Science.gov

Sample records for acid bacteria dominated

  1. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    PubMed

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci).

  2. Biopreservation by lactic acid bacteria.

    PubMed

    Stiles, M E

    1996-10-01

    Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a "hidden' fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods. PMID:8879414

  3. Biopreservation by lactic acid bacteria.

    PubMed

    Stiles, M E

    1996-10-01

    Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a "hidden' fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods.

  4. Identification of staphylococci and dominant lactic acid bacteria in spontaneously fermented Swiss meat products using PCR-RFLP.

    PubMed

    Marty, Esther; Buchs, Jasmin; Eugster-Meier, Elisabeth; Lacroix, Christophe; Meile, Leo

    2012-04-01

    Pathogenic, spoilage, and technologically important microorganisms were monitored in 21 spontaneously fermented Swiss meat products manufactured with meat from wildlife or animals grown in natural habitat. Thereby, PCR-restriction fragment length polymorphism (RFLP) on rpoB and 16S rRNA gene sequences provided a powerful tool for fast and accurate identification of the main microbial population. Lactobacillus sakei and Lactobacillus curvatus dominated in fermented meat products followed by Staphylococcus species, which constituted 88.2% of all Gram-positive, catalase-positive cocci (GCC(+)) with cell counts varying from 2.6 to 7.0 log cfu/g during maturation. Staphylococcus equorum was prevalent in frequency and cell counts during maturation (18.0%; 5.0-7.3 log cfu/g) and in the end products (28.4%; 1.8-6.2 log cfu/g) implicating a new presumptive starter species for meat fermentation. Nine out of 14 end products indicated safety risks to consumers due to the high incidence of Staphylococcus saprophyticus or Staphylococcus epidermidis combined with cell counts of 7.4 and 4.9 log cfu/g, respectively. This fact was supported by the detection of Staphylococcus aureus and Enterobacteriaceae in ready-to-eat products strongly exceeding the tolerable limit of 2 log cfu/g. Spontaneously fermented meat products produced from wildlife or animals grown in natural habitats not only gave rise to hygienic and safety concerns but also provided new presumptive starter strains.

  5. Numerically dominant denitrifying bacteria from world soils.

    PubMed

    Gamble, T N; Betlach, M R; Tiedje, J M

    1977-04-01

    Nineteen soils, three freshwater lake sediments, and oxidized poultry manure were examined to determine the dominant denitrifier populations. The samples, most shown or expected to support active denitrification, were from eight countries and included rice paddy, temperate agricultural, rain forest, organic, and waste-treated soils. Over 1,500 organisms that could grow anaerobically on nitrate agar were isolated. After purification, 146 denitrifiers were obtained, as verified by production of N(2) from NO(3) (-). These isolates were characterized by 52 properties appropriate for the Pseudomonas-Alcaligenes group. Numerical taxonomic procedures were used to group the isolates and compare them with nine known denitrifier species. The major group isolated was representative of Pseudonomas fluorescens biotype II. The second most prevalent group was representative of Alcaligenes. Other Pseudomonas species as well as members of the genus Flavobacterium, the latter previously not known to denitrify, also were identified. One-third of the isolates could not utilize glucose or other carbohydrates as sole carbon sources. Significantly, none of the numerically dominant denitrifiers we isolated resembled the most studied species: Pseudomonas denitrificans, Pseudomonas perfectomarinus, and Paracoccus denitrificans. Denitrification appears to be a property of a very diverse group of gram-negative, motile bacteria, as shown by the large number (22.6%) of ungrouped organisms. The diversity of denitrifiers from a given sample was usually high, with at least two groups present. Denitrifiers, nitrite accumulators, and organisms capable of anaerobic growth were present in the ratio of 0.20+/-0.23:0.81+/-0.23:1. There were few correlations between their numbers and the sample characteristics measured. However, the temperatures at which isolates could grow were significantly related to the temperatures of the environments from which they were isolated. Regression analysis revealed few

  6. Heteropolysaccharides from lactic acid bacteria.

    PubMed

    De Vuyst, L; Degeest, B

    1999-04-01

    Microbial exopolysaccharides are biothickeners that can be added to a wide variety of food products, where they serve as viscosifying, stabilizing, emulsifying or gelling agents. Numerous exopolysaccharides with different composition, size and structure are synthesized by lactic acid bacteria. The heteropolysaccharides from both mesophilic and thermophilic lactic acid bacteria have received renewed interest recently. Structural analysis combined with rheological studies revealed that there is considerable variation among the different exopolysaccharides; some of them exhibit remarkable thickening and shear-thinning properties and display high intrinsic viscosities. Hence, several slime-producing lactic acid bacterium strains and their biopolymers have interesting functional and technological properties, which may be exploited towards different products, in particular, natural fermented milks. However, information on the biosynthesis, molecular organization and fermentation conditions is rather scarce, and the kinetics of exopolysaccharide formation are poorly described. Moreover, the production of exopolysaccharides is low and often unstable, and their downstream processing is difficult. This review particularly deals with microbiological, biochemical and technological aspects of heteropolysaccharides from, and their production by, lactic acid bacteria. The chemical composition and structure, the biosynthesis, genetics and molecular organization, the nutritional and physiological aspects, the process technology, and both food additive and in situ applications (in particular in yogurt) of heterotype exopolysaccharides from lactic acid bacteria are described. Where appropriate, suggestions are made for strain improvement, enhanced productivities and advanced modification and production processes (involving enzyme and/or fermentation technology) that may contribute to the economic soundness of applications with this promising group of biomolecules.

  7. Genetics of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  8. Differential staining of bacteria: acid fast stain.

    PubMed

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria.

  9. [Methanotrophic bacteria of acid sphagnum bogs].

    PubMed

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis. PMID:12526194

  10. Phosphatidic Acid Synthesis in Bacteria

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2012-01-01

    Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:22981714

  11. Lactic acid bacteria as probiotics.

    PubMed

    Ljungh, Asa; Wadström, Torkel

    2006-09-01

    A number of Lactobacillus species, Bifidobacterium sp, Saccharomyces boulardii, and some other microbes have been proposed as and are used as probiotic strains, i.e. live microorganisms as food supplement in order to benefit health. The health claims range from rather vague as regulation of bowel activity and increasing of well-being to more specific, such as exerting antagonistic effect on the gastroenteric pathogens Clostridium difficile, Campylobacter jejuni, Helicobacter pylori and rotavirus, neutralising food mutagens produced in colon, shifting the immune response towards a Th2 response, and thereby alleviating allergic reactions, and lowering serum cholesterol (Tannock, 2002). Unfortunately, most publications are case reports, uncontrolled studies in humans, or reports of animal or in vitro studies. Whether or not the probiotic strains employed shall be of human origin is a matter of debate but this is not a matter of concern, as long as the strains can be shown to survive the transport in the human gastrointestinal (GI) tract and to colonise the human large intestine. This includes survival in the stressful environment of the stomach - acidic pH and bile - with induction of new genes encoding a number of stress proteins. Since the availability of antioxidants decreases rostrally in the GI tract production of antioxidants by colonic bacteria provides a beneficial effect in scavenging free radicals. LAB strains commonly produce antimicrobial substance(s) with activity against the homologous strain, but LAB strains also often produce microbicidal substances with effect against gastric and intestinal pathogens and other microbes, or compete for cell surface and mucin binding sites. This could be the mechanism behind reports that some probiotic strains inhibit or decrease translocation of bacteria from the gut to the liver. A protective effect against cancer development can be ascribed to binding of mutagens by intestinal bacteria, reduction of the enzymes beta

  12. Acidophilic, heterotrophic bacteria of acidic mine waters

    SciTech Connect

    Wichlacz, P.L.; Unz, R.F.

    1981-05-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium.

  13. Comparative genomics of the lactic acid bacteria

    SciTech Connect

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  14. Dominant oceanic bacteria secure phosphate using a large extracellular buffer.

    PubMed

    Zubkov, Mikhail V; Martin, Adrian P; Hartmann, Manuela; Grob, Carolina; Scanlan, David J

    2015-07-22

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting (33)P-phosphate-pulsed (32)P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5-40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate.

  15. Dominant oceanic bacteria secure phosphate using a large extracellular buffer

    PubMed Central

    Zubkov, Mikhail V.; Martin, Adrian P.; Hartmann, Manuela; Grob, Carolina; Scanlan, David J.

    2015-01-01

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate. PMID:26198420

  16. Trans unsaturated fatty acids in bacteria.

    PubMed

    Keweloh, H; Heipieper, H J

    1996-02-01

    The occurrence of trans unsaturated fatty acids as by-products of fatty acid transformations carried out by the obligate anaerobic ruminal microflora has been well known for a long time. In recent years, fatty acids with trans configurations also have been detected in the membrane lipids of various aerobic bacteria. Besides several psychrophilic organisms, bacteria-degrading pollutants, such as Pseudomonas putida, are able to synthesize these compounds de novo. In contrast to the trans fatty acids formed by rumen bacteria, the membrane constituents of aerobic bacteria are synthesized by a direct isomerization of the complementary cis configuration of the double bond without a shift of the position. This system of isomerization is located in the cytoplasmic membrane. The conversion of cis unsaturated fatty acids to trans changes the membrane fluidity in response to environmental stimuli, particularly where growth is inhibited due to the presence of high concentrations of toxic substances. Under these conditions, lipid synthesis also stops so that the cells are not able to modify their membrane fluidity by any other mechanism.

  17. Precision genome engineering in lactic acid bacteria

    PubMed Central

    2014-01-01

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  18. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  19. [Screening, identification, and antagonism assessment, of dominant bacteria in Ageratina adenophora Sprengel rhizosphere soil].

    PubMed

    Niu, Hong-Bang; Liu, Wan-Xue; Wan, Fang-Hao; Liu, Bo

    2007-12-01

    By using isolation and culture method, 25 strains of dominant bacteria in Ageratina adenophora rhizosphere soil were isolated and identified, of which, 8 strains were assessed for their antagonistic activity. The results showed that Bacillus and Pseudomonas were highly abundant in A. adenophora rhizosphere soil, of which, B. subtilis and B. megaterium were most abundant and occupied 55.6% of the total identified bacteria. These dominant bacteria had different level antagonistic activity to Fusarium oxysporum and Ralstonia solanacearum, and B. subtilis BS-5 and B. thuringiensis BT-1 had the strongest antagonistic effect on F. oxysporum, with the antagonistic activity of their metabolic products being 85.5% and 83.8%, respectively. The metabolic products of the dominant antagonistic bacteria had even more stronger antagonistic effect on pathogens than the dominant antagonistic bacteria themselves. The existence of abundant bacterial groups with strong antagonistic activity in A. adenophora rhizosphere soil could help A. adenophora to resist harmful soil-borne diseases and escape its natural enemies. Through the feedback actions of the beneficial rhizosphere microbes, A. adenophora probably earned its competition superiority directly or indirectly, being favorable to its rapid expansion.

  20. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  1. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    SciTech Connect

    Green, Stefan; Prakash, Om; Jasrotia, Puja; Overholt, Will; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka, Joel

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  2. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes.

    PubMed

    Wei, Yongjun; Zhou, Haokui; Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.

  3. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes

    PubMed Central

    Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future. PMID:26070087

  4. Safety of industrial lactic acid bacteria.

    PubMed

    Adams, M R

    1999-02-19

    Lactic acid bacteria (LAB) are ubiquitous in fermented and non-fermented foods and are common components of the human commensal microflora. This long history of human exposure and consumption has led to the reasonable conclusion that they are generally safe. Recent attention has also focused on their possible role as probiotic bacteria, promoting beneficial health effects. There have, however, been a number of reports of human infections caused by LAB and these are reviewed. In most cases, the source of the infection was the commensal LAB flora rather than ingested bacteria and the patient had some underlying disease or predisposing condition. Even as opportunistic pathogens, the LAB, with the notable exception of the enterococci, are much less successful than a number of other members of the commensal microflora. The use of new strains for probiotic use is likely to require more detailed evidence for their safety, particularly if the strains have been genetically modified or have been derived from animals. Procedures that have been proposed for assessing the safety of new strains are described.

  5. Exopolysaccharides from sourdough lactic acid bacteria.

    PubMed

    Galle, Sandra; Arendt, Elke K

    2014-01-01

    The use of sourdough improves the quality and increases the shelf life of bread. The positive effects are associated with metabolites produced by lactic acid bacteria (LAB) during sourdough fermentation, including organic acids, exopolysaccharides (EPS), and enzymes. EPS formed during sourdough fermentation by glycansucrase activity from sucrose influence the viscoelastic properties of the dough and beneficially affect the texture and shelf life (in particular, starch retrogradation) of bread. Accordingly, EPS have the potential to replace hydrocolloids currently used as bread improvers and meet so the consumer demands for a reduced use of food additives. In this review, the current knowledge about the functional aspects of EPS formation by sourdough LAB especially in baking applications is summarized.

  6. Production of eicosapentaenoic acid by marine bacteria.

    PubMed

    Yazawa, K; Araki, K; Okazaki, N; Watanabe, K; Ishikawa, C; Inoue, A; Numao, N; Kondo, K

    1988-01-01

    About 5,000 strains of marine microorganisms were screened for eicosapentaenoic acid (EPA)-producing ability, which was detected in 88 of them. All of the latter were found to be obligate aerobic, Gram-negative, motile, short rod-shaped bacteria. One strain, designated as SCRC-8132, showed a doubling time of 30 min at 25 degrees C and produced 20 mg/liter (4 mg/g dry cells) when cultured in a P-Y-M-Glucose medium for 18 h. The EPA to total fatty acids ratio was 24%. The strain produced 26 mg EPA/liter (15 mg/g dry cells) when cultured at 4 degrees C for 5 days, the EPA ratio being increased to 40%. PMID:2834356

  7. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  8. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  9. Probiotic Lactic Acid Bacteria and Skin Health.

    PubMed

    Jeong, Ji Hye; Lee, Chang Y; Chung, Dae Kyun

    2016-10-25

    Human skin is the first defense barrier against the external environment, especially microbial pathogens and physical stimulation. Many studies on skin health with Lactic acid bacteria (LAB) have been published for many years, including prevention of skin disease and improvement of skin conditions. LAB, a major group of gram-positive bacteria, are known to be beneficial to human health by acting as probiotics. Recent studies have shown that LAB and their extracts have beneficial effects on maintenance and improvement of skin health. Oral administration of Lactobacillus delbrueckii inhibits the development of atopic disease. In addition, LAB and LAB extracts are known to have beneficial effects on intestinal diseases, with Lactobacillus plantarum having been shown to attenuate IL-10 deficient colitis. In addition to intestinal health, L. plantarum also has beneficial effects on skin. pLTA, which is lipoteichoic acid isolated from L. plantarum, has anti-photoaging effects on human skin cells by regulating the expression matrix meralloprotionase-1 (MMP-1) expression. While several studies have proposed a relationship between diseases of the skin and small intestines, there are currently no published reviews of the effects of LAB for skin health through regulation of intestinal conditions and the immune system. In this review, we discuss recent findings on the effects of LAB on skin health and its potential applications in beauty foods. PMID:26287529

  10. Denitrifying Bacteria from the Genus Rhodanobacter Dominate Bacterial Communities in the Highly Contaminated Subsurface of a Nuclear Legacy Waste Site

    PubMed Central

    Green, Stefan J.; Prakash, Om; Jasrotia, Puja; Overholt, Will A.; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2012-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233

  11. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site.

    PubMed

    Green, Stefan J; Prakash, Om; Jasrotia, Puja; Overholt, Will A; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M; Watson, David B; Schadt, Christopher W; Brooks, Scott C; Kostka, Joel E

    2012-02-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  12. Hierarchical Polymer Brushes with Dominant Antibacterial Mechanisms Switching from Bactericidal to Bacteria Repellent.

    PubMed

    Yan, Shunjie; Luan, Shifang; Shi, Hengchong; Xu, Xiaodong; Zhang, Jidong; Yuan, Shuaishuai; Yang, Yuming; Yin, Jinghua

    2016-05-01

    Although polycationic surfaces have high antimicrobial efficacies, they suffer from high toxicity to mammalian cells and severe surface accumulation of dead bacteria. For the first time, we propose a surface-initiated photoiniferter-mediated polymerization (SI-PIMP) strategy of constructing a "cleaning" zwitterionic outer layer on a polycationic bactericidal background layer to physically hinder the availability of polycationic moieties for mammalian cells in aqueous service. In dry conditions, the polycationic layer exerts the contact-active bactericidal property toward the adherent bacteria, as the zwitterionic layer collapses. In aqueous environment, the zwitterionic layer forms a hydration layer to significantly inhibit the attachment of planktonic bacteria and the accumulation of dead bacteria, while the polycationic layer kills bacteria occasionally deposited on the surface, thus preserving the antibacterial capability for a long period. More importantly, the zwitterionic hydrated layer protects the mammalian cells from toxicity induced by the bactericidal background layer, and therefore hierarchical antibacterial surfaces present much better biocompatibility than that of the naked cationic references. The dominant antibacterial mechanism of the hierarchical surfaces can switch from the bactericidal efficacy in dry storage to the bacteria repellent capability in aqueous service, showing great advantages in the infection-resistant applications. PMID:27049327

  13. Beneficial effects of lactic acid bacteria on human beings.

    PubMed

    Masood, Muhammad Irfan; Qadir, Muhammad Imran; Shirazi, Jafir Hussain; Khan, Ikram Ullah

    2011-02-01

    Lactic acid bacteria are a diverse group of bacteria that produce lactic acid as their major fermented product. Most of them are normal flora of human being and animals and produce myriad beneficial effects for human beings include, alleviation of lactose intolerance, diarrhea, peptic ulcer, stimulation of immune system, antiallergic effects, antifungal actions, preservation of food, and prevention of colon cancer. This review highlights the potential species of Lactic acid bacteria responsible for producing these effects. It has been concluded that lactic acid bacteria are highly beneficial microorganisms for human beings and are present abundantly in dairy products so their use should be promoted for good human health.

  14. Beneficial effects of lactic acid bacteria on human beings.

    PubMed

    Masood, Muhammad Irfan; Qadir, Muhammad Imran; Shirazi, Jafir Hussain; Khan, Ikram Ullah

    2011-02-01

    Lactic acid bacteria are a diverse group of bacteria that produce lactic acid as their major fermented product. Most of them are normal flora of human being and animals and produce myriad beneficial effects for human beings include, alleviation of lactose intolerance, diarrhea, peptic ulcer, stimulation of immune system, antiallergic effects, antifungal actions, preservation of food, and prevention of colon cancer. This review highlights the potential species of Lactic acid bacteria responsible for producing these effects. It has been concluded that lactic acid bacteria are highly beneficial microorganisms for human beings and are present abundantly in dairy products so their use should be promoted for good human health. PMID:21162695

  15. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.

  16. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. PMID:25087936

  17. Lactic acid bacteria production from whey.

    PubMed

    Mondragón-Parada, María Elena; Nájera-Martínez, Minerva; Juárez-Ramírez, Cleotilde; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Cristiani-Urbina, Eliseo

    2006-09-01

    The main purpose of this work was to isolate and characterize lactic acid bacteria (LAB) strains to be used for biomass production using a whey-based medium supplemented with an ammonium salt and with very low levels of yeast extract (0.25 g/L). Five strains of LAB were isolated from naturally soured milk after enrichment in whey-based medium. One bacterial isolate, designated MNM2, exhibited a remarkable capability to utilize whey lactose and give a high biomass yield on lactose. This strain was identified as Lactobacillus casei by its 16S rDNA sequence. A kinetic study of cell growth, lactose consumption, and titratable acidity production of this bacterial strain was performed in a bioreactor. The biomass yield on lactose, the percentage of lactose consumption, and the maximum increase in cell mass obtained in the bioreactor were 0.165 g of biomass/g of lactose, 100%, and 2.0 g/L, respectively, which were 1.44, 1.11, and 2.35 times higher than those found in flask cultures. The results suggest that it is possible to produce LAB biomass from a whey-based medium supplemented with minimal amounts of yeast extract.

  18. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  19. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.

  20. Fermentation of Fructooligosaccharides by Lactic Acid Bacteria and Bifidobacteria†

    PubMed Central

    Kaplan, Handan; Hutkins, Robert W.

    2000-01-01

    Lactic acid bacteria and bifidobacteria were screened of their ability to ferment fructooligosaccharides (FOS) on MRS agar. Of 28 strains of lactic acid bacteria and bifidobacteria examined, 12 of 16 Lactobacillus strains and 7 of 8 Bifidobacterium strains fermented FOS. Only strains that gave a positive reaction by the agar method reached high cell densities in broth containing FOS. PMID:10831458

  1. Probiotic spectra of lactic acid bacteria (LAB).

    PubMed

    Naidu, A S; Bidlack, W R; Clemens, R A

    1999-01-01

    Lactic acid bacteria (LAB) and their probio-active cellular substances exert many beneficial effects in the gastrointestinal tract. LAB prevent adherence, establishment, and replication of several enteric mucosal pathogens through several antimicrobial mechanisms. LAB also release various enzymes into the intestinal lumen and exert potential synergistic effects on digestion and alleviate symptoms of intestinal malabsoption. Consumption of LAB fermented dairy products with LAB may elicit antitumor effects. These effects are attributed to the inhibition of mutagenic activity; decrease in several enzymes implicated in the generation of carcinogens, mutagens, or tumor-promoting agents; suppression of tumors; and the epidemiology correlating dietary regimes and cancer. Specific cellular components in LAB strains seem to induce strong adjuvant effects including modulation of cell-mediated immune responses, activation of reticuloendothelial system, augmentation of cytokine pathways and regulation of interleukins, and tumor necrosis factors. Oral administration of LAB is well tolerated and proven to be safe in 143 human clinical trials and no adverse effects were reported in any of the total 7,526 subjects studied during 1961-1998. In an effort to decrease the reliance on synthetic antimicrobials and control the emerging immunocompromised host population, the time has come to carefully explore the prophylactic and therapeutic applications of probiotic LAB.

  2. Bacteria and Archaea in acidic environments and a key to morphological identification

    USGS Publications Warehouse

    Robbins, E.I.

    2000-01-01

    Natural and anthropogenic acidic environments are dominated by bacteria and Archaea. As many as 86 genera or species have been identified or isolated from pH <4.5 environments. This paper reviews the worldwide literature and provide tables of morphological characteristics, habitat information and a key for light microscope identification for the non-microbiologist.

  3. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    PubMed

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively.

  4. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    PubMed

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively. PMID:22265314

  5. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape.

    PubMed

    Sahari, Ali; Traore, Mahama A; Scharf, Birgit E; Behkam, Bahareh

    2014-10-01

    Several attenuated and non-pathogenic bacterial species have been demonstrated to actively target diseased sites and successfully deliver plasmid DNA, proteins and other therapeutic agents into mammalian cells. These disease-targeting bacteria can be employed for targeted delivery of therapeutic and imaging cargos in the form of a bio-hybrid system. The bio-hybrid drug delivery system constructed here is comprised of motile Escherichia coli MG1655 bacteria and elliptical disk-shaped polymeric microparticles. The transport direction for these vehicles can be controlled through biased random walk of the attached bacteria in presence of chemoattractant gradients in a process known as chemotaxis. In this work, we utilize a diffusion-based microfluidic platform to establish steady linear concentration gradients of a chemoattractant and investigate the roles of chemotaxis and geometry in transport of bio-hybrid drug delivery vehicles. Our experimental results demonstrate for the first time that bacterial chemotactic response dominates the effect of body shape in extravascular transport; thus, the non-spherical system could be more favorable for drug delivery applications owing to the known benefits of using non-spherical particles for vascular transport (e.g. relatively long circulation time).

  6. Importance of lactic acid bacteria in Asian fermented foods

    PubMed Central

    2011-01-01

    Lactic acid bacteria play important roles in various fermented foods in Asia. Besides being the main component in kimchi and other fermented foods, they are used to preserve edible food materials through fermentation of other raw-materials such as rice wine/beer, rice cakes, and fish by producing organic acids to control putrefactive microorganisms and pathogens. These bacteria also provide a selective environment favoring fermentative microorganisms and produce desirable flavors in various fermented foods. This paper discusses the role of lactic acid bacteria in various non-dairy fermented food products in Asia and their nutritional and physiological functions in the Asian diet. PMID:21995342

  7. Interactions between amino-acid-degrading bacteria and methanogenic bacteria in anaerobic digestion

    SciTech Connect

    Nagase, M.; Matsuo, T.

    1982-10-01

    The degradation of amino acids in anaerobic digestion was examined in terms of the interactions between amino-acid-degrading bacteria and methanogenic bacteria. Certain amino acids were degraded oxidatively by dehydrogenation, with methanogenic bacteria acting as H/sub 2/ acceptors. The inhibition of methanogenesis by chloroform also inhibited the degradation of these amino acids and/or caused variations in the composition of volatile acids produced from them. The presence of glycine reduced the inhibitory effect caused by chloroform, probably because glycine acted as an H/sub 2/ acceptor in place of methanogenic bacteria. This fact suggested that the coupled oxidation-reduction reactions between two amino acids - one acting as the H/sub 2/ donor and the other acting as the H/sub 2/ acceptor - may occur in the anaerobic digestion of proteins or amino-acid mixtures. The conversion of some proteins to volatile acids was not affected when methanogensis was inhibited by chloroform. This suggested that the component amino acids of proteins may be degraded by the coupled oxidation-reduction reactions and that the degradation of proteins may not be dependent on the activity of methanogenic bacteria as H/sub 2/ acceptors.

  8. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    PubMed

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  9. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  10. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies using traditional biochemical methods to study the ecology of commercial sauerkraut fermentations revealed that four lactic acid bacteria species, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis were the primary microorganisms in...

  11. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    PubMed Central

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydroxybenzoic acid, (trans, trans)-3,4-dihydroxycyclohexane-1-carboxylic acid, p-hydrocoumaric acid, vanillic acid, azelaic acid, hydroferulic acid, p-coumaric acid, hydrocaffeic acid, ferulic acid, and caffeic acid. Among these metabolites, the antifungal compounds 3-phenyllactic acid and 3-hydroxydecanoic acid were previously isolated in our laboratory from liquid cultures of the same LAB strains by bioassay-guided fractionation. It was concluded that other metabolites, e.g., p-hydrocoumaric acid, hydroferulic acid, and p-coumaric acid, were released from the grass by the added LAB strains. The antifungal activities of the identified metabolites in 100 mM lactic acid were investigated. The MICs against Pichia anomala, Penicillium roqueforti, and Aspergillus fumigatus were determined, and 3-hydroxydecanoic acid showed the lowest MIC (0.1 mg ml−1 for two of the three test organisms). PMID:17616609

  12. Probiotic lactic acid bacteria - the fledgling cuckoos of the gut?

    PubMed

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, Jørgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either 'good' or 'bad'. However, a microbial society has its own system of government - 'microcracy' - and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being 'friendly' - they may instead behave like fledgling cuckoos. PMID:27235098

  13. Lactic acid bacteria as a cell factory for riboflavin production.

    PubMed

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production.

  14. Effects of humic acids on the growth of bacteria

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. V.; Yakushev, A. V.; Zavgorodnyaya, Yu. A.; Byzov, B. A.; Demin, V. V.

    2010-03-01

    The influence of humic acids of different origins on the growth of bacterial cultures of different taxa isolated from the soil and the digestive tracts of earthworms ( Aporrectodea caliginosa)—habitats with contrasting conditions—was studied. More than half of the soil and intestinal isolates from the 170 tested strains grew on the humic acid of brown coal as the only carbon source. The specific growth rate of the bacteria isolated from the intestines of the earthworms was higher than that of the soil bacteria. The use of humic acids by intestinal bacteria confirms the possibility of symbiotic digestion by earthworms with the participation of bacterial symbionts. Humic acids at a concentration of 0.1 g/l stimulated the growth of the soil and intestinal bacteria strains (66 strains out of 161) on Czapek’s medium with glucose (1 g/l), probably, acting as a regulator of the cell metabolism. On the medium with the humic acid, the intestinal bacteria grew faster than the soil isolates did. The most active growth of the intestinal isolates was observed by Paenibacillus sp., Pseudomonas putida, Delftia acidovorans, Microbacterium terregens, and Aeromonas sp.; among the soil ones were the representatives of the Pseudomonas genus. A response of the bacteria to the influence of humic acids was shown at the strain level using the example of Pseudomonas representatives. The Flexom humin preparation stimulated the growth of the hydrocarbon-oxidizing Acinetobacter sp. bacteria. This effect can be used for creating a new compound with the elevated activity of bacteria that are destroyers of oil and oil products.

  15. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil.

    PubMed

    Banning, Natasha C; Maccarone, Linda D; Fisk, Louise M; Murphy, Daniel V

    2015-06-08

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.

  16. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil

    NASA Astrophysics Data System (ADS)

    Banning, Natasha C.; Maccarone, Linda D.; Fisk, Louise M.; Murphy, Daniel V.

    2015-06-01

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.

  17. Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in southern Greece.

    PubMed

    Drosinos, Eleftherios H; Paramithiotis, Spiros; Kolovos, George; Tsikouras, Ioannis; Metaxopoulos, Ioannis

    2007-05-01

    The physicochemical and microbiological characteristics of spontaneously fermented sausages made by two medium-sized enterprises (MSE) located in southern Greece have been studied. A total of 300 lactic acid bacteria and 300 staphylococcal strains have been isolated and identified by their physiological characteristics. Lactobacillus plantarum strains were found to dominate the lactic acid bacteria microbiota in most of the cases with L. sakei strains prevailing in some of them and L. rhamnosus strains occasionally accompanying the dominant lactic acid bacteria microbiota. On the other hand, S. saprophyticus strains were found to dominate the staphylococcal microbiota in all spontaneously fermented sausages with of S. simulans, S. xylosus, S. gallinarum and S. cohnii cohnii strains being sporadically present. Following the identification, an evaluation of their technological properties, namely proteolytic and lipolytic capacities as well as production of biogenic amines and antimicrobial compounds, took place. None of the lactic acid bacteria and staphylococci was found to possess lipolytic activity whereas a total of 6 lactic acid bacteria and 51 staphylococci strains were found to be able to hydrolyse either the sarcoplasic, myofibrillar or both protein fractions. Furthermore, only one L. sakei strain and 185 staphylococci strains were found to possess decarboxylase activity against lysine, tyrosine, ornithine or histidine. Finally none of the staphylococcal microbiota and 3 lactic acid bacteria strains were found to be able to produce antimicrobial compounds of proteinaceous nature against Listeria monocytogenes.

  18. Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm.

    PubMed

    Probst, Alexander J; Holman, Hoi-Ying N; DeSantis, Todd Z; Andersen, Gary L; Birarda, Giovanni; Bechtel, Hans A; Piceno, Yvette M; Sonnleitner, Maria; Venkateswaran, Kasthuri; Moissl-Eichinger, Christine

    2013-03-01

    Archaea are usually minor components of a microbial community and dominated by a large and diverse bacterial population. In contrast, the SM1 Euryarchaeon dominates a sulfidic aquifer by forming subsurface biofilms that contain a very minor bacterial fraction (5%). These unique biofilms are delivered in high biomass to the spring outflow that provides an outstanding window to the subsurface. Despite previous attempts to understand its natural role, the metabolic capacities of the SM1 Euryarchaeon remain mysterious to date. In this study, we focused on the minor bacterial fraction in order to obtain insights into the ecological function of the biofilm. We link phylogenetic diversity information with the spatial distribution of chemical and metabolic compounds by combining three different state-of-the-art methods: PhyloChip G3 DNA microarray technology, fluorescence in situ hybridization (FISH) and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy. The results of PhyloChip and FISH technologies provide evidence for selective enrichment of sulfate-reducing bacteria, which was confirmed by the detection of bacterial dissimilatory sulfite reductase subunit B (dsrB) genes via quantitative PCR and sequence-based analyses. We further established a differentiation of archaeal and bacterial cells by SR-FTIR based on typical lipid and carbohydrate signatures, which demonstrated a co-localization of organic sulfate, carbonated mineral and bacterial signatures in the biofilm. All these results strongly indicate an involvement of the SM1 euryarchaeal biofilm in the global cycles of sulfur and carbon and support the hypothesis that sulfidic springs are important habitats for Earth's energy cycles. Moreover, these investigations of a bacterial minority in an Archaea-dominated environment are a remarkable example of the great power of combining highly sensitive microarrays with label-free infrared imaging.

  19. Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm

    PubMed Central

    Probst, Alexander J; Holman, Hoi-Ying N; DeSantis, Todd Z; Andersen, Gary L; Birarda, Giovanni; Bechtel, Hans A; Piceno, Yvette M; Sonnleitner, Maria; Venkateswaran, Kasthuri; Moissl-Eichinger, Christine

    2013-01-01

    Archaea are usually minor components of a microbial community and dominated by a large and diverse bacterial population. In contrast, the SM1 Euryarchaeon dominates a sulfidic aquifer by forming subsurface biofilms that contain a very minor bacterial fraction (5%). These unique biofilms are delivered in high biomass to the spring outflow that provides an outstanding window to the subsurface. Despite previous attempts to understand its natural role, the metabolic capacities of the SM1 Euryarchaeon remain mysterious to date. In this study, we focused on the minor bacterial fraction in order to obtain insights into the ecological function of the biofilm. We link phylogenetic diversity information with the spatial distribution of chemical and metabolic compounds by combining three different state-of-the-art methods: PhyloChip G3 DNA microarray technology, fluorescence in situ hybridization (FISH) and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy. The results of PhyloChip and FISH technologies provide evidence for selective enrichment of sulfate-reducing bacteria, which was confirmed by the detection of bacterial dissimilatory sulfite reductase subunit B (dsrB) genes via quantitative PCR and sequence-based analyses. We further established a differentiation of archaeal and bacterial cells by SR-FTIR based on typical lipid and carbohydrate signatures, which demonstrated a co-localization of organic sulfate, carbonated mineral and bacterial signatures in the biofilm. All these results strongly indicate an involvement of the SM1 euryarchaeal biofilm in the global cycles of sulfur and carbon and support the hypothesis that sulfidic springs are important habitats for Earth's energy cycles. Moreover, these investigations of a bacterial minority in an Archaea-dominated environment are a remarkable example of the great power of combining highly sensitive microarrays with label-free infrared imaging. PMID:23178669

  20. Lactic acid bacteria in the quality improvement and depreciation of wine.

    PubMed

    Lonvaud-Funel, A

    1999-01-01

    The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 10(6) CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteria, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet completely elucidated

  1. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  2. Dominant negative retinoic acid receptor initiates tumor formation in mice

    PubMed Central

    Kupumbati, Tara S; Cattoretti, Giorgio; Marzan, Christine; Farias, Eduardo F; Taneja, Reshma; Mira-y-Lopez, Rafael

    2006-01-01

    Background Retinoic acid suppresses cell growth and promotes cell differentiation, and pharmacological retinoic acid receptor (RAR) activation is anti-tumorigenic. This begs the question of whether chronic physiological RAR activation by endogenous retinoids is likewise anti-tumorigenic. Results To address this question, we generated transgenic mice in which expression of a ligand binding defective dominant negative RARα (RARαG303E) was under the control of the mouse mammary tumor virus (MMTV) promoter. The transgene was expressed in the lymphoid compartment and in the mammary epithelium. Observation of aging mice revealed that transgenic mice, unlike their wild type littermates, developed B cell lymphomas at high penetrance, with a median latency of 40 weeks. MMTV-RARαG303E lymphomas were high grade Pax-5+, surface H+L Ig negative, CD69+ and BCL6- and cytologically and phenotypically resembled human adult high grade (Burkitt's or lymphoblastic) lymphomas. We postulated that mammary tumors might arise after a long latency period as seen in other transgenic models of breast cancer. We tested this idea by transplanting transgenic epithelium into the cleared fat pads of wild type hosts, thus bypassing lymphomagenesis. At 17 months post-transplantation, a metastatic mammary adenocarcinoma developed in one of four transplanted glands whereas no tumors developed in sixteen of sixteen endogenous glands with wild type epithelium. Conclusion These findings suggest that physiological RAR activity may normally suppress B lymphocyte and mammary epithelial cell growth and that global RAR inactivation is sufficient to initiate a stochastic process of tumor development requiring multiple transforming events. Our work makes available to the research community a new animal resource that should prove useful as an experimental model of aggressive sporadic lymphoma in immunologically uncompromised hosts. We anticipate that it may also prove useful as a model of breast cancer. PMID

  3. Functional genomics of lactic acid bacteria: from food to health.

    PubMed

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.

  4. Functional genomics of lactic acid bacteria: from food to health

    PubMed Central

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  5. Barriers to application of genetically modified lactic acid bacteria.

    PubMed

    Verrips, C T; van den Berg, D J

    1996-10-01

    To increase the acceptability of food products containing genetically modified microorganisms it is necessary to provide in an early stage to the consumers that the product is safe and that the product provide a clear benefit to the consumer. To comply with the first requirement a systematic approach to analyze the probability that genetically modified lactic acid bacteria will transform other inhabitants of the gastro- intestinal (G/I) tract or that these lactic acid bacteria will pick up genetic information of these inhabitants has been proposed and worked out to some degree. From this analysis it is clear that reliable data are still missing to carry out complete risk assessment. However, on the basis of present knowledge, lactic acid bacteria containing conjugative plasmids should be avoided. Various studies show that consumers in developed countries will accept these products when they offer to them health or taste benefits or a better keepability. For the developing countries the biggest challenge for scientists is most likely to make indigenous fermented food products with strongly improved microbiological stability due to broad spectra bacteriocins produced by lactic acid bacteria. Moreover, these lactic acid bacteria may contribute to health.

  6. Remediation of acid mine drainage with sulfate reducing bacteria

    SciTech Connect

    Hauri, J.F.; Schaider, L.A.

    2009-02-15

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

  7. Acid phosphatase/phosphotransferases from enteric bacteria.

    PubMed

    Mihara, Y; Utagawa, T; Yamada, H; Asano, Y

    2001-01-01

    We have investigated the enzymatic phosphorylation of nucleosides and found that Morganella morganii phoC acid phosphatase exhibits regioselective pyrophosphate (PP(i))-nucleoside phosphotransferase activity. In this study, we isolated genes encoding an acid phosphatase with regioselective phosphotransferase activity (AP/PTase) from Providencia stuartii, Enterobacter aerogenes, Escherichia blattae and Klebsiella planticola, and compared the primary structures and enzymatic characteristics of these enzymes with those of AP/PTase (PhoC acid phosphatase) from M. morganii. The enzymes were highly homologous in primary structure with M. morganii AP/PTase, and are classified as class A1 acid phosphatases. The synthesis of inosine-5'-monophosphate (5'-IMP) by E. coli overproducing each acid phosphatase was investigated. The P. stuartii enzyme, which is most closely related to the M. morganii enzyme, exhibited high 5'-IMP productivity, similar to the M. morganii enzyme. The 5'-IMP productivities of the E. aerogenes, E. blattae and K. planticola enzymes were inferior to those of the former two enzymes. This result underlines the importance of lower K(m) values for efficient nucleotide production. As these enzymes exhibited a very high degree of homology at the amino acid sequence level, it is likely that local sequence differences in the binding pocket are responsible for the differences in the nucleoside-PP(i) phosphotransferase reaction.

  8. Animal rennets as sources of dairy lactic acid bacteria.

    PubMed

    Cruciata, Margherita; Sannino, Ciro; Ercolini, Danilo; Scatassa, Maria L; De Filippis, Francesca; Mancuso, Isabella; La Storia, Antonietta; Moschetti, Giancarlo; Settanni, Luca

    2014-04-01

    The microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB), Streptococcus thermophilus and some lactobacilli, mainly Lactobacillus crispatus and Lactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, as Enterococcus casseliflavus, Enterococcus faecium, Enterococcus faecalis, Enterococcus lactis, Lactobacillus delbrueckii, and Streptococcus thermophilus, while the other strains, all belonging to the genus Enterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions. PMID:24441167

  9. Acetic Acid bacteria: physiology and carbon sources oxidation.

    PubMed

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  10. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics

    DOE PAGES

    Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei; Huang, Shiao -Wei; Chang, Ting -Yan; Yang, Cheng -Yu; Wang, Yu -Bin; Lin, Yu-Teh Kirk; Wu, Yu -Wei; Tang, Sen -Lin; et al

    2015-12-03

    Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted othermore » carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.« less

  11. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics

    SciTech Connect

    Lin, Kuei -Han; Liao, Ben -Yang; Chang, Hao -Wei; Huang, Shiao -Wei; Chang, Ting -Yan; Yang, Cheng -Yu; Wang, Yu -Bin; Lin, Yu-Teh Kirk; Wu, Yu -Wei; Tang, Sen -Lin; Yu, Hon -Tsen

    2015-12-03

    Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA gene-based diversity surveys. However, our understanding regarding the interactions among microbes, or between microbes and environmental factors, remains limited. In the present study, a metagenomic approach, followed by bioinformatics analyses, were used to predict interactions within the microbial ecosystem in Shi-Huang-Ping (SHP), an acidic hot spring in northern Taiwan. Characterizing environmental parameters and potential metabolic pathways highlighted the importance of carbon assimilatory pathways. Four distinct carbon assimilatory pathways were identified in five dominant genera of bacteria. Of those dominant carbon fixers, Hydrogenobaculum bacteria outcompeted other carbon assimilators and dominated the SHP, presumably due to their ability to metabolize hydrogen and to withstand an anaerobic environment with fluctuating temperatures. Furthermore, most dominant microbes were capable of metabolizing inorganic sulfur-related compounds (abundant in SHP). However, Acidithiobacillus ferrooxidans was the only species among key rare microbes with the capability to fix nitrogen, suggesting a key role in nitrogen cycling. In addition to potential metabolic interactions, based on the 16S rRNAs gene sequence of Nanoarchaeum-related and its potential host Ignicoccus-related archaea, as well as sequences of viruses and CRISPR arrays, we inferred that there were complex microbe-microbe interactions. In conclusion, our study provided evidence that there were numerous microbe-microbe and microbe-environment interactions within the microbial community in an acidic hot spring. We proposed that Hydrogenobaculum bacteria were the dominant microbial genus, as they were able to metabolize hydrogen, assimilate carbon and live in an anaerobic environment with fluctuating temperatures.

  12. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance.

  13. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  14. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose.

    PubMed

    Yuki, Masahiro; Kuwahara, Hirokazu; Shintani, Masaki; Izawa, Kazuki; Sato, Tomoyuki; Starns, David; Hongoh, Yuichi; Ohkuma, Moriya

    2015-12-01

    Wood-feeding lower termites harbour symbiotic gut protists that support the termite nutritionally by degrading recalcitrant lignocellulose. These protists themselves host specific endo- and ectosymbiotic bacteria, functions of which remain largely unknown. Here, we present draft genomes of a dominant, uncultured ectosymbiont belonging to the order Bacteroidales, 'Candidatus Symbiothrix dinenymphae', which colonizes the cell surface of the cellulolytic gut protists Dinenympha spp. We analysed four single-cell genomes of Ca. S. dinenymphae, the highest genome completeness was estimated to be 81.6-82.3% with a predicted genome size of 4.28-4.31 Mb. The genome retains genes encoding large parts of the amino acid, cofactor and nucleotide biosynthetic pathways. In addition, the genome contains genes encoding various glycoside hydrolases such as endoglucanases and hemicellulases. The genome indicates that Ca. S. dinenymphae ferments lignocellulose-derived monosaccharides to acetate, a major carbon and energy source of the host termite. We suggest that the ectosymbiont digests lignocellulose and provides nutrients to the host termites, and hypothesize that the hydrolytic activity might also function as a pretreatment for the host protist to effectively decompose the crystalline cellulose components.

  15. Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, maritime Antarctica.

    PubMed

    Vasileva-Tonkova, Evgenia; Romanovskaya, Victoria; Gladka, Galina; Gouliamova, Dilnora; Tomova, Iva; Stoilova-Disheva, Margarita; Tashyrev, Oleksandr

    2014-04-01

    Antarctic plants are stable specific microenvironments for microbial colonization that are still less explored. In this study, we investigated cultivable heterotrophic bacteria and yeasts dominating in plant samples collected from different terrestrial biotopes near Ukrainian Antarctic Base on Galindez Island, maritime Antarctica. Phylogenetic analysis revealed affiliation of the bacterial isolates to genera Pseudomonas, Stenotrophomonas, Brevundimonas, Sporosarcina, Dermacoccus, Microbacterium, Rothia and Frondihabitans, and the yeast isolates to genera Rhodosporidium, Cryptococcus, Leucosporidiella, Candida and Exophiala. Some ecophysiological properties of isolated strains were determined that are important in response to different stresses such as psychro- and halotolerance, UV-resistance and production of hydrolytic enzymes. The majority of isolates (88 %) was found to be psychrotolerant; all are halotolerant. Significant differences in survival subsequent to UV-C radiation were observed among the isolates, as measured by culturable counts. For the bacterial isolates, lethal doses in the range 80-600 J m⁻² were determined, and for the yeast isolates--in the range 300-1,000 J m⁻². Dermacoccus profundi U9 and Candida davisiana U6 were found as most UV resistant among the bacterial and yeast isolates, respectively. Producers of caseinase, gelatinase, β-glucosidase, and cellulase were detected. To the best of our knowledge, this is the first report on isolation of UV resistant strain D. profundi, and Frondihabitans strain from Antarctica, and on detection of cellulase activity in Antarctic yeast strain C. davisiana. The results obtained contribute to clarifying adaptation strategies of Antarctic microbiota and its possible role in functional stability of Antarctic biocenoses. Stress tolerant strains were detected that are valuable for ecological and applied studies. PMID:24277323

  16. Systems solutions by lactic acid bacteria: from paradigms to practice.

    PubMed

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  17. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  18. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  19. Systems solutions by lactic acid bacteria: from paradigms to practice.

