; Caparon, Michael G

    2012-09-01

    Although they possess a well-characterized ability to porate the bacterial membrane, emerging research suggests that cationic antimicrobial peptides (CAPs) can influence pathogen behaviour at levels that are sublethal. In this study, we investigated the interaction of polymyxin B and human neutrophil peptide (HNP-1) with the human pathogen Streptococcus pyogenes. At sublethal concentrations, these CAPs preferentially targeted the ExPortal, a unique microdomain of the S. pyogenes membrane, specialized for protein secretion and processing. A consequence of this interaction was the disruption of ExPortal organization and a redistribution of ExPortal components into the peripheral membrane. Redistribution was associated with inhibition of secretion of certain toxins, including the SpeB cysteine protease and the streptolysin O (SLO) cytolysin, but not SIC, a protein that protects S. pyogenes from CAPs. These data suggest a novel function for CAPs in targeting the ExPortal and interfering with secretion of factors required for infection and survival. This mechanism may prove valuable for the design of new types of antimicrobial agents to combat the emergence of antibiotic-resistant pathogens.

  3. Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa.

    PubMed

    Strandberg, Erik; Zerweck, Jonathan; Horn, Diana; Pritz, Günther; Berditsch, Marina; Bürck, Jochen; Wadhwani, Parvesh; Ulrich, Anne S

    2015-05-01

    Magainin 2 (MAG2) and PGLa are two related antimicrobial peptides found in the skin of the African frog Xenopus laevis with a pronounced synergistic activity, which act by permeabilizing bacterial membranes. To probe the influence of hydrophobic peptide-lipid and peptide-peptide interactions on the antimicrobial activity and on synergy, the sequence of MAG2 was modified by replacing single amino acids either with a small alanine or with the stiff and bulky hydrophobic 3-(trifluoromethyl)-L-bicyclopent-[1.1.1]-1-ylglycine side chain. The minimum inhibitory concentration of 14 MAG2 analogs was strongly influenced by these single substitutions: the antimicrobial activity was consistently improved when the hydrophobicity was increased on the hydrophobic face of the amphiphilic helix, while the activity decreased when the hydrophobicity was reduced. The synergy with PGLa, on the other hand, was rather insensitive to mutations of hydrophobic residues. It thus seems that the antimicrobial effect of MAG2 on its own depends strongly on the hydrophobicity of the peptide, while the synergy with PGLa does not depend on the overall hydrophobicity of MAG2.

  4. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    SciTech Connect

    Martinez-Becerra, Francisco; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria . E-mail: garciaze@servidor.unam.mx

    2007-04-06

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in {alpha} helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa.

  5. Determinants of recombinant production of antimicrobial cationic peptides and creation of peptide variants in bacteria.

    PubMed

    Zhang, L; Falla, T; Wu, M; Fidai, S; Burian, J; Kay, W; Hancock, R E

    1998-06-29

    Cationic peptides possessing antibacterial activity are virtually ubiquitous in nature, and offer exciting prospects as new therapeutic agents. We had previously demonstrated that such peptides could be produced by fusion protein technology in bacteria and several carrier proteins had been tested as fusion partners including glutathione-S-transferase, S. aureus protein A, IgG binding protein and P. aeruginosa outer membrane protein OprF. However these fusion partners, while successfully employed in peptide expression, were not optimized for high level production of cationic peptides (Piers, K., Brow, M. L., and Hancock, R. E. W. 1993, Gene 137, 7-13). In this paper we took advantage of a small replication protein RepA from E. coli and used its truncated version to construct fusion partners. The minimal elements required for high level expression of cationic peptide were defined as a DNA sequence encoding a fusion protein comprising, from the N-terminus, a 68 amino acid carrier region, an anionic prepro domain, a single methionine and the peptide of interest. The 68 amino acid carrier region was a block of three polypeptides consisting of a truncated RepA, a synthetic cellulose binding domain and a hexa histidine domain. The improved system showed high level expression and simplified downstream purification. The active peptide could be yielded by CNBr cleavage of the fusion protein. This novel vector was used to express three classes of cationic peptides including the alpha-helical peptide CEMA, the looped peptide bactenecin and the extended peptide indolicidin. In addition, mutagenesis of the peptide gene to produce peptide variants of CEMA and indolicidin using the improved vector system was shown to be successful.

  6. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis.

    PubMed

    Merriman, Joseph A; Nemeth, Kimberly A; Schlievert, Patrick M

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges.

  7. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus.

    PubMed

    Cao, Huihui; Ke, Tao; Liu, Renhu; Yu, Jingyin; Dong, Caihua; Cheng, Mingxing; Huang, Junyan; Liu, Shengyi

    2015-01-01

    Proline-rich antimicrobial peptides (PR-AMPs) are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD) revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was characterized in plants, and its homology sequences were found in some other Brassicaceae plants by the genome sequences analysis. Compared with the known PR-AMPs, BnPRP1 has the different primary sequences and antimicrobial activity. Above all, this study gives a chance to cast a new light on further understanding about the AMPs' mechanism and application.

  8. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  9. Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides.

    PubMed

    Forbes, Sarah; McBain, Andrew J; Felton-Smith, Susan; Jowitt, Thomas A; Birchenough, Holly L; Dobson, Curtis B

    2013-07-01

    Medical device infection remains a major clinical concern. Biocidal compounds have been incorporated into medical device materials ideally to inhibit bacterial colonisation whilst exhibiting relatively low cytotoxicity. We compared the antibacterial activity, anti-biofilm efficacy and cytotoxicity of a novel peptide derivative of human apolipoprotein E (apoEdpL-W) to that of commonly used biocides, before and after coating onto a range of standard polymers. Since the antimicrobial function of most biocides frequently involves associations with cellular membranes, we have also studied the detailed interactions of the test antimicrobials with phospholipid bilayers, using the quartz crystal microbalance device combined with dual-polarisation interferometry. ApoEdpL-W displayed broad-spectrum antibacterial activity and marked efficacy against nascent Staphylococcus aureus biofilms. Compounds showed better antimicrobial activity when combined with hydrogel materials than with non-porous materials. The membrane interactions of apoEdpL-W were most similar to that of PHMB, with both agents appearing to readily bind and insert into lipid bilayers, possibly forming pores. However apoEdpL-W showed lower cytotoxicity than PHMB, its efficacy was less affected by the presence of serum, and it demonstrated the highest level of biocompatibility of all the biocides, as indicated by our measurement of its antimicrobial biocompatibility index. This work shows the potential of apoEdpL-W as an effective antiseptic coating agent.

  10. Additivity and synergy between an antimicrobial peptide and inhibitory ions.

    PubMed

    Walkenhorst, William F; Sundrud, Justine N; Laviolette, Joshua M

    2014-09-01

    Recently we described the pH dependence of activity for a family of cationic antimicrobial peptides (CAMPs) selected from a combinatorial library. In the current work we report on the effects of toxic ions (Cu(2+), Zn(2+), and F(-)) and the chelator EDTA on the activity profiles of one member of this family, the 12-residue cationic antimicrobial peptide *ARVA, against a panel of microorganisms. All four ions exhibited either synergy or additivity with *ARVA for all organisms tested with the exception of *ARVA combined with NaF against Candida albicans which exhibited indifference. CuCl2 and ZnCl2 exhibited synergy with *ARVA against both the Gram negative Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus as well as strong additivity against Escherichia coli at submillimolar concentrations. The chelator EDTA was synergistic with *ARVA against the two Gram negative organisms but showed only simple additivity with S. aureus and C. albicans despite their much lower MICs with EDTA. This effect may be related to the known differences in the divalent ion binding properties of the Gram negative LPS layer as compared to the peptidoglycan layer of the Gram positive organism. Unlike the other ions, NaF showed only additivity or indifference when combined with *ARVA and required much higher concentrations for activity. The yeast C. albicans did not show synergy or strong additivity with any of the inhibitory compounds tested. The effects of toxic ions and chelators observed here have important implications for applications using CAMPs and for the design of novel formulations involving CAMPs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

  11. Production of cecropin A antimicrobial peptide in rice seed endosperm

    PubMed Central

    2014-01-01

    Background Cecropin A is a natural antimicrobial peptide that exhibits rapid, potent and long-lasting lytic activity against a broad spectrum of pathogens, thus having great biotechnological potential. Here, we report a system for producing bioactive cecropin A in rice seeds. Results Transgenic rice plants expressing a codon-optimized synthetic cecropin A gene drived by an endosperm-specific promoter, either the glutelin B1 or glutelin B4 promoter, were generated. The signal peptide sequence from either the glutelin B1 or the glutelin B4 were N-terminally fused to the coding sequence of the cecropin A. We also studied whether the presence of the KDEL endoplasmic reticulum retention signal at the C-terminal has an effect on cecropin A subcellular localization and accumulation. The transgenic rice plants showed stable transgene integration and inheritance. We show that cecropin A accumulates in protein storage bodies in the rice endosperm, particularly in type II protein bodies, supporting that the glutelin N-terminal signal peptides play a crucial role in directing the cecropin A to this organelle, independently of being tagged with the KDEL endoplasmic reticulum retention signal. The production of cecropin A in transgenic rice seeds did not affect seed viability or seedling growth. Furthermore, transgenic cecropin A seeds exhibited resistance to infection by fungal and bacterial pathogens (Fusarium verticillioides and Dickeya dadantii, respectively) indicating that the in planta-produced cecropin A is biologically active. Conclusions Rice seeds can sustain bioactive cecropin A production and accumulation in protein bodies. The system might benefit the production of this antimicrobial agent for subsequent applications in crop protection and food preservation. PMID:24755305

  12. Rational design of artificial β-strand-forming antimicrobial peptides with biocompatible properties.

    PubMed

    Rapsch, Karsten; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2014-10-06

    Because the intensive use of antibiotics has led to a large variety of resistant bacterial strains, therapeutic measures have become increasingly challenging. In order to ensure reliable treatment of diseases, alternative antimicrobial agents need to be explored. In this context, antimicrobial peptides have been discussed as novel bioactive molecules, which, however, may be limited in their applicability due to their high manufacturing costs and poor pharmacokinetic properties. Consequently, the design of artificial antimicrobial peptides featuring two flanking cationic regions and a hydrophobic center is presented. These sequences led to distinct antimicrobial activity on the same order of magnitude as that of naturally occurring reference peptides but with less cytotoxic or cytostatic drawbacks. Furthermore, a deletion and substitution library revealed the minimal sequence requirements. By analysis of the computed 3D structures of these peptides, a single characteristic β-strand was identified. This structural motif was pivotal for antimicrobial activity. Consequently, an optimized peptide sequence with antimicrobial and biocompatible properties was derived, and its application was demonstrated in a mixed culture experiment. Thus, it was shown that the optimized artificial antimicrobial peptide is suitable as a therapeutic agent and may be used as template for the development of new antimicrobial peptides with unique secondary structures.

  13. Blastocystis Isolate B Exhibits Multiple Modes of Resistance against Antimicrobial Peptide LL-37

    PubMed Central

    Yason, John Anthony; Ajjampur, Sitara Swarna Rao

    2016-01-01

    Blastocystis is one of the most common eukaryotic organisms found in humans and many types of animals. Several reports have identified its role in gastrointestinal disorders, although its pathogenicity is yet to be clarified. Blastocystis is transmitted via the fecal-to-oral route and colonizes the large intestines. Epithelial cells lining the intestine secrete antimicrobial peptides (AMPs), including beta-defensins and cathelicidin, as a response to infection. This study explores the effects of host colonic antimicrobial peptides, particularly LL-37, a fragment of cathelicidin, on different Blastocystis subtypes. Blastocystis is composed of several subtypes that have genetic, metabolic, and biological differences. These subtypes also have various outcomes in terms of drug treatment and immune response. In this study, Blastocystis isolates from three different subtypes were found to induce intestinal epithelial cells to secrete LL-37. We also show that among the antimicrobial peptides tested, only LL-37 has broad activity on all the subtypes. LL-37 causes membrane disruption and causes Blastocystis to change shape. Blastocystis subtype 7 (ST7), however, showed relative resistance to LL-37. An isolate, ST7 isolate B (ST7-B), from this subtype releases proteases that can degrade the peptide. It also makes the environment acidic, which causes attenuation of LL-37 activity. The Blastocystis ST7-B isolate was also observed to have a thicker surface coat, which may protect the parasite from direct killing by LL-37. This study determined the effects of LL-37 on different Blastocystis isolates and indicates that AMPs have significant roles in Blastocystis infections. PMID:27217421

  14. New perspectives for natural antimicrobial peptides: application as antinflammatory drugs in a murine model

    PubMed Central

    2012-01-01

    Background Antimicrobial peptides (AMPs) are an ancient group of defense molecules. AMPs are widely distributed in nature (being present in mammals, birds, amphibians, insects, plants, and microorganisms). They display bactericidal as well as immunomodulatory properties. The aim of this study was to investigate the antimicrobial and anti-inflammatory activities of a combination of two AMPs (temporin B and the royal jellein I) against Staphylococcus epidermidis. Results The temporin B (TB-KK) and the royal jelleins I, II, III chemically modified at the C terminal (RJI-C, RJII-C, RJIII-C), were tested for their activity against 10 different Staphylococcus epidermidis strains, alone and in combination. Of the three royal jelleins, RJI-C showed the highest activity. Moreover, the combination of RJI-C and TB-KK (MIX) displayed synergistic activity. In vitro, the MIX displayed low hemolytic activity, no NO2- production and the ability to curb the synthesis of the pro-inflammatory cytokines TNF-α and IFN-γ to the same extent as acetylsalicylic acid. In vivo, the MIX sterilized mice infected with Staphylococcus epidermidis in eleven days and inhibited the expression of genes encoding the prostaglandin-endoperoxide synthase 2 (COX-2) and CD64, two important parameters of inflammation. Conclusion The study shows that the MIX – a combination of two naturally occurring peptides - displays both antimicrobial and anti-inflammatory activities. PMID:23157568

  15. Tethering antimicrobial peptides onto chitosan: Optimization of azide-alkyne "click" reaction conditions.

    PubMed

    Barbosa, Mariana; Vale, Nuno; Costa, Fabíola M T A; Martins, M Cristina L; Gomes, Paula

    2017-06-01

    Antimicrobial peptides (AMP) are promising alternatives to classical antibiotics, due to their high specificity and potency at low concentrations, and low propensity to elicit pathogen resistance. Immobilization of AMP onto biomaterials is an emergent field of research, towards creation of novel antimicrobial materials able to avoid formation of biofilms on the surfaces of medical devices. Herein, we report the chemical route towards one such material, where chitosan was used as biocompatible carrier for the covalent grafting of Dhvar-5, a well-known potent AMP, via the chemoselective ("click") Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The material's structure, as well as peptide loading, were confirmed by Fourier-transformed infra-red (FT-IR) and X-ray photoelectron (XPS) spectroscopies, and by Amino Acid Analysis (AAA), respectively. Results herein reported demonstrate that, with proper optimization, the "click" CuAAC is an attractive approach for the tethering of AMP onto chitosan, in order to create novel antimicrobial materials potentially valuable for biomedical applications.

  16. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice.

    PubMed

    Shi, Wei; Li, Caiyun; Li, Man; Zong, Xicui; Han, Dongju; Chen, Yuqing

    2016-06-01

    Xanthomonas oryzae pv. oryzae is a destructive bacterial disease of rice, and the development of an environmentally safe bactericide is urgently needed. Antimicrobial peptides, as antibacterial sources, may play important roles in bactericide development. In the present study, we found that the antimicrobial peptide melittin had the desired antibacterial activity against X. oryzae pv. oryzae. The antibacterial mechanism was investigated by examining its effects on cell membranes, energy metabolism, and nucleic acid, and protein synthesis. The antibacterial effects arose from its ability to interact with the bacterial cell wall and disrupt the cytoplasmic membrane by making holes and channels, resulting in the leakage of the cytoplasmic content. Additionally, melittin is able to permeabilize bacterial membranes and reach the cytoplasm, indicating that there are multiple mechanisms of antimicrobial action. DNA/RNA binding assay suggests that melittin may inhibit macromolecular biosynthesis by binding intracellular targets, such as DNA or RNA, and that those two modes eventually lead to bacterial cell death. Melittin can inhibit X. oryzae pv. oryzae from spreading, alleviating the disease symptoms, which indicated that melittin may have potential applications in plant protection.

  17. Effects of Antimicrobial Peptide Revealed by Simulations: Translocation, Pore Formation, Membrane Corrugation and Euler Buckling

    PubMed Central

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-01-01

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. PMID:23579956

  18. Antimicrobial peptides as novel anti-tuberculosis therapeutics.

    PubMed

    Silva, João P; Appelberg, Rui; Gama, Francisco Miguel

    2016-01-01

    Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, has recently joined HIV/AIDS as the world's deadliest infectious disease, affecting around 9.6 million people worldwide in 2014. Of those, about 1.2 million died from the disease. Resistance acquisition to existing antibiotics, with the subsequent emergence of Multi-Drug Resistant mycobacteria strains, together with an increasing economic burden, has urged the development of new anti-TB drugs. In this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that make part of the innate immune system, now arise as promising candidates for TB treatment. In this review, we analyze the potential of AMPs for this application. We address the mechanisms of action, advantages and disadvantages over conventional antibiotics and how problems associated with its use may be overcome to boost their therapeutic potential. Additionally, we address the challenges of translational development from benchside to bedside, evaluate the current development pipeline and analyze the expected global impact from a socio-economic standpoint. The quest for more efficient and more compliant anti-TB drugs, associated with the great therapeutic potential of emerging AMPs and the rising peptide market, provide an optimal environment for the emergence of AMPs as promising therapies. Still, their pharmacological properties need to be enhanced and manufacturing-associated issues need to be addressed.

  19. Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide.

    PubMed

    Bi, Lin; Yang, Lei; Narsimhan, Ganesan; Bhunia, Arun K; Yao, Yuan

    2011-03-10

    In this work, carbohydrate nanoparticles were created to prolong the efficacy of antimicrobial peptide against pathogens. Nisin and Listeria monocytogenes were used as the peptide and pathogen models, respectively, and phytoglycogen (PG)-based nanoparticles were developed as carriers of nisin. PG from su1 mutant maize was subjected to β-amylolysis as well as subsequent succinate or octenyl succinate substitutions. The goal was to minimize the loss of peptide during storage and meanwhile realize an effective release in the presence of bacteria. The capabilities of PG derivatives as carriers of nisin were evaluated using centrifugal ultrafiltration, zeta-potential, and the initial availability of nisin against L. monocytogenes. All methods indicated that nisin loading was favored by a high degree of substitution (DS), presence of hydrophobic octenyl moiety, and β-amylolysis of PG nanoparticles. To evaluate the prolonged nisin efficacy, preparations containing nisin and PG derivatives were loaded into a BHI-agar deep-well model (mimicking nisin depletion at the nutrient-containing surface). The residual inhibitory activities of preparations against L. monocytogenes were monitored during 21 days of storage at 4 °C. The results showed that all PG derivatives led to the prolonged retention of nisin activity and the longest retention was associated with high DS, β-amylolysis, and octenyl succinate. Evidently, both electrostatic and hydrophobic interactions are the driving forces of nisin adsorption, and the glucan structure at the nanoparticle surface also affects nisin loading and retention during storage.

  20. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles.

    PubMed

    Ong, Zhan Yuin; Cheng, Junchi; Huang, Yuan; Xu, Kaijin; Ji, Zhongkang; Fan, Weimin; Yang, Yi Yan

    2014-01-01

    In the face of mounting global antibiotics resistance, the identification and development of membrane-active antimicrobial peptides (AMPs) as an alternative class of antimicrobial agent have gained significant attention. The physical perturbation and disruption of microbial membranes by the AMPs have been proposed to be an effective means to overcome conventional mechanisms of drug resistance. Recently, we have reported the design of a series of short synthetic β-sheet folding peptide amphiphiles comprised of recurring (X1Y1X2Y2)n-NH2 sequences where X: hydrophobic amino acids, Y: cationic amino acids and n: number of repeat units. In efforts to investigate the effects of key parameters including stereochemistry, chain length and sequence pattern on antimicrobial effects, systematic d-amino acid substitutions of the lead peptides (IRIK)2-NH2 (IK8-all L) and (IRVK)3-NH2 (IK12-all L) were performed. It was found that the corresponding D-enantiomers exhibited stronger antimicrobial activities with minimal or no change in hemolytic activities, hence translating very high selectivity indices of 407.0 and >9.8 for IK8-all D and IK12-all D respectively. IK8-all D was also demonstrated to be stable to degradation by broad spectrum proteases trypsin and proteinase K. The membrane disrupting bactericidal properties of IK8-all D effectively prevented drug resistance development and inhibited the growth of various clinically isolated MRSA, VRE, Acinetobacter baumanni, Pseudomonas aeruginosa, Cryptococcus. neoformans and Mycobacterium tuberculosis. Significant reduction in intracellular bacteria counts was also observed following treatment with IK8-all D in the Staphylococcus. aureus infected mouse macrophage cell line RAW264.7 (P < 0.01). These results suggest that the d-amino acids substituted β-sheet forming peptide IK8-all D with its enhanced antimicrobial activities and improved protease stability, is a promising therapeutic candidate with potential to combat

  1. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli.

    PubMed Central

    Salomón, R A; Farías, R N

    1992-01-01

    Microcin 25, a peptide antibiotic excreted by an Escherichia coli strain isolated from human feces, was purified to homogeneity and characterized. Composition analysis and data from gel filtration indicated that microcin 25 may contain 20 amino acid residues. It has a blocked amino-terminal end. Microcin synthesis and immunity are plasmid determined, and the antibiotic was produced in minimal medium when the cultures entered the stationary phase of growth. The peptide appears to interfere with cell division, since susceptible cells filamented when exposed to it. This response does not seem to be mediated by the SOS system. Images PMID:1429464

  2. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    PubMed Central

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-01-01

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections. PMID:27128941

  3. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents.

    PubMed

    Ramesh, Suhas; Govender, Thavendran; Kruger, Hendrik G; de la Torre, Beatriz G; Albericio, Fernando

    2016-07-01

    The emergence of multidrug resistant bacteria has a direct impact on global public health because of the reduced potency of existing antibiotics against pathogens. Hence, there is a pressing need for new drugs with different modes of action that can kill microorganisms. Antimicrobial peptides (AMPs) can be regarded as an alternative tool for this purpose because they are proven to have therapeutic effects with broad-spectrum activities. There are some hurdles in using AMPs as clinical candidates such as toxicity, lack of stability and high budgets required for manufacturing. This can be overcome by developing shorter and more easily accessible AMPs, the so-called Short AntiMicrobial Peptides (SAMPs) that contain between two and ten amino acid residues. These are emerging as an attractive class of therapeutic agents with high potential for clinical use and possessing multifunctional activities. In this review we attempted to compile those SAMPs that have exhibited biological properties which are believed to hold promise for the future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  4. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis

    PubMed Central

    Blower, Ryan J.; Barksdale, Stephanie M.; van Hoek, Monique L.

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  5. Recent advances in the research and development of marine antimicrobial peptides.

    PubMed

    El-Gamal, Mohammed I; Abdel-Maksoud, Mohammed S; Oh, Chang-Hyun

    2013-08-01

    Antimicrobial peptides are a group of natural or semi-synthetic molecules possessing antimicrobial activities against bacteria, fungi, viruses, parasites, etc. They are considered as promising candidates for treatment of microbial infections and suppression of microbial resistance. The increasing emergence of bacterial resistance has required development of new efficient antibiotics that can be added to the antibacterial armamentarium. The marine world provides a rich source of antimicrobial peptides. That world has not been highly explored yet, and much more effort is required in order to discover new efficient antimicrobial peptides. In the present article, we have reviewed the recent progress in the field of marine antimicrobial peptides from 2009 until the mid of 2012.

