Science.gov

Sample records for acid bacteria species

  1. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    PubMed

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves. PMID:21619939

  2. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    PubMed

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci). PMID:26082325

  3. Gluconobacter as well as Asaia species, newly emerging opportunistic human pathogens among acetic acid bacteria.

    PubMed

    Alauzet, Corentine; Teyssier, Corinne; Jumas-Bilak, Estelle; Gouby, Anne; Chiron, Raphael; Rabaud, Christian; Counil, François; Lozniewski, Alain; Marchandin, Hélène

    2010-11-01

    Acetic acid bacteria (AAB) are broadly used in industrial food processing. Among them, members of the genera Asaia, Acetobacter, and Granulibacter were recently reported to be human opportunistic pathogens. We isolated AAB from clinical samples from three patients and describe here the clinical and bacteriological features of these cases. We report for the first time (i) the isolation of a Gluconobacter sp. from human clinical samples; (ii) the successive isolation of different AAB, i.e., an Asaia sp. and two unrelated Gluconobacter spp., from a cystic fibrosis patient; and (iii) persistent colonization of the respiratory tract by a Gluconobacter sp. in this patient. We reviewed the main clinical features associated with AAB isolation identified in the 10 documented reports currently available in the literature. Albeit rare, infections as well as colonization with AAB are increasingly reported in patients with underlying chronic diseases and/or indwelling devices. Clinicians as well as medical microbiologists should be aware of these unusual opportunistic pathogens, which are difficult to detect during standard medical microbiological investigations and which are multiresistant to antimicrobial agents. Molecular methods are required for identification of genera of AAB, but the results may remain inconclusive for identification to the species level. PMID:20826638

  4. Species diversity and relative abundance of lactic acid bacteria in the milk of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Jin, L.; Hinde, K.; Tao, L.

    2013-01-01

    Background Mother’s milk is a source of bacteria that influences the development of the infant commensal gut microbiota. To date, the species diversity and relative abundance of lactic acid bacteria in the milk of non-human primates have not been described. Methods Milk samples were aseptically obtained from 54 female rhesus monkeys (Macaca mulatta) at peak lactation. Following GM17 and MRS agar plating, single bacterial colonies were isolated based on difference in morphotypes, then grouped based on whole-cell protein profiles on SDS–PAGE. Bacterial DNA was isolated and the sequence the 16S rRNA gene was analyzed. Results A total of 106 strains of 19 distinct bacterial species, belonging to five genera, Bacillus, Enterococcus, Lactobacillus, Pediococcus, and Streptococcus, were identified. Conclusions Maternal gut and oral commensal bacteria may be translocated to the mammary gland during lactation and present in milk. This pathway can be an important source of commensal bacteria to the infant gut and oral cavity. PMID:20946146

  5. Diversity in growth and protein degradation by dairy relevant lactic acid bacteria species in reconstituted whey.

    PubMed

    Pescuma, Micaela; Hébert, Elvira M; Bru, Elena; Font de Valdez, Graciela; Mozzi, Fernanda

    2012-05-01

    The high nutritional value of whey makes it an interesting substrate for the development of fermented foods. The aim of this work was to evaluate the growth and proteolytic activity of sixty-four strains of lactic acid bacteria in whey to further formulate a starter culture for the development of fermented whey-based beverages. Fermentations were performed at 37 °C for 24 h in 10 and 16% (w/v) reconstituted whey powder. Cultivable populations, pH, and proteolytic activity (o-phthaldialdehyde test) were determined at 6 and 24 h incubation. Hydrolysis of whey proteins was analysed by Tricine SDS-PAGE. A principal component analysis (PCA) was applied to evaluate the behaviour of strains. Forty-six percent of the strains grew between 1 and 2 Δlog CFU/ml while 19% grew less than 0·9 Δlog CFU/ml in both reconstituted whey solutions. Regarding the proteolytic activity, most of the lactobacilli released amino acids and small peptides during the first 6 h incubation while streptococci consumed the amino acids initially present in whey to sustain growth. Whey proteins were degraded by the studied strains although to different extents. Special attention was paid to the main allergenic whey protein, β-lactoglobulin, which was degraded the most by Lactobacillus acidophilus CRL 636 and Lb. delbrueckii subsp. bulgaricus CRL 656. The strain variability observed and the PCA applied in this study allowed selecting appropriate strains able to improve the nutritional characteristics (through amino group release and protein degradation) and storage (decrease in pH) of whey. PMID:22559062

  6. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    PubMed Central

    2011-01-01

    Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of

  7. Gluconobacter as Well as Asaia Species, Newly Emerging Opportunistic Human Pathogens among Acetic Acid Bacteria ▿ †

    PubMed Central

    Alauzet, Corentine; Teyssier, Corinne; Jumas-Bilak, Estelle; Gouby, Anne; Chiron, Raphael; Rabaud, Christian; Counil, François; Lozniewski, Alain; Marchandin, Hélène

    2010-01-01

    Acetic acid bacteria (AAB) are broadly used in industrial food processing. Among them, members of the genera Asaia, Acetobacter, and Granulibacter were recently reported to be human opportunistic pathogens. We isolated AAB from clinical samples from three patients and describe here the clinical and bacteriological features of these cases. We report for the first time (i) the isolation of a Gluconobacter sp. from human clinical samples; (ii) the successive isolation of different AAB, i.e., an Asaia sp. and two unrelated Gluconobacter spp., from a cystic fibrosis patient; and (iii) persistent colonization of the respiratory tract by a Gluconobacter sp. in this patient. We reviewed the main clinical features associated with AAB isolation identified in the 10 documented reports currently available in the literature. Albeit rare, infections as well as colonization with AAB are increasingly reported in patients with underlying chronic diseases and/or indwelling devices. Clinicians as well as medical microbiologists should be aware of these unusual opportunistic pathogens, which are difficult to detect during standard medical microbiological investigations and which are multiresistant to antimicrobial agents. Molecular methods are required for identification of genera of AAB, but the results may remain inconclusive for identification to the species level. PMID:20826638

  8. Genetics of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  9. Biopreservation by lactic acid bacteria.

    PubMed

    Stiles, M E

    1996-10-01

    Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a "hidden' fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods. PMID:8879414

  10. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    PubMed

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37 °C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov. PMID:26071988

  11. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  12. Isolation and Identification of Lactic Acid Bacteria from Traditional Dairy Products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR Analysis of Predominant Species.

    PubMed

    Wang, Dan; Liu, Wenjun; Ren, Yan; De, Liangliang; Zhang, Donglei; Yang, Yanrong; Bao, Qiuhua; Zhang, Heping; Menghe, Bilige

    2016-01-01

    In this study, traditional culture method and 16S rRNA gene analysis were applied to reveal the composition and diversity of lactic acid bacteria (LAB) of fermented cow milk, huruud and urum from Baotou and Bayannur of midwestern Inner Mongolia. Also, the quantitative results of dominant LAB species in three different types of dairy products from Baotou and Bayannur were gained by quantitative polymerase chain reaction (q-PCR) technology. Two hundred and two LAB strains isolated from sixty-six samples were identified and classified into four genera, namely Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, and twenty-one species and subspecies. From these isolates, Lactococcus lactis subsp. lactis (32.18%), Lactobacillus plantarum (12.38%) and Leuconosto mesenteroides (11.39%) were considered as the dominated LAB species under the condition of cultivating in MRS and M17 medium. And the q-PCR results revealed that the number of dominant species varied from samples to samples and from region to region. This study clearly shows the composition and diversity of LAB existing in fermented cow milk, huruud and urum, which could be considered as valuable resources for LAB isolation and further probiotic selection. PMID:27621691

  13. Isolation and Identification of Lactic Acid Bacteria from Traditional Dairy Products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR Analysis of Predominant Species

    PubMed Central

    2016-01-01

    In this study, traditional culture method and 16S rRNA gene analysis were applied to reveal the composition and diversity of lactic acid bacteria (LAB) of fermented cow milk, huruud and urum from Baotou and Bayannur of midwestern Inner Mongolia. Also, the quantitative results of dominant LAB species in three different types of dairy products from Baotou and Bayannur were gained by quantitative polymerase chain reaction (q-PCR) technology. Two hundred and two LAB strains isolated from sixty-six samples were identified and classified into four genera, namely Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, and twenty-one species and subspecies. From these isolates, Lactococcus lactis subsp. lactis (32.18%), Lactobacillus plantarum (12.38%) and Leuconosto mesenteroides (11.39%) were considered as the dominated LAB species under the condition of cultivating in MRS and M17 medium. And the q-PCR results revealed that the number of dominant species varied from samples to samples and from region to region. This study clearly shows the composition and diversity of LAB existing in fermented cow milk, huruud and urum, which could be considered as valuable resources for LAB isolation and further probiotic selection. PMID:27621691

  14. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies using traditional biochemical methods to study the ecology of commercial sauerkraut fermentations revealed that four lactic acid bacteria species, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis were the primary microorganisms in...

  15. Phosphatidic Acid Synthesis in Bacteria

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2012-01-01

    Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:22981714

  16. Comparative genomics of the lactic acid bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacter...

  17. Comparative genomics of the lactic acid bacteria

    SciTech Connect

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  18. Lactic acid bacteria from fermented table olives.

    PubMed

    Hurtado, Albert; Reguant, Cristina; Bordons, Albert; Rozès, Nicolas

    2012-08-01

    Table olives are one of the main fermented vegetables in the world. Olives can be processed as treated or natural. Both have to be fermented but treated green olives have to undergo an alkaline treatment before they are placed in brine to start their fermentation. It has been generally established that lactic acid bacteria (LAB) are responsible for the fermentation of treated olives. However, LAB and yeasts compete for the fermentation of natural olives. Yeasts play a minor role in some cases, contributing to the flavour and aroma of table olives and in LAB development. The main microbial genus isolated in table olives is Lactobacillus. Other genera of LAB have also been isolated but to a lesser extent. Lactobacillus plantarum and Lactobacillus pentosus are the predominant species in most fermentations. Factors influencing the correct development of fermentation and LAB, such as pH, temperature, the amount of NaCl, the polyphenol content or the availability of nutrients are also reviewed. Finally, current research topics on LAB from table olives are reviewed, such as using starters, methods of detection and identification of LAB, their production of bacteriocins, and the possibility of using table olives as probiotics. PMID:22475936

  19. Why engineering lactic acid bacteria for biobutanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Gram-positive Lactic acid bacteria (LAB) are considered attractive biocatalysts for biomass to biofuels for several reasons. They have GRAS (Generally Recognized As Safe) status that are acceptable in food, feed, and medical applications. LAB are fermentative: selected strains are capable of f...

  20. Antibiotic resistance in food lactic acid bacteria--a review.

    PubMed

    Mathur, Shalini; Singh, Rameshwar

    2005-12-15

    Antibiotics are a major tool utilized by the health care industry to fight bacterial infections; however, bacteria are highly adaptable creatures and are capable of developing resistance to antibiotics. Consequently, decades of antibiotic use, or rather misuse, have resulted in bacterial resistance to many modern antibiotics. This antibiotic resistance can cause significant danger and suffering for many people with common bacterial infections, those once easily treated with antibiotics. For several decades studies on selection and dissemination of antibiotic resistance have focused mainly on clinically relevant species. However, recently many investigators have speculated that commensal bacteria including lactic acid bacteria (LAB) may act as reservoirs of antibiotic resistance genes similar to those found in human pathogens. The main threat associated with these bacteria is that they can transfer resistance genes to pathogenic bacteria. Genes conferring resistance to tetracycline, erythromycin and vancomycin have been detected and characterized in Lactococcus lactis, Enterococci and, recently, in Lactobacillus species isolated from fermented meat and milk products. A number of initiatives have been recently launched by various organizations across the globe to address the biosafety concerns of starter cultures and probiotic microorganisms. The studies can lead to better understanding of the role played by the dairy starter microorganisms in horizontal transfer of antibiotic resistance genes to intestinal microorganisms and food-associated pathogenic bacteria. PMID:16289406

  1. Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP) simulation medium under different gas compositions.

    PubMed

    Pothakos, Vasileios; Nyambi, Clarice; Zhang, Bao-Yu; Papastergiadis, Antonios; De Meulenaer, Bruno; Devlieghere, Frank

    2014-05-16

    Sweet bell peppers are a significant constituent of retail, chilled-stored and packaged food products like fresh salads, marinades and ready-to-eat (RTE) meals. Previously, through general screening of the Belgian market and by means of source tracking analysis in a plant manufacturing minimally processed, vegetable salads the susceptibility of fresh-cut sweet bell peppers to lactic acid bacterium (LAB) contamination was substantiated. The determination of the metabolic profiles of Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, two major psychrotrophic, spoilage-related LAB species, on sweet bell pepper (SBP) simulation medium under different packaging conditions - 1.) vacuum: 100% N2, 2.) air: 21% O2, 79% N2, 3.) MAP1: 30% CO2, 70% N2 and 4.) MAP2: 50% O2, 50% CO2 - facilitated a better understanding of the spoilage potential of these microbes as well as the presumptive contribution of O2 in the spectrum of produced volatile organic compounds (VOCs) associated with poor organoleptic properties of food products. Generally, none of the applied gas compositions inhibited the growth of the 4 L. gelidum subsp. gasicomitatum isolates, however the presence of O2 resulted in buttery off-odors by inducing primarily the accumulation of diacetyl and pungent "vinegar" smell due to acetic acid. The 3 tested isolates of L. piscium varied greatly among their growth dynamics and inhibition at MAP2. They exhibited either weak spoilage profile or very offensive metabolism confirming significant intraspecies diversity. PMID:24690877

  2. Precision genome engineering in lactic acid bacteria

    PubMed Central

    2014-01-01

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  3. Acetic acid bacteria spoilage of bottled red wine -- a review.

    PubMed

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (<10(3) cfu/mL), which under conducive conditions might proliferate. Bottled red wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine. PMID:18237809

  4. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  5. Current taxonomy of phages infecting lactic acid bacteria

    PubMed Central

    Mahony, Jennifer; van Sinderen, Douwe

    2013-01-01

    Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species. PMID:24478767

  6. Exopolysaccharides from sourdough lactic acid bacteria.

    PubMed

    Galle, Sandra; Arendt, Elke K

    2014-01-01

    The use of sourdough improves the quality and increases the shelf life of bread. The positive effects are associated with metabolites produced by lactic acid bacteria (LAB) during sourdough fermentation, including organic acids, exopolysaccharides (EPS), and enzymes. EPS formed during sourdough fermentation by glycansucrase activity from sucrose influence the viscoelastic properties of the dough and beneficially affect the texture and shelf life (in particular, starch retrogradation) of bread. Accordingly, EPS have the potential to replace hydrocolloids currently used as bread improvers and meet so the consumer demands for a reduced use of food additives. In this review, the current knowledge about the functional aspects of EPS formation by sourdough LAB especially in baking applications is summarized. PMID:24499068

  7. Probiotic Lactic Acid Bacteria and Skin Health.

    PubMed

    Jeong, Ji Hye; Lee, Chang Y; Chung, Dae Kyun

    2016-10-25

    Human skin is the first defense barrier against the external environment, especially microbial pathogens and physical stimulation. Many studies on skin health with Lactic acid bacteria (LAB) have been published for many years, including prevention of skin disease and improvement of skin conditions. LAB, a major group of gram-positive bacteria, are known to be beneficial to human health by acting as probiotics. Recent studies have shown that LAB and their extracts have beneficial effects on maintenance and improvement of skin health. Oral administration of Lactobacillus delbrueckii inhibits the development of atopic disease. In addition, LAB and LAB extracts are known to have beneficial effects on intestinal diseases, with Lactobacillus plantarum having been shown to attenuate IL-10 deficient colitis. In addition to intestinal health, L. plantarum also has beneficial effects on skin. pLTA, which is lipoteichoic acid isolated from L. plantarum, has anti-photoaging effects on human skin cells by regulating the expression matrix meralloprotionase-1 (MMP-1) expression. While several studies have proposed a relationship between diseases of the skin and small intestines, there are currently no published reviews of the effects of LAB for skin health through regulation of intestinal conditions and the immune system. In this review, we discuss recent findings on the effects of LAB on skin health and its potential applications in beauty foods. PMID:26287529

  8. Genome level analysis of bacteriocins of lactic acid bacteria.

    PubMed

    Singh, Neetigyata Pratap; Tiwari, Abhay; Bansal, Ankiti; Thakur, Shruti; Sharma, Garima; Gabrani, Reema

    2015-06-01

    Bacteriocins are antimicrobial peptides which are ribosomally synthesized by mainly all bacterial species. LABs (lactic acid bacteria) are a diverse group of bacteria that include around 20 genera of various species. Though LABs have a tremendous potential for production of anti-microbial peptides, this group of bacteria is still underexplored for bacteriocins. To study the diversity among bacteriocin encoding clusters and the putative bacteriocin precursors, genome mining was performed on 20 different species of LAB not reported to be bacteriocin producers. The phylogenetic tree of gyrB, rpoB, and 16S rRNA were constructed using MEGA6 software to analyze the diversity among strains. Putative bacteriocins operons identified were found to be diverse and were further characterized on the basis of physiochemical properties and the secondary structure. The presence of at least two cysteine residues in most of the observed putative bacteriocins leads to disulphide bond formation and provide stability. Our data suggests that LABs are prolific source of low molecular weight non modified peptides. PMID:25733445

  9. Unusual lipid A types in phototrophic bacteria and related species.

    PubMed

    Mayer, H; Salimath, P V; Holst, O; Weckesser, J

    1984-01-01

    Photosynthetic bacteria of the Rhodospirillaceae family (sulfur-free purple bacteria) possess lipopolysaccharides (LPS) that deviate markedly from the Salmonella lipopolysaccharides in the chemical makeup of the lipid A component and in their biologic properties. LPS of Rhodopseudomonas gelatinosa is highly toxic and pyrogenic, while that of Rhodospirillum tenue shows cryptic toxicity. Two LPS types are completely non-toxic. The Rhodopseudomonas sphaeroides lipid A has the same backbone as that of Salmonella, but a part of the amide-linked fatty acids has the unusual 3-oxo structure (3-oxo-14:0). The lipid A's of Rhodopseudomonas viridis and Rhodopseudomonas palustris have 2,3-diamino-2,3-dideoxy-D-glucose as the backbone sugar. This is the first demonstration of this sugar in nature. In recent studies using 16S rRNA sequencing, the nonphotosynthetic Nitrobacter strains were shown to be phylogenetically closely related to R. palustris. The R. palustris lipid A type has been identified in three Nitrobacter species, including Nitrobacter winogradskyi, the type strain. The data demonstrate the taxonomic significance of lipid A constituents and structures. PMID:6474014

  10. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    PubMed

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  11. Insights into the evolution of sialic acid catabolism among bacteria

    PubMed Central

    Almagro-Moreno, Salvador; Boyd, E Fidelma

    2009-01-01

    Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA), epimerase (NanE), and kinase (NanK), necessary for the catabolism of sialic acid (the Nan cluster), are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body. The Nan region shows a

  12. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. PMID:25087936

  13. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  14. Recent advances in nitrogen-fixing acetic acid bacteria.

    PubMed

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  15. Acetic acid bacteria isolated from grapes of South Australian vineyards.

    PubMed

    Mateo, E; Torija, M J; Mas, A; Bartowsky, E J

    2014-05-16

    Acetic acid bacteria (AAB) diversity from healthy, mould-infected and rot-affected grapes collected from three vineyards of Adelaide Hills (South Australia) was analyzed by molecular typing and identification methods. Nine different AAB species were identified from the 624 isolates recovered: Four species from Gluconobacter genus, two from Asaia and one from Acetobacter were identified by the analysis of 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer. However, the identification of other isolates that were assigned as Asaia sp. and Ameyamaea chiangmaiensis required more analysis for a correct species classification. The species of Gluconobacter cerinus was the main one identified; while one genotype of Asaia siamensis presented the highest number of isolates. The number of colonies recovered and genotypes identified was strongly affected by the infection status of the grapes; the rot-affected with the highest number. However, the species diversity was similar in all the cases. High AAB diversity was detected with a specific genotype distribution for each vineyard. PMID:24681711

  16. Occurrence and role of lactic acid bacteria in seafood products.

    PubMed

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert

  17. Naturally occurring lactic Acid bacteria isolated from tomato pomace silage.

    PubMed

    Wu, Jing-Jing; Du, Rui-Ping; Gao, Min; Sui, Yao-Qiang; Xiu, Lei; Wang, Xiao

    2014-05-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  18. Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

    PubMed Central

    Wu, Jing-jing; Du, Rui-ping; Gao, Min; Sui, Yao-qiang; Xiu, Lei; Wang, Xiao

    2014-01-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  19. Comparison of the Morphology and Deoxyribonucleic Acid Composition of 27 Strains of Nitrifying Bacteria1

    PubMed Central

    Watson, Stanley W.; Mandel, Manley

    1971-01-01

    The gross morphology, fine structure, and per cent guanine plus cytosine (GC) composition of deoxyribonucleic acid of 27 strains of nitrifying bacteria were compared. Based on morphological differences, the ammonia-oxidizing bacteria were separated into four genera. Nitrosomonas species and Nitrosocystis species formed one homogenous group, and Nitrosolobus species and Nitrosospira species formed a second homogenous group in respect to their deoxyribonucleic acid GC compositions. Similarly, the nitrite-oxidizing bacteria were separated into three genera based on their morphology. The members of two of these nitrite-oxidizing genera, Nitrobacter and Nitrococcus, had similar GC compositions, but Nitrospina gracilis had a significantly lower GC composition than the members of the other two genera. Images PMID:4939767

  20. Secretion of flavins by three species of methanotrophic bacteria.

    PubMed

    Balasubramanian, Ramakrishnan; Levinson, Benjamin T; Rosenzweig, Amy C

    2010-11-01

    We detected flavins in the growth medium of the methanotrophic bacterium Methylocystis species strain M. Flavin secretion correlates with growth stage and increases under iron starvation conditions. Two other methanotrophs, Methylosinus trichosporium OB3b and Methylococcus capsulatus (Bath), secrete flavins, suggesting that flavin secretion may be common to many methanotrophic bacteria. PMID:20833792

  1. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    PubMed

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. PMID:26253685

  2. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives

    PubMed Central

    Rokop, Z. P.; Horton, M. A.

    2015-01-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific “core” members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of “noncore” and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. PMID:26253685

  3. Animal Rennets as Sources of Dairy Lactic Acid Bacteria

    PubMed Central

    Cruciata, Margherita; Sannino, Ciro; Ercolini, Danilo; Scatassa, Maria L.; De Filippis, Francesca; Mancuso, Isabella; La Storia, Antonietta; Moschetti, Giancarlo

    2014-01-01

    The microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB), Streptococcus thermophilus and some lactobacilli, mainly Lactobacillus crispatus and Lactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, as Enterococcus casseliflavus, Enterococcus faecium, Enterococcus faecalis, Enterococcus lactis, Lactobacillus delbrueckii, and Streptococcus thermophilus, while the other strains, all belonging to the genus Enterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions. PMID:24441167

  4. [Study of Rapid Species Identification of Bacteria in Water].

    PubMed

    Wang, Jiu-yue; Zhao, Nan-jing; Duan, Jing-bo; Fang, Li; Meng, De-shuo; Yang, Rui-fang; Xiao, Xue; Liu, Jian-guo; Liu, Wen-qing

    2015-09-01

    Multi-wavelength ultraviolet visible (UV-Vis) transmission spectra of bacteria combined the forward scattering and absorption properties of microbes, contains substantial information on size, shape, and the other chemical, physiological character of bacterial cells, has the bacterial species specificity, which can be applied to rapid species identification of bacterial microbes. Four different kinds of bacteria including Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Klebsiella pneumonia which were commonly existed in water were researched in this paper. Their multi-wavelength UV-Vis transmission spectra were measured and analyzed. The rapid identification method and model of bacteria were built which were based on support vector machine (SVM) and multi-wavelength UV-Vis transmission spectra of the bacteria. Using the internal cross validation based on grid search method of the training set for obtaining the best penalty factor C and the kernel parameter g, which the model needed. Established the bacteria fast identification model according to the optimal parameters and one-against-one classification method included in LibSVM. Using different experimental bacteria strains of transmission spectra as a test set of classification accuracy verification of the model, the analysis results showed that the bacterial rapid identification model built in this paper can identification the four kinds bacterial which chosen in this paper as the accuracy was 100%, and the model also can identified different subspecies of E. coli test set as the accuracy was 100%, proved the model had a good stability in identification bacterial species. In this paper, the research results of this study not only can provide a method for rapid identification and early warning of bacterial microbial in drinking water sources, but also can be used as the microbes identified in biomedical a simple, rapid and accurate means. PMID:26669181

  5. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  6. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    PubMed

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp. PMID:26924312

  7. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    PubMed

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively. PMID:22265314

  8. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”

    PubMed Central

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-01-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples. PMID:26221105

  9. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability. PMID:26263697

  10. Probiotic lactic acid bacteria - the fledgling cuckoos of the gut?

    PubMed

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, Jørgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either 'good' or 'bad'. However, a microbial society has its own system of government - 'microcracy' - and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being 'friendly' - they may instead behave like fledgling cuckoos. PMID:27235098

  11. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  12. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    PubMed

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates. PMID:26848948

  13. Diversity of endophytic bacteria in medicinally important Nepenthes species

    PubMed Central

    Bhore, Subhash J.; Komathi, Vijayan; Kandasamy, Kodi I.

    2013-01-01

    Background: Nepenthes species are used in traditional medicines to treat various health ailments. However, we do not know which types of endophytic bacteria (EB) are associated with Nepenthes spp. Objective: The objective of this study was to isolate and to identify EB associated with Nepenthes spp. Materials and Methods: Surface-sterilized leaf and stem tissues from nine Nepenthes spp. collected from Peninsular Malaysia were used to isolate EB. Isolates were identified using the polymerase chain reaction-amplified 16S ribosomal DNA (rDNA) sequence similarity based method. Results: Cultivable, 96 isolates were analyzed; and the 16S rDNA sequences analysis suggest that diverse bacterial species are associated with Nepenthes spp. Majority (55.2%) of the isolates were from Bacillus genus, and Bacillus cereus was the most dominant (14.6%) among isolates. Conclusion: Nepenthes spp. do harbor a wide array of cultivable endophytic bacteria. PMID:24082746

  14. Sialic acid acquisition in bacteria-one substrate, many transporters.

    PubMed

    Thomas, Gavin H

    2016-06-15

    The sialic acids are a family of 9-carbon sugar acids found predominantly on the cell-surface glycans of humans and other animals within the Deuterostomes and are also used in the biology of a wide range of bacteria that often live in association with these animals. For many bacteria sialic acids are simply a convenient source of food, whereas for some pathogens they are also used in immune evasion strategies. Many bacteria that use sialic acids derive them from the environment and so are dependent on sialic acid uptake. In this mini-review I will describe the discovery and characterization of bacterial sialic acids transporters, revealing that they have evolved multiple times across multiple diverse families of transporters, including the ATP-binding cassette (ABC), tripartite ATP-independent periplasmic (TRAP), major facilitator superfamily (MFS) and sodium solute symporter (SSS) transporter families. In addition there is evidence for protein-mediated transport of sialic acids across the outer membrane of Gram negative bacteria, which can be coupled to periplasmic processing of different sialic acids to the most common form, β-D-N-acetylneuraminic acid (Neu5Ac) that is most frequently taken up into the cell. PMID:27284039

  15. Effects of humic acids on the growth of bacteria

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. V.; Yakushev, A. V.; Zavgorodnyaya, Yu. A.; Byzov, B. A.; Demin, V. V.

    2010-03-01

    The influence of humic acids of different origins on the growth of bacterial cultures of different taxa isolated from the soil and the digestive tracts of earthworms ( Aporrectodea caliginosa)—habitats with contrasting conditions—was studied. More than half of the soil and intestinal isolates from the 170 tested strains grew on the humic acid of brown coal as the only carbon source. The specific growth rate of the bacteria isolated from the intestines of the earthworms was higher than that of the soil bacteria. The use of humic acids by intestinal bacteria confirms the possibility of symbiotic digestion by earthworms with the participation of bacterial symbionts. Humic acids at a concentration of 0.1 g/l stimulated the growth of the soil and intestinal bacteria strains (66 strains out of 161) on Czapek’s medium with glucose (1 g/l), probably, acting as a regulator of the cell metabolism. On the medium with the humic acid, the intestinal bacteria grew faster than the soil isolates did. The most active growth of the intestinal isolates was observed by Paenibacillus sp., Pseudomonas putida, Delftia acidovorans, Microbacterium terregens, and Aeromonas sp.; among the soil ones were the representatives of the Pseudomonas genus. A response of the bacteria to the influence of humic acids was shown at the strain level using the example of Pseudomonas representatives. The Flexom humin preparation stimulated the growth of the hydrocarbon-oxidizing Acinetobacter sp. bacteria. This effect can be used for creating a new compound with the elevated activity of bacteria that are destroyers of oil and oil products.

  16. Bacteria and Archaea in acidic environments and a key to morphological identification

    USGS Publications Warehouse

    Robbins, E.I.

    2000-01-01

    Natural and anthropogenic acidic environments are dominated by bacteria and Archaea. As many as 86 genera or species have been identified or isolated from pH <4.5 environments. This paper reviews the worldwide literature and provide tables of morphological characteristics, habitat information and a key for light microscope identification for the non-microbiologist.

  17. Comparison of phenotypic and molecular tests to identify lactic acid bacteria

    PubMed Central

    Moraes, Paula Mendonça; Perin, Luana Martins; Júnior, Abelardo Silva; Nero, Luís Augusto

    2013-01-01

    Twenty-nine lactic acid bacteria (LAB) isolates were submitted for identification using Biolog, API50CHL, 16S rDNA sequencing, and species-specific PCR reactions. The identification results were compared, and it was concluded that a polyphasic approach is necessary for proper LAB identification, being the molecular analyzes the most reliable. PMID:24159291

  18. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  19. Isolation and characterisation of lactic acid bacteria from donkey milk.

    PubMed

    Soto Del Rio, Maria de Los Dolores; Andrighetto, Christian; Dalmasso, Alessandra; Lombardi, Angiolella; Civera, Tiziana; Bottero, Maria Teresa

    2016-08-01

    During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk. PMID:27600975

  20. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    PubMed Central

    Cui, Yanhua; Hu, Tong; Qu, Xiaojun; Zhang, Lanwei; Ding, Zhongqing; Dong, Aijun

    2015-01-01

    Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research. PMID:26068451

  1. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar

    PubMed Central

    Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María

    2014-01-01

    The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties. PMID:24574887

  2. Functional genomics of lactic acid bacteria: from food to health.

    PubMed

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  3. Functional genomics of lactic acid bacteria: from food to health

    PubMed Central

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  4. Remediation of acid mine drainage with sulfate reducing bacteria

    SciTech Connect

    Hauri, J.F.; Schaider, L.A.

    2009-02-15

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

  5. Characterization of acetic acid bacteria in "traditional balsamic vinegar".

    PubMed

    Gullo, Maria; Caggia, Cinzia; De Vero, Luciana; Giudici, Paolo

    2006-02-01

    This study evaluated the glucose tolerance of acetic acid bacteria strains isolated from Traditional Balsamic Vinegar. The results showed that the greatest hurdle to acetic acid bacteria growth is the high sugar concentration, since the majority of the isolated strains are inhibited by 25% of glucose. Sugar tolerance is an important technological trait because Traditional Balsamic Vinegar is made with concentrated cooked must. On the contrary, ethanol concentration of the cooked and fermented must is less significant for acetic acid bacteria growth. A tentative identification of the isolated strains was done by 16S-23S-5S rDNA PCR/RFLP technique and the isolated strains were clustered: 32 strains belong to Gluconacetobacter xylinus group, two strains to Acetobacter pasteurianus group and one to Acetobacter aceti. PMID:16214251

  6. Adaptation of lactic acid bacteria to butanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol can be produced biologically through fermentation of various substrates by Gram-positive Clostridium species. However, to profitably produce butanol at industrial scales, new microbial biocatalysts with increased tolerance to butanol are needed. In this study we report the isolation and se...

  7. Past and future species definitions for Bacteria and Archaea.

    PubMed

    Rosselló-Móra, Ramon; Amann, Rudolf

    2015-06-01

    Species is the basic unit of biological diversity. However, among the different microbiological disciplines there is an important degree of disagreement as to what this unit may be. In this minireview, we argue that the main point of disagreement is the definition (i.e. the way species are circumscribed by means of observable characters) rather than the concept (i.e. the idea of what a species may be as a unit of biodiversity, the meaning of the patterns of recurrence observed in nature, and the why of their existence). Taxonomists have defined species by means of genetic and expressed characters that ensure the members of the unit are monophyletic, and exhibit a large degree of genomic and phenotypic coherence. The new technologies allowing high-throughput data acquisition are expected to improve future classifications significantly and will lead to database-based taxonomy centered on portable and interactive data. Future species descriptions of Bacteria and Archaea should include a high quality genome sequence of at least the type strain as an obligatory requirement, just as today an almost full-length 16S rRNA gene sequence must be provided. Serious efforts are needed in order to re-evaluate the major guidelines for standard descriptions. PMID:25747618

  8. [Partial sequence homology of FtsZ in phylogenetics analysis of lactic acid bacteria].

    PubMed

    Zhang, Bin; Dong, Xiu-zhu

    2005-10-01

    FtsZ is a structurally conserved protein, which is universal among the prokaryotes. It plays a key role in prokaryote cell division. A partial fragment of the ftsZ gene about 800bp in length was amplified and sequenced and a partial FtsZ protein phylogenetic tree for the lactic acid bacteria was constructed. By comparing the FtsZ phylogenetic tree with the 16S rDNA tree, it was shown that the two trees were similar in topology. Both trees revealed that Pediococcus spp. were closely related with L. casei group of Lactobacillus spp. , but less related with other lactic acid cocci such as Enterococcus and Streptococcus. The results also showed that the discriminative power of FtsZ was higher than that of 16S rDNA for either inter-species or inter-genus and could be a very useful tool in species identification of lactic acid bacteria. PMID:16342751

  9. Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria.

    PubMed

    Misra, Hari S; Khairnar, Nivedita P; Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Apte, Shree K

    2004-12-01

    Transgenic Escherichia coli expressing pyrroloquinoline-quinone (PQQ) synthase gene from Deinococcus radiodurans showed superior survival during Rose Bengal induced oxidative stress. Such cells showed significantly low levels of protein carbonylation as compared to non-transgenic control. In vitro, PQQ reacted with reactive oxygen species with rate constants comparable to other well known antioxidants, producing non-reactive molecular products. PQQ also protected plasmid DNA and proteins from the oxidative damage caused by gamma-irradiation in solution. The data suggest that radioprotective/oxidative stress protective ability of PQQ in bacteria may be consequent to scavenging of reactive oxygen species per se and induction of other free radical scavenging mechanism. PMID:15581610

  10. Novel Species of Non-Spore-Forming Bacteria

    NASA Technical Reports Server (NTRS)

    Briegel, Ariane; Osman, Shariff; Moissl, Christine; Hosoya,Naofumi; Venkateswaran, Kasthuri; Satomi, Masataka; Mayilraj, Shanmugam

    2008-01-01

    While cataloging cultivatable microbes from the airborne biological diversity of the atmosphere of the Regenerative Enclosed life-support Module Simulator (REMS) system at Marshall Space Flight Center, two strains that belong to one novel bacterial species were isolated. Based on 16S rRNA gene sequencing and the unique morphology and the taxonomic characteristics of these strains, it is shown that they belong to the family Intrasporangiaceae, related to the genus Tetrasphaera, with phylogenetic distances from any validly described species of the genus Tetrasphaera ranging from 96.71 to 97.76 percent. The fatty acid profile supported the affiliation of these novel strains to the genus Tetrasphaera except for the presence of higher concentrations of octadecenoic acid (C18:0) and cis-9-octadecenoic acid (C18:1), which discriminates these strains from other valid species. In addition, DNA-DNA hybridization studies indicate that these strains belong to a novel species that could be readily distinguished from its nearest neighbor, Tetrasphaera japonica AMC 5116T, with less than 20 percent DNA relatedness. Physiological and biochemical tests show few phenotypic dissimilarities, but genotypic analysis allowed the differentiation of these gelatin-liquefying strains from previously reported strains. The name Tetrasphaera remsis sp. Nov. is proposed with the type strain 3-M5-R-4(sup T) (=ATCC BAA-1496(sup T)=CIP 109413(sup T). The cells are Gram-positive, nonmotile, cocci, in tetrad arrangement and clusters. Spore formation is not observed. No species of Tetrashpaera has ever been isolated from airborne samples. Previous discoveries have come from soil and activated sludge samples. As other species of this genus have demonstrated enhanced biological phosphorus removal activity, further tests are required to determine if this newly discovered species would have bioremediation applications.