    PubMed

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications.

  20. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica.

    PubMed

    Ganzert, Lars; Lipski, André; Hubberten, Hans-Wolfgang; Wagner, Dirk

    2011-06-01

    Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH.

  1. Relation between chemotaxis and consumption of amino acids in bacteria

    PubMed Central

    Yang, Yiling; M. Pollard, Abiola; Höfler, Carolin; Poschet, Gernot; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    Summary Chemotaxis enables bacteria to navigate chemical gradients in their environment, accumulating toward high concentrations of attractants and avoiding high concentrations of repellents. Although finding nutrients is likely to be an important function of bacterial chemotaxis, not all characterized attractants are nutrients. Moreover, even for potential nutrients, the exact relation between the metabolic value of chemicals and their efficiency as chemoattractants has not been systematically explored. Here we compare the chemotactic response of amino acids with their use by bacteria for two well‐established models of chemotactic behavior, E scherichia coli and B acillus subtilis. We demonstrate that in E . coli chemotaxis toward amino acids indeed strongly correlates with their utilization. However, no such correlation is observed for B . subtilis, suggesting that in this case, the amino acids are not followed because of their nutritional value but rather as environmental cues. PMID:25807888

  2. Lactic acid bacteria as a cell factory for riboflavin production

    PubMed Central

    Thakur, Kiran; De, Sachinandan

    2015-01-01

    Summary Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin‐enriched functional foods, proper selection and exploitation of riboflavin‐producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  3. Adaptation and tolerance of bacteria against acetic acid.

    PubMed

    Trček, Janja; Mira, Nuno Pereira; Jarboe, Laura R

    2015-08-01

    Acetic acid is a weak organic acid exerting a toxic effect to most microorganisms at concentrations as low as 0.5 wt%. This toxic effect results mostly from acetic acid dissociation inside microbial cells, causing a decrease of intracellular pH and metabolic disturbance by the anion, among other deleterious effects. These microbial inhibition mechanisms enable acetic acid to be used as a preservative, although its usefulness is limited by the emergence of highly tolerant spoilage strains. Several biotechnological processes are also inhibited by the accumulation of acetic acid in the growth medium including production of bioethanol from lignocellulosics, wine making, and microbe-based production of acetic acid itself. To design better preservation strategies based on acetic acid and to improve the robustness of industrial biotechnological processes limited by this acid's toxicity, it is essential to deepen the understanding of the underlying toxicity mechanisms. In this sense, adaptive responses that improve tolerance to acetic acid have been well studied in Escherichia coli and Saccharomyces cerevisiae. Strains highly tolerant to acetic acid, either isolated from natural environments or specifically engineered for this effect, represent a unique reservoir of information that could increase our understanding of acetic acid tolerance and contribute to the design of additional tolerance mechanisms. In this article, the mechanisms underlying the acetic acid tolerance exhibited by several bacterial strains are reviewed, with emphasis on the knowledge gathered in acetic acid bacteria and E. coli. A comparison of how these bacterial adaptive responses to acetic acid stress fit to those described in the yeast Saccharomyces cerevisiae is also performed. A systematic comparison of the similarities and dissimilarities of the ways by which different microbial systems surpass the deleterious effects of acetic acid toxicity has not been performed so far, although such exchange

  4. Metagenomic Analysis Reveals Symbiotic Relationship among Bacteria in Microcystis-Dominated Community

    PubMed Central

    Xie, Meili; Ren, Minglei; Yang, Chen; Yi, Haisi; Li, Zhe; Li, Tao; Zhao, Jindong

    2016-01-01

    Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed. PMID:26870018

  5. Metagenomic Analysis Reveals Symbiotic Relationship among Bacteria in Microcystis-Dominated Community.

    PubMed

    Xie, Meili; Ren, Minglei; Yang, Chen; Yi, Haisi; Li, Zhe; Li, Tao; Zhao, Jindong

    2016-01-01

    Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed. PMID:26870018

  6. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  7. Enrichment of amino acid-oxidizing, acetate-reducing bacteria.

    PubMed

    Ato, Makoto; Ishii, Masaharu; Igarashi, Yasuo

    2014-08-01

    In anaerobic condition, amino acids are oxidatively deaminated, and decarboxylated, resulting in the production of volatile fatty acids. In this process, excess electrons are produced and their consumption is necessary for the accomplishment of amino acid degradation. In this study, we anaerobically constructed leucine-degrading enrichment cultures from three different environmental samples (compost, excess sludge, and rice field soil) in order to investigate the diversity of electron-consuming reaction coupled to amino acid oxidation. Constructed enrichment cultures oxidized leucine to isovalerate and their activities were strongly dependent on acetate. Analysis of volatile fatty acids (VFAs) profiles and community structure analysis during batch culture of each enrichment indicated that Clostridium cluster I coupled leucine oxidation to acetate reduction in the enrichment from the compost and the rice field soil. In these cases, acetate was reduced to butyrate. On the other hand, Clostridium cluster XIVb coupled leucine oxidation to acetate reduction in the enrichment from the excess sludge. In this case, acetate was reduced to propionate. To our surprise, the enrichment from rice field soil oxidized leucine even in the absence of acetate and produced butyrate. The enrichment would couple leucine oxidation to reductive butyrate synthesis from CO2. The coupling reaction would be achieved based on trophic link between hydrogenotrophic acetogenic bacteria and acetate-reducing bacteria by sequential reduction of CO2 and acetate. Our study suggests anaerobic degradation of amino acids is achieved yet-to-be described reactions. PMID:24630616

  8. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  9. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    PubMed

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  10. Bacteriocins of lactic acid bacteria: extending the family.

    PubMed

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-04-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.

  11. Modified alginate and chitosan for lactic acid bacteria immobilization.

    PubMed

    Le-Tien, Canh; Millette, Mathieu; Mateescu, Mircea-Alexandru; Lacroix, Monique

    2004-06-01

    Beads with enhanced-stability acid media, which were based on alginate and chitosan functionalized by succinylation (increasing the anionic charges able to retain protons) or by acylation (improving matrix hydrophobicity), were developed for immobilization of bacterial cells. Beads (3 mm diameter) formed by ionotropic gelation with CaCl(2) presented good mechanical characteristics. After 30 min incubation of viable free Lactobacillus rhamnosus cells in simulated gastric fluid (pH 1.5), we noticed that the level of viable bacteria was undetectable. Bacterial immobilization in native-alginate-based beads generated a viable-cell count of 22-26%, whereas, when entrapped in succinylated alginate and chitosan beads, the percentage of viable cells was of 60 and 66%, respectively. Best viability (87%) was found for bacteria immobilized in N -palmitoylaminoethyl alginate, which affords a high protective effect, probably due to long alkyl pendants that improve the beads' hydrophobicity, limiting hydration in the acidic environment.

  12. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    PubMed

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  13. Intracellular pH of acid-tolerant ruminal bacteria.

    PubMed Central

    Russell, J B

    1991-01-01

    Acid-tolerant ruminal bacteria (Bacteroides ruminicola B1(4), Selenomonas ruminantium HD4, Streptococcus bovis JB1, Megasphaera elsdenii B159, and strain F) allowed their intracellular pH to decline as a function of extracellular pH and did not generate a large pH gradient across the cell membrane until the extracellular pH was low (less than 5.2). This decline in intracellular pH prevented an accumulation of volatile fatty acid anions inside the cells. PMID:1781695

  14. [Monosaccharide and fatty acid composition of exopolymer complex of bacteria-destructors of the protective coating of gas pipeline].

    PubMed

    Kopteva, Zh P; Zanina, V V; Boretskaia, M A; Iumyna, Iu M; Kopteva, A E; Kozlova, I A

    2012-01-01

    Monosaccharide and fatty acid composition of the exopolymer complex (EPC) of heterotrophic bacteria Pseudomonas pseudoalkaligenes 109, Pseudomonas sp. T/2, Rhodococcus erythropolis 102--destructors of the protective coating Polyken 980-25 has been studied. It is shown that qualitative and quantitative composition of EPC components changes depending on the model of bacteria growth. Arabinose, mannose, galactose and glucose are dominating saccharides. Xylose has been revealed only under conditions of the biofilm form of growth of all the studied bacteria; ribose only in the biofilm of Pseudomonas sp. T/2. The fatty acid composition of EPC contains saturated and unsaturated acids with 12-19 carbon atoms. Hexadecanoic acid (C 16:0) acid which content in the biofilm and plankton conditions is from 24.9 to 32.4% prevailed in the spectrum of fatty acids of EPC bacteria. Unsaturated fatty acids: hexadecanoic (C 16:1) and octadecenoic (C 18:1) ones have been revealed only in the biofilm of bacteria-destructors of the coating.

  15. [Lactic acid bacteria and health: are probiotics safe for human?].

    PubMed

    Kubiszewska, Izabela; Januszewska, Milena; Rybka, Joanna; Gackowska, Lidia

    2014-11-17

    The effect of Lactobacillus and Bifidobacterium on human health has been examined for many years. Numerous in vivo and in vitro studies have confirmed the beneficial activity of some exogenous lactic acid bacteria in the treatment and prevention of rotaviral infection, antibiotic-associated diarrhea, inflammatory bowel disease and other gastrointestinal disorders. Probiotics support the action of the intestinal microflora and exhibit a favorable modulatory effect on the host's immune system. However, it should be remembered that relatively harmless lactobacilli can occasionally induce opportunistic infections. Due to reaching almost 20x10(12) probiotic doses per year which contain live cultures of bacteria, it is essential to monitor the safety aspect of their administration. In recent years, infections caused by Lactobacillus and Bifidobacterium made up 0.05% to 0.4% of cases of endocarditis and bacteremia. In most cases, the infections were caused by endogenous microflora of the host or bacterial strains colonizing the host's oral cavity. According to a review of cases of infections caused by bacteria of the genus Lactobacillus from 2005 (collected by J.P. Cannot'a), 1.7% of infections have been linked directly with intensive dairy probiotic consumption by patients. Additionally, due to the lack of a precise description of most individuals' eating habits, the possible effect of probiotics on infection development definitively should not be ruled out. The present paper describes cases of diseases caused by lactic acid bacteria, a potential mechanism for the adverse action of bacteria, and the possible hazard connected with probiotic supplementation for seriously ill and hospitalized patients.

  16. Application of Lactic Acid Bacteria (LAB) in freshness keeping of tilapia fillets as sashimi

    NASA Astrophysics Data System (ADS)

    Cao, Rong; Liu, Qi; Chen, Shengjun; Yang, Xianqing; Li, Laihao

    2015-08-01

    Aquatic products are extremely perishable food commodities. Developing methods to keep the freshness of fish represents a major task of the fishery processing industry. Application of Lactic Acid Bacteria (LAB) as food preservative is a novel approach. In the present study, the possibility of using lactic acid bacteria in freshness keeping of tilapia fillets as sashimi was examined. Fish fillets were dipped in Lactobacillus plantarum 1.19 (obtained from China General Microbiological Culture Collection Center) suspension as LAB-treated group. Changes in K-value, APC, sensory properties and microbial flora were analyzed. Results showed that LAB treatment slowed the increase of K-value and APC in the earlier storage, and caused a smooth decrease in sensory score. Gram-negative bacteria dominated during refrigerated storage, with Pseudomonas and Aeromonas being relatively abundant. Lactobacillus plantarum 1.19 had no obvious inhibitory effect against these Gram-negatives. However, Lactobacillus plantarum 1.19 changed the composition of Gram-positive bacteria. No Micrococcus were detected and the proportion of Staphylococcus decreased in the spoiled LAB-treated samples. The period that tilapia fillets could be used as sashimi material extended from 24 h to 48 h after LAB treatment. The potential of using LAB in sashimi processing was confirmed.

  17. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    PubMed

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation.

  18. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi.

    PubMed

    Trias, Rosalia; Bañeras, Lluís; Montesinos, Emilio; Badosa, Esther

    2008-12-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot.

  19. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi.

    PubMed

    Trias, Rosalia; Bañeras, Lluís; Montesinos, Emilio; Badosa, Esther

    2008-12-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot. PMID:19204894

  20. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    PubMed

    Gerez, C L; Carbajo, M S; Rollán, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  1. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  2. Affinity sensor using 3-aminophenylboronic acid for bacteria detection.

    PubMed

    Wannapob, Rodtichoti; Kanatharana, Proespichaya; Limbut, Warakorn; Numnuam, Apon; Asawatreratanakul, Punnee; Thammakhet, Chongdee; Thavarungkul, Panote

    2010-10-15

    Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds.

  3. Potential of lactic acid bacteria in aflatoxin risk mitigation.

    PubMed

    Ahlberg, Sara H; Joutsjoki, Vesa; Korhonen, Hannu J

    2015-08-17

    Aflatoxins (AF) are ubiquitous mycotoxins contaminating food and feed. Consumption of contaminated food and feed can cause a severe health risk to humans and animals. A novel biological method could reduce the health risks of aflatoxins through inhibiting mold growth and binding aflatoxins. Lactic acid bacteria (LAB) are commonly used in fermented food production. LAB are known to inhibit mold growth and, to some extent, to bind aflatoxins in different matrices. Reduced mold growth and aflatoxin production may be caused by competition for nutrients between bacterial cells and fungi. Most likely, binding of aflatoxins depends on environmental conditions and is strain-specific. Killed bacteria cells possess consistently better binding abilities for aflatoxin B1 (AFB1) than viable cells. Lactobacilli especially are relatively well studied and provide noticeable possibilities in binding of aflatoxin B1 and M1 in food. It seems that binding is reversible and that bound aflatoxins are released later on (Haskard et al., 2001; Peltonen et al., 2001). This literature review suggests that novel biological methods, such as lactic acid bacteria, show potential in mitigating toxic effects of aflatoxins in food and feed.

  4. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater.

    PubMed

    González, J M; Moran, M A

    1997-11-01

    A cluster of marine bacteria within the alpha-3 subclass of the class Proteobacteria accounted for up to 28% of the 16S ribosomal DNA (rDNA) sequences in seawater samples from the coast of the southeastern United States. Two independent oligonucleotide probes targeting 16S rDNA of this "marine alpha" cluster indicate that the group dominates bacterioplankton communities in estuarine and nearshore regions of the southeastern U.S. coast. Marine alpha bacteria decline predictably in abundance with decreasing salinity along estuarine transsects and are not detectable in low-salinity (5%) or freshwater samples. Sequences of 16S rDNA obtained from seawater by PCR with one group-specific oligonucleotide as a primer confirm that the oligonucleotide targets only members of this phylogenetic cluster. Likewise, sequences of 16S rDNA obtained from seawater by PCR with several different pairs of nonspecific primers show an unusually high abundance of marine alpha sequences (52 to 84%) among the clones, which possibly indicates a PCR bias toward the group. Members of the marine alpha group were readily cultured from coastal seawater, accounting for 40% of the colonies isolated on low-nutrient marine agar, based on hybridizations with the group-specific 16S rDNA probe and on sequence analysis. This is the first description of a numerically dominant cluster of coastal bacteria, identified by molecular techniques, that can be readily cultured and studied in the laboratory.

  5. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  6. Screening and characterization of novel bacteriocins from lactic acid bacteria.

    PubMed

    Zendo, Takeshi

    2013-01-01

    Bacteriocins produced by lactic acid bacteria (LAB) are expected to be safe antimicrobial agents. While the best studied LAB bacteriocin, nisin A, is widely utilized as a food preservative, various novel ones are required to control undesirable bacteria more effectively. To discover novel bacteriocins at the early step of the screening process, we developed a rapid screening system that evaluates bacteriocins produced by newly isolated LAB based on their antibacterial spectra and molecular masses. By means of this system, various novel bacteriocins were identified, including a nisin variant, nisin Q, a two-peptide bacteriocin, lactococcin Q, a leaderless bacteriocin, lacticin Q, and a circular bacteriocin, lactocyclicin Q. Moreover, some LAB isolates were found to produce multiple bacteriocins. They were characterized as to their structures, mechanisms of action, and biosynthetic mechanisms. Novel LAB bacteriocins and their biosynthetic mechanisms are expected for applications such as food preservation and peptide engineering. PMID:23649268

  7. Screening and characterization of novel bacteriocins from lactic acid bacteria.

    PubMed

    Zendo, Takeshi

    2013-01-01

    Bacteriocins produced by lactic acid bacteria (LAB) are expected to be safe antimicrobial agents. While the best studied LAB bacteriocin, nisin A, is widely utilized as a food preservative, various novel ones are required to control undesirable bacteria more effectively. To discover novel bacteriocins at the early step of the screening process, we developed a rapid screening system that evaluates bacteriocins produced by newly isolated LAB based on their antibacterial spectra and molecular masses. By means of this system, various novel bacteriocins were identified, including a nisin variant, nisin Q, a two-peptide bacteriocin, lactococcin Q, a leaderless bacteriocin, lacticin Q, and a circular bacteriocin, lactocyclicin Q. Moreover, some LAB isolates were found to produce multiple bacteriocins. They were characterized as to their structures, mechanisms of action, and biosynthetic mechanisms. Novel LAB bacteriocins and their biosynthetic mechanisms are expected for applications such as food preservation and peptide engineering.

  8. Current taxonomy of phages infecting lactic acid bacteria

    PubMed Central

    Mahony, Jennifer; van Sinderen, Douwe

    2013-01-01

    Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species. PMID:24478767

  9. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  10. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    PubMed

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  11. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    PubMed

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  12. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    SciTech Connect

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  13. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    PubMed

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  14. Occurrence and role of lactic acid bacteria in seafood products.

    PubMed

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert

  15. Functional fermented whey-based beverage using lactic acid bacteria.

    PubMed

    Pescuma, Micaela; Hébert, Elvira María; Mozzi, Fernanda; de Valdez, Graciela Font

    2010-06-30

    Whey protein concentrate (WPC) is employed as functional food ingredient because of its nutritional value and emulsifying properties. However, the major whey protein beta-lactoglobulin (BLG) is the main cause of milk allergy. The aim of this study was to formulate a fermented whey beverage using selected lactic acid bacteria and WPC35 (WPC containing 35% of proteins) to obtain a fermented product with low lactose and BLG contents and high essential amino acid concentration. Cell viability, lactose consumption, lactic acid production, proteolytic activity, amino acid release and BLG degradation by the selected strains Lactobacillus acidophilus CRL 636, Lactobacillus delbrueckii subsp. bulgaricus CRL 656 and Streptococcus thermophilus CRL 804, as single or mixed (SLaB) cultures were evaluated in WPC35 (10%, w/v) incubated at 37 degrees C for 24h. Then, the fermented WPC35 was mixed with peach juice and calcium lactate (2%, w/v) and stored at 10 degrees C for 28 days. During fermentation, single cultures grew 1.7-3.1 log CFU/ml and produced 25.1-95.0 mmol/l of lactic acid as consequence of lactose consumption (14.0-41.8 mmol/l) after 12h fermentation. L. delbrueckii subsp. bulgaricus CRL 656 was the most proteolytic strain (626 microg/ml Leu) and released the branched-chain essential amino acids Leu (16 microg/ml), Ile (27 microg/ml) and Val (43 microg/ml). All strains were able to degrade BLG in a range of 41-85% after 12h incubation. The starter culture SLaB grew 3.0 log CFU/ml, showed marked pH reduction, produced 122.0 mmol/l of lactic acid, displayed high proteolytic activity (484 microg/ml Leu) releasing Leu (13 microg/ml), Ile (18 microg/ml) and Val (35 microg/ml), and hydrolyzed 92% of BLG. The addition of calcium lactate to WPC35 maintained the drink pH stable during shelf life; no contamination was detected during this period. After 28 days, a decrease in cell viability of all strains was observed being more pronounced for L. delbrueckii subsp. bulgaricus

  16. Wall Teichoic Acids of Gram-Positive Bacteria

    PubMed Central

    Brown, Stephanie; Santa Maria, John P.; Walker, Suzanne

    2013-01-01

    The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers called wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections. PMID:24024634

  17. Lactic acid bacteria: the bugs of the new millennium.

    PubMed

    Konings, W N; Kok, J; Kuipers, O P; Poolman, B

    2000-06-01

    Lactic acid bacteria (LABs) are widely used in the manufacturing of fermented food and are among the best-studied microorganisms. Detailed knowledge of a number of physiological traits has opened new potential applications for these organisms in the food industry, while other traits might be beneficial for human health. Important new developments have been made in the research of LABs in the areas of multidrug resistance, bacteriocins and quorum sensing, osmoregulation, proteolysis, autolysins and bacteriophages. Recently, progress has been made in the construction of food-grade genetically modified LABs.

  18. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  19. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    PubMed

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes.

  20. Production of probiotic cabbage juice by lactic acid bacteria.

    PubMed

    Yoon, Kyung Young; Woodams, Edward E; Hang, Yong D

    2006-08-01

    Research was undertaken to determine the suitability of cabbage as a raw material for production of probiotic cabbage juice by lactic acid bacteria (Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Cabbage juice was inoculated with a 24-h-old lactic culture and incubated at 30 degrees C. Changes in pH, acidity, sugar content, and viable cell counts during fermentation under controlled conditions were monitored. L. casei, L. delbrueckii, and L. plantarum grew well on cabbage juice and reached nearly 10x10(8) CFU/mL after 48 h of fermentation at 30 degrees C. L. casei, however, produced a smaller amount of titratable acidity expressed as lactic acid than L. delbrueckii or L. plantarum. After 4 weeks of cold storage at 4 degrees C, the viable cell counts of L. plantarum and L. delbrueckii were still 4.1x10(7) and 4.5x10(5) mL(-1), respectively. L. casei did not survive the low pH and high acidity conditions in fermented cabbage juice and lost cell viability completely after 2 weeks of cold storage at 4 degrees C. Fermented cabbage juice could serve as a healthy beverage for vegetarians and lactose-allergic consumers.

  1. Diversity of lactic acid bacteria of the bioethanol process

    PubMed Central

    2010-01-01

    Background Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil. Results A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 105 and 8.9 × 108 CFUs/mL. Crude sugar cane juice contained 7.4 × 107 to 6.0 × 108 LAB CFUs. Most of the LAB isolates belonged to the genus Lactobacillus according to rRNA operon enzyme restriction profiles. A variety of Lactobacillus species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were L. fermentum and L. vini. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species L. fermentum and L. vini, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process. Conclusions This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process. PMID:21092306

  2. Probiotic lactic acid bacteria detoxify N-nitrosodimethylamine.

    PubMed

    Nowak, Adriana; Kuberski, Sławomir; Libudzisz, Zdzisława

    2014-01-01

    Humans can be exposed to N-nitroso compounds (NOCs) due to many environmental sources, as well as endogenous formation. The main nitrosamine found in food products and also synthesised in vivo by intestinal microbiota is N-nitrosodimethylamine (NDMA). It can cause cancer of the stomach, kidney and colon. The effect of four probiotic Lactobacillus strains on NDMA was studied under different culture conditions (24 h in MRS, 168 h in modified MRS N, and 168 h in phosphate buffer). HPLC and GC-TEA methods were used for NDMA determination in supernatants. The influence of lactic acid bacteria on NDMA genotoxicity was investigated by means of the comet assay. Additionally, the effect of NDMA (2-100 µg ml⁻¹) on the growth and survival of the probiotic strains was studied. The results indicate that the bacteria decreased NDMA concentration by up to 50%, depending on the culture conditions, time of incubation, NDMA concentration, pH and bacterial strain. Lb. brevis 0945 lowered the concentration and genotoxicity of NDMA most effectively by up to 50%. This could be due to either adsorption or metabolism. The growth and survival of the bacteria was not affected by any of the tested NDMA concentrations. PMID:25010287

  3. Autosomal dominant aniridia: probable linkage to acid phosphatase-1 locus on chromosome 2.

    PubMed Central

    Ferrell, R E; Chakravarti, A; Hittner, H M; Riccardi, V M

    1980-01-01

    Maximum likelihood analysis for linkage between autosomal dominant aniridia and 12 biochemical and serological markers in a single large family showed a probable linkage between autosomal dominant aniridia and the enzyme acid phosphatase-1. The presence of an autosomal dominant aniridia gene linked to acid phosphatase-1 on chromosome arm 2p and the existence of an aniridia syndrome resulting from deletion of band 13 of the short arm of chromosome 11 establishes a chromosome basis for genetic heterogeneity of aniridia phenotypes. PMID:6929510

  4. Population dynamics of acetic acid bacteria during traditional wine vinegar production.

    PubMed

    Vegas, Carlos; Mateo, Estibaliz; González, Angel; Jara, Carla; Guillamón, José Manuel; Poblet, Montse; Torija, Ma Jesús; Mas, Albert

    2010-03-31

    The population dynamics of acetic acid bacteria in traditional vinegar production was determined in two independent vinegar plants at both the species and strain level. The effect of barrels made of four different woods upon the population dynamics was also determined. Acetic acid bacteria were isolated on solid media and the species were identified by RFLP-PCR of 16S rRNA genes and confirmed by 16S rRNA gene sequencing, while strains were typed by ERIC-PCR and (GTG)(5)-rep-PCR. The most widely isolated species was Acetobacter pasteurianus, which accounted for 100% of all the isolates during most of the acetification. Gluconacetobacter europaeus only appeared at any notable level at the end of the process in oak barrels from one vinegar plant. The various A. pasteurianus strains showed a clear succession as the concentration of acetic acid increased. In both vinegar plants the relative dominance of different strains was modified as the concentrations of acetic acid increased, and strain diversity tended to reduce at the end of the process.

  5. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.

    PubMed

    van Beek, S; Priest, F G

    2000-12-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation.

  6. Hydrolytic breakdown of lactoferricin by lactic acid bacteria.

    PubMed

    Paul, Moushumi; Somkuti, George A

    2010-02-01

    Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.

  7. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  8. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2011-12-20

    Lactic acid is an industrially important product with a large and rapidly expanding market due to its attractive and valuable multi-function properties. The economics of lactic acid production by fermentation is dependent on many factors, of which the cost of the raw materials is very significant. It is very expensive when sugars, e.g., glucose, sucrose, starch, etc., are used as the feedstock for lactic acid production. Therefore, lignocellulosic biomass is a promising feedstock for lactic acid production considering its great availability, sustainability, and low cost compared to refined sugars. Despite these advantages, the commercial use of lignocellulose for lactic acid production is still problematic. This review describes the "conventional" processes for producing lactic acid from lignocellulosic materials with lactic acid bacteria. These processes include: pretreatment of the biomass, enzyme hydrolysis to obtain fermentable sugars, fermentation technologies, and separation and purification of lactic acid. In addition, the difficulties associated with using this biomass for lactic acid production are especially introduced and several key properties that should be targeted for low-cost and advanced fermentation processes are pointed out. We also discuss the metabolism of lignocellulose-derived sugars by lactic acid bacteria.

  9. House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs.

    PubMed

    Minervini, Fabio; Lattanzi, Anna; De Angelis, Maria; Celano, Giuseppe; Gobbetti, Marco

    2015-12-01

    This study aimed at understanding the extent of contamination by lactic acid bacteria (LAB) and yeasts from the house microbiotas during sourdough back-slopping. Besides sourdoughs, wall, air, storage box, dough mixer and flour of four bakeries were analyzed. Based on plate counts, LAB and yeasts dominated the house microbiota. Based on high throughput sequencing of the 16S rRNA genes, flour harbored the highest number of Firmicutes, but only few of them adapted to storage box, dough mixer and sourdough. Lactobacillus sanfranciscensis showed the highest abundance in dough mixer and sourdoughs. Lactobacillus plantarum persisted only in storage box, dough mixer and sourdough of two bakeries. Weissella cibaria also showed higher adaptability in sourdough than in bakery equipment, suggesting that flour is the main origin of this species. Based on 18S rRNA data, Saccharomyces cerevisiae was the dominant yeast in house and sourdough microbiotas, excepted one bakery dominated by Kazachstania exigua. The results of this study suggest that the dominant species of sourdough LAB and yeasts dominated also the house microbiota.

  10. House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs.

    PubMed

    Minervini, Fabio; Lattanzi, Anna; De Angelis, Maria; Celano, Giuseppe; Gobbetti, Marco

    2015-12-01

    This study aimed at understanding the extent of contamination by lactic acid bacteria (LAB) and yeasts from the house microbiotas during sourdough back-slopping. Besides sourdoughs, wall, air, storage box, dough mixer and flour of four bakeries were analyzed. Based on plate counts, LAB and yeasts dominated the house microbiota. Based on high throughput sequencing of the 16S rRNA genes, flour harbored the highest number of Firmicutes, but only few of them adapted to storage box, dough mixer and sourdough. Lactobacillus sanfranciscensis showed the highest abundance in dough mixer and sourdoughs. Lactobacillus plantarum persisted only in storage box, dough mixer and sourdough of two bakeries. Weissella cibaria also showed higher adaptability in sourdough than in bakery equipment, suggesting that flour is the main origin of this species. Based on 18S rRNA data, Saccharomyces cerevisiae was the dominant yeast in house and sourdough microbiotas, excepted one bakery dominated by Kazachstania exigua. The results of this study suggest that the dominant species of sourdough LAB and yeasts dominated also the house microbiota. PMID:26338118

  11. Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

    PubMed Central

    Wu, Jing-jing; Du, Rui-ping; Gao, Min; Sui, Yao-qiang; Xiu, Lei; Wang, Xiao

    2014-01-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  12. Recent advances in nitrogen-fixing acetic acid bacteria.

    PubMed

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  13. Changes in Translational Efficiency is a Dominant Regulatory Mechanism in the Environmental Response of Bacteria

    SciTech Connect

    Taylor, Ronald C.; Webb-Robertson, Bobbie-Jo M.; Markillie, Lye Meng; Serres, Margrethe H.; Linggi, Bryan E.; Aldrich, Joshua T.; Hill, Eric A.; Romine, Margaret F.; Lipton, Mary S.; Wiley, H. S.

    2013-09-23

    To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either aerobic or suboxic conditions. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on >1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily caused by differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Altered transcription levels appeared responsible for 26% of the protein changes, altered translational efficiency appeared responsible for 46% and a combination of both were responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part caused by altered tRNA pools, is a major determinant of regulated protein expression in bacteria.

  14. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode

    PubMed Central

    Nguyen, Thuy Thu; Luong, Tha Thanh Thi; Tran, Phuong Hoang Nguyen; Bui, Ha Thi Viet; Nguyen, Huy Quang; Dinh, Hang Thuy; Kim, Byung Hong; Pham, Hai The

    2015-01-01

    In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)-type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm–2 of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe2+ as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm–2 of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation-based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in-situ hybridization results revealed significant increases of neutrophilic iron-oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on-site biodetection of iron and/or manganese in water samples. PMID:25712332

  15. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode.

    PubMed

    Nguyen, Thuy Thu; Luong, Tha Thanh Thi; Tran, Phuong Hoang Nguyen; Bui, Ha Thi Viet; Nguyen, Huy Quang; Dinh, Hang Thuy; Kim, Byung Hong; Pham, Hai The

    2015-05-01

    In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)-type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm(-2) of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe(2+) as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm(-2) of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation-based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in-situ hybridization results revealed significant increases of neutrophilic iron-oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on-site biodetection of iron and/or manganese in water samples.

  16. [Use of real-time PCR for quantitative assessment of lactic acid bacteria and bifidobacteria in dairy products].

    PubMed

    Zelenaia, L B; Kovalenko, N K; Oblap, R V; Hovak, N B; Golubets, R A

    2012-01-01

    Composition of lactic acid bacteria and bifidobacteria in raw milk and home-made milk products has been analyzed using real-time PCR (quantitative PCR) with genus-specific primers to Enterococcus, Lactobacillus and Bifidobacteria. Bacteria belonging to these genera have been revealed in all samples analyzed (milk, sour cream, cottage cheese). It has been shown that the representatives of Enterococcus and Lactobacillus genera dominated in the samples analyzed (10(3)-10(7) genome equivalent/ml (mg)). The largest number of these microorganisms (10(7) genome equivalent/mg) has been detected in cottage cheese.

  17. Characterization of lactic acid bacteria and other gut bacteria in pigs by a macroarraying method.

    PubMed

    Thanantong, Narut; Edwards, Sandra; Sparagano, Olivier A E

    2006-10-01

    Lactic acid bacteria (LAB) consist of many genera, Gram-positive, and nonspore-forming micro-organisms; some members being used as probiotics while some others have negative effects on pig health. Bacterial species in the gastrointestinal tract can produce antibacterial substances, reduce serum cholesterol in their host, or can be responsible for growth reduction, diarrhea, and intestinal epithelial damage. It is therefore important for the pig industry to evaluate the impact of food and farm management on the presence of "good" or "bad" bacteria and the risk for consumers. This articles focuses on the molecular identification of gut microflora species following different diets given to pigs in UK and correlating the data on growth, health, and welfare. First of all, pig feces were individually collected from sows before and after farrowing and also from piglets before and after weaning over several months. Bacteria colonies were grown on MRS agar plates from feces and DNA was extracted (QIAamp DNA stool kit) and amplified using 16S rDNA (27f and 519r) primers. DNA sequencing and sequence alignment allowed us to identify species-specific zones, which were used as probes in a macroarray system also known as reverse line blot hybridization. Some probes were found to be species specific for the following species: Lactobacillus acidophilus, L. animalis, L. gallinarum, L. kitasanotis, L salivarius, Streptococcus alactolyticus, S. hyointestinalis, and Sarcina ventriculi. Actual studies are now focusing on the impact of diets of the microflora in different gut parts and at different stages of the animal's life.

  18. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  19. Lactic acid bacteria as oral delivery systems for biomolecules.

    PubMed

    Berlec, A; Ravnikar, M; Strukelj, B

    2012-11-01

    Lactic acid bacteria (LAB) have become increasingly studied over the last two decades as potential delivery systems for various biological molecules to the gastrointestinal tract. This article presents an overview of characteristics of LAB as delivery systems and of the applications which have already been developed. The majority of LAB strains are able to survive the intestinal passage and some are also able to persist and colonize the intestine. Several strains were in fact described as members of the human commensal flora. They can interact with their host and are able to deliver large molecular weight biomolecules across the epithelium via M-cells or dendritic cells. The most widely applied LAB species has been Lactococcus lactis; however species from genus Lactobacillus are gaining popularity and the first examples from genus Bifidobacterium are starting to emerge. Bacteria are mostly applied live and enable continuous delivery of the biomolecules. However, killed bacteria (e.g. gram-positive enhancer matrix), with bound biomolecules or as adjuvants, are also being developed. The techniques for genetic modification of LAB are well known. This review focuses on the delivery of recombinant proteins and DNA, which can cause either local or systemic effects. We divide recombinant proteins into antigens and therapeutic proteins. Delivery of antigens for the purpose of vaccination represents the most abundant application with numerous successful demonstrations of the efficacy on the animal model. Therapeutic proteins have mostly been developed for the treatment of the inflammatory bowel disease, by the delivery of anti-inflammatory cytokines, or downregulation of proinflammatory cytokines. Delivery of allergens for the modulation of allergic disorders represents the second most popular application of therapeutic proteins. The delivery of DNA by LAB was demonstrated and offers exciting opportunities, especially as a vaccine. New discoveries may eventually lead to the

  20. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    PubMed

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. PMID:26253685

  1. Immunomodulation of monocytes by probiotic and selected lactic Acid bacteria.

    PubMed

    Jensen, Hanne; Drømtorp, Signe Marie; Axelsson, Lars; Grimmer, Stine

    2015-03-01

    Some lactic acid bacteria (LAB), especially bacteria belonging to the genus Lactobacillus, are recognized as common inhabitants of the human gastrointestinal tract and have received considerable attention in the last decades due to their postulated health-promoting effects. LAB and probiotic bacteria can modulate the host immune response. However, much is unknown about the mediators and mechanisms responsible for their immunological effect. Here, we present a study using cytokine secretion from the monocytic cell line THP-1 and NF-κB activation in the monocytic cell line U937-3xkB-LUC to elucidate immune stimulating abilities of LAB in vitro. In this study, we investigate both commercially available and potential probiotic LAB strains, and the role of putative surface proteins of L. reuteri using mutants. L. reuteri strains induced the highest cytokine secretion and the highest NF-κB activation, whereas L. plantarum strains and L. rhamnosus GG were low inducers/activators. One of the putative L. reuteri surface proteins, Hmpref0536_10802, appeared to be of importance for the stimulation of THP-1 cells and the activation of NF-κB in U937-3xkB-LUC cells. Live and UV-inactivated preparations resulted in different responses for two of the strains investigated. Our results add to the complexity in the interaction between LAB and human cells and suggest the possible involvement of secreted pro- and anti-inflammatory mediators of LAB. It is likely that it is the sum of bacterial surface proteins and bacterial metabolites and/or secreted proteins that induce cytokine secretion in THP-1 cells and activate NF-κB in U937-3xkB-LUC cells in this study. PMID:25331988

  2. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts.

    PubMed

    Zhou, N; Zhang, J X; Fan, M T; Wang, J; Guo, G; Wei, X Y

    2012-09-01

    The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species.

  3. Immunomodulation of monocytes by probiotic and selected lactic Acid bacteria.

    PubMed

    Jensen, Hanne; Drømtorp, Signe Marie; Axelsson, Lars; Grimmer, Stine

    2015-03-01

    Some lactic acid bacteria (LAB), especially bacteria belonging to the genus Lactobacillus, are recognized as common inhabitants of the human gastrointestinal tract and have received considerable attention in the last decades due to their postulated health-promoting effects. LAB and probiotic bacteria can modulate the host immune response. However, much is unknown about the mediators and mechanisms responsible for their immunological effect. Here, we present a study using cytokine secretion from the monocytic cell line THP-1 and NF-κB activation in the monocytic cell line U937-3xkB-LUC to elucidate immune stimulating abilities of LAB in vitro. In this study, we investigate both commercially available and potential probiotic LAB strains, and the role of putative surface proteins of L. reuteri using mutants. L. reuteri strains induced the highest cytokine secretion and the highest NF-κB activation, whereas L. plantarum strains and L. rhamnosus GG were low inducers/activators. One of the putative L. reuteri surface proteins, Hmpref0536_10802, appeared to be of importance for the stimulation of THP-1 cells and the activation of NF-κB in U937-3xkB-LUC cells. Live and UV-inactivated preparations resulted in different responses for two of the strains investigated. Our results add to the complexity in the interaction between LAB and human cells and suggest the possible involvement of secreted pro- and anti-inflammatory mediators of LAB. It is likely that it is the sum of bacterial surface proteins and bacterial metabolites and/or secreted proteins that induce cytokine secretion in THP-1 cells and activate NF-κB in U937-3xkB-LUC cells in this study.

  4. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives

    PubMed Central

    Rokop, Z. P.; Horton, M. A.

    2015-01-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific “core” members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of “noncore” and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. PMID:26253685

  5. Bioprotective potential of lactic acid bacteria in malting and brewing.

    PubMed

    Rouse, Susan; van Sinderen, Douwe

    2008-08-01

    Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.

  6. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    PubMed Central

    Nishiyama, Keita; Sugiyama, Makoto; Mukai, Takao

    2016-01-01

    Lactic acid bacteria (LAB) are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI) tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective.

  7. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin.

    PubMed

    Nishiyama, Keita; Sugiyama, Makoto; Mukai, Takao

    2016-01-01

    Lactic acid bacteria (LAB) are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI) tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective. PMID:27681930

  8. Lactic Acid Bacteria Convert Human Fibroblasts to Multipotent Cells

    PubMed Central

    Ohta, Kunimasa; Kawano, Rie; Ito, Naofumi

    2012-01-01

    The human gastrointestinal tract is colonized by a vast community of symbionts and commensals. Lactic acid bacteria (LAB) form a group of related, low-GC-content, gram-positive bacteria that are considered to offer a number of probiotic benefits to general health. While the role of LAB in gastrointestinal microecology has been the subject of extensive study, little is known about how commensal prokaryotic organisms directly influence eukaryotic cells. Here, we demonstrate the generation of multipotential cells from adult human dermal fibroblast cells by incorporating LAB. LAB-incorporated cell clusters are similar to embryoid bodies derived from embryonic stem cells and can differentiate into endodermal, mesodermal, and ectodermal cells in vivo and in vitro. LAB-incorporated cell clusters express a set of genes associated with multipotency, and microarray analysis indicates a remarkable increase of NANOG, a multipotency marker, and a notable decrease in HOX gene expression in LAB-incorporated cells. During the cell culture, the LAB-incorporated cell clusters stop cell division and start to express early senescence markers without cell death. Thus, LAB-incorporated cell clusters have potentially wide-ranging implications for cell generation, reprogramming, and cell-based therapy. PMID:23300571

  9. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability. PMID:26263697

  10. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.

    PubMed

    Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-04-01

    Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol. PMID:20180114

  11. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    PubMed Central

    Nishiyama, Keita; Sugiyama, Makoto; Mukai, Takao

    2016-01-01

    Lactic acid bacteria (LAB) are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI) tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective. PMID:27681930

  12. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    PubMed

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock. PMID:27108171

  13. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    PubMed

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock.

  14. Modelling strategies for the industrial exploitation of lactic acid bacteria.

    PubMed

    Teusink, Bas; Smid, Eddy J

    2006-01-01

    Lactic acid bacteria (LAB) have a long tradition of use in the food industry, and the number and diversity of their applications has increased considerably over the years. Traditionally, process optimization for these applications involved both strain selection and trial and error. More recently, metabolic engineering has emerged as a discipline that focuses on the rational improvement of industrially useful strains. In the post-genomic era, metabolic engineering increasingly benefits from systems biology, an approach that combines mathematical modelling techniques with functional-genomics data to build models for biological interpretation and--ultimately--prediction. In this review, the industrial applications of LAB are mapped onto available global, genome-scale metabolic modelling techniques to evaluate the extent to which functional genomics and systems biology can live up to their industrial promise.

  15. Antibiotic susceptibility of different lactic acid bacteria strains.

    PubMed

    Karapetkov, N; Georgieva, R; Rumyan, N; Karaivanova, E

    2011-12-01

    Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes.

  16. Lactic acid bacteria as adjuvants for sublingual allergy vaccines.

    PubMed

    Van Overtvelt, Laurence; Moussu, Helene; Horiot, Stéphane; Samson, Sandrine; Lombardi, Vincent; Mascarell, Laurent; van de Moer, Ariane; Bourdet-Sicard, Raphaëlle; Moingeon, Philippe

    2010-04-01

    We compared immunomodulatory properties of 11 strains of lactic acid bacteria as well as their capacity to enhance sublingual immunotherapy efficacy in a murine asthma model. Two types of bacterial strains were identified, including: (i) potent inducers of IL-12p70 and IL-10 in dendritic cells, supporting IFN-gamma and IL-10 production in CD4+ T cells such as Lactobacillus helveticus; (ii) pure Th1 inducers such as L. casei. Sublingual administration in ovalbumin-sensitized mice of L. helveticus, but not L. casei, reduced airways hyperresponsiveness, bronchial inflammation and proliferation of specific T cells in cervical lymph nodes. Thus, probiotics acting as a Th1/possibly Treg, but not Th1 adjuvant, potentiate tolerance induction via the sublingual route.

  17. Growth and effect of staphylococci and lactic acid bacteria on unsaturated free fatty acids.

    PubMed

    Talon, R; Walter, D; Montel, M C

    2000-01-01

    The growth and the effects of four species of staphylococci and six lactic acid bacteria (LAB) of the genus Carnobacterium, Lactobacillus and Pediococcus on unsaturated free fatty acids were studied. The strains were grown in complex medium supplemented either with oleic, linoleic or linolenic acids. Growth was followed and oxidation of the substrates measured by TBARS. The strains of Staphylococcus xylosus 873, 16, Staphylococcus warneri 863 and Staphylococcus saprophyticus grew well on all the substrates. Whereas, the growth of the two strains of Staphylococcus carnosus and Staphylococcus xylosus 831 was inhibited in the media with linolenic acid. The addition of manganese to this media allowed good growth of these strains. All the LAB did not grow well in the media with linoleic acid, but their growth was favoured by addition of manganese to the media. Under our conditions, only linoleic and linolenic acids were oxidised. All the strains had no prooxidant activity. All the staphylococci limited oxidation of linoleic acid and had a small effect on linolenic acid. LAB did not limit oxidation of linoleic acid. With manganese in the media: the oxidation of the sterile controls was delayed for 2 days and then increased; strains of S. carnosus and S. xylosus inhibited oxidation of linolenic acid; and Lactobacillus plantarum and Pediococcus pentosaceus limited oxidation of linoleic acid. The two Carnobacterium, whatever the conditions, had no antioxidant properties.