  6. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease

    PubMed Central

    Heimlich, Derek R.; Harrison, Alistair; Mason, Kevin M.

    2014-01-01

    Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host’s perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease. PMID:26029470

  7. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease.

    PubMed

    Heimlich, Derek R; Harrison, Alistair; Mason, Kevin M

    2014-12-01

    Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.

  8. Engineered killer mimotopes: new synthetic peptides for antimicrobial therapy.

    PubMed

    Magliani, W; Conti, S; Salati, A; Arseni, S; Ravanetti, L; Frazzi, R; Polonelli, L

    2004-07-01

    This review deals with a novel approach to produce synthetic antibiotic peptides (killer mimotopes), similar to those described for the conversion of epitopes into peptide mimotopes, allowing their use as surrogate vaccines. Synthetic peptides pertaining to the complementary determining regions (CDRs) of a recombinant antiidiotypic antibody (PaKTscFv), which mimic the wide spectrum of microbicidal activity of a killer toxin produced by the yeast Pichia anomala (PaKT), have proven to act as structural or functional mimotopes of PaKT. This activity appeared to be mediated by interaction with specific cell wall killer toxin receptors (KTRs), mainly constituted by beta glucans. Killer mimotopes have shown in vitro an impressive microbicidal activity against Candida albicans. They were adopted as a model of PaKT- and PaKTscFv-susceptible microorganisms. Optimization through alanine scanning led to the generation of an engineered decapeptide (KP) of a CDR-L1 pertaining antibody fragment with an enhanced in vitro microbicidal activity. It had a potent therapeutic effect against experimental vaginal and systemic candidiasis in normal and immunodeficient mice caused by flucanozole susceptible and resistant yeast isolates. KP exerted a microbicidal activity in vitro against multidrug-resistant eukaryotic and prokaryotic pathogenic microorganisms, which was neutralized by interaction with laminarin (beta 1,3-glucan). To our knowledge, KP represents the prototype of an engineered peptide fragment derived from a microbicidal recombinant antiidiotypic antibody. It is capable of exerting antimicrobial activity in vitro and a therapeutic effect in vivo presumably acting through interaction with the beta glucan KTR component in the cell walls of pathogenic microorganisms.

  9. Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans.

    PubMed

    Kwon, Young-Nam; Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Jeong, Mihye; Kang, Dong-Chul; Lee, In Hee; Hwang, Jae Sam

    2013-10-28

    The centipede Scolopendra subpinipes mutilans is a medicinally important arthropod species. However, its transcriptome is not currently available and transcriptome analysis would be useful in providing insight into a molecular level approach. Hence, we performed de novo RNA sequencing of S. subpinipes mutilans using next-generation sequencing. We generated a novel peptide (scolopendrasin II) based on a SVM algorithm, and biochemically evaluated the in vitro antimicrobial activity of scolopendrasin II against various microbes. Scolopendrasin II showed antibacterial activities against gram-positive and -negative bacterial strains, including the yeast Candida albicans and antibiotic-resistant gram-negative bacteria, as determined by a radial diffusion assay and colony count assay without hemolytic activity. In addition, we confirmed that scolopendrasin II bound to the surface of bacteria through a specific interaction with lipoteichoic acid and a lipopolysaccharide, which was one of the bacterial cell-wall components. In conclusion, our results suggest that scolopendrasin II may be useful for developing peptide antibiotics.

  10. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects.

    PubMed

    Ponnappan, Nisha; Budagavi, Deepthi Poornima; Yadav, Bhoopesh Kumar; Chugh, Archana

    2015-03-01

    Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.

  11. Cationic Antimicrobial Peptide Resistance Mechanisms of Streptococcal Pathogens

    PubMed Central

    LaRock, Christopher N.; Nizet, Victor

    2015-01-01

    Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. PMID:25701232

  12. Antimicrobial peptides: modes of mechanism, modulation of defense responses.

    PubMed

    Rahnamaeian, Mohammad

    2011-09-01

    Complicated schemes of classical breeding and their drawbacks, environmental risks imposed by agrochemicals, decrease of arable land, and coincident escalating damages of pests and pathogens have accentuated the necessity for highly efficient measures to improve crop protection. During co-evolution of host-microbe interactions, antimicrobial peptides (AMPs) have exhibited a brilliant history in protecting host organisms against devastation by invading pathogens. Since the 1980s, a plethora of AMPs has been isolated from and characterized in different organisms. Nevertheless the AMPs expressed in plants render them more resistant to diverse pathogens, a more orchestrated approach based on knowledge of their mechanisms of action and cellular targets, structural toxic principle, and possible impact on immune system of corresponding transgenic plants will considerably improve crop protection strategies against harmful plant diseases. This review outlines the current knowledge on different modes of action of AMPs and then argues the waves of AMPs’ ectopic expression on transgenic plants’ immune system.

  13. Antimicrobial Peptides as a Strategy to Combat Fungal Biofilms.

    PubMed

    Delattin, Nicolas; Brucker, Katrijn De; Cremer, Kaat De; Cammue, Bruno P A; Thevissen, Karin

    2017-01-01

    Invasive fungal infections caused by opportunistic fungal pathogens are associated with high mortality rates, mainly due to the occurrence of genotypic and/or phenotypic resistance. One of the causes of phenotypic resistance is the preferred growth of various fungal pathogens as biofilms, which are tolerant or resistant to most classes of antifungal agents. Moreover, increasing evidence points to biofilm formation as a general prerequisite for the development of systemic infections. Therefore, new antibiofilm agents are urgently needed to reduce the incidence of biofilm-associated infections. Nowadays, antimicrobial peptides (AMPs) are considered as valuable alternatives for or complements to the classical antifungal agents to combat fungal infections. Many review reports describe activity of AMPs against free-living planktonic fungal pathogens. In contrast, this review summarizes the antibiofilm properties of natural or synthetic AMPs against fungal biofilms and their potential to enhance the antibiofilm activity of existing antifungal agents.

  14. Membrane selectivity and disordering mechanism of antimicrobial peptide protegrin-1

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Yuji

    Protegrin-1 (PG-1) is a beta-sheet antimicrobial peptide (AMP), a class of peptides innate to various organisms and functions as a defense agent against harmful microorganisms by means of membrane disordering. Characteristic chemical and structural properties of AMPs allow selective interaction against invaders' cell membranes. Despite their enormous biomedical potential, progress towards developing them into therapeutic agents has been hampered by a lack of insight into their mechanism of action. AMP insertion assays using Langmuir monolayers reveal that both electrostatic properties of the lipid head group as well as the packing density of the lipid tail group play important roles in determining the membrane selectivity of AMPs. These results help elucidate how the AMP selectively targets the cell membrane of microorganisms over the cell membrane of the host. In addition, these results also explain the higher hemolytic ability of PG-1 against human red blood cells (RBCs) compared to the hemolytic ability of PG-1 against sheep and pig RBCs. Synchrotron X-ray reflectivity shows that PG-1 penetrates into the lipid layer. Grazing incidence X-ray diffraction and fluorescence microscopy indicate that the insertion of PG-1 disorders tail group packing. Membrane selectivity and insertion location information of AMPs with different primary sequence and secondary structure have been obtained by using a truncated version of PG-1: PC-17, and an alpha-helical AMP, LL-37, respectively. The similarity of the membrane disordering process across these various peptides motivated us to test the membrane disordering effect of molecules designed to mimic these peptides. Peptide-mimics based on meta-phenylene ethynylenes demonstrate similar membrane disordering effects, showing that the potency of AMPs is derived from their overall chemical and structural properties, rather than exact peptide sequence. Atomic force microscopy (AFM) was used to directly image first, the PG-1

  15. Antimicrobial peptides for the control of biofilm formation.

    PubMed

    Moreno, Mercedes González; Lombardi, Lisa; Di Luca, Mariagrazia

    2017-01-05

    Antimicrobial peptides (AMPs) are an abundant and varied group of molecules recognized as the most ancient components of the innate immune system. They are found in a wide group of organisms including bacteria, plants and animals as a defense mechanism against different kinds of infectious pathogens. Over the past two decades, a fast-growing number of AMPs have been identified/designed and their wide-spectrum antimicrobial activity has been deeply investigated. In recent years, there has been an increasing interest in the use of AMPs as alternative anti-biofilm molecules for the control of biofilm-related infections. Biofilms are sessile communities of microbial cells embedded in a self-produced matrix and characterized by a low metabolic activity. Due to their peculiar physiological properties, bacteria/fungi in biofilms result more resistant to conventional antibiotic therapies compared with their planktonic counterparts. AMPs may be a promising strategy to combat biofilm-related infections, as many of them target the microbial membrane, thus being potentially effective also on metabolically inactive cells. Investigations conducted so far evidenced that these peptides may be active in either eradicating established biofilms or preventing their formation, depending on the specific molecule. Here we present a detailed review of the literature describing the latest results of both in vitro and in vivo experiments aimed at evaluating AMP potential usage in biofilm control. In addition, we provide the reader with an overview on AMP local delivery systems, and we discuss their potential application in the coating of medical indwelling devices.

  16. Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli.

    PubMed

    Luan, Chao; Xie, Yong Gang; Pu, Yu Tian; Zhang, Hai Wen; Han, Fei Fei; Feng, Jie; Wang, Yi Zhen

    2014-03-01

    Antimicrobial peptides (AMPs) are part of the innate immune system of complex multicellular organisms. Despite the fact that AMPs show great potential as a novel class of antibiotics, the lack of a cost-effective means for their mass production limits both basic research and clinical use. In this work, we describe a novel expression system for the production of antimicrobial peptides in Escherichia coli by combining ΔI-CM mini-intein with the self-assembling amphipathic peptide 18A to drive the formation of active aggregates. Two AMPs, human β-defensin 2 and LL-37, were fused to the self-cleaving tag and expressed as active protein aggregates. The active aggregates were recovered by centrifugation and the intact antimicrobial peptides were released into solution by an intein-mediated cleavage reaction in cleaving buffer (phosphate-buffered saline supplemented with 40 mmol/L Bis-Tris, 2 mmol/L EDTA, pH 6.2). The peptides were further purified by cation-exchange chromatography. Peptides yields of 0.82 ± 0.24 and 0.59 ± 0.11 mg/L were achieved for human β-defensin 2 and LL-37, respectively, with demonstrated antimicrobial activity. Using our expression system, intact antimicrobial peptides were recovered by simple centrifugation from active protein aggregates after the intein-mediated cleavage reaction. Thus, we provide an economical and efficient way to produce intact antimicrobial peptides in E. coli.

  17. Mechanism of bacterial membrane poration by Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Arora, Ankita; Mishra, Abhijit

    2015-03-01

    Bacterial resistance to conventional antibiotics is a major health concern. Antimicrobial peptides (AMPs), an important component of mammalian immune system, are thought to utilize non-specific interactions to target common features on the outer membranes of pathogens; hence development of resistance to such AMPs may be less pronounced. Most AMPs are amphiphilic and cationic in nature. Most AMPs form pores in the bacterial membranes causing them to lyse, however, the exact mechanism is unknown. Here, we study the AMP CHRG01 (KSSTRGRKSSRRKK), derived from human β defensin 3 (hBD3) with all Cysteine residues substituted with Serine. Circular Dichorism studies indicate that CHRG01 shows helicity and there is change in helicity as it interacts with the lipid membrane. The AMP was effective against different species of bacteria. Leakage of cellular components from bacterial cells observed by SEM and AFM indicates AMP action by pore formation. Confocal microscopy studies on giant vesicles incubated with AMP confirm poration. The effect of this AMP on model bacterial membranes is characterized using Small Angle X-ray scattering and Fluorescence spectroscopy to elucidate the mechanism behind antimicrobial activity.

  18. Use of antimicrobial peptides against microbial biofilms: advantages and limits.

    PubMed

    Batoni, Giovanna; Maisetta, Giuseppantonio; Brancatisano, Franca Lisa; Esin, Semih; Campa, Mario

    2011-01-01

    The formation of surface-attached cellular agglomerates, the so-called biofilms, contributes significantly to bacterial resistance to antibiotics and innate host defenses. Bacterial biofilms are associated to various pathological conditions in humans such as cystic fibrosis, colonization of indwelling medical devices and dental plaque formation involved in caries and periodontitis. Over the last years, natural antimicrobial peptides (AMPs) have attracted considerable interest as a new class of antimicrobial drugs for a number of reasons. Among these, there are the broad activity spectrum, the relative selectivity towards their targets (microbial membranes), the rapid mechanism of action and, above all, the low frequency in selecting resistant strains. Since biofilm resistance to antibiotics is mainly due to the slow growth rate and low metabolic activity of bacteria in such community, the use of AMPs to inhibit biofilm formation could be potentially an attractive therapeutic approach. In fact, due to the prevalent mechanism of action of AMPs, which relies on their ability to permeabilize and/or to form pores within the cytoplasmic membranes, they have a high potential to act also on slow growing or even non-growing bacteria. This review will highlight the most important findings obtained testing AMPs in in vitro and in vivo models of bacterial biofilms, pointing out the possible advantages and limits of their use against microbial biofilm-related infections.

  19. A maritime pine antimicrobial peptide involved in ammonium nutrition.

    PubMed

    Canales, Javier; Avila, Concepción; Cánovas, Francisco M

    2011-09-01

    A large family of small cysteine-rich antimicrobial peptides (AMPs) is involved in the innate defence of plants against pathogens. Recently, it has been shown that AMPs may also play important roles in plant growth and development. In previous work, we have identified a gene of the AMP β-barrelin family that was differentially regulated in the roots of maritime pine (Pinus pinaster Ait.) in response to changes in ammonium nutrition. Here, we present the molecular characterization of two AMP genes, PpAMP1 and PpAMP2, showing different molecular structure and physicochemical properties. PpAMP1 and PpAMP2 displayed different expression patterns in maritime pine seedlings and adult trees. Furthermore, our expression analyses indicate that PpAMP1 is the major form of AMP in the tree, and its relative abundance is regulated by ammonium availability. In contrast, PpAMP2 is expressed at much lower levels and it is not regulated by ammonium. To gain new insights into the function of PpAMP1, we over-expressed the recombinant protein in Escherichia coli and demonstrated that PpAMP1 strongly inhibited yeast growth, indicating that it exhibits antimicrobial activity. We have also found that PpAMP1 alters ammonium uptake, suggesting that it is involved in the regulation of ammonium ion flux into pine roots.

  20. Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers.

    PubMed

    Takahashi, Haruko; Palermo, Edmund F; Yasuhara, Kazuma; Caputo, Gregory A; Kuroda, Kenichi

    2013-10-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications.

  1. Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis.

    PubMed

    Mitta, G; Hubert, F; Noël, T; Roch, P

    1999-10-01

    We report here the isolation of two isoforms of a novel cysteine-rich peptide from haemocytes (isoform A of 4.438 Da and B of 4.562 Da) and plasma (isoform A) of the mussel, Mytilus galloprovincialis. The two molecules display antibacterial activity against gram-positive bacteria, whereas only isoform B is active against the fungus Fusarium oxysporum and a gram-negative bacteria Escherichia coli D31. Complete peptide sequences were determined by a combination of Edman degradation, mass spectrometry and cDNA cloning using a haemocyte cDNA library. The mature molecules, named myticins, comprise 40 residues with four intramolecular disulfide bridges and a cysteine array in the primary structure different to that of the previously characterized cysteine-rich antimicrobial peptides. Sequence analysis of the cloned cDNAs revealed that myticin precursors consist of 96 amino acids with a putative signal peptide of 20 amino acids, the antimicrobial peptide sequence and a 36-residue C-terminal extension. This structure suggests that myticins are synthesized as preproproteins and then processed by various proteolytic events before storage of the active peptide in the haemocytes. Myticin precursors are expressed mainly in the haemocytes as revealed by Northern blot analysis.

  2. Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes.

    PubMed

    Oñate-Garzón, José; Manrique-Moreno, Marcela; Trier, Steven; Leidy, Chad; Torres, Rodrigo; Patiño, Edwin

    2017-03-01

    Antimicrobial peptides are effector molecules of the innate immune system against invading pathogens. The cationic charge in their structures has a strong correlation with antimicrobial activity, being responsible for the initial electrostatic interaction between peptides and the anionic microbial surface. This paper contains evidence that charge modification in the neutral peptide Gm cecropin D-like (WT) improved the antimicrobial activity of the modified peptides. Two cationic peptides derived from WT sequence named as ΔM1 and ΔM2, with net charge of +5 and +9, respectively, showed at least an eightfold increase in their antimicrobial activity in comparison to WT. The mechanism of action of these peptides was investigated using small unilamellar vesicles (SUVs) as model membranes. To study permeabilization effects of the peptides on cell membranes, entrapped calcein liposomes were used and the results showed that all peptides induced calcein release from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) SUVs, whereas in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), POPC/POPG and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE)/POPG SUVs, only ΔM1 and ΔM2 induced a notable permeabilization. In addition, interactions of these peptides with phospholipids at the level of the glycerol backbone and hydrophobic domain were studied through observed changes in generalized polarization and fluorescence anisotropy using probes such as Laurdan and DPH, respectively. The results suggest that peptides slightly ordered the bilayer structure at the level of glycerol backbone and on the hydrophobic core in 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) SUVs, whereas in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/DMPG SUVs, only ΔM1 and ΔM2 peptides increased the order of bilayers. Thus, peptides would be inducing clustering of phospholipids creating phospholipid domains with a higher phase transition temperature.

  3. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design

    PubMed Central

    Li, Jianguo; Koh, Jun-Jie; Liu, Shouping; Lakshminarayanan, Rajamani; Verma, Chandra S.; Beuerman, Roger W.

    2017-01-01

    Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed. PMID:28261050

  4. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria.

    PubMed

    Nawrocki, Kathryn L; Crispell, Emily K; McBride, Shonna M

    2014-10-13

    Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.

  5. Antimicrobial peptides as new recognition molecules for screening challenging species

    PubMed Central

    Kulagina, Nadezhda V.; Shaffer, Kara M.; Ligler, Frances S.; Taitt, Chris R.

    2007-01-01

    The goal of this study was to evaluate binding of four targets of biodefense interest to immobilized antimicrobial peptides (AMPs) in biosensor assays. Polymyxins B and E, melittin, cecropins A, B, and P, parasin, bactenecin and magainin-1, as well as control antibodies, were used as capture molecules for detection of Cy3-labeled Venezuelan equine encephalitis virus (VEE), vaccinia virus, C. burnetti and B. melitensis. Although VEE, vaccinia virus and C. burnetti did not show any binding activity to their corresponding capture antibodies, B. melitensis bound to immobilized anti-Brucella monoclonal antibodies. The majority of the immobilized AMPs included in this study bound labeled VEE, vaccinia virus and C. burnetti in a concentration-dependent manner, and B. melitensis bound to polymyxin B, polymyxin E, and bactenecin. No binding was observed on immobilized magainin-1. In contrast to all bacterial targets tested to date, VEE and vaccinia virus demonstrated similar patterns of binding to all peptides. While the direct assay is generally replaced by a sandwich assay for analysis of real-world samples, direct binding experiments are commonly used to characterize specificity and sensitivity of binding molecules. In this case, they clearly demonstrate the capability of AMPs as recognition molecules for four biothreat agents. PMID:18231571

  6. Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera

    PubMed Central

    Casanova-Torres, Ángel M.; Goodrich-Blair, Heidi

    2013-01-01

    Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of lepidopteran immunity will aid in identifying new targets for the development of specific insect pest management compounds. A fundamental aspect of immunity, and therefore a logical target for control, is the induction of antimicrobial peptide (AMP) expression. These peptides insert into and disrupt microbial membranes, thereby promoting pathogen clearance and insect survival. Pathways leading to AMP expression have been extensively studied in the dipteran Drosophila melanogaster. However, Diptera are an important group of pollinators and pest management strategies that target their immune systems is not recommended. Recent advances have facilitated investigation of lepidopteran immunity, revealing both conserved and derived characteristics. Although the general pathways leading to AMP expression are conserved, specific components of these pathways, such as recognition proteins have diverged. In this review we highlight how such comparative immunology could aid in developing pest management strategies that are specific to agricultural insect pests. PMID:25861461

  7. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design.

    PubMed

    Li, Jianguo; Koh, Jun-Jie; Liu, Shouping; Lakshminarayanan, Rajamani; Verma, Chandra S; Beuerman, Roger W

    2017-01-01

    Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.

  8. Antimicrobial effects of GL13K peptide coatings on S. mutans and L. casei

    NASA Astrophysics Data System (ADS)

    Schnitt, Rebecca Ann

    Background: Enamel breakdown around orthodontic brackets, so-called "white spot lesions", is the most common complication of orthodontic treatment. White spot lesions are caused by bacteria such as Streptococci and Lactobacilli, whose acidic byproducts cause demineralization of enamel crystals. Aims: The aim of this project was to develop an antimicrobial peptide coating for titanium alloy that is capable of killing acidogenic bacteria, specifically Streptococcus mutans and Lactobacillus casei. The long-term goal is to create an antimicrobial-coated orthodontic bracket with the ability to reduce or prevent the formation of white spot lesions in orthodontic patients thereby improving clinical outcomes. Methods: First, an alkaline etching method with NaOH was established to allow effective coating of titanium discs with GL13K, an antimicrobial peptide derived from human saliva. Coatings were verified by contact angle measures, and treated discs were characterized using scanning electron microscopy. Secondly, GL13K coatings were tested against hydrolytic, proteolytic and mechanical challenges to ensure robust coatings. Third, a series of qualitative and quantitative microbiology experiments were performed to determine the effects of GL13K--L and GL13K--D on S. mutans and L. casei, both in solution and coated on titanium. Results: GL13K-coated discs were stable after two weeks of challenges. GL13K--D was effective at killing S. mutans in vitro at low doses. GL13K--D also demonstrated a bactericidal effect on L. casei, however, in contrast to S. mutans, the effect on L. casei was not statistically significant. Conclusion: GL13K--D is a promising candidate for antimicrobial therapy with possible applications for prevention of white spot lesions in orthodontics.

  9. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides

    PubMed Central

    Tavares, Letícia S.; Silva, Carolina S. F.; de Souza, Vinicius C.; da Silva, Vânia L.; Diniz, Cláudio G.; Santos, Marcelo O.

    2013-01-01

    The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome

  10. Synthesis and secretory expression of hybrid antimicrobial peptide CecA-mag and its mutants in Pichia pastoris.

    PubMed

    Wang, Xiuqing; Zhu, Mingxing; Zhang, Aijun; Yang, Fengqin; Chen, Puyan

    2012-03-01

    The hybrid peptide CA(1-7)-M(2-12) gene was designed according to the N-terminal 1-7 amino acid sequence of the antimicrobial peptide cecropin A (CA) and the N-terminal 2-12 amino acid sequence of maganin (M) and synthesized using Pichia pastoris preferred codons. The gene was cloned into pPICZαA and transformed into the P. pastoris recipient bacterium SMD1168, regulated by the alcohol oxidase (AOX). Expression of the cecA-mag hybrid antimicrobial peptide (MW, 1.9 kDa) revealed broad-spectrum antibiotic activity and to the ability to inhibit growth of most G(-) and G(+) bacteria. Three mutants of cecA-mag were designed and synthesized by recombination polymerase chain reaction site-directed mutagenesis to investigate the relationship between the structure and function of this antimicrobial peptide. The inhibition titers of these mutants against Staphylococcus aureus were evaluated using the agar diffusion method. Under the conditions of the same concentration and volume, the bacteriostatic diameters of three cecA-mag mutants were 1.2, 1.2 and 1.5 times, respectively, compared with the diameters of wild-type cecA-mag.

  11. Antimicrobial Peptides and Innate Lung Defenses: Role in Infectious and Noninfectious Lung Diseases and Therapeutic Applications.