  11. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    PubMed

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  12. Effect of fermented broth from lactic acid bacteria on pathogenic bacteria proliferation.

    PubMed

    Gutiérrez, S; Martínez-Blanco, H; Rodríguez-Aparicio, L B; Ferrero, M A

    2016-04-01

    In this study, the effect that 5 fermented broths of lactic acid bacteria (LAB) strains have on the viability or proliferation and adhesion of 7 potentially pathogenic microorganisms was tested. The fermented broth from Lactococcus lactis C660 had a growth inhibitory effect on Escherichia coli K92 that reached of 31%, 19% to Pseudomonas fluorescens, and 76% to Staphylococcus epidermidis. The growth of Staph. epidermidis was negatively affected to 90% by Lc. lactis 11454 broth, whereas the growth of P. fluorescens (25%) and both species of Staphylococcus (35% to Staphylococcus aureus and 76% to Staph. epidermidis) were inhibited when they were incubated in the presence of Lactobacillus casei 393 broth. Finally, the fermented broth of Lactobacillus rhamnosus showed an inhibitory effect on growth of E. coli K92, Listeria innocua, and Staph. epidermidis reached values of 12, 28, and 76%, respectively. Staphylococcus epidermidis was the most affected strain because the effect was detected from the early stages of growth and it was completely abolished. The results of bacterial adhesion revealed that broths from Lc. lactis strains, Lactobacillus paracasei, and Lb. rhamnosus caused a loss of E. coli K92 adhesion. Bacillus cereus showed a decreased of adhesion in the presence of the broths of Lc. lactis strains and Lb. paracasei. Listeria innocua adhesion inhibition was observed in the presence of Lb. paracasei broth, and the greatest inhibitory effect was registered when this pathogenic bacterium was incubated in presence of Lc. lactis 11454 broth. With respect to the 2 Pseudomonas, we observed a slight adhesion inhibition showed by Lactobacillus rhamnosus broth against Pseudomonas putida. These results confirm that the effect caused by the different LAB assayed is also broth- and species-specific and reveal that the broth from LAB tested can be used as functional bioactive compounds to regulate the adhesion and biofilm synthesis and ultimately lead to preventing food and

  13. Inactivation of bacteria on surfaces by sprayed slightly acidic hypochlorous acid water: in vitro experiments.

    PubMed

    Hakim, Hakimullah; Alam, Md Shahin; Sangsriratanakul, Natthanan; Nakajima, Katsuhiro; Kitazawa, Minori; Ota, Mari; Toyofuku, Chiharu; Yamada, Masashi; Thammakarn, Chanathip; Shoham, Dany; Takehara, Kazuaki

    2016-08-01

    The capacity of slightly acidic hypochlorous acid water (SAHW), in both liquid and spray form, to inactivate bacteria was evaluated as a potential candidate for biosecurity enhancement in poultry production. SAHW (containing 50 or 100 ppm chlorine, pH 6) was able to inactivate Escherichia coli and Salmonella Infantis in liquid to below detectable levels (≤2.6 log10 CFU/ml) within 5 sec of exposure. In addition, SAHW antibacterial capacity was evaluated by spraying it using a nebulizer into a box containing these bacteria, which were present on the surfaces of glass plates and rayon sheets. SAHW was able to inactivate both bacterial species on the glass plates (dry condition) and rayon sheets within 5 min spraying and 5 min contact times, with the exception of 50 ppm SAHW on the rayon sheets. Furthermore, a corrosivity test determined that SAHW does not corrode metallic objects, even at the longest exposure times (83 days). Our findings demonstrate that SAHW is a good candidate for biosecurity enhancement in the poultry industry. Spraying it on the surfaces of objects, eggshells, egg incubators and transport cages could reduce the chances of contamination and disease transmission. These results augment previous findings demonstrating the competence of SAHW as an anti-viral disinfectant. PMID:27052464

  14. Inactivation of bacteria on surfaces by sprayed slightly acidic hypochlorous acid water: in vitro experiments

    PubMed Central

    HAKIM, Hakimullah; ALAM, Md. Shahin; SANGSRIRATANAKUL, Natthanan; NAKAJIMA, Katsuhiro; KITAZAWA, Minori; OTA, Mari; TOYOFUKU, Chiharu; YAMADA, Masashi; THAMMAKARN, Chanathip; SHOHAM, Dany; TAKEHARA, Kazuaki

    2016-01-01

    The capacity of slightly acidic hypochlorous acid water (SAHW), in both liquid and spray form, to inactivate bacteria was evaluated as a potential candidate for biosecurity enhancement in poultry production. SAHW (containing 50 or 100 ppm chlorine, pH 6) was able to inactivate Escherichia coli and Salmonella Infantis in liquid to below detectable levels (≤2.6 log10 CFU/ml) within 5 sec of exposure. In addition, SAHW antibacterial capacity was evaluated by spraying it using a nebulizer into a box containing these bacteria, which were present on the surfaces of glass plates and rayon sheets. SAHW was able to inactivate both bacterial species on the glass plates (dry condition) and rayon sheets within 5 min spraying and 5 min contact times, with the exception of 50 ppm SAHW on the rayon sheets. Furthermore, a corrosivity test determined that SAHW does not corrode metallic objects, even at the longest exposure times (83 days). Our findings demonstrate that SAHW is a good candidate for biosecurity enhancement in the poultry industry. Spraying it on the surfaces of objects, eggshells, egg incubators and transport cages could reduce the chances of contamination and disease transmission. These results augment previous findings demonstrating the competence of SAHW as an anti-viral disinfectant. PMID:27052464

  15. Soil Bacteria Take Up D-Amino Acids, Protect Plants

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Zhang, G.

    2011-12-01

    Recently, many groups reported D-amino acid uptake by plant roots, raising the question of whether soil D-amino acids represent a source of nitrogen or a source of toxicity. The discussion needs to be placed in the context of competition with rhizosphere bacteria. To provide this context, we followed the concentrations of D- and L-enantiomers of alanine, glutamic acid, aspartic acid, and leucine after they were added to soils in the laboratory. In all cases, the uptake of L-enantiomer began immediately and proceeded rapidly until exhausted. In contrast, the uptake of D-enantiomer required induction: an initial period of inactivity followed by rapid consumption comparable in rate to L-enantiomer. The induced nature of the D activity was confirmed by the addition of rifampicin, an mRNA synthesis inhibitor. Preventing the synthesis of new enzymes abolished soil flora's ability to consume D-amino acids, but not L-amino acids. These results suggest that inducible special racemase enzymes, which can convert D-amino acids back to their native L-forms, are widespread among soil microorganisms. This finding does not rule out the possibility that some plants may out-compete microorganisms and be able to access D-amino acids. It does suggest, however, that rhizosphere bacteria can shield plants from the toxic effect of D-amino acids.

  16. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  17. Systems solutions by lactic acid bacteria: from paradigms to practice.

    PubMed

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  18. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  19. PRODUCTION OF MANNITOL BY LACTIC ACID BACTERIA: A REVIEW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannitol, a naturally occurring polyol, can be produced by lactic acid bacteria (LAB) by fermentation. Some homofermentative LAB produce small amounts of mannitol from glucose. Several heterofermentative LAB can produce mannitol effectively from fructose. In this article, a review on mannitol pro...

  20. Make use of lactic acid bacteria in biomass to biofuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) have been widely used in dairy fermentations, nutraceuticals, and probiotic/prebiotic applications. Selected strains from the LAB could potentially be used as microbial catalysts for production of fuels and chemicals from lignocellulosic biomass. The unique traits of lac...

  1. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union. PMID:25880164

  2. Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must

    PubMed Central

    Sainz, Florencia

    2016-01-01

    We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose. PMID:27365351

  3. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    PubMed

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed. PMID:12469319

  4. Lactic Acid Bacteria – Friend or Foe? Lactic Acid Bacteria in the Production of Polysaccharides and Fuel Ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) have been widely used in the production of fermented foods and as probiotics. Alternan is a glucan with a distinctive backbone structure of alternating a-(1,6) and a-(1,3) linkages produced by the LAB Leuconostoc mesenteroides. In recent years, we have developed improved...

  5. Lactic acid bacteria as a cell factory for riboflavin production

    PubMed Central

    Thakur, Kiran; De, Sachinandan

    2015-01-01

    Summary Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin‐enriched functional foods, proper selection and exploitation of riboflavin‐producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  6. Amino acid-containing membrane lipids in bacteria.

    PubMed

    Geiger, Otto; González-Silva, Napoleón; López-Lara, Isabel M; Sohlenkamp, Christian

    2010-01-01

    In the bacterial model organism Escherichia coli only the three major membrane lipids phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin occur, all of which belong to the glycerophospholipids. The amino acid-containing phosphatidylserine is a major lipid in eukaryotic membranes but in most bacteria it occurs only as a minor biosynthetic intermediate. In some bacteria, the anionic glycerophospholipids phosphatidylglycerol and cardiolipin can be decorated with aminoacyl residues. For example, phosphatidylglycerol can be decorated with lysine, alanine, or arginine whereas in the case of cardiolipin, lysine or d-alanine modifications are known. In few bacteria, diacylglycerol-derived lipids can be substituted with lysine or homoserine. Acyl-oxyacyl lipids in which the lipidic part is amide-linked to the alpha-amino group of an amino acid are widely distributed among bacteria and ornithine-containing lipids are the most common version of this lipid type. Only few bacterial groups form glycine-containing lipids, serineglycine-containing lipids, sphingolipids, or sulfonolipids. Although many of these amino acid-containing bacterial membrane lipids are produced in response to certain stress conditions, little is known about the specific molecular functions of these lipids. PMID:19703488

  7. Lactic acid bacteria as a cell factory for riboflavin production.

    PubMed

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  8. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  9. Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards.

    PubMed

    Prieto, Carmen; Jara, Carla; Mas, Albert; Romero, Jaime

    2007-04-20

    The presence of acetic acid bacteria populations on grape surfaces from several Chilean valleys is reported. The bacteria were analysed at both the species and the strain level by molecular methods such as RFLP-PCR 16S rRNA gene, RFLP-PCR ITS 16S-23S rRNA gene regions and Arbitrary Primed (AP) PCR. Our results show that there are limited numbers of species of acetic acid bacteria in the grapes and that there is a need for an enrichment medium before plating to recover the individual colonies. In the Northernmost region analysed, the major species recovered was a non-acetic acid bacteria, Stenotrophomonas maltophila. Following the North-South axis of Chilean valleys, the observed distribution of acetic acid bacteria was zonified: Acetobacter cerevisiae was only present in the North and Gluconobacter oxydans in the South. Both species were recovered together in only one location. The influence of the grape cultivar was negligible. Variability in strains was found to be high (more than 40%) for both Acetobacteraceae species. PMID:17289199

  10. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  11. Cell wall structure and function in lactic acid bacteria.

    PubMed

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  12. Occurrence of Lactic Acid Bacteria During the Different Stages of Vinification and Conservation of Wines

    PubMed Central

    Lafon-Lafourcade, S.; Carre, E.; Ribéreau-Gayon, P.

    1983-01-01

    We showed that the growth of lactic acid bacteria during alcoholic fermentation depends on the composition of the must. We illustrated how the addition of sulfur dioxide to the must before fermentation and the temperature of storage both affect the growth of these bacteria in the wine. Whereas species of Lactobacillus and Leuconostoc mesenteroides were isolated from grapes and must, Leuconostoc oenos was the only species isolated after alcoholic fermentation. This organism was responsible for the malolactic fermentation. Isolates of this species varied in their ability to ferment pentoses and hexoses. The survival of Leuconostoc oenos in wines after malolactic fermentation depended on wine pH, alcohol concentration, SO2 concentration, and temperature of storage. PMID:16346401

  13. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    PubMed

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  14. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    PubMed

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-01

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product. PMID:26425801

  15. Intracellular pH of acid-tolerant ruminal bacteria.

    PubMed Central

    Russell, J B

    1991-01-01

    Acid-tolerant ruminal bacteria (Bacteroides ruminicola B1(4), Selenomonas ruminantium HD4, Streptococcus bovis JB1, Megasphaera elsdenii B159, and strain F) allowed their intracellular pH to decline as a function of extracellular pH and did not generate a large pH gradient across the cell membrane until the extracellular pH was low (less than 5.2). This decline in intracellular pH prevented an accumulation of volatile fatty acid anions inside the cells. PMID:1781695

  16. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  17. Phenotypic and Genotypic Characterization of Some Lactic Acid Bacteria Isolated from Bee Pollen: A Preliminary Study

    PubMed Central

    BELHADJ, Hani; HARZALLAH, Daoud; BOUAMRA, Dalila; KHENNOUF, Seddik; Dahamna, Saliha; GHADBANE, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133. PMID:24936378

  18. Phenotypic and genotypic characterization of some lactic Acid bacteria isolated from bee pollen: a preliminary study.

    PubMed

    Belhadj, Hani; Harzallah, Daoud; Bouamra, Dalila; Khennouf, Seddik; Dahamna, Saliha; Ghadbane, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133. PMID:24936378

  19. Evolution of Acetic Acid Bacteria During Fermentation and Storage of Wine

    PubMed Central

    Joyeux, A.; Lafon-Lafourcade, S.; Ribéreau-Gayon, P.

    1984-01-01

    Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH favored the development and metabolism of these species. PMID:16346581

  20. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi.

    PubMed

    Trias, Rosalia; Bañeras, Lluís; Montesinos, Emilio; Badosa, Esther

    2008-12-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot. PMID:19204894

  1. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    PubMed

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. PMID:27071053

  2. Population dynamics of acetic acid bacteria during traditional wine vinegar production.

    PubMed

    Vegas, Carlos; Mateo, Estibaliz; González, Angel; Jara, Carla; Guillamón, José Manuel; Poblet, Montse; Torija, Ma Jesús; Mas, Albert

    2010-03-31

    The population dynamics of acetic acid bacteria in traditional vinegar production was determined in two independent vinegar plants at both the species and strain level. The effect of barrels made of four different woods upon the population dynamics was also determined. Acetic acid bacteria were isolated on solid media and the species were identified by RFLP-PCR of 16S rRNA genes and confirmed by 16S rRNA gene sequencing, while strains were typed by ERIC-PCR and (GTG)(5)-rep-PCR. The most widely isolated species was Acetobacter pasteurianus, which accounted for 100% of all the isolates during most of the acetification. Gluconacetobacter europaeus only appeared at any notable level at the end of the process in oak barrels from one vinegar plant. The various A. pasteurianus strains showed a clear succession as the concentration of acetic acid increased. In both vinegar plants the relative dominance of different strains was modified as the concentrations of acetic acid increased, and strain diversity tended to reduce at the end of the process. PMID:20117853

  3. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria.

    PubMed

    Sakurama, Haruko; Kishino, Shigenobu; Mihara, Kousuke; Ando, Akinori; Kita, Keiko; Takahashi, Satomi; Shimizu, Sakayu; Ogawa, Jun

    2014-09-01

    The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ∼100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ω6 and ω9 positions in various C18 and C20 PUFAs into a trans double bond at the ω7 position. This study should serve to open up the development of novel potentially bioactive PUFAs. PMID:25002034

  4. Evaluation of lactic acid bacteria for sourdough fermentation of amaranth.

    PubMed

    Sterr, Yasemin; Weiss, Agnes; Schmidt, Herbert

    2009-11-30

    Spontaneous fermented sourdoughs prepared from five amaranth flours were investigated for the presence of lactic acid bacteria predominating the autochthonous microbiota and thus may be suitable as starter cultures. The doughs were fermented with daily back-slopping on a laboratory scale at 30 degrees C for 10 days. Each day, pH-values and total titratable acidity degrees were determined and samples were analyzed for lactic acid bacteria and yeasts by cultural methods. The identity of the strains was tracked with randomly amplified polymorphic DNA-PCR during fermentation. Taxonomic identity of the strains was revealed by sequence analysis of 16S rDNA. Sugar and organic acid profiles of fermented doughs were determined with HPLC. The strains Lactobacillus plantarum RTa12, L. sakei RTa14, and Pediococcus pentosaceus RTa11 were selected and applied as starters in laboratory scale fermentations. All strains were predominant in repeated experiments, both as single strains and in combination, regardless of the amaranth flour used. The competitiveness of the strains L. plantarum RTa12 and P. pentosaceus RTa11 was characterized in further growth experiments. Both strains facilitated fast declines of pH-values, overgrew the autochthonous microbiota, and allowed stable fermentation characteristics at different temperatures. Thus, the characterized strains may be considered as candidates for amaranth sourdough starter cultures. PMID:19783060

  5. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    PubMed

    Gerez, C L; Carbajo, M S; Rollán, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  6. Fluorometric Determination of Deoxyribonucleic Acid in Bacteria with Ethidium Bromide

    PubMed Central

    Donkersloot, J. A.; Robrish, S. A.; Krichevsky, M. I.

    1972-01-01

    A simple, sensitive, and rapid method is presented for the determination of deoxyribonucleic acid (DNA) in both gram-positive and gram-negative bacteria. It is based upon the fluorometric determination of DNA with ethidium bromide after alkaline digestion of the bacteria to hydrolyze the interfering ribonucleic acid. The assay takes less than 2 hr. Its sensitivity is at least 0.2 μg of DNA in a final solution of 4 ml and it uses commonly available filter or double monochromator fluorometers. Judicious choice of light source and filters allows an additional 10-fold increase in sensitivity with a filter fluorometer. Turbidity caused by bacteria or insoluble polysaccharides does not interfere with the fluorescence measurements. There was no significant difference between the results obtained with this method and those obtained with the indole and diphenylamine methods when these assays were applied to Escherichia coli and sucrose- or glucose-grown Streptococcus mutans. The method was also tested by determining the specific growth rate of E. coli. This new procedure should be especially useful for the determination of bacterial DNA in dilute suspensions and for the estimation of bacterial growth or DNA replication where more conventional methods are not applicable or sensitive enough. PMID:4561101

  7. Affinity sensor using 3-aminophenylboronic acid for bacteria detection.

    PubMed

    Wannapob, Rodtichoti; Kanatharana, Proespichaya; Limbut, Warakorn; Numnuam, Apon; Asawatreratanakul, Punnee; Thammakhet, Chongdee; Thavarungkul, Panote

    2010-10-15

    Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds. PMID:20801635

  8. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  9. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    PubMed

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard. PMID:25704705

  10. Screening and characterization of novel bacteriocins from lactic acid bacteria.

    PubMed

    Zendo, Takeshi

    2013-01-01

    Bacteriocins produced by lactic acid bacteria (LAB) are expected to be safe antimicrobial agents. While the best studied LAB bacteriocin, nisin A, is widely utilized as a food preservative, various novel ones are required to control undesirable bacteria more effectively. To discover novel bacteriocins at the early step of the screening process, we developed a rapid screening system that evaluates bacteriocins produced by newly isolated LAB based on their antibacterial spectra and molecular masses. By means of this system, various novel bacteriocins were identified, including a nisin variant, nisin Q, a two-peptide bacteriocin, lactococcin Q, a leaderless bacteriocin, lacticin Q, and a circular bacteriocin, lactocyclicin Q. Moreover, some LAB isolates were found to produce multiple bacteriocins. They were characterized as to their structures, mechanisms of action, and biosynthetic mechanisms. Novel LAB bacteriocins and their biosynthetic mechanisms are expected for applications such as food preservation and peptide engineering. PMID:23649268

  11. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  12. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  13. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    SciTech Connect

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  14. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    PubMed Central

    Young, Wayne; Egert, Markus; Bassett, Shalome A.; Bibiloni, Rodrigo

    2015-01-01

    Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health. PMID:25816158

  15. Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria

    PubMed Central

    2013-01-01

    Background Genome scale annotation of regulatory interactions and reconstruction of regulatory networks are the crucial problems in bacterial genomics. The Lactobacillales order of bacteria collates various microorganisms having a large economic impact, including both human and animal pathogens and strains used in the food industry. Nonetheless, no systematic genome-wide analysis of transcriptional regulation has been previously made for this taxonomic group. Results A comparative genomics approach was used for reconstruction of transcriptional regulatory networks in 30 selected genomes of lactic acid bacteria. The inferred networks comprise regulons for 102 orthologous transcription factors (TFs), including 47 novel regulons for previously uncharacterized TFs. Numerous differences between regulatory networks of the Streptococcaceae and Lactobacillaceae groups were described on several levels. The two groups are characterized by substantially different sets of TFs encoded in their genomes. Content of the inferred regulons and structure of their cognate TF binding motifs differ for many orthologous TFs between the two groups. Multiple cases of non-orthologous displacements of TFs that control specific metabolic pathways were reported. Conclusions The reconstructed regulatory networks substantially expand the existing knowledge of transcriptional regulation in lactic acid bacteria. In each of 30 studied genomes the obtained regulatory network contains on average 36 TFs and 250 target genes that are mostly involved in carbohydrate metabolism, stress response, metal homeostasis and amino acids biosynthesis. The inferred networks can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. All reconstructed regulons are captured within the Streptococcaceae and Lactobacillaceae collections in the RegPrecise database (http://regprecise.lbl.gov). PMID:23398941

  16. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided. PMID:25575804

  17. Modelling of the acid base properties of two thermophilic bacteria at different growth times

    NASA Astrophysics Data System (ADS)

    Heinrich, Hannah T. M.; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.

    2008-09-01

    Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.

  18. Phylogenetic analysis of antimicrobial lactic acid bacteria from farmed seabass Dicentrarchus labrax.

    PubMed

    Bourouni, Ouissal Chahad; El Bour, Monia; Calo-Mata, Pilar; Mraouna, Radhia; Abedellatif, Boudabous; Barros-Velàzquez, Jorge

    2012-04-01

    The use of lactic acid bacteria (LAB) in the prevention or reduction of fish diseases is receiving increasing attention. In the present study, 47 LAB strains were isolated from farmed seabass ( Dicentrarchus labrax ) and were phenotypically and phylogenetically analysed by 16S rDNA and randomly amplified polymorphic DNA - polymerase chain reaction (RAPD-PCR). Their antimicrobial effect was tested in vitro against a wide variety of pathogenic and spoilage bacteria. Most of the strains isolated were enterococci belonging to the following species: Enterococcus faecium (59%), Enterococcus faecalis (21%), Enterococcus sanguinicola (4 strains), Enterococcus mundtii (1 strain), Enterococcus pseudoavium (1 strain), and Lactococcus lactis (1 strain). An Aerococcus viridans strain was also isolated. The survey of their antimicrobial susceptibility showed that all isolates were sensitive to vancomycin and exhibited resistance to between 4 and 10 other antibiotics relevant for therapy in human and animal medicine. Different patterns of resistance were noted for skin and intestines isolates. More than 69% (32 strains) of the isolates inhibited the growth of the majority of pathogenic and spoilage bacteria tested, including Listeria monocytogenes, Staphylococcus aureus, Aeromonas hydrophila, Aeromonas salmonicida, Vibrio anguillarum, and Carnobacterium sp. To our knowledge, this is the first report of bioactive enterococcal species isolated from seabass that could potentially inhibit the undesirable bacteria found in food systems. PMID:22439634

  19. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    PubMed

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant. PMID:26489032

  20. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  1. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.

    PubMed

    van Beek, S; Priest, F G

    2000-12-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation. PMID:11097909

  2. Decarboxylation of Substituted Cinnamic Acids by Lactic Acid Bacteria Isolated during Malt Whisky Fermentation

    PubMed Central

    van Beek, Sylvie; Priest, Fergus G.

    2000-01-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation. PMID:11097909

  3. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    PubMed

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus. PMID:25802859

  4. Biodiversity and γ-Aminobutyric Acid Production by Lactic Acid Bacteria Isolated from Traditional Alpine Raw Cow's Milk Cheeses

    PubMed Central

    Nardin, Tiziana; Schiavon, Silvia; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M.

    2015-01-01

    “Nostrano-cheeses” are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus. PMID:25802859

  5. Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread.

    PubMed

    Prückler, Michael; Lorenz, Cindy; Endo, Akihito; Kraler, Manuel; Dürrschmid, Klaus; Hendriks, Karel; Soares da Silva, Francisco; Auterith, Eric; Kneifel, Wolfgang; Michlmayr, Herbert

    2015-08-01

    Despite its potential health benefits, the integration of wheat bran into the food sector is difficult due to several adverse technological and sensory properties such as bitterness and grittiness. Sourdough fermentation is a promising strategy to improve the sensory quality of bran without inducing severe changes to the bran matrix. Therefore, identification of species/strains with potential for industrial sourdough fermentations is important. We compared the effects of different representatives of species of lactic acid bacteria (LAB) on wheat bran. Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus brevis, Lactobacillus sanfranciscensis and Fructobacillus fructosus produced highly individual fermentation patterns as judged from carbohydrate consumption and organic acid production. Interestingly, fructose was released during all bran fermentations and possibly influenced the fermentation profiles of obligately heterofermentative species to varying degrees. Except for the reduction of ferulic acid by L. plantarum and L. pentosus, analyses of phenolic compounds and alkylresorcinols suggested that only minor changes thereof were induced by the LAB metabolism. Sensory analysis of breads baked with fermented bran did not reveal significant differences regarding perceived bitterness and aftertaste. We conclude that in addition to more traditionally used sourdough species such as L. sanfranciscensis and L. brevis, also facultatively heterofermentative species such as L. plantarum and L. pentosus possess potential for industrial wheat bran fermentations and should be considered in further investigations. PMID:25846933

  6. Protection of live bacteria from bile acid toxicity using bile acid adsorbing resins.

    PubMed

    Edwards, Alexander D; Slater, Nigel K H

    2009-06-12

    We previously demonstrated that a dry, room temperature stable formulation of a live bacterial vaccine was highly susceptible to bile, and suggested that this will lead to significant loss of viability of any live bacterial formulation released into the intestine using an enteric coating or capsule. We found that bile and acid tolerance is very rapidly recovered after rehydration with buffer or water, raising the possibility that rehydration in the absence of bile prior to release into the intestine might solve the problem of bile toxicity to dried cells. We describe here a novel formulation that combines extensively studied bile acid adsorbent resins with the dried bacteria, to temporarily adsorb bile acids and allow rehydration and recovery of bile resistance of bacteria in the intestine before release. Tablets containing the bile acid adsorbent cholestyramine release 250-fold more live bacteria when dissolved in a bile solution, compared to control tablets without cholestyramine or with a control resin that does not bind bile acids. We propose that a simple enteric coated oral dosage form containing bile acid adsorbent resins will allow improved live bacterial delivery to the intestine via the oral route, a major step towards room temperature stable, easily administered and distributed vaccine pills and other bacterial therapeutics. PMID:19490986

  7. ADANSONIAN ANALYSIS AND DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF SOME GRAM-NEGATIVE BACTERIA

    PubMed Central

    Colwell, R. R.; Mandel, M.

    1964-01-01

    Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of some gram-negative bacteria. J. Bacteriol. 87:1412–1422. 1964.—The deoxyribonucleic acid (DNA) base compositions and S values for a minimum of 134 coded properties were determined for representative cultures of the genera Pseudomonas, Xanthomonas, Aeromonas, Vibrio, Aerobacter, Escherichia, Alcaligenes, and Flavobacterium. Those cultures having a high degree of similarity by the criterion of numerical taxonomy were found to have similar DNA base compositions. The relative affinities of clusters of cultures suggest taxonomic relations. Eleven species of Xanthomonas might be a single species, and V. metschnikovii was shown to be more closely related to enteric bacteria than to other vibrios which, in turn, were found to be like pseudomonads. Aeromonas was found to be intermediate in similarity to enterics and pseudomonads and divisible into at least two, but possibly three, species. F. aquatile was unlike any of the other organisms studied, and its DNA also differed greatly in composition from other representatives of the genus. PMID:14188722

  8. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  9. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality.

    PubMed

    Mrvčić, Jasna; Stanzer, Damir; Solić, Ema; Stehlik-Tomas, Vesna

    2012-09-01

    Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality. This paper provides an overview of results obtained by LAB application in toxic metal ions removing from drinking water, food and human body, as well as production of functional foods and nutraceutics. The biosorption abilities of LAB towards metal ions are emphasized. The binding mechanisms, as well as the parameters influencing the passive and active uptake are analyzed. PMID:22806724

  10. Application of molecular methods for routine identification of acetic acid bacteria.

    PubMed

    González, Angel; Guillamón, José Manuel; Mas, Albert; Poblet, Montse

    2006-04-15

    Recently many new species of Acetic acid Bacteria have been described. The description and identification as new species was based on molecular techniques (sequencing of the 16S rRNA gene, DNA base ratio (% GC) determinations and DNA-DNA hybridisation) and phenotypic characterization. In the present paper, we propose a fast and reliable method for the identification most of the species currently described based on the RFLP-PCR of the 16S rRNA. According to the proposed protocol, 1 species can be identified with the use of a single enzyme, 13 with a combination of 2 enzymes, 2 species with a combination of 3 enzymes, 2 with a combination of 4 enzymes. To differentiate 5 more species RFLP-PCR of the ITS was also needed, after using 3 enzymes. Finally, a pair of species (Acetobacter pasteurianus and Acetobacter pomorum) could not be distinguished with the proposed method. However, doubts can be raised about their differentiation as separate species. Keeping these limitations in mind, the method is fast and reliable, allowing the processing of large number of samples in relatively short periods of time (less than 24 h after the isolation). PMID:16386324

  11. SPECIES-SPECIFIC DETECTION OF HYDROCARBON UTILIZING BACTERIA. (R825810)

    EPA Science Inventory

    Rapid detection and quantitative assessment of specific microbial species in environmental samples is desirable for monitoring changes in ecosystems and for tracking natural or introduced microbial species during bioremediation of contaminated sites. In the interests of develo...

  12. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    PubMed

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock. PMID:27108171

  13. Immunomodulation of monocytes by probiotic and selected lactic Acid bacteria.

    PubMed

    Jensen, Hanne; Drømtorp, Signe Marie; Axelsson, Lars; Grimmer, Stine

    2015-03-01

    Some lactic acid bacteria (LAB), especially bacteria belonging to the genus Lactobacillus, are recognized as common inhabitants of the human gastrointestinal tract and have received considerable attention in the last decades due to their postulated health-promoting effects. LAB and probiotic bacteria can modulate the host immune response. However, much is unknown about the mediators and mechanisms responsible for their immunological effect. Here, we present a study using cytokine secretion from the monocytic cell line THP-1 and NF-κB activation in the monocytic cell line U937-3xkB-LUC to elucidate immune stimulating abilities of LAB in vitro. In this study, we investigate both commercially available and potential probiotic LAB strains, and the role of putative surface proteins of L. reuteri using mutants. L. reuteri strains induced the highest cytokine secretion and the highest NF-κB activation, whereas L. plantarum strains and L. rhamnosus GG were low inducers/activators. One of the putative L. reuteri surface proteins, Hmpref0536_10802, appeared to be of importance for the stimulation of THP-1 cells and the activation of NF-κB in U937-3xkB-LUC cells. Live and UV-inactivated preparations resulted in different responses for two of the strains investigated. Our results add to the complexity in the interaction between LAB and human cells and suggest the possible involvement of secreted pro- and anti-inflammatory mediators of LAB. It is likely that it is the sum of bacterial surface proteins and bacterial metabolites and/or secreted proteins that induce cytokine secretion in THP-1 cells and activate NF-κB in U937-3xkB-LUC cells in this study. PMID:25331988

  14. Lactic Acid Bacteria Convert Human Fibroblasts to Multipotent Cells

    PubMed Central

    Ohta, Kunimasa; Kawano, Rie; Ito, Naofumi

    2012-01-01

    The human gastrointestinal tract is colonized by a vast community of symbionts and commensals. Lactic acid bacteria (LAB) form a group of related, low-GC-content, gram-positive bacteria that are considered to offer a number of probiotic benefits to general health. While the role of LAB in gastrointestinal microecology has been the subject of extensive study, little is known about how commensal prokaryotic organisms directly influence eukaryotic cells. Here, we demonstrate the generation of multipotential cells from adult human dermal fibroblast cells by incorporating LAB. LAB-incorporated cell clusters are similar to embryoid bodies derived from embryonic stem cells and can differentiate into endodermal, mesodermal, and ectodermal cells in vivo and in vitro. LAB-incorporated cell clusters express a set of genes associated with multipotency, and microarray analysis indicates a remarkable increase of NANOG, a multipotency marker, and a notable decrease in HOX gene expression in LAB-incorporated cells. During the cell culture, the LAB-incorporated cell clusters stop cell division and start to express early senescence markers without cell death. Thus, LAB-incorporated cell clusters have potentially wide-ranging implications for cell generation, reprogramming, and cell-based therapy. PMID:23300571

  15. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.

    PubMed

    Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-04-01

    Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol. PMID:20180114

  16. Microbial Transformation of Dicarboxylic Acids by Airborne Bacteria

    NASA Astrophysics Data System (ADS)

    Cote, V.; Ariya, P.

    2004-05-01

    Organic aerosols are assumed to be key players in driving climatic changes and can cause health problems for human. Dicarboxylic acids (DCA) include a large fraction of identified important class of organic aerosols. In addition to direct sources, DCA are partly formed as the result of ozonolysis of terpenes and cyclic alkenes. Previous works in our laboratory show that airborne fungi collected from urban and suburban air play an important role in the transformation of severals organic aerosols such as DCA. Our present study focuses on understanding the potential chemical transformation induced by airborne bacteria and on identification of the transformation products. Airborne bacteria have been collected using a biosampler and cultivated on a solid media. Each bacterial colony is being tested by HPLC for their ability to transform DCA in liquid cultures. Also, GC-MS, SPME and NMR are being used to identify the metabolites generated from the transformation. We will present our preliminary results and we will discuss the application of bacterial activities on the chemical transformation of organics in atmosphere.

  17. Variations in prebiotic oligosaccharide fermentation by intestinal lactic acid bacteria.

    PubMed

    Endo, Akihito; Nakamura, Saki; Konishi, Kenta; Nakagawa, Junichi; Tochio, Takumi

    2016-01-01

    Prebiotic oligosaccharides confer health benefits on the host by modulating the gut microbiota. Intestinal lactic acid bacteria (LAB) are potential targets of prebiotics; however, the metabolism of oligosaccharides by LAB has not been fully characterized. Here, we studied the metabolism of eight oligosaccharides by 19 strains of intestinal LAB. Among the eight oligosaccharides used, 1-kestose, lactosucrose and galactooligosaccharides (GOSs) led to the greatest increases in the numbers of the strains tested. However, mono- and disaccharides accounted for more than half of the GOSs used, and several strains only metabolized the mono- and di-saccharides in GOSs. End product profiles indicated that the amounts of lactate produced were generally consistent with the bacterial growth recorded. Oligosaccharide profiling revealed the interesting metabolic manner in Lactobacillus paracasei strains, which metabolized all oligosaccharides, but left sucrose when cultured with fructooligosaccharides. The present study clearly indicated that the prebiotic potential of each oligosaccharide differs. PMID:26888650

  18. Glycerol Ester Hydrolase Activity of Lactic Acid Bacteria

    PubMed Central

    Oterholm, Anders; Ordal, Z. John; Witter, Lloyd D.

    1968-01-01

    Seventeen strains of lactic acid bacteria were assayed for their glycerol ester hydrolase activity by using an improved agar-well technique, and eight strains by determining the activity in cell-free extracts using a pH-stat procedure. All cultures tested showed activity and hydrolyzed tributyrin more actively than they did tricaproin. The cell extract studies demonstrated that the cells contained intracellular esterases and lipases. The culture supernatant fluid was without activity. The lipase and the esterase differed in their relative activity to each other in the different extracts and in the ease by which they could be freed from the cellular debris. It is suggested that the lipase of these organisms is an endoenzyme and the esterase an ectoenzyme. PMID:5649866

  19. Lactic acid bacteria as adjuvants for sublingual allergy vaccines.

    PubMed

    Van Overtvelt, Laurence; Moussu, Helene; Horiot, Stéphane; Samson, Sandrine; Lombardi, Vincent; Mascarell, Laurent; van de Moer, Ariane; Bourdet-Sicard, Raphaëlle; Moingeon, Philippe

    2010-04-01

    We compared immunomodulatory properties of 11 strains of lactic acid bacteria as well as their capacity to enhance sublingual immunotherapy efficacy in a murine asthma model. Two types of bacterial strains were identified, including: (i) potent inducers of IL-12p70 and IL-10 in dendritic cells, supporting IFN-gamma and IL-10 production in CD4+ T cells such as Lactobacillus helveticus; (ii) pure Th1 inducers such as L. casei. Sublingual administration in ovalbumin-sensitized mice of L. helveticus, but not L. casei, reduced airways hyperresponsiveness, bronchial inflammation and proliferation of specific T cells in cervical lymph nodes. Thus, probiotics acting as a Th1/possibly Treg, but not Th1 adjuvant, potentiate tolerance induction via the sublingual route. PMID:20175969

  20. [Microevolution of lactic acid bacteria--A review].