  18. Phytic acid degrading lactic acid bacteria in tef-injera fermentation.

    PubMed

    Fischer, Maren M; Egli, Ines M; Aeberli, Isabelle; Hurrell, Richard F; Meile, Leo

    2014-11-01

    Ethiopian injera, a soft pancake, baked from fermented batter, is preferentially prepared from tef (Eragrostis tef) flour. The phytic acid (PA) content of tef is high and is only partly degraded during the fermentation step. PA chelates with iron and zinc in the human digestive tract and strongly inhibits their absorption. With the aim to formulate a starter culture that would substantially degrade PA during injera preparation, we assessed the potential of microorganisms isolated from Ethiopian household-tef fermentations to degrade PA. Lactic acid bacteria (LAB) were found to be among the dominating microorganisms. Seventy-six isolates from thirteen different tef fermentations were analyzed for phytase activity and thirteen different isolates of seven different species were detected to be positive in a phytase screening assay. In 20-mL model tef fermentations, out of these thirteen isolates, the use of Lactobacillus (L.) buchneri strain MF58 and Pediococcus pentosaceus strain MF35 resulted in lowest PA contents in the fermented tef of 41% and 42%, respectively of its initial content. In comparison 59% of PA remained when spontaneously fermented. Full scale tef fermentation (0.6L) and injera production using L. buchneri MF58 as culture additive decreased PA in cooked injera from 1.05 to 0.34±0.02 g/100 g, representing a degradation of 68% compared to 42% in injera from non-inoculated traditional fermentation. The visual appearance of the pancakes was similar. The final molar ratios of PA to iron of 4 and to zinc of 12 achieved with L. buchneri MF58 were decreased by ca. 50% compared to the traditional fermentation. In conclusion, selected LAB strains in tef fermentations can degrade PA, with L. buchneri MF58 displaying the highest PA degrading potential. The 68% PA degradation achieved by the application of L. buchneri MF58 would be expected to improve human zinc absorption from tef-injera, but further PA degradation is probably necessary if iron absorption has to

  19. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    PubMed

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes. PMID:27052717

  20. Glycerol metabolism and bitterness producing lactic acid bacteria in cidermaking.

    PubMed

    Garai-Ibabe, G; Ibarburu, I; Berregi, I; Claisse, O; Lonvaud-Funel, A; Irastorza, A; Dueñas, M T

    2008-02-10

    Several lactic acid bacteria were isolated from bitter tasting ciders in which glycerol was partially removed. The degradation of glycerol via glycerol dehydratase pathway was found in 22 out of 67 isolates. The confirmation of glycerol degradation by this pathway was twofold: showing their glycerol dehydratase activity and detecting the presence of the corresponding gene by a PCR method. 1,3-propanediol (1,3-PDL) and 3-hydroxypropionic acid (3-HP) were the metabolic end-products of glycerol utilization, and the accumulation of the acrolein precursor 3-hydroxypropionaldehyde (3-HPA) was also detected in most of them. The strain identification by PCR-DGGE rpoB showed that Lactobacillus collinoides was the predominant species and only 2 belonged to Lactobacillus diolivorans. Environmental conditions conducting to 3-HPA accumulation in cidermaking were studied by varying the fructose concentration, pH and incubation temperature in L. collinoides 17. This strain failed to grow with glycerol as sole carbon source and the addition of fructose enhanced both growth and glycerol degradation. Regarding end-products of glycerol metabolism, 1,3-PDL was always the main end-product in all environmental conditions assayed, the only exception being the culture with 5.55 mM fructose, where equimolar amounts of 1,3-PDL and 3-HP were found. The 3-HPA was transitorily accumulated in the culture medium under almost all culture conditions, the degradation rate being notably slower at 15 degrees C. However, no disappearance of 3-HPA was found at pH 3.6, a usual value in cider making. After sugar exhaustion, L. collinoides 17 oxidated lactic acid and/or mannitol to obtain energy and these oxidations were accompanied by the removal of the toxic 3-HPA increasing the 1,3-PDL, 3-HP and acetic acid contents. PMID:18180066

  1. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    PubMed

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  2. Local domestication of lactic acid bacteria via cassava beer fermentation

    PubMed Central

    Meadow, James F.; Liebert, Melissa A.; Cepon-Robins, Tara J.; Gildner, Theresa E.; Urlacher, Samuel S.; Bohannan, Brendan J.M.; Snodgrass, J. Josh; Sugiyama, Lawrence S.

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal. PMID:25071997

  3. Local domestication of lactic acid bacteria via cassava beer fermentation.

    PubMed

    Colehour, Alese M; Meadow, James F; Liebert, Melissa A; Cepon-Robins, Tara J; Gildner, Theresa E; Urlacher, Samuel S; Bohannan, Brendan J M; Snodgrass, J Josh; Sugiyama, Lawrence S

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal.

  4. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation.

    PubMed

    Coda, Rossana; Cagno, Raffaella Di; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-02-01

    Cereal-based foods represent a very important source of biological as well as of cultural diversity, as testified by the wide range of derived fermented products. A trend that is increasingly attracting bakery industries as well as consumers is the use of non-conventional flours for the production of novel products, characterised by peculiar flavour and better nutritional value. Lactic acid bacteria microbiota of several non-wheat cereals and pseudo-cereals has been recently deeply investigated with the aim of studying the biodiversity and finding starter cultures for sourdough fermentation. Currently, the use of ancient or ethnic grains is mainly limited to traditional typical foods and the bread making process is not well standardised with consequent negative effects on the final properties. The challenge in fermenting such grains is represented by the necessity to combine good technology and sensory properties with nutritional/health benefits. The choice of the starter cultures has a critical impact on the final quality of cereal-based products, and strains that dominate and outcompete contaminants should be applied for specific sourdough fermentations. In this sense, screening and characterisation of the lactic acid bacteria microbiota is very useful in the improvement of a peculiar flour, from both a nutritional and technological point of view.

  5. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria.

    PubMed

    Endo, Akihito; Salminen, Seppo

    2013-09-01

    Fructophilic lactic acid bacteria (FLAB) are a specific group of lactic acid bacteria (LAB) characterized and described only recently. They prefer fructose as growth substrate and inhabit only fructose-rich niches. Honeybees are high-fructose-consuming insects and important pollinators in nature, but reported to be decreasing in the wild. In the present study, we analyzed FLAB microbiota in honeybees, larvae, fresh honey and bee pollen. A total of 66 strains of LAB were isolated from samples using a selective isolation technique for FLAB. Surprisingly, all strains showed fructophilic characteristics. The 66 strains and ten FLAB strains isolated from flowers in a separate study were genotypically separated into six groups, four of which being identified as Lactobacillus kunkeei and two as Fructobacillus fructosus. One of the L. kunkeei isolates showed antibacterial activity against Melissococcus plutonius, a causative pathogen of European foulbrood, this protection being attributable to production of an antibacterial peptide or protein. Culture-independent analysis suggested that bee products and larvae contained simple Lactobacillus-group microbiota, dominated by L. kunkeei, although adult bees carried a more complex microbiota. The findings clearly demonstrate that honeybees and their products are rich sources of FLAB, and FLAB are potential candidates for future bee probiotics.

  6. The genetic diversity of lactic acid producing bacteria in the equine gastrointestinal tract.

    PubMed

    Al Jassim, Rafat A M; Scott, Paul T; Trebbin, Andrea L; Trott, Darren; Pollitt, Christopher C

    2005-07-01

    Seventy-two lactic acid producing bacterial isolates (excluding streptococci) were cultured from the gastrointestinal tract of six horses. Two of the horses were orally dosed with raftilose to induce lactic acidosis and laminitis while the remaining four were maintained on a roughage diet. Near complete 16S rDNA was amplified by PCR from the genomic DNA of each isolate. Following RFLP analysis with the restriction enzymes MboI, HhaI and HinfI, the PCR products from the 18 isolates that produced L- and/or D-lactate were subsequently cloned and sequenced. DNA sequence analysis indicated that the majority of the isolates were closely related to species within the genus Lactobacillus, including Lactobacillus salivarius, Lactobacillus mucosae and Lactobacillus delbrueckii. Four isolates were closely related to Mitsuokella jalaludinii. Lactic acid producing bacteria (LAB) from the equine gastrointestinal tract was dominated by representatives from the genus Lactobacillus, but also included D-lactate-producing bacteria closely related to M. jalaludinii. Identification and characterization of LAB from the equine gastrointestinal tract should contribute to our understanding and management of fermentative acidosis, ulceration of the stomach and laminitis.

  7. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    PubMed

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  8. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    PubMed

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates.

  9. Fermentation Characteristics and Lactic Acid Bacteria Succession of Total Mixed Ration Silages Formulated with Peach Pomace

    PubMed Central

    Hu, Xiaodong; Hao, Wei; Wang, Huili; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2015-01-01

    The objective of this study was to assess the use of peach pomace in total mixed ration (TMR) silages and clarify the differences in aerobic stability between TMR and TMR silages caused by lactic acid bacteria (LAB). The TMR were prepared using peach pomace, alfalfa hay or Leymus chinensis hay, maize meal, soybean meal, cotton meal, limestone, a vitamin-mineral supplement, and salt in a ratio of 6.0:34.0:44.4:7.0:5.0:2.5:1.0:0.1 on a dry matter (DM) basis. Fermentation quality, microbial composition, and the predominant LAB were examined during ensiling and aerobic deterioration. The results indicated that the TMR silages with peach pomace were well fermented, with low pH and high lactic acid concentrations. The aerobic stability of TMR silages were significantly higher than that of TMR. Compared with TMR silages with alfalfa hay, TMR silage with Leymus chinensis hay was much more prone to deterioration. Although the dominant LAB were not identical in TMR, the same dominant species, Lactobacillus buchneri and Pediococcus acidilactici, were found in both types of TMR silages after 56 d of ensiling, and they may play an important role in the aerobic stability of TMR silages. PMID:25656205

  10. Use of sulfate reducing bacteria in acid mine drainage treatment

    SciTech Connect

    Powers, T.J.

    1995-10-01

    The environmental impacts caused by Acid Mine Drainage (AMD) were first recorded in 1556 by Georgius Agricola. In the United States 10,000 miles of streams and 29,000 surface acres of impoundments are estimated to be seriously affected by AMD. Abandoned surface mines are estimated to contribute about 15% of the drainage, while active mines (40%) and shaft and drift mines (45%) contribute the remainder. AMD results when metal sulfide minerals, particularly pyrite (FeS{sub 2}), come in contact with oxygen and water. Acid generation occurs when metal sulfide minerals are oxidized according to the Initiator Reaction: FeS{sub 2}(pyrite) + 3 1/2O{sub 2} + H{sub 2}O {yields} Fe{sup 2+} + 2SO{sub 4}{sup 2-} + 2H{sup +}. This reaction is one of many that results in increased metal mobility and increased acidity (lowered pH) of the mine water. The oxidation of ferrous sulfate is accelerated by bacterial action of Thiobacillus ferrooxidans, a naturally occurring bacterium that at pH 3.5 or less, can rapidly accelerate the conversion of dissolved Fe{sup 2+} (ferrous iron) to Fe{sup 3+} (ferric iron), and can act as an oxidant for the oxidation of pyrite. Ferric ions, as well as other metal ions, and the sulfuric acid have a deleterious influence on the biota of streams receiving AMD. The Lilly/Orphan Boy Mine, located in the Elliston Mining District of Powell County, Montana, was selected as the Sulfate Reducing Bacteria (SRB) technology demonstration site. The mine is situated on a patented claim on Deerlodge National Forest Land about 11 miles south of Elliston, Montana. This abandoned mining operation consists of a 250-foot shaft, four horizontal workings, and some stopping. The shaft is flooded with AMD to the 74-foot level and is discharging about 3 gallons per minute (gpm) at a pH of 3.0 from the adit associated with this level.

  11. Activity of capryloyl collagenic acid against bacteria involved in acne.

    PubMed

    Fourniat, J; Bourlioux, P

    1989-12-01

    Synopsis Capryloyl collagenic acid (Lipacide C8Co) has similar bacteriostatic activity in vitro to that of benzoyl peroxide towards the bacteria found in acne lesions (Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes) (MIC between 1 and 4 mg ml(-1) for C8Co, and between 0.5 and 5 mg ml(-1) for benzoyl peroxide). The presence of Emulgine M8 did not affect the bacteriostatic activity of C8Co. A 4% w/v solution of C8Co (incorporating Emulgine M8) fulfilled the criteria for an antiseptic preparation as laid down by the French Pharmacopoeia (10th Edition), and had a spectrum 5 bactericidal activity according to the French Standard AFNOR NF T 72-151. The excellent cutaneous tolerance of capryloyl collagenic acid would indicate that an aqueous solution might be of value for topical treatment of the bacterial component of acne. Résumé Activité antibactérienne de l'acide capryloyl-collagénique vis à vis des bactéries impliquées dans l'etiologie de l'acné L'acide capryloyl-collagénique (Lipacide C8Co) et le peroxyde de benzoyle présentent une activité bactériostatique in-vitroéquivalente vis à vis des espèces bactériennes retrouvées au niveau des lésions acnéiques (Staphylococcus aureus, S. epidermidis et Propionibacterium acnes) (CMI comprise entre 1 et 4 mg ml(-1) pour le lipoaminoacide, et 0,5 et 5 mg ml(-1) pour le peroxyde de benzoyle). La mise en solution aqueuse de l'acide capryloyl-collagénique en présence d'Emulgine M8 ne modifie pas son activité bactériostatique. Une telle solution, à 4% m/V d'acide capryloyl-collagénique et 5% m/V d'Emulgine M8, satisfait à l'essai d'activité des préparations antiseptiques décrit à la Pharmacopée Française (Xème Ed.) (concentration minimale antiseptique: 10% v/V, pour un temps de contact de 5 min à 32 degrees C entre les germes tests et la solution diluée en eau distillée), et posséde une activité bactéricide antiseptique spectre 5 conforme à la norme AFNOR NF T

  12. Microbicidal activity of tripotassium phosphate and fatty acids toward spoilage and pathogenic bacteria associated with poultry.

    PubMed

    Hinton, Arthur; Ingram, Kimberly D

    2005-07-01

    The ability of solutions of tripotassium phosphate (TPP) and fatty acids (lauric and myristic acids) to reduce populations of spoilage and pathogenic microorganisms associated with processed poultry was examined. In vitro studies were conducted with cultures of bacteria (Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus) and yeasts (Candida ernobii and Yarrowia lipolytica). Cultures of the bacteria and yeasts were suspended in solutions of TPP or mixtures of TPP with lauric or myristic acid and mixed for 5 min. Viable numbers (log CFU per milliliter) in the suspensions were enumerated on microbiological agar. Results indicated that TPP solutions are highly bactericidal toward gram-negative bacteria and that mixtures of TPP and fatty acids are highly microbicidal toward gram-negative bacteria, gram-positive bacteria, and yeasts. The microbicidal activity of mixtures of TPP and fatty acids toward the native bacterial flora of skin of processed broiler carcasses was also examined. Skin samples were washed in mixtures of TPP and fatty acid, and the populations of total aerobic bacteria, campylobacters, enterococci, E. coli, lactic acid bacteria, pseudomonads, staphylococci, and yeasts in the skin rinsates were enumerated on the appropriate microbiological media. Results indicated that washing the skin in mixtures of TPP and fatty acids produced significant reductions in the number of aerobic bacteria, campylobacters, E. coli, pseudomonads, and yeasts recovered from skin rinsates, but there was no significant reduction in the populations of enterococci, lactic acid bacteria, or staphylococci. These findings indicate that mixtures of TPP and fatty acids possess microbicidal activity against several microorganisms associated with processed poultry and that these solutions could be useful as microbicides to reduce the populations of some bacteria and yeasts associated with some poultry

  13. Screening of Immune-Active Lactic Acid Bacteria

    PubMed Central

    Hwang, E-Nam; Kang, Sang-Mo; Kim, Mi-Jung

    2015-01-01

    The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life. PMID:26761877

  14. A gene network engineering platform for lactic acid bacteria.

    PubMed

    Kong, Wentao; Kapuganti, Venkata S; Lu, Ting

    2016-02-29

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas. PMID:26503255

  15. Isolation and characterisation of lactic acid bacteria from donkey milk.

    PubMed

    Soto Del Rio, Maria de Los Dolores; Andrighetto, Christian; Dalmasso, Alessandra; Lombardi, Angiolella; Civera, Tiziana; Bottero, Maria Teresa

    2016-08-01

    During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk. PMID:27600975

  16. A gene network engineering platform for lactic acid bacteria

    PubMed Central

    Kong, Wentao; Kapuganti, Venkata S.; Lu, Ting

    2016-01-01

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas. PMID:26503255

  17. Screening of Immune-Active Lactic Acid Bacteria.

    PubMed

    Hwang, E-Nam; Kang, Sang-Mo; Kim, Mi-Jung; Lee, Ju-Woon

    2015-01-01

    The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life. PMID:26761877

  18. Lactic acid bacteria in dried vegetables and spices.

    PubMed

    Säde, Elina; Lassila, Elisa; Björkroth, Johanna

    2016-02-01

    Spices and dried vegetable seasonings are potential sources of bacterial contamination for foods. However, little is known about lactic acid bacteria (LAB) in spices and dried vegetables, even though certain LAB may cause food spoilage. In this study, we enumerated LAB in 104 spices and dried vegetables products aimed for the food manufacturing industry. The products were obtained from a spice wholesaler operating in Finland, and were sampled during a one-year period. We picked isolates (n = 343) for species identification based on numerical analysis of their ribotyping patterns and comparing them with the corresponding patterns of LAB type strains. We found LAB at levels >2 log CFU/g in 68 (65%) of the samples, with the highest counts detected from dried onion products and garlic powder with counts ranging from 4.24 to 6.64 log CFU/g. The LAB identified were predominantly Weissella spp. (61%) and Pediococcus spp. (15%) with Weissella confusa, Weissella cibaria, Weissella paramesenteroides, Pediococcus acidilactici and Pediococcus pentosaceus being the species identified. Other species identified belonged to the genera of Enterococcus spp. (8%), Leuconostoc spp. (6%) and Lactobacillus spp. (2%). Among the LAB identified, Leuconostoc citreum, Leuconostoc mesenteroides and W. confusa have been associated with food spoilage. Our findings suggest that spices and dried vegetables are potential sources of LAB contamination in the food industry.

  19. Acetic acid bacteria isolated from grapes of South Australian vineyards.

    PubMed

    Mateo, E; Torija, M J; Mas, A; Bartowsky, E J

    2014-05-16

    Acetic acid bacteria (AAB) diversity from healthy, mould-infected and rot-affected grapes collected from three vineyards of Adelaide Hills (South Australia) was analyzed by molecular typing and identification methods. Nine different AAB species were identified from the 624 isolates recovered: Four species from Gluconobacter genus, two from Asaia and one from Acetobacter were identified by the analysis of 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer. However, the identification of other isolates that were assigned as Asaia sp. and Ameyamaea chiangmaiensis required more analysis for a correct species classification. The species of Gluconobacter cerinus was the main one identified; while one genotype of Asaia siamensis presented the highest number of isolates. The number of colonies recovered and genotypes identified was strongly affected by the infection status of the grapes; the rot-affected with the highest number. However, the species diversity was similar in all the cases. High AAB diversity was detected with a specific genotype distribution for each vineyard.

  20. Lactic acid bacteria in dried vegetables and spices.

    PubMed

    Säde, Elina; Lassila, Elisa; Björkroth, Johanna

    2016-02-01

    Spices and dried vegetable seasonings are potential sources of bacterial contamination for foods. However, little is known about lactic acid bacteria (LAB) in spices and dried vegetables, even though certain LAB may cause food spoilage. In this study, we enumerated LAB in 104 spices and dried vegetables products aimed for the food manufacturing industry. The products were obtained from a spice wholesaler operating in Finland, and were sampled during a one-year period. We picked isolates (n = 343) for species identification based on numerical analysis of their ribotyping patterns and comparing them with the corresponding patterns of LAB type strains. We found LAB at levels >2 log CFU/g in 68 (65%) of the samples, with the highest counts detected from dried onion products and garlic powder with counts ranging from 4.24 to 6.64 log CFU/g. The LAB identified were predominantly Weissella spp. (61%) and Pediococcus spp. (15%) with Weissella confusa, Weissella cibaria, Weissella paramesenteroides, Pediococcus acidilactici and Pediococcus pentosaceus being the species identified. Other species identified belonged to the genera of Enterococcus spp. (8%), Leuconostoc spp. (6%) and Lactobacillus spp. (2%). Among the LAB identified, Leuconostoc citreum, Leuconostoc mesenteroides and W. confusa have been associated with food spoilage. Our findings suggest that spices and dried vegetables are potential sources of LAB contamination in the food industry. PMID:26678137

  1. Removal of Paralytic Shellfish Toxins by Probiotic Lactic Acid Bacteria

    PubMed Central

    Vasama, Mari; Kumar, Himanshu; Salminen, Seppo; Haskard, Carolyn A.

    2014-01-01

    Paralytic shellfish toxins (PSTs) are non-protein neurotoxins produced by saltwater dinoflagellates and freshwater cyanobacteria. The ability of Lactobacillus rhamnosus strains GG and LC-705 (in viable and non-viable forms) to remove PSTs (saxitoxin (STX), neosaxitoxin (neoSTX), gonyautoxins 2 and 3 (GTX2/3), C-toxins 1 and 2 (C1/2)) from neutral and acidic solution (pH 7.3 and 2) was examined using HPLC. Binding decreased in the order of STX ~ neoSTX > C2 > GTX3 > GTX2 > C1. Removal of STX and neoSTX (77%–97.2%) was significantly greater than removal of GTX3 and C2 (33.3%–49.7%). There were no significant differences in toxin removal capacity between viable and non-viable forms of lactobacilli, which suggested that binding rather than metabolism is the mechanism of the removal of toxins. In general, binding was not affected by the presence of other organic molecules in solution. Importantly, this is the first study to demonstrate the ability of specific probiotic lactic bacteria to remove PSTs, particularly the most toxic PST-STX, from solution. Further, these results warrant thorough screening and assessment of safe and beneficial microbes for their usefulness in the seafood and water industries and their effectiveness in vivo. PMID:25046082

  2. Monitoring the dynamics of syntrophic β-oxidizing bacteria during anaerobic degradation of oleic acid by quantitative PCR.

    PubMed

    Ziels, Ryan M; Beck, David A C; Martí, Magalí; Gough, Heidi L; Stensel, H David; Svensson, Bo H

    2015-04-01

    The ecophysiology of long-chain fatty acid-degrading syntrophic β-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic β-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic β-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic β-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid β-oxidization potential of anaerobic digester communities.

  3. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  4. [Role of lactic acid bacteria in the spread of antibiotic resistant bacteria among healthy persons].

    PubMed

    Zigangirova, N A; Tokarskaia, E A; Narodnitskiĭ, B S; Gintsburg, A L; Tugel'ian, V A

    2006-01-01

    The wide use of antibiotics in livestock raising has contributed to the selection and accumulation of representatives of commensal microflora, as well as pathogenic bacteria, colonizing livestock and poultry. For this reason the problem of the possible transfer of antibiotic-resistance genes along the chain from bacteria, autochthonous for agricultural animals, to bacteria used for the production of foodstuffs, which are incorporated into normal microflora and may thus participate in the exchange of these genes with bacteria, enteropathogenic for humans, is a highly important task of medical microbiology. The article deals with the review of experimental data, indicative the possibility of the appearance of antibiotic-resistant pathogenic bacteria due to the transfer of antibiotic-resistance genes via alimentary chains.

  5. Effect of fermented broth from lactic acid bacteria on pathogenic bacteria proliferation.

    PubMed

    Gutiérrez, S; Martínez-Blanco, H; Rodríguez-Aparicio, L B; Ferrero, M A

    2016-04-01

    In this study, the effect that 5 fermented broths of lactic acid bacteria (LAB) strains have on the viability or proliferation and adhesion of 7 potentially pathogenic microorganisms was tested. The fermented broth from Lactococcus lactis C660 had a growth inhibitory effect on Escherichia coli K92 that reached of 31%, 19% to Pseudomonas fluorescens, and 76% to Staphylococcus epidermidis. The growth of Staph. epidermidis was negatively affected to 90% by Lc. lactis 11454 broth, whereas the growth of P. fluorescens (25%) and both species of Staphylococcus (35% to Staphylococcus aureus and 76% to Staph. epidermidis) were inhibited when they were incubated in the presence of Lactobacillus casei 393 broth. Finally, the fermented broth of Lactobacillus rhamnosus showed an inhibitory effect on growth of E. coli K92, Listeria innocua, and Staph. epidermidis reached values of 12, 28, and 76%, respectively. Staphylococcus epidermidis was the most affected strain because the effect was detected from the early stages of growth and it was completely abolished. The results of bacterial adhesion revealed that broths from Lc. lactis strains, Lactobacillus paracasei, and Lb. rhamnosus caused a loss of E. coli K92 adhesion. Bacillus cereus showed a decreased of adhesion in the presence of the broths of Lc. lactis strains and Lb. paracasei. Listeria innocua adhesion inhibition was observed in the presence of Lb. paracasei broth, and the greatest inhibitory effect was registered when this pathogenic bacterium was incubated in presence of Lc. lactis 11454 broth. With respect to the 2 Pseudomonas, we observed a slight adhesion inhibition showed by Lactobacillus rhamnosus broth against Pseudomonas putida. These results confirm that the effect caused by the different LAB assayed is also broth- and species-specific and reveal that the broth from LAB tested can be used as functional bioactive compounds to regulate the adhesion and biofilm synthesis and ultimately lead to preventing food and

  6. Effect of fermented broth from lactic acid bacteria on pathogenic bacteria proliferation.

    PubMed

    Gutiérrez, S; Martínez-Blanco, H; Rodríguez-Aparicio, L B; Ferrero, M A

    2016-04-01

    In this study, the effect that 5 fermented broths of lactic acid bacteria (LAB) strains have on the viability or proliferation and adhesion of 7 potentially pathogenic microorganisms was tested. The fermented broth from Lactococcus lactis C660 had a growth inhibitory effect on Escherichia coli K92 that reached of 31%, 19% to Pseudomonas fluorescens, and 76% to Staphylococcus epidermidis. The growth of Staph. epidermidis was negatively affected to 90% by Lc. lactis 11454 broth, whereas the growth of P. fluorescens (25%) and both species of Staphylococcus (35% to Staphylococcus aureus and 76% to Staph. epidermidis) were inhibited when they were incubated in the presence of Lactobacillus casei 393 broth. Finally, the fermented broth of Lactobacillus rhamnosus showed an inhibitory effect on growth of E. coli K92, Listeria innocua, and Staph. epidermidis reached values of 12, 28, and 76%, respectively. Staphylococcus epidermidis was the most affected strain because the effect was detected from the early stages of growth and it was completely abolished. The results of bacterial adhesion revealed that broths from Lc. lactis strains, Lactobacillus paracasei, and Lb. rhamnosus caused a loss of E. coli K92 adhesion. Bacillus cereus showed a decreased of adhesion in the presence of the broths of Lc. lactis strains and Lb. paracasei. Listeria innocua adhesion inhibition was observed in the presence of Lb. paracasei broth, and the greatest inhibitory effect was registered when this pathogenic bacterium was incubated in presence of Lc. lactis 11454 broth. With respect to the 2 Pseudomonas, we observed a slight adhesion inhibition showed by Lactobacillus rhamnosus broth against Pseudomonas putida. These results confirm that the effect caused by the different LAB assayed is also broth- and species-specific and reveal that the broth from LAB tested can be used as functional bioactive compounds to regulate the adhesion and biofilm synthesis and ultimately lead to preventing food and

  7. Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage.

    PubMed

    Muyanja, C M B K; Narvhus, J A; Treimo, J; Langsrud, T

    2003-02-15

    One hundred and thirteen strains of lactic acid bacteria (LAB) were selected from 351 isolates from 15 samples of traditionally fermented household bushera from Uganda and also from laboratory-prepared bushera. Isolates were phenotypically characterised by their ability to ferment 49 carbohydrates using API 50 CHL kits and additional biochemical tests. Coliforms, yeasts and LAB were enumerated in bushera. The pH, volatile organic compounds and organic acids were also determined. The LAB counts in household bushera varied between 7.1 and 9.4 log cfu ml(-1). The coliform counts varied between < 1 and 5.2 log cfu ml(-1). The pH of bushera ranged from 3.7 to 4.5. Ethanol (max, 0.27%) was the major volatile organic compound while lactic acid (max, 0.52%) was identified as the dominant organic acid in household bushera. The initial numbers of LAB and coliforms in laboratory-fermented bushera were similar; however, the LAB numbers increased faster during the first 24 h. LAB counts increased from 5.5 to 9.0 log cfu ml(-1) during the laboratory fermentation. Coliform counts increased from 5.9 to 7.8 log cfu ml(-1) at 24 h, but after 48 h, counts were less 4 log cfu ml(-1). Yeasts increased from 4.3 to 7.7 log cfu ml(-1) at 48 h, but thereafter decreased slightly. The pH declined from 7.0 to around 4.0. Lactic acid and ethanol increased from zero to 0.75% and 0.20%, respectively. Lactic acid bacteria isolated from household bushera belonged to Lactobacillus, Streptococcus and Enterococcus genera. Tentatively, Lactobacillus isolates were identified as Lactobacillus plantarum, L. paracasei subsp. paracasei, L. fermentum, L. brevis and L. delbrueckii subsp. delbrueckii. Streptococcus thermophilus strains were also identified in household bushera. LAB isolated from bushera produced in the laboratory belonged to five genera (Lactococcus, Leuconostoc, Lactobacillus, Weissella and Enterococcus. Eight isolates were able to produce acid from starch and were identified as Lactococcus

  8. Who will win the race in childrens' oral cavities? Streptococcus mutans or beneficial lactic acid bacteria?

    PubMed

    Güngör, Ö E; Kırzıoğlu, Z; Dinçer, E; Kıvanç, M

    2013-09-01

    Adhesion to oral soft and hard tissue is crucial for bacterial colonisation in the mouth. The aim of this work was to select strains of oral lactic acid bacteria that could be used as probiotics for oral health. To this end, the adhesive properties of some lactic acid bacteria were investigated. Seventeen lactic acid bacteria including two Streptococcus mutans strains were isolated from the oral cavity of healthy children, while other strains were isolated from fermented meat products. The bacterial strains were applied to teeth surfaces covered with saliva or without saliva. A significant diversity in adhesion capacity to teeth surfaces among the lactic acid bacteria was observed. Lactic acid bacteria isolated from the oral cavity adhered the best to teeth surfaces covered with saliva, whereas lactic acid bacteria isolated from fermented meat samples adhered the best to tooth surface without saliva. All strains of lactic acid bacteria were able to reduce the number of S. mutans cells, in particular on saliva-coated tooth surface. Therefore, they might have potential as probiotics for the oral cavity.

  9. Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs.

    PubMed

    Van der Meulen, Roel; Scheirlinck, Ilse; Van Schoor, Ann; Huys, Geert; Vancanneyt, Marc; Vandamme, Peter; De Vuyst, Luc

    2007-08-01

    Four laboratory sourdough fermentations, initiated with wheat or spelt flour and without the addition of a starter culture, were prepared over a period of 10 days with daily back-slopping. Samples taken at all refreshment steps were used for determination of the present microbiota. Furthermore, an extensive metabolite target analysis of more than 100 different compounds was performed through a combination of various chromatographic methods including liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The establishment of a stable microbial ecosystem occurred through a three-phase evolution within a week, as revealed by both microbiological and metabolite analyses. Strains of Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus rossiae, Lactobacillus brevis, and Lactobacillus paraplantarum were dominating some of the sourdough ecosystems. Although the heterofermentative L. fermentum was dominating one of the wheat sourdoughs, all other sourdoughs were dominated by a combination of obligate and facultative heterofermentative taxa. Strains of homofermentative species were not retrieved in the stable sourdough ecosystems. Concentrations of sugar and amino acid metabolites hardly changed during the last days of fermentation. Besides lactic acid, ethanol, and mannitol, the production of succinic acid, erythritol, and various amino acid metabolites, such as phenyllactic acid, hydroxyphenyllactic acid, and indolelactic acid, was shown during fermentation. Physiologically, they contributed to the equilibration of the redox balance. The biphasic approach of the present study allowed us to map some of the interactions taking place during sourdough fermentation and helped us to understand the fine-tuned metabolism of lactic acid bacteria, which allows them to dominate a food ecosystem.

  10. Biodiversity and identification of sourdough lactic acid bacteria.

    PubMed

    De Vuyst, Luc; Vancanneyt, Marc

    2007-04-01

    This review deals with recent developments on the biodiversity of sourdough lactic acid bacteria (LAB) and the recent description of new sourdough LAB species. One of the outcomes of biodiversity studies of particular sourdough ecosystems throughout Europe is the description of new taxa of LAB. During the last 3 years, several new LAB species have been isolated from traditional sourdoughs: Lactobacillus mindensis, Lactobacillus spicheri, Lactobacillus rossiae, Lactobacillus zymae, Lactobacillus acidifarinae, Lactobacillus hammesii, and Lactobacillus nantensis. Some of these species have been described on one single isolate only. Isolation of novel taxa mainly depends on the cultivation approach used, i.e. (selective) incubation media and conditions. The distribution of the taxa of LAB is highly variable from one sourdough ecosystem to another. Therefore, it is difficult to define correlations between population composition and both the type of sourdough or the geographic location. Identification of isolated strains needs a polyphasic approach, including a combination of phenotypic and genotypic methods, the latter often based on the polymerase chain reaction (PCR) and encompassing 16S rRNA sequencing and DNA-DNA hybridizations. A main obstacle in current identification approaches of LAB strains is the lack of a robust and exchangeable identification system for all LAB species. Recent studies based on complete genomes have provided the basis for establishing sets of genes useful for multi-locus sequence analysis (MLSA). Monitoring the population dynamics of sourdough ecosystems can be performed by both culture-dependent (plating and incubation) and culture-independent (e.g. PCR-Denaturing Gradient Gel Electrophoresis) methods. Although highly valuable for community fingerprinting, culture-independent methods do not always yield precise quantitative information.

  11. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats

    PubMed Central

    2012-01-01

    Background The objectives of the present study were to investigate the efficacy of the mixed culture of Lactobacillus acidophilus (DSM 20242), Bifidobacterium bifidum (DSM 20082) and Lactobacillus helveticus (CK60) in the fermentation of maize and the evaluation of the effect of the fermented meal on the lipid profile of rats. Methods Rats were randomly assigned to 3 groups and each group placed on a Diet A (high fat diet into which a maize meal fermented with a mixed culture of Lb acidophilus (DSM 20242), B bifidum (DSM 20082) and Lb helveticus (CK 60) was incorporated), B (unfermented high fat diet) or C (commercial rat chow) respectively after the first group of 7 rats randomly selected were sacrificed to obtain the baseline data. Thereafter 7 rats each from the experimental and control groups were sacrificed weekly for 4 weeks and the plasma, erythrocytes, lipoproteins and organs of the rats were assessed for cholesterol, triglyceride and phospholipids. Results Our results revealed that the mixed culture of Lb acidophilus (DSM 20242), B bifidum (DSM 20082) and Lb helveticus (CK 60) were able to grow and ferment maize meal into ‘ogi’ of acceptable flavour. In addition to plasma and hepatic hypercholesterolemia and hypertriglyceridemia, phospholipidosis in plasma, as well as cholesterogenesis, triglyceride constipation and phospholipidosis in extra-hepatic tissues characterized the consumption of unfermented hyperlipidemic diets. However, feeding the animals with the fermented maize diet reversed the dyslipidemia. Conclusion The findings of this study indicate that consumption of mixed culture lactic acid bacteria (Lb acidophilus (DSM 20242), Bifidobacterium bifidum (DSM 20082) and Lb helveticus (CK 60) fermented food results in the inhibition of fat absorption. It also inhibits the activity of HMG CoA reductase. This inhibition may be by feedback inhibition or repression of the transcription of the gene encoding the enzyme via activation of the sterol

  12. Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs.

    PubMed

    Moroni, Alice V; Arendt, Elke K; Dal Bello, Fabio

    2011-05-01

    In this study, four different laboratory scale gluten-free (GF) sourdoughs were developed from buckwheat or teff flours. The fermentations were initiated by the spontaneous biota of the flours and developed under two technological conditions (A and B). Sourdoughs were propagated by continuous back-slopping until the stability was reached. The composition of the stable biota occurring in each sourdough was assessed using both culture-dependent and -independent techniques. Overall, a broad spectrum of lactic acid bacteria (LAB) and yeasts species, belonging mainly to the genera Lactobacillus, Pediococcus, Leuconostoc, Kazachstania and Candida, were identified in the stable sourdoughs. Buckwheat and teff sourdoughs were dominated mainly by obligate or facultative heterofermentative LAB, which are commonly associated with traditional wheat or rye sourdoughs. However, the spontaneous fermentation of the GF flours resulted also in the selection of species which are not consider endemic to traditional sourdoughs, i.e. Pediococcus pentosaceus, Leuconostoc holzapfelii, Lactobacillus gallinarum, Lactobacillus vaginalis, Lactobacillus sakei, Lactobacillus graminis and Weissella cibaria. In general, the composition of the stable biota was strongly affected by the fermentation conditions, whilst Lactobacillus plantarum dominated in all buckwheat sourdoughs. Lactobacillus pontis is described for the first time as dominant species in teff sourdough. Among yeasts, Saccharomyces cerevisiae and Candida glabrata dominated teff sourdoughs, whereas the solely Kazachstania barnetti was isolated in buckwheat sourdough developed under condition A. This study allowed the identification and isolation of LAB and yeasts species which are highly competitive during fermentation of buckwheat or teff flours. Representatives of these species can be selected as starters for the production of sourdough destined to GF bread production.

  13. Intestinal microflora in rats: isolation and characterization of strictly anaerobic bacteria requiring long-chain fatty acids.

    PubMed Central

    Morotomi, M; Kawai, Y; Mutai, M

    1976-01-01

    Three strains of strictly anaerobic bacteria, isolated from the cecal contents of rats, have strict requirements for long-chain fatty acids. The effect of exogenous fatty acids on the growth and fatty acid composition of the bacteria was examined. Biohydrogenation of linoleic acid into octadecenoic acid was observed. These observations suggest that long-chain fatty acids in the intestine are factors in controlling the localization and the population levels of indigenous bacteria in vivo in rats. PMID:1267446

  14. Autoinducer-2 properties of kimchi are associated with lactic acid bacteria involved in its fermentation.

    PubMed

    Park, Hyunjoon; Shin, Heuynkil; Lee, Kyuyeon; Holzapfel, Wilhelm

    2016-05-16

    Bacteria use the cell density-dependent quorum signalling system to regulate particular gene expressions. In food microbiology, signalling is well known for its relation to (foodborne) pathogenicity, food spoilage, and biofilm formation. Quorum quenching and inhibition are thus being considered as a feasible approach in food preservation and safety. In the case of the luxS-mediated universal quorum sensing using autoinducer-2 (AI-2), however, it could be a different issue. Several studies have reported a luxS AI-2 synthase homologue in numerous bacteria, comprising both pathogens and beneficial strains. A recent study has shown the AI-2 signal to restore the balance of the major phyla of the gut microbiota in antibiotic-induced dysbiosis. We measured the AI-2 activity of the lactic fermented food, kimchi, and found different AI-2 signalling intensities. In order to trace the origin of the signal production, we obtained 229 lactic acid bacterial isolates from the kimchi samples, and detected the AI-2 properties of each isolate using a modified AI-2 bioluminescence assay. Our results showed isolates of dominant species of the genera Lactobacillus, Weissella and Leuconostoc which either produced or inhibited the AI-2 signal. No isolate of the dominant species Lactobacillus sakei (75 isolates) and Lactobacillus curvatus (28 isolates) showed AI-2 producing activity, while AI-2 inhibition could not be detected for any of the 31 Lactobacillus plantarum isolates. These results suggest the AI-2 activity of kimchi to result from the interaction of the associated microbial food cultures (MFCs) during fermentation. Thus far, only sparse information is available on AI-2 signalling interaction in fermented food, however, we suggest that fermented food may be a supplier of AI-2 signalling molecules via typical MFCs. PMID:26977818

  15. d-Amino Acid Catabolism Is Common Among Soil-Dwelling Bacteria

    PubMed Central

    Radkov, Atanas D; McNeill, Katlyn; Uda, Koji; Moe, Luke A

    2016-01-01

    Soil and rhizosphere environments were examined in order to determine the identity and relative abundance of bacteria that catabolize d- and l-amino acids as the sole source of carbon and nitrogen. All substrates were readily catabolized by bacteria from both environments, with most d-amino acids giving similar CFU counts to their l-amino acid counterparts. CFU count ratios between l- and d-amino acids typically ranged between 2 and 1. Isolates were phylogenetically typed in order to determine the identity of d-amino acid catabolizers. Actinobacteria, specifically the Arthrobacter genus, were abundant along with members of the α- and β-Proteobacteria classes. PMID:27169790

  16. Archaeal Ammonia Oxidizers Dominate in Numbers, but Bacteria Drive Gross Nitrification in N-amended Grassland Soil.

    PubMed

    Sterngren, Anna E; Hallin, Sara; Bengtson, Per

    2015-01-01

    Both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play an important role in nitrification in terrestrial environments. Most often AOA outnumber AOB, but the relative contribution of AOA and AOB to nitrification rates remains unclear. The aim of this experiment was to test the hypotheses that high nitrogen availability would favor AOB and result in high gross nitrification rates, while high carbon availability would result in low nitrogen concentrations that favor the activity of AOA. The hypotheses were tested in a microcosm experiment where sugars, ammonium, or amino acids were added regularly to a grassland soil for a period of 33 days. The abundance of amoA genes from AOB increased markedly in treatments that received nitrogen, suggesting that AOB were the main ammonia oxidizers here. However, AOB could not account for the entire ammonia oxidation activity observed in treatments where the soil was deficient in available nitrogen. The findings suggest that AOA are important drivers of nitrification under nitrogen-poor conditions, but that input of easily available nitrogen results in increased abundance, activity, and relative importance of AOB for gross nitrification in grassland soil.

  17. Inactivation of bacteria on surfaces by sprayed slightly acidic hypochlorous acid water: in vitro experiments

    PubMed Central

    HAKIM, Hakimullah; ALAM, Md. Shahin; SANGSRIRATANAKUL, Natthanan; NAKAJIMA, Katsuhiro; KITAZAWA, Minori; OTA, Mari; TOYOFUKU, Chiharu; YAMADA, Masashi; THAMMAKARN, Chanathip; SHOHAM, Dany; TAKEHARA, Kazuaki

    2016-01-01

    The capacity of slightly acidic hypochlorous acid water (SAHW), in both liquid and spray form, to inactivate bacteria was evaluated as a potential candidate for biosecurity enhancement in poultry production. SAHW (containing 50 or 100 ppm chlorine, pH 6) was able to inactivate Escherichia coli and Salmonella Infantis in liquid to below detectable levels (≤2.6 log10 CFU/ml) within 5 sec of exposure. In addition, SAHW antibacterial capacity was evaluated by spraying it using a nebulizer into a box containing these bacteria, which were present on the surfaces of glass plates and rayon sheets. SAHW was able to inactivate both bacterial species on the glass plates (dry condition) and rayon sheets within 5 min spraying and 5 min contact times, with the exception of 50 ppm SAHW on the rayon sheets. Furthermore, a corrosivity test determined that SAHW does not corrode metallic objects, even at the longest exposure times (83 days). Our findings demonstrate that SAHW is a good candidate for biosecurity enhancement in the poultry industry. Spraying it on the surfaces of objects, eggshells, egg incubators and transport cages could reduce the chances of contamination and disease transmission. These results augment previous findings demonstrating the competence of SAHW as an anti-viral disinfectant. PMID:27052464

  18. Inactivation of bacteria on surfaces by sprayed slightly acidic hypochlorous acid water: in vitro experiments.

    PubMed

    Hakim, Hakimullah; Alam, Md Shahin; Sangsriratanakul, Natthanan; Nakajima, Katsuhiro; Kitazawa, Minori; Ota, Mari; Toyofuku, Chiharu; Yamada, Masashi; Thammakarn, Chanathip; Shoham, Dany; Takehara, Kazuaki

    2016-08-01

    The capacity of slightly acidic hypochlorous acid water (SAHW), in both liquid and spray form, to inactivate bacteria was evaluated as a potential candidate for biosecurity enhancement in poultry production. SAHW (containing 50 or 100 ppm chlorine, pH 6) was able to inactivate Escherichia coli and Salmonella Infantis in liquid to below detectable levels (≤2.6 log10 CFU/ml) within 5 sec of exposure. In addition, SAHW antibacterial capacity was evaluated by spraying it using a nebulizer into a box containing these bacteria, which were present on the surfaces of glass plates and rayon sheets. SAHW was able to inactivate both bacterial species on the glass plates (dry condition) and rayon sheets within 5 min spraying and 5 min contact times, with the exception of 50 ppm SAHW on the rayon sheets. Furthermore, a corrosivity test determined that SAHW does not corrode metallic objects, even at the longest exposure times (83 days). Our findings demonstrate that SAHW is a good candidate for biosecurity enhancement in the poultry industry. Spraying it on the surfaces of objects, eggshells, egg incubators and transport cages could reduce the chances of contamination and disease transmission. These results augment previous findings demonstrating the competence of SAHW as an anti-viral disinfectant. PMID:27052464

  19. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  20. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  1. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”

    PubMed Central

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-01-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples. PMID:26221105

  2. Anaerobic activities of bacteria and fungi in moderately acidic conifer and deciduous leaf litter.

    PubMed

    Reith, Frank; Drake, Harold L; Küsel, Kirsten

    2002-07-01

    Abstract The litter layer of forest soils harbors high amounts of labile organic matter, and anaerobic decomposition processes can be initiated when oxygen is consumed more rapidly than it is supplied by diffusion. In this study, two adjacent moderately acidic forest sites, a spruce and a beech-oak forest, were selected to compare the anaerobic bacterial and fungal activities and populations of conifer and deciduous leaf litter. Most probable number (MPN) estimates of general heterotrophic aerobes and anaerobes from conifer litter equaled those from deciduous leaf litter. H(2), ethanol, formate, and lactate were initially produced with similar rates in both anoxic conifer and deciduous leaf litter microcosms. These products were rapidly consumed in deciduous leaf but not in conifer litter microcosms. Supplemental ethanol and H(2) were consumed only by deciduous leaf litter and yielded additional amounts of acetate in stoichiometries indicative of ethanol- or H(2)-dependent acetogenesis. The negligible turnover of primary fermentation products in conifer litter might be due to the low numbers of acetogens and secondary fermenters present in conifer litter compared to deciduous leaf litter. Fungi capable of anaerobic growth made up only 0.01-0.1% of the total anaerobic microorganisms cultured from conifer and deciduous leaf litter, respectively. Metabolic product profiles obtained from the highest anoxic, growth-positive MPN dilutions supplemented with antibacterial agents indicated that the dominant population of fungi, apparently mainly yeast-like cells, produced H(2), ethanol, acetate, and lactate both in conifer and deciduous leaf litter. Thus, despite acidic conditions, bacteria appear to dominate in the decomposition of carbon in anoxic microsites of both conifer and deciduous leaf litter.