    PubMed

    Hiemstra, Pieter S; Amatngalim, Gimano D; van der Does, Anne M; Taube, Christian

    2016-02-01

    Respiratory infections are a major clinical problem, and treatment is increasingly complicated by the emergence of microbial antibiotic resistance. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides, central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics. These peptides display a range of activities, including not only direct antimicrobial activity, but also immunomodulation and wound repair. In the lung, airway epithelial cells and neutrophils in particular contribute to their synthesis. The relevance of antimicrobial peptides for host defense against infection has been demonstrated in animal models and is supported by observations in patient studies, showing altered expression and/or unfavorable circumstances for their action in a variety of lung diseases. Importantly, antimicrobial peptides are active against microorganisms that are resistant against conventional antibiotics, including multidrug-resistant bacteria. Several strategies have been proposed to use these peptides in the treatment of infections, including direct administration of antimicrobial peptides, enhancement of their local production, and creation of more favorable circumstances for their action. In this review, recent developments in antimicrobial peptides research in the lung and clinical applications for novel therapies of lung diseases are discussed.

  12. The Cooperative Behaviour of α-Helical Antimicrobial Peptides in Different Environments

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Wang, Janping; Mura, Manuela; Zhou, Yuhua; Zvelindovsky, Andrei; Dennison, Sarah; Phoenix, David

    2014-03-01

    A systematic analysis of the antimicrobial peptides (AMPs) cooperative action is performed by means of a full atomistic molecular dynamics simulation. The following peptide analogues: Aurein 2.5-COOH, Aurein 2.6-COOH and Aurein 3.1-COOH are investigated in different environments including aqueous solution, trifluoroethanol (TFE), palmitoyloleoylphosphatidylethanolamine (POPE), and palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayers. Simulations conducted for monomer and trimer peptide highlight the importance of the cooperative behaviour and reveal the different mechanisms of antimicrobial peptides action in different lipid bilayers.

  13. High-Performance Liquid Chromatography and Mass Spectrometry-Based Design of Proteolytically Stable Antimicrobial Peptides.

    PubMed

    Bagheri, Mojtaba; Hancock, Robert E W

    2017-01-01

    The emergence of multiresistant bacteria worldwide together with the shortage of effective antibiotics in the market emphasizes the need for the design and development of the promising agents for the treatment of superbug-associated infections. Antimicrobial peptides (AMPs) have been considered as excellent candidates to tackle this issue, and thousands of peptides of different lengths, amino acid compositions, and mode of action have been discovered and prepared to date. Nevertheless, it is of great importance to develop innovative formulation strategies for delivering these AMPs and to improve their low bioavailability and metabolic stability, particularly against proteases, if these peptides are to find applications in the clinic and administered orally or parenterally or used as dietary supplements. The purpose of this chapter is to describe basic experimental principles, based on analytical reversed-phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry (MS), for the prospective design of orally bioavailable AMPs considering the structural characteristics of the peptides and the substrate specificity of proteases that abound in the body especially at sites of infection.

  14. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside.

    PubMed

    Maria-Neto, Simone; de Almeida, Keyla Caroline; Macedo, Maria Ligia Rodrigues; Franco, Octávio Luiz

    2015-11-01

    Resistant bacterial infections are a major health problem in many parts of the world. The major commercial antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bacterial infections by interfering with microbial metabolism and physiological processes in several ways, a large number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding of the resistance process various technologies have been applied. Here we discuss multiple strategies by which bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the surface to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  15. Antimicrobial activity and stability of protonectin with D-amino acid substitutions.

    PubMed

    Qiu, Shuai; Zhu, Ranran; Zhao, Yanyan; An, Xiaoping; Jia, Fengjing; Peng, Jinxiu; Ma, Zelin; Zhu, Yuanyuan; Wang, Jiayi; Su, Jinhuan; Wang, Qingjun; Wang, Hailin; Li, Yuan; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-03-16

    The misuse and overuse of antibiotics result in the emergence of resistant bacteria and fungi, which make an urgent need of the new antimicrobial agents. Nowadays, antimicrobial peptides have attracted great attention of researchers. However, the low physiological stability in biological system limits the application of naturally occurring antimicrobial peptides as novel therapeutics. In the present study, we synthesized derivatives of protonectin by substituting all the amino acid residues or the cationic lysine residue with the corresponding D-amino acids. Both the D-enantiomer of protonectin (D-prt) and D-Lys-protonectin (D-Lys-prt) exhibited strong antimicrobial activity against bacteria and fungi. Moreover, D-prt showed strong stability against trypsin, chymotrypsin and the human serum, while D-Lys-prt only showed strong stability against trypsin. Circular dichroism analysis revealed that D-Lys-prt still kept typical α-helical structure in the membrane mimicking environment, while D-prt showed left hand α-helical structure. In addition, propidium iodide uptake assay and bacteria and fungi killing experiments indicated that all D-amino acid substitution or partially D-amino acid substitution analogs could disrupt the integrity of membrane and lead the cell death. In summary, these findings suggested that D-prt and D-Lys-prt might be promising candidate antibiotic agents for therapeutic application against resistant bacteria and fungi infection. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  16. Potent Inducers of Endogenous Antimicrobial Peptides for Host Directed Therapy of Infections

    NASA Astrophysics Data System (ADS)

    Ottosson, H.; Nylén, F.; Sarker, P.; Miraglia, E.; Bergman, P.; Gudmundsson, G. H.; Raqib, R.; Agerberth, B.; Strömberg, R.

    2016-11-01

    A new concept for treatment of infections is induction of our own antimicrobial peptides and the presented novel class of inducer, aroylated phenylenediamines (APDs), gives up to 20 to 30-fold induction of the human antimicrobial peptide LL-37, in vitro. In addition, oral administration of an APD in a rabbit model of Shigellosis resulted in recovery from the infection in a few days implying that APD’s are promising candidates for treatment of infections.

  17. Potent Inducers of Endogenous Antimicrobial Peptides for Host Directed Therapy of Infections

    PubMed Central

    Ottosson, H.; Nylén, F.; Sarker, P.; Miraglia, E.; Bergman, P.; Gudmundsson, G. H.; Raqib, R.; Agerberth, B.; Strömberg, R.

    2016-01-01

    A new concept for treatment of infections is induction of our own antimicrobial peptides and the presented novel class of inducer, aroylated phenylenediamines (APDs), gives up to 20 to 30-fold induction of the human antimicrobial peptide LL-37, in vitro. In addition, oral administration of an APD in a rabbit model of Shigellosis resulted in recovery from the infection in a few days implying that APD’s are promising candidates for treatment of infections. PMID:27827460

  18. Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs.

    PubMed

    Monincová, Lenka; Budesínský, Milos; Slaninová, Jirina; Hovorka, Oldrich; Cvacka, Josef; Voburka, Zdenek; Fucík, Vladimír; Borovicková, Lenka; Bednárová, Lucie; Straka, Jakub; Cerovský, Václav

    2010-08-01

    Two novel antimicrobial peptides, named halictines, were isolated from the venom of the eusocial bee Halictus sexcinctus. Their primary sequences were established by ESI-QTOF mass spectrometry, Edman degradation and enzymatic digestion as Gly-Met-Trp-Ser-Lys-Ile-Leu-Gly-His-Leu-Ile-Arg-NH2 (HAL-1), and Gly-Lys-Trp-Met-Ser-Leu-Leu-Lys-His-Ile-Leu-Lys-NH2 (HAL-2). Both peptides exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria but also noticeable hemolytic activity. The CD spectra of HAL-1 and HAL-2 measured in the presence of trifluoroethanol or SDS showed ability to form an amphipathic alpha-helical secondary structure in an anisotropic environment such as bacterial cell membrane. NMR spectra of HAL-1 and HAL-2 measured in trifluoroethanol/water confirmed formation of helical conformation in both peptides with a slightly higher helical propensity in HAL-1. Altogether, we prepared 51 of HAL-1 and HAL-2 analogs to study the effect of such structural parameters as cationicity, hydrophobicity, alpha-helicity, amphipathicity, and truncation on antimicrobial and hemolytic activities. The potentially most promising analogs in both series are those with increased net positive charge, in which the suitable amino acid residues were replaced by Lys. This improvement basically relates to the increase of antimicrobial activity against pathogenic Pseudomonas aeruginosa and to the mitigation of hemolytic activity.

  19. Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering

    PubMed Central

    Schmidt, Nathan W.; Wong, Gerard C. L.

    2013-01-01

    Short cationic, amphipathic antimicrobial peptides are multi-functional molecules that have roles in host defense as direct microbicides and modulators of the immune response. While a general mechanism of microbicidal activity involves the selective disruption and permeabilization of cell membranes, the relationships between peptide sequence and membrane activity are still under investigation. Here, we review the diverse functions that AMPs collectively have in host defense, and show that these functions can be multiplexed with a membrane mechanism of activity derived from the generation of negative Gaussian membrane curvature. As AMPs preferentially generate this curvature in model bacterial cell membranes, the selective generation of negative Gaussian curvature provides AMPs with a broad mechanism to target microbial membranes. The amino acid constraints placed on AMPs by the geometric requirement to induce negative Gaussian curvature are consistent with known AMP sequences. This ‘saddle-splay curvature selection rule’ is not strongly restrictive so AMPs have significant compositional freedom to multiplex membrane activity with other useful functions. The observation that certain proteins involved in cellular processes which require negative Gaussian curvature contain domains with similar motifs as AMPs, suggests this rule may be applicable to other curvature-generating proteins. Since our saddle-splay curvature design rule is based upon both a mechanism of activity and the existing motifs of natural AMPs, we believe it will assist the development of synthetic antimicrobials. PMID:24778573

  20. Euler buckling, membrane corrugation and pore formation induced by antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Jia, Nana; Fang, Weihai

    2014-03-01

    Antimicrobial peptides serve as defense weapons against bacteria. They are secreted by organisms of plants and animals and have a wide variety in composition and structure. In this study, we theoretically explore the effects of the antimicrobial peptides on the lipid bilayer membrane by using analytic arguments and the coarse grained dissipative particle dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. Such buckled membrane states have been indeed seen in a number of experiments with bacteria affected by peptide, yet this is the first theoretical study addressing these phenomena more deeply.

  1. Inducible Resistance of Fish Bacterial Pathogens to the Antimicrobial Peptide Cecropin B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cecropin B is a cationic antimicrobial peptide originally isolated from the diapausing pupae of the giant silk moth, Hylphora cecropia. Cecropin B elicits its antimicrobial effects through disruption of the anionic cell membranes of gram-negative bacteria. Previous work by our laboratory demonstra...

  2. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity

    PubMed Central

    Spitzer, Philipp; Condic, Mateja; Herrmann, Martin; Oberstein, Timo Jan; Scharin-Mehlmann, Marina; Gilbert, Daniel F.; Friedrich, Oliver; Grömer, Teja; Kornhuber, Johannes; Lang, Roland; Maler, Juan Manuel

    2016-01-01

    Amyloid-β (Aβ) peptides are the main components of the plaques found in the brains of patients with Alzheimer’s disease. However, Aβ peptides are also detectable in secretory compartments and peripheral blood contains a complex mixture of more than 40 different modified and/or N- and C-terminally truncated Aβ peptides. Recently, anti-infective properties of Aβ peptides have been reported. Here, we investigated the interaction of Aβ peptides of different lengths with various bacterial strains and the yeast Candida albicans. The amyloidogenic peptides Aβ1-42, Aβ2-42, and Aβ3p-42 but not the non-amyloidogenic peptides Aβ1-40 and Aβ2-40 bound to microbial surfaces. As observed by immunocytochemistry, scanning electron microscopy and Gram staining, treatment of several bacterial strains and Candida albicans with Aβ peptide variants ending at position 42 (Aβx-42) caused the formation of large agglutinates. These aggregates were not detected after incubation with Aβx-40. Furthermore, Aβx-42 exerted an antimicrobial activity on all tested pathogens, killing up to 80% of microorganisms within 6 h. Aβ1-40 only had a moderate antimicrobial activity against C. albicans. Agglutination of Aβ1-42 was accelerated in the presence of microorganisms. These data demonstrate that the amyloidogenic Aβx-42 variants have antimicrobial activity and may therefore act as antimicrobial peptides in the immune system. PMID:27624303

  3. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.

    PubMed

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J; Dong, He

    2015-12-07

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.

  4. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus)

    PubMed Central

    Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species. PMID:27167617

  5. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus).

    PubMed

    Kim, In-Woo; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yun, Eun-Young; Kim, Iksoo; Park, Junhyung; Hwang, Jae Sam

    2016-01-01

    Cockroaches are surrogate hosts for microbes that cause many human diseases. In spite of their generally destructive nature, cockroaches have recently been found to harbor potentially beneficial and medically useful substances such as drugs and allergens. However, genomic information for the American cockroach (Periplaneta americana) is currently unavailable; therefore, transcriptome and gene expression profiling is needed as an important resource to better understand the fundamental biological mechanisms of this species, which would be particularly useful for the selection of novel antimicrobial peptides. Thus, we performed de novo transcriptome analysis of P. americana that were or were not immunized with Escherichia coli. Using an Illumina HiSeq sequencer, we generated a total of 9.5 Gb of sequences, which were assembled into 85,984 contigs and functionally annotated using Basic Local Alignment Search Tool (BLAST), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) database terms. Finally, using an in silico antimicrobial peptide prediction method, 86 antimicrobial peptide candidates were predicted from the transcriptome, and 21 of these peptides were experimentally validated for their antimicrobial activity against yeast and gram positive and -negative bacteria by a radial diffusion assay. Notably, 11 peptides showed strong antimicrobial activities against these organisms and displayed little or no cytotoxic effects in the hemolysis and cell viability assay. This work provides prerequisite baseline data for the identification and development of novel antimicrobial peptides, which is expected to provide a better understanding of the phenomenon of innate immunity in similar species.

  6. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity.

    PubMed

    Krause, A; Neitz, S; Mägert, H J; Schulz, A; Forssmann, W G; Schulz-Knappe, P; Adermann, K

    2000-09-01

    We report the isolation and characterization of a novel human peptide with antimicrobial activity, termed LEAP-1 (liver-expressed antimicrobial peptide). Using a mass spectrometric assay detecting cysteine-rich peptides, a 25-residue peptide containing four disulfide bonds was identified in human blood ultrafiltrate. LEAP-1 expression was predominantly detected in the liver, and, to a much lower extent, in the heart. In radial diffusion assays, Gram-positive Bacillus megaterium, Bacillus subtilis, Micrococcus luteus, Staphylococcus carnosus, and Gram-negative Neisseria cinerea as well as the yeast Saccharomyces cerevisiae dose-dependently exhibited sensitivity upon treatment with synthetic LEAP-1. The discovery of LEAP-1 extends the known families of mammalian peptides with antimicrobial activity by its novel disulfide motif and distinct expression pattern.

  7. Antimicrobial peptide (Cn-AMP2) from liquid endosperm of Cocos nucifera forms amyloid-like fibrillar structure.

    PubMed

    Gour, Shalini; Kaushik, Vibha; Kumar, Vijay; Bhat, Priyanka; Yadav, Subhash C; Yadav, Jay K

    2016-04-01

    Cn-AMP2 is an antimicrobial peptide derived from liquid endosperm of coconut (Cocos nucifera). It consists of 11 amino acid residues and predicted to have high propensity for β-sheet formation that disposes this peptide to be amyloidogenic. In the present study, we have examined the amyloidogenic propensities of Cn-AMP2 in silico and then tested the predictions under in vitro conditions. The in silico study revealed that the peptide possesses high amyloidogenic propensity comparable with Aβ. Upon solubilisation and agitation in aqueous buffer, Cn-AMP2 forms visible aggregates that display bathochromic shift in the Congo red absorbance spectra, strong increase in thioflavin T fluorescence and fibrillar morphology under transmission electron microscopy. All these properties are typical of an amyloid fibril derived from various proteins/peptides including Aβ.

  8. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles

    PubMed Central

    Sayyed-Ahmad, Abdallah; Khandelia, Himanshu; Kaznessis, Yiannis N.

    2010-01-01

    We present relative binding free energy calculations for six antimicrobial peptide–micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide–micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide–membrane binding strength for antimicrobial activity and haemolytic activity. PMID:21113423

  9. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.

    PubMed

    Andersson, D I; Hughes, D; Kubicek-Sutherland, J Z

    2016-05-01

    Cationic antimicrobial peptides (AMPs) are an intrinsic part of the human innate immune system. Over 100 different human AMPs are known to exhibit broad-spectrum antibacterial activity. Because of the increased frequency of resistance to conventional antibiotics there is an interest in developing AMPs as an alternative antibacterial therapy. Several cationic peptides that are derivatives of AMPs from the human innate immune system are currently in clinical development. There are also ongoing clinical studies aimed at modulating the expression of AMPs to boost the human innate immune response. In this review we discuss the potential problems associated with these therapeutic approaches. There is considerable experimental data describing mechanisms by which bacteria can develop resistance to AMPs. As for any type of drug resistance, the rate by which AMP resistance would emerge and spread in a population of bacteria in a natural setting will be determined by a complex interplay of several different factors, including the mutation supply rate, the fitness of the resistant mutant at different AMP concentrations, and the strength of the selective pressure. Several studies have already shown that AMP-resistant bacterial mutants display broad cross-resistance to a variety of AMPs with different structures and modes of action. Therefore, routine clinical administration of AMPs to treat bacterial infections may select for resistant bacterial pathogens capable of better evading the innate immune system. The ramifications of therapeutic levels of exposure on the development of AMP resistance and bacterial pathogenesis are not yet understood. This is something that needs to be carefully studied and monitored if AMPs are used in clinical settings.

  10. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    PubMed Central

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    ABSTRACT Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms

  11. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample

    PubMed Central

    2013-01-01

    A bacterial strain producing two antimicrobial peptides was isolated from a rhizosphere soil sample and identified as Bacillus subtilis based on both phenotypic and 16S rRNA gene sequence phylogenetic analysis. It grew optimally up to 14% NaCl and produced antimicrobial peptide within 24 h of growth. The peptides were purified using a combination of chemical extraction and chromatographic techniques. The MALDI-TOF analysis of HPLC purified fractions revealed that the strain SK.DU.4 secreted a bacteriocin-like peptide with molecular mass of 5323.9 Da and a surface-active lipopeptide (m/z 1056 Da). The peptide mass fingerprinting of low-molecular-weight bacteriocin exhibited significant similarity with stretches of secreted lipoprotein of Methylomicrobium album BG8 and displayed 70% sequence coverage. MALDI MS/MS analysis elucidated the lipopeptide as a cyclic lipopeptide with a β-hydroxy fatty acid linked to Ser of a peptide with seven α-amino acids (Asp-Tyr-Asn-Gln-Pro-Asn-Ser) and assigned it to iturin-like group of antimicrobial biosurfactants. However, it differed in amino acid composition with other members of the iturin family. Both peptides were active against Gram-positive bacteria, suggesting that they had an additive effect. PMID:23289832

  12. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides.

    PubMed

    Hollmann, Axel; Martínez, Melina; Noguera, Martín E; Augusto, Marcelo T; Disalvo, Anibal; Santos, Nuno C; Semorile, Liliana; Maffía, Paulo C

    2016-05-01

    Cationic antimicrobial peptides (CAMPs) represent important self defense molecules in many organisms, including humans. These peptides have a broad spectrum of activities, killing or neutralizing many Gram-negative and Gram-positive bacteria. The emergence of multidrug resistant microbes has stimulated research on the development of alternative antibiotics. In the search for new antibiotics, cationic antimicrobial peptides (CAMPs) offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to lysis of microbial membranes and eventually cell death. In particular, the group of linear α-helical cationic peptides has attracted increasing interest from clinical as well as basic research during the last decade. In this work, we studied the biophysical and microbiological characteristics of three new designed CAMPs. We modified a previously studied CAMP sequence, in order to increase or diminish the hydrophobic face, changing the position of two lysines or replacing three leucines, respectively. These mutations modified the hydrophobic moment of the resulting peptides and allowed us to study the importance of this parameter in the membrane interactions of the peptides. The structural properties of the peptides were also correlated with their membrane-disruptive abilities, antimicrobial activities and hemolysis of human red blood cells.

  13. Novel antimicrobial peptides isolated from the skin secretions of Hainan odorous frog, Odorrana hainanensis.

    PubMed

    Wang, Hui; Yu, Zhijun; Hu, Yuhong; Li, Fengjiao; Liu, Limeng; Zheng, Hongyuan; Meng, Hao; Yang, Shujie; Yang, Xiaolong; Liu, Jingze

    2012-06-01

    Long time geographical isolation of Hainan Island from the China continent has resulted in appearance of many novel frog species. As one of them, Hainan odorous frog, Odorrana hainanensis possesses some special antimicrobial peptides distinct from those found in other Odorrana. In this study, three antimicrobial peptides have been purified and characterized from the skin secretion of O. hainanensis. With the similarity to the temporin family, two peptides are characterized by amidated C-terminals, so they are named as temporin-HN1 (AILTTLANWARKFL-NH(2)) and temporin-HN2 (NILNTIINLAKKIL-NH(2)). The third antimicrobial peptide belongs to the brevinin-1 family which is widely distributed in Eurasian ranids, and thus, it is named as brevinin-1HN1 (FLPLIASLAANFVPKIFCKITKKC). Furthermore, after sequencing 68 clones, eight cDNAs encoding antimicrobial peptide precursors were cloned from the skin-derived cDNA library of O. hainanensis. These eight cDNAs can encode seven mature antimicrobial peptides including the above three, as well as brevinin-1V, brevinin-2HS2, odorranain-A6, and odorranain-B1. Twelve different species of microorganisms were chosen, including Gram-positive, Gram-negative and fungi, to test the antimicrobial activities of temporin-HN1, temporin-HN2, brevinin-1HN1, brevinin-1V, and brevinin-2HS2. The result shows that, in addition to their activities against Gram-positive bacteria, temporin-HN1 and temporin-HN2 also possess activities against some Gram-negative bacteria and fungi. However, the two antimicrobial peptides, brevinin-1HN1 and brevinin-1V of the brevinin-1 family have stronger antimicrobial activities than temporin-HN1 and temporin-HN2 of the temporin family. Brevinin-1HN1 possesses activity against Staphylococcus aureus (ATCC25923), Rhodococcus rhodochrous X15, and Slime mould 090223 at the concentration of 1.2 μM.

  14. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7.

    PubMed

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-02-06

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH₂), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17-29) (FV-LL), FV7-magainin 2 (9-21) (FV-MA) and FV7-cecropin A (1-8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17-29) (LL), magainin 2 (9-21) (MA) and cecropin A (1-8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents.

  15. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7

    PubMed Central

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-01-01

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH2), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17–29) (FV-LL), FV7-magainin 2 (9–21) (FV-MA) and FV7-cecropin A (1–8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17–29) (LL), magainin 2 (9–21) (MA) and cecropin A (1–8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents. PMID:28178190

  16. D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components

    PubMed Central

    Manabe, Takayuki; Kawasaki, Kiyoshi

    2017-01-01

    The antimicrobial peptide KLKLLLLLKLK-NH2 was developed based on sapesin B, and synthesized using D-amino acids. Biochemical properties of the D-form and L-form KLKLLLLLKLK-NH2 peptides were compared. In order to limit the effects due to bacterial resistance to proteolysis, antimicrobial activities of the peptides were evaluated after short-term exposure to bacteria. D-form KLKLLLLLKLK-NH2 exhibited higher antimicrobial activities than L-form KLKLLLLLKLK-NH2 against bacteria, including Staphylococcus aureus and Escherichia coli. In contrast, both the D-form and L-form of other antimicrobial peptides, including Mastoparan M and Temporin A, exhibited similar antimicrobial activities. Both the D-form KLKLLLLLKLK-NH2 and L-form KLKLLLLLKLK-NH2 peptides preferentially disrupted S. aureus-mimetic liposomes over mammalian-mimetic liposomes. Furthermore, the D-form KLKLLLLLKLK-NH2 increased the membrane permeability of S. aureus more than the L-form KLKLLLLLKLK-NH2. Thus suggesting that the enhanced antimicrobial activity of the D-form was likely due to its interaction with bacterial cell wall components. S. aureus peptidoglycan preferentially inhibited the antimicrobial activity of the D-form KLKLLLLLKLK-NH2 relative to the L-form. Furthermore, the D-form KLKLLLLLKLK-NH2 showed higher affinity for S. aureus peptidoglycan than the L-form. Taken together, these results indicate that the D-form KLKLLLLLKLK-NH2 peptide has higher antimicrobial activity than the L-form via a specific association with bacterial cell wall components, including peptidoglycan. PMID:28262682

  17. Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide.