    PubMed

    Song, Yuqin; Sun, Zhihong; Zhang, Heping

    2015-11-01

    Lactic acid bacteria (LAB) are important organisms in the food industry. The study of microevolution of LAB is helpful in understanding of the biological function and mechanism of these microbes. With the development of molecular biology, a large number of technical means have emerged, such as multilocus sequence typing ( MLST) and whole-genome re-sequencing, which enable the study of the phylogenetic and population evolution of LAB at genetic level. MLST has already been widely used on microevolution research of LAB to analyze the genetic diversity and population structure. Moreover, recently, as a result of the declining in sequencing cost, the advantage of whole genome sequencing technology is increasingly highlighted. This article elucidates the principle, methods and scientific significance of researching LAB microevolution, as well as introduces the application of whole genome sequencing in these aspects to provide new insights into further research. PMID:26915217

  1. Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns

    NASA Astrophysics Data System (ADS)

    Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina

    2012-01-01

    In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.

  2. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment.

    PubMed

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta; Ercolini, Danilo

    2015-11-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality. PMID:26341209

  3. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment

    PubMed Central

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta

    2015-01-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality. PMID:26341209

  4. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    PubMed

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes. PMID:27052717

  5. Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil.

    PubMed

    Rice, J F; Menn, F M; Hay, A G; Sanseverino, J; Sayler, G S

    2005-12-01

    Agent Orange contaminated soils were utilized in direct enrichment culture studies to isolate 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4-dichlorophenoxyacetic acid (2,4-D) mineralizing bacteria. Two bacterial cultures able to grow at the expense of 2,4,5-T and/or 2,4-D were isolated. The 2,4,5-T degrading culture was a mixed culture containing two bacteria, Burkholderia species strain JR7B2 and Burkholderia species strain JR7B3. JR7B3 was able to metabolize 2,4,5-T as the sole source of carbon and energy, and demonstrated the ability to affect metabolism of 2,4-D to a lesser degree. Strain JR7B3 was able to mineralize 2,4,5-T in pure culture and utilized 2,4,5-T in the presence of 0.01% yeast extract. Subsequent characterization of the 2,4-D degrading culture showed that one bacterium, Burkholderia species strain JRB1, was able to utilize 2,4-D as a sole carbon and energy source in pure culture. Polymerase chain reaction (PCR) experiments utilizing known genetic sequences from other 2,4-D and 2,4,5-T degrading bacteria demonstrated that these organisms contain gene sequences similar to tfdA, B, C, E, and R (Strain JRB1) and the tftA, C, and E genes (Strain JR7B3). Expression analysis confirmed that tftA, C, and E and tfdA, B, and C were transcribed during 2,4,5-T and 2,4-D dependent growth, respectively. The results indicate a strong selective pressure for 2,4,5-T utilizing strains under field condition. PMID:15865343

  6. Transcription factors that defend bacteria against reactive oxygen species

    PubMed Central

    Imlay, James A.

    2015-01-01

    Bacteria live in a toxic world in which their competitors excrete hydrogen peroxide or superoxide-generating redox-cycling compounds. They protect themselves by activating regulons controlled by the OxyR, PerR, and SoxR transcription factors. OxyR and PerR sense peroxide when it oxidizes key thiolate or iron moieties, respectively; they then induce overlapping sets of proteins that defend their vulnerable metalloenzymes. An additional role for OxyR in detecting electrophilic compounds is possible. In some non-enteric bacteria SoxR appears to control the synthesis and export of redox-cycling compounds, whereas in the enteric bacteria it defends the cell against the same agents. When these compounds oxidize its iron-sulfur cluster, SoxR induces proteins that exclude, excrete, or modify them. It also induces enzymes that defend the cell against the superoxide that such compounds make. Recent work has brought new insight to the biochemistry and physiology of these responses, and comparative studies have clarified their evolutionary histories. PMID:26070785

  7. Changes in oxidation-reduction potential during milk fermentation by wild lactic acid bacteria.

    PubMed

    Morandi, Stefano; Silvetti, Tiziana; Tamburini, Alberto; Brasca, Milena

    2016-08-01

    Oxidation-reduction potential (E h) is a fundamental physicochemical property of lactic acid bacteria that determines the microenvironment during the cheese manufacture and ripening. For this reason the E h is of growing interest in dairy research and the dairy industry. The objective of the study was to perform a comprehensive study on the reduction activity of wild lactic acid bacteria strains collected in different periods (from 1960 to 2012) from Italian dairy products. A total of 709 strains belonging to Lactococcus lactis, Enterococcus durans, E. faecium, E. faecalis and Streptococcus thermophilus species were studied for their reduction activity in milk. Kinetics of milk reduction were characterised by the minimum redox potential (E h7) and time of reaching E h7 (t min), the maximum difference between two measures (Δmax) and the time at which these maximum differences occurred (t*). Broad diversity in kinetic parameters was observed at both species and strain levels. E. faecalis and L. lactis resulted to be the most reducing species, while S. thermophilus was characterised by the lowest reducing power while the greatest heterogeneity was pointed out among E. durans and E. faecium strains. Considering the period of collection (1960-2012) we observed that the more recently isolated strains generally showed less reducing activity. This trend was particularly evident for the species E. durans, E. faecium and L. lactis while an opposite trend was observed in E. faecalis species. Data reported in this research provide new information for a deeper understanding of redox potential changes during milk fermentation due to bacterial growth. Gain knowledge of the redox potential of the LAB cultures could allow a better control and standardisation of cheesemaking process. PMID:27600976

  8. Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia).

    PubMed

    Omar, N B; Ampe, F; Raimbault, M; Guyot, J P; Tailliez, P

    2000-06-01

    Lactic acid bacteria and more particularly lactobacilli and Leuconostoc, are widely found in a wide variety of traditional fermented foods of tropical countries, made with cereals, tubers, meat or fish. These products represent a source of bacterial diversity that cannot be accurately analysed using classical phenotypic and biochemical tests. In the present work, the identification and the molecular diversity of lactic acid bacteria isolated from cassava sour starch fermentation were assessed by using a combination of complementary molecular methods: Randomly Amplified Polymorphic DNA fingerprinting (RAPD), plasmid profiling, hybridization using rRNA phylogenetic probes and partial 16S rDNA sequencing. The results revealed a large diversity of bacterial species (Lb. manihotivorans, Lb. plantarum, Lb. casei, Lb. hilgardii, Lb. buchneri, Lb. fermentum, Ln. mesenteroides and Pediococcus sp.). However, the most frequently isolated species were Lb. plantarum and Lb. manihotivorans. The RAPD analysis revealed a large molecular diversity between Lb. manihotivorans or Lb. plantarum strains. These results, observed on a rather limited number of samples, reveal that significant bacterial diversity is generated in traditional cassava sour starch fermentations. We propose that the presence of the amylolytic Lb. manihotivorans strains could have a role in sour starch processing. PMID:10930082

  9. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.

    PubMed

    Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja

    2011-09-01

    Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries. PMID:21161323

  10. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting.

    PubMed

    Andrés-Barrao, Cristina; Benagli, Cinzia; Chappuis, Malou; Ortega Pérez, Ruben; Tonolla, Mauro; Barja, François

    2013-03-01

    Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species. PMID:23182036

  11. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands.

    PubMed

    Valera, Maria José; Laich, Federico; González, Sara S; Torija, Maria Jesús; Mateo, Estibaliz; Mas, Albert

    2011-11-15

    The identification of acetic acid bacteria (AAB) from sound grapes from the Canary Islands is reported in the present study. No direct recovery of bacteria was possible in the most commonly used medium, so microvinifications were performed on grapes from Tenerife, La Palma and Lanzarote islands. Up to 396 AAB were isolated from those microvinifications and identified by 16S rRNA gene sequencing and phylogenetic analysis. With this method, Acetobacter pasteurianus, Acetobacter tropicalis, Gluconobacter japonicus and Gluconacetobacter saccharivorans were identified. However, no discrimination between the closely related species Acetobacter malorum and Acetobacter cerevisiae was possible. As previously described, 16S-23S rRNA gene internal transcribed spacer (ITS) region phylogenetic analysis was required to classify isolates as one of those species. These two species were the most frequently occurring, accounting for more than 60% of the isolates. For typing the AAB isolates, both the Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR and (GTG)5-PCR techniques gave similar resolution. A total of 60 profiles were identified. Thirteen of these profiles were found in more than one vineyard, and only one profile was found on two different islands (Tenerife and La Palma). PMID:21903289

  12. Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases.

    PubMed

    Yang, Bo; Chen, Haiqin; Song, Yuanda; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2013-01-01

    The 67 kDa myosin-cross-reactive antigen (MCRA) is a member of the MCRA family of proteins present in a wide range of bacteria and was predicted to have fatty acid isomerase function. We have now characterised the catalytic activity of MCRAs from four LAB stains, including Lactobacillus rhamnosus LGG, L. plantarum ST-III, L. acidophilus NCFM and Bifidobacterium animalis subsp. lactis BB-12. MCRA genes from these strains were cloned and expressed in Escherichia coli, and the recombinant protein function was analysed with lipid profiles by GC-MS. The four MCRAs catalysed the conversion of linoleic acid and oleic acid to their respective 10-hydroxy derivatives, which suggests that MCRA proteins catalyse the first step in conjugated linoleic acid production. This is the first report of MCRA from L. rhamnosus with such catalytic function. PMID:22955678

  13. Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens

    PubMed Central

    Manzoor, Asma; Ul-Haq, Ikram; Baig, Shahjhan; Qazi, Javed Iqbal; Seratlic, Sanja

    2016-01-01

    Background: Antibiotic resistance represents a serious global health threat to public health, so infections such as pneumonia and urinary tract infection (UTI) are becoming harder to treat. Therefore, it is necessary to develop an action plan to restrain the problem of antibiotic resistance. One approach in UTI control could be the use of lactobacilli because these indigenous inhabitants in human intestine have been found to play an important role in protecting the host from various infections. Objectives: We sought to check the efficacy of locally isolated Lactobacillus species to eradicate antibiotic-resistant pathogenic bacteria causing UTI. Materials and Methods: Lactic acid bacteria isolated from spoiled fruits and vegetables and grown in MRS medium were screened against multi-drug-resistant Candida albicans, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus fecalis. Results: Fifty-four lactic acid bacteria were isolated from spoiled fruits and vegetables, of which 11 Gram-positive and catalase-negative Lactobacillus isolates were identified by carbohydrate assimilation profiles as Lactobacillus acidophilus, L. paracasei, L. delbrueckii, L. casei, L. helveticus, L. brevis, L. salivarius, L. fermentum, L. rhamnosus, L. animalis, and L. plantarum. The latter organism had the highest abundance of all the samples, so its isolates were also verified through 16S rRNA gene sequencing. The isolated Lactobacilli were screened against multi-drug-resistant uropathogens, viz. C. albicans, P. aeruginosa, K. pneumoniae, E. fecalis, and E. coli. The growth inhibition zone (GIZ) was over 10 mm against all the uropathogenic test organisms, where L. fermentum and L. plantarum strains demonstrated remarkable inhibitory activities against E. coli and E. faecalis, with a GIZ up to 28 mm. The susceptibility test to 16 antibiotics showed multidrug resistance (3 to 5 antibiotics) among all the tested uropathogens. Conclusions: The obtained results

  14. Phytic acid degrading lactic acid bacteria in tef-injera fermentation.

    PubMed

    Fischer, Maren M; Egli, Ines M; Aeberli, Isabelle; Hurrell, Richard F; Meile, Leo

    2014-11-01

    Ethiopian injera, a soft pancake, baked from fermented batter, is preferentially prepared from tef (Eragrostis tef) flour. The phytic acid (PA) content of tef is high and is only partly degraded during the fermentation step. PA chelates with iron and zinc in the human digestive tract and strongly inhibits their absorption. With the aim to formulate a starter culture that would substantially degrade PA during injera preparation, we assessed the potential of microorganisms isolated from Ethiopian household-tef fermentations to degrade PA. Lactic acid bacteria (LAB) were found to be among the dominating microorganisms. Seventy-six isolates from thirteen different tef fermentations were analyzed for phytase activity and thirteen different isolates of seven different species were detected to be positive in a phytase screening assay. In 20-mL model tef fermentations, out of these thirteen isolates, the use of Lactobacillus (L.) buchneri strain MF58 and Pediococcus pentosaceus strain MF35 resulted in lowest PA contents in the fermented tef of 41% and 42%, respectively of its initial content. In comparison 59% of PA remained when spontaneously fermented. Full scale tef fermentation (0.6L) and injera production using L. buchneri MF58 as culture additive decreased PA in cooked injera from 1.05 to 0.34±0.02 g/100 g, representing a degradation of 68% compared to 42% in injera from non-inoculated traditional fermentation. The visual appearance of the pancakes was similar. The final molar ratios of PA to iron of 4 and to zinc of 12 achieved with L. buchneri MF58 were decreased by ca. 50% compared to the traditional fermentation. In conclusion, selected LAB strains in tef fermentations can degrade PA, with L. buchneri MF58 displaying the highest PA degrading potential. The 68% PA degradation achieved by the application of L. buchneri MF58 would be expected to improve human zinc absorption from tef-injera, but further PA degradation is probably necessary if iron absorption has to

  15. Metabolism of Benzoic Acid by Bacteria: 3,5- Cyclohexadiene-1,2-Diol-1-Carboxylic Acid Is an Intermediate in the Formation of Catechol

    PubMed Central

    Reiner, Albey M.

    1971-01-01

    3,5-Cyclohexadiene-1,2-diol-1-carboxylic acid (1,2-dihydro-1,2-dihydroxy-benzoic acid) is converted enzymatically to catechol in cell extracts from Acinetobacter, Alcaligenes, Azotobacter, and three Pseudomonas species. This enzymatic activity is present only in cultures which have been grown in the presence of benzoic acid, and which convert benzoic acid to catechol rather than to protocatechuic acid. The reaction is assayed by the concomitant formation of reduced nicotinamide adenine dinucleotide from nicotinamide adenine dinucleotide. The conversion of [14C]benzoic acid to [14C]dihydrodihydroxybenzoic acid is demonstrated in cell extracts. A scheme for the conversion of benzoic acid to catechol in bacteria is presented, involving the formation of dihydrodihydroxybenzoic acid from benzoic acid by a dioxygenase which is unstable in cell extracts, followed by the dehydrogenation and decarboxylation of dihydrodihydroxybenzoic acid to catechol by a previously undescribed enzyme. Experiments with anthranilic acid and phthalic acid suggest that dihydrodihydroxybenzoic acid is a metabolite unique to benzoic acid metabolism. Two new methods for assaying benzoic acid dioxygenase are suggested. PMID:4399343

  16. Frequency of bacteria, Candida and malassezia species in balanoposthitis.

    PubMed

    Alsterholm, Mikael; Flytström, Ingela; Leifsdottir, Ragna; Faergemann, Jan; Bergbrant, Ing-Marie

    2008-01-01

    Balanoposthitis is an inflammatory disorder of the prepuce and glans penis. Microbes involved in balanoposthitis have been investigated, but no single study has covered the growth of both bacteria, Candida and Malassezia. We report here the prevalence of these microbes in 100 patients with balanoposthitis and in 26 control patients. Among patients with balanoposthitis there was a significantly higher frequency of positive cultures than in the control group (59% and 35%, respectively, p<0.05). In the balanoposthitis group Staphylococcus aureus was found in 19%, group B streptococci in 9%, Candida albicans in 18% and Malassezia in 23% of patients. In the control group S. aureus was not found at all, whereas C. albicans was found in 7.7% and Malassezia in 23% of patients. Different microbes did not correspond with distinct clinical manifestations. In summary, we report increased frequency of microbes, specifically S. aureus, in the area of the prepuce and glans penis in balanoposthitis. PMID:18709300

  17. Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation.

    PubMed

    Zhang, Q; Li, X J; Zhao, M M; Yu, Z

    2014-10-01

    Five LAB strains were evaluated using the acid production ability test, morphological observation, Gram staining, physiological, biochemical and acid tolerance tests. All five strains (LP1, LP2, LP3, LC1 and LC2) grew at pH 4·0, and LP1 grew at 15°C. Strains LP1, LP2 and LP3 were identified as Lactobacillus plantarum, whereas LC1 and LC2 were classified as Lactobacillus casei by sequencing 16S rDNA. The five isolated strains and two commercial inoculants (PS and CL) were added to native grass and Leymus chinensis (Trin.) Tzvel. for ensiling. All five isolated strains decreased the pH and ammonia nitrogen content, increased the lactic acid content and LP1, LP2 and LP3 increased the acetic content and lactic/acetic acid ratio of L. chinensis silage significantly. The five isolated strains and two commercial inoculants decreased the butyric acid content of the native grass silage. LP2 treatment had lower butyric acid content and ammonia nitrogen content than the other treatments. The five isolated strains improved the quality of L. chinensis silage. The five isolated strains and the two commercial inoculants were not effective in improving the fermentation quality of the native grass silage, but LP2 performed better comparatively. Significance and impact of the study: Leymus chinensis is an important grass in China and Russia, being the primary grass of the short grassland 'steppe' regions of central Asia. However, it has been difficult to make high-quality silage of this species because of low concentration of water-soluble carbohydrates (WSC). Isolating and evaluating lactic acid bacteria strains will be helpful for improving the silage quality of this extensively grown species. PMID:24888497

  18. Microbial Quality and Direct PCR Identification of Lactic Acid Bacteria and Nonpathogenic Staphylococci from Artisanal Low-Acid Sausages

    PubMed Central

    Aymerich, T.; Martín, B.; Garriga, M.; Hugas, M.

    2003-01-01

    Detection of six species of lactic acid bacteria and six species of gram-positive catalase-positive cocci from low-acid fermented sausages (fuets and chorizos) was assessed by species-specific PCR. Without enrichment, Lactobacillus sakei and Lactobacillus curvatus were detected in 11.8% of the samples, and Lactobacillus plantarum and Staphylococcus xylosus were detected in 17.6%. Enriched samples allowed the detection of L. sakei and S. xylosus in all of the samples (100%) and of Enterococcus faecium in 11.8% of the sausages. The percentages of L. curvatus, L. plantarum, Staphylococcus carnosus, and Staphylococcus epidermidis varied depending on the sausage type. L. curvatus was detected in 80% of fuets and in 57% of chorizos. L. plantarum was found in 50% of fuets and 100% of chorizos. S. epidermidis was detected in only 11.8% of fuets, and S. carnosus was detected in only 5.9% of chorizos. Lactococcus lactis, Staphylococcus warneri, and Staphylococcus simulans were not detected in any sausage type. From a microbiological point of view, 70.6% of the samples could be considered of high quality, as they had low counts of Enterobacteriaceae and did not contain any of the food-borne pathogens assayed. PMID:12902246

  19. Activity of capryloyl collagenic acid against bacteria involved in acne.

    PubMed

    Fourniat, J; Bourlioux, P

    1989-12-01

    Synopsis Capryloyl collagenic acid (Lipacide C8Co) has similar bacteriostatic activity in vitro to that of benzoyl peroxide towards the bacteria found in acne lesions (Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes) (MIC between 1 and 4 mg ml(-1) for C8Co, and between 0.5 and 5 mg ml(-1) for benzoyl peroxide). The presence of Emulgine M8 did not affect the bacteriostatic activity of C8Co. A 4% w/v solution of C8Co (incorporating Emulgine M8) fulfilled the criteria for an antiseptic preparation as laid down by the French Pharmacopoeia (10th Edition), and had a spectrum 5 bactericidal activity according to the French Standard AFNOR NF T 72-151. The excellent cutaneous tolerance of capryloyl collagenic acid would indicate that an aqueous solution might be of value for topical treatment of the bacterial component of acne. Résumé Activité antibactérienne de l'acide capryloyl-collagénique vis à vis des bactéries impliquées dans l'etiologie de l'acné L'acide capryloyl-collagénique (Lipacide C8Co) et le peroxyde de benzoyle présentent une activité bactériostatique in-vitroéquivalente vis à vis des espèces bactériennes retrouvées au niveau des lésions acnéiques (Staphylococcus aureus, S. epidermidis et Propionibacterium acnes) (CMI comprise entre 1 et 4 mg ml(-1) pour le lipoaminoacide, et 0,5 et 5 mg ml(-1) pour le peroxyde de benzoyle). La mise en solution aqueuse de l'acide capryloyl-collagénique en présence d'Emulgine M8 ne modifie pas son activité bactériostatique. Une telle solution, à 4% m/V d'acide capryloyl-collagénique et 5% m/V d'Emulgine M8, satisfait à l'essai d'activité des préparations antiseptiques décrit à la Pharmacopée Française (Xème Ed.) (concentration minimale antiseptique: 10% v/V, pour un temps de contact de 5 min à 32 degrees C entre les germes tests et la solution diluée en eau distillée), et posséde une activité bactéricide antiseptique spectre 5 conforme à la norme AFNOR NF T

  20. Screening of Immune-Active Lactic Acid Bacteria

    PubMed Central

    Hwang, E-Nam; Kang, Sang-Mo; Kim, Mi-Jung

    2015-01-01

    The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life. PMID:26761877

  1. Co-culture-inducible bacteriocin production in lactic acid bacteria.

    PubMed

    Chanos, Panagiotis; Mygind, Tina

    2016-05-01

    It is common knowledge that microorganisms have capabilities, like the production of antimicrobial compounds, which do not normally appear in ideal laboratory conditions. Common antimicrobial discovery techniques require the isolation of monocultures and their individual screening against target microorganisms. One strategy to achieve expression of otherwise hidden antimicrobials is induction by co-cultures. In the area of bacteriocin-producing lactic acid bacteria, there has been some research focusing into the characteristics of co-culture-inducible bacteriocin production and particularly the molecular mechanism(s) of such interactions. No clear relationship has been seen between bacteriocin-inducing and bacteriocin-producing microorganisms. The three-component regulatory system seems to be playing a central role in the induction, but inducing compounds have not been identified or characterized. However, the presence of the universal messenger molecule autoinducer-2 has been associated in some cases with the co-culture-inducible bacteriocin phenotype and it may play the role in the additional regulation of the three-component regulatory system. Understanding the mechanisms of induction would facilitate the development of strategies for screening and development of co-culture bacteriocin-producing systems and novel products as well as the perseverance of such systems in food and down to the intestinal tract, possibly conferring a probiotic effect on the host. PMID:27037694

  2. Screening of Immune-Active Lactic Acid Bacteria.

    PubMed

    Hwang, E-Nam; Kang, Sang-Mo; Kim, Mi-Jung; Lee, Ju-Woon

    2015-01-01

    The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life. PMID:26761877

  3. A gene network engineering platform for lactic acid bacteria

    PubMed Central

    Kong, Wentao; Kapuganti, Venkata S.; Lu, Ting

    2016-01-01

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas. PMID:26503255

  4. Removal of Paralytic Shellfish Toxins by Probiotic Lactic Acid Bacteria

    PubMed Central

    Vasama, Mari; Kumar, Himanshu; Salminen, Seppo; Haskard, Carolyn A.

    2014-01-01

    Paralytic shellfish toxins (PSTs) are non-protein neurotoxins produced by saltwater dinoflagellates and freshwater cyanobacteria. The ability of Lactobacillus rhamnosus strains GG and LC-705 (in viable and non-viable forms) to remove PSTs (saxitoxin (STX), neosaxitoxin (neoSTX), gonyautoxins 2 and 3 (GTX2/3), C-toxins 1 and 2 (C1/2)) from neutral and acidic solution (pH 7.3 and 2) was examined using HPLC. Binding decreased in the order of STX ~ neoSTX > C2 > GTX3 > GTX2 > C1. Removal of STX and neoSTX (77%–97.2%) was significantly greater than removal of GTX3 and C2 (33.3%–49.7%). There were no significant differences in toxin removal capacity between viable and non-viable forms of lactobacilli, which suggested that binding rather than metabolism is the mechanism of the removal of toxins. In general, binding was not affected by the presence of other organic molecules in solution. Importantly, this is the first study to demonstrate the ability of specific probiotic lactic bacteria to remove PSTs, particularly the most toxic PST-STX, from solution. Further, these results warrant thorough screening and assessment of safe and beneficial microbes for their usefulness in the seafood and water industries and their effectiveness in vivo. PMID:25046082

  5. A gene network engineering platform for lactic acid bacteria.

    PubMed

    Kong, Wentao; Kapuganti, Venkata S; Lu, Ting

    2016-02-29

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas. PMID:26503255

  6. Identification of lactic acid bacteria and Gram-positive catalase-positive cocci isolated from naturally fermented sausage (sucuk).

    PubMed

    Kaban, G; Kaya, M

    2008-10-01

    The aim of the study was to identify lactic acid bacteria and Gram-positive catalase-positive cocci isolated from Turkish dry fermented sausage (sucuk) produced by 7 different manufacturers without using starter culture. A total of 129 isolates of lactic acid bacteria were identified phenotypically. Lactobacillus plantarum was the dominant species (45.7%) followed by L. curvatus (10.9%) and L. fermentum (9.3%). Pediococcus isolates were identified as P. pentosaceus and P. acidilactici. All the isolates of gram-positive and catalase-positive cocci (123 isolates) were classified as Staphylococcus except for 1 isolate assigned to Kocuria rosea. The species isolated most often were S. xylosus (41.5%) and S. saprophyticus (28.5%). Four isolates were identified as S. equorum (3.3%), 1 isolate was assigned to S. carnosus (0.8%). PMID:19019118

  7. Phage-Host Interactions of Cheese-Making Lactic Acid Bacteria.

    PubMed

    Mahony, Jennifer; McDonnell, Brian; Casey, Eoghan; van Sinderen, Douwe

    2016-01-01

    Cheese production is a global biotechnological practice that is reliant on robust and technologically appropriate starter and adjunct starter cultures to acidify the milk and impart particular flavor and textural properties to specific cheeses. To this end, lactic acid bacteria, including Lactococcus lactis, Streptococcus thermophilus, and Lactobacillus and Leuconostoc spp., are routinely employed. However, these bacteria are susceptible to infection by (bacterio)phages. Over the past decade in particular, significant advances have been achieved in defining the receptor molecules presented by lactococcal host bacteria and in the structural analysis of corresponding phage-encoded receptor-binding proteins. These lactococcal model systems are expanding toward understanding phage-host interactions of other LAB species. Ultimately, such scientific efforts will uncover the mechanistic (dis)similarities among these phages and define how these phages recognize and infect their hosts. This review presents the current status of the LAB-phage interactome, highlighting the most recent and significant developments in this active research field. PMID:26735798

  8. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  9. Source Tracking and Succession of Kimchi Lactic Acid Bacteria during Fermentation.

    PubMed

    Lee, Se Hee; Jung, Ji Young; Jeon, Che Ok

    2015-08-01

    This study aimed at evaluating raw materials as potential lactic acid bacteria (LAB) sources for kimchi fermentation and investigating LAB successions during fermentation. The bacterial abundances and communities of five different sets of raw materials were investigated using plate-counting and pyrosequencing. LAB were found to be highly abundant in all garlic samples, suggesting that garlic may be a major LAB source for kimchi fermentation. LAB were observed in three and two out of five ginger and leek samples, respectively, indicating that they can also be potential important LAB sources. LAB were identified in only one cabbage sample with low abundance, suggesting that cabbage may not be an important LAB source. Bacterial successions during fermentation in the five kimchi samples were investigated by community analysis using pyrosequencing. LAB communities in initial kimchi were similar to the combined LAB communities of individual raw materials, suggesting that kimchi LAB were derived from their raw materials. LAB community analyses showed that species in the genera Leuconostoc, Lactobacillus, and Weissella were key players in kimchi fermentation, but their successions during fermentation varied with the species, indicating that members of the key genera may have different acid tolerance or growth competitiveness depending on their respective species. PMID:26133985

  10. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

  11. Chemotactic behavior of deep subsurface bacteria toward carbohydrates, amino acids and a chlorinated alkene

    SciTech Connect

    Lopez de Victoria, G. . Dept. of Biology)

    1989-02-01

    The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.

  12. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    PubMed

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry. PMID:25580594

  13. Halotolerance and survival kinetics of lactic acid bacteria isolated from jalapeño pepper (Capsicum annuum L.) fermentation.

    PubMed

    González-Quijano, Génesis Karendash; Dorantes-Alvarez, Lidia; Hernández-Sánchez, Humberto; Jaramillo-Flores, María Eugenia; de Jesús Perea-Flores, María; Vera-Ponce de León, Arturo; Hernández-Rodríguez, César

    2014-08-01

    The microbiota associated with spontaneous fermentation of vegetables in a saline substrate may represent an important group of bacteria in the food industry. In this work, the lactic acid bacteria (LAB) Weissella cibaria, Lactobacillus plantarum, Lactobacillus paraplantarum, and Leuconostoc citreum were identified by partial 16S rRNA gene sequence analysis. In addition, entophytic bacteria such as Pantoea eucalypti, Pantoea anthophila, Enterobacter cowanii, and Enterobacter asburiae were detected, but they were irrelevant for the fermentation process and were inhibited after 12 h of fermentation when the pH decreased from 6.5 to 4.9. Moreover, 2 species of yeast were isolated and identified as Hanseniaspora pseudoguilliermondii and Kodamaea ohmeri by their partial 26S rRNA gene sequence. The growth of LAB was evaluated at different sodium chloride contents. L. citreum was the most halotolerant species followed by L. plantarum and W. cibaria with a concentration index to obtain a 50% population reduction (IC(50)) of 7.2%, 6.6%, and 5.2%, respectively. Furthermore, the growth of LAB and Escherichia coli O157:H7 was evaluated in the presence of the main phenylpropanoids from chilli peppers such as p-coumaric and ferulic acid. It was determined that LAB can grow in both acids at 4 mM, unlike E. coli O157:H7, whose growth is inhibited in the presence of these acids. PMID:25039289

  14. Short-chain fatty acids produced by intestinal bacteria.

    PubMed

    Topping, D L

    1996-03-01

    The colon is the major site of bacterial colonisation in the human gut and the resident species are predominantly anaerobes. They include potential pathogens but the greater proportion appear to be organisms which salvage energy through the metabolism of undigested carbohydrates and gut secretions. The major products of carbohydrate metabolism are the short chain fatty acids (SCFA), acetate, propionate and butyrate. In addition to general effects (such as lowering of pH) individual acids exert specific effects. All of the major SCFA appear to promote the flow of blood through the colonic vasculature while propionate enhances muscular activity and epithelial cell proliferation. Butyrate appears to promote a normal cell phenotype as well as being a major fuel for colonocytes. Important substrates for bacterial fermentation include non-starch polysaccharides (major components of dietary fibre) but it seems that starch which has escaped digestion in the small intestine (resistant starch) is the major contributor. Oligosaccharides are utilised by probiotic organisms and in the diet, act as prebiotics in promoting their numbers in faeces. High amylose starch is a form of RS and it appears to act as a prebiotic also. Although there is evidence that probiotics such as Bifidobacteria metabolise oligosaccharides and other carbohydrates, there appears to be little evidence to support a change in faecal SCFA excretion. It seems that any health benefits of probiotics are exerted through means other than SCFA. PMID:24394459

  15. Preservation of acidified cucumbers with a combination of fumaric acid and cinnamaldehyde that target lactic acid bacteria and yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The naturally occurring compound, fumaric acid, was evaluated as a potential preservative for the long-term storage of cucumbers. Fumaric acid inhibited growth of lactic acid bacteria (LAB) in an acidified cucumber juice medium model system resembling conditions that could allow preservation of cucu...

  16. Microstencils to generate defined, multi-species patterns of bacteria

    SciTech Connect

    Doktycz, Mitchel J.; Retterer, Scott T.; Pelletier, Dale A.; Timm, Collin M.; Hansen, Ryan R.

    2015-11-12

    Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniques with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.

  17. Microstencils to generate defined, multi-species patterns of bacteria

    DOE PAGESBeta

    Doktycz, Mitchel J.; Retterer, Scott T.; Pelletier, Dale A.; Timm, Collin M.; Hansen, Ryan R.

    2015-11-12

    Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less

  18. Identification of Lactic Acid Bacteria from Chili Bo, a Malaysian Food Ingredient

    PubMed Central

    Leisner, Jørgen J.; Pot, Bruno; Christensen, Henrik; Rusul, Gulam; Olsen, John E.; Wee, Bee Wah; Muhamad, Kharidah; Ghazali, Hasanah M.

    1999-01-01

    Ninety-two strains of lactic acid bacteria (LAB) were isolated from a Malaysian food ingredient, chili bo, stored for up to 25 days at 28°C with no benzoic acid (product A) or with 7,000 mg of benzoic acid kg−1 (product B). The strains were divided into eight groups by traditional phenotypic tests. A total of 43 strains were selected for comparison of their sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) whole-cell protein patterns with a SDS-PAGE database of LAB. Isolates from product A were identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus farciminis, Pediococcus acidilactici, Enterococcus faecalis, and Weissella confusa. Five strains belonging to clusters which could not be allocated to existing species by SDS-PAGE were further identified by 16S rRNA sequence comparison. One strain was distantly related to the Lactobacillus casei/Pediococcus group. Two strains were related to Weissella at the genus or species level. Two other strains did not belong to any previously described 16S rRNA group of LAB and occupied an intermediate position between the L. casei/Pediococcus group and the Weissella group and species of Carnobacterium. The latter two strains belong to the cluster of LAB that predominated in product B. The incidence of new species and subspecies of LAB in chili bo indicate the high probability of isolation of new LAB from certain Southeast Asian foods. None of the isolates exhibited bacteriocin activity against L. plantarum ATCC 14917 and LMG 17682. PMID:9925588

  19. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  20. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats

    PubMed Central

    2012-01-01

    Background The objectives of the present study were to investigate the efficacy of the mixed culture of Lactobacillus acidophilus (DSM 20242), Bifidobacterium bifidum (DSM 20082) and Lactobacillus helveticus (CK60) in the fermentation of maize and the evaluation of the effect of the fermented meal on the lipid profile of rats. Methods Rats were randomly assigned to 3 groups and each group placed on a Diet A (high fat diet into which a maize meal fermented with a mixed culture of Lb acidophilus (DSM 20242), B bifidum (DSM 20082) and Lb helveticus (CK 60) was incorporated), B (unfermented high fat diet) or C (commercial rat chow) respectively after the first group of 7 rats randomly selected were sacrificed to obtain the baseline data. Thereafter 7 rats each from the experimental and control groups were sacrificed weekly for 4 weeks and the plasma, erythrocytes, lipoproteins and organs of the rats were assessed for cholesterol, triglyceride and phospholipids. Results Our results revealed that the mixed culture of Lb acidophilus (DSM 20242), B bifidum (DSM 20082) and Lb helveticus (CK 60) were able to grow and ferment maize meal into ‘ogi’ of acceptable flavour. In addition to plasma and hepatic hypercholesterolemia and hypertriglyceridemia, phospholipidosis in plasma, as well as cholesterogenesis, triglyceride constipation and phospholipidosis in extra-hepatic tissues characterized the consumption of unfermented hyperlipidemic diets. However, feeding the animals with the fermented maize diet reversed the dyslipidemia. Conclusion The findings of this study indicate that consumption of mixed culture lactic acid bacteria (Lb acidophilus (DSM 20242), Bifidobacterium bifidum (DSM 20082) and Lb helveticus (CK 60) fermented food results in the inhibition of fat absorption. It also inhibits the activity of HMG CoA reductase. This inhibition may be by feedback inhibition or repression of the transcription of the gene encoding the enzyme via activation of the sterol

  1. Comparative acid tolerances and inhibitor sensitivities of isolated F-ATPases of oral lactic acid bacteria.

    PubMed Central

    Sturr, M G; Marquis, R E

    1992-01-01

    pH activity profiles and inhibitor sensitivities were compared for membrane ATPases isolated from three oral lactic acid bacteria, Lactobacillus casei ATCC 4646, Streptococcus mutans GS-5, and Streptococcus sanguis NCTC 10904, with, respectively, high, moderate, and low levels of acid tolerance. Membranes containing F1F0 ATPases were isolated by means of salt lysis of cells treated with muralytic enzymes. Membrane-free F1F0 complexes were then isolated from membranes by detergent extraction with Triton X-100 or octylglucoside. Finally, F1 complexes free of the proton-conducting F0 sector were obtained by washing membranes with buffers of low ionic strength. The pH activity profiles of the membrane-associated enzymes reflected the general acid tolerances of the organisms from which they were isolated; for example, pH optima were approximately 5.5, 6.0, and 7.0, respectively, for enzymes from L. casei, S. mutans, and S. sanguis. Roughly similar profiles were found for membrane-free F1F0 complexes, which were stabilized by phospholipids against loss of activity during storage. However, profiles for F1 enzymes were distinctly narrower, indicating that association with F0 and possibly other membrane components enhanced tolerance to both acid and alkaline media. All of the enzymes were found to have similar sensitivities to Al-F complexes, but only F1F0 enzymes were highly sensitive to dicyclohexylcarbodiimide. The procedures described for isolation of membrane-free F1F0 forms of the enzymes from oral lactic acid bacteria will be of use in future studies of the characteristics of the enzymes, especially in studies with liposomes. PMID:1386211

  2. [Effects of a lactic acid bacteria community SFC-2 treated on rice straw].