  3. Competitive Ability and Survival in Soil of Pseudomonas Strain 679-2, a Dominant, Nonobligate Bacterial Predator of Bacteria

    PubMed Central

    Casida, L. E.

    1992-01-01

    A copper-resistant, nonobligate, bacterial predator of bacteria was isolated from soil. It was a Pseudomonas species, designated strain 679-2. It attacked most other nonobligate bacterial predators and hence could control their predatory and other activities in nature. It also inhibited various fungi. It attached to prey cells and produced a toxic, copper-related, growth initiation factor like that produced by Cupriavidus necator. In addition, it produced a second, novel compound that was both antibacterial and antifungal. Strain 679-2 appeared to have only a very limited natural occurrence. It was found only in the soil from one small area in one field. It was absent on the leaves of the plant species that were examined. Regardless of its rarity, however, it was highly competitive in soil. An inoculum consisting of only a few cells added to soil multiplied rapidly to become a major component of the soil microflora within 24 h. A small amount of glutamic acid could be added along with the cells to stimulate production of the toxic compounds noted above, but this was not necessary. After this multiplication, or when large numbers of cells were added to soil, the numbers decreased only slowly during the next several months. Cell survival also was good on plant leaves. The survival in soil and on plant leaves occurred in both laboratory and field experiments. Other than desiccation, the natural mechanism for controlling the numbers or activities of strain 679-2 in soil is not known. The various characteristics of this bacterium, as noted above, are of particular interest because they indicate a possible use of the cells or inhibitor compounds for controlling organisms in soil or on plant surfaces. PMID:16348631

  4. Competitive ability and survival in soil of Pseudomonas strain 679-2, a dominant, nonobligate bacterial predator of bacteria

    SciTech Connect

    Casida, L.E. )

    1992-01-01

    A copper-resistant, nonobligate, bacterial predator of bacteria was isolated from soil. It was a Pseudomonas species, designated strain 679-2. It attacked most other nonobligate bacterial predators and hence could control their predatory and other activities in nature. It also inhibited various fungi. It attached to prey cells and produced a toxic, copper-related, growth initiation factor like that produced by Cupriavidus necator. In addition, it produced a second, novel compound that was both antibacterial and antifungal. Strain 679-2 appeared to have only a very limited natural occurrence. It was found only in the soil from one small area in one field. It was absent on the leaves of the plant species that were examined. An inoculum consisting of only a few cells added to soil multiplied rapidly to become a major component of the soil microflora within 24 h. A small amount of glutamic acid could be added along with the cells to stimulate production of the toxic compounds noted above, but this was not necessary. After this multiplication, or when large numbers of cells were added to soil, the numbers decreased only slowly during the next several months. Cell survival also was good on plant leaves. The survival in soil and on plant leaves occurred in both laboratory and field experiments. Other than desiccation, the natural mechanism for controlling the numbers or activities of strain 679-2 in soil is not known. The various characteristics of this bacterium, as noted above, are of particular interest because they indicate a possible use of the cells or inhibitor compounds for controlling organisms in soil or on plant surfaces.

  5. Probiotic lactic acid bacteria – the fledgling cuckoos of the gut?

    PubMed Central

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, Jørgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either ‘good’ or ‘bad’. However, a microbial society has its own system of government – ‘microcracy’ – and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being ‘friendly’ – they may instead behave like fledgling cuckoos. PMID:27235098

  6. Profiles of fatty acids and 7-O-acyl okadaic acid esters in bivalves: can bacteria be involved in acyl esterification of okadaic acid?

    PubMed

    Vale, Paulo

    2010-01-01

    The presence of 7-O-acyl okadaic acid (OA) esters was studied by LC-MS in the digestive glands of blue mussel (Mytilus galloprovincialis) and common cockle (Cerastoderma edule) from Albufeira lagoon, located 20km south of Lisbon. The profile of free and total fatty acids (FA) was analysed using a similar LC separation with a reversed phase C8 column and mass spectrometry detection. In mussel the free FA profile was reflected in the FA esterified to OA, being palmitic acid for instance the most abundant in both cases. In cockle, 7-O-acyl esters with palmitic acid were almost absent and esters with a C16:0 isomer were dominant, followed by esters with C15:1 and C15:0. The cockle free FA profile was similar to mussel, and in accordance with literature findings in bivalves. After hydrolysis, a major difference in the FA profile occurred in both species, presenting a high percentage of a C16:0 isomer. The isomer found in general lipids and bound to OA seemed to be related, presenting similar relative retention times (RRT) to C16:0, differing from expected RRT of monomethyl-branched isomers (iso- or anteiso-). A tentative identification was made with the multimethyl-branched isoprenoid, 4,8,12-trimethyltridecanoic acid (TMTD). TMTD is a product of phytol degradation. This was also suspected when the proportion of this compound in relation to palmitic acid was reduced in vivo in mussels fed a chlorophyll-free diet. Extensive esterification of OA by, among others, phytol-degrading bacteria is discussed as a plausible hypothesis in cockle, but not in mussel, due to the relatively high specific proportion of odd-numbered and branched FA.

  7. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  8. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters. PMID:18177968

  9. Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches.

    PubMed

    Endo, Akihito; Futagawa-Endo, Yuka; Dicks, Leon M T

    2009-12-01

    Fourteen strains of fructophilic lactic acid bacteria were isolated from fructose-rich niches, flowers, and fruits. Phylogenetic analysis and BLAST analysis of 16S rDNA sequences identified six strains as Lactobacillus kunkeei, four as Fructobacillus pseudoficulneus, and one as Fructobacillus fructosus. The remaining three strains grouped within the Lactobacillus buchneri phylogenetic subcluster, but shared low sequence similarities to other known Lactobacillus spp. The fructophilic strains fermented only a few carbohydrates and fermented D-fructose faster than D-glucose. Based on the growth characteristics, the 14 isolates were divided into two groups. Strains in the first group containing L. kunkeei, F. fructosus, and F. pseudoficulneus grew well on D-fructose and on D-glucose with pyruvate or oxygen as external electron acceptors, but poorly on D-glucose without the electron acceptors. Strains in this group were classified as "obligately" fructophilic lactic acid bacteria. The second group contained three unidentified strains of Lactobacillus that grew well on D-fructose and on D-glucose with the electron acceptors. These strains grew on D-glucose without the electron acceptors, but at a delayed rate. Strains in this group were classified as facultatively fructophilic lactic acid bacteria. All fructophilic isolates were heterofermentative lactic acid bacteria, but "obligately" fructophilic lactic acid bacteria mainly produced lactic acid and acetic acid and very little ethanol from D-glucose. Facultatively fructophilic strains produced lactic acid, acetic acid and ethanol, but at a ratio different from that recorded for heterofermentative lactic acid bacteria. These unique characteristics may have been obtained through adaptation to the habitat. PMID:19733991

  10. Applications for biotechnology: present and future improvements in lactic acid bacteria.

    PubMed

    McKay, L L; Baldwin, K A

    1990-09-01

    The lactic acid bacteria are involved in the manufacture of fermented foods from raw agricultural materials such as milk, meat, vegetables, and cereals. These fermented foods are a significant part of the food processing industry and are often prepared using selected strains that have the ability to produce desired products or changes efficiently. The application of genetic engineering technology to improve existing strains or develop novel strains for these fermentations is an active research area world-wide. As knowledge about the genetics and physiology of lactic acid bacteria accumulates, it becomes possible to genetically construct strains with characteristics shaped for specific purposes. Examples of present and future applications of biotechnology to lactic acid bacteria to improve product quality are described. Studies of the basic biology of these bacteria are being actively conducted and must be continued, in order for the food fermentation industry to reap the benefits of biotechnology.

  11. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    NASA Astrophysics Data System (ADS)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  12. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  13. A study of tannic acid degradation by soil bacteria.

    PubMed

    Ilori, Matthew O; Adebusoye, Sunday A; Amund, Olukayode O; Oyetoran, Bodunde O

    2007-09-15

    A tannin-degrading strain of Bacillus sp. AB1 was isolated from a garden soil by enrichment. This organism was able to utilize 1% (w/v) tannic acid-a gallotannin at 30 degrees C and pH below 4.5 in a defined mineral medium where the acid was the sole source of carbon and energy under 96 h. Growth resulted in increase in OD concomitant with gradual decrease in pH of the culture medium. Analysis of the culture fluid by paper chromatography revealed glucose and gallic acid as major metabolites of tannic acid degradative pathway. Mineralization of tannic acid was informed when none of the metabolites was recovered after 96 h of incubation. The degradation potential of this isolate could be exploited for the production of tannase, improvement of livestock production and also detoxification of tannery effluents at extreme acidic conditions.

  14. Dynamics and Biodiversity of Populations of Lactic Acid Bacteria and Acetic Acid Bacteria Involved in Spontaneous Heap Fermentation of Cocoa Beans in Ghana▿

    PubMed Central

    Camu, Nicholas; De Winter, Tom; Verbrugghe, Kristof; Cleenwerck, Ilse; Vandamme, Peter; Takrama, Jemmy S.; Vancanneyt, Marc; De Vuyst, Luc

    2007-01-01

    The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and

  15. Genetic and Technological Characterisation of Vineyard- and Winery-Associated Lactic Acid Bacteria

    PubMed Central

    Nisiotou, Aspasia A.; Filippousi, Maria-Evangelia; Fragkoulis, Petros; Tassou, Chryssoula; Banilas, Georgios

    2015-01-01

    Vineyard- and winery-associated lactic acid bacteria (LAB) from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF). Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs). Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine. PMID:25866789

  16. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees.

    PubMed

    Vásquez, Alejandra; Forsgren, Eva; Fries, Ingemar; Paxton, Robert J; Flaberg, Emilie; Szekely, Laszlo; Olofsson, Tobias C

    2012-01-01

    Lactic acid bacteria (LAB) are well recognized beneficial host-associated members of the microbiota of humans and animals. Yet LAB-associations of invertebrates have been poorly characterized and their functions remain obscure. Here we show that honeybees possess an abundant, diverse and ancient LAB microbiota in their honey crop with beneficial effects for bee health, defending them against microbial threats. Our studies of LAB in all extant honeybee species plus related apid bees reveal one of the largest collections of novel species from the genera Lactobacillus and Bifidobacterium ever discovered within a single insect and suggest a long (>80 mya) history of association. Bee associated microbiotas highlight Lactobacillus kunkeei as the dominant LAB member. Those showing potent antimicrobial properties are acquired by callow honey bee workers from nestmates and maintained within the crop in biofilms, though beekeeping management practices can negatively impact this microbiota. Prophylactic practices that enhance LAB, or supplementary feeding of LAB, may serve in integrated approaches to sustainable pollinator service provision. We anticipate this microbiota will become central to studies on honeybee health, including colony collapse disorder, and act as an exemplar case of insect-microbe symbiosis.

  17. Identification of lactic acid bacteria isolated from wine using real-time PCR.

    PubMed

    Kántor, Attila; Kluz, Maciej; Puchalski, Czeslaw; Terentjeva, Margarita; Kačániová, Miroslava

    2016-01-01

    Different lactic acid bacteria strains have been shown to cause wine spoilage, including the generation of substances undesirable for the health of wine consumers. The aim of this study was to investigate the occurrence of selected species of heterofermentative lactobacilli, specifically Lactobacillus brevis, Lactobacillus hilgardii, and Lactobacillus plantarum in six different Slovak red wines following the fermentation process. In order to identify the dominant Lactobacillus strain using quantitative (real time) polymerized chain reaction (qPCR) method, pure lyophilized bacterial cultures from the Czech Collection of Microorganisms were used. Six different red wine samples following malolactic fermentation were obtained from selected wineries. After collection, the samples were subjected to a classic plate dilution method for enumeration of lactobacilli cells. Real-time PCR was performed after DNA extraction from pure bacterial strains and wine samples. We used SYBR® Green master mix reagents for measuring the fluorescence in qPCR. The number of lactobacilli ranged from 3.60 to 5.02 log CFU mL(-1). Specific lactobacilli strains were confirmed by qPCR in all wine samples. The number of lactobacilli ranged from 10(3) to 10(6) CFU mL(-1). A melting curve with different melting temperatures (T(m)) of DNA amplicons was obtained after PCR for the comparison of T(m) of control and experimental portions, revealing that the most common species in wine samples was Lactobacillus plantarum with a T(m) of 84.64°C.

  18. Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products

    PubMed Central

    Gad, Gamal Fadl M.; Abdel-Hamid, Ahmed M.; Farag, Zeinab Shawky H.

    2014-01-01

    A total of 244 lactic acid bacteria (LAB) strains were isolated from 180 dairy and pharmaceutical products that were collected from different areas in Minia governorate, Egypt. LAB were identified phenotypically on basis of morphological, physiological and biochemical characteristics. Lactobacillus isolates were further confirmed using PCR-based assay. By combination of phenotypic with molecular identification Lactobacillus spp. were found to be the dominant genus (138, 76.7%) followed by Streptococcus spp. (65, 36.1%) and Lactococcus spp. (27, 15%). Some contaminant organisms such as (Staphylococcus spp., Escherichia coli, Salmonella spp., mould and yeast) were isolated from the collected dairy samples but pharmaceutical products were free of such contaminants. Susceptibility of LAB isolates to antibiotics representing all major classes was tested by agar dilution method. Generally, LAB were highly susceptible to Beta-lactams except penicillin. Lactobacilli were resistant to vancomycin, however lactococci and streptococci proved to be very susceptible. Most strains were susceptible to tetracycline and showed a wide range of streptomycin MICs. The MICs of erythromycin and clindamycin for most of the LAB were within the normal range of susceptibility. Sixteen Lactobacillus, 8 Lactococcus and 8 Streptococcus isolates including all tetracycline and/or erythromycin resistant strains were tested for the presence of tetracycline and/or erythromycin resistant genes [tet(M) and/or erm(B)]. PCR assays shows that some resistant strains harbor tet(M) and/or erm(B) resistance genes. PMID:24948910

  19. Pyrosequencing Revealed SAR116 Clade as Dominant dddP-Containing Bacteria in Oligotrophic NW Pacific Ocean

    PubMed Central

    Choi, Dong Han; Park, Ki-Tae; An, Sung Min; Lee, Kitack; Cho, Jang-Cheon; Lee, Jung-Hyun; Kim, Dongseon; Jeon, Dongchull; Noh, Jae Hoon

    2015-01-01

    Dimethyl sulfide (DMS) is a climatically active gas released into the atmosphere from oceans. It is produced mainly by bacterial enzymatic cleavage of dimethylsulfoniopropionate (DMSP), and six DMSP lyases have been identified to date. To determine the biogeographical distribution of bacteria relevant to DMS production, we investigated the diversity of dddP—the most abundant DMS-producing gene—in the northwestern Pacific Ocean using newly developed primers and the pyrosequencing method. Consistent with previous studies, the major dddP-containing bacteria in coastal areas were those belonging to the Roseobacter clade. However, genotypes closely related to the SAR116 group were found to represent a large portion of dddP-containing bacteria in the surface waters of the oligotrophic ocean. The addition of DMSP to a culture of the SAR116 strain Candidatus Puniceispirillum marinum IMCC1322 resulted in the production of DMS and upregulated expression of the dddP gene. Considering the large area of oligotrophic water and the wide distribution of the SAR116 group in oceans worldwide, we propose that these bacteria may play an important role in oceanic DMS production and biogeochemical sulfur cycles, especially via bacteria-mediated DMSP degradation. PMID:25615446

  20. Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean.

    PubMed

    Choi, Dong Han; Park, Ki-Tae; An, Sung Min; Lee, Kitack; Cho, Jang-Cheon; Lee, Jung-Hyun; Kim, Dongseon; Jeon, Dongchull; Noh, Jae Hoon

    2015-01-01

    Dimethyl sulfide (DMS) is a climatically active gas released into the atmosphere from oceans. It is produced mainly by bacterial enzymatic cleavage of dimethylsulfoniopropionate (DMSP), and six DMSP lyases have been identified to date. To determine the biogeographical distribution of bacteria relevant to DMS production, we investigated the diversity of dddP—the most abundant DMS-producing gene—in the northwestern Pacific Ocean using newly developed primers and the pyrosequencing method. Consistent with previous studies, the major dddP-containing bacteria in coastal areas were those belonging to the Roseobacter clade. However, genotypes closely related to the SAR116 group were found to represent a large portion of dddP-containing bacteria in the surface waters of the oligotrophic ocean. The addition of DMSP to a culture of the SAR116 strain Candidatus Puniceispirillum marinum IMCC1322 resulted in the production of DMS and upregulated expression of the dddP gene. Considering the large area of oligotrophic water and the wide distribution of the SAR116 group in oceans worldwide, we propose that these bacteria may play an important role in oceanic DMS production and biogeochemical sulfur cycles, especially via bacteria-mediated DMSP degradation. PMID:25615446

  1. Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean.

    PubMed

    Choi, Dong Han; Park, Ki-Tae; An, Sung Min; Lee, Kitack; Cho, Jang-Cheon; Lee, Jung-Hyun; Kim, Dongseon; Jeon, Dongchull; Noh, Jae Hoon

    2015-01-01

    Dimethyl sulfide (DMS) is a climatically active gas released into the atmosphere from oceans. It is produced mainly by bacterial enzymatic cleavage of dimethylsulfoniopropionate (DMSP), and six DMSP lyases have been identified to date. To determine the biogeographical distribution of bacteria relevant to DMS production, we investigated the diversity of dddP—the most abundant DMS-producing gene—in the northwestern Pacific Ocean using newly developed primers and the pyrosequencing method. Consistent with previous studies, the major dddP-containing bacteria in coastal areas were those belonging to the Roseobacter clade. However, genotypes closely related to the SAR116 group were found to represent a large portion of dddP-containing bacteria in the surface waters of the oligotrophic ocean. The addition of DMSP to a culture of the SAR116 strain Candidatus Puniceispirillum marinum IMCC1322 resulted in the production of DMS and upregulated expression of the dddP gene. Considering the large area of oligotrophic water and the wide distribution of the SAR116 group in oceans worldwide, we propose that these bacteria may play an important role in oceanic DMS production and biogeochemical sulfur cycles, especially via bacteria-mediated DMSP degradation.

  2. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.

    PubMed

    Lu, Lu; Jia, Zhongjun

    2013-06-01

    The metabolic traits of ammonia-oxidizing archaea (AOA) and bacteria (AOB) interacting with their environment determine the nitrogen cycle at the global scale. Ureolytic metabolism has long been proposed as a mechanism for AOB to cope with substrate paucity in acid soil, but it remains unclear whether urea hydrolysis could afford AOA greater ecological advantages. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, here we show that autotrophic ammonia oxidation in two acid soils was predominately driven by AOA that contain ureC genes encoding the alpha subunit of a putative archaeal urease. In urea-amended SIP microcosms of forest soil (pH 5.40) and tea orchard soil (pH 3.75), nitrification activity was stimulated significantly by urea fertilization when compared with water-amended soils in which nitrification resulted solely from the oxidation of ammonia generated through mineralization of soil organic nitrogen. The stimulated activity was paralleled by changes in abundance and composition of archaeal amoA genes. Time-course incubations indicated that archaeal amoA genes were increasingly labelled by (13) CO2 in both microcosms amended with water and urea. Pyrosequencing revealed that archaeal populations were labelled to a much greater extent in soils amended with urea than water. Furthermore, archaeal ureC genes were successfully amplified in the (13) C-DNA, and acetylene inhibition suggests that autotrophic growth of urease-containing AOA depended on energy generation through ammonia oxidation. The sequences of AOB were not detected, and active AOA were affiliated with the marine Group 1.1a-associated lineage. The results suggest that ureolytic N metabolism could afford AOA greater advantages for autotrophic ammonia oxidation in acid soil, but the mechanism of how urea activates AOA cells remains unclear.

  3. HYDROLYTIC BREAKDOWN OF LACTOFERRICIN BY LACTIC ACID BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactoferricin is a 25 amino acid antimicrobial peptide domain that is liberated by pepsin digestion of lactoferrin in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. There is substantial ...

  4. Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production.

    PubMed

    Corona, Onofrio; Alfonzo, Antonio; Ventimiglia, Giusi; Nasca, Anna; Francesca, Nicola; Martorana, Alessandra; Moschetti, Giancarlo; Settanni, Luca

    2016-10-01

    Four obligate heterofermentative lactic acid bacteria (LAB) strains (Weissella cibaria PON10030 and PON10032 and Leuconostoc citreum PON 10079 and PON10080) were tested as single strain starters, mono-species dual strain starters, and multiple strain starter for the preparation and propagation of sourdoughs for the production of a typical bread at industrial level. The kinetics of pH and TTA during the daily sourdough refreshments indicated a correct acidification process for all trials. The concentration of lactic and acetic acid increased consistently during fermentation. The resulting molar ratios between these two organic acids in the experimental trials were lower than those observed in the control trial. The microbiological investigation showed levels of approximately 10(9) CFU/mL in almost all sourdoughs and the comparison of the genetic polymorphisms of the dominating LAB with those of the pure cultures evidenced the persistence of the added strains over time. The resulting breads were evaluated for several quality parameters. The breads with the greatest height were obtained with the quadruple combination of leuconostocs and weissellas. The highest softness was registered for the breads obtained from fermentations performed by W. cibaria PON10032 alone and in combination. The different inocula influenced also the color, the void fraction, the cell density and the mean cell area of the breads. Different levels of acids, alcohols, aldehydes, esters, hydrocarbons, ketones, terpenes, furans and phenol were emitted by the breads. The sensory tests indicated the breads from the sourdoughs fermented with the seven LAB inocula as sweeter and less acidic than control breads and the breads from the trials with the highest complexity of LAB inoculums were those more appreciated by tasters. A multivariate approach found strong differences among the trials. In particular, control breads and the breads obtained with different starter LAB were quite distant and a more

  5. Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production.

    PubMed

    Corona, Onofrio; Alfonzo, Antonio; Ventimiglia, Giusi; Nasca, Anna; Francesca, Nicola; Martorana, Alessandra; Moschetti, Giancarlo; Settanni, Luca

    2016-10-01

    Four obligate heterofermentative lactic acid bacteria (LAB) strains (Weissella cibaria PON10030 and PON10032 and Leuconostoc citreum PON 10079 and PON10080) were tested as single strain starters, mono-species dual strain starters, and multiple strain starter for the preparation and propagation of sourdoughs for the production of a typical bread at industrial level. The kinetics of pH and TTA during the daily sourdough refreshments indicated a correct acidification process for all trials. The concentration of lactic and acetic acid increased consistently during fermentation. The resulting molar ratios between these two organic acids in the experimental trials were lower than those observed in the control trial. The microbiological investigation showed levels of approximately 10(9) CFU/mL in almost all sourdoughs and the comparison of the genetic polymorphisms of the dominating LAB with those of the pure cultures evidenced the persistence of the added strains over time. The resulting breads were evaluated for several quality parameters. The breads with the greatest height were obtained with the quadruple combination of leuconostocs and weissellas. The highest softness was registered for the breads obtained from fermentations performed by W. cibaria PON10032 alone and in combination. The different inocula influenced also the color, the void fraction, the cell density and the mean cell area of the breads. Different levels of acids, alcohols, aldehydes, esters, hydrocarbons, ketones, terpenes, furans and phenol were emitted by the breads. The sensory tests indicated the breads from the sourdoughs fermented with the seven LAB inocula as sweeter and less acidic than control breads and the breads from the trials with the highest complexity of LAB inoculums were those more appreciated by tasters. A multivariate approach found strong differences among the trials. In particular, control breads and the breads obtained with different starter LAB were quite distant and a more

  6. Extraction and purification of lipoteichoic acids from Gram-positive bacteria.

    PubMed

    Coley, J; Duckworth, M; Baddiley, J

    1975-03-01

    Hot and cold, 80% aqueous phenol extraction procedures together with an aqueous extraction technique have been evaluated for the isolation of lipoteichoic acids from the cytoplasmic membrane of Gram-positive bacteria. Lipoteichoic acids of Staphlococcus aureus H, Micrococcus 2102, Baccillus subtilis 168, and Bacillus subtilis W-23 were examined as each of them emphasises a different problem of contamination. The purity of the lipoteichoic acids with respect to cell-wall material, nucleic acid, and protein is discussed together with the criteria of purity which enables critical structural analysis of lipoteichoic acids to be carried out.

  7. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    PubMed

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp.

  8. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    PubMed

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp. PMID:26924312

  9. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    PubMed

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons.

  10. Hydroxycinnamic Acids Used as External Acceptors of Electrons: an Energetic Advantage for Strictly Heterofermentative Lactic Acid Bacteria

    PubMed Central

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria

    2014-01-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD+/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD+/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. PMID:25261518

  11. Core Fluxome and Metafluxome of Lactic Acid Bacteria under Simulated Cocoa Pulp Fermentation Conditions

    PubMed Central

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik

    2013-01-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive 13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel 13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity. PMID:23851099

  12. Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions.

    PubMed

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik; Wittmann, Christoph

    2013-09-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive (13)C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel (13)C studies with [(13)C6]glucose, [1,2-(13)C2]glucose, and [(13)C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity.

  13. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.

    PubMed

    Huang, C-L; Chen, C-C; Lin, C-Y; Liu, W-T

    2009-01-01

    Two hydrogen-producing continuous flow stirred tank reactors (CSTRs) fed respectively with glucose and sucrose were investigated by polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH). The substrate was fed in a continuous mode decreased from hydraulic retention time (HRT) 10 hours to 6, 5, 4, 3, and 2 hours. Quantitative fluorescent in-situ hybridization (FISH) observations further demonstrated that two morphotypes of bacteria dominated both microbial communities. One was long rod bacteria which can be targeted either by Chis150 probe designed to hybridize the gram positive low G + C bacteria or the specific oligonucleotide probe Lg10-6. The probe Lg10-6, affiliated with Clostridium pasteurianum, was designed and then checked with other reference organisms. The other type, unknown group, which cannot be detected by Chis150 was curved rod bacteria. Notably, the population ratios of the two predominant groups reflected the different operational performance of the two reactors, such as hydrogen producing rates, substrate turnover rates and metabolites compositions. Therefore, a competition mode of the two dominant bacteria groups was hypothesized. In the study, 16S rRNA-based gene library of hydrogen-producing microbial communities was established. The efficiency of hydrogen yields was correlated with substrates (glucose or sucrose), HRT, metabolites compositions (acetate, propionate, butyrate and ethanol), thermal pre-treatment (seed biomass was heated at 100 degrees C for 45 minutes), and microbial communities in the bioreactor, not sludge sources (municipal sewage sludge, alcohol-processing sludge, or bean-processing sludge). The designed specific oligonucleotide probe Lg10-6 also provides us a useful and fast molecular tool to screen hydrogen-producing microbial communities in the future research.

  14. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production.

    PubMed

    García-Hernández, Yaneisy; Pérez-Sánchez, Tania; Boucourt, Ramón; Balcázar, José L; Nicoli, Jacques R; Moreira-Silva, João; Rodríguez, Zoraya; Fuertes, Héctor; Nuñez, Odalys; Albelo, Nereyda; Halaihel, Nabil

    2016-10-01

    In livestock production, lactic acid bacteria (LAB) are the most common microorganisms used as probiotics. For such use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. In the present study, LAB were isolated from broiler excreta, where a fermentation process was used. Nine among sixteen isolates were identified by biochemical and molecular (sequencing of the 16S rRNA gene) methods as Lactobacillus crispatus (n=1), Lactobacillus pentosus (n=1), Weissella cibaria (n=1), Pediococcus pentosaceus (n=2) and Enterococcus hirae (n=4). Subsequently, these bacteria were characterized for their growth capabilities, lactic acid production, acidic pH and bile salts tolerance, cell surface hydrophobicity, antimicrobial susceptibility and antagonistic activity. Lactobacillus pentosus strain LB-31, which showed the best characteristics, was selected for further analysis. This strain was administered to broilers and showed the ability of modulating the immune response and producing beneficial effects on morpho-physiological, productive and health indicators of the animals.

  15. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum)

    PubMed Central

    Kwak, Shin-Hye; Cho, Young-Mi; Noh, Geon-Min; Om, Ae-Son

    2014-01-01

    The number of death due to cancer has been increasing in Korea. Chemotherapy is known to cause side effects because it damages not only cancerous cells but healthy cells. Recently, attention has focused on food-derived chemopreventive and anti-tumor agents or formulations with fewer side effects. Kimchi, most popular and widely consumed in Korea, contains high levels of lactic acid bacteria and has been shown to possess chemopreventive effects. This review focuses on Weissella cibaria and Lactobacillus plantarum, the representatives of kimchi lactic acid bacteria, in terms of their abilities to prevent cancer. Further studies are needed to understand the mechanisms by which lactic acid bacteria in kimchi prevent carcinogenic processes and improve immune functions. PMID:25574459

  16. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    PubMed

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-01

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  17. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    SciTech Connect

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  18. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  19. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  20. Fatty Acid Oxidation is Impaired in An Orthologous Mouse Model of Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Menezes, Luis F.; Lin, Cheng-Chao; Zhou, Fang; Germino, Gregory G.

    2016-01-01

    Background The major gene mutated in autosomal dominant polycystic kidney disease was first identified over 20 years ago, yet its function remains poorly understood. We have used a systems-based approach to examine the effects of acquired loss of Pkd1 in adult mouse kidney as it transitions from normal to cystic state. Methods We performed transcriptional profiling of a large set of male and female kidneys, along with metabolomics and lipidomics analyses of a subset of male kidneys. We also assessed the effects of a modest diet change on cyst progression in young cystic mice. Fatty acid oxidation and glycolytic rates were measured in five control and mutant pairs of epithelial cells. Results We find that females have a significantly less severe kidney phenotype and correlate this protection with differences in lipid metabolism. We show that sex is a major determinant of the transcriptional profile of mouse kidneys and that some of this difference is due to genes involved in lipid metabolism. Pkd1 mutant mice have transcriptional profiles consistent with changes in lipid metabolism and distinct metabolite and complex lipid profiles in kidneys. We also show that cells lacking Pkd1 have an intrinsic fatty acid oxidation defect and that manipulation of lipid content of mouse chow modifies cystic disease. Interpretation Our results suggest PKD could be a disease of altered cellular metabolism. PMID:27077126

  1. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest.

    PubMed

    Kopecky, Jan; Kyselkova, Martina; Omelka, Marek; Cermak, Ladislav; Novotna, Jitka; Grundmann, Genevieve L; Moënne-Loccoz, Yvan; Sagova-Mareckova, Marketa

    2011-11-01

    Members of the Actinobacteria are among the most important litter decomposers in soil. The site of a waterlogged deciduous forest with acidic soil was explored for actinobacteria because seasonality of litter inputs, temperature, and precipitation provided contrasting environmental conditions, particularly variation of organic matter quantity and quality. We hypothesized that these factors, which are known to influence decomposition, were also likely to affect actinobacterial community composition. The relationship between the actinobacterial community, soil moisture and organic matter content was assessed in two soil horizons in the summer and winter seasons using a 16S rRNA taxonomic microarray and cloning-sequencing of 16S rRNA genes. Both approaches showed that the community differed significantly between horizons and seasons, paralleling the changes in soil moisture and organic matter content. The microarray analysis further indicated that the actinobacterial community of the upper horizon was characterized by high incidence of the genus Mycobacterium. In both horizons and seasons, the actinobacterial clone libraries were dominated (by 80%) by sequences of a separate clade sharing an ancestral node with Streptosporangineae. This relatedness is supported also by some common adaptations, for example, to soil acidity and periodic oxygen deprivation or dryness.

  2. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    PubMed Central

    Cui, Yanhua; Hu, Tong; Qu, Xiaojun; Zhang, Lanwei; Ding, Zhongqing; Dong, Aijun

    2015-01-01

    Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research. PMID:26068451

  3. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    PubMed Central

    Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties. PMID:24574887

  4. Acetic acid bacteria and the production and quality of wine vinegar.

    PubMed

    Mas, Albert; Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either "fast" or "traditional"), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties.

  5. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments.

    PubMed

    Cui, Yanhua; Hu, Tong; Qu, Xiaojun; Zhang, Lanwei; Ding, Zhongqing; Dong, Aijun

    2015-06-10

    Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.

  6. Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia.

    PubMed

    Srour, Myriam; Chitayat, David; Caron, Véronique; Chassaing, Nicolas; Bitoun, Pierre; Patry, Lysanne; Cordier, Marie-Pierre; Capo-Chichi, José-Mario; Francannet, Christine; Calvas, Patrick; Ragge, Nicola; Dobrzeniecka, Sylvia; Hamdan, Fadi F; Rouleau, Guy A; Tremblay, André; Michaud, Jacques L

    2013-10-01

    Anophthalmia and/or microphthalmia, pulmonary hypoplasia, diaphragmatic hernia, and cardiac defects are the main features of PDAC syndrome. Recessive mutations in STRA6, encoding a membrane receptor for the retinol-binding protein, have been identified in some cases with PDAC syndrome, although many cases have remained unexplained. Using whole-exome sequencing, we found that two PDAC-syndrome-affected siblings, but not their unaffected sibling, were compound heterozygous for nonsense (c.355C>T [p.Arg119(∗)]) and frameshift (c.1201_1202insCT [p.Ile403Serfs(∗)15]) mutations in retinoic acid receptor beta (RARB). Transfection studies showed that p.Arg119(∗) and p.Ile403Serfs(∗)15 altered RARB had no transcriptional activity in response to ligands, confirming that the mutations induced a loss of function. We then sequenced RARB in 15 subjects with anophthalmia and/or microphthalmia and at least one other feature of PDAC syndrome. Surprisingly, three unrelated subjects with microphthalmia and diaphragmatic hernia showed de novo missense mutations affecting the same codon; two of the subjects had the c.1159C>T (Arg387Cys) mutation, whereas the other one carried the c.1159C>A (p.Arg387Ser) mutation. We found that compared to the wild-type receptor, p.Arg387Ser and p.Arg387Cys altered RARB induced a 2- to 3-fold increase in transcriptional activity in response to retinoic acid ligands, suggesting a gain-of-function mechanism. Our study thus suggests that both recessive and dominant mutations in RARB cause anophthalmia and/or microphthalmia and diaphragmatic hernia, providing further evidence of the crucial role of the retinoic acid pathway during eye development and organogenesis.

  7. Addicting diverse bacteria to a noncanonical amino acid.

    PubMed

    Tack, Drew S; Ellefson, Jared W; Thyer, Ross; Wang, Bo; Gollihar, Jimmy; Forster, Matthew T; Ellington, Andrew D

    2016-03-01

    Engineered orthogonal translation systems have greatly enabled the expansion of the genetic code using noncanonical amino acids (NCAAs). However, the impact of NCAAs on organismal evolution remains unclear, in part because it is difficult to force the adoption of new genetic codes in organisms. By reengineering TEM-1 β-lactamase to be dependent on a NCAA, we maintained bacterial NCAA dependence for hundreds of generations without escape. PMID:26780407

  8. Effects of Long-Chain Fatty Acids on Growth of Rumen Bacteria

    PubMed Central

    Maczulak, A. E.; Dehority, B. A.; Palmquist, D. L.

    1981-01-01

    The effects of low concentrations of long-chain fatty acids (palmitic, stearic, oleic, and vaccenic) on the growth of seven species (13 strains) of rumen bacteria were investigated. Except for Bacteroides ruminicola and several strains of Butyrivibrio fibrisolvens, bacterial growth was not greatly affected by either palmitic or stearic acids. In contrast, growth of Selenomonas ruminantium, B. ruminicola, and one strain of B. fibrisolvens was stimulated by oleic acid, whereas the cellulolytic species were markedly inhibited by this acid. Vaccenic acid (trans Δ11 18:1) had far less inhibitory effect on the cellulolytic species than oleic acid (cis Δ9 18:1). Inclusion of powdered cellulose in the medium appeared to reverse both inhibitory and stimulatory effects of added fatty acids. However, there was little carry-over effect observed when cells were transferred from a medium with fatty acids to one without. Considerable variation in response to added fatty acids was noted among five strains of B. fibrisolvens. In general, exogenous long-chain fatty acids appear to have little, if any, energy-sparing effect on the growth of rumen bacteria. PMID:16345887

  9. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage.

    PubMed

    Sun, Weimin; Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Chen, Haiyan; Xiao, Qingxiang

    2016-10-01

    A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities

  10. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage.

    PubMed

    Sun, Weimin; Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Chen, Haiyan; Xiao, Qingxiang

    2016-10-01

    A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities

  11. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components.

    PubMed

    Burgain, J; Scher, J; Francius, G; Borges, F; Corgneau, M; Revol-Junelles, A M; Cailliez-Grimal, C; Gaiani, C

    2014-11-01

    This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed.

  12. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation.

    PubMed

    Liu, Yuping; Tang, Hongzhi; Lin, Zhanglin; Xu, Ping

    2015-11-15

    Acidogenic and aciduric bacteria have developed several survival systems in various acidic environments to prevent cell damage due to acid stress such as that on the human gastric surface and in the fermentation medium used for industrial production of acidic products. Common mechanisms for acid resistance in bacteria are proton pumping by F1-F0-ATPase, the glutamate decarboxylase system, formation of a protective cloud of ammonia, high cytoplasmic urease activity, repair or protection of macromolecules, and biofilm formation. The field of synthetic biology has rapidly advanced and generated an ever-increasing assortment of genetic devices and biological modules for applications in biofuel and novel biomaterial productions. Better understanding of aspects such as overproduction of general shock proteins, molecular mechanisms, and responses to cell density adopted by microorganisms for survival in low pH conditions will prove useful in synthetic biology for potential industrial and environmental applications.

  13. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH

    PubMed Central

    Cotter, Paul D.; Hill, Colin

    2003-01-01

    Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the reponses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments. PMID:12966143

  14. Biodiversity of Dominant Cultivable Endophytic Bacteria Inhabiting Tissues of Six Different Cultivars of Maize (Zea mays L. ssp. mays) Cropped under Field Conditions.

    PubMed

    Pisarska, Katarzyna; Pietr, Stanisław Jerzy

    2015-01-01

    Endophytic bacteria (EnB) play a crucial role in plant development. This study was an attempt to isolate and identify dominant cultivable EnB inhabiting young seedlings germinated in vitro and leaves of six maize cultivars grown under field conditions at temperate climate zone with culture-dependent approach. We isolated bacteria from field cropped maize only. Strains were identified based on 16S rRNA gene sequencing. In particular, members of Actinobacteria, Bacteroidetes, Firmicutes and α- and γ-Proteobacteria were found. Species of two genus Pseudomonas and Bacillus were dominant among them. Higher diversity of EnB was found in plants collected from Kobierzyce, where we identified 35 species from 16 genera with 22 species uniquely found at this field. On the contrary, from maize leaves collected at Smolice we identified 24 species representing 10 genera with 10 species uniquely isolated from this field. However, none of species was common for all cultivars at both locations. Among isolated EnB six species only, Pseudomonas clemancea, Pseudomonasfluorescens, Bacillus megaterium, Bacillus simplex, Arthrobacter nicotinovorans and Arthrobacter nitroguajacolicus, were found in aboveground parts of the same cultivar grown on both tested fields. The fact that the same cultivars, sown from the same lots of seeds, under field conditions on two different locations were colonized with noticeably different associations of cultivable EnB suggest that cultivar genotype is an important factor selecting endophytic bacteria from local agro-environment. To our knowledge this is first report about the significant variation of diversity of cultivable endophytic bacteria inhabiting aboveground parts of the same maize cultivars grown at different locations.

  15. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union. PMID:25880164

  16. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union.

  17. Genetically modified lactic acid bacteria: applications to food or health and risk assessment.

    PubMed

    Renault, Pierre

    2002-11-01

    Lactic acid bacteria have a long history of use in fermented food products. Progress in gene technology allows their modification by introducing new genes or by modifying their metabolic functions. These modifications may lead to improvements in food technology (bacteria better fitted to technological processes, leading to improved organoleptic properties em leader ), or to new applications including bacteria producing therapeutic molecules that could be delivered by mouth. Examples in these two fields will be discussed, at the same time evaluating their potential benefit to society and the possible risks associated with their use. Risk assessment and expected benefits will determine the future use of modified bacteria in the domains of food technology and health.

  18. Influence of Vaginal Bacteria and d- and l-Lactic Acid Isomers on Vaginal Extracellular Matrix Metalloproteinase Inducer: Implications for Protection against Upper Genital Tract Infections

    PubMed Central

    Witkin, Steven S.; Mendes-Soares, Helena; Linhares, Iara M.; Jayaram, Aswathi; Ledger, William J.; Forney, Larry J.

    2013-01-01

    ABSTRACT We evaluated levels of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP-8) in vaginal secretions in relation to the composition of vaginal bacterial communities and d- and l-lactic acid levels. The composition of vaginal bacterial communities in 46 women was determined by pyrosequencing the V1 to V3 region of 16S rRNA genes. Lactobacilli were dominant in 71.3% of the women, followed by Gardnerella (17.4%), Streptococcus (8.7%), and Enterococcus (2.2%). Of the lactobacillus-dominated communities, 51.5% were dominated by Lactobacillus crispatus, 36.4% by Lactobacillus iners, and 6.1% each by Lactobacillus gasseri and Lactobacillus jensenii. Concentrations of l-lactic acid were slightly higher in lactobacillus-dominated vaginal samples, but most differences were not statistically significant. d-Lactic acid levels were higher in samples containing L. crispatus than in those with L. iners (P < 0.0001) or Gardnerella (P = 0.0002). The relative proportion of d-lactic acid in vaginal communities dominated by species of lactobacilli was in concordance with the proportions found in axenic cultures of the various species grown in vitro. Levels of l-lactic acid (P < 0.0001) and the ratio of l-lactic acid to d-lactic acid (P = 0.0060), but not concentrations of d-lactic acid, were also correlated with EMMPRIN concentrations. Moreover, vaginal concentrations of EMMPRIN and MMP-8 levels were highly correlated (P < 0.0001). Taken together, the data suggest the relative proportion of l- to d-lactic acid isomers in the vagina may influence the extent of local EMMPRIN production and subsequent induction of MMP-8. The expression of these proteins may help determine the ability of bacteria to transverse the cervix and initiate upper genital tract infections. PMID:23919998

  19. Multiple Genome Sequences of Important Beer-Spoiling Lactic Acid Bacteria

    PubMed Central

    Geissler, Andreas J.; Vogel, Rudi F.

    2016-01-01

    Seven strains of important beer-spoiling lactic acid bacteria were sequenced using single-molecule real-time sequencing. Complete genomes were obtained for strains of Lactobacillus paracollinoides, Lactobacillus lindneri, and Pediococcus claussenii. The analysis of these genomes emphasizes the role of plasmids as the genomic foundation of beer-spoiling ability. PMID:27795248

  20. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  1. Comparison of phenotypic and molecular tests to identify lactic acid bacteria.

    PubMed

    Moraes, Paula Mendonça; Perin, Luana Martins; Júnior, Abelardo Silva; Nero, Luís Augusto

    2013-01-01

    Twenty-nine lactic acid bacteria (LAB) isolates were submitted for identification using Biolog, API50CHL, 16S rDNA sequencing, and species-specific PCR reactions. The identification results were compared, and it was concluded that a polyphasic approach is necessary for proper LAB identification, being the molecular analyzes the most reliable. PMID:24159291

  2. Racemization in reverse: evidence that D-amino acid toxicity on Earth is controlled by bacteria with racemases.

    PubMed

    Zhang, Gaosen; Sun, Henry J

    2014-01-01

    D-amino acids are toxic for life on Earth. Yet, they form constantly due to geochemical racemization and bacterial growth (the cell walls of which contain D-amino acids), raising the fundamental question of how they ultimately are recycled. This study provides evidence that bacteria use D-amino acids as a source of nitrogen by running enzymatic racemization in reverse. Consequently, when soils are inundated with racemic amino acids, resident bacteria consume D- as well as L-enantiomers, either simultaneously or sequentially depending on the level of their racemase activity. Bacteria thus protect life on Earth by keeping environments D-amino acid free.

  3. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms

    SciTech Connect

    Kieft, T.L.; Wilch, E.; O`Connor, K.