    PubMed

    Yu, Kai; Lo, Joey C Y; Mei, Yan; Haney, Evan F; Siren, Erika; Kalathottukaren, Manu Thomas; Hancock, Robert E W; Lange, Dirk; Kizhakkedathu, Jayachandran N

    2015-12-30

    Bacterial infection associated with indwelling medical devices and implants is a major clinical issue, and the prevention or treatment of such infections is challenging. Antimicrobial coatings offer a significant step toward addressing this important clinical problem. Antimicrobial coatings based on tethered antimicrobial peptides (AMPs) on hydrophilic polymer brushes have been shown to be one of the most promising strategies to avoid bacterial colonization and have demonstrated broad spectrum activity. Optimal combinations of the functionality of the polymer-brush-tethered AMPs are essential to maintaining long-term AMP activity on the surface. However, there is limited knowledge currently available on this topic. Here we report the development of potent antimicrobial coatings on implant surfaces by elucidating the roles of polymer brush chemistry and peptide structure on the overall antimicrobial activity of the coatings. We screened several combinations of polymer brush coatings and AMPs constructed on nanoparticles, titanium surfaces, and quartz slides on their antimicrobial activity and bacterial adhesion against Gram-positive and Gram-negative bacteria. Highly efficient killing of planktonic bacteria by the antimicrobial coatings on nanoparticle surfaces, as well as potent killing of adhered bacteria in the case of coatings on titanium surfaces, was observed. Remarkably, the antimicrobial activity of AMP-conjugated brush coatings demonstrated a clear dependence on the polymer brush chemistry and peptide structure, and optimization of these parameters is critical to achieving infection-resistant surfaces. By analyzing the interaction of polymer-brush-tethered AMPs with model lipid membranes using circular dichroism spectroscopy, we determined that the polymer brush chemistry has an influence on the extent of secondary structure change of tethered peptides before and after interaction with biomembranes. The peptide structure also has an influence on the density

  18. Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides.

    PubMed

    Tanphaichitr, Nongnuj; Srakaew, Nopparat; Alonzi, Rhea; Kiattiburut, Wongsakorn; Kongmanas, Kessiri; Zhi, Ruina; Li, Weihua; Baker, Mark; Wang, Guanshun; Hickling, Duane

    2016-03-11

    The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women's body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI.

  19. Differential expression of antimicrobial peptides in margins of chronic wounds.

    PubMed

    Dressel, Stefanie; Harder, Jürgen; Cordes, Jesko; Wittersheim, Maike; Meyer-Hoffert, Ulf; Sunderkötter, Cord; Gläser, Regine

    2010-07-01

    Skin wounds usually heal without major infections, although the loss of the mechanical epithelial barrier exposes the tissue to various bacteria. One reason may be the expression of antimicrobial peptides (AMP) of which some [human beta-defensins (hBD) and LL-37] were recently shown to support additionally certain steps of wound healing. There are no studies which have compared expression patterns of different classes of AMP in chronic wounds. The aim of our study was therefore to analyse the expression profile of hBD-2, hBD-3, LL-37, psoriasin and RNase 7 by immunohistochemistry from defined wound margins of chronic venous ulcers. We detected a strong induction of psoriasin and hBD-2 in chronic wounds in comparison with healthy skin. Except for stratum corneum, no expression of RNase 7 and LL-37 was detected in the epidermis while expression of hBD-3 was heterogeneous. Bacterial swabs identified Staphylococcus aureus and additional bacterial populations, but no association between colonization and AMP expression was found. The differential expression of AMP is noteworthy considering the high bacterial load of chronic ulcers. Clinically, supplementation of AMP with the capability to enhance wound healing besides restricting bacterial overgrowth could present a physiological support for treatment of disturbed wound healing.

  20. Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection

    PubMed Central

    Calhoun, Dana M.; Woodhams, Doug; Howard, Cierra; LaFonte, Bryan E.; Gregory, Jacklyn R.; Johnson, Pieter T. J.

    2016-01-01

    Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host’s skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species. PMID:26911920

  1. Biotic stress resistance in agriculture through antimicrobial peptides.

    PubMed

    Sarika; Iquebal, M A; Rai, Anil

    2012-08-01

    Antimicrobial peptides (AMPs) are the hosts' defense molecules against microbial pathogens and gaining extensive research attention worldwide. These have been reported to play vital role of host innate immunity in response to microbial challenges. AMPs can be used as a natural antibiotic as an alternative of their chemical counterpart for protection of plants/animals against diseases. There are a number of sources of AMPs including prokaryotic and eukaryotic organisms and are present, both in vertebrates and invertebrates. AMPs can be classified as cationic or anionic, based on net charges. Large number of databases and tools are available in the public domain which can be used for development of new genetically modified disease resistant varieties/breeds for agricultural production. The results of the biotechnological research as well as genetic engineering related to AMPs have shown high potential for reduction of economic losses of agricultural produce due to pathogens. In this article, an attempt has been made to introduce the role of AMPs in relation to plants and animals. Their functional and structural characteristics have been described in terms of its role in agriculture. Different sources of AMPs and importance of these sources has been reviewed in terms of its availability. This article also reviews the bioinformatics resources including different database tools and algorithms available in public domain. References of promising biotechnology research in relation to AMPs, prospects of AMPs for further development of genetically modified varieties/breeds are highlighted. AMPs are valuable resource for students, researchers, educators and medical and industrial personnel.

  2. Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells.

    PubMed

    Zhang, Rudian; Zhu, Yibin; Pang, Xiaojing; Xiao, Xiaoping; Zhang, Renli; Cheng, Gong

    2017-01-01

    Antimicrobial peptides (AMPs) are an important group of immune effectors that play a role in combating microbial infections in invertebrates. Most of the current information on the regulation of insect AMPs in microbial infection have been gained from Drosophila, and their regulation in other insects are still not completely understood. Here, we generated an AMP induction profile in response to infections with some Gram-negative, -positive bacteria, and fungi in Aedes aegypti embryonic Aag2 cells. Most of the AMP inductions caused by the gram-negative bacteria was controlled by the Immune deficiency (Imd) pathway; nonetheless, Gambicin, an AMP gene discovered only in mosquitoes, was combinatorially regulated by the Imd, Toll and JAK-STAT pathways in the Aag2 cells. Gambicin promoter analyses including specific sequence motif deletions implicated these three pathways in Gambicin activity, as shown by a luciferase assay. Moreover, the recognition between Rel1 (refer to Dif/Dorsal in Drosophila) and STAT and their regulatory sites at the Gambicin promoter site was validated by a super-shift electrophoretic mobility shift assay (EMSA). Our study provides information that increases our understanding of the regulation of AMPs in response to microbial infections in mosquitoes. And it is a new finding that the A. aegypti AMPs are mainly regulated Imd pathway only, which is quite different from the previous understanding obtained from Drosophila.

  3. Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells

    PubMed Central

    Zhang, Rudian; Zhu, Yibin; Pang, Xiaojing; Xiao, Xiaoping; Zhang, Renli; Cheng, Gong

    2017-01-01

    Antimicrobial peptides (AMPs) are an important group of immune effectors that play a role in combating microbial infections in invertebrates. Most of the current information on the regulation of insect AMPs in microbial infection have been gained from Drosophila, and their regulation in other insects are still not completely understood. Here, we generated an AMP induction profile in response to infections with some Gram-negative, -positive bacteria, and fungi in Aedes aegypti embryonic Aag2 cells. Most of the AMP inductions caused by the gram-negative bacteria was controlled by the Immune deficiency (Imd) pathway; nonetheless, Gambicin, an AMP gene discovered only in mosquitoes, was combinatorially regulated by the Imd, Toll and JAK-STAT pathways in the Aag2 cells. Gambicin promoter analyses including specific sequence motif deletions implicated these three pathways in Gambicin activity, as shown by a luciferase assay. Moreover, the recognition between Rel1 (refer to Dif/Dorsal in Drosophila) and STAT and their regulatory sites at the Gambicin promoter site was validated by a super-shift electrophoretic mobility shift assay (EMSA). Our study provides information that increases our understanding of the regulation of AMPs in response to microbial infections in mosquitoes. And it is a new finding that the A. aegypti AMPs are mainly regulated Imd pathway only, which is quite different from the previous understanding obtained from Drosophila. PMID:28217557

  4. Antimicrobial peptides and gut microbiota in homeostasis and pathology

    PubMed Central

    Ostaff, Maureen J; Stange, Eduard Friedrich; Wehkamp, Jan

    2013-01-01

    We survive because we adapted to a world of microorganisms. All our epithelial surfaces participate in keeping up an effective barrier against microbes while not initiating ongoing inflammatory processes and risking collateral damage to the host. Major players in this scenario are antimicrobial peptides (AMPs). Such broad-spectrum innate antibiotics are in part produced by specialized cells but also widely sourced from all epithelia as well as circulating inflammatory cells. AMPs belong to an ancient defense system found in all organisms and participated in a preservative co-evolution with a complex microbiome. Particularly interesting interactions between host barrier and microbiota can be found in the gut. The intestinal cell lining not only has to maintain a tightly regulated homeostasis during its high-throughput regeneration, but also a balanced relationship towards an extreme number of mutualistic or commensal inhabitants. Recent research suggests that advancing our understanding of the circumstances of such balanced and sometimes imbalanced interactions between gut microbiota and host AMPs should have therapeutic implications for different intestinal disorders. PMID:24039130

  5. Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides

    PubMed Central

    Tanphaichitr, Nongnuj; Srakaew, Nopparat; Alonzi, Rhea; Kiattiburut, Wongsakorn; Kongmanas, Kessiri; Zhi, Ruina; Li, Weihua; Baker, Mark; Wang, Guanshun; Hickling, Duane

    2016-01-01

    The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women’s body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI. PMID:26978373

  6. Msb2 Shedding Protects Candida albicans against Antimicrobial Peptides

    PubMed Central

    Szafranski-Schneider, Eva; Swidergall, Marc; Cottier, Fabien; Tielker, Denis; Román, Elvira; Pla, Jesus; Ernst, Joachim F.

    2012-01-01

    Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance. PMID:22319443

  7. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases

    PubMed Central

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  8. Development of a Novel Biosensor Using Cationic Antimicrobial Peptide and Nickel Phthalocyanine Ultrathin Films for Electrochemical Detection of Dopamine

    PubMed Central

    Zampa, Maysa F.; Araújo, Inês Maria de S.; dos Santos Júnior, José Ribeiro; Zucolotto, Valtencir; Leite, José Roberto de S. A.; Eiras, Carla

    2012-01-01

    The antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs, was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPc), widely used in electronic devices, using layer-by-layer technique. The films were used as a biosensor to detect the presence of dopamine (DA), a neurotransmitter associated with diseases such as Alzheimer's and Parkinson's, with detection limits in the order of 10−6 mol L−1. The use of DS 01 in LbL film generated selectivity in the detection of DA despite the presence of ascorbic acid found in biological fluids. This work is the first to report that the antimicrobial peptide and NiTsPc LbL film exhibits electroanalytical activity to DA oxidation. The selectivity in the detection of DA is a fundamental aspect for the development of electrochemical sensors with potential applications in the biomedical and pharmaceutical industries. PMID:22287966

  9. Development of a novel biosensor using cationic antimicrobial Peptide and nickel phthalocyanine ultrathin films for electrochemical detection of dopamine.

    PubMed

    Zampa, Maysa F; Araújo, Inês Maria de S; Dos Santos Júnior, José Ribeiro; Zucolotto, Valtencir; Leite, José Roberto de S A; Eiras, Carla

    2012-01-01

    The antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs, was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPc), widely used in electronic devices, using layer-by-layer technique. The films were used as a biosensor to detect the presence of dopamine (DA), a neurotransmitter associated with diseases such as Alzheimer's and Parkinson's, with detection limits in the order of 10(-6) mol L(-1). The use of DS 01 in LbL film generated selectivity in the detection of DA despite the presence of ascorbic acid found in biological fluids. This work is the first to report that the antimicrobial peptide and NiTsPc LbL film exhibits electroanalytical activity to DA oxidation. The selectivity in the detection of DA is a fundamental aspect for the development of electrochemical sensors with potential applications in the biomedical and pharmaceutical industries.

  10. Pancreatic β-Cells Limit Autoimmune Diabetes via an Immunoregulatory Antimicrobial Peptide Expressed under the Influence of the Gut Microbiota.

    PubMed

    Sun, Jia; Furio, Laetitia; Mecheri, Ramine; van der Does, Anne M; Lundeberg, Erik; Saveanu, Loredana; Chen, Yongquan; van Endert, Peter; Agerberth, Birgitta; Diana, Julien

    2015-08-18

    Antimicrobial peptides (AMPs) expressed by epithelial and immune cells are largely described for the defense against invading microorganisms. Recently, their immunomodulatory functions have been highlighted in various contexts. However how AMPs expressed by non-immune cells might influence autoimmune responses in peripheral tissues, such as the pancreas, is unknown. Here, we found that insulin-secreting β-cells produced the cathelicidin related antimicrobial peptide (CRAMP) and that this production was defective in non-obese diabetic (NOD) mice. CRAMP administrated to prediabetic NOD mice induced regulatory immune cells in the pancreatic islets, dampening the incidence of autoimmune diabetes. Additional investigation revealed that the production of CRAMP by β-cells was controlled by short-chain fatty acids produced by the gut microbiota. Accordingly, gut microbiota manipulations in NOD mice modulated CRAMP production and inflammation in the pancreatic islets, revealing that the gut microbiota directly shape the pancreatic immune environment and autoimmune diabetes development.

  11. Using Infrared Spectroscopy of Cyanylated Cysteine to Map Membrane Binding Structure and Orientation of the Hybrid Antimicrobial Peptide CM15

    PubMed Central

    Alfieri, Katherine N.; Vienneau, Alice R.; Londergan, Casey H.

    2011-01-01

    The synthetic antimicrobial peptide CM15, a hybrid of N-terminal sequences from cecropin and melittin peptides, has been shown to be extremely potent. Its mechanism of action has been speculated to involve pore formation based on prior site-directed spin labeling studies. This study examines four single-site β-thiocyanatoalanine variants of CM15 in which the artificial amino acid side chain acts as a vibrational reporter of its local environment through the frequency and lineshape of the unique CN stretching band in the infrared spectrum. Circular dichroism experiments indicate that the placements of the artificial side chain have only small perturbative effects on the membrane-bound secondary structure of the CM15 peptide. All variant peptides were placed in buffer solution, in contact with dodecylphosphatidylcholine micelles, and in contact with vesicles formed from E. coli polar lipid extract. At each site, the CN stretching band reports a different behavior. Time-dependent attenuated total reflectance infrared spectra were also collected for each variant as it was allowed to remodel the E. coli lipid vesicles. These experiments agree with the previously proposed formation of toroidal pores, in which each peptide finds itself in an increasingly homogeneous and curved local environment without apparent peptide-peptide interactions. This work also demonstrates the excellent sensitivity of the SCN stretching vibration to small changes in peptide-lipid interfacial structure. PMID:22103476

  12. Enabling the Discovery and Virtual Screening of Potent and Safe Antimicrobial Peptides. Simultaneous Prediction of Antibacterial Activity and Cytotoxicity.

    PubMed

    Kleandrova, Valeria V; Ruso, Juan M; Speck-Planche, Alejandro; Dias Soeiro Cordeiro, M Natália

    2016-08-08

    Antimicrobial peptides (AMPs) represent promising alternatives to fight against bacterial pathogens. However, cellular toxicity remains one of the main concerns in the early development of peptide-based drugs. This work introduces the first multitasking (mtk) computational model focused on performing simultaneous predictions of antibacterial activities, and cytotoxicities of peptides. The model was created from a data set containing 3592 cases, and it displayed accuracy higher than 96% for classifying/predicting peptides in both training and prediction (test) sets. The technique known as alanine scanning was computationally applied to illustrate the calculation of the quantitative contributions of the amino acids (in their respective positions of the sequence) to the biological effects of a defined peptide. A small library formed by 10 peptides was generated, where peptides were designed by considering the interpretations of the different descriptors in the mtk-computational model. All the peptides were predicted to exhibit high antibacterial activities against multiple bacterial strains, and low cytotoxicity against various cell types. The present mtk-computational model can be considered a very useful tool to support high throughput research for the discovery of potent and safe AMPs.

  13. Biosynthesis of the Polycyclic Antimicrobial Peptides Lacticin 481, Haloduracin, and Cinnamycin

    ERIC Educational Resources Information Center

    Cooper, Lisa E.

    2009-01-01

    Lantibiotics are bacterial-derived polycyclic antimicrobial peptides. They are genetically encoded and ribosomally synthesized as precursor peptides containing a structural region that undergoes post-translational modification and a leader sequence that is not modified. Specific serine and threonine residues in the pre-lantibiotic structural…

  14. Synthetic Coprisin analog peptide, D-CopA3 has antimicrobial activity and pro-apoptotic effects in human leukemia cells.

    PubMed

    Kim, Soon-ja; Kim, In-Woo; Kwon, Yong-Nam; Yun, Eun-Young; Hwang, Jae-Sam

    2012-02-01

    Recently, we reported that the synthetic Coprisin analog peptide 9-mer dimer CopA3 (consisted of all-L amino acid sequence) was designed based on a defensin-like peptide, Coprisin isolated from Copris tripartitus. The 9-mer dimer CopA3 (L-CopA3) had antibacterial activity and induced apoptosis in human leukemia cells via a caspase-independent pathway. In this study, all of amino acid sequences of L-CopA3 were modified to all D-form amino acids (D-CopA3) to develop a more effective antimicrobial peptide. We investigated whether D-CopA3 had antimicrobial activities against pathogenic microorganisms and proapoptotic effects in human leukemia cells (U937, Jurkat, and AML-2). The synthetic peptide D-CopA3 had antimicrobial activities against various pathogenic bacteria and yeast fungus with MIC values in the 4~64 microM range. Moreover, D-CopA3 caused cell growth inhibition, and increased the chromosomal DNA fragmentation and the expression of inflammatory cytokines, TNF-alpha and IL1-beta, transcripts in human leukemia cells. The all-D amino acid peptide D-CopA3 proved as effective as the L-CopA3 reported previously. These results provide the basis for developing D-CopA3 as a new antibiotic peptide.

  15. Secretory production of antimicrobial peptides in Escherichia coli using the catalytic domain of a cellulase as fusion partner.

    PubMed

    Yu, Huili; Li, Haoran; Gao, Dongfang; Gao, Cuijuan; Qi, Qingsheng

    2015-11-20

    Antimicrobial peptides (AMPs) are small molecules which serve as essential components of the innate immune system in various organisms. AMPs possess a broad spectrum of antimicrobial activities. However, the scaled production of such peptides in Escherichia coli faces many difficulties because of their small size and toxicity to the host. Here, we described a new fusion strategy to extracellularly produce significant amounts of these antimicrobial peptides in recombinant E. coli at significant amount. Employing the catalytic domain of a cellulase (Cel-CD) from Bacillus subtilis KSM-64 as the fusion partner, five recombinant antimicrobial peptides were confirmed to accumulate in the culture medium at concentrations ranging from 184 mg/L to 297 mg/L. The radical diffusion experiment demonstrated that the released model antimicrobial peptide, bombinin, had antibacterial activities against both E. coli and Staphylococcus aureus. This strategy will be suitable for the production of antimicrobial peptides and other toxicity proteins.

  16. Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1.

    PubMed

    Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik

    2015-08-01

    In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses.

  17. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria

    PubMed Central

    Kraszewska, Joanna; Beckett, Michael C.; James, Tharappel C.

    2016-01-01

    ABSTRACT Antimicrobial peptides offer potential as novel therapeutics to combat food spoilage and poisoning caused by pathogenic and nonpathogenic bacteria. Our previous studies identified the peptide human beta-defensin 3 (HBD3) as a potent antimicrobial agent against a wide range of beer-spoiling bacteria. Thus, HBD3 is an excellent candidate for development as an additive to prevent food and beverage spoilage. To expand the repertoire of peptides with antimicrobial activity against bacteria associated with food spoilage and/or food poisoning, we carried out an in silico discovery pipeline to identify peptides with structure and activity similar to those of HBD3, focusing on peptides of plant origin. Using a standardized assay, we compared the antimicrobial activities of nine defensin-like plant peptides to the activity of HBD3. Only two of the peptides, fabatin-2 and Cp-thionin-2, displayed antimicrobial activity; however, the peptides differed from HBD3 in being sensitive to salt and were thermostable. We also compared the activities of several ultrashort peptides to that of HBD3. One of the peptides, the synthetic tetrapeptide O3TR, displayed biphasic antimicrobial activity but had a narrower host range than HBD3. Finally, to determine if the peptides might act in concert to improve antimicrobial activity, we compared the activities of the peptides in pairwise combinations. The plant defensin-like peptides fabatin-2 and Cp-thionin-2 displayed a synergistic effect with HBD3, while O3TR was antagonistic. Thus, some plant defensin-like peptides are effective antimicrobials and may act in concert with HBD3 to control bacteria associated with food spoilage and food poisoning. IMPORTANCE Food spoilage and food poisoning caused by bacteria can have major health and economic implications for human society. With the rise in resistance to conventional antibiotics, there is a need to identify new antimicrobials to combat these outbreaks in our food supply. Here we

  18. Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility.

    PubMed

    Wadhwani, Parvesh; Heidenreich, Nico; Podeyn, Benjamin; Bürck, Jochen; Ulrich, Anne S

    2017-03-09

    Peptide-coated nanoparticles are valuable tools for diverse biological applications, such as drug delivery, molecular recognition, and antimicrobial action. The functionalization of pre-fabricated nanoparticles with free peptides in solution is inefficient either due to aggregation of the particles or due to the poor ligand exchange reaction. Here, we present a one-pot synthesis for preparing gold nanoparticles with a homogeneous distribution that are covered in situ with cationic peptides in a site-selective manner via Cys-residue at the N-terminus. Five representative peptides were selected, which are known to perturb cellular membranes and exert their antimicrobial and/or cell penetrating activity by folding into amphiphilic α-helical structures. When tethered to the nanoparticles at a single site, all peptides were found to switch their conformation from unordered state (in aqueous buffers) to their functionally relevant α-helical conformation in the presence of model membranes, as shown by circular dichroism spectroscopy. The conjugated peptides also maintained the same antibacterial activity as in the free form. Most importantly, when tethered to the gold nanoparticles the peptides showed an enormous increase in stability against trypsin digestion compared to the free forms, leading to a dramatic improvement of their lifetimes and activities. These findings suggest that site-selective surface tethering of peptides to gold nanoparticles has several advantages: (i) it does not prevent the peptides from folding into their biologically active conformation, (ii) such conjugation protects the peptides against protease digestion, and (iii) this way it is possible to prepare stable, water soluble antimicrobial nanoparticles as promising antibacterial agents.