    PubMed

    Gao, Li-Juan; Wang, Xiao-Fen; Yang, Hong-Yan; Gao, Xiu-Zhi; Lü, Yu-Cai; Cui, Zong-Jun

    2007-06-01

    Aimed to utilize rice straw and lessen the pressure of environment, the rice straw was used as the fermentation material, and a lactic acid bacteria community SFC-2 from my laboratory was inoculated into the rice straw to investigate the inoculation effects. After 30 days fermentation, the inoculated fermented straw smelt acid-fragrant, and the pH value was 3.8, which was lower than the control of 4.1. Furthermore, lactic acid concentration was more than that in the control. Especially L-lactic acid concentration was two times more than in the control, and the crude protein content was 10.16% higher than that in the control, and the crude fiber content was 3.2% lower than that in the control. From the patterns of denaturing gradient gel electrophoresis (DGGE), Lactobacillus plantarum, Lactobacillus fermentum and Lactobacillus paracasei rapidly became the advantageous species in the inoculated straws. However, Enterobacter sakazakii, Pantoea agglomerans, Enterobacter endosymbiont, Pantoea ananatis, whichwere predominate in the controls, were not detected in the inoculated straws, and the fermented quality was improved significantly. PMID:17674756

  3. Screening, Characterization and In Vitro Evaluation of Probiotic Properties Among Lactic Acid Bacteria Through Comparative Analysis.

    PubMed

    Devi, Sundru Manjulata; Archer, Ann Catherine; Halami, Prakash M

    2015-09-01

    The present work aimed to identify probiotic bacteria from healthy human infant faecal and dairy samples. Subsequently, an assay was developed to evaluate the probiotic properties using comparative genetic approach for marker genes involved in adhesion to the intestinal epithelial layer. Several in vitro properties including tolerance to biological barriers (such as acid and bile), antimicrobial spectrum, resistance to simulated digestive fluids and cellular hydrophobicity were assessed. The potential probiotic cultures were rapidly characterized by morphological, physiological and molecular-based methods [such as RFLP, ITS, RAPD and (GTG)5]. Further analysis by 16S rDNA sequencing revealed that the selected isolates belong to Lactobacillus, Pediococcus and Enterococcus species. Two cultures of non-lactic, non-pathogenic Staphylococcus spp. were also isolated. The native isolates were able to survive under acidic, bile and simulated intestinal conditions. In addition, these cultures inhibited the growth of tested bacterial pathogens. Further, no correlation was observed between hydrophobicity and adhesion ability. Sequencing of probiotic marker genes such as bile salt hydrolase (bsh), fibronectin-binding protein (fbp) and mucin-binding protein (mub) for selected isolates revealed nucleotide variation. The probiotic binding domains were detected by several bioinformatic tools. The approach used in the study enabled the identification of potential probiotic domains responsible for adhesion of bacteria to intestinal epithelial layer, which may further assist in screening of novel probiotic bacteria. The rapid detection of binding domains will help in revealing the beneficial properties of the probiotic cultures. Further, studies will be performed to develop a novel probiotic product which will contribute in food and feed industry. PMID:26049925

  4. d-Amino Acid Catabolism Is Common Among Soil-Dwelling Bacteria

    PubMed Central

    Radkov, Atanas D; McNeill, Katlyn; Uda, Koji; Moe, Luke A

    2016-01-01

    Soil and rhizosphere environments were examined in order to determine the identity and relative abundance of bacteria that catabolize d- and l-amino acids as the sole source of carbon and nitrogen. All substrates were readily catabolized by bacteria from both environments, with most d-amino acids giving similar CFU counts to their l-amino acid counterparts. CFU count ratios between l- and d-amino acids typically ranged between 2 and 1. Isolates were phylogenetically typed in order to determine the identity of d-amino acid catabolizers. Actinobacteria, specifically the Arthrobacter genus, were abundant along with members of the α- and β-Proteobacteria classes. PMID:27169790

  5. D-Amino Acid Catabolism Is Common Among Soil-Dwelling Bacteria.

    PubMed

    Radkov, Atanas D; McNeill, Katlyn; Uda, Koji; Moe, Luke A

    2016-06-25

    Soil and rhizosphere environments were examined in order to determine the identity and relative abundance of bacteria that catabolize d- and l-amino acids as the sole source of carbon and nitrogen. All substrates were readily catabolized by bacteria from both environments, with most d-amino acids giving similar CFU counts to their l-amino acid counterparts. CFU count ratios between l- and d-amino acids typically ranged between 2 and 1. Isolates were phylogenetically typed in order to determine the identity of d-amino acid catabolizers. Actinobacteria, specifically the Arthrobacter genus, were abundant along with members of the α- and β-Proteobacteria classes. PMID:27169790

  6. Inactivation of Pathogenic Bacteria on Seeds by Active Oxygen Species Generated in Low-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Ono, Reoto; Uchida, Shohei; Hayashi, Nobuya; Kosaka, Rina; Soeda, Yasutaka

    2015-09-01

    The inactivation of bacteria on seeds by active oxygen species generated by a low-pressure oxygen plasma is investigated. Species of active oxygen contributing to the inactivation of bacteria are attempted to be identified. Cylindrical stainless chamber with the internal volume of 17 L is used and RF antenna is set inside the chamber. The oxygen gas pressure is 20-100 Pa. RF power of 13.56 MHz is supplied to RF antenna and CCP is generated. After irradiation, bacteria are extracted from seeds and cultivated on nutrient agars. The number of colonies on these agars is counted after 48 h incubation. The number of bacteria on seeds decreases to less than 10-3 after plasma irradiation for 45 min comparing with that of control. The tendency of the reduction rate of bacteria on seeds has positive correlation with that of the light emission intensity of the singlet excited oxygen molecule as the oxygen gas pressure is varied. It is supposed that the singlet excited oxygen molecule would be one of the major factors for the inactivation of bacteria on seeds.

  7. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most

  8. Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update.

    PubMed

    LeBlanc, Jean Guy; Aubry, Camille; Cortes-Perez, Naima G; de Moreno de LeBlanc, Alejandra; Vergnolle, Nathalie; Langella, Philippe; Azevedo, Vasco; Chatel, Jean-Marc; Miyoshi, Anderson; Bermúdez-Humarán, Luis G

    2013-07-01

    Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms naturally present in many foods and those have proved to be effective mucosal delivery vectors. Moreover, some specific strains of LAB exert beneficial properties (known as probiotic effect) on both human and animal health. Although probiotic effects are strain-specific traits, it is theoretically possible, using genetic engineering techniques, to design strains that can exert a variety of beneficial properties. During the two past decades, a large variety of therapeutic molecules has been successfully expressed in LAB, and although this field has been largely reviewed in recent years, approximately 20 new publications appear each year. Thus, the aim of this minireview is not to extensively assess the entire literature but to update progress made within the last 2 years regarding the use of the model LAB Lactococcus lactis and certain species of lactobacilli as live recombinant vectors for the development of new safe mucosal vaccines. PMID:23600579

  9. Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Fischer, Carol L.; Drake, David R.; Dawson, Deborah V.; Blanchette, Derek R.; Brogden, Kim A.

    2012-01-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity—the sphingoid bases d-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid—against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. d-Sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection. PMID:22155833

  10. Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites.

    PubMed

    Thong-On, Arunee; Suzuki, Katsuyuki; Noda, Satoko; Inoue, Jun-ichi; Kajiwara, Susumu; Ohkuma, Moriya

    2012-01-01

    Recycling of the nitrogenous waste uric acid (UA) of wood-feeding termites by their gut bacteria is one of the significant aspects of symbiosis for the conservation of nitrogen sources. Diverse anaerobic UA-degrading bacteria comprising 16 species were isolated from the gut of eight termite species, and were assigned to Clostridia, Enterobacteriaceae, and low G+C Gram-positive cocci. UA-degrading Clostridia had never been isolated from termite guts. UA-degrading ability was sporadically distributed among phylogenetically various culturable anaerobic bacteria from termite guts. A strain of Clostridium sp., which was commonly isolated from three termite species and represented a probable new species in cluster XIVa of clostridia, utilized UA as a nitrogen source but not as a sole carbon and energy source. This feature is in clear contrast to that of well-studied purinolytic clostridia or previously isolated UA degraders from termite guts, which also utilize UA as a sole carbon and energy source. Ammonia is the major nitrogenous product of UA degradation. Various purines stimulated the growth of this strain when added to an otherwise growth-limiting, nitrogen poor medium. The bacterial species involved the recycling of UA nitrogen in the gut microbial community of termites are more diverse in terms of both taxonomy and nutritional physiology than previously recognized. PMID:22791052

  11. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites.

    PubMed

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a "blocking effect" between humic acid and bacterial cells. Large positive entropies (68.1~114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  12. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  13. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    SciTech Connect

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  14. Quantification of Syntrophic Fatty Acid-β-Oxidizing Bacteria in a Mesophilic Biogas Reactor by Oligonucleotide Probe Hybridization

    PubMed Central

    Hansen, Kaare H.; Ahring, Birgitte K.; Raskin, Lutgarde

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-β-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S. wolfei LYB was closely related to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-β-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-β-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, of which the majority was accounted for by the genus Syntrophomonas. PMID:10543784

  15. Two Species of Symbiotic Bacteria Present in the Soybean Aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids, which feed solely on plant phloem sap, have developed symbiotic associations with bacteria that provide them with the amino acids that are lacking in phloem. Three soybean aphid (Aphis glycines Mat samura) populations were screened for the presence of Buchnera aphidicola and three common spe...

  16. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species.

    PubMed

    Selma, María V; Beltrán, David; García-Villalba, Rocío; Espín, Juan C; Tomás-Barberán, Francisco A

    2014-08-01

    Ellagitannin and ellagic acid metabolism to urolithins in the gut shows a large human interindividual variability and this has been associated with differences in the colon microbiota. In the present study we describe the isolation of one urolithin-producing strain from the human faeces of a healthy volunteer and the ellagic acid transformation to different urolithin metabolites by two species of intestinal bacteria. The isolate belongs to a new species described as Gordonibacter urolithinfaciens, sp. nov. The type strain of the Gordonibacter genus, Gordonibacter pamelaeae DSM 19378(T), was also demonstrated to produce urolithins. Both human intestinal bacteria grew similarly in the presence and absence of ellagic acid at 30 μM concentration. Ellagic acid catabolism and urolithin formation occurred during the stationary phase of the growth of the bacteria under anaerobic conditions. The HPLC-MS analyses showed the sequential production of pentahydroxy-urolithin (urolithin M-5), tetrahydroxy-urolithin (urolithin M-6) and trihydroxy-urolithin (urolithin C), while dihydroxy-urolithins (urolithin A and isourolithin A), and monohydroxy-urolithin (urolithin B) were not produced in pure cultures. Consequently, either other bacteria from the gut or the physiological conditions found in vivo are necessary for completing metabolism until the final urolithins (dihydroxy and monohydroxy urolithins) are produced. This is the first time that the urolithin production capacity of pure strains has been demonstrated. The identification of the urolithin-producing bacteria is a relevant outcome as urolithin implication in health (cardiovascular protection, anti-inflammatory and anticarcinogenic properties) has been supported by different bioassays and urolithins can be used in the development of functional foods and nutraceuticals. This study represents an initial work that opens interesting possibilities of describing enzymatic activities involved in urolithin production that can

  17. Isolation and identification of bacteria associated with the surfaces of several algal species

    NASA Astrophysics Data System (ADS)

    Wang, Zifeng; Xiao, Tian; Pang, Shaojun; Liu, Min; Yue, Haidong

    2009-09-01

    We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. splendidus. On the contrary, the isolates from the surfaces of G. textorii, U. pertusa and L. japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.

  18. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  19. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    PubMed

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L

  20. Lactic acid bacteria and yeasts involved in the fermentation ofamabere amaruranu, a Kenyan fermented milk.

    PubMed

    Nyambane, Bitutu; Thari, William M; Wangoh, John; Njage, Patrick M K

    2014-11-01

    Indigenous fermented milk products contain microbiota composed of technologically important species and strains which are gradually getting lost with new technologies. We investigated the microbial diversity inamabere amaruranu, a traditionally fermented milk product from Kenya. Sixteen samples of the product from different containers were obtained. One hundred and twenty isolates of lactic acid bacteria (LAB) and 67 strains of yeasts were identified using API 50 CH and API 20 C AUX identification kits, respectively. The average pH of all the traditional fermented samples was 4.00 ± 0.93. Lactobacilli, yeasts, and molds as well asEnterobacteriaceae counts from the plastic containers were significantly higher (P < 0.05) than those from gourd.Enterobacteriaceae were below 1.00 ± 1.11 log10 cfu/mL in products from the gourds and 2.17 ± 1.92 log10 cfu/mL from the plastic containers. The LAB species were identified asStreptococcus thermophilus (25%),Lactobacillus plantarum (20%), andLeuconostoc mesenteroides (20%). The predominant yeasts wereSaccharomyces cerevisiae (25%),Trichosporum mucoides (15%),Candida famata (10%), andCandida albicans (10%). The type of vessel used for fermentation had no significant influence on the type of isolated and identified species. The diverse mixture of LAB and yeasts microflora forms a potential consortium for further product innovation inamabere amaruranu and other fermented milk products. PMID:25493187

  1. Diversity of lactic acid bacteria during fermentation of a traditional Chinese fish product, Chouguiyu (stinky mandarinfish).

    PubMed

    Dai, Zhiyuan; Li, Yan; Wu, Jiajia; Zhao, Qiaoling

    2013-11-01

    Chouguiyu, or stinky mandarinfish, is a traditional Chinese fermented fish product made of mandarinfish by spontaneous fermentation at the anaerobic condition with low-salt concentration. In order to get a primary understanding of the microbial community presenting in the Chouguiyu fermentation, 61 cultures of lactic acid bacteria (LAB) from various fermentation period were isolated using MRS agar plates and characterized based on a combination of phenotypic and genotypic approaches including amplified ribosomal DNA restriction analysis (ARDRA) and 16S rRNA partial gene sequencing analysis. Eight distinct bacterial species belonging to 6 genera were identified in total. Among them, Lactobacillus sakei was the dominant species (63%) during the fermentation, which exhibited great variety in phenotypic tests but unique genotypic characters. Meanwhile, the other LAB species including Lactococcus (Lc.) garvieae, Lc. lactis, Lc. raffinolactis, Vagococcus sp., Enterococcus hermanniensis, Macrococcus caseolyticus as well as Streptococcus parauberis were also recovered from the different fermentation periods, especially at the initial point of the fermentation. This seems to be the 1st report investigating the LAB composition involved in Chouguiyu fermentation and the data obtained in this study may be valuable for selecting starter culture for Chouguiyu industrial-scale production. PMID:24245896

  2. Genetic and Technological Characterisation of Vineyard- and Winery-Associated Lactic Acid Bacteria

    PubMed Central

    Nisiotou, Aspasia A.; Filippousi, Maria-Evangelia; Fragkoulis, Petros; Tassou, Chryssoula; Banilas, Georgios

    2015-01-01

    Vineyard- and winery-associated lactic acid bacteria (LAB) from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF). Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs). Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine. PMID:25866789

  3. Defining natural species of bacteria: clear-cut genomic boundaries revealed by a turning point in nucleotide sequence divergence

    PubMed Central

    2013-01-01

    Background Bacteria are currently classified into arbitrary species, but whether they actually exist as discrete natural species was unclear. To reveal genomic features that may unambiguously group bacteria into discrete genetic clusters, we carried out systematic genomic comparisons among representative bacteria. Results We found that bacteria of Salmonella formed tight phylogenetic clusters separated by various genetic distances: whereas over 90% of the approximately four thousand shared genes had completely identical sequences among strains of the same lineage, the percentages dropped sharply to below 50% across the lineages, demonstrating the existence of clear-cut genetic boundaries by a steep turning point in nucleotide sequence divergence. Recombination assays supported the genetic boundary hypothesis, suggesting that genetic barriers had been formed between bacteria of even very closely related lineages. We found similar situations in bacteria of Yersinia and Staphylococcus. Conclusions Bacteria are genetically isolated into discrete clusters equivalent to natural species. PMID:23865772

  4. Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses.

    PubMed

    Van Hoorde, Koenraad; Verstraete, Tine; Vandamme, Peter; Huys, Geert

    2008-10-01

    PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to study the diversity of lactic acid bacteria (LAB) in two Flemish artisan raw milk Gouda-type cheeses. In parallel, conventional culturing was performed. Isolates were identified using (GTG)(5)-PCR and sequence analysis of 16S rRNA and pheS genes. Discriminant analysis revealed some differences in overall LAB diversity between the two batches and between the two cheeses. Within each batch, the diversity of 8- and 12-week-old cheeses was relatively similar. Conventional isolation mainly revealed the presence of Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus and Pediococcus pentosaceus. PCR-DGGE revealed the presence of three species of which no isolates were recovered, i.e. Enterococcus faecalis, Lactobacillus parabuchneri and Lactobacillus gallinarum. Conversely, not all isolated bacteria were detected by PCR-DGGE. We recommend the integrated use of culture-dependent and -independent approaches to maximally encompass the taxonomic spectrum of LAB occurring in Gouda-type and other cheeses. PMID:18721684

  5. Probiotic lactic acid bacteria and their potential in the prevention and treatment of allergic diseases

    PubMed Central

    Wróblewska, Paula; Adamczuk, Piotr; Silny, Wojciech

    2014-01-01

    Allergy is one of the most important and very common health problems worldwide. To reduce the proportion of people suffering from allergy, alternative methods of prevention and treatment are sought. The aim of this paper is to present the possibilities of probiotics in the prevention and treatment of allergic diseases. Probiotics are live microorganisms belonging mainly to the lactic acid bacteria. They modify the microflora of the human digestive system, especially the intestinal microflora. Prophylactic administration of probiotics in the early stages of life (naturally in breast milk or milk substitute synthetic compounds) is very important because intestinal microflora plays a huge role in the development of the immune system. Prevention of allergies as early as in the prenatal and postnatal periods provides huge opportunities for inhibiting the growing problem of allergy in emerging and highly developed societies. Effects of probiotic therapy depend on many factors such as the species of the microorganism used, the dose size and characteristics of the bacteria such as viability and capacity of adhesion to the intestinal walls. Authors of several studies showed beneficial effects of probiotics in the perinatal period, infancy, and also in adults in the prevention of atopic dermatitis or allergic rhinitis. Probiotics, due to their immunomodulatory properties and safety of use are a good, natural alternative for the prevention and treatment of many diseases including allergies. It is therefore important to explore the knowledge about their use and to carry out further clinical trials. PMID:26155109

  6. Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria.

    PubMed

    Landete, José M; Medina, Margarita; Arqués, Juan L

    2016-07-01

    In the last two decades, there has been increasing evidence supporting the role of the intestinal microbiota in health and disease, as well as the use of probiotics to modulate its activity and composition. Probiotic bacteria selected for commercial use in foods, mostly lactic acid bacteria and bifidobacteria, must survive in sufficient numbers during the manufacturing process, storage, and passage through the gastro-intestinal tract. They have several modes of action and it is crucial to unravel the mechanisms underlying their postulated beneficial effects. To track their survival and persistence, and to analyse their interaction with the gastro-intestinal epithelia it is essential to discriminate probiotic strains from endogenous microbiota. Fluorescent reporter proteins are relevant tools that can be exploited as a non-invasive marker system for in vivo real-time imaging in complex ecosystems as well as in vitro fluorescence labelling. Oxygen is required for many of these reporter proteins to fluoresce, which is a major drawback in anoxic environments. However, some new fluorescent proteins are able to overcome the potential problems caused by oxygen limitations. The current available approaches and the benefits/disadvantages of using reporter vectors containing fluorescent proteins for labelling of bacterial probiotic species commonly used in food are addressed. PMID:27263014

  7. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes.

    PubMed

    Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Garcia-Fruitós, Elena

    2015-01-01

    Lactic acid bacteria (LAB) have a long history of safe exploitation by humans, being used for centuries in food production and preservation and as probiotic agents to promote human health. Interestingly, some species of these Gram-positive bacteria, which are generally recognized as safe organisms by the US Food and Drug Administration (FDA), are able to survive through the gastrointestinal tract (GIT), being capable to reach and colonize the intestine, where they play an important role. Besides, during the last decades, an important effort has been done for the development of tools to use LAB as microbial cell factories for the production of proteins of interest. Given the need to develop effective strategies for the delivery of prophylactic and therapeutic molecules, LAB have appeared as an appealing option for the oral, intranasal and vaginal delivery of such molecules. So far, these genetically modified organisms have been successfully used as vehicles for delivering functional proteins to mucosal tissues in the treatment of many different pathologies including GIT related pathologies, diabetes, cancer and viral infections, among others. Interestingly, the administration of such microorganisms would suppose a significant decrease in the production cost of the treatments agents since being live organisms, such vectors would be able to autonomously amplify and produce and deliver the protein of interest. In this context, this review aims to provide an overview of the use of LAB engineered as a promising alternative as well as a safety delivery platform of recombinant proteins for the treatment of a wide range of diseases. PMID:26377321

  8. Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination.

    PubMed

    Wyszyńska, Agnieszka; Kobierecka, Patrycja; Bardowski, Jacek; Jagusztyn-Krynicka, Elżbieta Katarzyna

    2015-04-01

    Lactic acid bacteria (LAB) are a diverse group of Gram-positive, nonsporulating, low G + C content bacteria. Many of them have been given generally regarded as safe status. Over the past two decades, intensive genetic and molecular research carried out on LAB, mainly Lactococcus lactis and some species of the Lactobacillus genus, has revealed new, potential biomedical LAB applications, including the use of LAB as adjuvants, immunostimulators, or therapeutic drug delivery systems, or as factories to produce therapeutic molecules. LAB enable immunization via the mucosal route, which increases effectiveness against pathogens that use the mucosa as the major route of entry into the human body. In this review, we concentrate on the encouraging application of Lactococcus and Lactobacillus genera for the development of live mucosal vaccines. First, we present the progress that has recently been made in the field of developing tools for LAB genetic manipulations, which has resulted in the successful expression of many bacterial, parasitic, and viral antigens in LAB strains. Next, we discuss the factors influencing the efficacy of the constructed vaccine prototypes that have been tested in various animal models. Apart from the research focused on an application of live LABs as carriers of foreign antigens, a lot of work has been recently done on the potential usage of nonliving, nonrecombinant L. lactis designated as Gram-positive enhancer matrix (GEM), as a delivery system for mucosal vaccination. The advantages and disadvantages of both strategies are also presented. PMID:25750046

  9. Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria.

    PubMed Central

    Platteeuw, C; Simons, G; de Vos, W M

    1994-01-01

    A transcriptional fusion vector, designated pNZ272, based on the promoterless beta-glucuronidase gene (gusA) of Escherichia coli as a reporter gene, has been constructed for lactic acid bacteria. The replicon of pNZ272 was derived from the Lactococcus lactis plasmid pSH71, allowing replication in a wide range of gram-positive bacteria and E. coli. The applicability of pNZ272 and the expression of the gusA gene in L. lactis was demonstrated in shotgun cloning experiments with lactococcal chromosomal and bacteriophage DNA. In addition, three defined lactococcal promoters were inserted in pNZ272: the plasmid-derived lacA promoter, the chromosomal usp45 promoter, and a promoter from bacteriophage phi SK11G. The three resulting plasmids showed beta-glucuronidase activity in a gusA-deficient E. coli strain and in four species of lactic acid bacteria belonging to the genera Lactobacillus, Lactococcus, and Leuconostoc. The copy numbers of the gusA-expressing plasmids were similar within a single species of lactic acid bacteria. However, the specific beta-glucuronidase activity and the gusA mRNA levels varied considerably both within a single species and among different species of lactic acid bacteria. The transcriptional start site of all three promoters was determined and found to be identical in the different species. The results of this comparative promoter analysis indicate that the requirements for efficient transcription initiation differ among the lactic acid bacteria studied. Images PMID:8135517

  10. Probiotic lactic acid bacteria – the fledgling cuckoos of the gut?

    PubMed Central

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, Jørgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either ‘good’ or ‘bad’. However, a microbial society has its own system of government – ‘microcracy’ – and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being ‘friendly’ – they may instead behave like fledgling cuckoos. PMID:27235098

  11. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters. PMID:18177968

  12. Enzymatic Degradation of Polygalacturonic Acid by Yersinia and Klebsiella Species in Relation to Clinical Laboratory Procedures

    PubMed Central

    Starr, Mortimer P.; Chatterjee, Arun K.; Starr, Phoebe B.; Buchanan, Gordon E.

    1977-01-01

    As scored by several specified plating procedures, clinical and environmental strains of Yersinia enterocolitica, Yersinia pseudotuberculosis, and Klebsiella pneumoniae “Oxytocum” showed detectable, albeit generally weak, ability to digest polygalacturonic (pectic) acid. None of these bacterial strains had the vigorous and rapid pectolytic activity on these polygalacturonic acid-containing media that is typical of soft-rot Erwinia species, although some of the Oxytocum strains came fairly close. Analyses of the pectolytic enzyme contents of the cells and culture supernatants of the Yersinia and Klebsiella species revealed that readily detectable quantities of cell-bound polygalacturonic acid trans-eliminase and hydrolytic polygalacturonase were formed by the Yersinia and Klebsiella species; however, the total units of enzyme activity produced by these bacteria were, in general, lower than were produced by soft-rot Erwinia species. Furthermore, unlike the situation in soft-rot Erwinia cultures, these pectolytic enzymes of Yersinia and Klebsiella species were not excreted rapidly and massively into the growth medium. Cultures of other enterobacteria (Citrobacter species, Enterobacter species, Erwinia amylovora, Erwinia herbicola, Escherichia coli, Proteus species, Salmonella typhimurium, and Serratia marcescens) showed no pectolytic ability whatsoever by any of the plating procedures used and (to the extent they were so examined) produced no pectolytic enzymes detectable either in their cells or culture supernatants. This slow or weak release of pectolytic enzymes by Yersinia and Klebsiella species has a bearing on clinical laboratory procedures suitable for detecting their pectolytic activity; methods adequate for this purpose are detailed. PMID:334794

  13. Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs.

    PubMed

    Moroni, Alice V; Arendt, Elke K; Dal Bello, Fabio

    2011-05-01

    In this study, four different laboratory scale gluten-free (GF) sourdoughs were developed from buckwheat or teff flours. The fermentations were initiated by the spontaneous biota of the flours and developed under two technological conditions (A and B). Sourdoughs were propagated by continuous back-slopping until the stability was reached. The composition of the stable biota occurring in each sourdough was assessed using both culture-dependent and -independent techniques. Overall, a broad spectrum of lactic acid bacteria (LAB) and yeasts species, belonging mainly to the genera Lactobacillus, Pediococcus, Leuconostoc, Kazachstania and Candida, were identified in the stable sourdoughs. Buckwheat and teff sourdoughs were dominated mainly by obligate or facultative heterofermentative LAB, which are commonly associated with traditional wheat or rye sourdoughs. However, the spontaneous fermentation of the GF flours resulted also in the selection of species which are not consider endemic to traditional sourdoughs, i.e. Pediococcus pentosaceus, Leuconostoc holzapfelii, Lactobacillus gallinarum, Lactobacillus vaginalis, Lactobacillus sakei, Lactobacillus graminis and Weissella cibaria. In general, the composition of the stable biota was strongly affected by the fermentation conditions, whilst Lactobacillus plantarum dominated in all buckwheat sourdoughs. Lactobacillus pontis is described for the first time as dominant species in teff sourdough. Among yeasts, Saccharomyces cerevisiae and Candida glabrata dominated teff sourdoughs, whereas the solely Kazachstania barnetti was isolated in buckwheat sourdough developed under condition A. This study allowed the identification and isolation of LAB and yeasts species which are highly competitive during fermentation of buckwheat or teff flours. Representatives of these species can be selected as starters for the production of sourdough destined to GF bread production. PMID:21356457

  14. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    NASA Astrophysics Data System (ADS)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  15. Putrescine production from different amino acid precursors by lactic acid bacteria from wine and cider.

    PubMed

    Costantini, Antonella; Pietroniro, Roberta; Doria, Francesca; Pessione, Enrica; Garcia-Moruno, Emilia

    2013-07-01

    The aim of this work was to study the production of biogenic amines and particularly putrescine in lactic acid bacteria (LAB) related to wine and cider. We applied an analytical protocol that involves the use of PCR and TLC techniques to determine the production of putrescine from different precursors. Moreover, we also studied the ability of the Lactobacillus and Pediococcus tested to produce histamine and tyramine. The results showed that the majority of the Lactobacillus brevis analyzed harbour both AgDI and tdc genes and are tyramine and putrescine producers. Conversely, among the other LAB tested, only one Lactobacillus hilgardii and one Pediococcus pentosaceus produced putrescine. The AgDI gene was also detected in two other LAB (Lactobacillus mali and Pediococcus parvulus), but no putrescine production was observed. Finally, hdc gene and histamine production were found in strains (L. hilgardii 5211, isolated from wine, and Lactobacillus casei 18, isolated from cider) that were not putrescine producers. PMID:23685467

  16. Genotypic characterization and safety assessment of lactic acid bacteria from indigenous African fermented food products

    PubMed Central

    2012-01-01

    Background Indigenous fermented food products play an essential role in the diet of millions of Africans. Lactic acid bacteria (LAB) are among the predominant microbial species in African indigenous fermented food products and are used for different applications in the food and biotechnology industries. Numerous studies have described antimicrobial susceptibility profiles of LAB from different parts of the world. However, there is limited information on antimicrobial resistance profiles of LAB from Africa. The aim of this study was to characterize 33 LAB previously isolated from three different African indigenous fermented food products using (GTG)5-based rep-PCR, sequencing of the 16S rRNA gene and species-specific PCR techniques for differentiation of closely related species and further evaluate their antibiotic resistance profiles by the broth microdilution method and their haemolytic activity on sheep blood agar plates as indicators of safety traits among these bacteria. Results Using molecular biology based methods and selected phenotypic tests such as catalase reaction, CO2 production from glucose, colonies and cells morphology, the isolates were identified as Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus ghanensis, Lactobacillus plantarum, Lactobacillus salivarius, Leuconostoc pseudomesenteroides, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella confusa. The bacteria were susceptible to ampicillin, chloramphenicol, clindamycin and erythromycin but resistant to vancomycin, kanamycin and streptomycin. Variable sensitivity profiles to tetracycline and gentamicin was observed among the isolates with Lb. plantarum, Lb. salivarius, W. confusa (except strain SK9-5) and Lb. fermentum strains being susceptible to tetracycline whereas Pediococcus strains and Lb. ghanensis strains were resistant. For gentamicin, Leuc. pseudomesenteroides, Lb. ghanensis and Ped. acidilactici strains were resistant to 64 mg/L whereas some W. confusa

  17. Characterization, Identification and Application of Lactic Acid Bacteria Isolated from Forage Paddy Rice Silage

    PubMed Central

    Ni, Kuikui; Wang, Yanping; Li, Dongxia; Cai, Yimin; Pang, Huili

    2015-01-01

    There has been growing interest to develop forage rice as a new feed resource for livestock. This study was to characterize the natural population of lactic acid bacteria (LAB) and select potentially excellent strains for paddy rice silage preparation in China. One hundred and twenty-six strains were isolated and screened from paddy rice silage prepared using a small-scale fermentation system, and ninety-nine of these isolates were considered to be LAB based on their Gram-positive and catalase-negative morphology and the production of most of their metabolic products as lactic acid. These isolates were divided into eight groups (A-H) on the basis of their morphological and biochemical characteristics. The Group A to H strains were identified as Lactobacillus (L.) plantarum subsp. plantarum (species ratio: 8.1%), L. casei (5.1%), Leuconostoc (Ln.) pseudomesenteroides (11.1%), Pediococcus (P.) pentosaceus (24.2%), Enterococcus (E.) mundtii (12.1%), Lactococcus (Lc.) garvieae (15.2%), E. faecium (9.1%) and Lc. lactis subsp. lactis (15.2%) based on sequence analyses of their 16S rRNA and recA genes. P. pentosaceus was the most abundant member of the LAB population in the paddy rice silage. A selected strain, namely L. casei R 465, was found to be able to grow under low pH conditions and to improve the silage quality with low pH and a relatively high content of lactic acid. This study demonstrated that forage paddy rice silage contains abundant LAB species and its silage can be well preserved by inoculation with LAB, and that strain R 465 can be a potentially excellent inoculant for paddy rice silage. PMID:25803578

  18. Characterization, identification and application of lactic Acid bacteria isolated from forage paddy rice silage.

    PubMed

    Ni, Kuikui; Wang, Yanping; Li, Dongxia; Cai, Yimin; Pang, Huili

    2015-01-01

    There has been growing interest to develop forage rice as a new feed resource for livestock. This study was to characterize the natural population of lactic acid bacteria (LAB) and select potentially excellent strains for paddy rice silage preparation in China. One hundred and twenty-six strains were isolated and screened from paddy rice silage prepared using a small-scale fermentation system, and ninety-nine of these isolates were considered to be LAB based on their Gram-positive and catalase-negative morphology and the production of most of their metabolic products as lactic acid. These isolates were divided into eight groups (A-H) on the basis of their morphological and biochemical characteristics. The Group A to H strains were identified as Lactobacillus (L.) plantarum subsp. plantarum (species ratio: 8.1%), L. casei (5.1%), Leuconostoc (Ln.) pseudomesenteroides (11.1%), Pediococcus (P.) pentosaceus (24.2%), Enterococcus (E.) mundtii (12.1%), Lactococcus (Lc.) garvieae (15.2%), E. faecium (9.1%) and Lc. lactis subsp. lactis (15.2%) based on sequence analyses of their 16S rRNA and recA genes. P. pentosaceus was the most abundant member of the LAB population in the paddy rice silage. A selected strain, namely L. casei R 465, was found to be able to grow under low pH conditions and to improve the silage quality with low pH and a relatively high content of lactic acid. This study demonstrated that forage paddy rice silage contains abundant LAB species and its silage can be well preserved by inoculation with LAB, and that strain R 465 can be a potentially excellent inoculant for paddy rice silage. PMID:25803578

  19. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  20. Autoinducer-2 properties of kimchi are associated with lactic acid bacteria involved in its fermentation.