    1997-04-01

    Although starvation survival has been characterized for many bacteria, few subsurface bacteria have been tested, and few if any have been tested in natural subsurface porous media. We hypothesized that subsurface bacteria may be uniquely adapted for long-term survival in situ. We further hypothesized that subsurface conditions (sediment type and moisture content) would influence microbial survival. We compared starvation survival capabilities of surface and subsurface strains of Pseudomonas fluorescens and a novel Arthrobacter sp. in microcosms composed of natural sediments. Bacteria were incubated for up to 64 weeks under saturated and unsaturated conditions in sterilized microcosms containing either a silty sand paleosol (buried soil) or a sandy silt nonpaleosol sediment. Direct counts, plate counts, and cell sizes were measured. Membrane phospholipid fatty acid (PLFA) profiles were quantified to determine temporal patterns of PLFA stress signatures and differences in PLFAs among strains and treatments. The Arthrobacter strains survived better than the P. fluorescens strains; however, differences in survival between surface and subsurface strains of each genus were not significant. Bacteria survived better in the paleosol than in the nonpaleosol and survived better under saturated conditions than under unsaturated conditions. Cell volumes of all strains decreased; however, sediment type and moisture did not influence rates of miniaturization. Both P.fluorescens strains showed PLFA stress signatures typical for gram-negative bacteria: increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl to monoenoic precursor fatty acids. The Arthrobacter strains showed few changes in PLFAs. Environmental conditions strongly influenced PLFA profiles. 40 refs., 7 figs.

  4. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing.

    PubMed

    Di Cagno, Raffaella; Cardinali, Gainluigi; Minervini, Giovanna; Antonielli, Livio; Rizzello, Carlo Giuseppe; Ricciuti, Patrizia; Gobbetti, Marco

    2010-05-01

    Pichia guilliermondii was the only identified yeast in pineapple fruits. Lactobacillus plantarum and Lactobacillus rossiae were the main identified species of lactic acid bacteria. Typing of lactic acid bacteria differentiated isolates depending on the layers. L. plantarum 1OR12 and L. rossiae 2MR10 were selected within the lactic acid bacteria isolates based on the kinetics of growth and acidification. Five technological options, including minimal processing, were considered for pineapple: heating at 72 degrees C for 15 s (HP); spontaneous fermentation without (FP) or followed by heating (FHP), and fermentation by selected autochthonous L. plantarum 1OR12 and L. rossiae 2MR10 without (SP) or preceded by heating (HSP). After 30 days of storage at 4 degrees C, HSP and SP had a number of lactic acid bacteria 1000 to 1,000,000 times higher than the other processed pineapples. The number of yeasts was the lowest in HSP and SP. The Community Level Catabolic Profiles of processed pineapples indirectly confirmed the capacity of autochthonous starters to dominate during fermentation. HSP and SP also showed the highest antioxidant activity and firmness, the better preservation of the natural colours and were preferred for odour and overall acceptability.

  5. Diversity of lactic acid bacteria isolated from Brazilian water buffalo mozzarella cheese.

    PubMed

    Silva, Luana Faria; Casella, Tiago; Gomes, Elisangela Soares; Nogueira, Mara Correa Lelles; De Dea Lindner, Juliano; Penna, Ana Lúcia Barretto

    2015-02-01

    The water buffalo mozzarella cheese is a typical Italian cheese which has been introduced in the thriving Brazilian market in the last 10 y, with good acceptance by its consumers. Lactic acid bacteria (LAB) play an important role in the technological and sensory quality of mozzarella cheese. In this study, the aim was to evaluate the diversity of the autochthones viable LAB isolated from water buffalo mozzarella cheese under storage. Samples were collected in 3 independent trials in a dairy industry located in the southeast region of Brazil, on the 28th day of storage, at 4 ºC. The LAB were characterized by Gram staining, catalase test, capacity to assimilate citrate, and production of CO2 from glucose. The diversity of LAB was evaluated by RAPD-PCR (randomly amplified polymorphic DNA-polymerase chain reaction), 16S rRNA gene sequencing, and by Vitek 2 system. Twenty LAB strains were isolated and clustered into 12 different clusters, and identified as Streptococcus thermophilus, Enterococcus faecium, Enterococcus durans, Leuconostoc mesenteroides subsp. mesenteroides, Lactobacillus fermentum, Lactobacillus casei, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus helveticus. Enterococcus species were dominant and citrate-positive. Only the strains of L. mesenteroides subsp. mesenteroides and L. fermentum produced CO2 from glucose and were citrate-positive, while L. casei was only citrate positive. This is the first report which elucidates the LAB diversity involved in Brazilian water buffalo mozzarella cheese. Furthermore, the results show that despite the absence of natural whey cultures as starters in production, the LAB species identified are the ones typically found in mozzarella cheese.

  6. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    PubMed

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms.

  7. Organism-adapted specificity of the allosteric regulation of pyruvate kinase in lactic acid bacteria.

    PubMed

    Veith, Nadine; Feldman-Salit, Anna; Cojocaru, Vlad; Henrich, Stefan; Kummer, Ursula; Wade, Rebecca C

    2013-01-01

    Pyruvate kinase (PYK) is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric activation may

  8. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria.

    PubMed

    Guan, Ling; Cho, Kyeung Hee; Lee, Jong-Hoon

    2011-02-01

    Jeotgal or jeot, a traditional Korean salted and fermented food, is made by adding 20-30% (w/w) salt to various types of seafood. To develop a more complete overview of the bacterial community present in jeotgal, 610 pure colonies were isolated from Myeolchi-jeot and Saeu-jeot, the most commonly consumed varieties of jeotgal, which are made with anchovy (Engraulis japonicas) and tiny shrimp (Acetes japonicas), respectively. The bacterial isolates were identified by 16S rDNA sequence analysis. A total of 104 species comprising 47 genera and 31 previously unknown species were identified. Eleven genera were isolated from both jeotgal samples, including species in the genera Staphylococcus, Bacillus, Halomonas, and Kocuria, with Staphylococcus spp. constituting the highest number. The most populous genus detected in Myeolchi-jeot was Bacillus and its relatives, while the most populous in Saeu-jeot was Staphylococcus. These were isolated from both jeotgal samples, but their proportion in the bacterial community may be influenced by matrix composition and fermentation parameters. Among the proteolytic isolates, although Virgibacillus halodenitrificans KM2100 and Staphylococcus spp. maintained their growth in 20% NaCl, protease activities were not detected in these conditions. This suggests that bacteria are not the major source of the proteolytic enzyme involved in protein hydrolysis in high-salt-containing jeotgal. However, the Staphylococcus spp. isolated from Saeu-jeot were too numerous for us to ignore their possible role in jeotgal fermentation. Staphylococcus spp. may not be hugely involved in proteolysis, but they may play a significant role in the ripening of jeotgal. Bacteria of the genus Bacillus and its relatives and of the genus Staphylococcus may be the major organisms involved in jeotgal fermentation. PMID:21056781

  9. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    PubMed

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-01

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product. PMID:26425801

  10. Spatio-Temporal Variations of High and Low Nucleic Acid Content Bacteria in an Exorheic River.

    PubMed

    Liu, Jie; Hao, Zhenyu; Ma, Lili; Ji, Yurui; Bartlam, Mark; Wang, Yingying

    2016-01-01

    Bacteria with high nucleic acid (HNA) and low nucleic acid (LNA) content are commonly observed in aquatic environments. To date, limited knowledge is available on their temporal and spatial variations in freshwater environments. Here an investigation of HNA and LNA bacterial abundance and their flow cytometric characteristics was conducted in an exorheic river (Haihe River, Northern China) over a one year period covering September (autumn) 2011, December (winter) 2011, April (spring) 2012, and July (summer) 2012. The results showed that LNA and HNA bacteria contributed similarly to the total bacterial abundance on both the spatial and temporal scale. The variability of HNA on abundance, fluorescence intensity (FL1) and side scatter (SSC) were more sensitive to environmental factors than that of LNA bacteria. Meanwhile, the relative distance of SSC between HNA and LNA was more variable than that of FL1. Multivariate analysis further demonstrated that the influence of geographical distance (reflected by the salinity gradient along river to ocean) and temporal changes (as temperature variation due to seasonal succession) on the patterns of LNA and HNA were stronger than the effects of nutrient conditions. Furthermore, the results demonstrated that the distribution of LNA and HNA bacteria, including the abundance, FL1 and SSC, was controlled by different variables. The results suggested that LNA and HNA bacteria might play different ecological roles in the exorheic river. PMID:27082986

  11. Spatio-Temporal Variations of High and Low Nucleic Acid Content Bacteria in an Exorheic River

    PubMed Central

    Ma, Lili; Ji, Yurui; Bartlam, Mark; Wang, Yingying

    2016-01-01

    Bacteria with high nucleic acid (HNA) and low nucleic acid (LNA) content are commonly observed in aquatic environments. To date, limited knowledge is available on their temporal and spatial variations in freshwater environments. Here an investigation of HNA and LNA bacterial abundance and their flow cytometric characteristics was conducted in an exorheic river (Haihe River, Northern China) over a one year period covering September (autumn) 2011, December (winter) 2011, April (spring) 2012, and July (summer) 2012. The results showed that LNA and HNA bacteria contributed similarly to the total bacterial abundance on both the spatial and temporal scale. The variability of HNA on abundance, fluorescence intensity (FL1) and side scatter (SSC) were more sensitive to environmental factors than that of LNA bacteria. Meanwhile, the relative distance of SSC between HNA and LNA was more variable than that of FL1. Multivariate analysis further demonstrated that the influence of geographical distance (reflected by the salinity gradient along river to ocean) and temporal changes (as temperature variation due to seasonal succession) on the patterns of LNA and HNA were stronger than the effects of nutrient conditions. Furthermore, the results demonstrated that the distribution of LNA and HNA bacteria, including the abundance, FL1 and SSC, was controlled by different variables. The results suggested that LNA and HNA bacteria might play different ecological roles in the exorheic river. PMID:27082986

  12. Spatio-Temporal Variations of High and Low Nucleic Acid Content Bacteria in an Exorheic River.

    PubMed

    Liu, Jie; Hao, Zhenyu; Ma, Lili; Ji, Yurui; Bartlam, Mark; Wang, Yingying

    2016-01-01

    Bacteria with high nucleic acid (HNA) and low nucleic acid (LNA) content are commonly observed in aquatic environments. To date, limited knowledge is available on their temporal and spatial variations in freshwater environments. Here an investigation of HNA and LNA bacterial abundance and their flow cytometric characteristics was conducted in an exorheic river (Haihe River, Northern China) over a one year period covering September (autumn) 2011, December (winter) 2011, April (spring) 2012, and July (summer) 2012. The results showed that LNA and HNA bacteria contributed similarly to the total bacterial abundance on both the spatial and temporal scale. The variability of HNA on abundance, fluorescence intensity (FL1) and side scatter (SSC) were more sensitive to environmental factors than that of LNA bacteria. Meanwhile, the relative distance of SSC between HNA and LNA was more variable than that of FL1. Multivariate analysis further demonstrated that the influence of geographical distance (reflected by the salinity gradient along river to ocean) and temporal changes (as temperature variation due to seasonal succession) on the patterns of LNA and HNA were stronger than the effects of nutrient conditions. Furthermore, the results demonstrated that the distribution of LNA and HNA bacteria, including the abundance, FL1 and SSC, was controlled by different variables. The results suggested that LNA and HNA bacteria might play different ecological roles in the exorheic river.

  13. Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria.

    PubMed

    Bienert, Gerd P; Desguin, Benoît; Chaumont, François; Hols, Pascal

    2013-09-15

    MIPs (major intrinsic proteins), also known as aquaporins, are membrane proteins that channel water and/or uncharged solutes across membranes in all kingdoms of life. Considering the enormous number of different bacteria on earth, functional information on bacterial MIPs is scarce. In the present study, six MIPs [glpF1 (glycerol facilitator 1)-glpF6] were identified in the genome of the Gram-positive lactic acid bacterium Lactobacillus plantarum. Heterologous expression in Xenopus laevis oocytes revealed that GlpF2, GlpF3 and GlpF4 each facilitated the transmembrane diffusion of water, dihydroxyacetone and glycerol. As several lactic acid bacteria have GlpFs in their lactate racemization operon (GlpF1/F4 phylogenetic group), their ability to transport this organic acid was tested. Both GlpF1 and GlpF4 facilitated the diffusion of D/L-lactic acid. Deletion of glpF1 and/or glpF4 in Lb. plantarum showed that both genes were involved in the racemization of lactic acid and, in addition, the double glpF1 glpF4 mutant showed a growth delay under conditions of mild lactic acid stress. This provides further evidence that GlpFs contribute to lactic acid metabolism in this species. This lactic acid transport capacity was shown to be conserved in the GlpF1/F4 group of Lactobacillales. In conclusion, we have functionally analysed the largest set of bacterial MIPs and demonstrated that the lactic acid membrane permeability of bacteria can be regulated by aquaglyceroporins.

  14. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    PubMed

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli. PMID:15304751

  15. Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat.

    PubMed Central

    Lewus, C B; Kaiser, A; Montville, T J

    1991-01-01

    Ten strains of bacteriocin-producing lactic acid bacteria were isolated from retail cuts of meat. These 10 strains along with 11 other bacteriocin-producing lactic acid bacteria were tested for inhibitory activity against psychotrophic pathogens, including four strains of Listeria monocytogenes, two strains of Aeromonas hydrophila, and two strains of Staphylococcus aureus. Inhibition due to acid, hydrogen peroxide, and lytic bacteriophage were excluded. The proteinaceous nature of the inhibitory substance was confirmed by demonstration of its sensitivity to proteolytic enzymes. Eight of the meat isolates had inhibitory activity against all four L. monocytogenes strains. Bacteriocin activity against L. monocytogenes was found in all of the strains obtained from other sources. Activity against A. hydrophila and S. aureus was also common. Images PMID:1908209

  16. Antioxidative effects of lactic acid bacteria on the colonic mucosa of iron-overloaded mice.

    PubMed

    Ito, Masahiko; Ohishi, Kenji; Yoshida, Yasuto; Yokoi, Wakae; Sawada, Haruji

    2003-07-16

    The antioxidative effects of lactic acid bacteria on lipid peroxidation in the colonic mucosa were investigated. Among 49 strains of lactic acid bacteria, Streptococcus thermophilus YIT 2001 showed the highest inhibitory activity against lipid peroxidation in liposomes induced by ferrous iron. Feeding a diet containing 0.4% St. thermophilus YIT 2001 (2 x 10(8) colony-forming units per mouse per day) for 2 weeks caused a significant decrease of lipid peroxide (thiobarbituric acid reactive substance) in the colonic mucosa of iron-overloaded mice (0.07% Fe in the diet). The mucosal lipid peroxide level did not correlate with the soluble iron concentration of the cecal contents. Therefore, it is suggested that the antioxidative effect of St. thermophilus YIT 2001 in the colonic mucosa was not due to the removal of ferrous iron from the reaction system of lipid peroxidation. PMID:12848525

  17. [Partial sequence homology of FtsZ in phylogenetics analysis of lactic acid bacteria].

    PubMed

    Zhang, Bin; Dong, Xiu-zhu

    2005-10-01

    FtsZ is a structurally conserved protein, which is universal among the prokaryotes. It plays a key role in prokaryote cell division. A partial fragment of the ftsZ gene about 800bp in length was amplified and sequenced and a partial FtsZ protein phylogenetic tree for the lactic acid bacteria was constructed. By comparing the FtsZ phylogenetic tree with the 16S rDNA tree, it was shown that the two trees were similar in topology. Both trees revealed that Pediococcus spp. were closely related with L. casei group of Lactobacillus spp. , but less related with other lactic acid cocci such as Enterococcus and Streptococcus. The results also showed that the discriminative power of FtsZ was higher than that of 16S rDNA for either inter-species or inter-genus and could be a very useful tool in species identification of lactic acid bacteria. PMID:16342751

  18. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques.

    PubMed

    Yetiman, Ahmet E; Kesmen, Zülal

    2015-07-01

    Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level.

  19. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques.

    PubMed

    Yetiman, Ahmet E; Kesmen, Zülal

    2015-07-01

    Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level. PMID:25828705

  20. Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys

    PubMed Central

    Brazelton, William J.; Ludwig, Kristin A.; Sogin, Mitchell L.; Andreishcheva, Ekaterina N.; Kelley, Deborah S.; Shen, Chuan-Chou; Edwards, R. Lawrence; Baross, John A.

    2010-01-01

    The Lost City Hydrothermal Field, an ultramafic-hosted system located 15 km west of the Mid-Atlantic Ridge, has experienced at least 30,000 years of hydrothermal activity. Previous studies have shown that its carbonate chimneys form by mixing of ∼90 °C, pH 9–11 hydrothermal fluids and cold seawater. Flow of methane and hydrogen-rich hydrothermal fluids in the porous interior chimney walls supports archaeal biofilm communities dominated by a single phylotype of Methanosarcinales. In this study, we have extensively sampled the carbonate-hosted archaeal and bacterial communities by obtaining sequences of >200,000 amplicons of the 16S rRNA V6 region and correlated the results with isotopic (230Th) ages of the chimneys over a 1,200-year period. Rare sequences in young chimneys were commonly more abundant in older chimneys, indicating that members of the rare biosphere can become dominant members of the ecosystem when environmental conditions change. These results suggest that a long history of selection over many cycles of chimney growth has resulted in numerous closely related species at Lost City, each of which is preadapted to a particular set of reoccurring environmental conditions. Because of the unique characteristics of the Lost City Hydrothermal Field, these data offer an unprecedented opportunity to study the dynamics of a microbial ecosystem’s rare biosphere over a thousand-year time scale. PMID:20080654

  1. Inducible gene expression and environmentally regulated genes in lactic acid bacteria.

    PubMed

    Kok, J

    1996-10-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transcription was studied and found to be regulatable. Examples are the lactose operon, the operon for nisin production, and genes in the proteolytic pathway of Lactococcus lactis, as well as xylose metabolism in Lactobacillus pentosus. Some other operons were specifically targetted with the aim to compare their mode of regulation with known regulatory mechanisms in other well-studied bacteria. These studies, dealing with the biosynthesis of histidine, tryptophan, and of the branched chain amino acids in L. lactis, have given new insights in gene regulation and in the occurrence of auxotrophy in these bacteria. Also, nucleotide sequence analyses of a number of lactococcal bacteriophages was recently initiated to, among other things, specifically learn more about regulation of the phage life cycle. Yet another approach in the analysis of regulated genes is the 'random' selection of genetic elements that respond to environmental stimuli and the first of such sequences from lactic acid bacteria have been identified and characterized. The potential of these regulatory elements in fundamental research and practical (industrial) applications will be discussed.

  2. Understanding the industrial application potential of lactic acid bacteria through genomics.

    PubMed

    Zhu, Yan; Zhang, Yanping; Li, Yin

    2009-06-01

    Lactic acid bacteria (LAB) are a heterogeneous group of bacteria contributing to various industrial applications, ranging from food and beverage fermentation, bulk and fine chemicals production to pharmaceuticals manufacturing. Genome sequencing is booming; hitherto, 25 genomes of LAB have been published and many more are in progress. Based on genomic content of LAB, this review highlights some findings related to applications revealed by genomics and functional genomics analyses. Finally, this review summarizes mathematical modeling strategies of LAB in the context of genomics, to further our understanding of industrial related features.

  3. Development of radiation sterilized dip slides for enumerating lactic acid bacteria and total count in foodstuffs

    NASA Astrophysics Data System (ADS)

    Eisenberg, E.; Padova, R.; Kirsch, E.; Weissman, Sh.; Hirshfeld, T.; Shenfeld, A.

    APT agar (APT) used for enumeration of lactic acid bacteria and Plate Count agar (PCA) applied for total count were sterilized by gamma radiation using radiation dose of 10-15 kGy. Radiosterilized PCA and APT modified by adding catalase prior to irradiation, or APT with increased content of yeast extract performed, as well as, the heat sterilized commercial media. Growth performance was evaluated on several strains of microorganisms, as well as, by enumeration of bacteria in food products. Radiosterilization of culture media in final packaging, can be applied to produce dip slide kits containing PCA or APT.

  4. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics

    DOE PAGES

    Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing; Liu, Jun; Hu, Min; Li, Sheng-Jin; Kuang, Jia-Liang; Chain, Patrick SG; Huang, Li-Nan; Shu, Wen-Sheng

    2014-11-07

    Here we report that high-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer’ strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We reportmore » the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Finally, our study demonstrates the potential of the ‘divide and conquer’ strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.« less

  5. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics

    PubMed Central

    Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing; Liu, Jun; Hu, Min; Li, Sheng-Jin; Kuang, Jia-Liang; Chain, Patrick SG; Huang, Li-Nan; Shu, Wen-Sheng

    2015-01-01

    High-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer' strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We report the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Our study demonstrates the potential of the ‘divide and conquer' strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages. PMID:25361395

  6. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics

    SciTech Connect

    Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing; Liu, Jun; Hu, Min; Li, Sheng-Jin; Kuang, Jia-Liang; Chain, Patrick SG; Huang, Li-Nan; Shu, Wen-Sheng

    2014-11-07

    Here we report that high-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer’ strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We report the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Finally, our study demonstrates the potential of the ‘divide and conquer’ strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.

  7. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  8. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, L.; Lechtenfeld, O. J.; Benner, R.; Middelboe, M.; Stedmon, C. A.

    2014-10-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3-14 mol %). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7-11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural (representing marine semi-labile and refractory DOM) and artificial (representing bacterially produced DOM) seawater samples, suggests that microbes transform bioavailable neutral sugars and amino acids into a common, more persistent form.

  9. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition

    PubMed Central

    Kishino, Shigenobu; Takeuchi, Michiki; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kunisawa, Jun; Kiyono, Hiroshi; Iwamoto, Ryo; Isobe, Yosuke; Arita, Makoto; Arai, Hiroyuki; Ueda, Kazumitsu; Shima, Jun; Takahashi, Satomi; Yokozeki, Kenzo; Shimizu, Sakayu; Ogawa, Jun

    2013-01-01

    In the representative gut bacterium Lactobacillus plantarum, we identified genes encoding the enzymes involved in a saturation metabolism of polyunsaturated fatty acids and revealed in detail the metabolic pathway that generates hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and partially saturated trans-fatty acids as intermediates. Furthermore, we observed these intermediates, especially hydroxy fatty acids, in host organs. Levels of hydroxy fatty acids were much higher in specific pathogen-free mice than in germ-free mice, indicating that these fatty acids are generated through polyunsaturated fatty acids metabolism of gastrointestinal microorganisms. These findings suggested that lipid metabolism by gastrointestinal microbes affects the health of the host by modifying fatty acid composition. PMID:24127592

  10. In vivo Acid Etching Effect on Bacteria within Caries-Affected Dentin

    PubMed Central

    Gu, F.; Bresciani, E.; Barata, T.J.; Fagundes, T.C.; Navarro, M.F.; Dickens, S.H.; Fenno, J.C.; Peters, M.C.

    2010-01-01

    Acid etching procedures may disrupt residual bacteria and contribute to the success of incomplete caries removal followed by adhesive restoration. This study evaluated the in vivo effect of acid etching on cariogenic bacterial activity within affected dentin after minimally invasive treatment of caries lesions. Twenty-eight carious permanent teeth received standardized selective caries removal and random acid etch treatment (E) or not (NE) prior to adhesive restoration. Baseline and 3-month dentin biopsies were collected. The number of bacteria and activity of total bacterial cells and Streptococcus mutans were determined by quantitative PCR and RT-PCR. No statistically significant differences were observed in total bacterial number and activity between E and NE treatments (p > 0.3008). For NE, however, the residual S. mutans bacterial cells were reduced (p = 0.0027), while the activity per cell was significantly increased (p = 0.0010) after reentry at 3 months after restoration. This effect was not observed in group E. Although no significant differences were found between groups, this study suggests that acid etching of affected dentin prior to adhesive restoration may directly or indirectly have an inhibitive effect on the activity of residual cariogenic bacteria. Further research is required to investigate this potential effect. PMID:20861631

  11. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    PubMed Central

    Liu, S.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria. These enzymes were present in all heterofermentative lactobacilli and most leuconostocs but were absent in all the homofermentative lactobacilli and pediococci examined. There was a good correlation among arginine degradation, formation of ammonia and citrulline, and the occurrence of arginine deiminase pathway enzymes. Urea was not detected during arginine degradation, suggesting that the catabolism of arginine did not proceed via the arginase-catalyzed reaction, as has been suggested in some earlier studies. Detection of ammonia with Nessler's reagent was shown to be a simple, rapid test to assess the ability of wine lactic acid bacteria to degrade arginine, although in media containing relatively high concentrations (>0.5%) of fructose, ammonia formation is inhibited. PMID:16534912

  12. Antibiosis of some lactic acid bacteria including Lactobacillus acidophilus toward Listeria monocytogenes.

    PubMed

    Raccach, M; McGrath, R; Daftarian, H

    1989-08-01

    Eleven strains of lactic acid bacteria were tested by the 'spot' on the 'lawn' method for their antagonistic activity against four strains of Listeria monocytogenes. Four out of the five strains of lactic acid bacteria most antagonistic toward the pathogen were those cultures known to produce bacteriocins. Four other strains of lactic acid bacteria were not antagonistic against Listeria by this method. Seventeen inhibition zones of the pathogen were obtained at 25 degrees C as compared to 10 at 32 degrees C. Lactobacillus acidophilus strains NU-A and 88, growing in the presence of L. monocytogenes in milk prevented the latter from attaining populations it would have in pure culture (P less than 0.01). 10(1.4)-10(3.5) lower numbers were noted. L. acidophilus in most cases exhibited a bacteriostatic effect toward the pathogen except for strain 88 which appeared to have a bactericidal effect (P less than 0.01) against Listeria strain OH. The lactobacilli reduced the pH of the milk to 4.7 over a 24 h period, showing that acid played a role in the observed antibiosis.

  13. Fatty acid composition of gliding bacteria: oral isolates of Capnocytophaga compared with Sporocytophaga.

    PubMed Central

    Holt, S C; Forcier, G; Takacs, B J

    1979-01-01

    The extractable and bound lipids and cellular fatty acids of the gram-negative gliding bacteria, Capnocytophaga sputigena, C. gingivalis, and C. ochracea were compared to the non-host-related gliding bacterium Sporocytophaga myxococcoides. The extractable lipids represented between 17 and 28% of the cell dry weight, whereas only 2 to 4% of the lipids were in the bound fraction. The methyl esters of the cellular fatty acids were mainly aC15:0, which accounted for 69 to 73% of the total extractable fatty acids; S. myxococcoides had a similar distribution of branched-chain fatty acids; however, aC17:0 was the predominant fatty acid in this free-living gliding organism. PMID:500207

  14. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae.

    PubMed

    Mullaney, Jane A; Kelly, William J; McGhie, Tony K; Ansell, Juliet; Heyes, Julian A

    2013-03-27

    Glucosinolates from the genus Brassica can be converted into bioactive compounds known to induce phase II enzymes, which may decrease the risk of cancers. Conversion via hydrolysis is usually by the brassica enzyme myrosinase, which can be inactivated by cooking or storage. We examined the potential of three beneficial bacteria, Lactobacillus plantarum KW30, Lactococcus lactis subsp. lactis KF147, and Escherichia coli Nissle 1917, and known myrosinase-producer Enterobacter cloacae to catalyze the conversion of glucosinolates in broccoli extract. Enterobacteriaceae consumed on average 65% glucoiberin and 78% glucoraphanin, transforming them into glucoiberverin and glucoerucin, respectively, and small amounts of iberverin nitrile and erucin nitrile. The lactic acid bacteria did not accumulate reduced glucosinolates, consuming all at 30-33% and transforming these into iberverin nitrile, erucin nitrile, sulforaphane nitrile, and further unidentified metabolites. Adding beneficial bacteria to a glucosinolate-rich diet may increase glucosinolate transformation, thereby increasing host exposure to bioactives. PMID:23461529

  15. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    PubMed

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard.

  16. The aflatoxin B1 isolating potential of two lactic acid bacteria

    PubMed Central

    Hamidi, Adel; Mirnejad, Reza; Yahaghi, Emad; Behnod, Vahid; Mirhosseini, Ali; Amani, Sajad; Sattari, Sara; Darian, Ebrahim Khodaverdi

    2013-01-01

    Objective To determine lactic acid bacteria's capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for preventing absorption of aflatoxin B1 in human and animal bodies. Methods In the present research, the bacteria were isolated from five different sources. For surveying the capability of the bacteria in isolating aflatoxin B1, ELISA method was implemented, and for identifying the resultant strains through 16S rRNA sequencing method, universal primers were applied. Results Among the strains which were isolated, two strains of Lactobacillus pentosus and Lactobacillus beveris exhibited the capability of absorbing and isolating aflatoxin B1 by respectively absorbing and discharging 17.4% and 34.7% of the aforementioned toxin existing in the experiment solution. Conclusions Strains of Lactobacillus pentosus and Lactobacillus beveris were isolated from human feces and local milk samples, respectively. And both strains has the ability to isolate or bind with aflatoxin B1. PMID:23998015

  17. Modelling of the acid base properties of two thermophilic bacteria at different growth times

    NASA Astrophysics Data System (ADS)

    Heinrich, Hannah T. M.; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.

    2008-09-01

    Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.

  18. Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics.

    PubMed

    Alvarez-Calatayud, Guillermo; Margolles, Abelardo

    2016-01-01

    Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented. PMID:26780116

  19. Novel Simplified and Rapid Method for Screening and Isolation of Polyunsaturated Fatty Acids Producing Marine Bacteria

    PubMed Central

    Tilay, Ashwini; Annapure, Uday

    2012-01-01

    Bacterial production of polyunsaturated fatty acids (PUFAs) is a potential biotechnological approach for production of valuable nutraceuticals. Reliable method for screening of number of strains within short period of time is great need. Here, we report a novel simplified method for screening and isolation of PUFA-producing bacteria by direct visualization using the H2O2-plate assay. The oxidative stability of PUFAs in growing bacteria towards added H2O2 is a distinguishing characteristic between the PUFAs producers (no zone of inhibition) and non-PUFAs producers (zone of inhibition) by direct visualization. The confirmation of assay results was performed by injecting fatty acid methyl esters (FAMEs) produced by selected marine bacteria to Gas Chromatography-Mass Spectrometry (GCMS). To date, this assay is the most effective, inexpensive, and specific method for bacteria producing PUFAs and shows drastically reduction in the number of samples thus saves the time, effort, and cost of screening and isolating strains of bacterial PUFAs producers. PMID:22934188

  20. Lipoteichoic Acids, Phosphate-Containing Polymers in the Envelope of Gram-Positive Bacteria

    PubMed Central

    Schneewind, Olaf

    2014-01-01

    Lipoteichoic acids (LTA) are polymers of alternating units of a polyhydroxy alkane, including glycerol and ribitol, and phosphoric acid, joined to form phosphodiester units that are found in the envelope of Gram-positive bacteria. Here we review four different types of LTA that can be distinguished on the basis of their chemical structure and describe recent advances in the biosynthesis pathway for type I LTA, d-alanylated polyglycerol-phosphate linked to di-glucosyl-diacylglycerol. The physiological functions of type I LTA are discussed in the context of inhibitors that block their synthesis and of mutants with discrete synthesis defects. Research on LTA structure and function represents a large frontier that has been investigated in only few Gram-positive bacteria. PMID:24415723

  1. Stimulation of bacteriocin production by dialyzed culture media from different lactic acid bacteria.

    PubMed

    Vázquez, J A; González, M P; Murado, M A

    2005-04-01

    The cross-effects of dialyzed postincubates (with a cut-off at 1000 Da) on the biomass and bacteriocin production of six strains of lactic acid bacteria were studied, and a predominance of stimulating responses was found, the characteristics of which suggested merely nutritional effects or the presence of precursor fragments of the bacteriocins. Additionally, cluster analysis of the detected responses provides an approach to define groups of highly compatible (potential consortia) or doubtfully compatible strains of lactic acid bacteria. Such a definition, which does not claim taxonomic value, has practical interest, however, in cases (e.g., silage production) in which it is convenient to use mixed inocula including strains able to establish positive interactions.

  2. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    PubMed

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation.

  3. Fatty acid and hydroxy acid adaptation in three gram-negative hydrocarbon-degrading bacteria in relation to carbon source.

    PubMed

    Soltani, Mohamed; Metzger, Pierre; Largeau, Claude

    2005-12-01

    The lipids of three gram-negative bacteria, Acinetobacter calcoaceticus, Marinobacter aquaeolei, and Pseudomonas oleovorans grown on mineral media supplemented with ammonium acetate or hydrocarbons, were isolated, purified, and their structures determined. Three pools of lipids were isolated according to a sequential procedure: unbound lipids extracted with organic solvents, comprising metabolic lipids and the main part of membrane lipids, OH--labile lipids (mainly ester-bound in the lipopolysaccharides, LPS) and H+-labile lipids (mainly amide-bound in the LPS). Unsaturated FA composition gave evidence for an aerobic desaturation pathway for the synthesis of these acids in A. calcoaceticus and M. aquaeolei, a nonclassic route in gram-negative bacteria. Surprisingly, both aerobic and anaerobic pathways are operating in the studied strain of P. oleovorans. The increase of the proportion of saturated FA observed for the strain of P. oleovorans grown on light hydrocarbons would increase the temperature transition of the lipids for maintaining the inner membrane fluidity. An opposite phenomenon occurs in A. calcoaceticus and M. aquaeolei grown on solid or highly viscous C19 hydrocarbons. The increases of FA < C18 when the bacteria were grown on n-nonadecane, or of iso-FA in cultures on isononadecane would decrease the transition temperature of the lipids, to maintain the fluidity of the inner membranes. Moreover, P. oleovorans grown on hydrocarbons greatly decreases the proportion of P-hydroxy acids of LPS, thus likely maintaining the physical properties of the outer membrane. By contrast, no dramatic change in hydroxy acid composition occurred in the other two bacteria. PMID:16477811

  4. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts.

    PubMed

    Larsen, Thomas; Ventura, Marc; Maraldo, Kristine; Triadó-Margarit, Xavier; Casamayor, Emilio O; Wang, Yiming V; Andersen, Nils; O'Brien, Diane M

    2016-09-01

    Supplementation of nutrients by symbionts enables consumers to thrive on resources that might otherwise be insufficient to meet nutritional demands. Such nutritional subsidies by intracellular symbionts have been well studied; however, supplementation of de novo synthesized nutrients to hosts by extracellular gut symbionts is poorly documented, especially for generalists with relatively undifferentiated intestinal tracts. Although gut symbionts facilitate degradation of resources that would otherwise remain inaccessible to the host, such digestive actions alone cannot make up for dietary insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. To answer this poorly understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in Arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins of amino acids to bacteria, fungi and plants in enchytraeids. Enchytraeids collected from Arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed on higher fibre diets, whereas most of the enchytraeids' EAA derived from dietary sources when fed on lower fibre diets. Our gene sequencing results of gut microbiota showed that the worms harbour several taxa in their gut lumen absent from their diets and substrates. Almost all gut taxa are candidates for EAA supplementation because almost all belong to clades capable of biosynthesizing EAA. Our study provides the first evidence of extensive symbiotic supplementation of EAA by microbial

  5. Comparison of the composition and gas/particle partitioning of organic acids in monoterpene and isoprene dominated environments

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, L. R.; Stark, H.; Kimmel, J.; Krechmer, J.; Hu, W.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2013-12-01

    Gas and particle-phase organic acids measurements from two different regions with different biogenic volatile organic compound emissions are used to understand gas/particle partitioning principles. A Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS), with acetate (CH3COO-) as the reagent ion was used to selectively detect acids. Hundreds of gas and particle-phase organic acids were measured in both locations, a monoterpene and MBO-dominated environment (ponderosa pine forest in Colorado, BEACHON-RoMBAS 2011) and isoprene and terpene-dominated environment (mixed deciduous and pine forest in Alabama, SOAS 2013). Time series of gas/particle partitioning for ions consistent with tracers for isoprene oxidation such as methacrylic acid epoxide (MAE) and isoprene epoxydiol (IEPOX) and tracers for α-pinene oxidation such as pinic and pinonic acid will be presented. Gas/particle partitioning, represented as the fraction of each species in the particle-phase, Fp, was calculated for C1-C18 alkanoic acids and biogenic VOC oxidation tracers and compared to an absorptive partitioning model. These results are compared with those of two other instruments that can also quantify gas/particle partitioning with high time resolution: a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG) and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS). Data from both environments were consistent with the values and trends predicted by the absorptive partitioning model for the tracer acids. However, for low carbon number alkanoic acids we report a higher fraction in the particle phase than predicted by the model. The Fp for the bulk-averaged acids and its relationship to the degree of oxidation and carbon number will also be presented. Temporal patterns and correlations with atmospheric conditions and composition will be explored for individual and bulk acids. We will discuss atmospheric implications of the gas/particle partitioning

  6. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production.

    PubMed

    García-Hernández, Yaneisy; Pérez-Sánchez, Tania; Boucourt, Ramón; Balcázar, José L; Nicoli, Jacques R; Moreira-Silva, João; Rodríguez, Zoraya; Fuertes, Héctor; Nuñez, Odalys; Albelo, Nereyda; Halaihel, Nabil

    2016-10-01

    In livestock production, lactic acid bacteria (LAB) are the most common microorganisms used as probiotics. For such use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. In the present study, LAB were isolated from broiler excreta, where a fermentation process was used. Nine among sixteen isolates were identified by biochemical and molecular (sequencing of the 16S rRNA gene) methods as Lactobacillus crispatus (n=1), Lactobacillus pentosus (n=1), Weissella cibaria (n=1), Pediococcus pentosaceus (n=2) and Enterococcus hirae (n=4). Subsequently, these bacteria were characterized for their growth capabilities, lactic acid production, acidic pH and bile salts tolerance, cell surface hydrophobicity, antimicrobial susceptibility and antagonistic activity. Lactobacillus pentosus strain LB-31, which showed the best characteristics, was selected for further analysis. This strain was administered to broilers and showed the ability of modulating the immune response and producing beneficial effects on morpho-physiological, productive and health indicators of the animals. PMID:27663381

  7. Genome analysis of lactic acid bacteria in food fermentations and biotechnological applications.

    PubMed

    Nga, Been Hen

    2005-06-01

    Lactic acid bacteria are an important group of microorganisms, several of which are used in fermented food processes. Lactococcus lactis is a non-pathogenic, non-invasive and non-colonising gram-positive lactic acid bacterium, the genome sequence of which has been established. A great deal is known about the genetics, vectors, gene expression systems and protein secretion apparatus of this bacterium. Recently, recombinant strains of L. lactis have been developed that might provide in vivo delivery of cytokines and specific antigens across mucosal surfaces to the immune system of animals.

  8. Distribution of D-amino acids in vinegars and involvement of lactic acid bacteria in the production of D-amino acids.

    PubMed

    Mutaguchi, Yuta; Ohmori, Taketo; Akano, Hirofumi; Doi, Katsumi; Ohshima, Toshihisa

    2013-01-01

    Levels of free D-amino acids were compared in 11 vinegars produced from different sources or through different manufacturing processes. To analyze the D- and L-amino acids, the enantiomers were initially converted into diastereomers using pre-column derivatization with o-phthaldialdehyde plus N-acethyl-L-cysteine or N-tert-butyloxycarbonyl-L-cysteine. This was followed by separation of the resultant fluorescent isoindol derivatives on an octadecylsilyl stationary phase using ultra-performance liquid chromatography. The analyses showed that the total D-amino acid level in lactic fermented tomato vinegar was very high. Furthermore, analysis of the amino acids in tomato juice samples collected after alcoholic, lactic and acetic fermentation during the production of lactic fermented tomato vinegar showed clearly that lactic fermentation is responsible for the D-amino acids production; marked increases in D-amino acids were seen during lactic fermentation, but not during alcoholic or acetic fermentation. This suggests lactic acid bacteria have a greater ability to produce D-amino acids than yeast or acetic acid bacteria.

  9. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.

    PubMed Central

    Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H

    1985-01-01

    Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. PMID:3841472

  10. In situ microscopy as a tool for the monitoring of filamentous bacteria: a case study in an industrial activated sludge system dominated by M. parvicella.

    PubMed

    Dunkel, Thiemo; Dias, Philipe Ambrozio; de León Gallegos, Erika Lizette; Tacke, Viola; Schielke, Andreas; Hesse, Tobias; Fajado, Diego Andrés Sierra; Suhr, Hajo; Wiedemann, Philipp; Denecke, Martin

    2016-01-01

    The present study demonstrates the application of in situ microscopy for monitoring the growth of filamentous bacteria which can induce disturbances in an industrial activated sludge process. An in situ microscope (ISM) is immersed directly into samples of activated sludge with Microthrix parvicella as dominating species. Without needing further preparatory steps, the automatic evaluation of the ISM-images generates two signals: the number of individual filaments per image (ISM-filament counting) and the total extended filament length (TEFL) per image (ISM-online TEFL). In this first version of the image-processing algorithm, closely spaced crossing filament-segments or filaments within bulk material are not detected. The signals show highly linear correlation both with the standard filament index and the TEFL. Correlations were further substantiated by comparison with real-time polymerase chain reaction (real-time PCR) measurements of M. parvicella and of the diluted sludge volume index. In this case study, in situ microscopy proved to be a suitable tool for straightforward online-monitoring of filamentous bacteria in activated sludge systems. With future adaptation of the system to different filament morphologies, including cross-linking filaments, bundles, and attached growth, the system will be applicable to other wastewater treatment plants.

  11. In situ microscopy as a tool for the monitoring of filamentous bacteria: a case study in an industrial activated sludge system dominated by M. parvicella.

    PubMed

    Dunkel, Thiemo; Dias, Philipe Ambrozio; de León Gallegos, Erika Lizette; Tacke, Viola; Schielke, Andreas; Hesse, Tobias; Fajado, Diego Andrés Sierra; Suhr, Hajo; Wiedemann, Philipp; Denecke, Martin

    2016-01-01

    The present study demonstrates the application of in situ microscopy for monitoring the growth of filamentous bacteria which can induce disturbances in an industrial activated sludge process. An in situ microscope (ISM) is immersed directly into samples of activated sludge with Microthrix parvicella as dominating species. Without needing further preparatory steps, the automatic evaluation of the ISM-images generates two signals: the number of individual filaments per image (ISM-filament counting) and the total extended filament length (TEFL) per image (ISM-online TEFL). In this first version of the image-processing algorithm, closely spaced crossing filament-segments or filaments within bulk material are not detected. The signals show highly linear correlation both with the standard filament index and the TEFL. Correlations were further substantiated by comparison with real-time polymerase chain reaction (real-time PCR) measurements of M. parvicella and of the diluted sludge volume index. In this case study, in situ microscopy proved to be a suitable tool for straightforward online-monitoring of filamentous bacteria in activated sludge systems. With future adaptation of the system to different filament morphologies, including cross-linking filaments, bundles, and attached growth, the system will be applicable to other wastewater treatment plants. PMID:27003073

  12. Isolation and Characterization of Methanesulfonic Acid-Degrading Bacteria from the Marine Environment

    PubMed Central

    Thompson, A. S.; Owens, N.; Murrell, J. C.

    1995-01-01

    Two methylotrophic bacterial strains, TR3 and PSCH4, capable of growth on methanesulfonic acid as the sole carbon source were isolated from the marine environment. Methanesulfonic acid metabolism in these strains was initiated by an inducible NADH-dependent monooxygenase, which cleaved methanesulfonic acid into formaldehyde and sulfite. The presence of hydroxypyruvate reductase and the absence of ribulose monophosphate-dependent hexulose monophosphate synthase indicated the presence of the serine pathway for formaldehyde assimilation. Cell suspensions of bacteria grown on methanesulfonic acid completely oxidized methanesulfonic acid to carbon dioxide and sulfite with a methanesulfonic acid/oxygen stoichiometry of 1.0:2.0. Oxygen electrode-substrate studies indicated the dissimilation of formaldehyde to formate and carbon dioxide for energy generation. Carbon dioxide was not fixed by ribulose bisphosphate carboxylase. It was shown that methanol is not an intermediate in methanesulfonic acid metabolism, although these strains grew on methanol and other one-carbon compounds, as well as a variety of heterotrophic carbon sources. These two novel marine facultative methylotrophs have the ability to mineralize methanesulfonic acid and may play a role in the cycling of global organic sulfur. PMID:16535055

  13. Inhibitory Effects of Lipophilic Acids and Related Compounds on Bacteria and Mammalian Cells

    PubMed Central

    Sheu, C. W.; Salomon, D.; Simmons, J. L.; Sreevalsan, T.; Freese, E.