  19. Structure-activity relationships and action mechanisms of collagen-like antimicrobial peptides.

    PubMed

    Masuda, Ryo; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2017-01-01

    An antimicrobial triple-helical peptide, R3, was previously obtained from a collagen-like combinatorial peptide library. In this research, based on structure-activity relationship studies of R3, a more potent peptide, RR4, with increased positive net charge and charge density relative to R3, was developed. RR4 exhibited antimicrobial activity against both Gram-negative and Gram-positive bacterial strains, including multidrug-resistant strains. Its action could be attributed to entry into cells and interactions with intercellular molecules such as DNA/RNA that inhibited cell division rather than increasing bacterial membrane permeability. Furthermore, RR4 exhibited remarkable stability in serum and low cytotoxicity.

  20. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides

    PubMed Central

    2016-01-01

    Bacteria have acquired extensive resistance mechanisms to protect themselves against antibiotic action. Today the bacterial membrane has become one of the “final frontiers” in the search for new compounds acting on novel targets to address the threat of multi-drug resistant (MDR) and XDR bacterial pathogens. β-Hairpin antimicrobial peptides are amphipathic, membrane-binding antibiotics that exhibit a broad range of activities against Gram-positive, Gram-negative, and fungal pathogens. However, most members of the class also possess adverse cytotoxicity and hemolytic activity that preclude their development as candidate antimicrobials. We examined peptide hydrophobicity, amphipathicity, and structure to better dissect and understand the correlation between antimicrobial activity and toxicity, membrane binding, and membrane permeability. The hydrophobicity, pI, net charge at physiological pH, and amphipathic moment for the β-hairpin antimicrobial peptides tachyplesin-1, polyphemusin-1, protegrin-1, gomesin, arenicin-3, and thanatin were determined and correlated with key antimicrobial activity and toxicity data. These included antimicrobial activity against five key bacterial pathogens and two fungi, cytotoxicity against human cell lines, and hemolytic activity in human erythrocytes. Observed antimicrobial activity trends correlated with compound amphipathicity and, to a lesser extent, with overall hydrophobicity. Antimicrobial activity increased with amphipathicity, but unfortunately so did toxicity. Of note, tachyplesin-1 was found to be 8-fold more amphipathic than gomesin. These analyses identify tachyplesin-1 as a promising scaffold for rational design and synthetic optimization toward an antibiotic candidate. PMID:27331141

  1. Considerations for the process development of insect-derived antimicrobial peptide production.

    PubMed

    Müller, Hagen; Salzig, Denise; Czermak, Peter

    2015-01-01

    Antimicrobial peptides (AMPs) could evolve into new therapeutic lead molecules against multi-resistant bacteria. As insects are a rich source of AMP, the identification and characterization of insect-derived AMPs is particularly emphasized. One challenge of bringing these molecules into market, e.g., as a drug, is to develop a cost-efficient large-scale production process. Due to the fact that a direct AMP isolation from insects is not economical and that chemical synthesis is recommended for peptide sizes below 40 amino acids, a viable option is heterologous AMP production. Therefore, previous knowledge concerning the expression of larger proteins can be adapted, but due to the AMP nature (e.g., small size, bactericide) additional challenges have to be faced during up and downstream processing. Nonetheless the bottleneck for large-scale AMP production is the same as for proteins; mainly the downstream process. This review introduces opportunities for insect-derived AMP production, like the choice of the expression system (based on previously derived data), depending on the AMP nature, as well as new purification strategies like elastin-like peptide/intein based purification strategies. All of these aspects are discussed with regard to large-scale processes and costs.

  2. On the role of NMR spectroscopy for characterization of antimicrobial peptides.

    PubMed

    Porcelli, Fernando; Ramamoorthy, Ayyalusamy; Barany, George; Veglia, Gianluigi

    2013-01-01

    Antimicrobial peptides (AMPs) provide a primordial source of immunity, conferring upon eukaryotic cells resistance against bacteria, protozoa, and viruses. Despite a few examples of anionic peptides, AMPs are usually relatively short positively charged polypeptides, consisting of a dozen to about a hundred amino acids, and exhibiting amphipathic character. Despite significant differences in their primary and secondary structures, all AMPs discovered to date share the ability to interact with cellular membranes, thereby affecting bilayer stability, disrupting membrane organization, and/or forming well-defined pores. AMPs selectively target infectious agents without being susceptible to any of the common pathways by which these acquire resistance, thereby making AMPs prime candidates to provide therapeutic alternatives to conventional drugs. However, the mechanisms of AMP actions are still a matter of intense debate. The structure-function paradigm suggests that a better understanding of how AMPs elicit their biological functions could result from atomic resolution studies of peptide-lipid interactions. In contrast, more strict thermodynamic views preclude any roles for three-dimensional structures. Indeed, the design of selective AMPs based solely on structural parameters has been challenging. In this chapter, we will focus on selected AMPs for which studies on the corresponding AMP-lipid interactions have helped reach an understanding of how AMP effects are mediated. We will emphasize the roles of both liquid- and solid-state NMR spectroscopy for elucidating the mechanisms of action of AMPs.

  3. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants

    PubMed Central

    Yazici, Hilal; O'Neill, Mary B.; Kacar, Turgay; Wilson, Brandon R.; Oren, E. Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-01-01

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property. PMID:26795060

  4. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    PubMed

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  5. Dynamical and phase behavior of a phospholipid membrane altered by an antimicrobial peptide at low concentration

    DOE PAGES

    Mamontov, Eugene; Tyagi, M.; Qian, Shuo; ...

    2016-05-27

    Here we discuss that the mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature nomore » longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides.« less

  6. Cellular membrane composition requirement by antimicrobial and anticancer peptide GA-K4.

    PubMed

    Mishig-Ochir, Tsogbadrakh; Gombosuren, Davaadulam; Jigjid, Altanchimeg; Tuguldur, Badamkhatan; Chuluunbaatar, Galbadrakh; Urnukhsaikhan, Enerelt; Pathak, Chinar; Lee, Bong-Jin

    2016-12-16

    Naturally occurring antimicrobial peptides important for innate immunity are widely studied for their antimicrobial and anticancer activity. The primary target of these AMPs is believed to be the bacterial cytoplasmic membrane. However, the interaction between cytoplasmic membrane and the antimicrobial peptides remains poorly understood. Therefore to focus on the target membrane composition that is required by AMPs to interact with membranes, we have examined the interaction of the antimicrobial and anticancer active 11-residue GA-K4 (FLKWLFKWAKK) peptide with model and intact cell membranes. Effect on the structural conformational properties of GA-K4 peptide was investigated by means of far-UV CD and fluorescence spectroscopic methods. The different conformation of GA-K4 peptide in large unilamellar vesicles (LUV) bilayer and micelle environment suggest that the curvature has an influence on the secondary structure acquired by the peptide. Furthermore, the leakage experiment result confirmed that GA-K4 induced the leakage of cytoplasmic membrane in Staphylococcus аureus bacterial cells. Fluorescence data revealed the interfacial location of GA-K4 peptide in the model membranes. The blue-shift in emission wavelength by tryptophan residues in fluorescence data indicated the penetration of GA-K4 peptide in micelles and phospholipid bilayers. These results showed that the GA-K4 peptide is a membrane-active peptide and its activity depends on membrane curvature and lipid composition. Although further studies are required to confirm the mechanism of action, the data suggest mechanism of toroidal pore formation for the interaction of GA-K4 peptide with membranes. Our studies will be helpful in better understanding of the membrane requirment of peptides to express their therapeutic effects.

  7. Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles.

    PubMed

    Lam, Shu J; Wong, Edgar H H; O'Brien-Simpson, Neil M; Pantarat, Namfon; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-12-14

    'Structurally nanoengineered antimicrobial peptide polymers' (SNAPPs), in the form of star-shaped peptide polymer nanoparticles, have been recently demonstrated as a new class of antimicrobial agents with superior in vitro and in vivo efficacy against Gram-negative pathogens, including multidrug-resistant species. Herein, we present a detailed bionano interaction study on SNAPPs by assessing their antimicrobial activities against several Gram-negative bacteria in complex biological matrices. Simulated body fluid and animal serum were used as test media to reveal factors that influence the antimicrobial efficacy of SNAPPs. With the exception of Acinetobacter baumannii, the presence of divalent cations at physiological concentrations reduced the antimicrobial efficacy of SNAPPs from minimum inhibitory concentrations (MICs) within the nanomolar range (40-300 nM) against Escherichia coli, Pseudomanas aeruginosa, and Klebsiella pneumoniae to 0.6-4.7 μM. By using E. coli as a representative bacterial species, we demonstrated that the reduction in activity was due to a decrease in the ability of SNAPPs to cause outer and inner membrane disruption. This effect could be reversed through coadministration with a chelating agent. Interestingly, the potency of SNAPPs against A. baumannii was retained even under high salt concentrations. The presence of serum proteins was also found to affect the interaction of SNAPPs with bacterial membranes, possibly through intermolecular binding. Collectively, this study highlights the need to consider the possible interactions of (bio)molecules present in vivo with any new antimicrobial agent under development. We also demonstrate that outer membrane disruption/destabilization is an important but hitherto under-recognized target for the antimicrobial action of peptide-based agents, such as antimicrobial peptides (AMPs). Overall, the findings presented herein could aid in the design of more efficient peptide-based antimicrobial agents with

  8. Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins.

    PubMed

    Yan, Xiuwen; Liu, Huan; Yang, Xuening; Che, Qiaolin; Liu, Rui; Yang, Hailong; Liu, Xiuhong; You, Dewen; Wang, Aili; Li, Jianxu; Lai, Ren

    2012-07-01

    Amphibian skins act as the first line against noxious aggression by microorganisms, parasites, and predators. Anti-microorganism activity is an important task of amphibian skins. A large amount of gene-encoded antimicrobial peptides (AMPs) has been identified from amphibian skins. Only a few of small protease inhibitors have been found in amphibian skins. From skin secretions of 5 species (Odorrana livida, Hylarana nigrovittata, Limnonectes kuhlii, Odorrana grahami, and Amolops loloensis) of Ranidae frogs, 16 small serine protease inhibitor peptides have been purified and characterized. They have lengths of 17-20 amino acid residues (aa). All of them are encoded by precursors with length of 65-70 aa. These small peptides show strong trypsin-inhibitory abilities. Some of them can exert antimicrobial activities. They share the conserved GCWTKSXXPKPC fragment in their primary structures, suggesting they belong to the same families of peptide. Signal peptides of precursors encoding these serine protease inhibitors share obvious sequence similarity with those of precursors encoding AMPs from Ranidae frogs. The current results suggest that these small serine protease inhibitors are the common defensive compounds in frog skin of Ranidae as amphibian skin AMPs.

  9. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  10. In Silico Template Selection of Short Antimicrobial Peptide Viscotoxin for Improving Its Antimicrobial Efficiency in Development of Potential Therapeutic Drugs.

    PubMed

    Senthilkumar, B; Rajasekaran, R

    2017-03-01

    Rapid increase in antibiotic resistance has posed a worldwide threat, due to increased mortality, morbidity, and expenditure caused by antibiotic-resistant microbes. Recent development of the antimicrobial peptides like viscotoxin (Vt) has been successfully comprehended as a substitute for classical antibiotics. A structurally stable peptide, Vt can enhance antimicrobial property and can be used for various developmental purposes. Thus, structural stability among the antimicrobial peptides, Vt A1 (3C8P), A2 (1JMN), A3 (1ED0), B (1JMP), and C (1ORL) of Viscus album was computationally analyzed. In specific, the static confirmation of VtA3 showed high number of intramolecular interactions, along with an increase in hydrophobicity than others comparatively. Further, conformational sampling was used to analyze various geometrical parameters such as root mean square deviation, root mean square fluctuation, radius of gyration, and ovality which also revealed the structural stability of VtA3. Moreover, the statistically validated contours of surface area, lipophilicity, and distance constraints of disulfide bonds also supported the priority of VtA3 with respect to stability. Finally, the functional activity of peptides was accessed by computing their free energy of membrane association and membrane interactions, which defined VtA3 as functionally stable. Currently, peptide-based antibiotics and nanoparticles have attracted the pharmaceutical industries for their potential therapeutic applications. Thereby, it is proposed that viscotoxin A3 (1ED0) could be used as a preeminent template for scaffolding potentially efficient antimicrobial peptide-based drugs and nanomaterials in future.

  11. An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities

    PubMed Central

    Silva, O. N.; de la Fuente-Núñez, C.; Haney, E. F.; Fensterseifer, I. C. M.; Ribeiro, S. M.; Porto, W. F.; Brown, P.; Faria-Junior, C.; Rezende, T. M. B.; Moreno, S. E.; Lu, T. K.; Hancock, R. E. W.; Franco, O. L.

    2016-01-01

    Antibiotic-resistant infections are predicted to kill 10 million people per year by 2050, costing the global economy $100 trillion. Therefore, there is an urgent need to develop alternative technologies. We have engineered a synthetic peptide called clavanin-MO, derived from a marine tunicate antimicrobial peptide, which exhibits potent antimicrobial and immunomodulatory properties both in vitro and in vivo. The peptide effectively killed a panel of representative bacterial strains, including multidrug-resistant hospital isolates. Antimicrobial activity of the peptide was demonstrated in animal models, reducing bacterial counts by six orders of magnitude, and contributing to infection clearance. In addition, clavanin-MO was capable of modulating innate immunity by stimulating leukocyte recruitment to the site of infection, and production of immune mediators GM-CSF, IFN-γ and MCP-1, while suppressing an excessive and potentially harmful inflammatory response by increasing synthesis of anti-inflammatory cytokines such as IL-10 and repressing the levels of pro-inflammatory cytokines IL-12 and TNF-α. Finally, treatment with the peptide protected mice against otherwise lethal infections caused by both Gram-negative and -positive drug-resistant strains. The peptide presented here directly kills bacteria and further helps resolve infections through its immune modulatory properties. Peptide anti-infective therapeutics with combined antimicrobial and immunomodulatory properties represent a new approach to treat antibiotic-resistant infections. PMID:27804992

  12. Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: a review of the literature.

    PubMed

    da Silva, Bruno Rocha; de Freitas, Victor Aragão Abreu; Nascimento-Neto, Luiz Gonzaga; Carneiro, Victor Alves; Arruda, Francisco Vassiliepe Sousa; de Aguiar, Andréa Silvia Walter; Cavada, Benildo Sousa; Teixeira, Edson Holanda

    2012-08-01

    Antimicrobial peptides, molecules produced in many different organisms, have high biocidal activity against several microorganisms. However, several questions about these molecules remain unclear. Therefore, this report details a systematic survey of the literature on the use of antimicrobial peptides against oral pathogens and indicates which peptides and microorganisms are most extensively studied. Articles were located using the PubMed and Science Direct databases with the following inclusion criteria: publication date between 2002 and 2011; keywords "biofilm OR biological film OR biological layer OR bacterial growth" AND "peptide" AND "oral cavity OR mouth OR buccal mucosa OR oral mucosa OR mouth mucosa"; and abstract in English. A total of 73 articles were selected after refinement of the data. An increase in publications focusing on the use of antimicrobial peptides against oral microorganisms was observed. In addition, the peptides produced by cells of the oral mucosa (defensins, LL-37 and histatins) as well as Streptococcus mutans (among cariogenic bacteria) and Porphyromonas gingivalis (among periodontal bacteria) were the most studied subjects. It was concluded that the use of antimicrobial peptides as a tool for microbial control is of increasing importance, likely due to its widespread use, mechanism of action, and low rates of bacterial resistance.

  13. Characterization of Histone H2A Derived Antimicrobial Peptides, Harriottins, from Sicklefin Chimaera Neoharriotta pinnata (Schnakenbeck, 1931) and Its Evolutionary Divergence with respect to CO1 and Histone H2A.

    PubMed

    Sathyan, Naveen; Philip, Rosamma; Chaithanya, E R; Anil Kumar, P R; Sanjeevan, V N; Singh, I S Bright

    2013-01-01

    Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties and molecular structure of Harriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates.

  14. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides

    PubMed Central

    Kubicek-Sutherland, Jessica Z.; Lofton, Hava; Vestergaard, Martin; Hjort, Karin; Ingmer, Hanne; Andersson, Dan I.

    2017-01-01

    Background The clinical development of antimicrobial peptides (AMPs) is currently under evaluation to combat the rapid increase in MDR bacterial pathogens. However, many AMPs closely resemble components of the human innate immune system and the ramifications of prolonged bacterial exposure to AMPs are not fully understood. Objectives We show that in vitro serial passage of a clinical USA300 MRSA strain in a host-mimicking environment containing host-derived AMPs results in the selection of stable AMP resistance. Methods Serial passage experiments were conducted using steadily increasing concentrations of LL-37, PR-39 or wheat germ histones. WGS and proteomic analysis by MS were used to identify the molecular mechanism associated with increased tolerance of AMPs. AMP-resistant mutants were characterized by measuring in vitro fitness, AMP and antibiotic susceptibility, and virulence in a mouse model of sepsis. Results AMP-resistant Staphylococcus aureus mutants often displayed little to no fitness cost and caused invasive disease in mice. Further, this phenotype coincided with diminished susceptibility to both clinically prescribed antibiotics and human defence peptides. Conclusions These findings suggest that therapeutic use of AMPs could select for virulent mutants with cross-resistance to human innate immunity as well as antibiotic therapy. Thus, therapeutic use of AMPs and the implications of cross-resistance need to be carefully monitored and evaluated. PMID:27650186

  15. Antimicrobial Peptides as Anti-biofilm Agents in Medical Implants.

    PubMed

    Sánchez-Gómez, Susana; Martínez-de-Tejada, Guillermo

    2017-01-01

    Biofilm-associated infections constitute a daunting threat to human health, since these pathologies increase patient mortality and morbidity, resulting in prolonged hospitalization periods and heavy economic losses. Moreover, these infections contribute to the increasing emergence and dissemination of antibiotic resistance in hospitals and in the community. Although biofilm-associated microorganisms can proliferate in healthy tissue, abiotic surfaces like those of medical implants greatly increase the likelihood of biofilm formation in the host. Due to their broad spectrum of bactericidal activity against multi-drug resistant microorganisms including metabolically inactive cells, antimicrobial peptides (AMPs) have great potential as anti-biofilm agents. In fact, a clinically available AMP, polymyxin E (colistin), frequently constitutes the drug of last recourse in biofilm-associated infections (e.g. cystic fibrosis) when resistance to all the other drugs arises. In this article, we outline the main strategies under development to combat biofilm-associated infections with an emphasis in the prevention of microbial colonization of medical implants. These approaches include the use of AMPs both for the development of anti-adhesive surface coatings and to kill biofilm-forming cells either on contact or via controlled release (leaching surfaces). Although in vitro results for all these applications are very encouraging, further research is needed to improve the anti-biofilm activity of these coatings in vivo. The possibility of exploiting the antibiotic potentiating activity of some AMPs and to combine several anti-biofilm mechanisms in tandem targeting the biofilm formation process at different stages is also discussed.

  16. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries.

    PubMed

    Gautam, Aditi; Sharma, Asuda; Jaiswal, Sarika; Fatma, Samar; Arora, Vasu; Iquebal, M A; Nandi, S; Sundaray, J K; Jayasankar, P; Rai, Anil; Kumar, Dinesh

    2016-09-01

    Microbial diseases in fish, plant, animal and human are rising constantly; thus, discovery of their antidote is imperative. The use of antibiotic in aquaculture further compounds the problem by development of resistance and consequent consumer health risk by bio-magnification. Antimicrobial peptides (AMPs) have been highly promising as natural alternative to chemical antibiotics. Though AMPs are molecules of innate immune defense of all advance eukaryotic organisms, fish being heavily dependent on their innate immune defense has been a good source of AMPs with much wider applicability. Machine learning-based prediction method using wet laboratory-validated fish AMP can accelerate the AMP discovery using available fish genomic and proteomic data. Earlier AMP prediction servers are based on multi-phyla/species data, and we report here the world's first AMP prediction server in fishes. It is freely accessible at http://webapp.cabgrid.res.in/fishamp/ . A total of 151 AMPs related to fish collected from various databases and published literature were taken for this study. For model development and prediction, N-terminus residues, C-terminus residues and full sequences were considered. Best models were with kernels polynomial-2, linear and radial basis function with accuracy of 97, 99 and 97 %, respectively. We found that performance of support vector machine-based models is superior to artificial neural network. This in silico approach can drastically reduce the time and cost of AMP discovery. This accelerated discovery of lead AMP molecules having potential wider applications in diverse area like fish and human health as substitute of antibiotics, immunomodulator, antitumor, vaccine adjuvant and inactivator, and also for packaged food can be of much importance for industries.

  17. On the Functional Overlap between Complement and Anti-Microbial Peptides

    PubMed Central

    Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J.; Stover, Cordula M.

    2015-01-01

    Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia). PMID:25646095

  18. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator.

    PubMed Central

    Corzo, G; Escoubas, P; Villegas, E; Barnham, K J; He, W; Norton, R S; Nakajima, T

    2001-01-01

    Two novel antimicrobial peptides have been identified and characterized from venom of the African scorpion Pandinus imperator. The peptides, designated pandinin 1 and 2, are alpha-helical polycationic peptides, with pandinin 1 belonging to the group of antibacterial peptides previously described from scorpions, frogs and insects, and pandinin 2 to the group of short magainin-type helical peptides from frogs. Both peptides demonstrated high antimicrobial activity against a range of Gram-positive bacteria (2.4-5.2 microM), but were less active against Gram-negative bacteria (2.4-38.2 microM), and only pandinin 2 affected the yeast Candida albicans. Pandinin 2 also demonstrated strong haemolytic activity (11.1-44.5 microM) against sheep erythrocytes, in contrast with pandinin 1, which was not haemolytic. CD studies and a high-resolution structure of pandinin 2 determined by NMR, showed that the two peptides are both essentially helical, but differ in their overall structure. Pandinin 2 is composed of a single alpha-helix with a predominantly hydrophobic N-terminal sequence, whereas pandinin 1 consists of two distinct alpha-helices separated by a coil region of higher flexibility. This is the first report of magainin-type polycationic antimicrobial peptides in scorpion venom. Their presence brings new insights into the mode of action of scorpion venom and also opens new avenues for the discovery of novel antibiotic molecules from arthropod venoms. PMID:11563967

  19. Identification and rational design of novel antimicrobial peptides for plant protection.

    PubMed

    Marcos, Jose F; Muñoz, Alberto; Pérez-Payá, Enrique; Misra, Santosh; López-García, Belén

    2008-01-01

    Peptides and small proteins exhibiting antimicrobial activity have been isolated from many organisms ranging from insects to humans, including plants. Their role in defense is established, and their use in agriculture was already being proposed shortly after their discovery. However, some natural peptides have undesirable properties that complicate their application. Advances in peptide synthesis and high-throughput activity screening have made possible the de novo and rational design of novel peptides with improved properties. This review summarizes findings in the identification and design of short antimicrobial peptides with activity against plant pathogens, and will discuss alternatives for their heterologous production suited to plant disease control. Recent studies suggest that peptide antimicrobial action is not due solely to microbe permeation as previously described, but that more subtle factors might account for the specificity and absence of toxicity of some peptides. The elucidation of the mode of action and interaction with microbes will assist the improvement of peptide design with a view to targeting specific problems in agriculture and providing new tools for plant protection.

  20. Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields.