    PubMed

    Park, Hyunjoon; Shin, Heuynkil; Lee, Kyuyeon; Holzapfel, Wilhelm

    2016-05-16

    Bacteria use the cell density-dependent quorum signalling system to regulate particular gene expressions. In food microbiology, signalling is well known for its relation to (foodborne) pathogenicity, food spoilage, and biofilm formation. Quorum quenching and inhibition are thus being considered as a feasible approach in food preservation and safety. In the case of the luxS-mediated universal quorum sensing using autoinducer-2 (AI-2), however, it could be a different issue. Several studies have reported a luxS AI-2 synthase homologue in numerous bacteria, comprising both pathogens and beneficial strains. A recent study has shown the AI-2 signal to restore the balance of the major phyla of the gut microbiota in antibiotic-induced dysbiosis. We measured the AI-2 activity of the lactic fermented food, kimchi, and found different AI-2 signalling intensities. In order to trace the origin of the signal production, we obtained 229 lactic acid bacterial isolates from the kimchi samples, and detected the AI-2 properties of each isolate using a modified AI-2 bioluminescence assay. Our results showed isolates of dominant species of the genera Lactobacillus, Weissella and Leuconostoc which either produced or inhibited the AI-2 signal. No isolate of the dominant species Lactobacillus sakei (75 isolates) and Lactobacillus curvatus (28 isolates) showed AI-2 producing activity, while AI-2 inhibition could not be detected for any of the 31 Lactobacillus plantarum isolates. These results suggest the AI-2 activity of kimchi to result from the interaction of the associated microbial food cultures (MFCs) during fermentation. Thus far, only sparse information is available on AI-2 signalling interaction in fermented food, however, we suggest that fermented food may be a supplier of AI-2 signalling molecules via typical MFCs. PMID:26977818

  1. Nucleic acid relationships among Acholeplasma species.

    PubMed Central

    Aulakh, G S; Stephens, E B; Rose, D L; Tully, J G; Barile, M F

    1983-01-01

    3H-labeled Acholeplasma DNA probes were generated in vitro by the nick-translation method and used to determine the nucleotide sequence homology among the type strains of the eight currently recognized species of Acholeplasma. Very little nucleotide sequence homology (less than or equal to 18%) was found among the eight species, with heteroduplexes showing at least 12% or more mismatching as determined by thermal elution midpoints. The small amount of nucleotide sequence homology among the eight species indicates that these species are quite distinct and are not closely related to each other genomically. PMID:6826524

  2. Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients

    PubMed Central

    Ashour, Hossam M; El-Sharif, Amany

    2009-01-01

    Background Nosocomial infections pose significant threats to hospitalized patients, especially the immunocompromised ones, such as cancer patients. Methods This study examined the microbial spectrum of gram-negative bacteria in various infection sites in patients with leukemia and solid tumors. The antimicrobial resistance patterns of the isolated bacteria were studied. Results The most frequently isolated gram-negative bacteria were Klebsiella pneumonia (31.2%) followed by Escherichia coli (22.2%). We report the isolation and identification of a number of less-frequent gram negative bacteria (Chromobacterium violacum, Burkholderia cepacia, Kluyvera ascorbata, Stenotrophomonas maltophilia, Yersinia pseudotuberculosis, and Salmonella arizona). Most of the gram-negative isolates from Respiratory Tract Infections (RTI), Gastro-intestinal Tract Infections (GITI), Urinary Tract Infections (UTI), and Bloodstream Infections (BSI) were obtained from leukemic patients. All gram-negative isolates from Skin Infections (SI) were obtained from solid-tumor patients. In both leukemic and solid-tumor patients, gram-negative bacteria causing UTI were mainly Escherichia coli and Klebsiella pneumoniae, while gram-negative bacteria causing RTI were mainly Klebsiella pneumoniae. Escherichia coli was the main gram-negative pathogen causing BSI in solid-tumor patients and GITI in leukemic patients. Isolates of Escherichia coli, Klebsiella, Enterobacter, Pseudomonas, and Acinetobacter species were resistant to most antibiotics tested. There was significant imipenem -resistance in Acinetobacter (40.9%), Pseudomonas (40%), and Enterobacter (22.2%) species, and noticeable imipinem-resistance in Klebsiella (13.9%) and Escherichia coli (8%). Conclusion This is the first study to report the evolution of imipenem-resistant gram-negative strains in Egypt. Mortality rates were higher in cancer patients with nosocomial Pseudomonas infections than any other bacterial infections. Policies restricting

  3. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  4. Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea.

    PubMed

    Wang, Chen; Uversky, Vladimir N; Kurgan, Lukasz

    2016-05-01

    Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty-by-association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (∼548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA-binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA-binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation. PMID:27037624

  5. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium.

    PubMed

    Molina-Cruz, Alvaro; DeJong, Randall J; Charles, Bradley; Gupta, Lalita; Kumar, Sanjeev; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2008-02-01

    The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. Strains of An. gambiae with higher systemic levels of ROS survive a bacterial challenge better, whereas reduction of ROS by dietary administration of antioxidants significantly decreases survival, indicating that ROS are required to mount effective antibacterial responses. Expression of several ROS detoxification enzymes increases in the midgut and fat body after a blood meal. Furthermore, expression of several of these enzymes increases to even higher levels when mosquitoes are fed a Plasmodium berghei-infected meal, indicating that the oxidative stress after a blood meal is exacerbated by Plasmodium infection. Paradoxically, a complete lack of induction of catalase mRNA and lower catalase activity were observed in P. berghei-infected midguts. This suppression of midgut catalase expression is a specific response to ookinete midgut invasion and is expected to lead to higher local levels of hydrogen peroxide. Further reduction of catalase expression by double-stranded RNA-mediated gene silencing promoted parasite clearance by a lytic mechanism and reduced infection significantly. High mosquito mortality is often observed after P. berghei infection. Death appears to result in part from excess production of ROS, as mortality can be decreased by oral administration of uric acid, a strong antioxidant. We conclude that ROS modulate An. gambiae immunity and that the mosquito response to P. berghei involves a local reduction of detoxification of hydrogen peroxide in the midgut that contributes to limit Plasmodium infection through a lytic mechanism. PMID:18065421

  6. Identification of Coccoidal Bacteria in Traditional Fermented Milk Products from Mongolia, and the Fermentation Properties of the Predominant Species, Streptococcus thermophilus.

    PubMed

    Ren, Yan; Liu, Wenjun; Zhang, Heping

    2015-01-01

    The objective of this study was to identify the coccoidal bacteria present in 188 samples of fermented yaks', mares' and cows' milk products collected from 12 different regions in Mongolia. Furthermore, we evaluated the fermentation properties of ten selected isolates of the predominant species, Streptococcus (S.) thermophiles, during the process of milk fermentation and subsequent storage of the resulting yoghurt at 4℃. Overall, 159 isolates were obtained from 188 samples using M17 agar. These isolates were presumed to be lactic acid bacteria based on their gram-positive and catalase-negative properties, and were identified to species level using 16S rRNA gene sequence analysis. These coccoid isolates were distributed in four genera and six species: Enterococcus (E.) durans, Enterococcus (E.) faecalis, Lactococcus (Lac.) subsp. lactis, Leuconostoc (Leuc.) lactis, Leuconostoc (Leuc.) mesenteroides. subsp. mesenteroides and S. thermophilus. Among these S. thermophilus was the most common species in most samples. From evaluation of the fermentation characteristics (viable counts, pH, titratable acidity [TA]) of ten selected S. thermophilus isolates we could identify four isolates (IMAU 20246, IMAU20764, IMAU20729 and IMAU20738) that were fast acid producers. IMAU20246 produced the highest concentrations of lactic acid and formic acid. These isolates have potential as starter cultures for yoghurt production. PMID:26761898

  7. Identification of Coccoidal Bacteria in Traditional Fermented Milk Products from Mongolia, and the Fermentation Properties of the Predominant Species, Streptococcus thermophilus

    PubMed Central

    2015-01-01

    The objective of this study was to identify the coccoidal bacteria present in 188 samples of fermented yaks’, mares’ and cows’ milk products collected from 12 different regions in Mongolia. Furthermore, we evaluated the fermentation properties of ten selected isolates of the predominant species, Streptococcus (S.) thermophiles, during the process of milk fermentation and subsequent storage of the resulting yoghurt at 4℃. Overall, 159 isolates were obtained from 188 samples using M17 agar. These isolates were presumed to be lactic acid bacteria based on their gram-positive and catalase-negative properties, and were identified to species level using 16S rRNA gene sequence analysis. These coccoid isolates were distributed in four genera and six species: Enterococcus (E.) durans, Enterococcus (E.) faecalis, Lactococcus (Lac.) subsp. lactis, Leuconostoc (Leuc.) lactis, Leuconostoc (Leuc.) mesenteroides. subsp. mesenteroides and S. thermophilus. Among these S. thermophilus was the most common species in most samples. From evaluation of the fermentation characteristics (viable counts, pH, titratable acidity [TA]) of ten selected S. thermophilus isolates we could identify four isolates (IMAU 20246, IMAU20764, IMAU20729 and IMAU20738) that were fast acid producers. IMAU20246 produced the highest concentrations of lactic acid and formic acid. These isolates have potential as starter cultures for yoghurt production. PMID:26761898

  8. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans.

    PubMed

    Ferreira, Anderson; Quecine, Maria Carolina; Lacava, Paulo Teixeira; Oda, Shinitiro; Azevedo, João Lúcio; Araújo, Welington Luiz

    2008-10-01

    The diversity and beneficial characteristics of endophytic microorganisms have been studied in several host plants. However, information regarding naturally occurring seed-associated endophytes and vertical transmission among different life-history stages of hosts is limited. Endophytic bacteria were isolated from seeds and seedlings of 10 Eucalyptus species and two hybrids. The results showed that endophytic bacteria, such as Bacillus, Enterococcus, Paenibacillus and Methylobacterium, are vertically transferred from seeds to seedlings. In addition, the endophytic bacterium Pantoea agglomerans was tagged with the gfp gene, inoculated into seeds and further reisolated from seedlings. These results suggested a novel approach to change the profile of the plants, where the bacterium is a delivery vehicle for desired traits. This is the first report of an endophytic bacterial community residing in Eucalyptus seeds and the transmission of these bacteria from seeds to seedlings. The bacterial species reported in this work have been described as providing benefits to host plants. Therefore, we suggest that endophytic bacteria can be transmitted vertically from seeds to seedlings, assuring the support of the bacterial community in the host plant. PMID:18710397

  9. Antimicrobial Efficacy of an Array of Essential Oils Against Lactic Acid Bacteria.

    PubMed

    Dunn, Laurel L; Davidson, P Michael; Critzer, Faith J

    2016-02-01

    The essential oils of clove bud, cinnamon bark and thyme, and their individual compounds including allyl isothiocyanate (AIT), carvacrol, cinnamaldehyde, cinnamic acid, eugenol, and thymol were initially assessed for antimicrobial activity against 9 lactic acid bacteria (LAB) species. Carvacrol and thymol were the most inhibitory with MICs of 0.1% (v/v and w/v, respectively). Cinnamaldehyde, cinnamon bark oil, clove bud oil, eugenol, and thyme oil were moderately inhibitive (MICs = 0.2% v/v), while cinnamic acid required a concentration of 0.5% (w/v). AIT was not effective with MICs in excess of concentrations tested (0.75% v/v). The bactericidal capability of the oil components carvacrol, cinnamaldehyde, eugenol, and thymol were further examined against Pediococcus acidilactici, Lactobacillus buchneri, and Leuconostoc citrovorum. Thymol at 0.1% (w/v) was bactericidal against L. citrovorum (>4-log reduction), but resulted in a 2-log CFU/mL reduction against L. buchneri and P. acidilactici. Cinnamaldehyde at 0.2% to 0.25% (v/v) was effective against L. citrovorum, L. buchneri, and P. acidilactici, resulting in a >2-log reduction. All 3 organisms were susceptible to 0.2% carvacrol with >3-log reduction observed after exposure for 6 h. Eugenol was the least effective. Concentrations of 0.2% and 0.25% (v/v) were needed to achieve an initial reduction in population, >3-log CFU/mL after 6 h exposure. However, at 0.2%, P. acidilactici and L. buchneri recovered to initial populations in 48 to 72 h. Results indicate essential oils have the capacity to inactivate LAB that are commonly associated with spoilage of shelf stable low-acid foods. PMID:26749216

  10. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains.

    PubMed

    Leite, A M O; Miguel, M A L; Peixoto, R S; Ruas-Madiedo, P; Paschoalin, V M F; Mayo, B; Delgado, S

    2015-06-01

    A total of 34 lactic acid bacteria isolates from 4 different Brazilian kefir grains were identified and characterized among a group of 150 isolates, using the ability to tolerate acidic pH and resistance to bile salts as restrictive criteria for probiotic potential. All isolates were identified by amplified ribosomal DNA restriction analysis and 16S rDNA sequencing of representative amplicons. Eighteen isolates belonged to the species Leuconostoc mesenteroides, 11 to Lactococcus lactis (of which 8 belonged to subspecies cremoris and 3 to subspecies lactis), and 5 to Lactobacillus paracasei. To exclude replicates, a molecular typing analysis was performed by combining repetitive extragenic palindromic-PCR and random amplification of polymorphic DNA techniques. Considering a threshold of 90% similarity, 32 different strains were considered. All strains showed some antagonistic activity against 4 model food pathogens. In addition, 3 Lc. lactis strains and 1 Lb. paracasei produced bacteriocin-like inhibitory substances against at least 2 indicator organisms. Moreover, 1 Lc. lactis and 2 Lb. paracasei presented good total antioxidative activity. None of these strains showed undesirable enzymatic or hemolytic activities, while proving susceptible or intrinsically resistant to a series of clinically relevant antibiotics. The Lb. paracasei strain MRS59 showed a level of adhesion to human Caco-2 epithelial cells comparable with that observed for Lactobacillus rhamnosus GG. Taken together, these properties allow the MRS59 strain to be considered a promising probiotic candidate. PMID:25841972

  11. Fermentation Characteristics and Lactic Acid Bacteria Succession of Total Mixed Ration Silages Formulated with Peach Pomace

    PubMed Central

    Hu, Xiaodong; Hao, Wei; Wang, Huili; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2015-01-01

    The objective of this study was to assess the use of peach pomace in total mixed ration (TMR) silages and clarify the differences in aerobic stability between TMR and TMR silages caused by lactic acid bacteria (LAB). The TMR were prepared using peach pomace, alfalfa hay or Leymus chinensis hay, maize meal, soybean meal, cotton meal, limestone, a vitamin-mineral supplement, and salt in a ratio of 6.0:34.0:44.4:7.0:5.0:2.5:1.0:0.1 on a dry matter (DM) basis. Fermentation quality, microbial composition, and the predominant LAB were examined during ensiling and aerobic deterioration. The results indicated that the TMR silages with peach pomace were well fermented, with low pH and high lactic acid concentrations. The aerobic stability of TMR silages were significantly higher than that of TMR. Compared with TMR silages with alfalfa hay, TMR silage with Leymus chinensis hay was much more prone to deterioration. Although the dominant LAB were not identical in TMR, the same dominant species, Lactobacillus buchneri and Pediococcus acidilactici, were found in both types of TMR silages after 56 d of ensiling, and they may play an important role in the aerobic stability of TMR silages. PMID:25656205

  12. Diversity of lactic acid bacteria associated with fresh coffee cherries in Taiwan.

    PubMed

    Leong, Kun-hon; Chen, Yi-sheng; Pan, Shwu-fen; Chen, Jen-jye; Wu, Hui-chung; Chang, Yu-chung; Yanagida, Fujitoshi

    2014-04-01

    A total of 102 lactic acid bacteria (LAB) were isolated from three different coffee farms in Taiwan. These isolates were classified and identified by the restriction fragment length polymorphism analysis and sequencing of 16S ribosomal DNA. Heterofermentative Leuconostoc, and Weissella species were the most common LAB found in two farms located at an approximate altitude of 800 m. Lactococcus lactis subsp. lactis was the most common LAB found in the remaining farm was located at an approximate altitude of 1,200 m. It is therefore suggested that the altitude and climate may affect the distribution of LAB. On the basis of phylogenetic analysis, two strains included in the genera Enterococcus were considered as two potential novel species or subspecies. In addition, a total of 34 isolates showed the antifungal activity against Aspergillus flavus. Moreover, seven Lactococcus lactis subsp. lactis strains and one Enterococcus faecalis strain were found to have bacteriocin-like inhibitory substance-producing capability. These results suggest that various LAB are associated with fresh coffee cherries in Taiwan. Some of the isolates found in this study showed potential as antifungal agents. PMID:24292770

  13. Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees

    PubMed Central

    Vásquez, Alejandra; Forsgren, Eva; Fries, Ingemar; Paxton, Robert J.; Flaberg, Emilie; Szekely, Laszlo

    2012-01-01

    Lactic acid bacteria (LAB) are well recognized beneficial host-associated members of the microbiota of humans and animals. Yet LAB-associations of invertebrates have been poorly characterized and their functions remain obscure. Here we show that honeybees possess an abundant, diverse and ancient LAB microbiota in their honey crop with beneficial effects for bee health, defending them against microbial threats. Our studies of LAB in all extant honeybee species plus related apid bees reveal one of the largest collections of novel species from the genera Lactobacillus and Bifidobacterium ever discovered within a single insect and suggest a long (>80 mya) history of association. Bee associated microbiotas highlight Lactobacillus kunkeei as the dominant LAB member. Those showing potent antimicrobial properties are acquired by callow honey bee workers from nestmates and maintained within the crop in biofilms, though beekeeping management practices can negatively impact this microbiota. Prophylactic practices that enhance LAB, or supplementary feeding of LAB, may serve in integrated approaches to sustainable pollinator service provision. We anticipate this microbiota will become central to studies on honeybee health, including colony collapse disorder, and act as an exemplar case of insect-microbe symbiosis. PMID:22427985

  14. Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens.

    PubMed

    Piccart, K; Vásquez, A; Piepers, S; De Vliegher, S; Olofsson, T C

    2016-04-01

    Despite the increasing knowledge of prevention and control strategies, bovine mastitis remains one of the most challenging diseases in the dairy industry. This study investigated the antimicrobial activity of 13 species of lactic acid bacteria (LAB), previously isolated from the honey crop of the honeybee, on several mastitis pathogens. The viable LAB were first reintroduced into a sterilized heather honey matrix. More than 20 different bovine mastitis isolates were tested against the mixture of the 13 LAB species in the honey medium using a dual-culture overlay assay. The mastitis isolates were identified through bacteriological culturing, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Additionally, the mastitis isolates were subjected to antimicrobial susceptibility testing through disk diffusion. Growth of all tested mastitis pathogens, including the ones displaying antimicrobial resistance to one or more antimicrobial compounds, were inhibited to some extent by the honey and LAB combination. The antibacterial effect of these LAB opens up new perspectives on alternative treatment and prevention of bovine mastitis. PMID:26830735

  15. Interaction of Aeromonas Strains with Lactic Acid Bacteria via Caco-2 Cells

    PubMed Central

    Hatje, E.; Neuman, C.

    2014-01-01

    The genus Aeromonas includes some species that have now been identified as human pathogens of significant medical importance. We investigated the ability of 13 selected Aeromonas strains belonging to nine species isolated from clinical cases (n = 5), environmental waters (n = 5), and fish (n = 3) to adhere to and translocate Caco-2 cells in the absence and presence of two lactic acid bacteria (LAB), i.e., Lactobacillus acidophilus and Bifidobacterium breve. Aeromonas isolates were also assessed for their cytotoxicity, the presence of virulence genes, and hemolysin production. Among the clinical isolates, one strain of Aeromonas veronii biovar veronii and two strains of Aeromonas hydrophila carried cytotoxin (act), heat-labile toxin (alt), hemolysin (hlyA), and aerolysin (aerA) genes, were cytotoxic to Vero cells, produced hemolysin, and showed higher adherence to Caco-2 cells. In contrast, this was seen in only one environmental strain, a strain of A. veronii biovar sobria. When Aeromonas strains were coinoculated with LAB onto Caco-2 cells, their level of adhesion was reduced. However, their rate of translocation in the presence of LAB increased and was significantly (P < 0.05) higher among fish strains. We suggest that either the interaction between Aeromonas and LAB strains could have a detrimental effect on the Caco-2 cells, allowing the Aeromonas to translocate more readily, or the presence of the LAB stimulated the Aeromonas strains to produce more toxins and/or increase their translocation rate. PMID:24242240

  16. Identification of lactic acid bacteria isolated from wine using real-time PCR.

    PubMed

    Kántor, Attila; Kluz, Maciej; Puchalski, Czeslaw; Terentjeva, Margarita; Kačániová, Miroslava

    2016-01-01

    Different lactic acid bacteria strains have been shown to cause wine spoilage, including the generation of substances undesirable for the health of wine consumers. The aim of this study was to investigate the occurrence of selected species of heterofermentative lactobacilli, specifically Lactobacillus brevis, Lactobacillus hilgardii, and Lactobacillus plantarum in six different Slovak red wines following the fermentation process. In order to identify the dominant Lactobacillus strain using quantitative (real time) polymerized chain reaction (qPCR) method, pure lyophilized bacterial cultures from the Czech Collection of Microorganisms were used. Six different red wine samples following malolactic fermentation were obtained from selected wineries. After collection, the samples were subjected to a classic plate dilution method for enumeration of lactobacilli cells. Real-time PCR was performed after DNA extraction from pure bacterial strains and wine samples. We used SYBR® Green master mix reagents for measuring the fluorescence in qPCR. The number of lactobacilli ranged from 3.60 to 5.02 log CFU mL(-1). Specific lactobacilli strains were confirmed by qPCR in all wine samples. The number of lactobacilli ranged from 10(3) to 10(6) CFU mL(-1). A melting curve with different melting temperatures (T(m)) of DNA amplicons was obtained after PCR for the comparison of T(m) of control and experimental portions, revealing that the most common species in wine samples was Lactobacillus plantarum with a T(m) of 84.64°C. PMID:26549195

  17. House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs.

    PubMed

    Minervini, Fabio; Lattanzi, Anna; De Angelis, Maria; Celano, Giuseppe; Gobbetti, Marco

    2015-12-01

    This study aimed at understanding the extent of contamination by lactic acid bacteria (LAB) and yeasts from the house microbiotas during sourdough back-slopping. Besides sourdoughs, wall, air, storage box, dough mixer and flour of four bakeries were analyzed. Based on plate counts, LAB and yeasts dominated the house microbiota. Based on high throughput sequencing of the 16S rRNA genes, flour harbored the highest number of Firmicutes, but only few of them adapted to storage box, dough mixer and sourdough. Lactobacillus sanfranciscensis showed the highest abundance in dough mixer and sourdoughs. Lactobacillus plantarum persisted only in storage box, dough mixer and sourdough of two bakeries. Weissella cibaria also showed higher adaptability in sourdough than in bakery equipment, suggesting that flour is the main origin of this species. Based on 18S rRNA data, Saccharomyces cerevisiae was the dominant yeast in house and sourdough microbiotas, excepted one bakery dominated by Kazachstania exigua. The results of this study suggest that the dominant species of sourdough LAB and yeasts dominated also the house microbiota. PMID:26338118

  18. Oral lactic acid bacteria related to the occurrence and/or progression of dental caries in Japanese preschool children

    PubMed Central

    SHIMADA, Ayumi; NODA, Masafumi; MATOBA, Yasuyuki; KUMAGAI, Takanori; KOZAI, Katsuyuki; SUGIYAMA, Masanori

    2015-01-01

    Previous studies have demonstrated that the presence of lactic acid bacteria (LAB), especially those classified into the genus Lactobacillus, is associated with the progression of dental caries in preschool children. Nevertheless, the kinds of species of LAB and the characteristics that are important for dental caries have been unclear. The aims of this study were: (1) to investigate the distribution of oral LAB among Japanese preschool children with various prevalence levels of caries; and (2) to reveal the characteristics of these isolated LAB species. Seventy-four Japanese preschool children were examined for caries scores and caries progression, and their dental cavity samples were collected for LAB isolation and identification. The saliva-induced agglutination rate and the resistance to acidic environments of the identified strains were measured. Statistical analysis showed that preschool children carrying Lactobacillus (L.) salivarius or Streptococcus mutans have a significantly higher prevalence of dental caries, the growth ability in acidic environments correlates with the caries scores of individuals with L. salivarius, and the caries scores exhibit positive correlation with saliva-induced agglutination in L. salivarius. These results show that specific Lactobacillus species are associated with dental caries based on the level of carious lesion severity. The present study suggests that these specific Lactobacillus species, especially those with easily agglutinated properties and acid resistance, affect the dental caries scores of preschool children, and that these properties may provide useful information for research into the prevention of dental caries. PMID:25918670

  19. Molecular identification and quantification of lactic acid bacteria in traditional fermented dairy foods of Russia.

    PubMed

    Yu, J; Wang, H M; Zha, M S; Qing, Y T; Bai, N; Ren, Y; Xi, X X; Liu, W J; Menghe, B L G; Zhang, H P

    2015-08-01

    Russian traditional fermented dairy foods have been consumed for thousands of years. However, little research has focused on exploiting lactic acid bacteria (LAB) resources and analyzing the LAB composition of Russian traditional fermented dairy foods. In the present study, we cultured LAB isolated from fermented mare and cow milks, sour cream, and cheese collected from Kalmykiya, Buryats, and Tuva regions of Russia. Seven lactobacillus species and the Bifidobacterium genus were quantified by quantitative PCR. The LAB counts in these samples ranged from 3.18 to 9.77 log cfu/mL (or per gram). In total, 599 LAB strains were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. The identified LAB belonged to 7 genera and 30 species by 16S rRNA and murE gene sequencing and multiplex PCR assay. The predominant LAB isolates were Lactobacillus helveticus (176 strains) and Lactobacillus plantarum (63 strains), which represented 39.9% of all isolates. The quantitative PCR results revealed that counts of 7 lactobacilli species and Bifidobacterium spp. of 30 fermented cow milk samples ranged from 1.19±0.34 (Lactobacillus helveticus in Tuva) to 8.09±0.71 (Lactobacillus acidophilus in Kalmykiya) log cfu/mL of fermented cow milk (mean ± standard error). The numbers of Bifidobacterium spp., Lb. plantarum, Lb. helveticus, and Lb. acidophilus revealed no significant difference between the 3 regions; nevertheless, Lactobacillus paracasei, Lactobacillus fermentum, Lactobacillus sakei, and Lactobacillus delbrueckii ssp. bulgaricus exhibited different degrees of variation across 3 regions. The results demonstrate that traditional fermented dairy products from different regions of Russia have complex compositions of LAB species. The diversity of LAB might be related to the type of fermented dairy product, geographical origin, and manufacturing process. PMID:26004836

  20. Synthesis of γ-Aminobutyric Acid by Lactic Acid Bacteria Isolated from a Variety of Italian Cheeses▿

    PubMed Central

    Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C. G.; Coda, R.; Gobbetti, M.

    2007-01-01

    The concentrations of γ-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg−1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA. PMID:17890341

  1. Synthesis of the cancer preventive peptide lunasin by lactic acid bacteria during sourdough fermentation.

    PubMed

    Rizzello, Carlo G; Nionelli, Luana; Coda, Rossana; Gobbetti, Marco

    2012-01-01

    This study aimed to exploit the potential of sourdough lactic acid bacteria to release lunasin during fermentation of cereal and nonconventional flours. The peptidase activities of a large number of sourdough lactic acid bacteria were screened using synthetic substrates. Selected lactic acid bacteria were used as sourdough starters to ferment wholemeal wheat, soybean, barley, amaranth, and rye flours. Proteinase activity during fermentation was characterized by SDS-PAGE analysis of the water-soluble extracts. Albumins having molecular masses of 18 to 22 kDa, which included the size of lunasin precursors, were markedly affected by proteolysis of lactic acid bacteria. After fermentation, lunasin from the water-soluble extracts was quantified, purified, and identified through RP-HPLC and nano-LC-ESI-MS analyses. Compared to control doughs, the concentration of lunasin increased up to 2-4 times during fermentation. Lactobacillus curvatus SAL33 and Lactobacillus brevis AM7 synthesized the highest concentrations of lunasin in all the flours. Besides the presence of the entire lunasin sequence, fragments containing the immunoreactive epitope RGDDDDDDDDD were also found. This study shows that fermentation by lactic acid bacteria increased the concentration of lunasin to levels that would suggest new possibilities for the biological synthesis and for the formulation of functional foods. PMID:22098174

  2. Isolation and Identification of Concrete Environment Bacteria

    NASA Astrophysics Data System (ADS)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  3. HYDROLYTIC BREAKDOWN OF LACTOFERRICIN BY LACTIC ACID BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactoferricin is a 25 amino acid antimicrobial peptide domain that is liberated by pepsin digestion of lactoferrin in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. There is substantial ...

  4. Species-Specific Dynamic Responses of Gut Bacteria to a Mammalian Glycan

    PubMed Central

    Raghavan, Varsha

    2015-01-01

    ABSTRACT The mammalian intestine provides nutrients to hundreds of bacterial species. Closely related species often harbor homologous nutrient utilization genes and cocolonize the gut, raising questions regarding the strategies mediating their stable coexistence. Here we reveal that related Bacteroides species that can utilize the mammalian glycan chondroitin sulfate (CS) have diverged in the manner in which they temporally regulate orthologous CS utilization genes. Whereas certain Bacteroides species display a transient surge in CS utilization transcripts upon exposure to CS, other species exhibit sustained activation of these genes. Remarkably, species-specific expression dynamics are retained even when the key players governing a particular response are replaced by those from a species with a dissimilar response. Bacteroides species exhibiting distinct expression behaviors in the presence of CS can be cocultured on CS. However, they vary in their responses to CS availability and to the composition of the bacterial community when CS is the sole carbon source. Our results indicate that diversity resulting from regulation of polysaccharide utilization genes may enable the coexistence of gut bacterial species using a given nutrient. IMPORTANCE Genes mediating a specific task are typically conserved in related microbes. For instance, gut Bacteroides species harbor orthologous nutrient breakdown genes and may face competition from one another for these nutrients. How, then, does the gut microbial composition maintain such remarkable stability over long durations? We establish that in the case of genes conferring the ability to utilize the nutrient chondroitin sulfate (CS), microbial species vary in how they temporally regulate these genes and exhibit subtle growth differences on the basis of CS availability and community composition. Similarly to how differential regulation of orthologous genes enables related species to access new environments, gut bacteria may

  5. Bacteriophages of lactic acid bacteria and their impact on milk fermentations.

    PubMed

    Garneau, Josiane E; Moineau, Sylvain

    2011-08-30

    Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed. PMID:21995802

  6. A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam.

    PubMed

    Nguyen, Doan Thi Lam; Van Hoorde, Koenraad; Cnockaert, Margo; De Brandt, Evie; Aerts, Maarten; Binh Thanh, Le; Vandamme, Peter

    2013-04-15

    An important part of the daily nourishment in Vietnam constitutes of fermented vegetables. Bacteria and especially lactic acid bacteria play a central role in the production of many fermented vegetables. The current study was conducted to investigate the diversity of native lactic acid bacteria (LAB) populations in 'dua muoi' (mustard and beet fermentation) and 'ca muoi' (eggplant fermentation), three types of popular traditional fermented vegetables of Vietnamese origin. To this end a polyphasic approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and pheS gene sequence analysis was used. In addition, denaturing gradient gel electrophoresis was performed as a culture-independent method to complement the observed culturable diversity data. A total of 881 LAB isolates were recovered from 21 different samples. Predominant LAB associated with 'dua muoi' and 'ca muoi' were identified as Lactobacillus fermentum (56.6%), Lactobacillus pentosus (24.4%) and Lactobacillus plantarum (17.1%). Less abundant species were Pediococcus pentosaceus (1.0%) and Lactobacillus brevis (0.5%). Species present less than 0.1% included Lactobacillus paracasei, Lactobacillus pantheris and Pediococcus acidilactici. In contrast to fermented mustard and beet with the highest prevalence of L. fermentum, the species most recovered from fermented eggplant samples was L. pentosus. In addition, an important degree of genetic variability within the different predominant species was observed and strain dependency correlating with the type of fermented vegetable or location of production could be demonstrated using multivariate statistics. This research gives an extensive and detailed inventory of the LAB diversity associated with the production of diverse Vietnamese fermented vegetables and demonstrates the influence of type of raw material and/or production location and conditions on this diversity. PMID:23500611

  7. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    PubMed

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. PMID:25261518

  8. Hydroxycinnamic Acids Used as External Acceptors of Electrons: an Energetic Advantage for Strictly Heterofermentative Lactic Acid Bacteria

    PubMed Central

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria

    2014-01-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD+/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD+/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. PMID:25261518

  9. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum)

    PubMed Central

    Kwak, Shin-Hye; Cho, Young-Mi; Noh, Geon-Min; Om, Ae-Son

    2014-01-01

    The number of death due to cancer has been increasing in Korea. Chemotherapy is known to cause side effects because it damages not only cancerous cells but healthy cells. Recently, attention has focused on food-derived chemopreventive and anti-tumor agents or formulations with fewer side effects. Kimchi, most popular and widely consumed in Korea, contains high levels of lactic acid bacteria and has been shown to possess chemopreventive effects. This review focuses on Weissella cibaria and Lactobacillus plantarum, the representatives of kimchi lactic acid bacteria, in terms of their abilities to prevent cancer. Further studies are needed to understand the mechanisms by which lactic acid bacteria in kimchi prevent carcinogenic processes and improve immune functions. PMID:25574459

  10. Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

    PubMed Central

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-01-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory. PMID:25924957

  11. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    SciTech Connect

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  12. A combination of two lactic acid bacteria improves the hydrolysis of gliadin during wheat dough fermentation.

    PubMed

    Gerez, Carla Luciana; Dallagnol, Andrea; Rollán, Graciela; Font de Valdez, Graciela

    2012-12-01

    The evaluation of gliadin hydrolysis during dough fermentation by using two lactic acid bacteria, Lactobacillus plantarum CRL 775 and Pediococcus pentosaceus CRL 792, as pooled cell suspension (LAB) or cell free extract (CFE) was undertaken. The CFE pool produced a greater (121%) increase in amino acid concentration than the LAB pool (70-80%). These results were correlated with the decrease (76,100 and 64,300 ppm) in the gliadin concentration of doughs supplemented with CFE and LAB, respectively, compared to control doughs. The use of LAB peptidases seemed to be a viable technologic alternative to reduce the gliadin concentration in wheat dough without using living bacteria as starter. PMID:22986210

  13. [Candidatus "Jettenia moscovienalis" sp. nov., a New Species of Bacteria Carrying out Anaerobic Ammonium Oxidation].

    PubMed

    Nikolaev, A; Kozlov, M N; Kevbrina, M V; Dorofeev, A G; Pimenov, N V; Kallistova, A Yu; Grachev, V A; Kazakova, E A; Zharkov, A V; Kuznetsov, B B; Patutina, E O; Bumazhkin, B K

    2015-01-01

    A new species of bacteria oxidizing ammonium with nitrite under anoxic conditions was isolated from the activated sludge of a semi-industrial bioreactor treating digested sludge of the Kuryanovo wastewater treatment plant (Moscow, Russia). Physiological, morphological, and molecular genetic characterization of the isolate was carried out. The cells were ovoid (-0.5 x 0.8 μm), with the intracellular membrane structures characteristic of anammox bacteria (anammoxosome and paryphoplasm); unlike other anammox bacteria, it possessed extensive intracellular membrane structures located in layers parallel to the cytoplasmic membrane, but never close to the anammoxosome. The cells formed aggregates 5-28 μm in diameter and readily attached to solid surfaces. The cells were morphologically labile, easily plasmolyzed, and lost their content. Doubling time was 28 days, μ(max) = 0.025 day(-1); optimal temperature and pH for growth were 20-45 degrees C and 8.0, respectively. Phylogenetic analysis of the 16S rRNA gene sequences suggested its classification as a new species of the candidate genus Jettenia (order Planctomycetales). The name Candidatus "Jettenia moscovienalis" sp. nov. was proposed for the new bacterium. PMID:26263630

  14. Potential probiotic effects of lactic acid bacteria on ruminant performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Probiotics are microbial feed supplements that benefit animals by improving the microbial community of the digestive tract. In humans, probiotics are species that can survive the stomach and influence the intestinal microflora. The mode of action of human probiotics is not as yet proven. However, th...

  15. High-performance liquid chromatography of corynomycolic acids as a tool in identification of Corynebacterium species and related organisms.