    1975-01-01

    The inhibitory effect of lipophilic acids, antimicrobial food additives, and analgesics-antipyretics was examined at concentrations from 0.1 to 100 mM in bacteria (Bacillus subtilis and Escherichia coli) and mammalian cells (HeLa, human fibroblasts, and mouse neuroblastoma cells). Most compounds inhibit the growth of HeLa cells about as efficiently as that of B. subtilis. However, butyrate and propionate, as well as acetaminophen, antipyrene, phenacetin, and salicylamide, inhibit HeLa at millimolar concentrations whereas, at least 10 times higher concentrations are needed to inhibit B. subtilis. The concentrations needed to inhibit growth by 50% decrease with increasing octanol-water partition coefficients of the compound. Growth of E. coli is inhibited similar to that of B. subtilis by all compounds except butylbenzoate, decanoate, and linoleate which cannot penetrate the lipopolysaccharide layer. All growth inhibitors inhibit amino acid uptake into bacteria and their vesicles, and oxygen consumption in bacteria. In HeLa cells or human fibroblasts, neither amino acid uptake nor adenine 5′-triphosphate synthesis are inhibited by fatty acids at concentrations that completely inhibit growth. Short chain fatty acids (propionate, butyrate, and pentanoate) induce in HeLa the formation of cell processes. In neuroblastoma cells, grown in the presence of 10% fetal calf serum, butyrate also induces such processes which slowly continue to grow in length for at least 7 days; these processes differ in speed of formation, width, and cycloheximide susceptibility from the thin processes produced by serum deprivation alone. Images PMID:1137388

  14. Antagonistic Characteristics Against Food-borne Pathogenic Bacteria of Lactic Acid Bacteria and Bifidobacteria Isolated from Feces of Healthy Thai Infants

    PubMed Central

    Uraipan, Supansa; Hongpattarakere, Tipparat

    2015-01-01

    Background: Food-borne pathogens are among the most significant problems in maintaining the health of people. Many probiotics have been widely reported to alleviate and protect against gastrointestinal infections through antibacterial secretion. However, the majority of them cannot always play antagonistic roles under gut conditions. Probiotic bacteria of human origin must possess other protective mechanisms to survive, out-compete intestinal flora and to successfully establish in their new host at a significant level. Objectives: Probiotic characteristics of Lactic Acid Bacteria (LAB) and bifidobacteria isolated from the feces of Thai infants were primarily investigated in terms of gastric acid and bile resistances, antibacterial activity and mucin adhesion ability. Antagonistic interaction through secretion of antibacterial compounds and competitive exclusion against food-borne pathogens were also evaluated. Materials and Methods: Culturable LAB and bifidobacteria were isolated from feces of Thai infants. Their ability to withstand gastric acid and bile were then evaluated. Acid and bile salt tolerant LAB and bifidobacteria were identified. They were then further assessed according to their antagonistic interactions through antibacterial secretion, mucin adhesion and competitive mucin adhesion against various food-borne pathogenic bacteria. Results: Gastric acid and bile tolerant LAB and bifidobacteria isolated from healthy infant feces were identified and selected according to their antagonistic interaction against various food-borne pathogenic bacteria. These antagonistic probiotics included four strains of Lactobacillus rhamnosus, two strains of L. casei, five strains of L. plantarum, two strains of Bifidobacterium longum subsp. longum and three strains of B. bifidum. All strains of the selected LAB inhibited all pathogenic bacteria tested through antibacterial secretion, while bifidobacteria showed high level of competitive exclusion against the pathogenic

  15. Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs.

    PubMed

    Yang, Yu-Xiang; Dai, Zhao-Lai; Zhu, Wei-Yun

    2014-11-01

    Bacteria in pig intestine can actively metabolize amino acids (AA). However, little research has focused on the variation in AA metabolism by bacteria from different niches. This study compared the metabolism of AA by microorganisms derived from the lumen and epithelial wall of the pig small intestine, aiming to test the hypothesis that the metabolic profile of AA by gut microbes was niche specific. Samples from the digesta, gut wall washes and gut wall of the jejunum and ileum were used as inocula. Anaerobic media containing single AA were used and cultured for 24 h. The 24-h culture served as inocula for the subsequent 30 times of subcultures. Results showed that for the luminal bacteria, all AA concentrations except phenylalanine in the ileum decreased during the 24-h in vitro incubation with a increase of ammonia concentration, while 4 AA (glutamate, glutamine, arginine and lysine) in the jejunum decreased, with the disappearance rate at 60-95 %. For tightly attached bacteria, all AA concentrations were generally increased during the first 12 h and then decreased coupled with first a decrease and then an increase of ammonia concentration, suggesting a synthesis first and then a catabolism pattern. Among them, glutamate in both segments, histidine in the jejunum and lysine in the ileum increased significantly during the first 12 h and then decreased at 24 h. The concentrations of glutamine and arginine did not change during the first 12 h, but significantly decreased at 24 h. Jejunal lysine and ileal threonine were increased for the first 6 or 12 h. For the loosely attached bacteria, there was no clear pattern for the entire AA metabolism. However, glutamate, methionine and lysine in the jejunum decreased after 24 h of cultivation, while glutamine and threonine in the jejunum and glutamine and lysine in the ileum increased in the first 12 h. During subculture, AA metabolism, either utilization or synthesis, was generally decreased with disappearance

  16. Biotransformations of Bile Acids with Bacteria from Cayambe Slaughterhouse (Ecuador): Synthesis of Bendigoles.

    PubMed

    Costa, Stefania; Maldonado Rodriguez, Maria Elena; Rugiero, Irene; De Bastiani, Morena; Medici, Alessandro; Tamburini, Elena; Pedrini, Paola

    2016-08-01

    The biotransformations of cholic acid (1a), deoxycholic acid (1b), and hyodeoxycholic acid (1c) to bendigoles and other metabolites with bacteria isolated from the rural slaughterhouse of Cayambe (Pichincha Province, Ecuador) were reported. The more active strains were characterized, and belong to the genera Pseudomonas and Rhodococcus. Various biotransformation products were obtained depending on bacteria and substrates. Cholic acid (1a) afforded the 3-oxo and 3-oxo-4-ene derivatives 2a and 3a (45% and 45%, resp.) with P. mendocina ECS10, 3,12-dioxo-4-ene derivative 4a (60%) with Rh. erythropolis ECS25, and 9,10-secosteroid 6 (15%) with Rh. erythropolis ECS12. Bendigole F (5a) was obtained in 20% with P. fragi ECS22. Deoxycholic acid (1b) gave 3-oxo derivative 2b with P. prosekii ECS1 and Rh. erythropolis ECS25 (20% and 61%, resp.), while 3-oxo-4-ene derivative 3b was obtained with P. prosekii ECS1 and P. mendocina ECS10 (22% and 95%, resp.). Moreover, P. fragi ECS9 afforded bendigole A (8b; 80%). Finally, P. mendocina ECS10 biotransformed hyodeoxycholic acid (1c) to 3-oxo derivative 2c (50%) and Rh. erythropolis ECS12 to 6α-hydroxy-3-oxo-23,24-dinor-5β-cholan-22-oic acid (9c, 66%). Bendigole G (5c; 13%) with P. prosekii ECS1 and bendigole H (8c) with P. prosekii ECS1 and Rh. erythropolis ECS12 (20% and 16%, resp.) were obtained. PMID:27358241

  17. Evaluation of a facile method of template DNA preparation for PCR-based detection and typing of lactic acid bacteria.

    PubMed

    Singh, Atul Kumar; Ramesh, Aiyagari

    2009-08-01

    The objective of our investigation was to develop a convenient and reliable method of generating template DNA for routine PCR-based detection and typing of lactic acid bacteria (LAB). Template DNA extracted from Lactobacillus, Lactococcus, Pediococcus and Leuconostoc using a combination of urea, SDS and NaOH yielded amplicons of expected size in PCR with genus-specific primers. Apart from LAB, the proposed method could also be adopted to generate PCR-compatible template DNA from a number of Gram-positive and Gram-negative bacterial strains. DNA template prepared by the proposed method from various standard strains of Lactobacillus sp. also generated discriminating fingerprints with BOXA1R primer in rep-PCR. A significant finding of the investigation was that a comparable banding profile of LAB strains was obtained in rep-PCR using template DNA prepared by urea-SDS-NaOH method and a commercially available DNA isolation kit. This was further evidenced by high dice coefficient values obtained in the range of 81.8-96.7 when cluster analysis was performed by UPGAMA method. The application potential of this DNA extraction method for PCR-based direct detection of LAB in fermented food samples such as dahi, idli batter and salt-fermented cucumber was validated by detecting specific amplicons of LAB genera in the fermented samples. The applicability of the proposed template DNA extraction method was further substantiated when 29 bacteriocinogenic LAB strains (Bac+) previously detected in salt-fermented cucumber by PCR [Singh, A.K., Ramesh, A., 2008. Succession of dominant and antagonistic lactic acid bacteria in fermented cucumber: Insights from a PCR-based approach. Food. Microbiol. 25, 278-287] generated differentiating fingerprints in BOX element based rep-PCR and formed clusters with reference LAB strains. PMID:19465247

  18. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria.

    PubMed

    Pastorkova, E; Zakova, T; Landa, P; Novakova, J; Vadlejch, J; Kokoska, L

    2013-02-15

    This paper investigates the in vitro antimicrobial potential of 15 grape phenolic compounds of various chemical classes (phenolic acids, stilbenes and flavonoids) using the broth microdilution method against yeasts and acetic acid bacteria frequently occurring in deteriorated wine. Pterostilbene (MICs=32-128 μg/mL), resveratrol (MICs=256-512 μg/mL) and luteolin (MICs=256-512 μg/mL) are among six active compounds that possessed the strongest inhibitory effects against all microorganisms tested. In the case of phenolic acids, myricetin, p-coumaric and ferulic acids exhibited selective antimicrobial activity (MICs=256-512 μg/mL), depending upon yeasts and bacteria tested. In comparison with potassium metabisulphite, all microorganisms tested were more susceptible to the phenolics. The results revealed the antibacterial and antiyeast effects against wine spoilage microorganisms of several highly potent phenolics naturally occurring in grapes. These findings also provide arguments for further investigation of stilbenes as prospective compounds reducing the need for the use of sulphites in winemaking.

  19. Probiotic potential of noni juice fermented with lactic acid bacteria and bifidobacteria.

    PubMed

    Wang, Chung-Yi; Ng, Chang-Chai; Su, Hsuan; Tzeng, Wen-Sheng; Shyu, Yuan-Tay

    2009-01-01

    The present study assesses the feasibility of noni as a raw substrate for the production of probiotic noni juice by lactic acid bacteria (Lactobacilluscasei and Lactobacillus plantarum) and bifidobacteria (Bifidobacteriumlongum). Changes in pH, acidity, sugar content, cell survival and antioxidant properties during fermentation were monitored. All tested strains grew well on noni juice, reaching nearly 10⁹ colony-forming units/ml after 48 h fermentation. L.casei produced less lactic acid than B.longum and L. plantarum. After 4 weeks of cold storage at 4°C, B.longum and L. plantarum survived under low-pH conditions in fermented noni juice. In contrast, L.casei exhibited no cell viability after 3 weeks. Moreover, noni juice fermented with B.longum had a high antioxidant capacity that did not differ significantly (P <0.05) from that of lactic acid bacteria. Finally, we found that B.longum and L. plantarum are optimal probiotics for fermentation with noni juice.

  20. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids

    PubMed Central

    Park, Jung-ha; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Kitamura, Yasuaki; Imada, Shinya; Usui, Yutaro; Hatano, Naoya; Shinohara, Masakazu; Saito, Yasuyuki; Murata, Yoji; Matozaki, Takashi

    2016-01-01

    The life span of intestinal epithelial cells (IECs) is short (3–5 days), and its regulation is thought to be important for homeostasis of the intestinal epithelium. We have now investigated the role of commensal bacteria in regulation of IEC turnover in the small intestine. The proliferative activity of IECs in intestinal crypts as well as the migration of these cells along the crypt-villus axis were markedly attenuated both in germ-free mice and in specific pathogen–free (SPF) mice treated with a mixture of antibiotics, with antibiotics selective for Gram-positive bacteria being most effective in this regard. Oral administration of chloroform-treated feces of SPF mice to germ-free mice resulted in a marked increase in IEC turnover, suggesting that spore-forming Gram-positive bacteria contribute to this effect. Oral administration of short-chain fatty acids (SCFAs) as bacterial fermentation products also restored the turnover of IECs in antibiotic-treated SPF mice as well as promoted the development of intestinal organoids in vitro. Antibiotic treatment reduced the phosphorylation levels of ERK, ribosomal protein S6, and STAT3 in IECs of SPF mice. Our results thus suggest that Gram-positive commensal bacteria are a major determinant of IEC turnover, and that their stimulatory effect is mediated by SCFAs. PMID:27232601

  1. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria.

    PubMed

    Russo, Pasquale; Iturria, Iñaki; Mohedano, Maria Luz; Caggianiello, Graziano; Rainieri, Sandra; Fiocco, Daniela; Angel Pardo, Miguel; López, Paloma; Spano, Giuseppe

    2015-04-01

    A critical feature of probiotic microorganisms is their ability to colonize the intestine of the host. Although the microbial potential to adhere to the human gut lumen has been investigated in in vitro models, there is still much to discover about their in vivo behaviour. Zebrafish is a vertebrate model that is being widely used to investigate various biological processes shared with humans. In this work, we report on the use of the zebrafish model to investigate the in vivo colonization ability of previously characterized probiotic lactic acid bacteria. Lactobacillus plantarum Lp90, L. plantarum B2 and Lactobacillus fermentum PBCC11.5 were fluorescently tagged by transfer of the pRCR12 plasmid, which encodes the mCherry protein and which was constructed in this work. The recombinant bacteria were used to infect germ-free zebrafish larvae. After removal of bacteria, the colonization ability of the strains was monitored until 3 days post-infection by using a fluorescence stereomicroscope. The results indicated differential adhesion capabilities among the strains. Interestingly, a displacement of bacteria from the medium to the posterior intestinal tract was observed as a function of time that suggested a transient colonization by probiotics. Based on fluorescence observation, L. plantarum strains exhibited a more robust adhesion capability. In conclusion, the use of pRCR12 plasmid for labelling Lactobacillus strains provides a powerful and very efficient tool to monitor the in vivo colonization in zebrafish larvae and to investigate the adhesion ability of probiotic microorganisms.

  2. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    PubMed

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant.

  3. Current status and emerging role of glutathione in food grade lactic acid bacteria.

    PubMed

    Pophaly, Sarang Dilip; Singh, Rameshwar; Pophaly, Saurabh Dilip; Kaushik, Jai K; Tomar, Sudhir Kumar

    2012-08-25

    Lactic acid bacteria (LAB) have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms.

  4. Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens.

    PubMed

    Zoumpopoulou, Georgia; Pepelassi, Eudoxie; Papaioannou, William; Georgalaki, Marina; Maragkoudakis, Petros A; Tarantilis, Petros A; Polissiou, Moschos; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2013-02-26

    In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB) food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17%) producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s) of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials.

  5. Current status and emerging role of glutathione in food grade lactic acid bacteria

    PubMed Central

    2012-01-01

    Lactic acid bacteria (LAB) have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms. PMID:22920585

  6. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    PubMed Central

    Chapot-Chartier, Marie-Pierre

    2014-01-01

    Lactic acid bacteria (LAB) are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan (PG) to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze PG and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle. PMID:24904550

  7. Phylogenetic analysis of antimicrobial lactic acid bacteria from farmed seabass Dicentrarchus labrax.

    PubMed

    Bourouni, Ouissal Chahad; El Bour, Monia; Calo-Mata, Pilar; Mraouna, Radhia; Abedellatif, Boudabous; Barros-Velàzquez, Jorge

    2012-04-01

    The use of lactic acid bacteria (LAB) in the prevention or reduction of fish diseases is receiving increasing attention. In the present study, 47 LAB strains were isolated from farmed seabass ( Dicentrarchus labrax ) and were phenotypically and phylogenetically analysed by 16S rDNA and randomly amplified polymorphic DNA - polymerase chain reaction (RAPD-PCR). Their antimicrobial effect was tested in vitro against a wide variety of pathogenic and spoilage bacteria. Most of the strains isolated were enterococci belonging to the following species: Enterococcus faecium (59%), Enterococcus faecalis (21%), Enterococcus sanguinicola (4 strains), Enterococcus mundtii (1 strain), Enterococcus pseudoavium (1 strain), and Lactococcus lactis (1 strain). An Aerococcus viridans strain was also isolated. The survey of their antimicrobial susceptibility showed that all isolates were sensitive to vancomycin and exhibited resistance to between 4 and 10 other antibiotics relevant for therapy in human and animal medicine. Different patterns of resistance were noted for skin and intestines isolates. More than 69% (32 strains) of the isolates inhibited the growth of the majority of pathogenic and spoilage bacteria tested, including Listeria monocytogenes, Staphylococcus aureus, Aeromonas hydrophila, Aeromonas salmonicida, Vibrio anguillarum, and Carnobacterium sp. To our knowledge, this is the first report of bioactive enterococcal species isolated from seabass that could potentially inhibit the undesirable bacteria found in food systems.

  8. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    PubMed

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant. PMID:26489032

  9. Deoxyribonucleic Acid Base Sequence Homologies of Some Budding and Prosthecate Bacteria

    PubMed Central

    Moore, Richard L.; Hirsch, Peter

    1972-01-01

    The genetic relatedness of a number of budding and prosthecate bacteria was determined by deoxyribonucleic acid (DNA) homology experiments of the direct binding type. Strains of Hyphomicrobium sp. isolated from aquatic habitats were found to have relatedness values ranging from 9 to 70% with strain “EA-617,” a subculture of the Hyphomicrobium isolated by Mevius from river water. Strains obtained from soil enrichments had lower values with EA-617, ranging from 3 to 5%. Very little or no homology was detected between the amino acid-utilizing strain Hyphomicrobium neptunium and other Hyphomicrobium strains, although significant homology was observed with the two Hyphomonas strains examined. No homology could be detected between prosthecate bacteria of the genera Rhodomicrobium, Prosthecomicrobium, Ancalomicrobium, or Caulobacter, and Hyphomicrobium strain EA-617 or H. neptunium LE-670. The grouping of Hyphomicrobium strains by their relatedness values agrees well with a grouping according to the base composition of their DNA species. It is concluded that bacteria possessing cellular extensions represent a widely diverse group of organisms. PMID:5018022

  10. Characterizations of environmental factors in conjugated linoleic acid production by mixed rumen bacteria.

    PubMed

    Choi, Nag-Jin; Park, Hui Gyu; Kim, Jun Ho; Hwang, Han-Joon; Kwon, Ki Han; Yoon, Jin A; Kwon, Eung Gi; Chang, Jongsoo; Hwang, In Ho; Kim, Young Jun

    2009-10-14

    Conjugated linoleic acid (CLA) production by rumen bacteria is closely related to biohydrogenation of linoleic acid (LA) and affected by various environmental factors. Ruminal biohydrogenation and isomerization were characterized in view of incubation conditions using a mixed culture of microorganisms obtained from surgically prepared cows. Free-floating bacteria (FFB) produced more CLA than particle-attached bacteria (PAB). Some major factors affecting the ruminal environment such as diet, concentrations of fat substrates, incubation time, pre-incubation, and the presence of glucose in the medium were found to be important determinants for the ruminal production of CLA and in a close relationship with biohydrogenation. The mixed bacterial culture, which was pre-exposed to LA, produced more CLA than an unexposed control in a medium containing 30% rumen fluid. The rate of conversion of fat substrate (LA) to hydrogenated products (trans-C18:1, C18:0) was negatively correlated with the initial LA concentration. Overall, the present study showed that CLA accumulation can be increased by modification of diet-induced environmental conditions, which affect changes in ruminal microflora.

  11. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment.

    PubMed

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta; Ercolini, Danilo

    2015-11-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality. PMID:26341209

  12. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment.

    PubMed

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta; Ercolini, Danilo

    2015-11-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality.

  13. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    PubMed

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.

  14. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology

    PubMed Central

    2014-01-01

    The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes. PMID:25186244

  15. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system.

    PubMed

    Labrenz, M; Banfield, J F

    2004-04-01

    The microbial diversity of ZnS-forming biofilms in 8 degrees C, circumneutral-pH groundwater in tunnels within the abandoned Piquette Zn, Pb mine (Tennyson, Wisconsin, USA) has been investigated by molecular methods, fluorescence in situ hybridization (FISH), and cultivation techniques. These biofilms are growing on old mine timbers that generate locally anaerobic zones within the mine drainage system. Sulfate-reducing bacteria (SRB) exclusively of the family Desulfobacteriaceae comprise a significant fraction of the active microbiota. Desulfosporosinus strains were isolated, but could not be detected by molecular methods. Other important microbial clusters belonged to the beta-, gamma-, and epsilon-Proteobacteria, the Cytophaga/Flexibacter/Bacteroides-group (CFB), Planctomycetales, Spirochaetales, Clostridia, and green nonsulfur bacteria. Our investigations indicated a growth dependence of SRB on fermentative, cellulolytic, and organic acid-producing Clostridia. A few clones related to sulfur-oxidizing bacteria were detected, suggesting a sulfur cycle related to redox gradients within the biofilm. Sulfur oxidation prevents sulfide accumulation that would lead to precipitation of other sulfide phases. FISH analyses indicated that Desulfobacteriaceae populations were not early colonizers in freshly grown and ZnS-poor biofilms, whereas they were abundant in older, naturally established, and ZnS-rich biofilms. Gram-negative SRB have been detected in situ over a period of 6 months, supporting the important role of these organisms in selective ZnS precipitation in Tennyson mine. Results demonstrate the complex nature of biofilms responsible for in situ bioremediation of toxic metals in a subsurface mine drainage system. PMID:14994175

  16. Screening of potential probiotic lactic acid bacteria based on gastrointestinal properties and perfluorooctanoate toxicity.

    PubMed

    Xing, Jiali; Wang, Fan; Xu, Qi; Yin, Boxing; Fang, Dongsheng; Zhao, Jianxin; Zhang, Hao; Chen, Yong Q; Wang, Gang; Chen, Wei

    2016-08-01

    The consumption of lactic acid bacteria capable of binding or degrading food-borne carcinogens may reduce human exposure to these deleterious compounds. In this study, 25 Lactobacillus strains isolated from human, plant, or dairy environments were investigated for their potential probiotic capacity against perfluorooctanoate (PFOA) toxicity. The PFOA binding, tolerance ability, and acid and bile salt tolerance were investigated and assessed by principal component analysis. Additionally, the effect of different pH levels and binding times was assessed. These strains exhibited different degrees of PFOA binding; the strain with the highest PFOA binding capability was Lactobacillus plantarum CCFM738, which bound to 49.40 ± 1.5 % of available PFOA. This strain also exhibited relatively good cellular antioxidative properties, acid and bile salt tolerance, and adhesion to Caco-2 cells. This study suggests that L. plantarum CCFM738 could be used as a potential probiotic in food applications against PFOA toxicity. PMID:27094185

  17. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications.

    PubMed

    Perez, Rodney H; Zendo, Takeshi; Sonomoto, Kenji

    2014-08-29

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed. PMID:25186038

  18. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications

    PubMed Central

    2014-01-01

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed. PMID:25186038

  19. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications.

    PubMed

    Perez, Rodney H; Zendo, Takeshi; Sonomoto, Kenji

    2014-08-29

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.

  20. Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns.

    PubMed

    Ying, Jiao-Yan; Zhang, Li-Mei; He, Ji-Zheng

    2010-04-01

    Ammonia-oxidizers play a key role in nitrification, which is important for nitrogen cycling and soil function. However, little is known about how vegetation successions and agricultural practices caused by human activities impact the ammonia-oxidizers and nitrification process. Putative ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities under different land utilization patterns of restoration (forest), degradation (pasture), cropland and pine plantation were analysed in an acidic red soil based on bacterial and archaeal amoA genes together with archaeal 16S rRNA gene. Real-time PCR, terminal restriction fragment length polymorphism (T-RFLP) and sequencing of clone libraries were conducted to study their abundance and community structure. Land utilization pattern showed significant effects on the copy numbers of all these genes, but only the bacterial amoA gene correlated significantly with potential nitrification rates (PNR). The cropland plot possessed the highest bacterial amoA gene copies and PNR, while the degradation plot was opposite to that. There were no significant variations in the bacterial amoA gene structure, which was dominated by Clusters 10 and 11 in Nitrosospira. However, archaeal amoA gene structure varied among different land utilization patterns especially for the cropland. The degradation plot was dominated by Crenarchaea 1.1c-related groups from which the amoA gene could not been amplified in this study, while other plots were dominated by Crenarchaea 1.1a/b group based on archaeal 16S rRNA gene analysis. These results indicated significant effects of land utilization patterns on putative ammonia oxidizers, which were especially obvious in the degradation and cropland plots where frequent human disturbance occurred.

  1. Synthetic teichoic acid conjugate vaccine against nosocomial Gram-positive bacteria.

    PubMed

    Laverde, Diana; Wobser, Dominique; Romero-Saavedra, Felipe; Hogendorf, Wouter; van der Marel, Gijsbert; Berthold, Martin; Kropec, Andrea; Codee, Jeroen; Huebner, Johannes

    2014-01-01

    Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria.

  2. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation.

  3. Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens

    PubMed Central

    Manzoor, Asma; Ul-Haq, Ikram; Baig, Shahjhan; Qazi, Javed Iqbal; Seratlic, Sanja

    2016-01-01

    Background: Antibiotic resistance represents a serious global health threat to public health, so infections such as pneumonia and urinary tract infection (UTI) are becoming harder to treat. Therefore, it is necessary to develop an action plan to restrain the problem of antibiotic resistance. One approach in UTI control could be the use of lactobacilli because these indigenous inhabitants in human intestine have been found to play an important role in protecting the host from various infections. Objectives: We sought to check the efficacy of locally isolated Lactobacillus species to eradicate antibiotic-resistant pathogenic bacteria causing UTI. Materials and Methods: Lactic acid bacteria isolated from spoiled fruits and vegetables and grown in MRS medium were screened against multi-drug-resistant Candida albicans, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus fecalis. Results: Fifty-four lactic acid bacteria were isolated from spoiled fruits and vegetables, of which 11 Gram-positive and catalase-negative Lactobacillus isolates were identified by carbohydrate assimilation profiles as Lactobacillus acidophilus, L. paracasei, L. delbrueckii, L. casei, L. helveticus, L. brevis, L. salivarius, L. fermentum, L. rhamnosus, L. animalis, and L. plantarum. The latter organism had the highest abundance of all the samples, so its isolates were also verified through 16S rRNA gene sequencing. The isolated Lactobacilli were screened against multi-drug-resistant uropathogens, viz. C. albicans, P. aeruginosa, K. pneumoniae, E. fecalis, and E. coli. The growth inhibition zone (GIZ) was over 10 mm against all the uropathogenic test organisms, where L. fermentum and L. plantarum strains demonstrated remarkable inhibitory activities against E. coli and E. faecalis, with a GIZ up to 28 mm. The susceptibility test to 16 antibiotics showed multidrug resistance (3 to 5 antibiotics) among all the tested uropathogens. Conclusions: The obtained results

  4. Efficacy of microencapsulated lactic acid bacteria in Helicobater pylori eradication therapy

    PubMed Central

    Khalil, Maha A.; El-Sheekh, Mostafa M.; El-Adawi, Hala I.; El-Deeb, Nehal M.; Hussein, Mohamed Z.

    2015-01-01

    Background: Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in the effectiveness to exert health benefits for a patient. This study focuses on providing probiotic living cells with a physical barrier against adverse environmental conditions. Materials and Methods: Microencapsulation of the selected lactic acid bacteria (LAB) using chitosan and alginate was performed. Physical examination of the formulated LAB microcapsules was observed using phase contrast inverted microscope and scanning electron microscope (SEM). Finally, the survival of microencapsulated and noncapsulated bacteria was cheeked in the simulated human gastric tract (GT). The potential antimicrobial activity of the most potent microencapsulated LAB strain was in vivo evaluated in rabbit models. Results: Microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 were loaded with 1.03 × 1010 CFU viable bacteria/g, 1.9 × 1010 CFU viable bacteria/g, and 5.5 × 109 CFU viable bacteria/g, respectively. The survival of microencapsulated cells was significantly higher than that of the free cells after exposure to simulated gastric juice (SGJ) at pH 2. Additionally, in simulated small intestine juice (SSJ), larger amounts of the selected LAB cells were found, whereas in simulated colon juice (SCJ), the released LAB reached the maximum counts. In vivo results pointed out that an 8-week supplementation with a triple therapy of a microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 might be able to reduce H. pylori. Conclusion: Microencapsulated probiotics could possibly compete with and downregulate H. pylori infection in humans. PMID:26929759

  5. Evidence of Two Functionally Distinct Ornithine Decarboxylation Systems in Lactic Acid Bacteria

    PubMed Central

    Romano, Andrea; Trip, Hein; Lonvaud-Funel, Aline; Lolkema, Juke S.

    2012-01-01

    Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and l-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol. PMID:22247134

  6. Lactic acid bacteria activating innate immunity improve survival in bacterial infection model of silkworm.

    PubMed

    Nishida, Satoshi; Ono, Yasuo; Sekimizu, Kazuhisa

    2016-02-01

    Lactic acid bacteria (LAB) have been thought to be helpful for human heath in the gut as probiotics. It recently was noted that activity of LAB stimulating immune systems is important. Innate immune systems are conserved in mammals and insects. Silkworm has innate immunity in response to microbes. Microbe-associated molecular pattern (ex. peptidoglycan and β-glucan) induces a muscle contraction of silkworm larva. In this study, we established an efficient method to isolate lactic acid bacteria derived from natural products. We selected a highly active LAB to activate the innate immunity in silkworm by using the silkworm muscle contraction assay, as well. The assay revealed that Lactococcus lactis 11/19-B1 was highly active on the stimulation of the innate immunity in silkworm. L. lactis 11/19-B1 solely fermented milk with casamino acid and glucose. This strain would be a starter strain to make yogurt. Compared to commercially available yogurt LAB, L. lactis 11/19-B1 has higher activity on silkworm contraction. Silkworm normally ingested an artificial diet mixed with L. lactis 11/19-B1 or a yogurt fermented with L. lactis 11/19-B1. Interestingly, silkworms that ingested the LAB showed tolerance against the pathogenicity of Pseudomonas aeruginosa. These data suggest that Lactococcus lactis 11/19-B1 would be expected to be useful for making yogurt and probiotics to activate innate immunity. PMID:26971556

  7. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.

    PubMed

    Konings, W N; Lolkema, J S; Bolhuis, H; van Veen, H W; Poolman, B; Driessen, A J

    1997-02-01

    Lactic acid bacteria play an essential role in many food fermentation processes. They are anaerobic organisms which obtain their metabolic energy by substrate phosphorylation. In addition three secondary energy transducing processes can contribute to the generation of a proton motive force: proton/substrate symport as in lactic acid excretion, electrogenic precursor/product exchange as in malolactic and citrolactic fermentation and histidine/histamine exchange, and electrogenic uniport as in malate and citrate uptake in Leuconostoc oenos. In several of these processes additional H+ consumption occurs during metabolism leading to the generation of a pH gradient, internally alkaline. Lactic acid bacteria have also developed multidrug resistance systems. In Lactococcus lactis three toxin excretion systems have been characterized: cationic toxins can be excreted by a toxin/proton antiport system and by an ABC-transporter. This cationic ABC-transporter has surprisingly high structural and functional analogy with the human MDR1-(P-glycoprotein). For anions an ATP-driven ABC-like excretion systems exist.

  8. Influence of wine-like conditions on arginine utilization by lactic acid bacteria.

    PubMed

    Araque, Isabel; Reguant, Cristina; Rozès, Nicolas; Bordons, Albert

    2011-12-01

    Wine can contain trace amounts of ethyl carbamate (EC), a carcinogen formed when ethanol reacts with carbamyl compounds such as citrulline. EC is produced from arginine by lactic acid bacteria (LAB), e.g., Lactobacillus and Pediococcus. Although the amounts of EC in wine are usually negligible, over the last few years there has been a slight but steady increase, as climate change has increased temperatures and alcohol levels have become proportionately higher, both of which favor EC formation. In this study, resting cells of LAB were used to evaluate the effects of ethanol, glucose, malic acid, and low pH on the ability of non-oenococcal strains of these bacteria to degrade arginine and excrete citrulline. Malic acid was found to clearly inhibit arginine consumption in all strains. The relation between citrulline produced and arginine consumed was clearly higher in the presence of ethanol (10-12%) and at low pH (3.0), which is consistent with both the decreased amount of ornithine produced from arginine and the reduction in arginine degradation. In L. brevis and L. buchneri strains isolated from wine and beer, respectively, the synthesis of citrulline from arginine was highest. PMID:22569760

  9. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    PubMed

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.

  10. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    PubMed

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF. PMID:26712629

  11. Lactic acid bacteria protect human intestinal epithelial cells from Staphylococcus aureus and Pseudomonas aeruginosa infections.

    PubMed

    Affhan, S; Dachang, W; Xin, Y; Shang, D

    2015-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa are opportunistic pathogens that cause nosocomial and food-borne infections. They promote intestinal diseases. Gastrointestinal colonization by S. aureus and P. aeruginosa has rarely been researched. These organisms spread to extra gastrointestinal niches, resulting in increasingly progressive infections. Lactic acid bacteria are Gram-positive bacteria that produce lactic acid as the major end-product of carbohydrate fermentation. These bacteria inhibit pathogen colonization and modulate the host immune response. This study aimed to investigate the effects of Lactobacillus acidophilus and Lactobacillus rhamnosus on enteric infections caused by the paradigmatic human pathogens S. aureus ATCC25923 and P. aeruginosa ATCC27853. The effect of whole cells and neutralized cell-free supernatant (CFS) of the lactobacilli on LoVo human carcinoma enterocyte (ATCC CCL-229) infection was analyzed by co-exposure, pre-exposure, and post-exposure studies. Simultaneous application of whole cells and CFS of the lactobacilli significantly eradicated enterocyte infection (P < 0.05); however, this effect was not seen when the whole cells and CFS were added after or prior to the infection (P > 0.05). This result could be attributed to interference by extracellular polymeric substances and cell surface hydrophobicity, which resulted in the development of a pathogen that did not form colonies. Furthermore, results of the plate count and LIVE/ DEAD BacLight bacterial viability staining attributed this inhibition to a non-bacteriocin-like substance, which acted independently of organic acid and H2O2 production. Based on these results, the cell-free supernatant derived from lactobacilli was concluded to restrain the development of S. aureus and P. aeruginosa enteric infections. PMID:26681052

  12. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions

    PubMed Central

    Elshaghabee, Fouad M. F.; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J.

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  13. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.

    PubMed

    Elshaghabee, Fouad M F; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  14. Effect of citric acid and bacteria on metal uptake in reeds grown in a synthetic acid mine drainage solution.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2015-03-01

    The effect of citric acid (CA), rhizosphere acidophilic heterotrophs and/or Fe(II) oxidizing bacteria (Fe(II)OB) on plaque formation and metal accumulation in Phragmites australis L. (common reed) from acid mine drainage (AMD) solution were investigated. Reeds were grown in different hydroponic solutions that contained AMD, CA and/or rhizosphere bacteria for three months. Triplicate experiments were conducted for each experimental condition. Fe(II)OB enhanced the formation of Fe plaque which decreased Fe and Mn uptake in reeds, while it had no significant influence on Al accumulation. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque and increased Fe and Mn accumulation in reeds. Acidophilic heterotrophs consumed CA and made the environment more suitable for the growth of Fe(II)OB. Reeds are a good candidate for phytoextraction while CA is a useful chelator to enhance metal uptake in plants. More research may be needed to investigate the influence of CA on microbial community. Further investigations are required to study the effect of CA on phytoremediation of AMD contaminated fields.

  15. A large factory-scale application of selected autochthonous lactic acid bacteria for PDO Pecorino Siciliano cheese production.

    PubMed

    Guarcello, Rosa; Carpino, Stefania; Gaglio, Raimondo; Pino, Alessandra; Rapisarda, Teresa; Caggia, Cinzia; Marino, Giovanni; Randazzo, Cinzia L; Settanni, Luca; Todaro, Massimo

    2016-10-01

    The main hypothesis of this study was that the autochthonous lactic acid bacteria (LAB) selected for their dairy traits are able to stabilize the production of PDO (Protected Denomination of Origin) Pecorino Siciliano cheese, preserving its typicality. The experimental plan included the application of a multi-strain lactic acid bacteria (LAB) culture, composed of starter (Lactococcus lactis subsp. lactis CAG4 and CAG37) and non starter (Enterococcus faecalis PSL71, Lactococcus garviae PSL67 and Streptococcus macedonicus PSL72) strains, during the traditional production of cheese at large scale level in six factories located in different areas of Sicily. The cheese making processes were followed from milk to ripened cheeses and the effects of the added LAB were evaluated on the microbiological, chemico-physical and sensorial characteristics of the final products. Results highlighted a high variability for all investigated parameters and the dominance of LAB cocci in bulk milk samples. The experimental curds showed a faster pH drop than control curds and the levels of LAB estimated in 5-month ripened experimental cheeses (7.59 and 7.27 Log CFU/g for rods and cocci, respectively) were higher than those of control cheeses (7.02 and 6.61 Log CFU/g for rods and cocci, respectively). The comparison of the bacterial isolates by randomly amplified polymorphic DNA (RAPD)-PCR evidenced the dominance of the added starter lactococci over native milk and vat LAB, while the added non starter LAB were found at almost the same levels of the indigenous strains. The sensory evaluation showed that the mixed LAB culture did not influence the majority of the sensory attributes of the cheeses and that each factory produced cheeses with unique characteristics. Finally, the multivariate statistical analysis based on all parameters evaluated on the ripened cheeses showed the dissimilarities and the relationships among cheeses. Thus, the main hypothesis of the work was accepted since the

  16. Towards metagenome-scale models for industrial applications--the case of Lactic Acid Bacteria.

    PubMed

    Branco dos Santos, Filipe; de Vos, Willem M; Teusink, Bas

    2013-04-01

    We review the uses and limitations of modelling approaches that are in use in the field of Lactic Acid Bacteria (LAB). We describe recent developments in model construction and computational methods, starting from application of such models to monocultures. However, since most applications in food biotechnology involve complex nutrient environments and mixed cultures, we extend the scope to discuss developments in modelling such complex systems. With metagenomics and meta-functional genomics data becoming available, the developments in genome-scale community models are discussed. We conclude that exploratory tools are available and useful, but truly predictive mechanistic models will remain a major challenge in the field.

  17. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds

    PubMed Central

    Papagianni, Maria

    2012-01-01

    Lactic acid bacteria (LAB) are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review. PMID:24688663

  18. Lactic acid bacteria and their controversial role in fresh meat spoilage.

    PubMed

    Pothakos, Vasileios; Devlieghere, Frank; Villani, Francesco; Björkroth, Johanna; Ercolini, Danilo

    2015-11-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group that has been widely associated with fresh meat and cooked meat products. They represent a controversial cohort of microbial species that either contribute to spoilage through generation of offensive metabolites and the subsequent organoleptic downgrading of meat or serve as bioprotective agents with strains of certain species causing unperceivable or no alterations. Therefore, significant distinction among biotypes is substantiated by studies determining spoilage potential as a strain-specific trait corroborating the need to revisit the concept of spoilage. PMID:25972087

  19. Lactic acid bacteria and their controversial role in fresh meat spoilage.

    PubMed

    Pothakos, Vasileios; Devlieghere, Frank; Villani, Francesco; Björkroth, Johanna; Ercolini, Danilo

    2015-11-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group that has been widely associated with fresh meat and cooked meat products. They represent a controversial cohort of microbial species that either contribute to spoilage through generation of offensive metabolites and the subsequent organoleptic downgrading of meat or serve as bioprotective agents with strains of certain species causing unperceivable or no alterations. Therefore, significant distinction among biotypes is substantiated by studies determining spoilage potential as a strain-specific trait corroborating the need to revisit the concept of spoilage.

  20. Development of a fatty acid and RNA stable isotope probing-based method for tracking protist grazing on bacteria in wastewater.

    PubMed

    Kuppardt, Steffen; Chatzinotas, Antonis; Kästner, Matthias

    2010-12-01

    Removal of potential pathogenic bacteria, for example, during wastewater treatment, is effected by sorption, filtration, natural die-off, lysis by viruses, and grazing by protists, but the actual contribution of grazing has never been assessed quantitatively. A methodical approach for analyzing the grazing of protists on (13)C-labeled prey bacteria was developed which enables mass balances of the carbon turnover to be drawn, including yield estimation. Model experiments for validating the approach were performed in closed microcosms with the ciliate Uronema sp. and (13)C-labeled Escherichia coli as model prey. The transfer of bacterial (13)C into grazing protist biomass was investigated by fatty acid (FA) and RNA stable isotope probing (SIP). Uronema sp. showed ingestion rates of ∼390 bacteria protist(-1) h(-1), and the temporal patterns of (13)C assimilation from the prey bacteria to the protist FA were identified. Nine fatty acids specific for Uronema sp. were found (20:0, i20:0, 22:0, 24:0, 20:1ω9c, 20:1ω9t, 22:1ω9c, 22:1ω9t, and 24:1). Four of these fatty acids (22:0, 20:1ω9t, 22:1ω9c, and 22:1ω9t) were enriched very rapidly after 3 h, indicating grazing on bacteria without concomitant cell division. Other fatty acids (20:0, i20:0, and 20:1ω9c) were found to be indicative of growth with cell division. The fatty acids were found to be labeled with a percentage of labeled carbon (atoms percent [atom%]) up to 50. Eighteen percent of the E. coli-derived (13)C was incorporated into Uronema biomass, whereas 11% was mineralized. Around 5 mol bacterial carbon was necessary in order to produce 1 mol protist carbon (y(x)(/)(s) ≈ 0.2), and the temporal pattern of (13)C labeling of protist rRNA was also shown. A consumption of around 1,000 prey bacteria (∼98 atom% (13)C) per protist cell appears to be sufficient to provide detectable amounts of label in the protist RNA. The large shift in the buoyant density fraction of (13)C-labeled protist RNA demonstrated

  1. Proteomics as a tool for studying energy metabolism in lactic acid bacteria.

    PubMed

    Pessione, Alessandro; Lamberti, Cristina; Pessione, Enrica

    2010-08-01

    Lactic acid bacteria (LAB) are very ancient organisms that can't obtain metabolic energy by respiration without external heme supplementation. Since the gain in ATP from lactic fermentation is inadequate to support efficient growth, they developed alternative strategies for energy production. Three main energy generating routes are present in LAB: amino acid decarboxylation, malate decarboxylation and arginine deimination (ADI pathway). These routes, apart from supplying energy, also play a role in pH control. Lactic fermentation, which leads to lactic acid accumulation, causes a pH decrease that amino acid decarboxylations, originating basic amines, and the ADI pathway, giving rise to ammonia, may partially contrast. In the present mini-review, the reciprocal relationships among these metabolic pathways are considered, on the basis of proteomic results obtained from four different LAB strains, all of which possess the ADI pathway, but express different amino acid decarboxylases. The strains have been isolated and selected from different habitats and the role of some inducing molecules as well as of the growth phases is discussed. The overall results have revealed that LAB are complex biosystems able to set up a sophisticated metabolic regulation through a complex network of proteins that also include stress responses, as well as protease activation or inhibition. PMID:20505866

  2. Proteomics as a tool for studying energy metabolism in lactic acid bacteria.

    PubMed

    Pessione, Alessandro; Lamberti, Cristina; Pessione, Enrica

    2010-08-01

    Lactic acid bacteria (LAB) are very ancient organisms that can't obtain metabolic energy by respiration without external heme supplementation. Since the gain in ATP from lactic fermentation is inadequate to support efficient growth, they developed alternative strategies for energy production. Three main energy generating routes are present in LAB: amino acid decarboxylation, malate decarboxylation and arginine deimination (ADI pathway). These routes, apart from supplying energy, also play a role in pH control. Lactic fermentation, which leads to lactic acid accumulation, causes a pH decrease that amino acid decarboxylations, originating basic amines, and the ADI pathway, giving rise to ammonia, may partially contrast. In the present mini-review, the reciprocal relationships among these metabolic pathways are considered, on the basis of proteomic results obtained from four different LAB strains, all of which possess the ADI pathway, but express different amino acid decarboxylases. The strains have been isolated and selected from different habitats and the role of some inducing molecules as well as of the growth phases is discussed. The overall results have revealed that LAB are complex biosystems able to set up a sophisticated metabolic regulation through a complex network of proteins that also include stress responses, as well as protease activation or inhibition.

  3. Alkyl hydroperoxide reductase enhances the growth of Leuconostoc mesenteroides lactic acid bacteria at low temperatures.

    PubMed

    Goto, Seitaro; Kawamoto, Jun; Sato, Satoshi B; Iki, Takashi; Watanabe, Itaru; Kudo, Kazuyuki; Esaki, Nobuyoshi; Kurihara, Tatsuo

    2015-01-01

    Lactic acid bacteria (LAB) can cause deterioration of food quality even at low temperatures. In this study, we investigated the cold-adaptation mechanism of a novel food spoilage LAB, Leuconostoc mesenteroides NH04 (NH04). L. mesenteroides was isolated from several spoiled cooked meat products at a high frequency in our factories. NH04 grew rapidly at low temperatures within the shelf-life period and resulted in heavy financial losses. NH04 grew more rapidly than related strains such as Leuconostoc mesenteroides NBRC3832 (NBRC3832) at 10°C. Proteome analysis of NH04 demonstrated that this strain produces a homolog of alkyl hydroperoxide reductase--AhpC--the expression of which can be induced at low temperatures. The expression level of AhpC in NH04 was approximately 6-fold higher than that in NBRC3832, which was grown under the same conditions. Although AhpC is known to have an anti-oxidative role in various bacteria by catalyzing the reduction of alkyl hydroperoxide and hydrogen peroxide, the involvement of AhpC in cold adaptation of food spoilage bacteria was unclear. We introduced an expression plasmid containing ahpC into NBRC3832, which grows slower than NH04 at 10°C, and found that expression of AhpC enhanced growth. These results demonstrated that AhpC, which likely increases anti-oxidative capacity of LAB, plays an important role in their rapid growth at low temperatures.