    PubMed

    Chang, Kuan Y; Lin, Tung-pei; Shih, Ling-Yi; Wang, Chien-Kuo

    2015-01-01

    Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. Accurately predicting the AMP critical regions could benefit the experimental designs. However, no extensive analyses have been done specifically on the AMP critical regions and computational modeling on them is either non-existent or settled to other problems. With a focus on the AMP critical regions, we thus develop a computational model AMPcore by introducing a state-of-the-art machine learning method, conditional random fields. We generate a comprehensive dataset of 798 AMPs cores and a low similarity dataset of 510 representative AMP cores. AMPcore could reach a maximal accuracy of 90% and 0.79 Matthew's correlation coefficient on the comprehensive dataset and a maximal accuracy of 83% and 0.66 MCC on the low similarity dataset. Our analyses of AMP cores follow what we know about AMPs: High in glycine and lysine, but low in aspartic acid, glutamic acid, and methionine; the abundance of α-helical structures; the dominance of positive net charges; the peculiarity of amphipathicity. Two amphipathic sequence motifs within the AMP cores, an amphipathic α-helix and an amphipathic π-helix, are revealed. In addition, a short sequence motif at the N-terminal boundary of AMP cores is reported for the first time: arginine at the P(-1) coupling with glycine at the P1 of AMP cores occurs the most, which might link to microbial cell adhesion.

  1. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    PubMed

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides.

  2. The Negatively Charged Regions of Lactoferrin Binding Protein B, an Adaptation against Anti-Microbial Peptides

    PubMed Central

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B.

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  3. Expression analysis and identification of antimicrobial peptide transcripts from six North American frog species

    USGS Publications Warehouse

    Robertson, Laura S.; Fellers, Gary M.; Marranca, Jamie Marie; Kleeman, Patrick M.

    2013-01-01

    Frogs secrete antimicrobial peptides onto their skin. We describe an assay to preserve and analyze antimicrobial peptide transcripts from field-collected skin secretions that will complement existing methods for peptide analysis. We collected skin secretions from 4 North American species in the field in California and 2 species in the laboratory. Most frogs appeared healthy after release; however, Rana boylii in the Sierra Nevada foothills, but not the Coast Range, showed signs of morbidity and 2 died after handling. The amount of total RNA extracted from skin secretions was higher in R. boylii and R. sierrae compared to R. draytonii, and much higher compared to Pseudacris regilla. Interspecies variation in amount of RNA extracted was not explained by size, but for P. regilla it depended upon collection site and date. RNA extracted from skin secretions from frogs handled with bare hands had poor quality compared to frogs handled with gloves or plastic bags. Thirty-four putative antimicrobial peptide precursor transcripts were identified. This study demonstrates that RNA extracted from skin secretions collected in the field is of high quality suitable for use in sequencing or quantitative PCR (qPCR). However, some species do not secrete profusely, resulting in very little extracted RNA. The ability to measure transcript abundance of antimicrobial peptides in field-collected skin secretions complements proteomic analyses and may provide insight into transcriptional mechanisms that could affect peptide abundance.

  4. Purification and characterization of a plant antimicrobial peptide expressed in Escherichia coli.

    PubMed

    Harrison, S J; McManus, A M; Marcus, J P; Goulter, K C; Green, J L; Nielsen, K J; Craik, D J; Maclean, D J; Manners, J M

    1999-03-01

    MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coli extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coli. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens.

  5. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae

    PubMed Central

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development. PMID:26046345

  6. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae.

    PubMed

    Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi

    2015-01-01

    Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.

  7. Membrane interactions and biological activity of antimicrobial peptides from Australian scorpion.

    PubMed

    Luna-Ramírez, Karen; Sani, Marc-Antoine; Silva-Sanchez, Jesus; Jiménez-Vargas, Juana María; Reyna-Flores, Fernando; Winkel, Kenneth D; Wright, Christine E; Possani, Lourival D; Separovic, Frances

    2014-09-01

    UyCT peptides are antimicrobial peptides isolated from the venom of the Australian scorpion. The activity of the UyCT peptides against Gram positive and Gram negative bacteria and red blood cells was determined. The membrane interactions of these peptides were evaluated by dye release (DR) of the fluorophore calcein from liposomes and isothermal titration calorimetry (ITC); and their secondary structure was determined by circular dichroism (CD). Three different lipid systems were used to mimic red blood cells, Escherichia coli and Staphylococcus aureus membranes. UyCT peptides exhibited broad spectrum antimicrobial activity with low MIC for S. aureus and multi-drug resistant Gram negative strains. Peptide combinations showed some synergy enhancing their potency but not hemolytic activity. The UyCT peptides adopted a helical structure in lipid environments and DR results confirmed that the mechanism of action is by disrupting the membrane. ITC data indicated that UyCT peptides preferred prokaryotic rather than eukaryotic membranes. The overall results suggest that UyCT peptides could be pharmaceutical leads for the treatment of Gram negative multiresistant bacterial infections, especially against Acinetobacter baumanni, and candidates for peptidomimetics to enhance their potency and minimize hemolysis. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

  8. Recombinant expression and biological characterization of the antimicrobial peptide fowlicidin-2 in Pichia pastoris

    PubMed Central

    Xing, Li-Wei; Tian, Shi-Xun; Gao, Wei; Yang, Na; Qu, Pei; Liu, Di; Jiao, Jian; Wang, Jue; Feng, Xing-Jun

    2016-01-01

    Fowlicidins are a group of cathelicidin antimicrobial peptides that were initially identified in chickens. Fowlicidin-2, which is composed of 31 amino acids, is widely expressed in the majority of tissues in chickens and has an important role in innate immunity. In the present study, a recombinant expression system for fowlicidin-2 was successfully constructed using Pichia pastoris X-33 and the expression vector pPICZα-A. Under the optimized fermentation conditions, 85.6 mg fowlicidin-2 with >95% purity was obtained from 1 liter culture medium following purification by ion exchange chromatography and reversed phase high performance liquid chromatography. The recombinant fowlicidin-2 exhibited broad spectrum antimicrobial activity and had a minimum inhibitory concentration ranging from 1 to 4 µM. Furthermore, recombinant fowlicidin-2 exhibited hemolytic activity, promoting 50% human erythrocyte hemolysis in the concentration range of 128–256 µM, and anticancer activity, resulting in the death of 50% of A375 human malignant melanoma cells in the concentration range of 2–4 µM. The results of the present study suggest that recombinant fowlicidin-2 may be a promising candidate for therapeutic applications. PMID:27698732

  9. Purification and characterization of two novel antimicrobial peptides Subpeptin JM4-A and Subpeptin JM4-B produced by Bacillus subtilis JM4.

    PubMed

    Wu, Shimei; Jia, Shifang; Sun, Dandan; Chen, Meiling; Chen, Xiuzhu; Zhong, Jin; Huan, Liandong

    2005-11-01

    An antimicrobial peptides-producing strain was isolated from soil and identified as Bacillus subtilis JM4 according to biochemical tests and 16S rDNA sequence analysis. The corresponding antimicrobial peptides were purified to homogeneity by ammonium sulfate precipitation, sequential SP-Sepharose Fast Flow, Sephadex G-25 and C18 reverse-phase chromatography, and in the final purification step, two active fractions were harvested, designated as Subpeptin JM4-A and Subpeptin JM4-B. The molecular weights, determined by mass spectrometry, were 1422.71 Da for Subpeptin JM4-A and 1422.65 Da for Subpeptin JM4-B, respectively. Amino acid sequencing showed that they differed from each other only at the seventh amino acid except for three unidentified residues, and the two peptides had no significant sequence homology to the known peptides in the database, indicating that they are two novel antimicrobial peptides. In addition, characteristic measurements indicated that both peptides had a relatively broad inhibitory spectrum and remained active over a wide pH and temperature range.

  10. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry.

    PubMed

    Wang, Shuai; Zeng, Xiangfang; Yang, Qing; Qiao, Shiyan

    2016-05-03

    Over the last decade, the rapid emergence of multidrug-resistant pathogens has become a global concern, which has prompted the search for alternative antibacterial agents for use in food animals. Antimicrobial peptides (AMPs), produced by bacteria, insects, amphibians and mammals, as well as by chemical synthesis, are possible candidates for the design of new antimicrobial agents because of their natural antimicrobial properties and a low propensity for development of resistance by microorganisms. This manuscript reviews the current knowledge of the basic biology of AMPs and their applications in non-ruminant nutrition. Antimicrobial peptides not only have broad-spectrum activity against bacteria, fungi, and viruses but also have the ability to bypass the common resistance mechanisms that are placing standard antibiotics in jeopardy. In addition, AMPs have beneficial effects on growth performance, nutrient digestibility, intestinal morphology and gut microbiota in pigs and broilers. Therefore, AMPs have good potential as suitable alternatives to conventional antibiotics used in swine and poultry industries.

  11. Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses.

    PubMed

    Brogden, Kim A; Johnson, Georgia K; Vincent, Steven D; Abbasi, Taher; Vali, Shireen

    2013-10-01

    Acute and chronic inflammation commonly occurs throughout the oral cavity. The most common causes are physical damage and microbial infections, and less frequently immune reactions and malignant changes. All of these processes result in the induction of antimicrobial peptides, chemokines and cytokines that lead to cellular infiltrates, a vascular response, tissue destruction and cellular proliferation. A fascinating concept developing in the current literature suggests that antimicrobial peptides modulate the production of chemokines, cytokines and other cellular mediators and that this may have a larger ramification as an underlying mechanism mediating inflammation. Here, we propose that the ability of antimicrobial peptides to induce chemokines and anti-inflammatory or proinflammatory cytokines plays an important role in the early events of oral inflammation and may be a target for the prevention or treatment of oral inflammatory conditions.

  12. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  13. Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus.

    PubMed

    Gonzalez-Curiel, Irma; Castañeda-Delgado, Julio; Lopez-Lopez, Nallely; Araujo, Zaida; Hernandez-Pando, Rogelio; Gandara-Jasso, Benjamin; Macias-Segura, Noe; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2011-08-01

    Tuberculosis (TB) is one of the most important infectious diseases, causing 1.8 million deaths annually worldwide. This problem has increased because of the association with human immmunodeficiency virus and diabetes mellitus type 2, mainly in developing countries. In the past few years it has been highlighted the significance of antimicrobial peptides in the immunopathogenesis of TB ex vivo and in experimental models studies. In this study we analyzed the expression of CAMP, DEFA1, DEFB4, and DEFB103A in patients with latent TB and progressive TB with and without comorbidity with diabetes mellitus type 2. Antimicrobial peptide gene expression increased during progressive TB, which could be used as a biomarker for reactivation. By contrast, patients with diabetes mellitus type 2 have lower antimicrobial peptides gene expression, suggesting that the lack of its proper production in these patients contribute to enhance the risk for TB reactivation.

  14. The coordinated Response of the Physical and Antimicrobial Peptide Barriers of the Skin

    PubMed Central

    Borkowski, Andrew W.; Gallo, Richard L.

    2011-01-01

    Antimicrobial peptides (AMPs) are an essential and multifunctional element for immune defense of the skin during infection and injury. In this issue, Ahrens et al. characterize the response of β-defensins, a class of AMPs, following acute and chronic challenges to the permeability barrier of the skin. Their findings suggest that the antimicrobial and permeability barriers of the skin are closely linked. PMID:21228809

  15. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties.

    PubMed

    Li, Xiang; Li, Peng; Saravanan, Rathi; Basu, Anindya; Mishra, Biswajit; Lim, Suo Hon; Su, Xiaodi; Tambyah, Paul Anantharajah; Leong, Susanna Su Jan

    2014-01-01

    Catheter-associated urinary tract infections (CAUTIs) are often preceded by pathogen colonization on catheter surfaces and are a major health threat facing hospitals worldwide. Antimicrobial peptides (AMPs) are a class of new antibiotics that hold promise in curbing CAUTIs caused by antibiotic-resistant pathogens. This study aims to systematically evaluate the feasibility of immobilizing two newly engineered arginine/lysine/tryptophan-rich AMPs with broad antimicrobial spectra and salt-tolerant properties on silicone surfaces to address CAUTIs. The peptides were successfully immobilized on polydimethylsiloxane and urinary catheter surfaces via an allyl glycidyl ether (AGE) polymer brush interlayer, as confirmed by X-ray photoelectron spectroscopy and water contact angle analyses. The peptide-coated silicone surfaces exhibited excellent microbial killing activity towards bacteria and fungi in urine and in phosphate-buffered saline. Although both the soluble and immobilized peptides demonstrated membrane disruption capabilities, the latter showed a slower rate of kill, presumably due to reduced diffusivity and flexibility resulting from conjugation to the polymer brush. The synergistic effects of the AGE polymer brush and AMPs prevented biofilm formation by repelling cell adhesion. The peptide-coated surface showed no toxicity towards smooth muscle cells. The findings of this study clearly indicate the potential for the development of AMP-based coating platforms to prevent CAUTIs.

  16. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure.

    PubMed

    Lee, Tzong-Hsien; Hall, Kristopher N; Aguilar, Marie-Isabel

    2016-01-01

    Antimicrobial peptides (AMPs) are showing increasing promise as potential candidate antibacterial drugs in the face of the rapidly emerging bacterial resistance to conventional antibiotics in recent years. The target of these peptides is the microbial membrane and there are numerous models to explain their mechanism of action ranging from pore formation to general membrane disruption. The interaction between the AMP and the target membrane is critical to the specificity and activity of these peptides. However, a precise understanding of the relationship between antimicrobial peptide structure and their cytolytic function in a range of organisms is still lacking. This is a result of the complex nature of the interactions of AMPs with the cell membrane, the mechanism of which can vary considerably between different classes of antimicrobia peptides. A wide range of biophysical techniques have been used to study the influence of a number of peptide and membrane properties on the cytolytic activity of these peptides in model membrane systems. Central to characterisation of this interaction is a quantitative analysis of the binding of peptide to the membrane and the coherent dynamic changes in membrane structure. Recently, dual polarization interferometry has been used to perform an in depth analysis of antimicrobial peptide induced membrane perturbation and with new mass-structure co-fitting kinetic analysis have allowed a real-time label free analysis of binding affinity and kinetics. We review these studies which describe multi-step mechanisms which are adopted by various AMPs in nature and may advance our approach to the development of a new generation of effective antimicrobial therapeutics.

  17. Differential Ability of Bovine Antimicrobial Cathelicidins to Mediate Nucleic Acid Sensing by Epithelial Cells

    PubMed Central

    Baumann, Arnaud; Kiener, Mirjam Susanna; Haigh, Brendan; Perreten, Vincent; Summerfield, Artur

    2017-01-01

    Cathelicidins encompass a family of cationic peptides characterized by antimicrobial activity and other functions, such as the ability to enhance the sensing of nucleic acids by the innate immune system. The present study aimed to investigate the ability of the bovine cathelicidins indolicidin, bactenecin (Bac)1, Bac5, bovine myeloid antimicrobial peptide (BMAP)-27, BMAP-28, and BMAP-34 to inhibit the growth of bacteria and to enhance the sensing of nucleic acid by the host’s immune system. BMAP-27 was the most effective at killing Staphylococcus aureus, Streptococcus uberis, and Escherichia coli, and this was dependent on its amphipathic structure and cationic charge. Although most cathelicidins possessed DNA complexing activity, only the alpha-helical BMAP cathelicidins and the cysteine-rich disulfide-bridged Bac1 were able to enhance the sensing of nucleic acids by primary epithelial cells. We also compared these responses with those mediated by neutrophils. Activation of neutrophils with phorbol myristate acetate resulted in degranulation and release of cathelicidins as well as bactericidal activity in the supernatants. However, only supernatants from unstimulated neutrophils were able to promote nucleic acid sensing in epithelial cells. Collectively, the present data support a role for certain bovine cathelicidins in helping the innate immune system to sense nucleic acids. The latter effect is observed at concentrations clearly below those required for direct antimicrobial functions. These findings are relevant in development of future strategies to promote protection at mucosal surfaces against pathogen invasion. PMID:28203238

  18. cgMolluscidin, a novel dibasic residue repeat rich antimicrobial peptide, purified from the gill of the Pacific oyster, Crassostrea gigas.

    PubMed

    Seo, Jung-Kil; Lee, Min Jeong; Nam, Bo-Hye; Park, Nam Gyu

    2013-08-01

    A 5.5 kDa antimicrobial peptide consisting of 55 amino acids, cgMolluscidin, was purified from the acidified gill extract of the Pacific oyster, Crassostrea gigas, by ion-exchange and C18 reversed-phase high performance liquid chromatography. By comparing the N-terminal amino acid sequences and the molecular weight of this peptide with those of other known antimicrobial peptides, it has been revealed that this peptide had no homology with any known peptides. cgMolluscidin showed potent antimicrobial activity against both Gram-positive bacteria, including Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus (minimal effective concentrations [MECs]; 1.3-31.3 μg/mL), and Gram-negative bacteria, including Escherichia coli, Salmonella enterica, and Vibrio parahaemolyticus ([MECs]; 0.4-2.3 μg/mL), without hemolytic activity. However, cgMolluscidin did not show any significant activity against Candida albicans. The deduced amino acid sequence of the cgMolluscidin showed no hit in public protein databases, while the nucleotide sequence had a 99% homology (E value = 0) with only the unknown ESTs sequenced by C. gigas EST project. Tissue distribution of the cgMolluscidin mRNA suggests that it is constitutively expressed as a mature form in a non-tissue-specific manner. The cgMolluscidin mRNA expression level was significantly up-regulated at 12 h (2.8-fold) post injection with Vibrio sp. This peptide is highly basic and contains several dibasic residue repeats including Lysine-Lysine or Lysine-Arginine in the sequence, but may not form an ordered structure. These results suggest that cgMolluscidin might be an oyster-specific novel antimicrobial peptide.

  19. Caseins from bovine colostrum and milk strongly bind piscidin-1, an antimicrobial peptide from fish.

    PubMed

    Kütt, Mary-Liis; Stagsted, Jan

    2014-09-01

    A model system of bovine colostrum and piscidin, a fish-derived antimicrobial peptide, was developed to study potential interactions of antimicrobial peptides in colostrum. We did not detect any antimicrobial activity of colostrum using the radial plate diffusion assay; in fact colostrum completely abrogated activity of added piscidin. This could not be explained by degradation of piscidin by colostrum, which was less than ten percent. We found that colostrum even protected piscidin against degradation by added proteases. We further observed that colostrum and milk rapidly quenched the fluorescence of fluorescein-piscidin but not that of fluorescein. This effect was not seen with BSA and the specific quenching of fluorescein-piscidin by colostrum was saturably inhibited with unlabeled piscidin. Size exclusion chromatography indicated that fluorescein-piscidin bound to casein micelles with no apparent binding to IgG or whey proteins. Further, addition of pure caseins was able to quench fluorescence of fluorescein-piscidin and to inhibit the antimicrobial activity of piscidin. The interaction between caseins and piscidin could be dissociated by guanidine hydrochloride and recovered piscidin had antimicrobial activity against bacteria. Based on our results we propose that caseins could be carriers for antimicrobial peptides in colostrum and milk.

  20. Antimicrobial peptides from the skin secretions of the New World frogs Lithobates capito and Lithobates warszewitschii (Ranidae).

    PubMed

    Conlon, J Michael; Meetani, Mohammed A; Coquet, Laurent; Jouenne, Thierry; Leprince, Jérôme; Vaudry, Hubert; Kolodziejek, Jolanta; Nowotny, Norbert; King, Jay D

    2009-10-01

    Taxonomic revisions within the anuran family Ranidae have established the genus Lithobates that currently comprises 49 species of frogs from the New World. Peptidomic analysis, using reversed-phase HPLC with on-line detection by electrospray mass spectrometry, has led to the identification of multiple antimicrobial peptides in norepinephrine-stimulated skin secretions of the North American frog Lithobates capito and the Central American frog Lithobates warszewitschii. Structural characterization of the peptides demonstrated that the L. capito secretions contained brevinin-1 (1), esculentin-1 (1), esculentin-2 (1), ranatuerin-2 (3), and temporin (2) peptides. L. warszewitschii secretions contained brevinin-1 (1), esculentin-2 (1), ranatuerin-2 (2), and temporin (1) peptides. Values in parentheses indicate number of peptides in each family. Temporin-CPa from L. capito, with the atypical structure IPPFIKKVLTTVF.NH(2), also showed atypical growth-inhibitory activity having greater potency against Escherichia coli (MIC=25 microM) and Candida albicans (MIC=25 microM) than against Staphylococcus aureus (MIC=50 microM). Phylogenetic analysis based upon the amino acid sequences of 37 ranatuerin-2 peptides from 17 species belonging to the genus Lithobates provides support for currently accepted taxonomic relationships. L. capito is sister-group to Lithobates sevosus in a clade that also contains Lithobates areolatus, and Lithobates palustris. L. warszewitschii is most closely related to the Central American species Lithobates tarahumarae and Lithobates vaillanti.

  1. Recombinant probiotics with antimicrobial peptides: a dual strategy to improve immune response in immunocompromised patients.

    PubMed

    Mandal, Santi M; Silva, Osmar N; Franco, Octavio L

    2014-08-01

    Bacterial infectious diseases are currently a serious health problem, especially in patients compromised by illness or those receiving immune-suppressant drugs. In this context, it is not only essential to improve the understanding of infectious mechanisms and host response but also to discover novel therapies with extreme urgency. Probiotics and antimicrobial peptides are also favorably viewed as novel strategies in the control of resistant bacteria. The present review will shed some light on the use of probiotic microorganisms expressing antimicrobial peptides as a dual therapy to control bacterial infectious diseases.

  2. Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties.

    PubMed

    Gabriel, Gregory J; Madkour, Ahmad E; Dabkowski, Jeffrey M; Nelson, Christopher F; Nüsslein, Klaus; Tew, Gregory N

    2008-11-01

    Polyguanidinium oxanorbornene ( PGON) was synthesized from norbornene monomers via ring-opening metathesis polymerization. This polymer was observed to be strongly antibacterial against Gram-negative and Gram-positive bacteria as well as nonhemolytic against human red blood cells. Time-kill studies indicated that this polymer is lethal and not just bacteriostatic. In sharp contrast to previously reported SMAMPs (synthetic mimics of antimicrobial peptides), PGON did not disrupt membranes in vesicle-dye leakage assays and microscopy experiments. The unique biological properties of PGON, in same ways similar to cell-penetrating peptides, strongly encourage the examination of other novel guanidino containing macromolecules as powerful and selective antimicrobial agents.

  3. Antimicrobial peptide LL-37 participates in the transcriptional regulation of melanoma cells

    PubMed Central

    Muñoz, Mindy; Craske, Madeleine; Severino, Patricia; de Lima, Thais Martins; Labhart, Paul; Chammas, Roger; Velasco, Irineu Tadeu; Machado, Marcel Cerqueira César; Egan, Brian; Nakaya, Helder I; Pinheiro da Silva, Fabiano

    2016-01-01

    Antimicrobial peptides are an ancient family of molecules that emerged millions of years ago and have been strongly conserved during the evolutionary process of living organisms. Recently, our group described that the human antimicrobial peptide LL-37 migrates to the nucleus, raising the possibility that LL-37 could directly modulate transcription under certain conditions. Here, we showed evidence that LL-37 binds to gene promoter regions, and LL-37 gene silencing changed the transcriptional program of melanoma A375 cells genes associated with histone, metabolism, cellular stress, ubiquitination and mitochondria. PMID:27994673

  4. Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

    PubMed Central

    2008-01-01

    Polyguanidinium oxanorbornene (PGON) was synthesized from norbornene monomers via ring-opening metathesis polymerization. This polymer was observed to be strongly antibacterial against Gram-negative and Gram-positive bacteria as well as nonhemolytic against human red blood cells. Time-kill studies indicated that this polymer is lethal and not just bacteriostatic. In sharp contrast to previously reported SMAMPs (synthetic mimics of antimicrobial peptides), PGON did not disrupt membranes in vesicle-dye leakage assays and microscopy experiments. The unique biological properties of PGON, in same ways similar to cell-penetrating peptides, strongly encourage the examination of other novel guanidino containing macromolecules as powerful and selective antimicrobial agents. PMID:18850741

  5. Molecular dynamics simulations of a new branched antimicrobial peptide: A comparison of force fields

    NASA Astrophysics Data System (ADS)

    Li, Jianguo; Lakshminarayanan, Rajamani; Bai, Yang; Liu, Shouping; Zhou, Lei; Pervushin, Konstantin; Verma, Chandra; Beuerman, Roger W.