    PubMed Central

    De Briel, D; Couderc, F; Riegel, P; Jehl, F; Minck, R

    1992-01-01

    A high-performance liquid chromatography (HPLC) study of 307 strains of Corynebacterium species and related taxa revealed that strains classified as "Corynebacterium aquaticum"; "Corynebacterium asperum"; and Centers for Disease Control (CDC) groups 1, 2, A-3, A-4, A-5, B-1, B-3, E, F-2, and I-2 as well as some unidentified coryneforms do not contain any corynomycolic acids; therefore, they should not be included in the genus Corynebacterium. Such an HPLC method of identification permitted the correct assignment to the genus Rhodococcus of two unpigmented strains of coryneform bacteria whose mycolic acid profiles were comparable to those of Rhodococcus equi. Bacteria belonging to CDC groups ANF-1, ANF-3, F-1, G-1, G-2, and I-1, as well as some other Corynebacterium sp. strains, yielded corynomycolic acid HPLC patterns related to those of Corynebacterium species. Either similarities or differences were observed in the corynomycolic acid profiles of Corynebacterium species tested after culture on sheep blood agar and/or sheep blood agar supplemented with Tween 80, which demonstrated that identification at the species or group level is possible. However, Corynebacterium striatum and CDC group I-1 bacteria as well as CDC group G-1 and group G-2 bacteria had indistinguishable HPLC patterns. Conversely, some variations were observed within some species as Corynebacterium xerosis, C. striatum, and Corynebacterium minutissimum. The evaluation procedure of this HPLC method by mass spectrometry analysis of isolated eluted peaks revealed that analytical reverse-phase HPLC alone does not provide any structural information, since isomers with identical polarities coeluted as a single peak. Nevertheless, HPLC is a rapid and reliable method for identification of corynomycolic acid-containing bacteria in the clinical microbiological laboratory. PMID:1624556

  16. High-performance liquid chromatography of corynomycolic acids as a tool in identification of Corynebacterium species and related organisms.

    PubMed

    De Briel, D; Couderc, F; Riegel, P; Jehl, F; Minck, R

    1992-06-01

    A high-performance liquid chromatography (HPLC) study of 307 strains of Corynebacterium species and related taxa revealed that strains classified as "Corynebacterium aquaticum"; "Corynebacterium asperum"; and Centers for Disease Control (CDC) groups 1, 2, A-3, A-4, A-5, B-1, B-3, E, F-2, and I-2 as well as some unidentified coryneforms do not contain any corynomycolic acids; therefore, they should not be included in the genus Corynebacterium. Such an HPLC method of identification permitted the correct assignment to the genus Rhodococcus of two unpigmented strains of coryneform bacteria whose mycolic acid profiles were comparable to those of Rhodococcus equi. Bacteria belonging to CDC groups ANF-1, ANF-3, F-1, G-1, G-2, and I-1, as well as some other Corynebacterium sp. strains, yielded corynomycolic acid HPLC patterns related to those of Corynebacterium species. Either similarities or differences were observed in the corynomycolic acid profiles of Corynebacterium species tested after culture on sheep blood agar and/or sheep blood agar supplemented with Tween 80, which demonstrated that identification at the species or group level is possible. However, Corynebacterium striatum and CDC group I-1 bacteria as well as CDC group G-1 and group G-2 bacteria had indistinguishable HPLC patterns. Conversely, some variations were observed within some species as Corynebacterium xerosis, C. striatum, and Corynebacterium minutissimum. The evaluation procedure of this HPLC method by mass spectrometry analysis of isolated eluted peaks revealed that analytical reverse-phase HPLC alone does not provide any structural information, since isomers with identical polarities coeluted as a single peak. Nevertheless, HPLC is a rapid and reliable method for identification of corynomycolic acid-containing bacteria in the clinical microbiological laboratory. PMID:1624556

  17. LABEL-FREE SERS FOR RAPID AND SIMULTANEOUS SPECIES IDENTIFICATION OF ESCHERICHIA COLI, LISTERIA MONOCYTOGENES, AND SALMONELLA TYPHIMONIUM BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need for rapid detection of foodborne bacteria has long been a hot topic from policy makers to manufacturers. Traditional method, nucleic acid based on PCR, and antibody based biosensors have been developed as viable tools to identify the bacteria. Generally, these methods are labor-intensive an...

  18. Lactic Acid Bateria - Friend or Foe? Lactic Acid Bacteria in the Production of Polysaccharides and Fuel Ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) have been widely used in the production of fermented foods and as probiotics. Alternan is a glucan with a distinctive backbone structure of alternating alpha-(1,6) and alpha-(1,3) linkages produced by the LAB Leuconostoc mesenteroides. In recent years, improved strains f...

  19. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds

    PubMed Central

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa. PMID:26357877

  20. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds.

    PubMed

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa. PMID:26357877

  1. Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.

    PubMed

    Bennett, Rachel R; Lee, Calvin K; De Anda, Jaime; Nealson, Kenneth H; Yildiz, Fitnat H; O'Toole, George A; Wong, Gerard C L; Golestanian, Ramin

    2016-02-01

    Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa, Shewanella oneidensis and Vibrio cholerae, and provides a detailed dictionary for connecting observed spinning behaviour to bacteria-surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms. PMID:26864892

  2. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques.

    PubMed

    Yetiman, Ahmet E; Kesmen, Zülal

    2015-07-01

    Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level. PMID:25828705

  3. Local domestication of lactic acid bacteria via cassava beer fermentation

    PubMed Central

    Meadow, James F.; Liebert, Melissa A.; Cepon-Robins, Tara J.; Gildner, Theresa E.; Urlacher, Samuel S.; Bohannan, Brendan J.M.; Snodgrass, J. Josh; Sugiyama, Lawrence S.

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal. PMID:25071997

  4. Local domestication of lactic acid bacteria via cassava beer fermentation.

    PubMed

    Colehour, Alese M; Meadow, James F; Liebert, Melissa A; Cepon-Robins, Tara J; Gildner, Theresa E; Urlacher, Samuel S; Bohannan, Brendan J M; Snodgrass, J Josh; Sugiyama, Lawrence S

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal. PMID:25071997

  5. Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production.

    PubMed

    Corona, Onofrio; Alfonzo, Antonio; Ventimiglia, Giusi; Nasca, Anna; Francesca, Nicola; Martorana, Alessandra; Moschetti, Giancarlo; Settanni, Luca

    2016-10-01

    Four obligate heterofermentative lactic acid bacteria (LAB) strains (Weissella cibaria PON10030 and PON10032 and Leuconostoc citreum PON 10079 and PON10080) were tested as single strain starters, mono-species dual strain starters, and multiple strain starter for the preparation and propagation of sourdoughs for the production of a typical bread at industrial level. The kinetics of pH and TTA during the daily sourdough refreshments indicated a correct acidification process for all trials. The concentration of lactic and acetic acid increased consistently during fermentation. The resulting molar ratios between these two organic acids in the experimental trials were lower than those observed in the control trial. The microbiological investigation showed levels of approximately 10(9) CFU/mL in almost all sourdoughs and the comparison of the genetic polymorphisms of the dominating LAB with those of the pure cultures evidenced the persistence of the added strains over time. The resulting breads were evaluated for several quality parameters. The breads with the greatest height were obtained with the quadruple combination of leuconostocs and weissellas. The highest softness was registered for the breads obtained from fermentations performed by W. cibaria PON10032 alone and in combination. The different inocula influenced also the color, the void fraction, the cell density and the mean cell area of the breads. Different levels of acids, alcohols, aldehydes, esters, hydrocarbons, ketones, terpenes, furans and phenol were emitted by the breads. The sensory tests indicated the breads from the sourdoughs fermented with the seven LAB inocula as sweeter and less acidic than control breads and the breads from the trials with the highest complexity of LAB inoculums were those more appreciated by tasters. A multivariate approach found strong differences among the trials. In particular, control breads and the breads obtained with different starter LAB were quite distant and a more

  6. Fresh-cut pineapple as a new carrier of probiotic lactic acid bacteria.

    PubMed

    Russo, Pasquale; de Chiara, Maria Lucia Valeria; Vernile, Anna; Amodio, Maria Luisa; Arena, Mattia Pia; Capozzi, Vittorio; Massa, Salvatore; Spano, Giuseppe

    2014-01-01

    Due to the increasing interest for healthy foods, the feasibility of using fresh-cut fruits to vehicle probiotic microorganisms is arising scientific interest. With this aim, the survival of probiotic lactic acid bacteria, belonging to Lactobacillus plantarum and Lactobacillus fermentum species, was monitored on artificially inoculated pineapple pieces throughout storage. The main nutritional, physicochemical, and sensorial parameters of minimally processed pineapples were monitored. Finally, probiotic Lactobacillus were further investigated for their antagonistic effect against Listeria monocytogenes and Escherichia coli O157:H7 on pineapple plugs. Our results show that at eight days of storage, the concentration of L. plantarum and L. fermentum on pineapples pieces ranged between 7.3 and 6.3 log cfu g(-1), respectively, without affecting the final quality of the fresh-cut pineapple. The antagonistic assays indicated that L. plantarum was able to inhibit the growth of both pathogens, while L. fermentum was effective only against L. monocytogenes. This study suggests that both L. plantarum and L. fermentum could be successfully applied during processing of fresh-cut pineapples, contributing at the same time to inducing a protective effect against relevant foodborne pathogens. PMID:25093163

  7. In Vitro Properties of Potential Probiotic Indigenous Lactic Acid Bacteria Originating from Traditional Pickles

    PubMed Central

    Tokatlı, Mehmet; Gülgör, Gökşen; Bağder Elmacı, Simel; Arslankoz İşleyen, Nurdan; Özçelik, Filiz

    2015-01-01

    The suitable properties of potential probiotic lactic acid bacteria (LAB) strains (preselected among 153 strains on the basis of their potential technological properties) isolated from traditional Çubuk pickles were examined in vitro. For this purpose, these strains (21 Lactobacillus plantarum, 11 Pediococcus ethanolidurans, and 7 Lactobacillus brevis) were tested for the ability to survive at pH 2.5, resistance to bile salts, viability in the presence of pepsin-pancreatin, ability to deconjugate bile salts, cholesterol assimilation, and surface hydrophobicity properties. Most of the properties tested could be assumed to be strain-dependent. However, L. plantarum and L. brevis species were found to possess desirable probiotic properties to a greater extent compared to P. ethanolidurans. In contrast to P. ethanolidurans strains, the tested L. plantarum and L. brevis strains exhibited bile salt tolerance, albeit to different extent. All tested strains showed less resistance to intestinal conditions than gastric juice environment. Based on the survival under gastrointestinal conditions, 22 of the 39 strains were selected for further characterization. The eight strains having the highest cholesterol assimilation and surface hydrophobicity ratios could be taken as promising probiotic candidates for further in vivo studies, because of the strongest variations found among the tested strains with regard to these properties. PMID:26101771

  8. The Use of Lactic Acid Bacteria as a Probiotic in Swine Diets

    PubMed Central

    Yang, Fengjuan; Hou, Chengli; Zeng, Xiangfang; Qiao, Shiyan

    2015-01-01

    As the resistance of pathogens to antibiotics and the possibility of antibiotic residues in animal products attract increasing attention, the interest in the use of alternatives to in-feed antibiotics has been growing. Recent research with Lactic acid bacteria (LAB) in pigs suggests that LAB provide a potential alternative to antibiotic strategies. LAB include Lactobacillus species, Bifidobacterium spp, Bacillus spp, and some other microbes. LAB can adjust the intestinal environment, inhibit or kill pathogens in the gastrointestinal tract and improve the microbial balance in the intestine, as well as regulate intestinal mucosal immunity and maintain intestinal barrier function, thereby benefiting the health of pigs. The related mechanisms for these effects of LAB may include producing microbicidal substances with effects against gastrointestinal pathogens and other harmful microbes, competing with pathogens for binding sites on the intestinal epithelial cell surface and mucin as well as stimulating the immune system. In this review, the characteristics of LAB and their probiotic effects in newborn piglets, weaned piglets, growing pigs and sows are documented. PMID:25633489

  9. Characterization of lactic acid bacteria isolated from Bukuljac, a homemade goat's milk cheese.

    PubMed

    Nikolic, Milica; Terzic-Vidojevic, Amarela; Jovcic, Branko; Begovic, Jelena; Golic, Natasa; Topisirovic, Ljubisa

    2008-02-29

    The Bukuljac cheese is traditionally homemade cheese, produced from heat-treated goat's milk without the addition of any bacterial starter culture. The presence of lactic acid bacteria (LAB) in Bukuljac cheese has been analyzed by using a polyphasic approach including microbiological and molecular methods such as rep-PCR with (GTG)5 primer. Lactobacillus paracasei subsp. paracasei represents a dominant strain in the microflora of analyzed cheese. Out of 55 Gram-positive and catalase-negative isolates, 48 belonged to L. paracasei subsp. paracasei species. Besides lactobacilli, five Lactococcus lactis subsp. lactis and two Enterococcus faecalis were found. Results of PCR-denaturing gradient gel electrophoresis (DGGE) of DNA extracted directly from the fresh cheese revealed the presence of Leuconostoc mesenteroides. Only lactobacilli showed a high proteolytic activity and hydrolyzed alpha(s1)- and beta-caseins. They are also producers of diacetyl. In addition, 34 out of 55 isolates, all determined as lactobacilli, showed the ability of auto-aggregation. Among 55 isolates, 50 also exhibited antimicrobial activity. PMID:18177967

  10. Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses.

    PubMed

    Morales, Fredy; Morales, Jesús I; Hernández, César H; Hernández-Sánchez, Humberto

    2011-07-01

    Isolated strains of halotolerant or halophilic lactic acid bacteria (HALAB) from Cotija and doble crema cheeses were identified and partially characterized by phenotypic and genotypic methods, and their technological abilities were studied in order to test their potential use as dairy starter components. Humidity, a(w), pH, and salt concentration of cheeses were determined. Genotypic diversity was evaluated by randomly amplified polymorphic DNA-polymerase chain reaction. Molecular identification and phylogenetic reconstructions based on 16S rRNA gene sequences were performed. Additional technological abilities such as salt tolerance, acidifying, and proteolytic and lipolytic activities were also investigated. The differences among strains reflected the biodiversity of HALAB in both types of cheeses. Lactobacillus acidipiscis, Tetragenococcus halophilus, Weissella thailandensis, and Lactobacillus pentosus from Cotija cheese, and L. acidipiscis, Enterococcus faecium, Lactobacillus plantarum, Lactobacillus farciminis, and Lactobacillus rhamnosus from doble crema cheese were identified based on 16S rRNA. Quantitative and qualitative assessments showed strains of T. halophilus and L. plantarum to be proteolytic, along with E. faecium, L. farciminis, and L. pentosus to a lesser extent. Lipolytic activity could be demonstrated in strains of E. faecium, L. pentosus, L. plantarum, and T. halophilus. Strains belonging to the species L. pentosus, L. plantarum, and E. faecium were able to acidify the milk media. This study evidences the presence of HALAB that may play a role in the ripening of cheeses. PMID:21327742

  11. Cellulose production and cellulose synthase gene detection in acetic acid bacteria.

    PubMed

    Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz

    2015-02-01

    The ability of acetic acid bacteria (AAB) to produce cellulose has gained much industrial interest due to the physical and chemical characteristics of bacterial cellulose. The production of cellulose occurs in the presence of oxygen and in a glucose-containing medium, but it can also occur during vinegar elaboration by the traditional method. The vinegar biofilm produced by AAB on the air-liquid interface is primarily composed of cellulose and maintains the cells in close contact with oxygen. In this study, we screened for the ability of AAB to produce cellulose using different carbon sources in the presence or absence of ethanol. The presence of cellulose in biofilms was confirmed using the fluorochrome Calcofluor by microscopy. Moreover, the process of biofilm formation was monitored under epifluorescence microscopy using the Live/Dead BacLight Kit. A total of 77 AAB strains belonging to 35 species of Acetobacter, Komagataeibacter, Gluconacetobacter, and Gluconobacter were analysed, and 30 strains were able to produce a cellulose biofilm in at least one condition. This cellulose production was correlated with the PCR amplification of the bcsA gene that encodes cellulose synthase. A total of eight degenerated primers were designed, resulting in one primer pair that was able to detect the presence of this gene in 27 AAB strains, 26 of which formed cellulose. PMID:25381910

  12. In Vitro Properties of Potential Probiotic Indigenous Lactic Acid Bacteria Originating from Traditional Pickles.

    PubMed

    Tokatlı, Mehmet; Gülgör, Gökşen; Bağder Elmacı, Simel; Arslankoz İşleyen, Nurdan; Özçelik, Filiz

    2015-01-01

    The suitable properties of potential probiotic lactic acid bacteria (LAB) strains (preselected among 153 strains on the basis of their potential technological properties) isolated from traditional Çubuk pickles were examined in vitro. For this purpose, these strains (21 Lactobacillus plantarum, 11 Pediococcus ethanolidurans, and 7 Lactobacillus brevis) were tested for the ability to survive at pH 2.5, resistance to bile salts, viability in the presence of pepsin-pancreatin, ability to deconjugate bile salts, cholesterol assimilation, and surface hydrophobicity properties. Most of the properties tested could be assumed to be strain-dependent. However, L. plantarum and L. brevis species were found to possess desirable probiotic properties to a greater extent compared to P. ethanolidurans. In contrast to P. ethanolidurans strains, the tested L. plantarum and L. brevis strains exhibited bile salt tolerance, albeit to different extent. All tested strains showed less resistance to intestinal conditions than gastric juice environment. Based on the survival under gastrointestinal conditions, 22 of the 39 strains were selected for further characterization. The eight strains having the highest cholesterol assimilation and surface hydrophobicity ratios could be taken as promising probiotic candidates for further in vivo studies, because of the strongest variations found among the tested strains with regard to these properties. PMID:26101771

  13. Fresh-Cut Pineapple as a New Carrier of Probiotic Lactic Acid Bacteria

    PubMed Central

    Russo, Pasquale; de Chiara, Maria Lucia Valeria; Vernile, Anna; Amodio, Maria Luisa; Arena, Mattia Pia; Capozzi, Vittorio; Massa, Salvatore; Spano, Giuseppe

    2014-01-01

    Due to the increasing interest for healthy foods, the feasibility of using fresh-cut fruits to vehicle probiotic microorganisms is arising scientific interest. With this aim, the survival of probiotic lactic acid bacteria, belonging to Lactobacillus plantarum and Lactobacillus fermentum species, was monitored on artificially inoculated pineapple pieces throughout storage. The main nutritional, physicochemical, and sensorial parameters of minimally processed pineapples were monitored. Finally, probiotic Lactobacillus were further investigated for their antagonistic effect against Listeria monocytogenes and Escherichia coli O157:H7 on pineapple plugs. Our results show that at eight days of storage, the concentration of L. plantarum and L. fermentum on pineapples pieces ranged between 7.3 and 6.3 log cfu g−1, respectively, without affecting the final quality of the fresh-cut pineapple. The antagonistic assays indicated that L. plantarum was able to inhibit the growth of both pathogens, while L. fermentum was effective only against L. monocytogenes. This study suggests that both L. plantarum and L. fermentum could be successfully applied during processing of fresh-cut pineapples, contributing at the same time to inducing a protective effect against relevant foodborne pathogens. PMID:25093163

  14. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    PubMed

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth. PMID:20832673

  15. In vitro removal of ochratoxin A by wine lactic acid bacteria.

    PubMed

    Del Prete, Vincenzo; Rodriguez, Hector; Carrascosa, Alfonso V; de las Rivas, Blanca; Garcia-Moruno, Emilia; Muñoz, Rosario

    2007-09-01

    A study was carried out to determine the in vitro interaction between ochratoxin A (OTA) and wine lactic acid bacteria (LAB). Fifteen strains belonging to five relevant oenological LAB species were grown in liquid synthetic culture medium containing OTA. The portion of OTA removed during the bacterial growth was 8 to 28%. The OTA removed from the supernatants was partially recovered (31 to 57%) from the bacterial pellet. Cell-free extracts of three representative strains were produced by disrupting cells in a French pressure cell. The ability of crude cell-free extracts to degrade OTA was studied. OTA was not degraded by cell-free extracts of wine LAB strains, and no degradation products of OTA were detected in the high-performance liquid chromatograms of the methanol extract of the bacterial pellet. On the basis of these results, we conclude that OTA removal by wine LAB is a cell-binding phenomenon. The chemistry and the molecular basis of OTA binding to wine LAB remains unknown. PMID:17900096

  16. Bacterial community dynamics during industrial malting, with an emphasis on lactic acid bacteria.

    PubMed

    Justé, A; Malfliet, S; Waud, M; Crauwels, S; De Cooman, L; Aerts, G; Marsh, T L; Ruyters, S; Willems, K; Busschaert, P; Lievens, B

    2014-05-01

    Characterization of the microflora during malting is an essential step towards process management and optimization. Up till now, however, microbial characterization in the malting process has mostly been done using culture-dependent methods, probably leading to biased estimates of microbial diversity. The aim of this study was to characterize the bacterial communities using two culture-independent methods, including Terminal Restriction Fragment Length Polymorphism (T-RFLP) and 454 pyrosequencing, targeting the 16S rRNA gene. Studied samples originated from two harvest years and two malting houses malting the same batch of barley. Besides targeting the entire bacterial community (T-RFLP), emphasis was put on lactic acid bacteria (LAB) (T-RFLP and 454 pyrosequencing). The overall bacterial community richness was limited, but the community structure changed during the process. Zooming in on the LAB community using 454 pyrosequencing revealed a total of 47 species-level operational taxonomic units (OTUs). LAB diversity appeared relatively limited since 88% of the sequences were covered by the same five OTUs (representing members of Weissella, Lactobacillus and Leuconostoc) present in all samples investigated. Fluctuations in the relative abundances of the dominant LAB were observed with the process conditions. In addition, both the year of harvest and malting house influenced the LAB community structure. PMID:24387850

  17. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH

    PubMed Central

    Cotter, Paul D.; Hill, Colin

    2003-01-01

    Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the reponses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments. PMID:12966143

  18. The Truffle Microbiome: Species and Geography Effects on Bacteria Associated with Fruiting Bodies of Hypogeous Pezizales.

    PubMed

    Benucci, Gian Maria Niccolò; Bonito, Gregory M

    2016-07-01

    Fungi that produce their fruiting bodies underground within the soil profile are known commonly as truffles. Truffle fruiting bodies harbor a diverse but poorly understood microbial community of bacteria, yeasts, and filamentous fungi. In this study, we used next-generation 454 amplicon pyrosequencing of the V1 and V4 region of the bacterial 16S ribosomal DNA (rDNA) in order to characterize and compare effects of truffle species and geographic origin on the truffle microbiome. We compared truffle microbiomes of the glebal tissue for eight truffle species belonging to four distinct genera within the Pezizales: Tuber, Terfezia, Leucangium, and Kalapuya. The bacterial community within truffles was dominated by Proteobacteria, Bacterioides, Actinobacteria, and Firmicutes. Bacterial richness within truffles was quite low overall, with between 2-23 operational taxonomic units (OTUs). Notably, we found a single Bradyrhizobium OTU to be dominant within truffle species belonging to the genus Tuber, irrespective of geographic origin, but not in other truffle genera sampled. This study offers relevant insights into the truffle microbiome and raises questions concerning the recruitment and function of these fungal-associated bacteria consortia. PMID:27026101

  19. One-step species-specific high resolution melting analysis for nosocomial bacteria detection.

    PubMed

    Wong, Yeng Pooi; Chua, Kek Heng; Thong, Kwai Lin

    2014-12-01

    Nosocomial infections are a major public health concern worldwide. Early and accurate identification of nosocomial pathogens which are often multidrug resistant is crucial for prompt treatment. Hence, an alternative real-time polymerase chain reaction coupled with high resolution melting-curve analysis (HRMA) was developed for identification of five nosocomial bacteria. This assay targets species-specific regions of each nosocomial bacteria and produced five distinct melt curves with each representing a particular bacterial species. The melting curves were characterized by peaks of 78.8 ± 0.2 °C for Acinetobacter baumannii, 82.7 ± 0.2 °C for Escherichia coli, 86.3 ± 0.3 °C for Klebsiella pneumoniae, 88.8 ± 0.2 °C for Pseudomonas aeruginosa and 74.6 ± 02 °C for methicillin-resistant Staphylococcus aureus. The assay was able to specifically detect the five bacterial species with an overall detection limit of 2 × 10(-2) ng/μL. In conclusion, the HRM assay developed is a simple and rapid method for identification of the selected nosocomial pathogens. PMID:25307691

  20. Active species delivered by dielectric barrier discharge filaments to bacteria biofilms on the surface of apple

    NASA Astrophysics Data System (ADS)

    Cheng, He; Liu, Xin; Lu, Xinpei; Liu, Dawei

    2016-07-01

    The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6-7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

  1. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity

    PubMed Central

    Overholt, Will A.; Marks, Kala P.; Romero, Isabel C.; Hollander, David J.; Snell, Terry W.

    2015-01-01

    The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration. PMID:26546426

  2. [Susceptibility of spore-forming butyric acid bacteria to antimicrobial agents].

    PubMed

    Kaneko, Naofumi; Nakayama, Tomohiro; Ichikawa, Nobuhiro

    2012-01-01

    Antimicrobial agents occasionally cause certain adverse effects, such as diarrhea and loose stool, by altering the composition of the intestinal flora. Antibiotic-resistant lactic acid bacteria are used to prevent these adverse effects. Although these bacteria are not resistant to several recently introduced antimicrobial agents, bacterial preparations are still sometimes prescribed concomitantly with these antimicrobial agents. In this study, we investigated whether the administration of the spore-forming butyric acid bacteria Clostridium butyricum improves the adverse clinical effects by preventing diarrhea. Inhibition of C. butyricum growth was observed with 17 of the 20 antimicrobial agents used. However, dilution of 11 of these 17 agents resulted in the regrowth of C. butyricum. These results suggest that C. butyricum may survive exposure to several antibiotic agents by forming spores. Further, a decrease in the antimicrobial agent concentration in the gastrointestinal tract permits the vegetative growth of C. butyricum, which functions as a probiotic. PMID:22790032

  3. Temperature Sensitivity Conferred by ligA Alleles from Psychrophilic Bacteria upon Substitution in Mesophilic Bacteria and a Yeast Species

    PubMed Central

    Pankowski, Jarosław A.; Puckett, Stephanie M.

    2016-01-01

    We have assembled a collection of 13 psychrophilic ligA alleles that can serve as genetic elements for engineering mesophiles to a temperature-sensitive (TS) phenotype. When these ligA alleles were substituted into Francisella novicida, they conferred a TS phenotype with restrictive temperatures between 33 and 39°C. When the F. novicida ligA hybrid strains were plated above their restrictive temperatures, eight of them generated temperature-resistant variants. For two alleles, the mutations that led to temperature resistance clustered near the 5′ end of the gene, and the mutations increased the predicted strength of the ribosome binding site at least 3-fold. Four F. novicida ligA hybrid strains generated no temperature-resistant variants at a detectable level. These results suggest that multiple mutations are needed to create temperature-resistant variants of these ligA gene products. One ligA allele was isolated from a Colwellia species that has a maximal growth temperature of 12°C, and this allele supported growth of F. novicida only as a hybrid between the psychrophilic and the F. novicida ligA genes. However, the full psychrophilic gene alone supported the growth of Salmonella enterica, imparting a restrictive temperature of 27°C. We also tested two ligA alleles from two Pseudoalteromonas strains for their ability to support the viability of a Saccharomyces cerevisiae strain that lacked its essential gene, CDC9, encoding an ATP-dependent DNA ligase. In both cases, the psychrophilic bacterial alleles supported yeast viability and their expression generated TS phenotypes. This collection of ligA alleles should be useful in engineering bacteria, and possibly eukaryotic microbes, to predictable TS phenotypes. PMID:26773080

  4. Temperature Sensitivity Conferred by ligA Alleles from Psychrophilic Bacteria upon Substitution in Mesophilic Bacteria and a Yeast Species.

    PubMed

    Pankowski, Jarosław A; Puckett, Stephanie M; Nano, Francis E

    2016-01-01

    We have assembled a collection of 13 psychrophilic ligA alleles that can serve as genetic elements for engineering mesophiles to a temperature-sensitive (TS) phenotype. When these ligA alleles were substituted into Francisella novicida, they conferred a TS phenotype with restrictive temperatures between 33 and 39°C. When the F. novicida ligA hybrid strains were plated above their restrictive temperatures, eight of them generated temperature-resistant variants. For two alleles, the mutations that led to temperature resistance clustered near the 5' end of the gene, and the mutations increased the predicted strength of the ribosome binding site at least 3-fold. Four F. novicida ligA hybrid strains generated no temperature-resistant variants at a detectable level. These results suggest that multiple mutations are needed to create temperature-resistant variants of these ligA gene products. One ligA allele was isolated from a Colwellia species that has a maximal growth temperature of 12°C, and this allele supported growth of F. novicida only as a hybrid between the psychrophilic and the F. novicida ligA genes. However, the full psychrophilic gene alone supported the growth of Salmonella enterica, imparting a restrictive temperature of 27°C. We also tested two ligA alleles from two Pseudoalteromonas strains for their ability to support the viability of a Saccharomyces cerevisiae strain that lacked its essential gene, CDC9, encoding an ATP-dependent DNA ligase. In both cases, the psychrophilic bacterial alleles supported yeast viability and their expression generated TS phenotypes. This collection of ligA alleles should be useful in engineering bacteria, and possibly eukaryotic microbes, to predictable TS phenotypes. PMID:26773080

  5. The lactic acid bacteria and yeast microbiota of eighteen sourdoughs used for the manufacture of traditional Italian sweet leavened baked goods.

    PubMed

    Lattanzi, Anna; Minervini, Fabio; Di Cagno, Raffaella; Diviccaro, Annamaria; Antonielli, Livio; Cardinali, Gianluigi; Cappelle, Stefan; De Angelis, Maria; Gobbetti, Marco

    2013-05-15

    The lactic acid bacteria and yeast microbiota of eighteen sourdoughs used for the manufacture of some traditional Italian sweet leavened baked goods were studied through culture-dependent method and pyrosequencing. Flours used for back slopping and sourdoughs were also biochemically characterized. Principal component analysis was applied to explore eventual correlations between process parameters applied during back slopping, some flour nutrients, profile of microbiota, and biochemical characteristics of sourdoughs. The median values of the cell density of lactic acid bacteria and yeasts were 8.05 and 7.03 log CFU/g, respectively. As shown by culture-dependent method, Lactobacillus sanfranciscensis was identified in all the sourdoughs, except for Panaredda and Torcolo di San Costanzo. For eleven sourdoughs, all the lactic acid bacteria isolates were allotted to this species. For Buccellato di Lucca, Mbriagotto, Pandoro, and Nadalin sourdoughs, at least 80% of the isolates was allotted to this species. Other lactic acid bacteria isolated with a relatively high frequence were Lactobacillus plantarum and Leuconostoc citreum. Pyrosequencing confirmed and complemented the culture-dependent approach, detecting L. sanfranciscensis also in Panaredda and Torcolo di San Costanzo sourdoughs. Saccharomyces cerevisiae was identified in all the sourdoughs, except for Mbriagotto, Ciambella di Mosto and Pandolce Genovese. These latter sourdoughs harbored strains of Candida humilis, whereas five sourdoughs combined the presence of both yeast species. Positive correlations were found between time of back slopping and cell density and main metabolites of lactic acid bacteria. Percentage of sourdough used as inoculum was mainly correlated with the cell density of yeasts and the concentration of ethanol. This study provided a comprehensive and comparative approach to highlight the dominant microbiota of Italian sourdoughs, which could be exploited further to guarantee a highly

  6. Racemization in Reverse: Evidence that D-Amino Acid Toxicity on Earth Is Controlled by Bacteria with Racemases

    PubMed Central

    Zhang, Gaosen; Sun, Henry J.

    2014-01-01

    D-amino acids are toxic for life on Earth. Yet, they form constantly due to geochemical racemization and bacterial growth (the cell walls of which contain D-amino acids), raising the fundamental question of how they ultimately are recycled. This study provides evidence that bacteria use D-amino acids as a source of nitrogen by running enzymatic racemization in reverse. Consequently, when soils are inundated with racemic amino acids, resident bacteria consume D- as well as L-enantiomers, either simultaneously or sequentially depending on the level of their racemase activity. Bacteria thus protect life on Earth by keeping environments D-amino acid free. PMID:24647559

  7. Glucansucrases from lactic acid bacteria which produce water-insoluble polysaccharides from sucrose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dextrans and related glucans produced from sucrose by lactic acid bacteria have been studied for many years and are used in numerous commercial applications and products. Most of these glucans are water-soluble, except for a few notable exceptions from cariogenic Streptococcus spp. and a very small ...

  8. The Effects of Monensin on Amino Acid Catabolizing Bacteria Isolated from the Boer Goat Rumen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When ruminants consume feed, as much as half of the amino acid nitrogen can be lost due to microbial degradation in the rumen. Hyper ammonia-producing bacteria (HAB) are primarily responsible for nitrogen loss in sheep and cattle, and these organisms have been well characterized. However, little is ...

  9. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  10. Survival and Phospholipid Fatty Acid Profiles of Surface and Subsurface Bacteria in Natural Sediment Microcosms

    PubMed Central

    Kieft, T. L.; Wilch, E.; O'Connor, K.; Ringelberg, D. B.; White, D. C.

    1997-01-01

    Although starvation survival has been characterized for many bacteria, few subsurface bacteria have been tested, and few if any have been tested in natural subsurface porous media. We hypothesized that subsurface bacteria may be uniquely adapted for long-term survival in situ. We further hypothesized that subsurface conditions (sediment type and moisture content) would influence microbial survival. We compared starvation survival capabilities of surface and subsurface strains of Pseudomonas fluorescens and a novel Arthrobacter sp. in microcosms composed of natural sediments. Bacteria were incubated for up to 64 weeks under saturated and unsaturated conditions in sterilized microcosms containing either a silty sand paleosol (buried soil) or a sandy silt nonpaleosol sediment. Direct counts, plate counts, and cell sizes were measured. Membrane phospholipid fatty acid (PLFA) profiles were quantified to determine temporal patterns of PLFA stress signatures and differences in PLFAs among strains and treatments. The Arthrobacter strains survived better than the P. fluorescens strains; however, differences in survival between surface and subsurface strains of each genus were not significant. Bacteria survived better in the paleosol than in the nonpaleosol and survived better under saturated conditions than under unsaturated conditions. Cell volumes of all strains decreased; however, sediment type and moisture did not influence rates of miniaturization. Both P. fluorescens strains showed PLFA stress signatures typical for gram-negative bacteria: increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl to monoenoic precursor fatty acids. The Arthrobacter strains showed few changes in PLFAs. Environmental conditions strongly influenced PLFA profiles. PMID:16535578

  11. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms

    SciTech Connect

    Kieft, T.L.; Wilch, E.; O`Connor, K.

    1997-04-01

    Although starvation survival has been characterized for many bacteria, few subsurface bacteria have been tested, and few if any have been tested in natural subsurface porous media. We hypothesized that subsurface bacteria may be uniquely adapted for long-term survival in situ. We further hypothesized that subsurface conditions (sediment type and moisture content) would influence microbial survival. We compared starvation survival capabilities of surface and subsurface strains of Pseudomonas fluorescens and a novel Arthrobacter sp. in microcosms composed of natural sediments. Bacteria were incubated for up to 64 weeks under saturated and unsaturated conditions in sterilized microcosms containing either a silty sand paleosol (buried soil) or a sandy silt nonpaleosol sediment. Direct counts, plate counts, and cell sizes were measured. Membrane phospholipid fatty acid (PLFA) profiles were quantified to determine temporal patterns of PLFA stress signatures and differences in PLFAs among strains and treatments. The Arthrobacter strains survived better than the P. fluorescens strains; however, differences in survival between surface and subsurface strains of each genus were not significant. Bacteria survived better in the paleosol than in the nonpaleosol and survived better under saturated conditions than under unsaturated conditions. Cell volumes of all strains decreased; however, sediment type and moisture did not influence rates of miniaturization. Both P.fluorescens strains showed PLFA stress signatures typical for gram-negative bacteria: increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl to monoenoic precursor fatty acids. The Arthrobacter strains showed few changes in PLFAs. Environmental conditions strongly influenced PLFA profiles. 40 refs., 7 figs.

  12. Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat

    PubMed Central

    Ni, Kuikui; Wang, Yanping; Cai, Yimin; Pang, Huili

    2015-01-01

    Winter wheat is a suitable crop to be ensiled for animal feed and China has the largest planting area of this crop in the world. During the ensiling process, lactic acid bacteria (LAB) play the most important role in the fermentation. We investigated the natural population of LAB in whole-crop wheat (WCW) and examined the quality of whole-crop wheat silage (WCWS) with and without LAB inoculants. Two Lactobacillus plantarum subsp. plantarum strains, Zhengzhou University 1 (ZZU 1) selected from corn and forage and grass 1 (FG 1) from a commercial inoculant, were used as additives. The silages inoculated with LAB strains (ZZU 1 and FG 1) were better preserved than the control, with lower pH values (3.5 and 3.6, respectively) (p<0.05) and higher contents of lactic acid (37.5 and 34.0 g/kg of fresh matter (FM), respectively) (p<0.05) than the control. Sixty LAB strains were isolated from fresh material and WCWS without any LAB inoculation. These LAB strains were divided into the following four genera and six species based on their phenotypic, biochemical and phylogenetic characteristics: Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, Lactococcus lactis subsp. lactis, Lactobacillus buchneri, and Lactobacillus plantarum subsp. plantarum. However, the prevalent LAB, which was predominantly heterofermentative (66.7%), consisted of Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, and Lactobacillus buchneri. This study revealed that most of isolated LAB strains from control WCWS were heterofermentative and could not grow well at low pH condition; the selective inoculants of Lactobacillus strains, especially ZZU 1, could improve WCWS quality significantly. PMID:26104520

  13. Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat.