  4. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    PubMed

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  5. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health.

    PubMed

    Dai, Zhao-Lai; Wu, Guoyao; Zhu, Wei-Yun

    2011-01-01

    Bacteria in the gastrointestinal (GI) tract play an important role in the metabolism of dietary substances in the gut and extraintestinal tissues. Amino acids (AA) should be taken into consideration in the development of new strategies to enhance efficiency of nutrient utilization because they are not only major components in the diet and building blocks for protein but also regulate energy and protein homeostasis in organisms. The diversity of the AA-fermenting bacteria and their metabolic redundancy make them easier to survive and interact with their neighboring species or eukaryotic host during transition along GI tract. The outcomes of the interactions have important impacts on gut health and whole-body homeostasis. The AA-derived molecules produced by intestinal bacteria affect host health by regulating either host immunity and cell function or microbial composition and metabolism. Emerging evidence shows that dietary factors, such as protein, non-digestible carbohydrates, probiotics, synbiotics and phytochemicals, modulate AA utilization by gut microorganisms. Interdisciplinary research involving nutritionists and microbiologists is expected to rapidly expand knowledge about crucial roles for AA in gut ecology and host health. PMID:21196263

  6. Phage-Host Interactions of Cheese-Making Lactic Acid Bacteria.

    PubMed

    Mahony, Jennifer; McDonnell, Brian; Casey, Eoghan; van Sinderen, Douwe

    2016-01-01

    Cheese production is a global biotechnological practice that is reliant on robust and technologically appropriate starter and adjunct starter cultures to acidify the milk and impart particular flavor and textural properties to specific cheeses. To this end, lactic acid bacteria, including Lactococcus lactis, Streptococcus thermophilus, and Lactobacillus and Leuconostoc spp., are routinely employed. However, these bacteria are susceptible to infection by (bacterio)phages. Over the past decade in particular, significant advances have been achieved in defining the receptor molecules presented by lactococcal host bacteria and in the structural analysis of corresponding phage-encoded receptor-binding proteins. These lactococcal model systems are expanding toward understanding phage-host interactions of other LAB species. Ultimately, such scientific efforts will uncover the mechanistic (dis)similarities among these phages and define how these phages recognize and infect their hosts. This review presents the current status of the LAB-phage interactome, highlighting the most recent and significant developments in this active research field. PMID:26735798

  7. In vitro testing of commercial and potential probiotic lactic acid bacteria.

    PubMed

    Jensen, Hanne; Grimmer, Stine; Naterstad, Kristine; Axelsson, Lars

    2012-02-01

    Probiotics are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host. The objective of this study was to investigate the diversity of selected commercial and potential probiotic lactic acid bacteria using common in vitro screening assays such as transit tolerance in the upper human gastrointestinal tract, adhesion capacity to human intestinal cell lines and effect on epithelial barrier function. The selected bacteria include strains of Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus farciminis, Lactobacillus sakei, Lactobacillus gasseri, Lactobacillus rhamnosus, Lactobacillus reuteri and Pediococcus pentosaceus. Viable counts after simulated gastric transit tolerance showed that L. reuteri strains and P. pentosaceus tolerate gastric juice well, with no reduction of viability, whereas L. pentosus, L. farciminis and L. sakei strains lost viability over 180min. All strains tested tolerate the simulated small intestinal juice well. The bacterial adhesion capacity to human intestinal cells revealed major species and strain differences. Overall, L. plantarum MF1298 and three L. reuteri strains had a significant higher adhesion capacity compared to the other strains tested. All strains, both living and UV-inactivated, had little effect on the epithelial barrier function. However, living L. reuteri strains revealed a tendency to increase the transepithelial electrical resistance (TER) from 6 to 24h. This work demonstrates the diversity of 18 potential probiotic bacteria, with major species and strain specific effects in the in vitro screening assays applied. Overall, L. reuteri strains reveal some interesting characteristics compared to the other strains investigated.

  8. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water.

    PubMed

    Elsanhoty, Rafaat M; Al-Turki, I A; Ramadan, Mohamed Fawzy

    2016-01-01

    In this study selected lactic acid bacteria (LAB, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantrium and Streptococcus thermophiles) and probiotic bacteria (Bifidobacterium angulatum) were tested for their ability in removing heavy metals (HM) including cadmium (Cd), lead (Pb) and arsenic (As) as well as aflatoxin B1 (AFB1) from contaminated water. The biosorption parameters (pH, bacterial concentration, contact time and temperature) of removal using individual as well as mixed LAB and probiotic bacteria were studied. Removal of HM and AFB1 depended on the strain, wherein the process was strongly pH-dependent with high removal ability at a pH close to neutral. The increase in bacterial concentration enhanced the removal of Cd, Pb and As. Also, increasing of contact time and temperature increased the ability of LAB to remove HM. The effect of contact time on Cd removal was slightly different when freshly cultured cells were used. The removal of Cd, Pb and As decreased with the increase in the initial metal concentration. The most effective HM removers were Lactobacillus acidophilus and Bifidobacterium angulatum. The system was found to be adequate for concentrations of HM under investigation. At the end of the operation, the concentration of HM reached the level allowed by the World Health Organization regulations. PMID:27508367

  9. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation

    PubMed Central

    Ren, Chengcheng; Zhang, Qiuxiang; de Haan, Bart J.; Zhang, Hao; Faas, Marijke M.; de Vos, Paul

    2016-01-01

    Although many lactic acid bacteria (LAB) influence the consumer’s immune status it is not completely understood how this is established. Bacteria-host interactions between bacterial cell-wall components and toll-like receptors (TLRs) have been suggested to play an essential role. Here we investigated the interaction between LABs with reported health effects and TLRs. By using cell-lines expressing single or combination of TLRs, we show that LABs can signal via TLR-dependent and independent pathways. The strains only stimulated and did not inhibit TLRs. We found that several strains such as L. plantarum CCFM634, L. plantarum CCFM734, L. fermentum CCFM381, L. acidophilus CCFM137, and S. thermophilus CCFM218 stimulated TLR2/TLR6. TLR2/TLR6 is essential in immune regulatory processes and of interest for prevention of diseases. Specificity of the TLR2/TLR6 stimulation was confirmed with blocking antibodies. Immunomodulatory properties of LABs were also studied by assessing IL-10 and IL-6 secretion patterns in bacteria-stimulated THP1-derived macrophages, which confirmed species and strain specific effects of the LABs. With this study we provide novel insight in LAB specific host-microbe interactions. Our data demonstrates that interactions between pattern recognition receptors such as TLRs is species and strain specific and underpins the importance of selecting specific strains for promoting specific health effects. PMID:27708357

  10. Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer

    NASA Astrophysics Data System (ADS)

    Kojima, Hisaya; Tokizawa, Riho; Kogure, Kouhei; Kobayashi, Yuki; Itoh, Masayuki; Shiah, Fuh-Kwo; Okuda, Noboru; Fukui, Manabu

    2014-07-01

    Methane-oxidizing bacteria (MOB) gain energy from the oxidation of methane and may play important roles in freshwater ecosystems. In this study, the community structure of planktonic MOB was investigated in a subtropical reservoir. Bacterial community structure was investigated through the analysis of the 16S rRNA gene. Three groups of phylogenetically distinct MOB were detected in the clone libraries of polymerase chain reaction products obtained with universal primers. The groups belonged to the class Gammaproteobacteria, the class Alphaproteobacteria, and the candidate phylum NC10. The last group, which consists of close relatives of the nitrite reducer `Candidatus Methylomirabilis oxyfera', was frequently detected in the clone libraries of deep-water environments. The presence of 3 groups of MOB in deep water was also shown by a cloning analysis of the pmoA gene encoding particulate methane monooxygenase. The dominance of `M. oxyfera'-like organisms in deep water was confirmed by catalyzed reporter deposition-fluorescence in situ hybridization, in which cells stained with a specific probe accounted for 16% of total microbial cells. This is the first study to demonstrate that close relatives of the nitrite reducer can be major component of planktonic MOB community which may affect carbon flow in aquatic ecosystems.

  11. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces.

    PubMed

    Ji, Keunho; Jang, Na Young; Kim, Young Tae

    2015-09-01

    The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β- glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'- azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

  12. Intestinal lactic acid bacteria from Muscovy duck as potential probiotics that alter adhesion factor gene expression.

    PubMed

    Xie, Z L; Bai, D P; Xie, L N; Zhang, W N; Huang, X H; Huang, Y F

    2015-10-09

    The purpose of this study was to assess the suitability of lactic acid bacteria (LABs) isolated from Muscovy duck as a potential probiotic. Isolates were identified by targeted polymerase chain reaction and assessed in vitro for probiotic characteristics such as autoaggregation; surface-charge; hydrophobicity; tolerance to acidic pH, bile salts and protease; and expression of genes involved in Caco-2 cell adhesion. The LAB isolates exhibited strong resistance to high bile concentration and acidic pH, produced lactic acid, and bacteriostatic (P < 0.05) were identified as bacilli compared with LAB isolates of cocci. Additionally, the LAB isolates showed high sensitivity to penicillin and tetracycline antibiotics, while they were resistant to ofloxacin, Macrodantin, and cotrimoxazole. The level of F-actin mRNA increased in the groups treated with CM3, Salmonella enterica, and CM3 + S. enterica (P < 0.0001, P < 0.05 and P < 0.05 ). The level of cell adhesion molecule (CAM) and E-cadherin (E-cad) mRNA expression was significantly lower in the treatment group (P < 0.05 for both) than in the control. The F-actin, CAM, and E-cad mRNA levels were significantly lower in the S. enterica and CM3 + S. enterica groups (P < 0.01) than in the CM3 group. Among these, RNA levels were higher in the CM3 + S. enterica than S. enterica group. These results indicate that the natural duck gut microflora is an excellent source for probiotic bacteria and can facilitate the establishment of criteria to select probiotic strains for the prevention of diarrhea.

  13. Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must

    PubMed Central

    Sainz, Florencia

    2016-01-01

    We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose. PMID:27365351

  14. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  15. Isolation and identification of microorganisms including lactic acid bacteria and their use in microbial deacidification of wines from domestic vineyards.

    PubMed

    Drozdz, Iwona; Makarewicz, Malgorzata; Tuszyński, Tadeusz

    2013-01-01

    The aim of this study was to identify various bacteria isolated from grapes and their wines. Additionally we investigated the capacity of lactic acid bacteria for microbiological deacidification of wines produced in Poland. We have identified Oenococcus oeni, Lactobacillus acidophilus and Lactobacillus delbrueckii. During the microbial deacidification process, we observed decreases of total acidity and increases of volatile acidity, with statistically significant changes noted for O. oeni in Marechal Foch and Seyval Blanc, and for Lb. acidophilus in Frontenac. On the other hand, a statistically significant increase in pH was observed in Marechal Foch and Seyval Blanc following deacidification by O. oeni.

  16. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2012-01-01

    Two continuous-flow bench-scale bioreactor systems populated by mixed communities of acidophilic sulfate-reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ≈ 2.2-2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5-30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided 'proof of principle' that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity.

  17. Prediction of acid lactic-bacteria growth in turkey ham processed by high hydrostatic pressure

    PubMed Central

    Mathias, S.P.; Rosenthal, A.; Gaspar, A.; Aragão, G.M.F.; Slongo-Marcusi, A.

    2013-01-01

    High hydrostatic pressure (HHP) has been investigated and industrially applied to extend shelf life of meat-based products. Traditional ham packaged under microaerophilic conditions may sometimes present high lactic acid bacteria population during refrigerated storage, which limits shelf life due to development of unpleasant odor and greenish and sticky appearance. This study aimed at evaluating the shelf life of turkey ham pressurized at 400 MPa for 15 min and stored at 4, 8 and 12 °C, in comparison to the non pressurized product. The lactic acid bacteria population up to 107 CFU/g of product was set as the criteria to determine the limiting shelf life According to such parameter the pressurized sample achieved a commercial viability within 75 days when stored at 4 °C while the control lasted only 45 days. Predictive microbiology using Gompertz and Baranyi and Roberts models fitted well both for the pressurized and control samples. The results indicated that the high hydrostatic pressure treatment greatly increased the turkey ham commercial viability in comparison to the usual length, by slowing down the growth of microorganisms in the product. PMID:24159279

  18. Immunomagnetic separation of scum-forming bacteria using polyclonal antibody that recognizes mycolic acids.

    PubMed

    Morisada, S; Miyata, N; Iwahori, K

    2002-10-01

    Mycolic acid-containing bacteria (mycolata) are thought to be involved in scum formation in aeration basins of activated sludge plants due to their ability to produce biosurfactants and their cell surface hydrophobicity. To isolate these bacteria, immunomagnetic separation (IMS) using an anti-mycolic acid polyclonal antibody was investigated. IMS that targeted Gordonia amarae SC1 exhibited a 100% recovery at 5x10(3) CFU ml(-1). At cell concentration of 7.8x10(6) CFU ml(-1), the recovery was lowered, but 80% of cells were still captured. Effect of bead concentrations on the recovery of SC1 at 10(6) CFU ml(-1) was examined. The results showed that addition of more than 6-7x10(6) beads for 1x10(6) CFU reached a maximum recovery (83%). Furthermore, the IMS procedure optimized with SC1 cells was tested with another mycolata. The results suggested that variation of the recovery for each mycolata is dependent on the specificity of the polyclonal antibody and that mycolata which are recognized by the antibody can be recovered by this procedure. PMID:12133606

  19. Fructophilic lactic acid bacteria inhabit fructose-rich niches in nature

    PubMed Central

    Endo, Akihito

    2012-01-01

    Fructophilic lactic acid bacteria (FLAB) are a special group of lactic acid bacteria (LAB), which prefer fructose but not glucose as growth substrate. They are found in fructose-rich niches, e.g. flowers, fruits, and fermented foods made from fruits. Quite recently, they were found in the gastrointestinal tracts of animals consuming fructose, which were bumblebees, tropical fruit flies, and Camponotus ants. These suggest that all natural sources that are rich in fructose are possible their habitats. Fructobacillus spp., formerly classified as Leuconostoc spp., are representatives of these microorganisms, and Lactobacillus kunkeei has also been classified as FLAB. They share several unique biochemical characteristics, which have not been found in LAB inhabited in other niches. FLAB grow well on fructose but very poor on glucose. These organisms grow well on glucose only when external electron accepters, e.g. pyruvate or oxygen, are available. LAB have been shown to have specific evolution to adapt to their niches and have several niche-specific characteristics. FLAB must have fructophilic evolution during adaptation to fructose-rich niches. FLAB are unique food-related LAB, suggesting a great potential for future food and feed applications. PMID:23990834

  20. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

  1. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    PubMed Central

    Ňancucheo, Ivan; Johnson, D. Barrie

    2012-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ∼2.2–2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5–30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided ‘proof of principle’ that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity. PMID:21895996

  2. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  3. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction.

  4. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA

    PubMed Central

    Sigal, Nicole; Senez, Jacques C.; Le Gall, Jean; Sebald, Madeleine

    1963-01-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315–1318. 1963—The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c3 and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin (“nigrificans” and “orientis”) are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively. PMID:14047223

  5. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    PubMed

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry.

  6. Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria.

    PubMed

    Vesterlund, Satu; Karp, Matti; Salminen, Seppo; Ouwehand, Arthur C

    2006-06-01

    There is increasing evidence that Staphylococcus aureus may colonize the intestinal tract, especially among hospitalized patients. As Staph. aureus has been found to be associated with certain gastrointestinal diseases, it has become important to study whether this bacterium can colonize the intestinal tract and if so, whether it is possible to prevent colonization. Adhesion is the first step in colonization; this study shows that Staph. aureus adheres to mucus from resected human intestinal tissue. Certain lactic acid bacteria (LAB), mainly commercial probiotics, were able to reduce adhesion and viability of adherent Staph. aureus. In displacement assays the amount of adherent Staph. aureus in human intestinal mucus was reduced 39-44% by Lactobacillus rhamnosus GG, Lactococcus lactis subsp. lactis and Propionibacterium freudenreichii subsp. shermanii. Moreover, adherent Lactobacillus reuteri, Lc. lactis and P. freudenreichii reduced viability of adherent Staph. aureus by 27-36%, depending on the strain, after 2 h incubation. This was probably due to the production of organic acids and hydrogen peroxide and possibly in the case of L. reuteri to the production of reuterin. This study shows for the first time that Staph. aureus can adhere to human intestinal mucus and adherent bacteria can be displaced and killed by certain LAB strains via in situ production of antimicrobial substances.

  7. ADANSONIAN ANALYSIS AND DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF SOME GRAM-NEGATIVE BACTERIA

    PubMed Central

    Colwell, R. R.; Mandel, M.

    1964-01-01

    Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of some gram-negative bacteria. J. Bacteriol. 87:1412–1422. 1964.—The deoxyribonucleic acid (DNA) base compositions and S values for a minimum of 134 coded properties were determined for representative cultures of the genera Pseudomonas, Xanthomonas, Aeromonas, Vibrio, Aerobacter, Escherichia, Alcaligenes, and Flavobacterium. Those cultures having a high degree of similarity by the criterion of numerical taxonomy were found to have similar DNA base compositions. The relative affinities of clusters of cultures suggest taxonomic relations. Eleven species of Xanthomonas might be a single species, and V. metschnikovii was shown to be more closely related to enteric bacteria than to other vibrios which, in turn, were found to be like pseudomonads. Aeromonas was found to be intermediate in similarity to enterics and pseudomonads and divisible into at least two, but possibly three, species. F. aquatile was unlike any of the other organisms studied, and its DNA also differed greatly in composition from other representatives of the genus. PMID:14188722

  8. Modelling and predicting the simultaneous growth of Escherichia coli and lactic acid bacteria in milk.

    PubMed

    Ačai, P; Valík, L'; Medved'ová, A; Rosskopf, F

    2016-09-01

    Modelling and predicting the simultaneous competitive growth of Escherichia coli and starter culture of lactic acid bacteria (Fresco 1010, Chr. Hansen, Hørsholm, Denmark) was studied in milk at different temperatures and Fresco inoculum concentrations. The lactic acid bacteria (LAB) were able to induce an early stationary state in E. coli The developed model described and tested the growth inhibition of E. coli (with initial inoculum concentration 10(3) CFU/mL) when LAB have reached maximum density in different conditions of temperature (ranging from 12 ℃ to 30 ℃) and for various inoculum sizes of LAB (ranging from approximately 10(3) to 10(7) CFU/mL). The prediction ability of the microbial competition model (the Baranyi and Roberts model coupled with the Gimenez and Dalgaard model) was first performed only with parameters estimated from individual growth of E. coli and the LAB and then with the introduced competition coefficients evaluated from co-culture growth of E. coli and LAB in milk. Both the results and their statistical indices showed that the model with incorporated average values of competition coefficients improved the prediction of E. coli behaviour in co-culture with LAB. PMID:26683482

  9. Chemotactic behavior of deep subsurface bacteria toward carbohydrates, amino acids and a chlorinated alkene

    SciTech Connect

    Lopez de Victoria, G. . Dept. of Biology)

    1989-02-01

    The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.

  10. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. PMID:27058913

  11. Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation.

    PubMed

    Zhang, Q; Li, X J; Zhao, M M; Yu, Z

    2014-10-01

    Five LAB strains were evaluated using the acid production ability test, morphological observation, Gram staining, physiological, biochemical and acid tolerance tests. All five strains (LP1, LP2, LP3, LC1 and LC2) grew at pH 4·0, and LP1 grew at 15°C. Strains LP1, LP2 and LP3 were identified as Lactobacillus plantarum, whereas LC1 and LC2 were classified as Lactobacillus casei by sequencing 16S rDNA. The five isolated strains and two commercial inoculants (PS and CL) were added to native grass and Leymus chinensis (Trin.) Tzvel. for ensiling. All five isolated strains decreased the pH and ammonia nitrogen content, increased the lactic acid content and LP1, LP2 and LP3 increased the acetic content and lactic/acetic acid ratio of L. chinensis silage significantly. The five isolated strains and two commercial inoculants decreased the butyric acid content of the native grass silage. LP2 treatment had lower butyric acid content and ammonia nitrogen content than the other treatments. The five isolated strains improved the quality of L. chinensis silage. The five isolated strains and the two commercial inoculants were not effective in improving the fermentation quality of the native grass silage, but LP2 performed better comparatively. Significance and impact of the study: Leymus chinensis is an important grass in China and Russia, being the primary grass of the short grassland 'steppe' regions of central Asia. However, it has been difficult to make high-quality silage of this species because of low concentration of water-soluble carbohydrates (WSC). Isolating and evaluating lactic acid bacteria strains will be helpful for improving the silage quality of this extensively grown species. PMID:24888497

  12. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria

    PubMed Central

    2013-01-01

    Background Secondary hyperoxaluria either based on increased intestinal absorption of oxalate (enteric), or high oxalate intake (dietary), is a major risk factor of calcium oxalate urolithiasis. Oxalate-degrading bacteria might have beneficial effects on urinary oxalate excretion resulting from decreased intestinal oxalate concentration and absorption. Methods Twenty healthy subjects were studied initially while consuming a diet normal in oxalate. Study participants were then placed on a controlled oxalate-rich diet for a period of 6 weeks. Starting with week 2 of the oxalate-rich diet, participants received 2.6 g/day of a lactic acid bacteria preparation for 5 weeks. Finally, subjects were examined 4 weeks after treatment while consuming again a normal-oxalate diet. Participants provided weekly 24-hour urine specimens. Analyses of blood samples were performed before and at the end of treatment. Results Urinary oxalate excretion increased significantly from 0.354 ± 0.097 at baseline to 0.542 ± 0.163 mmol/24 h under the oxalate-rich diet and remained elevated until the end of treatment, as did relative supersaturation of calcium oxalate. Plasma oxalate concentration was significantly higher after 5 weeks of treatment compared to baseline. Four weeks after treatment, urinary oxalate excretion and relative supersaturation of calcium oxalate fell to reach initial values. Conclusions Persistent dietary hyperoxaluria and increased plasma oxalate concentration can already be induced in healthy subjects without disorders of oxalate metabolism. The study preparation neither reduced urinary oxalate excretion nor plasma oxalate concentration. The preparation may be altered to select for lactic acid bacteria strains with the highest oxalate-degrading activity. PMID:24330782

  13. Screening, Characterization and In Vitro Evaluation of Probiotic Properties Among Lactic Acid Bacteria Through Comparative Analysis.

    PubMed

    Devi, Sundru Manjulata; Archer, Ann Catherine; Halami, Prakash M

    2015-09-01

    The present work aimed to identify probiotic bacteria from healthy human infant faecal and dairy samples. Subsequently, an assay was developed to evaluate the probiotic properties using comparative genetic approach for marker genes involved in adhesion to the intestinal epithelial layer. Several in vitro properties including tolerance to biological barriers (such as acid and bile), antimicrobial spectrum, resistance to simulated digestive fluids and cellular hydrophobicity were assessed. The potential probiotic cultures were rapidly characterized by morphological, physiological and molecular-based methods [such as RFLP, ITS, RAPD and (GTG)5]. Further analysis by 16S rDNA sequencing revealed that the selected isolates belong to Lactobacillus, Pediococcus and Enterococcus species. Two cultures of non-lactic, non-pathogenic Staphylococcus spp. were also isolated. The native isolates were able to survive under acidic, bile and simulated intestinal conditions. In addition, these cultures inhibited the growth of tested bacterial pathogens. Further, no correlation was observed between hydrophobicity and adhesion ability. Sequencing of probiotic marker genes such as bile salt hydrolase (bsh), fibronectin-binding protein (fbp) and mucin-binding protein (mub) for selected isolates revealed nucleotide variation. The probiotic binding domains were detected by several bioinformatic tools. The approach used in the study enabled the identification of potential probiotic domains responsible for adhesion of bacteria to intestinal epithelial layer, which may further assist in screening of novel probiotic bacteria. The rapid detection of binding domains will help in revealing the beneficial properties of the probiotic cultures. Further, studies will be performed to develop a novel probiotic product which will contribute in food and feed industry.

  14. Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil.

    PubMed

    Rice, J F; Menn, F M; Hay, A G; Sanseverino, J; Sayler, G S

    2005-12-01

    Agent Orange contaminated soils were utilized in direct enrichment culture studies to isolate 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4-dichlorophenoxyacetic acid (2,4-D) mineralizing bacteria. Two bacterial cultures able to grow at the expense of 2,4,5-T and/or 2,4-D were isolated. The 2,4,5-T degrading culture was a mixed culture containing two bacteria, Burkholderia species strain JR7B2 and Burkholderia species strain JR7B3. JR7B3 was able to metabolize 2,4,5-T as the sole source of carbon and energy, and demonstrated the ability to affect metabolism of 2,4-D to a lesser degree. Strain JR7B3 was able to mineralize 2,4,5-T in pure culture and utilized 2,4,5-T in the presence of 0.01% yeast extract. Subsequent characterization of the 2,4-D degrading culture showed that one bacterium, Burkholderia species strain JRB1, was able to utilize 2,4-D as a sole carbon and energy source in pure culture. Polymerase chain reaction (PCR) experiments utilizing known genetic sequences from other 2,4-D and 2,4,5-T degrading bacteria demonstrated that these organisms contain gene sequences similar to tfdA, B, C, E, and R (Strain JRB1) and the tftA, C, and E genes (Strain JR7B3). Expression analysis confirmed that tftA, C, and E and tfdA, B, and C were transcribed during 2,4,5-T and 2,4-D dependent growth, respectively. The results indicate a strong selective pressure for 2,4,5-T utilizing strains under field condition. PMID:15865343

  15. Screening, Characterization and In Vitro Evaluation of Probiotic Properties Among Lactic Acid Bacteria Through Comparative Analysis.

    PubMed

    Devi, Sundru Manjulata; Archer, Ann Catherine; Halami, Prakash M

    2015-09-01

    The present work aimed to identify probiotic bacteria from healthy human infant faecal and dairy samples. Subsequently, an assay was developed to evaluate the probiotic properties using comparative genetic approach for marker genes involved in adhesion to the intestinal epithelial layer. Several in vitro properties including tolerance to biological barriers (such as acid and bile), antimicrobial spectrum, resistance to simulated digestive fluids and cellular hydrophobicity were assessed. The potential probiotic cultures were rapidly characterized by morphological, physiological and molecular-based methods [such as RFLP, ITS, RAPD and (GTG)5]. Further analysis by 16S rDNA sequencing revealed that the selected isolates belong to Lactobacillus, Pediococcus and Enterococcus species. Two cultures of non-lactic, non-pathogenic Staphylococcus spp. were also isolated. The native isolates were able to survive under acidic, bile and simulated intestinal conditions. In addition, these cultures inhibited the growth of tested bacterial pathogens. Further, no correlation was observed between hydrophobicity and adhesion ability. Sequencing of probiotic marker genes such as bile salt hydrolase (bsh), fibronectin-binding protein (fbp) and mucin-binding protein (mub) for selected isolates revealed nucleotide variation. The probiotic binding domains were detected by several bioinformatic tools. The approach used in the study enabled the identification of potential probiotic domains responsible for adhesion of bacteria to intestinal epithelial layer, which may further assist in screening of novel probiotic bacteria. The rapid detection of binding domains will help in revealing the beneficial properties of the probiotic cultures. Further, studies will be performed to develop a novel probiotic product which will contribute in food and feed industry. PMID:26049925

  16. Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil.

    PubMed

    Rice, J F; Menn, F M; Hay, A G; Sanseverino, J; Sayler, G S

    2005-12-01

    Agent Orange contaminated soils were utilized in direct enrichment culture studies to isolate 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4-dichlorophenoxyacetic acid (2,4-D) mineralizing bacteria. Two bacterial cultures able to grow at the expense of 2,4,5-T and/or 2,4-D were isolated. The 2,4,5-T degrading culture was a mixed culture containing two bacteria, Burkholderia species strain JR7B2 and Burkholderia species strain JR7B3. JR7B3 was able to metabolize 2,4,5-T as the sole source of carbon and energy, and demonstrated the ability to affect metabolism of 2,4-D to a lesser degree. Strain JR7B3 was able to mineralize 2,4,5-T in pure culture and utilized 2,4,5-T in the presence of 0.01% yeast extract. Subsequent characterization of the 2,4-D degrading culture showed that one bacterium, Burkholderia species strain JRB1, was able to utilize 2,4-D as a sole carbon and energy source in pure culture. Polymerase chain reaction (PCR) experiments utilizing known genetic sequences from other 2,4-D and 2,4,5-T degrading bacteria demonstrated that these organisms contain gene sequences similar to tfdA, B, C, E, and R (Strain JRB1) and the tftA, C, and E genes (Strain JR7B3). Expression analysis confirmed that tftA, C, and E and tfdA, B, and C were transcribed during 2,4,5-T and 2,4-D dependent growth, respectively. The results indicate a strong selective pressure for 2,4,5-T utilizing strains under field condition.

  17. Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia).

    PubMed

    Muir, Ryann M; Ibáñez, Ana M; Uratsu, Sandra L; Ingham, Elizabeth S; Leslie, Charles A; McGranahan, Gale H; Batra, Neelu; Goyal, Sham; Joseph, Jorly; Jemmis, Eluvathingal D; Dandekar, Abhaya M

    2011-04-01

    Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro.

  18. Culture-independent analysis of lactic acid bacteria diversity associated with mezcal fermentation.

    PubMed

    Narváez-Zapata, J A; Rojas-Herrera, R A; Rodríguez-Luna, I C; Larralde-Corona, C P

    2010-11-01

    Mezcal is an alcoholic beverage obtained from the distillation of fermented juices of cooked Agave spp. plant stalks (agave must), and each region in Mexico with denomination of origin uses defined Agave species to prepare mezcal with unique organoleptic characteristics. During fermentation to produce mezcal in the state of Tamaulipas, not only alcohol-producing yeasts are involved, but also a lactic acid bacterial community that has not been characterized yet. In order to address this lack of knowledge on this traditional Mexican beverage, we performed a DGGE-16S rRNA analysis of the lactic acid bacterial diversity and metabolite accumulation during the fermentation of a typical agave must that is rustically produced in San Carlos County (Tamaulipas, Mexico). The analysis of metabolite production indicated a short but important malolactic fermentation stage not previously described for mezcal. The denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes showed a distinctive lactic acid bacterial community composed mainly of Pediococcus parvulus, Lactobacillus brevis, Lactobacillus composti, Lactobacillus parabuchneri, and Lactobacillus plantarum. Some atypical genera such as Weissella and Bacillus were also found in the residual must. Our results suggest that the lactic acid bacteria could strongly be implicated in the organoleptic attributes of this traditional Mexican distilled beverage.

  19. Unified Theory of Bacterial Sialometabolism: How and Why Bacteria Metabolize Host Sialic Acids

    PubMed Central

    Vimr, Eric R.

    2013-01-01

    Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection. PMID:23724337

  20. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki).

    PubMed

    Hidalgo, C; Mateo, E; Mas, A; Torija, M J

    2012-05-01

    Persimmon (Diospyros kaki) is a seasonal fruit with important health benefits. In this study, persimmon use in wine and condiment production was investigated using molecular methods to identify the yeast and acetic acid bacteria (AAB) isolated from the alcoholic fermentation and acetification of the fruit. Alcoholic fermentation was allowed to occur either spontaneously, or by inoculation with a commercial Saccharomyces cerevisiae wine strain, while acetification was always spontaneous; all these processes were performed in triplicates. Non-Saccharomyces yeast species were particularly abundant during the initial and mid-alcoholic fermentation stages, but S. cerevisiae became dominant toward the end of these processes. During spontaneous fermentation, S. cerevisiae Sc1 was the predominant strain isolated throughout, while the commercial strain of S. cerevisiae was the most common strain isolated from the inoculated fermentations. The main non-Saccharomyces strains isolated included Pichia guilliermondii, Hanseniaspora uvarum, Zygosaccharomyces florentinus and Cryptococcus sp. A distinct succession of AAB was observed during the acetification process. Acetobacter malorun was abundant during the initial and mid-stages, while Gluconacetobacter saccharivorans was the main species during the final stages of these acetifications. Four additional AAB species, Acetobacter pasteurianus, Acetobacter syzygii, Gluconacetobacter intermedius and Gluconacetobacter europaeus, were also detected. We observed 28 different AAB genotypes, though only 6 of these were present in high numbers (between 25%-60%), resulting in a high biodiversity index.

  1. Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product.

    PubMed

    Akabanda, Fortune; Owusu-Kwarteng, James; Tano-Debrah, Kwaku; Glover, Richard L K; Nielsen, Dennis S; Jespersen, Lene

    2013-06-01

    Produced from raw unpasteurized milk, nunu is a spontaneously fermented yoghurt-like product made in Ghana and other parts of West Africa. Despite the importance of nunu in the diet of many Africans, there is currently only limited information available on the microorganisms associated with nunu processing. With the aim of obtaining a deeper understanding of the process and as a first step towards developing starter cultures with desired technological properties for nunu production, a microbiological characterization of nunu processing in three different towns in the Upper East region of Ghana, namely Bolgatanga, Paga and Navrongo, was carried out. Lactic acid bacteria (LAB) and yeasts associated with nunu processing were isolated and identified using a combination of pheno- and genotypic methods including morphological and carbohydrate fermentation tests, (GTG)5-based rep-PCR, multiplex PCR, and 16S and 26S rRNA gene sequencing. The LAB counts during nunu processing increased from 4.5 ± 0.4 log cfu/ml at 0 h to 8.7 ± 1.8 log cfu/ml at 24 h of fermentation while yeasts counts increased from 2.8 ± 1.2 log cfu/ml at 0 h to 5.8 ± 0.5 log cfu/ml by the end of fermentation. Lactobacillus fermentum was the dominant LAB throughout the fermentations with Lactobacillus plantarum and Leuconostoc mesenteroides playing prominent roles during the first 6-8 h of fermentation as well. Less frequently isolated LAB included Lactobacillus helveticus, Enterococcus faecium, Enterococcus italicus, Weissella confusa and a putatively novel Lactococcus spp. The yeasts involved were identified as Candida parapsilosis, Candida rugosa, Candida tropicalis, Galactomyces geotrichum, Pichia kudriavzevii and Saccharomyces cerevisiae with P. kudriavzevii and S. cerevisiae being the dominant yeast species. PMID:23541194

  2. In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium.

    PubMed

    Mahdavi, Hamed; Prasad, Vinay; Liu, Yang; Ulrich, Ania C

    2015-01-01

    In this study, the biodegradation of total acid-extractable organics (TAOs), commonly called naphthenic acids (NAs), was investigated. An indigenous microbial culture containing algae and bacteria was taken from the surface of a tailings pond and incubated over the course of 120days. The influence of light, oxygen and the presence of indigenous algae and bacteria, and a diatom (Navicula pelliculosa) on the TAO removal rate were elucidated. The highest biodegradation rate was observed with bacteria growth only (without light exposure) with a half-life (t(1/2)) of 203days. The algae-bacteria consortium enhanced the detoxification process, however, bacterial biomass played the main role in toxicity reduction. Principal component analysis (PCA) conducted on FT-IR spectra, identified functional groups and bonds (representing potential markers for biotransformation of TAOs) as follows: hydroxyl, carboxyl and amide groups along with CH, arylH, arylOH and NH bonds.

  3. Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses

    USGS Publications Warehouse

    Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.

    2012-01-01

    The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ~2.9) largely align with expectations from stomach content studies (TP ~3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ~3.2) were lower than TPs derived from stomach content studies (TP~4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.

  4. Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils.

    PubMed

    Watanabe, Toshihiro; Jansen, Steven; Osaki, Mitsuru

    2006-12-01

    Plants growing in acid sulphate soils are subject to high levels of Al availability, which may have effects on the growth and distribution of these species. Although Fe availability is also high in acid sulphate soils, little is known about the effect of Fe on the growth of native plants in these soils. Two species dominating this soil type in Asia, viz. Melastoma malabathricum and Miscanthus sinensis were grown hydroponically in a nutrient solution with different concentrations of Al and Fe. Melastoma malabathricum is found to be sensitive to Fe (40 and 100 microm). Application of 500 microm Al, however, completely ameliorates Fe toxicity and is associated with a decrease of Fe concentration in shoots and roots. The primary reason for the Al-induced growth enhancement of M. malabathricum is considered to be the Al-induced reduction of toxic Fe accumulation in roots and shoots. Therefore, Al is nearly essential for M. malabathricum when growing in acid sulphate soils. In contrast, application of both Fe and Al does not reduce the growth of M. sinensis, and Al application does not result in lower shoot concentrations of Fe, suggesting that this grass species has developed different mechanisms for adaptation to acid sulphate soils. PMID:17081246

  5. Global Trophic Position Comparison of Two Dominant Mesopelagic Fish Families (Myctophidae, Stomiidae) Using Amino Acid Nitrogen Isotopic Analyses

    PubMed Central

    Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.

    2012-01-01

    The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ∼2.9) largely align with expectations from stomach content studies (TP ∼3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ∼3.2) were lower than TPs derived from stomach content studies (TP∼4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure. PMID:23209656

  6. Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils.

    PubMed

    Watanabe, Toshihiro; Jansen, Steven; Osaki, Mitsuru

    2006-12-01

    Plants growing in acid sulphate soils are subject to high levels of Al availability, which may have effects on the growth and distribution of these species. Although Fe availability is also high in acid sulphate soils, little is known about the effect of Fe on the growth of native plants in these soils. Two species dominating this soil type in Asia, viz. Melastoma malabathricum and Miscanthus sinensis were grown hydroponically in a nutrient solution with different concentrations of Al and Fe. Melastoma malabathricum is found to be sensitive to Fe (40 and 100 microm). Application of 500 microm Al, however, completely ameliorates Fe toxicity and is associated with a decrease of Fe concentration in shoots and roots. The primary reason for the Al-induced growth enhancement of M. malabathricum is considered to be the Al-induced reduction of toxic Fe accumulation in roots and shoots. Therefore, Al is nearly essential for M. malabathricum when growing in acid sulphate soils. In contrast, application of both Fe and Al does not reduce the growth of M. sinensis, and Al application does not result in lower shoot concentrations of Fe, suggesting that this grass species has developed different mechanisms for adaptation to acid sulphate soils.

  7. Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria

    PubMed Central

    Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso

    2016-01-01

    The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485

  8. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  9. In vitro evaluation of a new cefixime-clavulanic acid combination for gram-negative bacteria.

    PubMed

    Rawat, Deepti; Hasan, Azra S; Capoor, Malini R; Sarma, Smita; Nair, Deepthi; Deb, Monorama; Pillai, Parukutty; Aggarwal, Pushpa

    2009-01-01

    The study was conducted to evaluate a new cefixime-clavulanic acid combination for in vitro susceptibility towards gram-negative bacteria. A total of 220 isolates of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeroginosa, Acinetobacter spp, Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium were included in the study. The isolates were tested for susceptibility towards the new combination antimicrobial molecule cefixime with clavulanic acid by disk diffusion and Epsilometer strip (E-strip) Minimum Inhibitary Concentration (MIC) method. Of the 101 E. coli and K. pneumoniae isolates, 62.4% were found to be extended spectrum beta-lactamase (ESBL) producers. Almost half of these were from the community and 55.6% were hospital isolates. Of the ESBL isolates, 19% were AmpC (cephalosporinases that are poorly inhibited by beta lactamase inhibitor) producers while the remaining 81% were non AmpC ESBL producers. The AmpC producers were resistant to both cefixime and the combination, while the non-AmpC producers were sensitive to the combination. The addition of clavulanate to cefixime did not improve the sensitivities of P. aeruginosa and Acinetobacter isolates. There were no ESBL isolates among the S. Typhi isolates, all of which were sensitive to cefixime. Of the S. Typhimurium, 88.9% were ESBL producers and all of these were resistant to cefixime but sensitive to the combination. The combination of cefixime with clavulanic acid offers the advantage of oral administration and appears to be a viable option for the treatment of uncomplicated community acquired infections caused by non-AmpC ESBL producing gram-negative bacteria.

  10. Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats

    PubMed Central

    Coulon, Frédéric; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Païssé, Sandrine; Goñi-Urriza, Marisol; Peperzak, Louis; Acuña Alvarez, Laura; McKew, Boyd A.; Brussaard, Corina P. D.; Underwood, Graham J. C.; Timmis, Kenneth N.; Duran, Robert

    2012-01-01

    Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

  11. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not Archaea dominate N cycling in the Colne Estuary, United Kingdom.

    PubMed

    Li, Jialin; Nedwell, David B; Beddow, Jessica; Dumbrell, Alex J; McKew, Boyd A; Thorpe, Emma L; Whitby, Corinne

    2015-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 μmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw(-1) day(-1) in June, increasing to 11.7 μmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification.

  12. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  13. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  14. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening.

    PubMed

    Gatti, M; De Dea Lindner, J; Gardini, F; Mucchetti, G; Bevacqua, D; Fornasari, M E; Neviani, E

    2008-11-01

    The aim of this work was to investigate in which phases of ripening of Parmigiano Reggiano cheese lactic acid bacteria aminopeptidases present in cheese extract could be involved in release of free amino acids and to better understand the behavior of these enzymes in physical-chemical conditions that are far from their optimum. In particular, we evaluated 6 different substrates to reproduce broad-specificity aminopeptidase N, broad-specificity aminopeptidase C, glutamyl aminopeptidase A, peptidase with high specificity for leucine and alanine, proline iminopeptidase, and X-prolyl dipeptidyl aminopeptidase activities releasing different N-terminal amino acids. The effects of pH, NaCl concentration, and temperature on the enzyme activities of amino acid beta-naphthylamide (betaNA)-substrates were determined by modulating the variables in 19 different runs of an experimental design, which allowed the building of mathematical models able to assess the effect on aminopeptidases activities over a range of values, obtained with bibliographic data, covering different environmental conditions in different zones of the cheese wheel at different aging times. The aminopeptidases tested in this work were present in cell-free Parmigiano Reggiano cheese extract after a 17-mo ripening and were active when tested in model system. The modeling approach shows that to highlight the individual and interactive effects of chemical-physical variables on enzyme activities, it is helpful to determine the true potential of an amino-peptidase in cheese. Our results evidenced that the 6 different lactic acid bacteria peptidases participate in cheese proteolysis and are induced or inhibited by the cheese production parameters that, in turn, depend on the cheese dimension. Generally, temperature and pH exerted the more relevant effects on the enzymatic activities, and in many cases, a relevant interactive effect of these variables was observed. Increasing salt concentration slowed down broad

  15. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese.

    PubMed

    Østergaard, Nina Bjerre; Eklöw, Annelie; Dalgaard, Paw

    2014-10-01

    Four mathematical models were developed and validated for simultaneous growth of mesophilic lactic acid bacteria from added cultures and Listeria monocytogenes, during chilled storage of cottage cheese with fresh- or cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic- and sorbic acid and the interaction between these environmental factors. Growth models were developed by combining new and existing cardinal parameter values. Subsequently, the reference growth rate parameters (μref at 25°C) were fitted to a total of 52 growth rates from cottage cheese to improve model performance. The inhibiting effect of mesophilic lactic acid bacteria from added cultures on growth of L. monocytogenes was efficiently modelled using the Jameson approach. The new models appropriately predicted the maximum population density of L. monocytogenes in cottage cheese. The developed models were successfully validated by using 25 growth rates for L. monocytogenes, 17 growth rates for lactic acid bacteria and a total of 26 growth curves for simultaneous growth of L. monocytogenes and lactic acid bacteria in cottage cheese. These data were used in combination with bias- and accuracy factors and with the concept of acceptable simulation zone. Evaluation of predicted growth rates of L. monocytogenes in cottage cheese with fresh- or cultured cream dressing resulted in bias-factors (Bf) of 1.07-1.10 with corresponding accuracy factor (Af) values of 1.11 to 1.22. Lactic acid bacteria from added starter culture were on average predicted to grow 16% faster than observed (Bf of 1.16 and Af of 1.32) and growth of the diacetyl producing aroma culture was on average predicted 9% slower than observed (Bf of 0.91 and Af of 1.17). The acceptable simulation zone method showed the new models to successfully predict maximum population density of L. monocytogenes when growing together with lactic acid bacteria in cottage cheese. 11 of 13 simulations of L

  16. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese.

    PubMed

    Østergaard, Nina Bjerre; Eklöw, Annelie; Dalgaard, Paw

    2014-10-01

    Four mathematical models were developed and validated for simultaneous growth of mesophilic lactic acid bacteria from added cultures and Listeria monocytogenes, during chilled storage of cottage cheese with fresh- or cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic- and sorbic acid and the interaction between these environmental factors. Growth models were developed by combining new and existing cardinal parameter values. Subsequently, the reference growth rate parameters (μref at 25°C) were fitted to a total of 52 growth rates from cottage cheese to improve model performance. The inhibiting effect of mesophilic lactic acid bacteria from added cultures on growth of L. monocytogenes was efficiently modelled using the Jameson approach. The new models appropriately predicted the maximum population density of L. monocytogenes in cottage cheese. The developed models were successfully validated by using 25 growth rates for L. monocytogenes, 17 growth rates for lactic acid bacteria and a total of 26 growth curves for simultaneous growth of L. monocytogenes and lactic acid bacteria in cottage cheese. These data were used in combination with bias- and accuracy factors and with the concept of acceptable simulation zone. Evaluation of predicted growth rates of L. monocytogenes in cottage cheese with fresh- or cultured cream dressing resulted in bias-factors (Bf) of 1.07-1.10 with corresponding accuracy factor (Af) values of 1.11 to 1.22. Lactic acid bacteria from added starter culture were on average predicted to grow 16% faster than observed (Bf of 1.16 and Af of 1.32) and growth of the diacetyl producing aroma culture was on average predicted 9% slower than observed (Bf of 0.91 and Af of 1.17). The acceptable simulation zone method showed the new models to successfully predict maximum population density of L. monocytogenes when growing together with lactic acid bacteria in cottage cheese. 11 of 13 simulations of L

  17. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    PubMed

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product.