    2012-12-01

    Branched antimicrobial peptides are promising as a new class of antibiotics displaying high activity and low toxicity and appear to work through a unique mechanism of action. We explore the structural dynamics of a covalently branched 18 amino acid peptide (referred to as B2088) in aqueous and membrane mimicking environments through molecular dynamics (MD) simulations. Towards this, we carry out conventional MD simulations and supplement these with replica exchange simulations. The simulations are carried out using four different force fields that are commonly employed for simulating biomolecular systems. These force fields are GROMOS53a6, CHARMM27 with cMAP, CHARMM27 without cMAP and AMBER99sb. The force fields are benchmarked against experimental data available from circular dichroism and nuclear magnetic resonance spectroscopies, and show that CHARMM27 without cMAP correction is the most successful in reproducing the structural dynamics of B2088 both in water and in the presence of micelles. Although the four force fields predict different structures of B2088, they all show that B2088 stabilizes against the head group of the lipid through hydrogen bonding of its Lys and Arg side chains. This leads us to hypothesize that B2088 is unlikely to penetrate into the hydrophobic region of the membrane owing to the high free energy costs of transfer from water, and possibly acts by carpeting and thus disrupting the membrane.

  6. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.

    PubMed

    Goyal, Ravinder K; Mattoo, Autar K

    2014-11-01

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens.

  7. Identification and characterization of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatus.

    PubMed

    Saito, Y; Konnai, S; Yamada, S; Imamura, S; Nishikado, H; Ito, T; Onuma, M; Ohashi, K

    2009-08-01

    Ixodes persulcatus is the primary vector for human tick-borne diseases in Japan. A cDNA library was constructed from whole body homogenates of fed nymphs of I. persulcatus. From this library, one cDNA encoding defensin-like antimicrobial peptide was identified. The amino-acid sequence showed high similarity to those of the defensins of other ticks and arthropods. I. persulcatus defensin mRNA transcripts were detected at all life cycle stages of fed ticks and found to be predominantly expressed in the midguts of adult female ticks, but not in the salivary glands, a finding corroborated by Western blotting analysis. To investigate the function of I. persulcatus defensin, we examined its antibacterial activity by evaluation of growth of several bacterial strains in the presence of the synthetic peptide. The defensin from I. persulcatus markedly inhibited the growth of Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis and Corynebacterium renale, but not Gram-negative bacteria except Escherichia coli O157. In conclusion, these results suggest that I. persulcatus defensin may be playing a significant role in the defence against microbes from bloodmeals.

  8. Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk.

    PubMed

    Sun, Yazhou; Zhou, Yahui; Liu, Xiao; Zhang, Fan; Yan, Linping; Chen, Ling; Wang, Xing; Ruan, Hongjie; Ji, Chenbo; Cui, Xianwei; Wang, Jiaqin

    2017-02-26

    Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and disk diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation.

  9. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments

    NASA Astrophysics Data System (ADS)

    Kocourková, Lucie; Novotná, Pavlína; Čujová, Sabína; Čeřovský, Václav; Urbanová, Marie; Setnička, Vladimír

    2017-01-01

    Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity.

  10. Activity of a novel-designed antimicrobial peptide and its interaction with lipids.

    PubMed

    Yu, Lanlan; Fan, Qiannan; Yue, Xiu; Mao, Yexuan; Qu, Lingbo

    2015-04-01

    A new antimicrobial peptide l-RW containing double amphipathic binding sequences was designed, and its biological activities were investigated in the present study. L-RW showed antibacterial activity against several bacterial strains but low cytotoxicity to mammalian cells and low hemolytic activity to red blood cells, which makes it a potential and promising peptide for further development. Microscale thermophoresis (MST), a new technique, was applied to study the antimicrobial peptide-lipid interaction for the first time, which examined the binding affinities of this new antimicrobial peptide to various lipids, including different phospholipids, mixture lipids and bacterial lipid extracts. The results demonstrated that l-RW bound preferentially to negatively charged lipids over neutral lipids, which was consistent with the biological activities, revealing the important role of electrostatic interaction in the binding process. L-RW also showed higher binding affinity for lipid extract from Staphyloccocus aureus compared with Pseudomonas aeruginosa and Escherichia coli, which were in good agreement with the higher antibacterial activity against S. aureus than P. aeruginosa and E. coli, suggesting that the binding affinity is capable to predict the antibacterial activity to some extent. Additionally, the binding of l-RW to phospholipids was also performed in fetal bovine serum solution by MST, which revealed that the components in biological solution may have interference with the binding event. The results proved that MST is a useful and potent tool in antimicrobial peptide-lipid interaction investigation.

  11. [Role of antimicrobial peptides (AMP) and pattern recognition receptors (PRR) in the intestinal mucosa homeostasis].

    PubMed

    Lapis, Károly

    2009-11-22

    Homeostasis and integrity of bowel mucosa is assured by well controlled mechanical, biochemical and immunological mechanisms. First line of defense is presented by the antimicrobial peptides (AMP), which form a continuous layer on the bowel surface, produced by intestinal specific (Paneth) and non-specific epithelial cells. AMPs have a significant antimicrobial, antifungal and antiviral, as well as immunomodulatory effects. Next line of defense is the pattern recognition receptors (PRR), which allows identifying conservative molecular patterns of different pathogens, and starts antimicrobial and inflammatory mechanisms through gene-expression induction. We review the most recent knowledge and studies concerning these mechanisms.

  12. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides.

    PubMed

    Chinchar, V G; Bryan, L; Silphadaung, U; Noga, E; Wade, D; Rollins-Smith, L

    2004-06-01

    The ability of five purified amphibian antimicrobial peptides (dermaseptin-1, temporin A, magainin I, and II, PGLa), crude peptide fractions isolated from the skin of Rana pipiens and R. catesbeiana, and four antimicrobial peptides (AMPs) from hybrid striped bass (piscidin-1N, -1H, -2, and -3) were examined for their ability to reduce the infectivity of channel catfish virus (CCV) and frog virus 3 (FV3). All compounds, with the exception of magainin I, markedly reduced the infectivity of CCV. In contrast to CCV, FV3 was 2- to 4-fold less sensitive to these agents. Similar to an earlier study employing two other amphibian peptides, the agents used here acted rapidly and over a wide, physiologically relevant, temperature range to reduce virus infectivity. These results extend our previous findings and strongly suggest that various amphibian and piscine AMPs may play important roles in protecting fish and amphibians from pathogenic viruses.

  13. Nanomechanical Response of Pseudomonas aeruginosa PAO1 Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Dutcher, John

    2013-03-01

    We have used an atomic force microscopy (AFM)-based creep deformation technique to study changes to the viscoelastic properties of individual Gram-negative Pseudomonas aeruginosa PAO1 cells as a function of time of exposure to two cationic peptides: polymyxin B (PMB), a cyclic antimicrobial peptide, and the structurally-related compound, polymyxin B nonapeptide (PMBN). The measurements provide a direct measure of the mechanical integrity of the bacterial cell envelope, and the results can be understood in terms of simple viscoelastic models of arrangements of springs and dashpots, which can be ascribed to different components within the bacterial cell. Time-resolved creep deformation experiments reveal abrupt changes to the viscoelastic properties of P. aeruginosa bacterial cells after exposure to both PMB and PMBN, with quantitatively different changes for the two cationic peptides. These measurements provide new insights into the kinetics and mechanism of action of antimicrobial peptides on bacterial cells.

  14. Anticancer Activity of the Antimicrobial Peptide Scolopendrasin VII Derived from the Centipede, Scolopendra subspinipes mutilans.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2015-08-01

    Previously, we performed de novo RNA sequencing of Scolopendra subspinipes mutilans using high-throughput sequencing technology and identified several antimicrobial peptide candidates. Among them, a cationic antimicrobial peptide, scolopendrasin VII, was selected based on its physicochemical properties, such as length, charge, and isoelectric point. Here, we assessed the anticancer activities of scolopendrasin VII against U937 and Jurkat leukemia cell lines. The results showed that scolopendrasin VII decreased the viability of the leukemia cells in MTS assays. Furthermore, flow cytometric analysis and acridine orange/ethidium bromide staining revealed that scolopendrasin VII induced necrosis in the leukemia cells. Scolopendrasin VII-induced necrosis was mediated by specific interaction with phosphatidylserine, which is enriched in the membrane of cancer cells. Taken together, these data indicated that scolopendrasin VII induced necrotic cell death in leukemia cells, probably through interaction with phosphatidylserine. The results provide a useful anticancer peptide candidate and an efficient strategy for new anticancer peptide development.

  15. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration.

    PubMed

    Ibrahim, Hisham R; Imazato, Kenta; Ono, Hajime

    2011-09-28

    Human milk lysozyme is thought to be a key defense factor in protecting the gastrointestinal tract of newborns against bacterial infection. Recently, evidence was found that pepsin, under conditions relevant to the newborn stomach, cleaves chicken lysozyme (cLZ) at specific loops to generate five antimicrobial peptide motifs. This study explores the antimicrobial role of the corresponding peptides of human lysozyme (hLZ), the actual protein in breast milk. Five peptide motifs of hLZ, one helix-loop-helix (HLH), its two helices (H1 and H2), and two helix-sheet motifs, H2-β-strands 1-2 (H2-S12) or H2-β-strands 1-3 (H2-S13), were synthesized and examined for antimicrobial action. The five peptides of hLZ exhibit microbicidal activity to various degrees against several bacterial strains. The HLH peptide and its N-terminal helix (H1) were significantly the most potent bactericidal to Gram-positive and Gram-negative bacteria and the fungus Candida albicans . Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its N-terminal helix (H1) kill bacteria by crossing the outer membrane of Gram-negative bacteria via self-promoted uptake and are able to dissipate the membrane potential-dependent respiration of Gram-positive bacteria. This finding is the first to describe that hLZ possesses multiple antimicrobial peptide motifs within its N-terminal domain, providing insight into new classes of antibiotic peptides with potential use in the treatment of infectious diseases.

  16. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    PubMed

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  17. Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides

    PubMed Central

    Mathavan, Indran; Zirah, Séverine; Mehmood, Shahid; Choudhury, Hassanul G.; Goulard, Christophe; Li, Yanyan; Robinson, Carol V.; Rebuffat, Sylvie; Beis, Konstantinos

    2014-01-01

    The lasso peptide microcin J25 is known to hijack the siderophore receptor FhuA for initiating internalization. Here, we provide the first structural evidence on the recognition mechanism and our biochemical data show that another closely related lasso peptide cannot interact with FhuA. Our work provides an explanation on the narrow activity spectrum of lasso peptides and opens the path to the development of new antibacterials. PMID:24705590

  18. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines.

    PubMed

    Rollins-Smith, Louise A

    2009-08-01

    Amphibian species have experienced population declines and extinctions worldwide that are unprecedented in recent history. Many of these recent declines have been linked to a pathogenic skin fungus, Batrachochytrium dendrobatidis, or to iridoviruses of the genus Ranavirus. One of the first lines of defense against pathogens that enter by way of the skin are antimicrobial peptides synthesized and stored in dermal granular glands and secreted into the mucus following alarm or injury. Here, I review what is known about the capacity of amphibian antimicrobial peptides from diverse amphibians to inhibit B. dendrobatidis or ranavirus infections. When multiple species were compared for the effectiveness of their in vitro antimicrobial peptides defenses against B. dendrobatidis, non-declining species of rainforest amphibians had more effective antimicrobial peptides than species in the same habitat that had recently experienced population declines. Further, there was a significant correlation between the effectiveness of the antimicrobial peptides and resistance of the species to experimental infection. These studies support the hypothesis that antimicrobial peptides are an important component of innate defenses against B. dendrobatidis. Some amphibian antimicrobial peptides inhibit ranavirus infections and infection of human T lymphocytes by the human immunodeficiency virus (HIV). An effective antimicrobial peptide defense against skin pathogens appears to depend on a diverse array of genes expressing antimicrobial peptides. The production of antimicrobial peptides may be regulated by signals from the pathogens. However, this defense must also accommodate potentially beneficial microbes on the skin that compete or inhibit growth of the pathogens. How this delicate balancing act is accomplished is an important area of future research.

  19. Novel Antimicrobial Peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible Sea Urchin Echinus esculentus Have 6-Br-Trp Post-Translational Modifications

    PubMed Central

    Solstad, Runar Gjerp; Li, Chun; Isaksson, Johan; Johansen, Jostein; Svenson, Johan; Stensvåg, Klara; Haug, Tor

    2016-01-01

    The global problem of microbial resistance to antibiotics has resulted in an urgent need to develop new antimicrobial agents. Natural antimicrobial peptides are considered promising candidates for drug development. Echinoderms, which rely on innate immunity factors in the defence against harmful microorganisms, are sources of novel antimicrobial peptides. This study aimed to isolate and characterise antimicrobial peptides from the Edible sea urchin Echinus esculentus. Using bioassay-guided purification and cDNA cloning, three antimicrobial peptides were characterised from the haemocytes of the sea urchin; two heterodimeric peptides and a cysteine-rich peptide. The peptides were named EeCentrocin 1 and 2 and EeStrongylocin 2, respectively, due to their apparent homology to the published centrocins and strongylocins isolated from the green sea urchin Strongylocentrotus droebachiensis. The two centrocin-like peptides EeCentrocin 1 and 2 are intramolecularly connected via a disulphide bond to form a heterodimeric structure, containing a cationic heavy chain of 30 and 32 amino acids and a light chain of 13 amino acids. Additionally, the light chain of EeCentrocin 2 seems to be N-terminally blocked by a pyroglutamic acid residue. The heavy chains of EeCentrocins 1 and 2 were synthesised and shown to be responsible for the antimicrobial activity of the natural peptides. EeStrongylocin 2 contains 6 cysteines engaged in 3 disulphide bonds. A fourth peptide (Ee4635) was also discovered but not fully characterised. Using mass spectrometric and NMR analyses, EeCentrocins 1 and 2, EeStrongylocin 2 and Ee4635 were all shown to contain post-translationally brominated Trp residues in the 6 position of the indole ring. PMID:27007817

  20. Novel Antimicrobial Peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible Sea Urchin Echinus esculentus Have 6-Br-Trp Post-Translational Modifications.

    PubMed

    Solstad, Runar Gjerp; Li, Chun; Isaksson, Johan; Johansen, Jostein; Svenson, Johan; Stensvåg, Klara; Haug, Tor

    2016-01-01

    The global problem of microbial resistance to antibiotics has resulted in an urgent need to develop new antimicrobial agents. Natural antimicrobial peptides are considered promising candidates for drug development. Echinoderms, which rely on innate immunity factors in the defence against harmful microorganisms, are sources of novel antimicrobial peptides. This study aimed to isolate and characterise antimicrobial peptides from the Edible sea urchin Echinus esculentus. Using bioassay-guided purification and cDNA cloning, three antimicrobial peptides were characterised from the haemocytes of the sea urchin; two heterodimeric peptides and a cysteine-rich peptide. The peptides were named EeCentrocin 1 and 2 and EeStrongylocin 2, respectively, due to their apparent homology to the published centrocins and strongylocins isolated from the green sea urchin Strongylocentrotus droebachiensis. The two centrocin-like peptides EeCentrocin 1 and 2 are intramolecularly connected via a disulphide bond to form a heterodimeric structure, containing a cationic heavy chain of 30 and 32 amino acids and a light chain of 13 amino acids. Additionally, the light chain of EeCentrocin 2 seems to be N-terminally blocked by a pyroglutamic acid residue. The heavy chains of EeCentrocins 1 and 2 were synthesised and shown to be responsible for the antimicrobial activity of the natural peptides. EeStrongylocin 2 contains 6 cysteines engaged in 3 disulphide bonds. A fourth peptide (Ee4635) was also discovered but not fully characterised. Using mass spectrometric and NMR analyses, EeCentrocins 1 and 2, EeStrongylocin 2 and Ee4635 were all shown to contain post-translationally brominated Trp residues in the 6 position of the indole ring.

  1. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus

    PubMed Central

    Mohamed, Mohamed F.; Abdelkhalek, Ahmed; Seleem, Mohamed N.

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  2. Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications.

    PubMed

    Azevedo Calderon, Leonardo de; Silva, Alexandre de Almeida E; Ciancaglini, Pietro; Stábeli, Rodrigo Guerino

    2011-01-01

    Screening for new bioactive peptides in South American anurans has been pioneered in frogs of the genus Phyllomedusa. All frogs of this genus have venomous skin secretions, i.e., a complex mixture of bioactive peptides against potential predators and pathogens that presumably evolved in a scenario of predator-prey interaction and defense against microbial invasion. For every new anuran species studied new peptides are found, with homologies to hormones, neurotransmitters, antimicrobials, and several other peptides with unknown biological activity. From Vittorio Erspamer findings, this genus has been reported as a "treasure store" of bioactive peptides, and several groups focus their research on these species. From 1966 to 2009, more than 200 peptide sequences from different Phyllomedusa species were deposited in UniProt and other databases. During the last decade, the emergence of high-throughput molecular technologies involving de novo peptide sequencing via tandem mass spectrometry, cDNA cloning, pharmacological screening, and surface plasmon resonance applied to peptide discovery, led to fast structural data acquisition and the generation of peptide molecular libraries. Research groups on bioactive peptides in Brazil using these new technologies, accounted for the exponential increase of new molecules described in the last decade, much higher than in any previous decades. Recently, these secretions were also reported as a rich source of multiple antimicrobial peptides effective against multidrug resistant strains of bacteria, fungi, protozoa, and virus, providing instructive lessons for the development of new and more efficient nanotechnological-based therapies for infectious diseases treatment. Therefore, novel drugs arising from the identification and analysis of bioactive peptides from South American anuran biodiversity have a promising future role on nanobiotechnology.

  3. Nanotechnology for delivery of peptide nucleic acids (PNAs).

    PubMed

    Gupta, Anisha; Bahal, Raman; Gupta, Meera; Glazer, Peter M; Saltzman, W Mark

    2016-10-28

    Over the past three decades, peptide nucleic acids have been employed in numerous chemical and biological applications. Peptide nucleic acids possess enormous potential because of their superior biophysical properties, compared to other oligonucleotide chemistries. However, for therapeutic applications, intracellular delivery of peptide nucleic acids remains a challenge. In this review, we summarize the progress that has been made in delivering peptide nucleic acids to intracellular targets. In addition, we emphasize recent nanoparticle-based strategies for efficient delivery of conventional and chemically-modified peptides nucleic acids.

  4. Applications of Circular Dichroism for Structural Analysis of Gelatin and Antimicrobial Peptides

    PubMed Central

    Gopal, Ramamourthy; Park, Jin Soon; Seo, Chang Ho; Park, Yoonkyung

    2012-01-01

    Circular dichroism (CD) is a useful technique for monitoring changes in the conformation of antimicrobial peptides or gelatin. In this study, interactions between cationic peptides and gelatin were observed without affecting the triple helical content of the gelatin, which was more strongly affected by anionic surfactant. The peptides did not adopt a secondary structure in the presence of aqueous solution or Tween 80, but a peptide secondary structure formed upon the addition of sodium dodecyl sulfate (SDS). The peptides bound to the phosphate group of lipopolysaccharide (LPS) and displayed an alpha-helical conformation while (KW)4 adopted a folded conformation. Further, the peptides did not specifically interact with the fungal cell wall components of mannan or laminarin. Tryptophan blue shift assay indicated that these peptides interacted with SDS, LPS, and gelatin but not with Tween 80, mannan, or laminarin. The peptides also displayed antibacterial activity against P. aeruginosa without cytotoxicity against HaCaT cells at MIC, except for HPA3NT3-analog peptide. In this study, we used a CD spectroscopic method to demonstrate the feasibility of peptide characterization in numerous environments. The CD method can thus be used as a screening method of gelatin-peptide interactions for use in wound healing applications. PMID:22489150

  5. An Analog of the Antimicrobial Peptide CopA5 Inhibits Lipopolysaccharide-Induced Macrophage Activation.

    PubMed

    Yoon, I Na; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Kim, Ho

    2017-02-28

    We previously reported that the CopA3 peptide (LLCIALRKK, D-form) originally isolated from the Korean dung beetle has antimicrobial and immunosuppressive effects. However, the high cost of producing the synthetic peptide, especially the D-form, has limited the development of CopA3 for therapeutic purposes. Here, we investigated whether the CopA3 deletion derivative, CopA5, which is composed of only five amino acids (LLCIA) and has the L-form structure, could inhibit the lipopolysaccharide (LPS)-induced activation of macrophages. Peritoneal exudate macrophages (PEM) were isolated from mice and exposed to LPS in the presence or absence of CopA5, and biomarkers of macrophage activation were measured. Our results revealed that LPS-induced nitric oxide (NO) production, tumor necrosis factor (TNF)-α secretion, and phagocytic activity of PEM were significantly inhibited by CopA5 treatment. Similar to CopA3, the structurally modified CopA5 peptide had no cell toxicity (as assessed by measurement of cell viability loss and apoptosis) in PEM. Moreover, the LPS-induced upregulation of the activating phosphorylation of signal transducer and activator of transcription 1 (STAT1) was markedly inhibited by CopA5 treatment. These results suggest that, similar to CopA3, CopA5 inhibits macrophage activation by inhibiting STAT1 phosphorylation and blocking the release of NO and TNF-α. CopA5 may therefore prove therapeutically useful in the realm of immune suppression.

  6. Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity.

    PubMed

    Panteleev, Pavel V; Ovchinnikova, Tatiana V

    2017-01-01

    Here, we report an efficient procedure for recombinant production and purification of tachyplesin I (THI) with a final yield of 17 mg/L of the culture medium. The peptide was expressed in Escherichia coli as a part of the thioredoxin fusion protein. With the use of soluble expression followed by immobilized metal-ion affinity chromatography, the recombinant protein cleavage and reversed-phase high-performance liquid chromatography, a yield of THI did not exceed 6.5 mg/L of the culture medium. Further optimization studies were carried out to improve the protein expression level and simplify purification procedure of the target peptide. To achieve better yield of the peptide, we used high-cell-density bacterial expression. The formed inclusion bodies were highly enriched with the fusion protein, which allowed us to perform direct chemical cleavage of the inclusion bodies solubilized in 6 M guanidine-HCl with subsequent selective precipitation of proteins with trifluoroacetic acid. This enabled us to avoid an extra step of purification by immobilized metal-ion affinity chromatography. The developed procedure has made it possible to obtain biologically active THI and was used for screening a number of its mutant analogs. As a result, several selective and nonhemolytic analogs were developed. Significant reduction in hemolytic activity without losing antimicrobial activity was achieved by substitution of tyrosine or isoleucine residue in the β-turn region of the molecule with hydrophilic serine. The present study affords further insight into molecular mechanism of antimicrobial action of tachyplesin and gains a better understanding of structure-activity relationships in its analogs. This is aimed at searching for novel antibiotics on the basis of antimicrobial peptides with reduced cytotoxicity.

  7. Motualevic Acids and Analogs: Synthesis and Antimicrobial Structure Activity Relationships

    PubMed Central

    Cheruku, Pradeep; Keffer, Jessica L.; Dogo-Isonagie, Cajetan; Bewley, Carole A.