    PubMed

    Ni, Kuikui; Wang, Yanping; Cai, Yimin; Pang, Huili

    2015-08-01

    Winter wheat is a suitable crop to be ensiled for animal feed and China has the largest planting area of this crop in the world. During the ensiling process, lactic acid bacteria (LAB) play the most important role in the fermentation. We investigated the natural population of LAB in whole-crop wheat (WCW) and examined the quality of whole-crop wheat silage (WCWS) with and without LAB inoculants. Two Lactobacillus plantarum subsp. plantarum strains, Zhengzhou University 1 (ZZU 1) selected from corn and forage and grass 1 (FG 1) from a commercial inoculant, were used as additives. The silages inoculated with LAB strains (ZZU 1 and FG 1) were better preserved than the control, with lower pH values (3.5 and 3.6, respectively) (p<0.05) and higher contents of lactic acid (37.5 and 34.0 g/kg of fresh matter (FM), respectively) (p<0.05) than the control. Sixty LAB strains were isolated from fresh material and WCWS without any LAB inoculation. These LAB strains were divided into the following four genera and six species based on their phenotypic, biochemical and phylogenetic characteristics: Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, Lactococcus lactis subsp. lactis, Lactobacillus buchneri, and Lactobacillus plantarum subsp. plantarum. However, the prevalent LAB, which was predominantly heterofermentative (66.7%), consisted of Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, and Lactobacillus buchneri. This study revealed that most of isolated LAB strains from control WCWS were heterofermentative and could not grow well at low pH condition; the selective inoculants of Lactobacillus strains, especially ZZU 1, could improve WCWS quality significantly. PMID:26104520

  14. Diversity of lactic acid bacteria isolated from Brazilian water buffalo mozzarella cheese.

    PubMed

    Silva, Luana Faria; Casella, Tiago; Gomes, Elisangela Soares; Nogueira, Mara Correa Lelles; De Dea Lindner, Juliano; Penna, Ana Lúcia Barretto

    2015-02-01

    The water buffalo mozzarella cheese is a typical Italian cheese which has been introduced in the thriving Brazilian market in the last 10 y, with good acceptance by its consumers. Lactic acid bacteria (LAB) play an important role in the technological and sensory quality of mozzarella cheese. In this study, the aim was to evaluate the diversity of the autochthones viable LAB isolated from water buffalo mozzarella cheese under storage. Samples were collected in 3 independent trials in a dairy industry located in the southeast region of Brazil, on the 28th day of storage, at 4 ºC. The LAB were characterized by Gram staining, catalase test, capacity to assimilate citrate, and production of CO2 from glucose. The diversity of LAB was evaluated by RAPD-PCR (randomly amplified polymorphic DNA-polymerase chain reaction), 16S rRNA gene sequencing, and by Vitek 2 system. Twenty LAB strains were isolated and clustered into 12 different clusters, and identified as Streptococcus thermophilus, Enterococcus faecium, Enterococcus durans, Leuconostoc mesenteroides subsp. mesenteroides, Lactobacillus fermentum, Lactobacillus casei, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus helveticus. Enterococcus species were dominant and citrate-positive. Only the strains of L. mesenteroides subsp. mesenteroides and L. fermentum produced CO2 from glucose and were citrate-positive, while L. casei was only citrate positive. This is the first report which elucidates the LAB diversity involved in Brazilian water buffalo mozzarella cheese. Furthermore, the results show that despite the absence of natural whey cultures as starters in production, the LAB species identified are the ones typically found in mozzarella cheese. PMID:25597646

  15. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia.

    PubMed

    Yu, J; Wang, W H; Menghe, B L G; Jiri, M T; Wang, H M; Liu, W J; Bao, Q H; Lu, Q; Zhang, J C; Wang, F; Xu, H Y; Sun, T S; Zhang, H P

    2011-07-01

    Spontaneous milk fermentation has a long history in Mongolia, and beneficial microorganisms have been handed down from one generation to the next for use in fermented dairy products. The objective of this study was to investigate the diversity of lactic acid bacteria (LAB) communities in fermented yak, mare, goat, and cow milk products by analyzing 189 samples collected from 13 different regions in Mongolia. The LAB counts in these samples varied from 3.41 to 9.03 log cfu/mL. Fermented yak and mare milks had almost identical mean numbers of LAB, which were significantly higher than those in fermented goat milk but slightly lower than those in fermented cow milk. In total, 668 isolates were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. Each isolate was considered to be presumptive LAB based on gram-positive and catalase-negative properties, and was identified at the species level by 16S rRNA gene sequencing, multiplex PCR assay, and restriction fragment length polymorphism analysis. All isolates from Mongolian dairy products were accurately identified as Enterococcus faecalis (1 strain), Enterococcus durans (3 strains), Lactobacillus brevis (3 strains), Lactobacillus buchneri (2 strains), Lactobacillus casei (16 strains), Lactobacillus delbrueckii ssp. bulgaricus (142 strains), Lactobacillus diolivorans (17 strains), Lactobacillus fermentum (42 strains), Lactobacillus helveticus (183 strains), Lactobacillus kefiri (6 strains), Lactobacillus plantarum ssp. plantarum (7 strains), Lactococcus lactis ssp. lactis (7 strains), Leuconostoc lactis (22 strains), Leuconostoc mesenteroides (21 strains), Streptococcus thermophilus (195 strains), and Weissella cibaria (1 strain). The predominant LAB were Strep. thermophilus and Lb. helveticus, which were isolated from all sampling sites. The results demonstrate that traditional fermented dairy products from different regions of Mongolia have complex compositions of LAB species. Such diversity of

  16. Phenotypic and Genotypic Characterization of Non-Starter Lactic Acid Bacteria in Mature Cheddar Cheese

    PubMed Central

    Fitzsimons, N. A.; Cogan, T. M.; Condon, S.; Beresford, T.

    1999-01-01

    Non-starter lactic acid bacteria were isolated from 14 premium-quality and 3 sensorially defective mature Irish Cheddar cheeses, obtained from six manufacturers. From countable plates of Lactobacillus-selective agar, 20 single isolated colonies were randomly picked per cheese. All 331 viable isolates were biochemically characterized as mesophilic (i.e., group II) Lactobacillus spp. Phenotypically, the isolates comprised 96.4% L. paracasei, 2.1% L. plantarum, 0.3% L. curvatus, 0.3% L. brevis, and 0.9% unidentified species. Randomly amplified polymorphic DNA (RAPD) analysis was used to rapidly identify the dominant strain groups in nine cheeses from three of the factories, and through clustering by the unweighted pair group method with arithmetic averages, an average of seven strains were found per cheese. In general, strains isolated from cheese produced at the same factory clustered together. The majority of isolates associated with premium-quality cheese grouped together and apart from clusters of strains from defective-quality cheese. No correlation was found between the isomer of lactate produced and RAPD profiles, although isolates which did not ferment ribose clustered together. The phenotypic and genotypic methods employed were validated with a selection of 31 type and reference strains of mesophilic Lactobacillus spp. commonly found in Cheddar cheese. RAPD analysis was found to be a useful and rapid method for identifying isolates to the species level. The low homology exhibited between RAPD banding profiles for cheese isolates and collection strains demonstrated the heterogeneity of the L. paracasei complex. PMID:10427029

  17. Fighting Off Wound Pathogens in Horses with Honeybee Lactic Acid Bacteria.

    PubMed

    Olofsson, Tobias C; Butler, Éile; Lindholm, Christina; Nilson, Bo; Michanek, Per; Vásquez, Alejandra

    2016-10-01

    In the global perspective of antibiotic resistance, it is urgent to find potent topical antibiotics for the use in human and animal infection. Healing of equine wounds, particularly in the limbs, is difficult due to hydrostatic factors and exposure to environmental contaminants, which can lead to heavy bio-burden/biofilm formation and sometimes to infection. Therefore, antibiotics are often prescribed. Recent studies have shown that honeybee-specific lactic acid bacteria (LAB), involved in honey production, and inhibit human wound pathogens. The aim of this pilot study was to investigate the effects on the healing of hard-to-heal equine wounds after treatment with these LAB symbionts viable in a heather honey formulation. For this, we included ten horses with wound duration of >1 year, investigated the wound microbiota, and treated wounds with the novel honeybee LAB formulation. We identified the microbiota using MALDI-TOF mass spectrometry and DNA sequencing. In addition, the antimicrobial properties of the honeybee LAB formulation were tested against all wound isolates in vitro. Our results indicate a diverse wound microbiota including fifty-three bacterial species that showed 90 % colonization by at least one species of Staphylococcus. Treatment with the formulation promoted wound healing in all cases already after the first application and the wounds were either completely healed (n = 3) in less than 20 days or healing was in progress. Furthermore, the honeybee LAB formulation inhibited all pathogens when tested in vitro. Consequently, this new treatment option presents as a powerful candidate for the topical treatment of hard-to-heal wounds in horses. PMID:27324340

  18. Extensive diversity of Rickettsiales bacteria in two species of ticks from China and the evolution of the Rickettsiales

    PubMed Central

    2014-01-01

    Background Bacteria of the order Rickettsiales (Alphaproteobacteria) are obligate intracellular parasites that infect species from virtually every major eukaryotic lineage. Several rickettsial genera harbor species that are significant emerging and re-emerging pathogens of humans. As species of Rickettsiales are associated with an extremely diverse host range, a better understanding of the historical associations between these bacteria and their hosts will provide important information on their evolutionary trajectories and, particularly, their potential emergence as pathogens. Results Nine species of Rickettsiales (two in the genus Rickettsia, three in the genus Anaplasma, and four in the genus Ehrlichia) were identified in two species of hard ticks (Dermacentor nuttalli and Hyalomma asiaticum) from two geographic regions in Xinjiang through genetic analyses of 16S rRNA, gltA, and groEL gene sequences. Notably, two lineages of Ehrlichia and one lineage of Anaplasma were distinct from any known Rickettsiales, suggesting the presence of potentially novel species in ticks in Xinjiang. Our phylogenetic analyses revealed some topological differences between the phylogenies of the bacteria and their vectors, which led us to marginally reject a model of exclusive bacteria-vector co-divergence. Conclusions Ticks are an important natural reservoir of many diverse species of Rickettsiales. In this work, we identified a single tick species that harbors multiple species of Rickettsiales, and uncovered extensive genetic diversity of these bacteria in two tick species from Xinjiang. Both bacteria-vector co-divergence and cross-species transmission appear to have played important roles in Rickettsiales evolution. PMID:25073875

  19. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  20. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  1. Diversity and Stability of Lactic Acid Bacteria in Rye Sourdoughs of Four Bakeries with Different Propagation Parameters

    PubMed Central

    Viiard, Ene; Bessmeltseva, Marianna; Simm, Jaak; Talve, Tiina; Aaspõllu, Anu; Paalme, Toomas; Sarand, Inga

    2016-01-01

    We identified the lactic acid bacteria within rye sourdoughs and starters from four bakeries with different propagation parameters and tracked their dynamics for between 5–28 months after renewal. Evaluation of bacterial communities was performed using plating, denaturing gradient gel electrophoresis, and pyrosequencing of 16S rRNA gene amplicons. Lactobacillus amylovorus and Lactobacillus frumenti or Lactobacillus helveticus, Lactobacillus pontis and Lactobacillus panis prevailed in sourdoughs propagated at higher temperature, while ambient temperature combined with a short fermentation cycle selected for Lactobacillus sanfranciscensis, Lactobacillus pontis, and Lactobacillus zymae or Lactobacillus helveticus, Lactobacillus pontis and Lactobacillus zymae. The ratio of species in bakeries employing room-temperature propagation displayed a seasonal dependence. Introduction of different and controlled propagation parameters at one bakery (higher fermentation temperature, reduced inoculum size, and extended fermentation time) resulted in stabilization of the microbial community with an increased proportion of L. helveticus and L. pontis. Despite these new propagation parameters no new species were detected. PMID:26849134

  2. Diversity and Stability of Lactic Acid Bacteria in Rye Sourdoughs of Four Bakeries with Different Propagation Parameters.

    PubMed

    Viiard, Ene; Bessmeltseva, Marianna; Simm, Jaak; Talve, Tiina; Aaspõllu, Anu; Paalme, Toomas; Sarand, Inga

    2016-01-01

    We identified the lactic acid bacteria within rye sourdoughs and starters from four bakeries with different propagation parameters and tracked their dynamics for between 5-28 months after renewal. Evaluation of bacterial communities was performed using plating, denaturing gradient gel electrophoresis, and pyrosequencing of 16S rRNA gene amplicons. Lactobacillus amylovorus and Lactobacillus frumenti or Lactobacillus helveticus, Lactobacillus pontis and Lactobacillus panis prevailed in sourdoughs propagated at higher temperature, while ambient temperature combined with a short fermentation cycle selected for Lactobacillus sanfranciscensis, Lactobacillus pontis, and Lactobacillus zymae or Lactobacillus helveticus, Lactobacillus pontis and Lactobacillus zymae. The ratio of species in bakeries employing room-temperature propagation displayed a seasonal dependence. Introduction of different and controlled propagation parameters at one bakery (higher fermentation temperature, reduced inoculum size, and extended fermentation time) resulted in stabilization of the microbial community with an increased proportion of L. helveticus and L. pontis. Despite these new propagation parameters no new species were detected. PMID:26849134

  3. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    PubMed

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms. PMID:25285490

  4. Organism-Adapted Specificity of the Allosteric Regulation of Pyruvate Kinase in Lactic Acid Bacteria

    PubMed Central

    Veith, Nadine; Feldman-Salit, Anna; Cojocaru, Vlad; Henrich, Stefan; Kummer, Ursula; Wade, Rebecca C.

    2013-01-01

    Pyruvate kinase (PYK) is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric activation may

  5. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-05-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  6. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed Central

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-01-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  7. Spatio-Temporal Variations of High and Low Nucleic Acid Content Bacteria in an Exorheic River

    PubMed Central

    Ma, Lili; Ji, Yurui; Bartlam, Mark; Wang, Yingying

    2016-01-01

    Bacteria with high nucleic acid (HNA) and low nucleic acid (LNA) content are commonly observed in aquatic environments. To date, limited knowledge is available on their temporal and spatial variations in freshwater environments. Here an investigation of HNA and LNA bacterial abundance and their flow cytometric characteristics was conducted in an exorheic river (Haihe River, Northern China) over a one year period covering September (autumn) 2011, December (winter) 2011, April (spring) 2012, and July (summer) 2012. The results showed that LNA and HNA bacteria contributed similarly to the total bacterial abundance on both the spatial and temporal scale. The variability of HNA on abundance, fluorescence intensity (FL1) and side scatter (SSC) were more sensitive to environmental factors than that of LNA bacteria. Meanwhile, the relative distance of SSC between HNA and LNA was more variable than that of FL1. Multivariate analysis further demonstrated that the influence of geographical distance (reflected by the salinity gradient along river to ocean) and temporal changes (as temperature variation due to seasonal succession) on the patterns of LNA and HNA were stronger than the effects of nutrient conditions. Furthermore, the results demonstrated that the distribution of LNA and HNA bacteria, including the abundance, FL1 and SSC, was controlled by different variables. The results suggested that LNA and HNA bacteria might play different ecological roles in the exorheic river. PMID:27082986

  8. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid.

    PubMed Central

    Greisen, K; Loeffelholz, M; Purohit, A; Leong, D

    1994-01-01

    A set of broad-range PCR primers for the 16S rRNA gene in bacteria were tested, along with three series of oligonucleotide probes to detect the PCR product. The first series of probes is broad in range and consists of a universal bacterial probe, a gram-positive probe, a Bacteroides-Flavobacterium probe, and two probes for other gram-negative species. The second series was designed to detect PCR products from seven major bacterial species or groups frequently causing meningitis: Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae, S. agalactiae, Escherichia coli and other enteric bacteria, Listeria monocytogenes, and Staphylococcus aureus. The third series was designed for the detection of DNA from species or genera commonly considered potential contaminants of clinical samples, including cerebrospinal fluid (CSF): Bacillus, Corynebacterium, Propionibacterium, and coagulase-negative Staphylococcus spp. The primers amplified DNA from all 124 different species of bacteria tested. Southern hybridization testing of the broad-range probes with washes containing 3 M tetramethylammonium chloride indicated that this set of probes correctly identified all but two of the 102 bacterial species tested, the exceptions being Deinococcus radiopugnans and Gardnerella vaginalis. The gram-negative and gram-positive probes hybridized to isolates of two newly characterized bacteria, Alloiococcus otitis and Rochalimaea henselii, as predicted by Gram stain characteristics. The CSF pathogen and contaminant probe sequences were compared with available sequence information and with sequencing data for 32 different species. Testing of the CSF pathogen and contaminant probes against DNA from over 60 different strains indicated that, with the exception of the coagulase-negative Staphylococcus probes, these probes provided the correct identification of bacterial species known to be found in CSF. Images PMID:7512093

  9. Influence of Turning and Environmental Contamination on the Dynamics of Populations of Lactic Acid and Acetic Acid Bacteria Involved in Spontaneous Cocoa Bean Heap Fermentation in Ghana▿

    PubMed Central

    Camu, Nicholas; González, Ángel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S.; Addo, Solomon K.; De Vuyst, Luc

    2008-01-01

    The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing. PMID:17993565

  10. Evaluation of the Biocidal Efficacy of Different Forms of Silver Against Cupriavidus (formerly Wautersia) Species Bacteria

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Wong, Wing; Algate, Michelle T.; Bryant, Becky; Castro, Victoria A.

    2009-01-01

    Contingency Water Containers (CWCs) are used to store potable and technical water that is transferred to the International Space Station (ISS) from the Shuttle orbiter vehicles. When CWCs are filled, water from the orbiter galley is passed through an ion exchange/activated carbon cartridge that removes the residual iodine biocide used on Shuttle before silver biocide is added. Removal of iodine and addition of silver is necessary to inhibit microbial growth inside CWCs and maintain compatibility with the water systems in the Russian segment of ISS. As part of nominal water transfer activities, crewmembers collect samples from several CWCs for postflight analysis. Results from the analysis of water transfer samples collected during the docked phases of STS-118/13A.1 and STS-120/10A showed that several of the CWCs contained up to 10(exp 4) CFU/mL of bacteria despite the fact that the silver concentrations in the CWCs were within acceptable limits. The samples contained pure cultures of a single bacteria, a Cupriavidus (formerly Wautersia) species that has been shown to be resistant to metallic biocides. As part of the investigation into the cause and remediation of the bacterial contamination in these CWCs, ground studies were initiated to evaluate the resistance of the Cupriavidus species to the silver biocides used on ISS and to determine the minimum effective concentration for the different forms of silver present in the biocides. The initial findings from those experiments are discussed herein.

  11. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    PubMed

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli. PMID:15304751

  12. Use of autochthonous lactic acid bacteria starters to ferment mango juice for promoting its probiotic roles.

    PubMed

    Liao, Xue-Yi; Guo, Li-Qiong; Ye, Zhi-Wei; Qiu, Ling-Yan; Gu, Feng-Wei; Lin, Jun-Fang

    2016-05-18

    Strains of Leuconostoc mesenteroides, Pediococcus pentosaceus, and Lactobacillus brevis were identified from mango fruits by partial 16S rDNA gene sequence. Based on the ability of producing mannitol and diacetyl, Leuconostoc mesenteroides MPL18 and MPL39 were selected within the lactic acid bacteria isolates, and used as mixed starters to ferment mango juice (MJ). Both the autochthonous strains grew well in fermented mango juice (FMJ) and remained viable at 9.81 log cfu mL(-1) during 30 days of storage at 4°C. The content of total sugar of FMJ was lower than that of MJ, while the concentration of mannitol was higher than that of MJ, and the concentration of diacetyl was 3.29 ± 0.12 mg L(-1). Among detected organic acids including citric acid, gallic acid, lactic acid, and acetic acid, only citric acid and gallic acid were found in MJ, while all detected organic acids were found in FMJ. The concentration of lactic acid of FMJ was the highest (78.62 ± 13.66 mM) among all detected organic acids. The DPPH radical scavenging capacity of FMJ was higher than that of MJ. Total phenolic compounds were better preserved in FMJ. The acidity and sweetness had a noticeable impact on the overall acceptance of the treated sample. PMID:26176886

  13. Fatty acid and sterol composition of three phytomonas species.

    PubMed

    Nakamura, C V; Waldow, L; Pelegrinello, S R; Ueda-Nakamura, T; Filho, B A; Filho, B P

    1999-01-01

    Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine. PMID:10446013

  14. Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid.

    PubMed

    Yang, Haiyan; Ge, Zhi; Wu, Dan; Tong, Meiping; Ni, Jinren

    2016-01-01

    This study investigated the influence of multiple colloids (hematite and humic acid) on the transport and deposition of bacteria (Escherichia coli) in packed porous media in both NaCl (5 mM) and CaCl2 (1 mM) solutions at pH 6. Due to the alteration of cell physicochemical properties, the presence of hematite and humic acid in cell suspensions significantly affected bacterial transport and deposition in quartz sand. Specifically, the presence of hematite (5 mg/L) decreased cell transport (increased cell deposition) in quartz sand in both NaCl and CaCl2 solutions, which could be attributed to the less negative overall zeta potentials of bacteria induced by the adsorption of positively charged hematite onto cell surfaces. The presence of a low concentration (0.1 mg/L) of humic acid in bacteria and hematite mixed suspensions reduced the adsorption of hematite onto cell surfaces, leading to increased cell transport in quartz sand in NaCl solutions, whereas, in CaCl2 solutions, the presence of 0.1 mg/L humic acid increased the formation of hematite-cell aggregates and thus decreased cell transport in quartz sand. When the concentration of humic acid was increased to 1 mg/L, enhanced cell transport was observed in both NaCl and CaCl2 solutions. The decreased adsorption of hematite onto cell surfaces as well as the competition of deposition sites on quartz sand with bacteria by the suspended humic acid contributed to the increased cell transport. PMID:26558710

  15. Development of radiation sterilized dip slides for enumerating lactic acid bacteria and total count in foodstuffs

    NASA Astrophysics Data System (ADS)

    Eisenberg, E.; Padova, R.; Kirsch, E.; Weissman, Sh.; Hirshfeld, T.; Shenfeld, A.

    APT agar (APT) used for enumeration of lactic acid bacteria and Plate Count agar (PCA) applied for total count were sterilized by gamma radiation using radiation dose of 10-15 kGy. Radiosterilized PCA and APT modified by adding catalase prior to irradiation, or APT with increased content of yeast extract performed, as well as, the heat sterilized commercial media. Growth performance was evaluated on several strains of microorganisms, as well as, by enumeration of bacteria in food products. Radiosterilization of culture media in final packaging, can be applied to produce dip slide kits containing PCA or APT.

  16. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species

    PubMed Central

    Moor, Kathrin; Wotzka, Sandra Y.; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  17. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species.

    PubMed

    Moor, Kathrin; Wotzka, Sandra Y; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 10(10) peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  18. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, L.; Lechtenfeld, O. J.; Benner, R.; Middelboe, M.; Stedmon, C. A.

    2014-10-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3-14 mol %). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7-11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural (representing marine semi-labile and refractory DOM) and artificial (representing bacterially produced DOM) seawater samples, suggests that microbes transform bioavailable neutral sugars and amino acids into a common, more persistent form.

  19. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. PMID:26779817

  20. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria.

    PubMed

    Perdigón, G; Vintiñi, E; Alvarez, S; Medina, M; Medici, M

    1999-06-01

    The induction of a mucosal immune response is not easy due to the development of oral tolerance, but under some conditions, bacteria can activate this immune system. Antigens administered orally can interact with M cells of Peyer's patches or bind to the epithelial cells. We have demonstrated that certain lactic acid bacteria are able to induce specific secretory immunity, and others will enhance the gut inflammatory immune response. The aim of this work was to establish the reason for these different behaviors and to define possible mechanisms involved in the interaction of lactic acid bacteria at the intestinal level. We studied IgA+ and IgM+ B cells comparatively in bronchus and intestine and CD4+ T cells and IgA anti-lactic acid bacteria antibodies in the intestinal fluid, induced by oral administration of Lactobacillus casei, Lb. delbrueckii ssp. bulgaricus, Lb. acidophilus, Lb. plantarum, Lb. rhamnosus, Lactococcus lactis, and Streptococcus salivarius ssp. thermophilus. The increase in the IgA+ B cells in the bronchus means that these lactic acid bacteria were able to induce the IgA cycle by interaction with M cells from Peyer's patches or intestinal epithelial cells. The IgM+ cells increased when the stimulus did not induce the switch from IgM+ to IgA+. The increase in the CD4+ cells suggests interaction of Peyer's patches and enhancement of the B- and T-cell migration. The anti-lactic acid bacteria antibody is related to the processing and presentation of the microorganisms to the immune cells. We demonstrated that Lb. casei and Lb. plantarum were able to interact with Peyer's patch cells and showed an increase in IgA-, CD4+ cells, and antibodies specific for the stimulating strain. Lactobacillus acidophilus induced gut mucosal activation by interaction with the epithelial cells without increase in the immune cells associated with the bronchus. Although Lb. rhamnosus and Strep. salivarius ssp. thermophilus interact with epithelial cells, they also induced

  1. Use of peptide nucleic acid probes for rapid detection and enumeration of viable bacteria in recreational waters and beach sand.

    PubMed

    Esiobu, Nwadiuto

    2006-01-01

    Environmental monitoring and public health risk assessments require methods that are rapid and quantitative with defined sensitivity and specificity thresholds. Although several molecular techniques have been developed to rapidly detect bacteria in complex matrices, the challenge to simultaneously detect and enumerate only viable cells remains a limiting factor to their routine application. This chapter describes the use of peroxidase-labeled peptide nucleic acid (PNA) probes to simultaneously detect and count live Staphylococcus aureus, a human pathogen in sea water and beach sand. Mixed bacteria from the environmental sample were immobilized on polyvinylidene difluoride membrane filters and allowed to form microcolonies during a 5-h incubation on Tryptic soy agar plates. PNA probes targeting species-specific regions of the 16S rRNA sequences of S. aureus were then used to hybridize the target bacteria in situ. Probes were detected by capturing chemiluminiscence on instant (e.g., Polaroid) films. Each viable cell (i.e., rRNA producing) is detected as a light spot from its microcolony on the film after scanning the image into a computer. This rapid in situ hybridization technique is simple and highly sensitive and could be developed into portable kits for monitoring pathogens and indicators in the environment. PMID:16957353

  2. Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains.

    PubMed Central

    Reinholdt, J; Kilian, M

    1997-01-01

    Immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region are produced constitutively by a number of pathogens, including Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, and Streptococcus pneumoniae, as well as by some members of the resident oropharyngeal flora. Whereas IgA1 proteases have been shown to interfere with the functions of IgA antibodies in vitro, the exact role of these enzymes in the relationship of bacteria to a human host capable of responding with enzyme-neutralizing antibodies is not clear. Conceivably, the role of IgA1 proteases may depend on the quantity of IgA1 protease generated as well as on the balance between secreted and cell-associated forms of the enzyme. Therefore, we have compared levels of IgA1 protease activity in cultures of 38 bacterial strains representing different genera and species as well as strains of different pathogenic potential. Wide variation in activity generation rate was found overall and within some species. High activity was not an exclusive property of bacteria with documented pathogenicity. Almost all activity of H. influenzae, N. meningitidis, and N. gonorrhoeae strains was present in the supernatant. In contrast, large proportions of the activity in Streptococcus, Prevotella, and Capnocytophaga species was cell associated at early stationary phase, suggesting that the enzyme may play the role of a surface antigen. Partial release of cell-associated activity occurred during stationary phase. Within some taxa, the degree of activity variation correlated with degree of antigenic diversity of the enzyme as determined previously. This finding may indicate that the variation observed is of biological significance. PMID:9353019

  3. Genus-specific profile of acetic acid bacteria by 16S rDNA PCR-DGGE.

    PubMed

    De Vero, Luciana; Giudici, Paolo

    2008-06-30

    An effective method for grouping acetic acid bacteria (AAB) genera was defined and evaluated as a tool for preliminary screening of the major AAB species involved in vinegar production. Acetobacter, Gluconobacter, Gluconacetobacter, Asaia, Neoasaia, Saccharibacter, Frateuria and Kozakia AAB strains were screened on the basis of the 16S rDNA sequences using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique. The DGGE profile of all the strains tested, consisted of one single band of approximately 330 bp for each strain and allowed their clustering. The results obtained clearly reflected in silico phylogenetic analysis of the AAB species used in this study, in fact, the species with a higher 16S rDNA sequence homology showed a similar electrophoretic profile. In particular almost all the species belonging to the genus Gluconacetobacter showed a DGGE pattern nearly identical and well distinct from all the other AAB genera. Furthermore by PCR-DGGE it was possible to clearly group the species more frequently recovered from vinegar fermentation which are mainly distributed in the genera Acetobacter, Gluconobacter and Gluconacetobacter. PMID:17919758

  4. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition

    PubMed Central

    Kishino, Shigenobu; Takeuchi, Michiki; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kunisawa, Jun; Kiyono, Hiroshi; Iwamoto, Ryo; Isobe, Yosuke; Arita, Makoto; Arai, Hiroyuki; Ueda, Kazumitsu; Shima, Jun; Takahashi, Satomi; Yokozeki, Kenzo; Shimizu, Sakayu; Ogawa, Jun

    2013-01-01

    In the representative gut bacterium Lactobacillus plantarum, we identified genes encoding the enzymes involved in a saturation metabolism of polyunsaturated fatty acids and revealed in detail the metabolic pathway that generates hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and partially saturated trans-fatty acids as intermediates. Furthermore, we observed these intermediates, especially hydroxy fatty acids, in host organs. Levels of hydroxy fatty acids were much higher in specific pathogen-free mice than in germ-free mice, indicating that these fatty acids are generated through polyunsaturated fatty acids metabolism of gastrointestinal microorganisms. These findings suggested that lipid metabolism by gastrointestinal microbes affects the health of the host by modifying fatty acid composition. PMID:24127592

  5. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    PubMed Central

    Liu, S.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria. These enzymes were present in all heterofermentative lactobacilli and most leuconostocs but were absent in all the homofermentative lactobacilli and pediococci examined. There was a good correlation among arginine degradation, formation of ammonia and citrulline, and the occurrence of arginine deiminase pathway enzymes. Urea was not detected during arginine degradation, suggesting that the catabolism of arginine did not proceed via the arginase-catalyzed reaction, as has been suggested in some earlier studies. Detection of ammonia with Nessler's reagent was shown to be a simple, rapid test to assess the ability of wine lactic acid bacteria to degrade arginine, although in media containing relatively high concentrations (>0.5%) of fructose, ammonia formation is inhibited. PMID:16534912

  6. Effects of Lactic Acid-Forming Bacteria on Vibrio comma Inoculated into Intestinal Segments of Rabbits

    PubMed Central

    Hattori, Zenpachiro; Misawa, Hiroshi; Igarashi, Isamu; Sugiya, Yukio

    1965-01-01

    Hattori, H. (Sankyo Co., Ltd., Tokyo, Japan), H. Misawa, I. Igarashi, and Y. Sugiya. Effects of lactic acid-forming bacteria on Vibrio comma inoculated into intestinal segments of rabbits. J. Bacteriol. 90:541–545. 1965.—Mixed inocula of Vibrio comma KC-4 and various lactic acid-forming bacteria were injected into the intestinal segments of rabbits (De and Chatterje, 1953) to observe the effects of the latter agents in altering the changes produced by strain KC-4. The animals were sacrificed 10 and 20 hr after inoculation. The inoculated intestinal segments were first examined grossly, and the amount of exudate in the segments, if any, was measured, after which the tissues were subjected to pathological examination. When KC-4 cells together with spore-bearing lactic acid-forming bacilli, strain P-22, or Lactobacillus casei were introduced, the intestinal segments showed few or no macroscopic and microscopic changes, and no accumulation of exudate. With mixed inoculation with lactic acid bacteria such as L. bulgaricus, L. acidophilus, Streptococcus lactis, and S. faecalis, changes were produced by strain KC-4. Macroscopically, no difference was discernible between the changes caused by mixed inoculation and those produced by single inoculation of KC-4. Upon pathological examination, however, it was seen that changes resulting from mixed inoculation were slightly less severe than those produced by inoculation with strain KC-4 only. Images PMID:14329471

  7. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae.

    PubMed

    Mullaney, Jane A; Kelly, William J; McGhie, Tony K; Ansell, Juliet; Heyes, Julian A

    2013-03-27

    Glucosinolates from the genus Brassica can be converted into bioactive compounds known to induce phase II enzymes, which may decrease the risk of cancers. Conversion via hydrolysis is usually by the brassica enzyme myrosinase, which can be inactivated by cooking or storage. We examined the potential of three beneficial bacteria, Lactobacillus plantarum KW30, Lactococcus lactis subsp. lactis KF147, and Escherichia coli Nissle 1917, and known myrosinase-producer Enterobacter cloacae to catalyze the conversion of glucosinolates in broccoli extract. Enterobacteriaceae consumed on average 65% glucoiberin and 78% glucoraphanin, transforming them into glucoiberverin and glucoerucin, respectively, and small amounts of iberverin nitrile and erucin nitrile. The lactic acid bacteria did not accumulate reduced glucosinolates, consuming all at 30-33% and transforming these into iberverin nitrile, erucin nitrile, sulforaphane nitrile, and further unidentified metabolites. Adding beneficial bacteria to a glucosinolate-rich diet may increase glucosinolate transformation, thereby increasing host exposure to bioactives. PMID:23461529

  8. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-22

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  9. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria.

    PubMed

    Fazeli, Mohammad R; Hajimohammadali, M; Moshkani, Azamossadat; Samadi, Nasrin; Jamalifar, Hossein; Khoshayand, Mohammad R; Vaghari, Elham; Pouragahi, Samieh

    2009-01-01

    Some foods are prone to contamination with aflatoxins, with detrimental effect on human health. Lactic acid bacteria have been reported to bind aflatoxins and remove them from foods and feeds. Reduction of aflatoxin B1 (AFB1) from the liquid media by the autochthonous lactic acid bacteria (Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus fermentum) isolated from traditional Iranian sourdough and dairy products is reported in the current study. The effect of incubation time on the binding capacity of the strains to AFB1 was also investigated. Duplicates of individual bacteria with population equivalent to 2 X 10(10) CFU/ml were incubated in the presence of AFB1 at 37 degrees C for a period of 72 h, and the amounts of unbound AFB1 were quantitated by reverse-phase high-performance liquid chromatography. All the strains were capable of removal of AFB1, and the reduction of AFB1 ranged from 25 to 61% throughout the incubation period. Removal of AFB1 was a rapid process, with approximately 61 and 56% of the toxin taken instantly by L. fermentum and L. plantarum, respectively. Binding was of a reversible nature, and some of the bound AFB1 was released into the media by the repeated centrifugation and resuspension of the cell pellets. The stability of the bacteria-toxin complex was strain dependent, and L. casei was a stronger binder of AFB1 compared with the other bacteria. No toxin release was observed after 24 h. These findings tend to suggest that certain novel probiotic bacteria with high aflatoxin binding capacity could be selected for detoxification of foods. PMID:19205485

  10. Physio-chemical, microbiological properties of tempoyak and molecular characterisation of lactic acid bacteria isolated from tempoyak.