  18. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    PubMed

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product. PMID:26818985

  19. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    PubMed

    Mohn, W W

    1995-06-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Distribution of. delta. -aminolevulinic acid biosynthetic pathways among phototrophic and related bacteria

    SciTech Connect

    Avissar, Y.J.; Beale, S.I. ); Ormerod, J.G. )

    1989-04-01

    Two biosynthetic pathways are known for the universal tetrapyrrole precursor, {delta}-aminolevulinic acid (ALA): condensation of glycine and succinyl-CoA to form ALA with the loss of C-1 of glycine as CO{sub 2}, and conversion of the intact carbon skeleton of glutamate to ALA in a process requiring tRNA{sup Glu}, ATP, Mg{sup 2+}, NADPH, and pyridoxal phosphate. The distribution of the two ALA biosynthetic pathways among various bacterial genera was determined, using cell-free extracts obtained from representative organisms. Evidence for the operation of the glutamate pathway was obtained by the measurement of RNase-sensitive label incorporation from glutamate into ALA using 3,4-({sup 3}H)glutamate and 1-({sup 14}C)glutamate as substrate. The glycine pathway was indicated by RNase-insensitive incorporation of level from 2-({sup 14}C)glycine into ALA. The distribution of the two pathways among the bacteria tested was in general agreement with their previously phylogenetic relationships and clearly indicates that the glutamate pathway is the more ancient process, whereas the glycine pathway probably evolved much later. The glutamate pathway is the more widely utilized one among bacteria, while the glycine pathway is apparently limited to the {alpha} subgroup of purple bacteria (including Rhodobacter, Rhodospirillum, and Rhizobium). E. coli was found ALA via the glutamate pathway. The ALA-requiring hemA mutant of E. coli was determined to lack the dehydrogenase activity that utilizes glutamyl-tRNA as a substrate.

  1. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    NASA Astrophysics Data System (ADS)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  2. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid

    SciTech Connect

    Shelton, D.R.; Tiedje, J.M.

    1984-10-01

    A methanogenic consortium able to use 3-chlorobenzoic acid as its sole energy and carbon source was enriched from anaerobic sewage sludge. Seven bacteria were isolated from the consortium in mono- or coculture. They included: one dechlorinating bacterium, one benzoate-oxidizing bacterium, two butyrate-oxidizing bacteria, two H/sub 2/-consuming methanogens (methanospirillum hungatei PM-1 and Methanobacterium sp. strain PM-2), and a sulfate-reducing bacterium (Desulfovibrio sp.). The dechlorinating bacterium was a gram-negative, obligate anaerobe with a unique collar surrounding the cell. A medium containing rumen fluid supported minimal growth; pyruvate was the only substrate found to increase growth. The bacterium had a generation time of 4 to 5 days. 3-Chlorobenzoate was dechlorinated stoichiometrically to benzoate, which accumulated in the medium; the rate of dechlorination was ca. 0.1 pmol bacterium/sup -1/ day/sup -1/. The benzoate-oxidizing bacterium was a gram-negative, obligate anaerobe and could only be grown as a syntroph. Benzoate was the only substrate observed to support growth, and, when grown in coculture with M. hungatei, it was fermented to acetate and CH/sub 4/. One butyrate-oxidizing bacterium was a gram-negative, non-sporeforming, obligate anaerobe; the other was a gram-positive, sporeforming, obligate anaerobe. Both could only be grown as syntrophs. The substrates observed to support growth of both bacteria were butyrate, 2-DL-methylbutyrate, valerate, and caproate; isobutyrate supported growth of only the sporeforming bacterium. Fermentation products were acetate and CH/sub 4/ or acetate, propionate, and CH/sub 4/ when grown in coculture with M. hungatei. A mutualism among at least the dechlorinating, benzoate-oxidizing, and methane-forming members was apparently required for utilization of the 3-chlorobenzoate substrate. 21 references, 8 figures, 2 tables.

  3. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-01

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. PMID:26002560

  4. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-01

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.

  5. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction.

    PubMed

    Dai, Zhaolai; Wu, Zhenlong; Hang, Suqin; Zhu, Weiyun; Wu, Guoyao

    2015-05-01

    Reproduction is vital for producing offspring and preserving genetic resources. However, incidences of many reproductive disorders (e.g. miscarriage, intrauterine growth restriction, premature delivery and lower sperm quality) have either increased dramatically or remained at high rates over the last decades. Mounting evidence shows a strong correlation between enteral protein nutrition and reproduction. Besides serving as major nutrients in the diet, amino acids (AA) are signaling molecules in the regulation of diverse physiological processes, ranging from spermatogenesis to oocyte fertilization and to embryo implantation. Notably, the numbers of bacteria in the intestine exceed the numbers of host cells by 10 times. Microbes in the small-intestinal lumen actively metabolize large amounts of dietary AA and, therefore, affect the entry of AA into the portal circulation for whole-body utilization. Changes in the composition and abundance of AA-metabolizing bacteria in the gut during pregnancy, as well as their translocation to the uterus, may alter uterine function and epigenetic modifications of maternal physiology and metabolism, which are crucial for pregnancy recognition and fetal development. Thus, the presence of the maternal gut microbiota and AA metabolites in the intrauterine environments (e.g. endometrium and placenta) and breast milk is likely a unique signature for the programming of the whole-body microbiome and metabolism in both the fetus and infant. Dietary intervention with functional AA, probiotics and prebiotics to alter the abundance and activity of intestinal bacteria may ameliorate or prevent the development of metabolic syndrome, while improving reproductive performance in both males and females as well as their offspring.

  6. Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread.

    PubMed

    Prückler, Michael; Lorenz, Cindy; Endo, Akihito; Kraler, Manuel; Dürrschmid, Klaus; Hendriks, Karel; Soares da Silva, Francisco; Auterith, Eric; Kneifel, Wolfgang; Michlmayr, Herbert

    2015-08-01

    Despite its potential health benefits, the integration of wheat bran into the food sector is difficult due to several adverse technological and sensory properties such as bitterness and grittiness. Sourdough fermentation is a promising strategy to improve the sensory quality of bran without inducing severe changes to the bran matrix. Therefore, identification of species/strains with potential for industrial sourdough fermentations is important. We compared the effects of different representatives of species of lactic acid bacteria (LAB) on wheat bran. Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus brevis, Lactobacillus sanfranciscensis and Fructobacillus fructosus produced highly individual fermentation patterns as judged from carbohydrate consumption and organic acid production. Interestingly, fructose was released during all bran fermentations and possibly influenced the fermentation profiles of obligately heterofermentative species to varying degrees. Except for the reduction of ferulic acid by L. plantarum and L. pentosus, analyses of phenolic compounds and alkylresorcinols suggested that only minor changes thereof were induced by the LAB metabolism. Sensory analysis of breads baked with fermented bran did not reveal significant differences regarding perceived bitterness and aftertaste. We conclude that in addition to more traditionally used sourdough species such as L. sanfranciscensis and L. brevis, also facultatively heterofermentative species such as L. plantarum and L. pentosus possess potential for industrial wheat bran fermentations and should be considered in further investigations.

  7. Characterization and in vitro probiotic evaluation of lactic acid bacteria isolated from idli batter.

    PubMed

    Iyer, Bharti K; Singhal, Rekha S; Ananthanarayan, Laxmi

    2013-12-01

    An Indian traditional fermented food, idli batter, was used as a source for isolation of lactic acid bacteria (LAB). A total of 15 LAB strains were isolated on the basis of their Gram nature and catalase activity. Of these, one lactobacilli strain and one lactococci strain which showed antimicrobial activity were identified using biochemical characterization, sugar utilization and molecular sequencing. The microbes, labeled as IB-1 (Lactobacillus plantarum) and IB-2 (Lactococcus lactis) were tested for their in vitro tolerance to bile salts, resistance to low pH values and acidifying activity. Both the strains showed good viability (IB1- 58.11%; IB2- 60.84%) when exposed to high bile salt concentration (2%) and acidic pH of ≤pH 3.0 (IB1- 88.13%; IB2- 89.85%). Lactic acid (IB1- 181.93 mM; IB2- 154.44 mM), biomass production (IB1- 0.65; IB2- 0.58 g/l) after 54 h as well as qualitative estimation of β-galactosidase and vitamin B12 production were also studied to check their suitability as an industrially important strain for production of important biomolecules.

  8. Mutational and Selective Pressures on Codon and Amino Acid Usage in Buchnera, Endosymbiotic Bacteria of Aphids

    PubMed Central

    Rispe, Claude; Delmotte, François; van Ham, Roeland C.H.J.; Moya, Andres

    2004-01-01

    We have explored compositional variation at synonymous (codon usage) and nonsynonymous (amino acid usage) positions in three complete genomes of Buchnera, endosymbiotic bacteria of aphids, and also in their orthologs in Escherichia coli, a close free-living relative. We sought to discriminate genes of variable expression levels in order to weigh the relative contributions of mutational bias and selection in the genomic changes following symbiosis. We identified clear strand asymmetries, distribution biases (putative high-expression genes were found more often on the leading strand), and a residual slight codon bias within each strand. Amino acid usage was strongly biased in putative high-expression genes, characterized by avoidance of aromatic amino acids, but above all by greater conservation and resistance to AT enrichment. Despite the almost complete loss of codon bias and heavy mutational pressure, selective forces are still strong at nonsynonymous sites of a fraction of the genome. However, Buchnera from Baizongia pistaciae appears to have suffered a stronger symbiotic syndrome than the two other species. PMID:14672975

  9. Characterization and in vitro probiotic evaluation of lactic acid bacteria isolated from idli batter.

    PubMed

    Iyer, Bharti K; Singhal, Rekha S; Ananthanarayan, Laxmi

    2013-12-01

    An Indian traditional fermented food, idli batter, was used as a source for isolation of lactic acid bacteria (LAB). A total of 15 LAB strains were isolated on the basis of their Gram nature and catalase activity. Of these, one lactobacilli strain and one lactococci strain which showed antimicrobial activity were identified using biochemical characterization, sugar utilization and molecular sequencing. The microbes, labeled as IB-1 (Lactobacillus plantarum) and IB-2 (Lactococcus lactis) were tested for their in vitro tolerance to bile salts, resistance to low pH values and acidifying activity. Both the strains showed good viability (IB1- 58.11%; IB2- 60.84%) when exposed to high bile salt concentration (2%) and acidic pH of ≤pH 3.0 (IB1- 88.13%; IB2- 89.85%). Lactic acid (IB1- 181.93 mM; IB2- 154.44 mM), biomass production (IB1- 0.65; IB2- 0.58 g/l) after 54 h as well as qualitative estimation of β-galactosidase and vitamin B12 production were also studied to check their suitability as an industrially important strain for production of important biomolecules. PMID:24426023

  10. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism.

    PubMed

    Tabasco, Raquel; Sánchez-Patán, Fernando; Monagas, María; Bartolomé, Begoña; Victoria Moreno-Arribas, M; Peláez, Carmen; Requena, Teresa

    2011-10-01

    Food polyphenols are able to selectively modify the growth of susceptible micro-organisms. This study describes the effect of a flavan-3-ol enriched grape seed extract (GSE) on the growth of several lactic acid bacteria (LAB) and bifidobacteria and the ability of the resistant strains to metabolize these compounds. Streptococcus thermophilus, Lactobacillus fermentum, Lactobacillus acidophilus and Lactobacillus vaginalis strains showed a remarkable sensitivity to the phenolic extracts assayed, including a GSE fraction consisting mainly in (+)-catechin and (-)-epicatechin (GSE-M). On the other hand, Lactobacillus plantarum, Lactobacillus casei, and Lactobacillus bulgaricus strains reached maximal growth with the GSE fractions, including a rich-oligomeric (GSE-O) fraction. Within bifidobacteria, Bifidobacterium lactis BB12 showed the highest sensitivity to the phenolic extracts assayed, whereas Bifidobacterium breve 26M2 and Bifidobacterium bifidum HDD541 reached maximum growth in presence of GSE-O and GSE-M fractions. Metabolism of flavan-3-ols by LAB and bifidobacteria resistant strains was investigated in vitro. The results revealed that only L. plantarum IFPL935 was able to metabolize the polyphenols studied by means of galloyl-esterase, decarboxylase and benzyl alcohol dehydrogenase activities that led to the formation of gallic acid, pyrogallol and catechol, respectively. An unknown metabolite that does not exhibit a phenolic-acid-type structure was also detected, which suggests a new enzyme activity in L. plantarum IFPL935 able to degrade flavan-3-ol monomers. PMID:21839384

  11. "Green preservatives": combating fungi in the food and feed industry by applying antifungal lactic acid bacteria.

    PubMed

    Pawlowska, Agata M; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K

    2012-01-01

    Fungal food spoilage plays a pivotal role in the deterioration of food and feed systems and some of them are also able to produce toxic compounds for humans and animals. The mycotoxins produced by fungi can cause serious health hazards, including cancerogenic, immunotoxic, teratogenic, neurotoxic, nephrotoxic and hepatotoxic effects, and Kashin-Beck disease. In addition to this, fungal spoilage/pathogens are causing losses of marketable quality and hygiene of foodstuffs, resulting in major economic problem throughout the world. Nowadays, food spoilage can be prevented using physical and chemical methods, but no efficient strategy has been proposed so far to reduce the microbial growth ensuring public health. Therefore, lactic acid bacteria (LAB) can play an important role as natural preservatives. The protection of food products using LAB is mainly due to the production of antifungal compounds such as carboxylic acids, fatty acids, ethanol, carbon dioxide, hydrogen peroxide, and bacteriocins. In addition to this, LAB can also positively contribute to the flavor, texture, and nutritional value of food products. This review mainly focuses on the use of LAB for food preservation given their extensive industrial application in a wide range of foods and feeds. The attention points out the several industrial patents concerning the use of antifungal LAB as biocontrol agent against spoilage organisms in different fermented foods and feeds.

  12. Modification of Fatty acids in membranes of bacteria: implication for an adaptive mechanism to the toxicity of carbon nanotubes.

    PubMed

    Zhu, Baotong; Xia, Xinghui; Xia, Na; Zhang, Shangwei; Guo, Xuejun

    2014-04-01

    We explored whether bacteria could respond adaptively to the presence of carbon nanotubes (CNTs) by investigating the influence of CNTs on the viability, composition of fatty acids, and cytoplasmic membrane fluidity of bacteria in aqueous medium for 24 h exposure. The CNTs included long single-walled carbon nanotubes (L-SWCNTs), short single-walled carbon nanotubes (S-SWCNTs), short carboxyl single-walled carbon nanotubes (S-SWCNT-COOH), and aligned multiwalled carbon nanotubes (A-MWCNTs). The bacteria included three common model bacteria, Staphyloccocus aureus (Gram-positive), Bacillus subtilis (Gram-positive), and Escherichia coli (Gram-negative), and one polybrominated diphenyl ether degrading strain, Ochrobactrum sp. (Gram-negative). Generally, L-SWCNTs were the most toxic to bacteria, whereas S-SWCNT-COOH showed the mildest bacterial toxicity. Ochrobactrum sp. was more susceptible to the toxic effect of CNTs than E. coli. Compared to the control in the absence of CNTs, the viability of Ochrobactrum sp. decreased from 71.6-81.4% to 41.8-70.2%, and E. coli from 93.7-104.0% to 67.7-91.0% when CNT concentration increased from 10 to 50 mg L(-1). The cytoplasmic membrane fluidity of bacteria increased with CNT concentration, and a significant negative correlation existed between the bacterial viabilities and membrane fluidity for E. coli and Ochrobactrum sp. (p < 0.05), indicating that the increase in membrane fluidity induced by CNTs was an important factor causing the inactivation of bacteria. In the presence of CNTs, E. coli and Ochrobactrum sp. showed elevation in the level of saturated fatty acids accompanied with reduction in unsaturated fatty acids, compensating for the fluidizing effect of CNTs. This demonstrated that bacteria could modify their composition of fatty acids to adapt to the toxicity of CNTs. In contrast, S. aureus and B. subtilis exposed to CNTs increased the proportion of branched-chain fatty acids and decreased the level of straight

  13. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    PubMed Central

    Young, Wayne; Egert, Markus; Bassett, Shalome A.; Bibiloni, Rodrigo

    2015-01-01

    Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health. PMID:25816158

  14. Detection of sialic acid-utilising bacteria in a caecal community batch culture using RNA-based stable isotope probing.

    PubMed

    Young, Wayne; Egert, Markus; Bassett, Shalome A; Bibiloni, Rodrigo

    2015-03-25

    Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health.

  15. Growth of lactic acid bacteria in waste waters of vegetable-processing plants.

    PubMed

    Mundt, J O; Larsen, S A; McCarty, I E

    1966-01-01

    Waters used in washing, blanching, cooling, and conveying vegetables during processing for freezing were filtered, sterilized, and inoculated with Streptococcus faecalis, S. lactis, or Lactobacillus plantarum. The contents of total nitrogen and total solids were determined, and ninhydrin tests and Benedict's tests for reducing sugars were performed. Substances positive to the ninyhydrin tests and also capable of supporting the growth of the bacteria to high levels of population were found in waters used to blanch cut green beans, but not in the cooling or conveying waters. They were found only in waters following slicing of blanched whole beans. They were also present in waters used in processing purple hull peas at all stages, but only in the waters used to blanch and cool lima beans. The substances were present in waters used to wash and blanch squash, but only in the waters used to blanch greens; they were not found in the cooling waters during the handling of either vegetable. No waters used in the processing of okra yielded a positive ninhydrin test, nor did they support the growth of the lactic acid bacteria. PMID:4958145

  16. Biotechnology and Pasta-Making: Lactic Acid Bacteria as a New Driver of Innovation

    PubMed Central

    Capozzi, Vittorio; Russo, Pasquale; Fragasso, Mariagiovanna; De Vita, Pasquale; Fiocco, Daniela; Spano, Giuseppe

    2012-01-01

    Cereals-derived foods represent a key constituent in the diet of many populations. In particular, pasta is consumed in large quantities throughout the world in reason of its nutritive importance, containing significant amounts of complex carbohydrates, proteins, B-vitamins, and iron. Lactic acid bacteria (LAB) are a heterogeneous group of bacteria that play a key role in the production of fermented foods and beverages with high relevance for human and animal health. A wide literature testifies the multifaceted importance of LAB biotechnological applications in cereal-based products. Several studies focused on LAB isolation and characterization in durum wheat environment, in some cases with preliminary experimental applications of LAB in pasta-making. In this paper, using sourdough as a model, we focus on the relevant state-of-art to introduce a LAB-based biotechnological step in industrial pasta-making, a potential world driver of innovation that might represent a cutting-edge advancement in pasta production. PMID:22457660

  17. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria.

    PubMed

    Gaspar, Paula; Carvalho, Ana L; Vinga, Susana; Santos, Helena; Neves, Ana Rute

    2013-11-01

    The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body of comprehensive data on their metabolism and genetics was generated throughout the years. This knowledge has been instrumental in the implementation of successful applications in the food industry, such as the selection of robust starter cultures with desired phenotypic traits. The advent of genomics, functional genomics and high-throughput experimentation combined with powerful computational tools currently allows for a systems level understanding of these food industry workhorses. The technological developments in the last decade have provided the foundation for the use of LAB in applications beyond the classic food fermentations. Here we discuss recent metabolic engineering strategies to improve particular cellular traits of LAB and to design LAB cell factories for the bioproduction of added value chemicals.

  18. Probiotic lactic acid bacteria and their potential in the prevention and treatment of allergic diseases

    PubMed Central

    Wróblewska, Paula; Adamczuk, Piotr; Silny, Wojciech

    2014-01-01

    Allergy is one of the most important and very common health problems worldwide. To reduce the proportion of people suffering from allergy, alternative methods of prevention and treatment are sought. The aim of this paper is to present the possibilities of probiotics in the prevention and treatment of allergic diseases. Probiotics are live microorganisms belonging mainly to the lactic acid bacteria. They modify the microflora of the human digestive system, especially the intestinal microflora. Prophylactic administration of probiotics in the early stages of life (naturally in breast milk or milk substitute synthetic compounds) is very important because intestinal microflora plays a huge role in the development of the immune system. Prevention of allergies as early as in the prenatal and postnatal periods provides huge opportunities for inhibiting the growing problem of allergy in emerging and highly developed societies. Effects of probiotic therapy depend on many factors such as the species of the microorganism used, the dose size and characteristics of the bacteria such as viability and capacity of adhesion to the intestinal walls. Authors of several studies showed beneficial effects of probiotics in the perinatal period, infancy, and also in adults in the prevention of atopic dermatitis or allergic rhinitis. Probiotics, due to their immunomodulatory properties and safety of use are a good, natural alternative for the prevention and treatment of many diseases including allergies. It is therefore important to explore the knowledge about their use and to carry out further clinical trials. PMID:26155109

  19. Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination.

    PubMed

    Wyszyńska, Agnieszka; Kobierecka, Patrycja; Bardowski, Jacek; Jagusztyn-Krynicka, Elżbieta Katarzyna

    2015-04-01

    Lactic acid bacteria (LAB) are a diverse group of Gram-positive, nonsporulating, low G + C content bacteria. Many of them have been given generally regarded as safe status. Over the past two decades, intensive genetic and molecular research carried out on LAB, mainly Lactococcus lactis and some species of the Lactobacillus genus, has revealed new, potential biomedical LAB applications, including the use of LAB as adjuvants, immunostimulators, or therapeutic drug delivery systems, or as factories to produce therapeutic molecules. LAB enable immunization via the mucosal route, which increases effectiveness against pathogens that use the mucosa as the major route of entry into the human body. In this review, we concentrate on the encouraging application of Lactococcus and Lactobacillus genera for the development of live mucosal vaccines. First, we present the progress that has recently been made in the field of developing tools for LAB genetic manipulations, which has resulted in the successful expression of many bacterial, parasitic, and viral antigens in LAB strains. Next, we discuss the factors influencing the efficacy of the constructed vaccine prototypes that have been tested in various animal models. Apart from the research focused on an application of live LABs as carriers of foreign antigens, a lot of work has been recently done on the potential usage of nonliving, nonrecombinant L. lactis designated as Gram-positive enhancer matrix (GEM), as a delivery system for mucosal vaccination. The advantages and disadvantages of both strategies are also presented.

  20. Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination.

    PubMed

    Wyszyńska, Agnieszka; Kobierecka, Patrycja; Bardowski, Jacek; Jagusztyn-Krynicka, Elżbieta Katarzyna

    2015-04-01

    Lactic acid bacteria (LAB) are a diverse group of Gram-positive, nonsporulating, low G + C content bacteria. Many of them have been given generally regarded as safe status. Over the past two decades, intensive genetic and molecular research carried out on LAB, mainly Lactococcus lactis and some species of the Lactobacillus genus, has revealed new, potential biomedical LAB applications, including the use of LAB as adjuvants, immunostimulators, or therapeutic drug delivery systems, or as factories to produce therapeutic molecules. LAB enable immunization via the mucosal route, which increases effectiveness against pathogens that use the mucosa as the major route of entry into the human body. In this review, we concentrate on the encouraging application of Lactococcus and Lactobacillus genera for the development of live mucosal vaccines. First, we present the progress that has recently been made in the field of developing tools for LAB genetic manipulations, which has resulted in the successful expression of many bacterial, parasitic, and viral antigens in LAB strains. Next, we discuss the factors influencing the efficacy of the constructed vaccine prototypes that have been tested in various animal models. Apart from the research focused on an application of live LABs as carriers of foreign antigens, a lot of work has been recently done on the potential usage of nonliving, nonrecombinant L. lactis designated as Gram-positive enhancer matrix (GEM), as a delivery system for mucosal vaccination. The advantages and disadvantages of both strategies are also presented. PMID:25750046

  1. Identification and functional traits of lactic acid bacteria isolated from Ciauscolo salami produced in Central Italy.

    PubMed

    Federici, Sara; Ciarrocchi, Floriana; Campana, Raffaella; Ciandrini, Eleonora; Blasi, Giuliana; Baffone, Wally

    2014-12-01

    Lactic acid bacteria (LAB) from Ciauscolo salami produced in Marche Region of Central Italy, and LAB strains belonging to our laboratory collection were examined for their capability to survive at low pH and bile, to adhere to Caco-2 cells, and for antibiotic resistance. LAB from Ciauscolo were identified by ARDRA and RAPD-PCR. Our study showed that all LAB strains had good adaptation to gastric juice and moderate tolerance to bile. The adhesiveness was variable among strains but significantly lower in LAB from food. Antibiotic resistance was broadly spread among food strains, with level of resistance exceeding 15% for all the antibiotics tested. The resistance determinants erm(B) and tet(M) were found in nine strains of food origin (21.4%) while tet(L) in one strain of our collection (5%). Our work suggests that fermented foods are valuable sources of bacterial strains with functional traits of intestinal lactobacilli. These bacteria may be further studied for their use in probiotic applications.

  2. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria.

    PubMed

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J; Kaznessis, Yiannis N

    2013-11-15

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis . Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon-optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter PnisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host's viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations.

  3. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    PubMed

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation.

  4. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes.

    PubMed

    Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Garcia-Fruitós, Elena

    2015-01-01

    Lactic acid bacteria (LAB) have a long history of safe exploitation by humans, being used for centuries in food production and preservation and as probiotic agents to promote human health. Interestingly, some species of these Gram-positive bacteria, which are generally recognized as safe organisms by the US Food and Drug Administration (FDA), are able to survive through the gastrointestinal tract (GIT), being capable to reach and colonize the intestine, where they play an important role. Besides, during the last decades, an important effort has been done for the development of tools to use LAB as microbial cell factories for the production of proteins of interest. Given the need to develop effective strategies for the delivery of prophylactic and therapeutic molecules, LAB have appeared as an appealing option for the oral, intranasal and vaginal delivery of such molecules. So far, these genetically modified organisms have been successfully used as vehicles for delivering functional proteins to mucosal tissues in the treatment of many different pathologies including GIT related pathologies, diabetes, cancer and viral infections, among others. Interestingly, the administration of such microorganisms would suppose a significant decrease in the production cost of the treatments agents since being live organisms, such vectors would be able to autonomously amplify and produce and deliver the protein of interest. In this context, this review aims to provide an overview of the use of LAB engineered as a promising alternative as well as a safety delivery platform of recombinant proteins for the treatment of a wide range of diseases. PMID:26377321

  5. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria.

    PubMed

    Süle, Judit; Kõrösi, Tímea; Hucker, Attila; Varga, László

    2014-01-01

    The purpose of this study was to test the suitability of Transgalactosylated oligosaccharides-mupirocin lithium salt (TOS-MUP) and MRS-clindamycin-ciprofloxacin (MRS-CC) agars, along with several other culture media, for selectively enumerating bifidobacteria and lactic acid bacteria (LAB) species commonly used to make fermented milks. Pure culture suspensions of a total of 13 dairy bacteria strains, belonging to eight species and five genera, were tested for growth capability under various incubation conditions. TOS-MUP agar was successfully used for the selective enumeration of both Bifidobacterium animalis subsp. lactis BB-12 and B. breve M-16 V. MRS-CC agar showed relatively good selectivity for Lactobacillus acidophilus, however, it also promoted the growth of Lb. casei strains. For this reason, MRS-CC agar can only be used as a selective medium for the enumeration of Lb. acidophilus if Lb. casei is not present in a product at levels similar to or exceeding those of Lb. acidophilus. Unlike bifidobacteria and coccus-shaped LAB, all the lactobacilli strains involved in this work were found to grow well in MRS pH 5.4 agar incubated under anaerobiosis at 37 °C for 72 h. Therefore, this method proved to be particularly suitable for the selective enumeration of Lactobacillus spp.

  6. Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses.

    PubMed

    Van Hoorde, Koenraad; Verstraete, Tine; Vandamme, Peter; Huys, Geert

    2008-10-01

    PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to study the diversity of lactic acid bacteria (LAB) in two Flemish artisan raw milk Gouda-type cheeses. In parallel, conventional culturing was performed. Isolates were identified using (GTG)(5)-PCR and sequence analysis of 16S rRNA and pheS genes. Discriminant analysis revealed some differences in overall LAB diversity between the two batches and between the two cheeses. Within each batch, the diversity of 8- and 12-week-old cheeses was relatively similar. Conventional isolation mainly revealed the presence of Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus and Pediococcus pentosaceus. PCR-DGGE revealed the presence of three species of which no isolates were recovered, i.e. Enterococcus faecalis, Lactobacillus parabuchneri and Lactobacillus gallinarum. Conversely, not all isolated bacteria were detected by PCR-DGGE. We recommend the integrated use of culture-dependent and -independent approaches to maximally encompass the taxonomic spectrum of LAB occurring in Gouda-type and other cheeses.

  7. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.

    PubMed

    Anisha, B S; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2013-11-01

    The aim of this work was to develop an antimicrobial sponge composed of chitosan, hyaluronic acid (HA) and nano silver (nAg) as a wound dressing for diabetic foot ulcers (DFU) infected with drug resistant bacteria. nAg (5-20 nm) was prepared and characterized. The nanocomposite sponges were prepared by homogenous mixing of chitosan, HA and nAg followed by freeze drying to obtain a flexible and porous structure. The prepared sponges were characterized using SEM and FT-IR. The porosity, swelling, biodegradation and haemostatic potential of the sponges were also studied. Antibacterial activity of the prepared sponges was analysed using Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia. Chitosan-HA/nAg composite sponges showed potent antimicrobial property against the tested organisms. Sponges containing higher nAg (0.005%, 0.01% and 0.02%) concentrations showed antibacterial activity against MRSA. Cytotoxicity and cell attachment studies were done using human dermal fibroblast cells. The nanocomposite sponges showed a nAg concentration dependent toxicity towards fibroblast cells. Our results suggest that this nanocomposite sponges could be used as a potential material for wound dressing for DFU infected with antibiotic resistant bacteria if the optimal concentration of nAg exhibiting antibacterial action with least toxicity towards mammalian cells is identified.

  8. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.

    PubMed

    Anisha, B S; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2013-11-01

    The aim of this work was to develop an antimicrobial sponge composed of chitosan, hyaluronic acid (HA) and nano silver (nAg) as a wound dressing for diabetic foot ulcers (DFU) infected with drug resistant bacteria. nAg (5-20 nm) was prepared and characterized. The nanocomposite sponges were prepared by homogenous mixing of chitosan, HA and nAg followed by freeze drying to obtain a flexible and porous structure. The prepared sponges were characterized using SEM and FT-IR. The porosity, swelling, biodegradation and haemostatic potential of the sponges were also studied. Antibacterial activity of the prepared sponges was analysed using Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia. Chitosan-HA/nAg composite sponges showed potent antimicrobial property against the tested organisms. Sponges containing higher nAg (0.005%, 0.01% and 0.02%) concentrations showed antibacterial activity against MRSA. Cytotoxicity and cell attachment studies were done using human dermal fibroblast cells. The nanocomposite sponges showed a nAg concentration dependent toxicity towards fibroblast cells. Our results suggest that this nanocomposite sponges could be used as a potential material for wound dressing for DFU infected with antibiotic resistant bacteria if the optimal concentration of nAg exhibiting antibacterial action with least toxicity towards mammalian cells is identified. PMID:24060281

  9. The influences of fish infusion broth on the biogenic amines formation by lactic acid bacteria

    PubMed Central

    Küley, Esmeray; Özogul, Fatih; Balikçi, Esra; Durmus, Mustafa; Ayas, Deniz

    2013-01-01

    The influences of fish infusion decarboxylase broth (IDB) on biogenic amines (BA) formation by lactic acid bacteria (LAB) were investigated. BA productions by single LAB strains were tested in five different fish (anchovy, mackerel, white shark, sardine and gilthead seabream) IDB. The result of the study showed that significant differences in ammonia (AMN) and BA production were observed among the LAB strains in fish IDB (p < 0.05). The highest AMN and TMA production by LAB strains were observed for white shark IDB. The all tested bacteria had decarboxylation activity in fish IDB. The uppermost accumulated amines by LAB strains were tyramine (TYM), dopamine, serotonin and spermidine. The maximum histamine production was observed in sardine (101.69 mg/L) and mackerel (100.84 mg/L) IDB by Leuconostoc mesenteroides subsp. cremoris and Pediococcus acidophilus, respectively. Lactobacillus delbrueckii subsp. lactis and Pediococcus acidophilus had a high TYM producing capability (2943 mg/L and 1157 mg/L) in sardine IDB. PMID:24294229

  10. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes.

    PubMed

    Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Garcia-Fruitós, Elena

    2015-01-01

    Lactic acid bacteria (LAB) have a long history of safe exploitation by humans, being used for centuries in food production and preservation and as probiotic agents to promote human health. Interestingly, some species of these Gram-positive bacteria, which are generally recognized as safe organisms by the US Food and Drug Administration (FDA), are able to survive through the gastrointestinal tract (GIT), being capable to reach and colonize the intestine, where they play an important role. Besides, during the last decades, an important effort has been done for the development of tools to use LAB as microbial cell factories for the production of proteins of interest. Given the need to develop effective strategies for the delivery of prophylactic and therapeutic molecules, LAB have appeared as an appealing option for the oral, intranasal and vaginal delivery of such molecules. So far, these genetically modified organisms have been successfully used as vehicles for delivering functional proteins to mucosal tissues in the treatment of many different pathologies including GIT related pathologies, diabetes, cancer and viral infections, among others. Interestingly, the administration of such microorganisms would suppose a significant decrease in the production cost of the treatments agents since being live organisms, such vectors would be able to autonomously amplify and produce and deliver the protein of interest. In this context, this review aims to provide an overview of the use of LAB engineered as a promising alternative as well as a safety delivery platform of recombinant proteins for the treatment of a wide range of diseases.

  11. Interaction between lactic acid bacteria and yeasts in sour-dough using a rheofermentometer.

    PubMed

    Gobbetti, M; Corsetti, A; Rossi, J

    1995-11-01

    Rheofermentometer assays were used to characterize the leavening of sour-doughs produced using species of lactic acid bacteria (LAB) and yeasts, alone or in combination. Saccharomyces cerevisiae 141 produced the most CO2 and ethanol whereas S. exiguus M14 and Lactobacillus brevis subsp. lindneri CB1 contributed poorly to leavening and gave sour-doughs without porosity. In comparison with that seen in sour-dough produced with yeast alone, yeast fermentation with heterofermentative LAB present was faster whereas that with homofermentative LAB (L. plantarum DC400, L. farciminis CF3) present was slower and produced more CO2. Combining L. brevis subsp. lindneri CB1 with S. cerevisiae 141 decreased bacterial cell numbers and souring activity. However, addition of fructose to the sour-dough overcame these problems as well as activating S. cerevisiae 141.

  12. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages

    PubMed Central

    Mokoena, Mduduzi Paul; Mutanda, Taurai; Olaniran, Ademola O.

    2016-01-01

    Diverse African traditional fermented foods and beverages, produced using different types of fermentation, have been used since antiquity because of their numerous nutritional values. Lactic acid bacteria (LAB) isolated from these products have emerged as a welcome source of antimicrobials and therapeutics, and are accepted as probiotics. Probiotics are defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Currently, popular probiotics are derived from fermented milk products. However, with the growing number of consumers with lactose intolerance that are affected by dietary cholesterol from milk products, there is a growing global interest in probiotics from other food sources. The focus of this review is to provide an overview of recent developments on the applications of probiotic LAB globally, and to specifically highlight the suitability of African fermented foods and beverages as a viable source of novel probiotics. PMID:26960543

  13. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    SciTech Connect

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-17

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263+-0.02 g cellulose L{sup -1} for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  14. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  15. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    PubMed

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth.

  16. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology.

    PubMed

    Pedersen, Martin B; Gaudu, Philippe; Lechardeur, Delphine; Petit, Marie-Agnès; Gruss, Alexandra

    2012-01-01

    The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.

  17. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides.

    PubMed

    Zannini, Emanuele; Waters, Deborah M; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.

  18. Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages.

    PubMed

    Landeta, G; Curiel, J A; Carrascosa, A V; Muñoz, R; de las Rivas, B

    2013-10-01

    Technological and safety-related properties were analyzed in lactic acid bacteria isolated from Spanish dry-cured sausages in order to select them as starter cultures. In relation to technological properties, all the strains showed significative nitrate reductase activity; Lactobacillus plantarum, Lactobacillus paracasei and 52% of the Enterococcus faecium strains showed lipolytic activity and only Lactobacillus sakei strains (43%) were able to form biofilms. Related to safety aspects, E. faecium strains were the most resistant to antibiotics, whereas, L. sakei strains were the most sensitive. In relation to virulence factors, in the E. faecium strains analyzed, only the presence of efaA gene was detected. The analysis of biogenic amine production showed that most E. faecium strains and L. sakei Al-142 produced tyramine. In conclusion, L. paracasei Al-128 and L. sakei Al-143 strains possess the best properties to be selected as adequate and safe meat starter cultures.

  19. Medical and Personal Care Applications of Bacteriocins Produced by Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Dicks, L. M. T.; Heunis, T. D. J.; van Staden, D. A.; Brand, A.; Noll, K. Sutyak; Chikindas, M. L.

    The frequent use of antibiotics has led to a crisis in the antibiotic ­resistance of pathogens associated with humans and animals. Antibiotic resistance and the emergence of multiresistant bacterial pathogens have led to the investigation of alternative antimicrobial agents to treat and prevent infections in both humans and animals. Research on antimicrobial peptides, with a special interest on bacteriocins of lactic acid bacteria, is entering a new era with novel applications other than food preservation. Many scientists are now focusing on the application of these peptides in medicinal and personal care products. However, it is difficult to assess the success of such ventures due to the dearth of information that has been published and the lack of clinical trials.

  20. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts.

    PubMed

    Chouaia, Bessem; Gaiarsa, Stefano; Crotti, Elena; Comandatore, Francesco; Degli Esposti, Mauro; Ricci, Irene; Alma, Alberto; Favia, Guido; Bandi, Claudio; Daffonchio, Daniele

    2014-04-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait, cytochrome bo3 ubiquinol oxidase, appears ancestral in AAB and shows a phylogeny that is congruent with that of the genomes. The functional properties of this terminal oxidase might have allowed AAB to adapt to the diverse oxygen levels of arthropod guts.

  1. Growth inhibition of lactic acid bacteria in ham by nisin: a model approach.

    PubMed

    Kalschne, Daneysa L; Geitenes, Simone; Veit, Marilei R; Sarmento, Cleonice M P; Colla, Eliane

    2014-12-01

    Lactic acid bacteria (LAB) have been described as spoilage organisms in vacuum-packed cooked ham. A Fractional Factorial Design was performed to investigate the relative merits of sodium chloride, sodium lactate, sodium tripolyphosphate, sodium erythorbate, nisin and pediocin, in limiting the Lactobacillus sakei growth in broth culture. This allowed rejection of sodium chloride, sodium lactate and sodium erythorbate (no significant effects on growth), and a Central Composite Rotatable Design broth culture study was performed comparing the effects of nisin and pediocin. From this study, nisin was identified as a more important variable for inclusion into a cooked ham model (significant effects on growth parameters: logarithmic increase in the population, exponential microbial growth rate and lag phase extension). The validation of this outcome in a model formulation of vacuum-packed sliced cooked ham (0.001%, 0.007% and 0.013% of nisin) stored for 60days, confirmed the inhibitory effect of nisin on total LAB growth.

  2. Acetic Acid Bacteria Genomes Reveal Functional Traits for Adaptation to Life in Insect Guts

    PubMed Central

    Chouaia, Bessem; Gaiarsa, Stefano; Crotti, Elena; Comandatore, Francesco; Degli Esposti, Mauro; Ricci, Irene; Alma, Alberto; Favia, Guido; Bandi, Claudio; Daffonchio, Daniele

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait, cytochrome bo3 ubiquinol oxidase, appears ancestral in AAB and shows a phylogeny that is congruent with that of the genomes. The functional properties of this terminal oxidase might have allowed AAB to adapt to the diverse oxygen levels of arthropod guts. PMID:24682158

  3. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae

    PubMed Central

    Muñoz, R; Arena, M.E.; Silva, J.; González, S.N.

    2010-01-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances. PMID:24031582

  4. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages.

    PubMed

    Mokoena, Mduduzi Paul; Mutanda, Taurai; Olaniran, Ademola O

    2016-01-01

    Diverse African traditional fermented foods and beverages, produced using different types of fermentation, have been used since antiquity because of their numerous nutritional values. Lactic acid bacteria (LAB) isolated from these products have emerged as a welcome source of antimicrobials and therapeutics, and are accepted as probiotics. Probiotics are defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Currently, popular probiotics are derived from fermented milk products. However, with the growing number of consumers with lactose intolerance that are affected by dietary cholesterol from milk products, there is a growing global interest in probiotics from other food sources. The focus of this review is to provide an overview of recent developments on the applications of probiotic LAB globally, and to specifically highlight the suitability of African fermented foods and beverages as a viable source of novel probiotics. PMID:26960543

  5. Anti-obesity effects of gut microbiota are associated with lactic acid bacteria.

    PubMed

    Tsai, Yueh-Ting; Cheng, Po-Ching; Pan, Tzu-Ming

    2014-01-01

    The prevalence of obesity is rapidly becoming endemic in industrialized countries and continues to increase in developing countries worldwide. Obesity predisposes people to an increased risk of developing metabolic syndrome. Recent studies have described an association between obesity and certain gut microbiota, suggesting that gut microbiota might play a critical role in the development of obesity. Although probiotics have many beneficial health effects in humans and animals, attention has only recently been drawn to manipulating the gut microbiota, such as lactic acid bacteria (LAB), to influence the development of obesity. In this review, we first describe the causes of obesity, including the genetic and environmental factors. We then describe the relationship between the gut microbiota and obesity, and the mechanisms by which the gut microbiota influence energy metabolism and inflammation in obesity. Lastly, we focus on the potential role of LAB in mediating the effects of the gut microbiota in the development of obesity.

  6. Microcultures of lactic acid bacteria: characterization and selection of strains, optimization of nutrients and gallic acid concentration.

    PubMed

    Guzmán-López, Oswaldo; Loera, Octavio; Parada, José Luis; Castillo-Morales, Alberto; Martínez-Ramírez, Cándida; Augur, Christopher; Gaime-Perraud, Isabelle; Saucedo-Castañeda, Gerardo

    2009-01-01

    Eighteen lactic acid bacteria (LAB) strains, isolated from coffee pulp silages were characterized according to both growth and gallic acid (GA) consumption. Prussian blue method was adapted to 96-well microplates to quantify GA in LAB microcultures. Normalized data of growth and GA consumption were used to characterize strains into four phenotypes. A number of 5 LAB strains showed more than 60% of tolerance to GA at 2 g/l; whereas at 10 g/l GA growth inhibition was detected to a different extent depending on each strain, although GA consumption was observed in seven studied strains (>60%). Lactobacillus plantarum L-08 was selected for further studies based on its capacity to degrade GA at 10 g/l (97%). MRS broth and GA concentrations were varied to study the effect on growth of LAB. Cell density and growth rate were optimized by response surface methodology and kinetic analysis. Maximum growth was attained after 7.5 h of cultivation, with a dilution factor of 1-1/2 and a GA concentration between 0.625 and 2.5 g/l. Results indicated that the main factor affecting LAB growth was GA concentration. The main contribution of this study was to propose a novel adaptation of a methodology to characterize and select LAB strains with detoxifying potential of simple phenolics based on GA consumption and tolerance. In addition, the methodology presented in this study integrated the well-known RSM with an experimental design based on successive dilutions.

  7. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study.

    PubMed

    Reale, Anna; Mannina, Luisa; Tremonte, Patrizio; Sobolev, Anatoli P; Succi, Mariantonietta; Sorrentino, Elena; Coppola, Raffaele

    2004-10-01

    myo-Inositol hexaphosphate (IP6) is the main source of phosphorus in cereal grains, and therefore, in bakery products. Different microorganisms such as yeasts and lactic acid bacteria have phytase enzymes able to hydrolyze IP6 during the wholemeal breadmaking. In this paper, the phytase activity of Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus curvatus, and Saccharomyces cerevisiae strains, isolated from southern Italian sourdoughs, is assayed using the (31)P NMR technique. The sourdough technology based on the use of lactic acid bacteria in the breadmaking is finally suggested.

  8. Changes in oxidation-reduction potential during milk fermentation by wild lactic acid bacteria.

    PubMed

    Morandi, Stefano; Silvetti, Tiziana; Tamburini, Alberto; Brasca, Milena

    2016-08-01

    Oxidation-reduction potential (E h) is a fundamental physicochemical property of lactic acid bacteria that determines the microenvironment during the cheese manufacture and ripening. For this reason the E h is of growing interest in dairy research and the dairy industry. The objective of the study was to perform a comprehensive study on the reduction activity of wild lactic acid bacteria strains c