    2010-01-01

    Synthesis of the marine natural products motualevic acids A, E, and analogs in which modifications have been made to the ω-brominated lipid (E)-14,14-dibromotetra-deca-2,13-dienoic acid or amino acid unit are reported, together with antimicrobial activities against Staphylococcus aureus, methicillin-resistant S. aureus, Enterococcus faecium, and vancomycin-resistant Enterococcus. PMID:20538459

  8. A potent antimicrobial peptide derived from the protein LsGRP1 of Lilium.

    PubMed

    Lin, Chia-Hua; Chang, Min-Wei; Chen, Chao-Ying

    2014-04-01

    LsGRP1 is a defense-related gene differentially expressed in lily leaves in response to pathogen attack. The difficulty in the expression of LsGRP1 in Escherichia coli suggested the presence of antimicrobial activity in LsGRP1. To evaluate the antimicrobial trait of LsGRP1, three LsGRP1-derived peptides were chemically synthesized; namely LsGRP1(N) (N-terminal region without the signal peptide), LsGRP1(G) (glycine-rich region), and LsGRP1(C) (C-terminal cysteine-rich region). LsGRP1(C) was proposed to be a potential antimicrobial agent according to its broad-spectrum and effective antimicrobial activity. LsGRP1(C) displayed inhibition effects on bacterial and fungal growth, possibly by altering the integrity of the cell membrane, as indicated by scanning electron microscopy and SYTOX Green staining assays. Additionally, LsGRP1(C) induced programmed cell death-like phenomenon in the tested fungal species as indicated by 2',7'-dichlorodihydrofluorescein diacetate and 4',6'-diamidino-2-phenylindole assays. Further immunofluorescence staining showed that LsGRP1(C) was located at the fungal cell surface. According to these observations, we concluded that LsGRP1(C) originated from the plant defense-related protein LsGRP1 would play a role as an antimicrobial peptide and have a potential for practical use.

  9. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents.

    PubMed

    Malik, Erum; Dennison, Sarah R; Harris, Frederick; Phoenix, David A

    2016-11-01

    Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel

  10. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    PubMed Central

    Malik, Erum; Dennison, Sarah R.; Harris, Frederick; Phoenix, David A.

    2016-01-01

    Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel

  11. Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides.

    PubMed

    Dong, Zong-Mu; Zhao, Guang-Chao

    2015-05-01

    A novel label-free strategy for the detection of bacteria was developed by using a specific antimicrobial peptide (AMP)-functionalized quartz crystal microbalance (QCM) electrode. This electrode interface was successfully applied to detect pathogenic Escherichia coli O157:H7 based on the specific affinity between the small synthetic antimicrobial peptide and the bacterial cell of pathogenic E. coli O157:H7. The concentrations of pathogenic E. coli O157:H7 were sensitively measured by the frequency response of the QCM with a detection limit of 0.4 cfu μL(-1). The detection can be fulfilled within 10 min because it does not require germiculture process. On the other hand, if the specific antimicrobial peptides were immobilized on a gold electrode, this label-free strategy can also be performed by electrochemical impedance spectroscopy (EIS). Compared with QCM technique, the EIS measurement gives a lower sensitivity and needs a longer assay time. The combination of antimicrobial peptides with the real-time responses of QCM, as well as electronic read-out monitoring of EIS, may open a new way for the direct detection of bacteria.

  12. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control.

    PubMed

    Datta, Aritreyee; Ghosh, Anirban; Airoldi, Cristina; Sperandeo, Paola; Mroue, Kamal H; Jiménez-Barbero, Jesús; Kundu, Pallob; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-07-06

    The recent increase in multidrug resistance against bacterial infections has become a major concern to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently received substantial attention as potential alternatives to conventional antibiotics because of their potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant disease control for replacing conventional treatment methods that are polluting and hazardous to the environment and to human health. Here, we report de novo design and antimicrobial studies of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide features a folded conformation with a centrally located turn-type structure stabilized by aromatic-aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP provides valuable insights into the development of more potent antibacterial and antiendotoxic peptides for the treatment of human and plant infections.

  13. Multitasking antimicrobial peptides, plant development, and host defense against biotic/abiotic stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense system against pathogens including use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AM...

  14. In vitro growth of growth of campylobacter spp. inhibited by selected antimicrobial peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Novel alternatives to traditional antibiotics are urgently needed for food-animal production. A goal of our laboratory is to develop and evaluate antimicrobial peptides (AMP) to control and reduce foodborne pathogens in poultry. AMP have been found in most every class of living organism...

  15. New cationic antimicrobial peptide screened from boiled-dried anchovies by immobilized bacterial membrane liposome chromatography.

    PubMed

    Tang, Wenting; Zhang, Hui; Wang, Li; Qian, Haifeng

    2014-02-19

    An efficient immobilized bacterial membrane liposome chromatography method was used to screen potential antimicrobial peptides from boiled-dried anchovies. A novel cationic antimicrobial peptide (Apep10) was successfully isolated by one-step chromatography. The sequence of Apep10 was identified as GLARCLAGTL by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry (MALDI-Q-TOF MS). The antimicrobial activity assessment indicated that Apep10 inhibited the growth of the reference bacteria (Escherichia coli, Shigella dysenteriae, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, Bacillus subtilis, and Streptococcus pneumoniae), with minimal inhibitory concentration (MIC) values ranging from 8 to 64 μg/mL. Almost no cytotoxicity against mouse erythrocytes was observed at concentrations below 20 μg/mL. Nucleotide leakage induced by Apep10 showed that the peptide exhibited permeable activity on the cytoplasmic membrane. Alterations in morphology were observed by scanning electronic microscopy (SEM). Membrane disruption was confirmed by confocal laser scanning microscopy (CLSM) with propidium iodide (PI). The results demonstrate that immobilized bacterial membrane liposome chromatography is a straightforward technique for screening unknown antimicrobial peptides with cell-membrane-interacting activities from boiled-dried anchovies.

  16. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. I...

  17. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control

    PubMed Central

    Datta, Aritreyee; Ghosh, Anirban; Airoldi, Cristina; Sperandeo, Paola; Mroue, Kamal H.; Jiménez-Barbero, Jesús; Kundu, Pallob; Ramamoorthy, Ayyalusamy; Bhunia, Anirban

    2015-01-01

    The recent increase in multidrug resistance against bacterial infections has become a major concern to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently received substantial attention as potential alternatives to conventional antibiotics because of their potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant disease control for replacing conventional treatment methods that are polluting and hazardous to the environment and to human health. Here, we report de novo design and antimicrobial studies of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide features a folded conformation with a centrally located turn-type structure stabilized by aromatic-aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP provides valuable insights into the development of more potent antibacterial and antiendotoxic peptides for the treatment of human and plant infections. PMID:26144972

  18. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system

    PubMed Central

    Yadavalli, Srujana S.; Carey, Jeffrey N.; Leibman, Rachel S.; Chen, Annie I.; Stern, Andrew M.; Roggiani, Manuela; Lippa, Andrew M.; Goulian, Mark

    2016-01-01

    Antimicrobial peptides are an important component of the molecular arsenal employed by hosts against bacteria. Many bacteria in turn possess pathways that provide protection against these compounds. In Escherichia coli and related bacteria, the PhoQ/PhoP signalling system is a key regulator of this antimicrobial peptide defence. Here we show that treating E. coli with sublethal concentrations of antimicrobial peptides causes cells to filament, and that this division block is controlled by the PhoQ/PhoP system. The filamentation results from increased expression of QueE, an enzyme that is part of a tRNA modification pathway but that, as we show here, also affects cell division. We also find that a functional YFP–QueE fusion localizes to the division septum in filamentous cells, suggesting QueE blocks septation through interaction with the divisome. Regulation of septation by PhoQ/PhoP may protect cells from antimicrobial peptide-induced stress or other conditions associated with high-level stimulation of this signalling system. PMID:27471053

  19. Abhisin: a potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus).

    PubMed

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Whang, Ilson; Lee, Jae-Seong; Lee, Jehee

    2009-11-01

    Antimicrobial peptides (AMPs) play an important role in the immune defense against pathogenic microorganisms. In this study, a histone H2A full-length cDNA was cloned from disk abalone Haliotis discus discus. We identified a 40-amino acid AMP designated as abhisin from the N-terminus of the abalone histone H2A sequence. Abhisin shows the characteristic features of AMPs including net positive charge (+13), higher hydrophobic residues (27%) and 2.82 kcal/mol protein binding potential. Abhisin shares 80% amino acid identity with the buforin I peptide that is derived from Asian toad histone H2A. We synthesized the synthetic peptide of abhisin, and characterized its antimicrobial activities. Our results showed the growth inhibition of Gram positive (G+) Listeria monocytogenes, Gram negative (G-) Vibrio ichthyoenteri bacteria, and fungi (yeast) Pityrosporum ovale by abhisin treatment at 250 microg/mL. However, stronger activity was displayed against the G+ than G- bacteria. Additionally, scanning electron microscope (SEM) observation results confirmed that P. ovale cells were damaged by abhisin treatment. Interestingly, abhisin treatment (50 microg/mL) decreased the viability of THP-1 leukemia cancer cells approximately by 25% but there was no effect on the normal vero cells, suggesting that abhisin has cytotoxicity against cancer cells but not normal cells. Quantitative real time RT-PCR results revealed that histone H2A transcription was significantly induced at 3 h post-infection with bacteria in abalone gills and digestive tract. These results suggest that abhisin is a potential antimicrobial agent, and its precursor histone H2A may be involved in the innate immune defense system in abalone.

  20. Structure and antimicrobial activity of platypus 'intermediate' defensin-like peptide.

    PubMed

    Torres, Allan M; Bansal, Paramjit; Koh, Jennifer M S; Pagès, Guilhem; Wu, Ming J; Kuchel, Philip W

    2014-05-02

    The three-dimensional structure of a chemically synthesized peptide that we have called 'intermediate' defensin-like peptide (Int-DLP), from the platypus genome, was determined by nuclear magnetic resonance (NMR) spectroscopy; and its antimicrobial activity was investigated. The overall structural fold of Int-DLP was similar to that of the DLPs and β-defensins, however the presence of a third antiparallel β-strand makes its structure more similar to the β-defensins than the DLPs. Int-DLP displayed potent antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The four arginine residues at the N-terminus of Int-DLP did not affect the overall fold, but were important for its antimicrobial potency.

  1. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties.

    PubMed

    Lim, Kaiyang; Chua, Ray Rong Yuan; Bow, Ho; Tambyah, Paul Anantharajah; Hadinoto, Kunn; Leong, Susanna Su Jan

    2015-03-01

    Catheter-associated urinary tract infections (CAUTIs) are the most common hospital-acquired infections worldwide, aggravating the problem of antimicrobial resistance and patient morbidity. There is a need for a potent and robust antimicrobial coating for catheters to prevent these infections. An ideal coating agent should possess high antimicrobial efficacy and be easily and economically conjugated to the catheter surface. In this study, we report a simple yet effective immobilization strategy to tether a potent synthetic antimicrobial peptide, CWR11, onto catheter-relevant surfaces. Polydopamine (PD) was deposited as a thin adherent film onto a polydimethylsiloxane (PDMS) surface to facilitate attachment of CWR11 onto the PD-functionalized polymer. Surface characterization of the CWR11-tethered surfaces confirmed the successful immobilization of peptides onto the PD-coated PDMS. The CWR11-immobilized PDMS slides displayed excellent antimicrobial (significant inhibition of 5×10(4) colony-forming units of CAUTI-relevant microbes) and antibiofilm (∼92% enhanced antibacterial adherence) properties. To assess its clinical relevance, the PD-based immobilization platform was translated onto commercial silicone-coated Foley catheters. The CWR11-impregnated catheter displayed potent bactericidal properties against both Gram-positive and Gram-negative bacteria, and retained its antimicrobial functionality for at least 21days, showing negligible cytotoxicity against human erythrocyte and uroepithelial cells. The outcome of this study demonstrates the proof-of-concept potential of a polydopamine-CWR11-functionalized catheter to combat CAUTIs.

  2. Toward the de novo design of antimicrobial peptides: Lack of correlation between peptide permeabilization of lipid vesicles and antimicrobial, cytolytic, or cytotoxic activity in living cells.

    PubMed

    He, Jing; Krauson, Aram J; Wimley, William C

    2014-01-01

    We previously performed a lipid vesicle-based, high-throughput screen on a 26-residue combinatorial peptide library that was designed de novo to yield membrane-permeabilizing peptides that fold into β-sheets. The most active and soluble library members that were identified permeabilized lipid vesicles detectably, but not with high potency. Nonetheless, they were broad-spectrum, membrane-permeabilizing antibiotics with minimum sterilizing activity at low µM concentrations. In an expansion of that work, we recently performed an iterative screen in which an active consensus sequence from that first-generation library was used as a template to design a second-generation library which was then screened against lipid vesicles at very high stringency. Compared to the consensus sequence from the first library, the most active second-generation peptides are highly potent, equilibrium pore-formers in synthetic lipid vesicles. Here, we use these first- and second-generation families of peptides to test the hypothesis that a large increase in potency in bacteria-like lipid vesicles will correlate with a large improvement in antimicrobial activity. The results do not support the hypothesis. Despite a 20-fold increase in potency against bacteria-like lipid vesicles, the second-generation peptides are only slightly more active against bacteria, and at the same time, are also more toxic against mammalian cells. The results suggest that a "pipeline" strategy toward the optimization of antimicrobial peptides could begin with a vesicle-based screen for identifying families with broad-spectrum activity, but will also need to include screening or optimization steps that are done under conditions that are more directly relevant to possible therapeutic applications.

  3. A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels.

    PubMed

    Marcus, J P; Green, J L; Goulter, K C; Manners, J M

    1999-09-01

    A new family of antimicrobial peptides has been discovered in Macadamia integrifolia. The first member of this new family to be purified from nut kernels was a peptide of 45 aa residues, termed MiAMP2c. This peptide inhibited various plant pathogenic fungi in vitro. cDNA clones corresponding to MiAMP2c encoded a 666 aa precursor protein homologous to vicilin 7S globulin proteins. The deduced precursor protein sequence contained a putative hydrophobic N-terminal signal sequence (28 aa), an extremely hydrophilic N-proximal region (212 aa), and a C-terminal region of 426 aa which is represented in all vicilins. The hydrophilic portion of the deduced protein contained the sequence for MiAMP2c as well as three additional segments having the same cysteine spacing pattern as MiAMP2c. Each member of the MiAMP2 family (i.e. MiAMP2a, b, c and d) consisted of approximately 50 amino acids and contained a C-X-X-X-C-(10-12)X-C-X-X-X-C motif. Subsequent isolations from seed exudates led to the purification of the predicted family members MiAMP2b and 2d, both of which also exhibited antimicrobial activity in vitro. These results suggest that some vicilins play a role in defence during seed germination.

  4. Suppression of Propionibacterium acnes Infection and the Associated Inflammatory Response by the Antimicrobial Peptide P5 in Mice

    PubMed Central

    Ryu, Sunhyo; Han, Hyo Mi; Song, Peter I.

    2015-01-01

    The cutaneous inflammation associated with acne vulgaris is caused by the anaerobic bacterium Propionibacterium acnes through activation of the innate immune system in the skin. Current standard treatments for acne have limitations that include adverse effects and poor efficacy in many patients, making development of a more effective therapy highly desirable. In the present study, we demonstrate the protective effects of a novel customized α-helical cationic peptide, P5, against P. acnes-induced inflammatory responses in vitro and in vivo. Application of P5 significantly reduced expression of two inflammatory cytokines IL-8 and TNF-α in P. acnes-treated primary human keratinocytes, where P5 appeared to act in part by binding to bacterial lipoteichoic acid, thereby suppressing TLR2-to-NF-κB signaling. In addition, in a mouse model of acne vulgaris, P5 exerted both anti-inflammatory and antimicrobial effects against P. acnes, but exerted no cytotoxic effects against skin cells. These results demonstrate that P5, and perhaps other cationic antimicrobial peptides, offer the unique ability to reduce numbers P. acnes cells in the skin and to inhibit the inflammation they trigger. This suggests these peptides could potentially be used to effectively treat acne without adversely affecting the skin. PMID:26197393

  5. Molecular Characterization of Antimicrobial Peptide Genes of the Carpenter Ant Camponotus floridanus

    PubMed Central

    Ratzka, Carolin; Förster, Frank; Liang, Chunguang; Kupper, Maria; Dandekar, Thomas; Feldhaar, Heike; Gross, Roy

    2012-01-01

    The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity. PMID:22912782

  6. Identification and functional characterization of an uncharacterized antimicrobial peptide from a ciliate Paramecium caudatum.

    PubMed

    Cui, Pengfei; Dong, Yuan; Li, Zhijian; Zhang, Yubo; Zhang, Shicui

    2016-07-01

    The global ever-growing concerns about multi-drug resistant (MDR) microbes leads to urgent demands for exploration of new antibiotics including antimicrobial peptides (AMPs). Here we demonstrated that a cDNA from Ciliata Paramecium caudatum, designated Pcamp1, coded for a protein with features characteristic of AMPs, which is not homologous to any AMPs currently known. Both the C-terminal 91 amino acid residues of PcAMP1, cPcAMP1, expressed in Escherichia coli and the C-terminal 26 amino acid residues (predicted mature AMP), cPcAMP1/26, synthesized, underwent a coil-to-helix transition in the presence of TFE, SDS or DPC. Functional assays revealed that cPcAMP1 and cPcAMP1/26 were both able to kill Aeromonas hydrophila and Staphylococcus aureus. ELISA showed that cPcAMP1 and cPcAMP1/26 were able to bind to microbe-associated molecular pattern molecules LPS and LTA, which was further corroborated by the observations that cPcAMP1 could deposit onto the bacterial membranes. Importantly, both cPcAMP1 and cPcAMP1/26 were able to induce bacterial membrane permeabilization and depolarization, and to increase intracellular ROS levels. Additionally, cPcAMP1 and cPcAMP1/26 were not cytotoxic to mammalian cells. Taken together, our results show that PcAMP1 is a potential AMP with a membrane selectivity towards bacterial cells, which renders it a promising template for the design of novel peptide antibiotics against MDR microbes. It also shows that use of signal conserved sequence of AMPs can be an effective tool to identify potential AMPs across different animal classes.

  7. Antimicrobial Dendrimeric Peptides: Structure, Activity and New Therapeutic Applications.

    PubMed

    Scorciapino, Mariano A; Serra, Ilaria; Manzo, Giorgia; Rinaldi, Andrea C

    2017-03-03

    Microbial resistance to conventional antibiotics is one of the most outstanding medical and scientific challenges of our times. Despite the recognised need for new anti-infective agents, however, very few new drugs have been brought to the market and to the clinic in the last three decades. This review highlights the properties of a new class of antibiotics, namely dendrimeric peptides. These intriguing novel compounds, generally made of multiple peptidic sequences linked to an inner branched core, display an array of antibacterial, antiviral and antifungal activities, usually coupled to low haemolytic activity. In addition, several peptides synthesized in oligobranched form proved to be promising tools for the selective treatment of cancer cells.

  8. Identification and Expression Profile Analysis of Antimicrobial Peptide/Protein in Asian Corn Borer, Ostrinia furnacalis (Guenée)

    PubMed Central

    Zhang, Mingming; Zhou, Fan; Chu, Yuan; Zhao, Zhangwu; An, Chunju

    2013-01-01

    Antimicrobial peptides/proteins (AMPs) are a group of immune proteins that exhibit strong antibiotic properties against numerous infectious bacterial strains. They are evolutionarily conserved and present in every kingdom and phylum, ranging from prokaryotes to humans. We analyzed the transciptome from the larvae of Asian corn borer, Ostrinia furnacalis (Guenée), and identified several putative AMP transcripts, OfgLys5, OfgLys6, OfgLys10, OfgAtt, and OfgIID. OfgLys5, OfgLys6, and OfgLys10 are all highly homologous with c-type lysozymes, and OfgAtt shows significant identities with Lepidoptera attacin. The amino acid sequence of OfgLys5 and OfgLys6 possessed all conserved features critical for fundamental structure and function of c-type lysozyme, including the two catalytic sites, Glu32 and Asp50. OfgAtt is a typical glycine-rich protein. The antimicrobial activity of O. furnacalis hemolymph increased significantly after injection with Escherichia coli, Micrococcus luteus, or Beauveria bassiana. OfgAtt, IDD, and Lys6 are expressed at low level prior to the challenge, but strongly induced against Gram-positive and negative bacteria, and fungi. Under the same inducement conditions, the transcripts of these three genes elevated most when fifth instar larvae were injected. Therefore, O. furnacalis larvae are induced to produce antimicrobial materials in the hemolymph after the infection, and increase of lysozyme and attacin may contribute to the antimicrobial activity. PMID:24155672

  9. Chemoselective surface attachment of antimicrobial peptides and its effects on interfacial behavior

    NASA Astrophysics Data System (ADS)

    North, Stella H.; So, Christopher; Fears, Kenan; Taitt, Chris R.

    2014-06-01

    Peptide-based biological recognition elements are valuable tools for detection in biodefense systems. The utilization of such biomolecules for detection purposes relies on the ability to immobilize them on the surface of a detection platform in a predictable and reliable manner that facilitates target binding. Numerous immobilization methods have been used to improve the performance of peptide-based biosensors; however, the molecular details of how surface attachment affects structure and activity require further investigation to establish general approaches for obtaining consistent sensor surfaces. This has been largely due to the lack of analytical techniques. Using surface spectroscopy techniques, we examined the secondary structure of peptides tethered to solid support. Different tethering parameters were investigated by substituting a cysteine residue to the N-terminus or C-terminus in cationic antimicrobial peptides, and its effects on antimicrobial activity against gram-negative bacteria, E. coli. Spectroscopic analysis showed that surface immobilization drives transition of peptides secondary structures, resulting in different interfacial behaviors that may influence the secondary structure of the peptides once they interact with the bacterial cells. We have begun to gain insight into how surface attachment may have direct implications for peptide presentation and function and is an important advance in preparing a robust sensing interface.

  10. Two novel antimicrobial peptides purified from the symbiotic bacteria Xenorhabdus budapestensis NMC-10.

    PubMed

    Xiao, Yao; Meng, Fanlu; Qiu, Dewen; Yang, Xiufen

    2012-06-01

    Symbiotic bacteria, which are carried in the intestinal vesicle of the infective stage of juvenile entomopathogenic nematodes, produce broad-spectrum antibiotics. In this study, we aimed to isolate the antimicrobial peptides from the culture of the entomopathogenic bacterium Xenorhabdus budapestensis NMC-10. By screening chromatography columns and optimizing flow rate, pH, salinity and other purification conditions, we identified the final purification procedures which consisted of Q ion-exchange chromatography, gel filtration chromatography and two-step reverse-phase chromatography. Two novel antimicrobial peptides were identified via Q-TOF-TOF and de novo sequencing, and designated as GP-19 and EP-20. Both natural and synthetic peptides demonstrated broad-spectrum antimicrobial activities. The synthetic GP-19 peptide was active against Verticillium dahlia with EC(50) values of 17.54 μg/ml and highly inhibited the growth of a variety of bacteria, while the synthetic EP-20 peptide was highly active against Phytophthora capsici with EC(50) values of 3.14 μg/ml.

  11. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.

    PubMed

    Hancock, Robert E W; Sahl, Hans-Georg

    2006-12-01

    Short cationic amphiphilic peptides with antimicrobial and/or immunomodulatory activities are present in virtually every life form, as an important component of (innate) immune defenses. These host-defense peptides provide a template for two separate classes of antimicrobial drugs. Direct-acting antimicrobial host-defense peptides can be rapid-acting and potent, and possess an unusually broad spectrum of activity; consequently, they have prospects as new antibiotics, although clinical trials to date have shown efficacy only as topical agents. But for these compounds to fulfill their therapeutic promise and overcome clinical setbacks, further work is needed to understand their mechanisms of action and reduce the potential for unwanted toxicity, to make them more resistant to protease degradation and improve serum half-life, as well as to devise means of manufacturing them on a large scale in a consistent and cost-effective manner. In contrast, the role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.

  12. Evaluation of the in vitro cytotoxicity of the antimicrobial peptide P34.

    PubMed

    Vaucher, Rodrigo Almeida; da Motta, Amanda de Souza; Brandelli, Adriano