    PubMed

    Chuah, Li-Oon; Shamila-Syuhada, Ahamed Kamal; Liong, Min Tze; Rosma, Ahmad; Thong, Kwai Lin; Rusul, Gulam

    2016-09-01

    This study aims to determine physio-chemical properties of tempoyak, characterise the various indigenous species of lactic acid bacteria (LAB) present at different stages of fermentation and also to determine the survival of selected foodborne pathogens in tempoyak. The predominant microorganisms present in tempoyak were LAB (8.88-10.42 log CFU/g). Fructobacillus durionis and Lactobacillus plantarum were the dominant members of LAB. Other LAB species detected for the first time in tempoyak were a fructophilic strain of Lactobacillus fructivorans, Leuconostoc dextranicum, Lactobacillus collinoides and Lactobacillus paracasei. Heterofermentative Leuconostoc mesenteroides and F. durionis were predominant in the initial stage of fermentation, and as fermentation proceeded, F. durionis remained predominant, but towards the end of fermentation, homofermentative Lb. plantarum became the predominant species. Lactic, acetic and propionic acids were present in concentrations ranging from 0.30 to 9.65, 0.51 to 7.14 and 3.90 to 7.31 mg/g, respectively. Genotyping showed a high degree of diversity among F. durionis and Lb. plantarum isolates, suggesting different sources of LAB. All tested Lb. plantarum and F. durionis (except for one isolate) isolates were multidrug resistant. Salmonella spp., Listeria monocytogenes and Staphylococcus aureus were not detected. However, survival study showed that these pathogens could survive up to 8-12 days. The results aiming at improving the quality and safety of tempoyak. PMID:27217364

  11. Use of the alr Gene as a Food-Grade Selection Marker in Lactic Acid Bacteria

    PubMed Central

    Bron, Peter A.; Benchimol, Marcos G.; Lambert, Jolanda; Palumbo, Emmanuelle; Deghorain, Marie; Delcour, Jean; de Vos, Willem M.; Kleerebezem, Michiel; Hols, Pascal

    2002-01-01

    Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of d-alanine and l-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Δalr) showed auxotrophy for d-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented d-alanine auxotrophy in the L. plantarum Δalr and L. lactis Δalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to d-cycloserine, a competitive inhibitor of Alr (600 and 200 μg/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that d-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Δalr. The resulting strain could grow in the absence of d-alanine only when expression of the alr gene was induced with nisin. PMID:12406763

  12. Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk

    PubMed Central

    Atanasova, Jivka; Moncheva, Penka; Ivanova, Iskra

    2014-01-01

    We examined 62 strains and 21 trade starter cultures from the collection of LB Bulgaricum PLC for proteolytic and antimicrobial activity of lactic acid bacteria (LAB) grown in goat milk. The aim of this study was to investigate the fermentation of caseins, α-lactalbumin and β-lactoglobulin by LAB, using the o-phthaldialdehyde (OPA) spectrophotometric assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteolysis targeted mainly caseins, especially β-casein. Whey proteins were proteolyzed, essentially β-lactoglobulin. The proteolytic activity of Lactococcus lactis l598, Streptococcus thermophilus t3D1, Dt1, Lactobacillus lactis 1043 and L. delbrueckii subsp. bulgaricus b38, b122 and b24 was notably high. The proteolysis process gave rise to medium-sized peptide populations. Most of the examined strains showed antimicrobial activity against some food pathogens, such as Escherichia coli, Staphylococcus aureus, Salmonella cholere enteridis, Listeria monocytogenes, Listeria innocua and Enterobacter aerogenes. The most active producers of antimicrobial-active peptides were strains of L. delbrueckii subsp. bulgaricus and S. thermophilus, which are of practical importance. The starter cultures containing the examined species showed high proteolytic and antimicrobial activity in skimmed goat milk. The greatest antimicrobial activity of the cultures was detected against E. aerogenes. The obtained results demonstrated the significant proteolytic potential of the examined strains in goat milk and their potential for application in the production of dairy products from goat's milk. The present results could be considered as the first data on the proteolytic capacity of strains and starter cultures in goat milk for the purposes of trade interest of LB Bulgaricum PLC. PMID:26019593

  13. Novel Simplified and Rapid Method for Screening and Isolation of Polyunsaturated Fatty Acids Producing Marine Bacteria

    PubMed Central

    Tilay, Ashwini; Annapure, Uday

    2012-01-01

    Bacterial production of polyunsaturated fatty acids (PUFAs) is a potential biotechnological approach for production of valuable nutraceuticals. Reliable method for screening of number of strains within short period of time is great need. Here, we report a novel simplified method for screening and isolation of PUFA-producing bacteria by direct visualization using the H2O2-plate assay. The oxidative stability of PUFAs in growing bacteria towards added H2O2 is a distinguishing characteristic between the PUFAs producers (no zone of inhibition) and non-PUFAs producers (zone of inhibition) by direct visualization. The confirmation of assay results was performed by injecting fatty acid methyl esters (FAMEs) produced by selected marine bacteria to Gas Chromatography-Mass Spectrometry (GCMS). To date, this assay is the most effective, inexpensive, and specific method for bacteria producing PUFAs and shows drastically reduction in the number of samples thus saves the time, effort, and cost of screening and isolating strains of bacterial PUFAs producers. PMID:22934188

  14. The aflatoxin B1 isolating potential of two lactic acid bacteria

    PubMed Central

    Hamidi, Adel; Mirnejad, Reza; Yahaghi, Emad; Behnod, Vahid; Mirhosseini, Ali; Amani, Sajad; Sattari, Sara; Darian, Ebrahim Khodaverdi

    2013-01-01

    Objective To determine lactic acid bacteria's capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for preventing absorption of aflatoxin B1 in human and animal bodies. Methods In the present research, the bacteria were isolated from five different sources. For surveying the capability of the bacteria in isolating aflatoxin B1, ELISA method was implemented, and for identifying the resultant strains through 16S rRNA sequencing method, universal primers were applied. Results Among the strains which were isolated, two strains of Lactobacillus pentosus and Lactobacillus beveris exhibited the capability of absorbing and isolating aflatoxin B1 by respectively absorbing and discharging 17.4% and 34.7% of the aforementioned toxin existing in the experiment solution. Conclusions Strains of Lactobacillus pentosus and Lactobacillus beveris were isolated from human feces and local milk samples, respectively. And both strains has the ability to isolate or bind with aflatoxin B1. PMID:23998015

  15. Application of Lactic Acid Bacteria (LAB) in freshness keeping of tilapia fillets as sashimi

    NASA Astrophysics Data System (ADS)

    Cao, Rong; Liu, Qi; Chen, Shengjun; Yang, Xianqing; Li, Laihao

    2015-08-01

    Aquatic products are extremely perishable food commodities. Developing methods to keep the freshness of fish represents a major task of the fishery processing industry. Application of Lactic Acid Bacteria (LAB) as food preservative is a novel approach. In the present study, the possibility of using lactic acid bacteria in freshness keeping of tilapia fillets as sashimi was examined. Fish fillets were dipped in Lactobacillus plantarum 1.19 (obtained from China General Microbiological Culture Collection Center) suspension as LAB-treated group. Changes in K-value, APC, sensory properties and microbial flora were analyzed. Results showed that LAB treatment slowed the increase of K-value and APC in the earlier storage, and caused a smooth decrease in sensory score. Gram-negative bacteria dominated during refrigerated storage, with Pseudomonas and Aeromonas being relatively abundant. Lactobacillus plantarum 1.19 had no obvious inhibitory effect against these Gram-negatives. However, Lactobacillus plantarum 1.19 changed the composition of Gram-positive bacteria. No Micrococcus were detected and the proportion of Staphylococcus decreased in the spoiled LAB-treated samples. The period that tilapia fillets could be used as sashimi material extended from 24 h to 48 h after LAB treatment. The potential of using LAB in sashimi processing was confirmed.

  16. Dual-coated lactic acid bacteria: an emerging innovative technology in the field of probiotics.

    PubMed

    Alvarez-Calatayud, Guillermo; Margolles, Abelardo

    2016-01-01

    Probiotics are living micro-organisms that do not naturally have shelf life, and normally are weakly protected against the digestive action of the GI tract. A new dual coating technology has been developed in an effort to maximize survival, that is, to be able to reach the intestine alive and in sufficient numbers to confer the beneficial health effects on the host. Dual-coating of lactic acid bacteria (LAB) is the result of fourth-generation coating technology for the protection of these bacteria at least 100-fold or greater than the uncoated LAB. This innovative technique involves a first pH-dependent protein layer that protects bacteria from gastric acid and bile salt, and a second polysaccharide matrix that protects bacteria from external factors, such as humidity, temperature and pressure, as well as the digestive action during the passage through the GI tract. Dual-coated probiotic formulation is applicable to different therapeutic areas, including irritable bowel syndrome, atopic dermatitis, acute diarrhea, chronic constipation, Helicobacter pylori eradication, and prevention of antibiotic-associated diarrhea. An updated review of the efficacy of doubly coated probiotic strains for improving bacterial survival in the intestinal tract and its consequent clinical benefits in humans is here presented. PMID:26780116

  17. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi.

    PubMed

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-09-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively. PMID:24471087

  18. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection.

    PubMed

    Schiffrin, E J; Brassart, D; Servin, A L; Rochat, F; Donnet-Hughes, A

    1997-08-01

    Lactic acid bacteria in food can transiently colonize the intestine and exert beneficial effects (probiotic). Survival during intestinal transit or adhesion to epithelium or both seem to be important for modifying the host's immune reactivity. Because Lactobacillus acidophilus strain La1 is adherent to enterocytes in vitro, we hypothesize that contact with immune cells may occur in vivo. However, Bifidobacterium bifidum strain Bb12, which shows high fecal colonization, is another potential immunomodulator. Twenty-eight volunteers were divided into two groups and given a fermented product containing one of the two strains. Lymphocyte subsets and leukocyte phagocytic activity were studied in blood. No modifications were detected in lymphocyte subsets. In contrast, phagocytosis of Escherichia coli ssp. was enhanced in both groups (P < 0.001 for both). Bacterial adhesion to enterocytes, fecal colonization, or both seem to be valuable selection criteria for immunomodulation. Antiinfective mechanisms of defense can be enhanced after ingestion of specific lactic acid bacteria strains. PMID:9250141

  19. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    PubMed

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation. PMID:21257030

  20. Biosynthesis of Jasmonic Acid by Several Plant Species 1

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1984-01-01

    Six plant species metabolized 18O-labeled 12-oxo-cis,cis-10,15-phytodienoic acid (12-oxo-PDA) to short chain cyclic fatty acids. The plant species were corn (Zea mays L.), eggplant (Solanum melongena L.), flax (Linum usitatissimum L.), oat (Avena sativa L.), sunflower (Helianthus annuus L.), and wheat (Triticum aestivum L.). Among the products was jasmonic acid, a natural plant constituent with growth-regulating properties. The pathway is the same as the one recently reported by us for jasmonic acid synthesis in Vicia faba L. pericarp. First, the ring double bond of 12-oxo-PDA is saturated; then β-oxidation enzymes remove six carbons from the carboxyl side chain of the ring. Substrate specificity studies indicated that neither the stereochemistry of the side chain at carbon 13 of 12-oxo-PDA nor the presence of the double bond at carbon 15 was crucial for either enzyme step. The presence of enzymes which convert 12-oxo-PDA to jasmonic acid in several plant species indicates that this may be a general metabolic pathway in plants. PMID:16663643

  1. Fatty acid and hydroxy acid adaptation in three gram-negative hydrocarbon-degrading bacteria in relation to carbon source.

    PubMed

    Soltani, Mohamed; Metzger, Pierre; Largeau, Claude

    2005-12-01

    The lipids of three gram-negative bacteria, Acinetobacter calcoaceticus, Marinobacter aquaeolei, and Pseudomonas oleovorans grown on mineral media supplemented with ammonium acetate or hydrocarbons, were isolated, purified, and their structures determined. Three pools of lipids were isolated according to a sequential procedure: unbound lipids extracted with organic solvents, comprising metabolic lipids and the main part of membrane lipids, OH--labile lipids (mainly ester-bound in the lipopolysaccharides, LPS) and H+-labile lipids (mainly amide-bound in the LPS). Unsaturated FA composition gave evidence for an aerobic desaturation pathway for the synthesis of these acids in A. calcoaceticus and M. aquaeolei, a nonclassic route in gram-negative bacteria. Surprisingly, both aerobic and anaerobic pathways are operating in the studied strain of P. oleovorans. The increase of the proportion of saturated FA observed for the strain of P. oleovorans grown on light hydrocarbons would increase the temperature transition of the lipids for maintaining the inner membrane fluidity. An opposite phenomenon occurs in A. calcoaceticus and M. aquaeolei grown on solid or highly viscous C19 hydrocarbons. The increases of FA < C18 when the bacteria were grown on n-nonadecane, or of iso-FA in cultures on isononadecane would decrease the transition temperature of the lipids, to maintain the fluidity of the inner membranes. Moreover, P. oleovorans grown on hydrocarbons greatly decreases the proportion of P-hydroxy acids of LPS, thus likely maintaining the physical properties of the outer membrane. By contrast, no dramatic change in hydroxy acid composition occurred in the other two bacteria. PMID:16477811

  2. Automated species and strain identification of bacteria in complex matrices using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Puzey, K. A.; Gardner, P. J.; Petrova, V. K.; Donnelly, C. W.; Petrucci, G. A.

    2008-04-01

    Fourier Transform Infrared (FTIR) spectroscopy provides a highly selective and reproducible means for the chemically-based discrimination of intact microbial cells which make the method valuable for large-scale screening of foods. The goals of the present study were to assess the effect of chemical interferents, such as food matrices, different sanitizing compounds and growth media, on the ability of the method to accurately identify and classify L. innocua, L. welshimeri, E. coli, S. cholerasuis, S. subterranea, E. sakazakii, and E. aerogenes. Moreover, the potential of FTIR spectroscopy for discrimination of L. innocua and L. welshimeri of different genotypes and the effect of growth phase on identification accuracy of L. innocua and L. welshimeri were tested. FTIR spectra were collected using two different sample presentation techniques - transmission and attenuated total reflection (ATR), and then analyzed using multivariate discriminant analysis based on the first derivative of the FTIR spectra with the unknown spectra assigned to the species group with the shortest Mahalanobis distance. The results of the study demonstrated 100% correct identification and differentiation of all bacterial strains used in this study in the presence of chemical interferents or food matrices, better than 99% identification rate in presence of media matrices, and 100% correct detection for specific bacteria in mixed flora species. Additionally, FTIR spectroscopy proved to be 100% accurate when differentiating between genotypes of L. innocua and L. welshimeri, with the classification accuracy unaffected by the growth stage. These results suggest that FTIR spectroscopy can be used as a valuable tool for identifying pathogenic bacteria in food and environmental samples.

  3. Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria.

    PubMed

    Hidalgo-Cantabrana, Claudio; López, Patricia; Gueimonde, Miguel; de Los Reyes-Gavilán, Clara G; Suárez, Ana; Margolles, Abelardo; Ruas-Madiedo, Patricia

    2012-12-01

    During recent years, the exopolysaccharides (EPS) produced by some strains of lactic acid bacteria and bifidobacteria have attracted the attention of researchers, mainly due to their potential technological applications. However, more recently, it has been observed that some of these EPS present immunomodulatory properties, which suggest a potential effect on human health. Whereas EPS from lactic acid bacteria have been studied in some detail, those of bifidobacteria largely remain uncharacterized in spite of the ubiquity of EPS genes in Bifidobacterium genomes. In this review, we have analysed the data collected in the literature about the potential immune-modulating capability of EPS produced by lactic acid bacteria and bifidobacteria. From this data analysis, as well as from results obtained in our group, a hypothesis relating the physicochemical characteristics of EPS with their immune modulation capability was highlighted. We propose that EPS having negative charge and/or small size (molecular weight) are able to act as mild stimulators of immune cells, whereas those polymers non-charged and with a large size present a suppressive profile. PMID:26782182

  4. Taxonomic homogeneity of a salt-tolerant lactic acid bacteria isolated from shoyu mash.

    PubMed

    Hanagata, Hiroshi; Shida, Osamu; Takagi, Hiroaki

    2003-04-01

    Forty-seven salt-tolerant lactic acid bacteria, which had been isolated from different places and grown in 15% NaCl, were examined to assess their taxonomic heterogeneity. Among the isolates, 42 were isolated from shoyu mash during the acid fermentation phase, 2 were from miso and 3 were from anchovy pickles. All isolates were identified as Tetragenococcus halophilus on the basis of DNA relatedness values. We further examined 102 phenotypic characteristics of them. The isolates exhibited differences in only 16, supporting the conclusion obtained from the DNA relatedness analysis. PMID:12833212

  5. Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures.

    PubMed

    Zanirati, Débora Ferreira; Abatemarco, Mário; Sandes, Sávio Henrique de Cicco; Nicoli, Jacques Robert; Nunes, Álvaro Cantini; Neumann, Elisabeth

    2015-04-01

    Brazilian kefir is a homemade fermented beverage that is obtained by incubating milk or a brown sugar solution with kefir grains that contribute their different microbiological compositions. It is highly important to isolate and characterize microorganisms from Brazilian kefir grains to obtain starter cultures for the industrial production of a standardized commercial kefir. Thus, the present study aimed to isolate lactic acid bacteria from eight kefir grains that were propagated in milk or sugar solutions from five different locations in Brazil and to select Lactobacillus isolates based on desirable in vitro probiotic properties. One hundred eight isolates from both substrates were identified by amplified ribosomal DNA restriction analysis and/or 16S rRNA gene sequencing and were determined to belong to the following 11 species from the genera: Lactococcus, Leuconostoc, Lactobacillus (L.), and Oenococcus. Leuconostoc mesenteroides, Lactobacillus kefiri, and Lactobacillus kefiranofaciens were isolated only from milk grains, whereas Lactobacillus perolens, Lactobacillus parafarraginis, Lactobacillus diolivorans, and Oenococcus oeni were isolated exclusively from sugar water grains. When the microbial compositions of four kefir grains were evaluated with culture-independent analyses, L. kefiranofaciens was observed to predominant in milk grains, whereas Lactobacillus hilgardii was most abundant in sugar water kefir. Unfortunately, L. hilgardii was not isolated from any grain, although this bacteria was detected with a culture-independent methodology. Fifty-two isolated Lactobacilli were tested for gastric juice and bile salt tolerance, antagonism against pathogens, antimicrobial resistance, and surface hydrophobicity. Three Lactobacillus strains (L. kefiranofaciens 8U, L. diolivorans 1Z, and Lactobacillus casei 17U) could be classified as potential probiotics. In conclusion, several lactic acid bacteria that could be used in combination with yeasts as starter

  6. Isolation of Soil Bacteria Adapted To Degrade Humic Acid-Sorbed Phenanthrene

    PubMed Central

    Vacca, D. J.; Bleam, W. F.; Hickey, W. J.

    2005-01-01

    The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed “competence.” Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer. PMID:16000791

  7. Antagonistic activity of lactic acid bacteria as probiotics against selected bacteria of the Enterobaceriacae family in the presence of polyols and their galactosyl derivatives.

    PubMed

    Klewicki, Robert; Klewicka, Elzbieta

    2004-02-01

    Probiotic lactic acid bacteria were grown on erythritol, xylitol, sorbitol or lactitol and produced various derivatives: gal-erythritol, gal-xylitol, and gal-sorbitol as prebiotics. Galactosyl derivatives of erythritol, xylitol and sorbitol were metabolised by Lactobacillus spp. This resulted in their antagonistic activity against the test microflora. No activity was observed in the presence of xylitol and erythritol. Gal-sorbitol obtained by enzymatic transglycosylation from lactose had the same abilities of inducing the antagonistic activity of lactic acid bacteria that lactitol had. PMID:15055768

  8. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species

    PubMed Central

    McGraw, Joseph E.; Jensen, Brittany J.; Bishop, Sydney S.; Lokken, James P.; Dorff, Kellen J.; Ripley, Michael P.; Munro, James B.

    2015-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. PMID:26497452

  9. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species.

    PubMed

    Dailey, Frank E; McGraw, Joseph E; Jensen, Brittany J; Bishop, Sydney S; Lokken, James P; Dorff, Kellen J; Ripley, Michael P; Munro, James B

    2016-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. PMID:26497452

  10. Nucleic acid fluorochromes and flow cytometry prove useful in assessing the effect of chlorination on drinking water bacteria.

    PubMed

    Phe, Meng-Huot; Dossot, Manuel; Guilloteau, Hélène; Block, Jean-Claude

    2005-09-01

    Flow cytometry (FCM), combined with staining using two fluorochromes (propidium iodide, PI, or SYBR Green II RNA gel stain, SYBR-II), was used to assess nucleic acid injuries to chlorinated drinking water bacteria. Highly fluorescent SYBR-II-stained bacteria were converted to bacteria with low fluorescence after chlorination. PI staining of bacteria exposed to different doses of chlorine showed membrane permeabilisation ([Cl2] < 0.2 mg L(-1)) and nucleic acid damage at higher doses ([Cl2] > 0.3 mg L(-1)). Above a threshold dose (between 1.5 and 3 mg Cl2 L(-1)), nucleic acids appeared severely damaged and incapable of being stained by PI or SYBR-II. These results constitute evidence that FCM is a promising tool for assessing drinking water bacteria injuries and for controlling chlorine disinfection efficiency much more rapidly than the standard sensitive but time-consuming heterotrophic plate count method. PMID:16081129

  11. Isolation and characterization of halophilic lactic acid bacteria isolated from "terasi" shrimp paste: a traditional fermented seafood product in Indonesia.

    PubMed

    Kobayashi, Takeshi; Kajiwara, Michika; Wahyuni, Mita; Kitakado, Toshihide; Hamada-Sato, Naoko; Imada, Chiaki; Watanabe, Etsuo

    2003-10-01

    Lactic acid bacteria from "terasi" shrimp paste, a highly popular fermented seafood in Indonesia were isolated and characterized. Viable cell counts were 10(4) to 10(6) cfu/g on MRS medium. All the isolates were catalase-negative, gram-positive cocci and were able to grow at 15% NaCl. Numerical phenotypic analysis showed that the isolates clustered into one group. However, they could be classified into two types: the Tetragenococcus halophilus group and the T. muriaticus group as revealed by a restriction fragment length polymorphism (RFLP) analysis and sequencing of the 16S rRNA gene. This study is the first to show that both species of Tetragenococcus are distributed in Indonesian fermented foods. PMID:14673751

  12. Isolation and characterization of bacteriocin-producing lactic acid bacteria from ready-to-eat food products.

    PubMed

    Kelly, W J; Asmundson, R V; Huang, C M

    1996-12-01

    Lactic acid bacteria isolated from a range of foods sold in ready-to-eat form were screened for bacteriocin production. Twenty-two bacteriocin-producing cultures were isolated from 14 of the 41 foods sampled. Bacteriocin-producing isolates from meat, fish and dairy products were Lactobacillus and Leuconostoc species typically found associated with these products. Most of these isolates gave only a narrow inhibitory spectrum although two showed activity against Listeria monocytogenes. Fruit and vegetable products gave a broader range of organisms but most of the bacteriocin-producing cultures were found to be strains of Lactococcus. Several lactococci produced a nisin-like activity, and showed a broad inhibitory spectrum against the indicator strains tested. The ease with which bacteriocin-producing strains could be isolated implies that they are already being safely consumed in food, and highlights the potential for using bacteriocin-producing cultures for biopreservation, especially in association with minimally processed products. PMID:8930706

  13. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar.

    PubMed

    De Vero, Luciana; Gala, Elisabetta; Gullo, Maria; Solieri, Lisa; Landi, Sara; Giudici, Paolo

    2006-12-01

    Acetic acid bacteria (AAB) are fastidious micro-organisms to isolate and cultivate despite of the great number of growth media available. Moreover, conventional techniques used to study AAB populations are time consuming and not completely reliable. In this study, we tested the usefulness of the polymerase chain reaction-denaturing gradient gel electophoresis (PCR-DGGE) as a rapid and cost effective method for the screening of AAB in traditional balsamic vinegar (TBV). DGGE analysis was applied to 19 AAB strains isolated by agar plating from three different samples of TBV. DGGE was also used for the analysis of PCR products obtained from DNA extracted directly from the TBV samples. A tentative species identification was achieved comparing the PCR-DGGE patterns of the isolated strains and the TBV samples to those of 15 AAB reference strains. The results support that DGGE is functional to monitor vinegar's AAB population. PMID:16943087

  14. Isolation and Characterization of Methanesulfonic Acid-Degrading Bacteria from the Marine Environment

    PubMed Central

    Thompson, A. S.; Owens, N.; Murrell, J. C.

    1995-01-01

    Two methylotrophic bacterial strains, TR3 and PSCH4, capable of growth on methanesulfonic acid as the sole carbon source were isolated from the marine environment. Methanesulfonic acid metabolism in these strains was initiated by an inducible NADH-dependent monooxygenase, which cleaved methanesulfonic acid into formaldehyde and sulfite. The presence of hydroxypyruvate reductase and the absence of ribulose monophosphate-dependent hexulose monophosphate synthase indicated the presence of the serine pathway for formaldehyde assimilation. Cell suspensions of bacteria grown on methanesulfonic acid completely oxidized methanesulfonic acid to carbon dioxide and sulfite with a methanesulfonic acid/oxygen stoichiometry of 1.0:2.0. Oxygen electrode-substrate studies indicated the dissimilation of formaldehyde to formate and carbon dioxide for energy generation. Carbon dioxide was not fixed by ribulose bisphosphate carboxylase. It was shown that methanol is not an intermediate in methanesulfonic acid metabolism, although these strains grew on methanol and other one-carbon compounds, as well as a variety of heterotrophic carbon sources. These two novel marine facultative methylotrophs have the ability to mineralize methanesulfonic acid and may play a role in the cycling of global organic sulfur. PMID:16535055

  15. Antagonistic Characteristics Against Food-borne Pathogenic Bacteria of Lactic Acid Bacteria and Bifidobacteria Isolated from Feces of Healthy Thai Infants

    PubMed Central

    Uraipan, Supansa; Hongpattarakere, Tipparat

    2015-01-01

    Background: Food-borne pathogens are among the most significant problems in maintaining the health of people. Many probiotics have been widely reported to alleviate and protect against gastrointestinal infections through antibacterial secretion. However, the majority of them cannot always play antagonistic roles under gut conditions. Probiotic bacteria of human origin must possess other protective mechanisms to survive, out-compete intestinal flora and to successfully establish in their new host at a significant level. Objectives: Probiotic characteristics of Lactic Acid Bacteria (LAB) and bifidobacteria isolated from the feces of Thai infants were primarily investigated in terms of gastric acid and bile resistances, antibacterial activity and mucin adhesion ability. Antagonistic interaction through secretion of antibacterial compounds and competitive exclusion against food-borne pathogens were also evaluated. Materials and Methods: Culturable LAB and bifidobacteria were isolated from feces of Thai infants. Their ability to withstand gastric acid and bile were then evaluated. Acid and bile salt tolerant LAB and bifidobacteria were identified. They were then further assessed according to their antagonistic interactions through antibacterial secretion, mucin adhesion and competitive mucin adhesion against various food-borne pathogenic bacteria. Results: Gastric acid and bile tolerant LAB and bifidobacteria isolated from healthy infant feces were identified and selected according to their antagonistic interaction against various food-borne pathogenic bacteria. These antagonistic probiotics included four strains of Lactobacillus rhamnosus, two strains of L. casei, five strains of L. plantarum, two strains of Bifidobacterium longum subsp. longum and three strains of B. bifidum. All strains of the selected LAB inhibited all pathogenic bacteria tested through antibacterial secretion, while bifidobacteria showed high level of competitive exclusion against the pathogenic

  16. Recognition of greater diversity of Bacillus species and related bacteria in human faeces.

    PubMed

    Hoyles, Lesley; Honda, Harue; Logan, Niall A; Halket, Gillian; La Ragione, Roberto M; McCartney, Anne L

    2012-01-01

    In a study looking at culturable aerobic Actinobacteria associated with the human gastrointestinal tract, the vast majority of isolates obtained from dried human faeces belonged to the genus Bacillus and related bacteria. A total of 124 isolates were recovered from the faeces of 10 healthy adult donors. 16S rRNA gene sequence analyses showed the majority belonged to the families Bacillaceae (n=81) and Paenibacillaceae (n=3), with Bacillus species isolated from all donors. Isolates tentatively identified as Bacillus clausii (n=32) and Bacillus licheniformis (n=28) were recovered most frequently, with the genera Lysinibacillus, Ureibacillus, Oceanobacillus, Ornithinibacillus and Virgibacillus represented in some donors. Phenotypic data confirmed the identities of isolates belonging to well-characterized species. Representatives of the phylum Actinobacteria were recovered in much lower numbers (n=11). Many of the bacilli exhibited antimicrobial activity against one or more strains of Clostridium difficile, Clostridium perfringens, Listeria monocytogenes and Staphylococcus aureus, with some (n=12) found to have no detectable cytopathic effect on HEp-2 cells. This study has revealed greater diversity within gut-associated aerobic spore-formers than previous studies, and suggests that bacilli with potential as probiotics could be isolated from the human gut. PMID:22041546

  17. Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano.

    PubMed

    Lazzi, Camilla; Povolo, Milena; Locci, Francesco; Bernini, Valentina; Neviani, Erasmo; Gatti, Monica

    2016-09-16

    In this study, the relationship between the dynamics of the growth and lysis of lactic acid bacteria in Grana Padano cheese and the formation of the volatile flavor compounds during cheese ripening was investigated. The microbial dynamics of Grana Padano cheeses that were produced in two different dairies were followed during ripening. The total and cultivable lactic microflora, community composition as determined by length heterogeneity-PCR (LH-PCR), and extent of bacterial lysis using an intracellular enzymatic activity assay were compared among cheeses after 2, 6 and 13months of ripening in two dairies. The evolution of whole and lysed microbiota was different between the two dairies. In dairy 2, the number of total cells was higher than that in dairy 1 in all samples, and the number of cells that lysed during ripening was lower. In addition, at the beginning of ripening (2months), the community structure of the cheese from dairy 2 was more complex and was composed of starter lactic acid bacteria (Lactobacillus helveticus and Lactobacillus delbrueckii) and NSLAB, possibly arising from raw milk, including Lactobacillus rhamnosus/Lactobacillus casei and Pediococcus acidilactici. On the other hand, the cheese from dairy 1 that ripened for 2months was mainly composed of the SLAB L. helveticus and L. delbrueckii. An evaluation of the free-DNA fraction through LH-PCR identified those species that had a high degree of lysis. Data on the dynamics of bacterial growth and lysis were evaluated with respect to the volatile profile and the organic acid content of the two cheeses after 13months of ripening, producing very different results. Cheese from dairy 1 showed a higher content of free fatty acids, particularly those deriving from milk fat lipolysis, benzaldehyde and organic acids, such as pGlu and citric. In contrast, cheese from dairy 2 had a greater amount of ketones, alcohols, hydrocarbons, acetic acid and propionic acid. Based on these results, we can conclude that

  18. Comparative chemotaxonomic studies of mycolic acid-free coryneform bacteria of human origin.

    PubMed

    Barreau, C; Bimet, F; Kiredjian, M; Rouillon, N; Bizet, C

    1993-08-01

    Forty-two clinical isolates were classified as Corynebacterium minutissimum, Corynebacterium striatum, and Corynebacterium CDC group I by the API Coryne system. The chemotaxonomic characteristics of the isolates were determined by thin-layer chromatographic analysis. Twenty-six isolates were found to have a type IV cell wall (meso-di-aminopimelic acid arabinose, galactose) but did not contain mycolic acids. These 26 isolates shared chemotaxonomic characteristics with those of mycolic acid-free reference strains (including the Corynebacterium amycolatum NCFB 2768 type strain, "Corynebacterium asperum," and coryneform CDC groups I2 and F2). The total protein profiles of the isolates determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were similar to each other and to that of the C. amycolatum type strain. The profiles of the reference strains "Corynebacterium asperum" (CIP 100836, CIP 80.54, CIP 79.37, CIP 52.13), coryneform bacteria CDC groups I2 and F2 (CDC F5771, F5890, G723, G1970), and C. amycolatum were closely related. Thus, the mycolic acid-negative strains with a chemotype IV wall may belong to a single taxon. DNA hybridization studies could confirm this hypothesis. The present study shows the importance of chemotaxonomic analysis for verifying strain identifications and completing results from biochemical tests, particularly for coryneform bacteria. PMID:8370733

  19. Comparative chemotaxonomic studies of mycolic acid-free coryneform bacteria of human origin.

    PubMed Central

    Barreau, C; Bimet, F; Kiredjian, M; Rouillon, N; Bizet, C

    1993-01-01

    Forty-two clinical isolates were classified as Corynebacterium minutissimum, Corynebacterium striatum, and Corynebacterium CDC group I by the API Coryne system. The chemotaxonomic characteristics of the isolates were determined by thin-layer chromatographic analysis. Twenty-six isolates were found to have a type IV cell wall (meso-di-aminopimelic acid arabinose, galactose) but did not contain mycolic acids. These 26 isolates shared chemotaxonomic characteristics with those of mycolic acid-free reference strains (including the Corynebacterium amycolatum NCFB 2768 type strain, "Corynebacterium asperum," and coryneform CDC groups I2 and F2). The total protein profiles of the isolates determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were similar to each other and to that of the C. amycolatum type strain. The profiles of the reference strains "Corynebacterium asperum" (CIP 100836, CIP 80.54, CIP 79.37, CIP 52.13), coryneform bacteria CDC groups I2 and F2 (CDC F5771, F5890, G723, G1970), and C. amycolatum were closely related. Thus, the mycolic acid-negative strains with a chemotype IV wall may belong to a single taxon. DNA hybridization studies could confirm this hypothesis. The present study shows the importance of chemotaxonomic analysis for verifying strain identifications and completing results from biochemical tests, particularly for coryneform bacteria. Images PMID:8370733

  20. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria.

    PubMed

    Russo, Pasquale; Iturria, Iñaki; Mohedano, Maria Luz; Caggianiello, Graziano; Rainieri, Sandra; Fiocco, Daniela; Angel Pardo, Miguel; López, Paloma; Spano, Giuseppe

    2015-04-01

    A critical feature of probiotic microorganisms is their ability to colonize the intestine of the host. Although the microbial potential to adhere to the human gut lumen has been investigated in in vitro models, there is still much to discover about their in vivo behaviour. Zebrafish is a vertebrate model that is being widely used to investigate various biological processes shared with humans. In this work, we report on the use of the zebrafish model to investigate the in vivo colonization ability of previously characterized probiotic lactic acid bacteria. Lactobacillus plantarum Lp90, L. plantarum B2 and Lactobacillus fermentum PBCC11.5 were fluorescently tagged by transfer of the pRCR12 plasmid, which encodes the mCherry protein and which was constructed in this work. The recombinant bacteria were used to infect germ-free zebrafish larvae. After removal of bacteria, the colonization ability of the strains was monitored until 3 days post-infection by using a fluorescence stereomicroscope. The results indicated differential adhesion capabilities among the strains. Interestingly, a displacement of bacteria from the medium to the posterior intestinal tract was observed as a function of time that suggested a transient colonization by probiotics. Based on fluorescence observation, L. plantarum strains exhibited a more robust adhesion capability. In conclusion, the use of pRCR12 plasmid for labelling Lactobacillus strains provides a powerful and very efficient tool to monitor the in vivo colonization in zebrafish larvae and to investigate the adhesion ability of probiotic microorganisms. PMID:25586576

  1. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids.

    PubMed

    Park, Jung-Ha; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Kitamura, Yasuaki; Imada, Shinya; Usui, Yutaro; Hatano, Naoya; Shinohara, Masakazu; Saito, Yasuyuki; Murata, Yoji; Matozaki, Takashi

    2016-01-01

    The life span of intestinal epithelial cells (IECs) is short (3-5 days), and its regulation is thought to be important for homeostasis of the intestinal epithelium. We have now investigated the role of commensal bacteria in regulation of IEC turnover in the small intestine. The proliferative activity of IECs in intestinal crypts as well as the migration of these cells along the crypt-villus axis were markedly attenuated both in germ-free mice and in specific pathogen-free (SPF) mice treated with a mixture of antibiotics, with antibiotics selective for Gram-positive bacteria being most effective in this regard. Oral administration of chloroform-treated feces of SPF mice to germ-free mice resulted in a marked increase in IEC turnover, suggesting that spore-forming Gram-positive bacteria contribute to this effect. Oral administration of short-chain fatty acids (SCFAs) as bacterial fermentation products also restored the turnover of IECs in antibiotic-treated SPF mice as well as promoted the development of intestinal organoids in vitro. Antibiotic treatment reduced the phosphorylation levels of ERK, ribosomal protein S6, and STAT3 in IECs of SPF mice. Our results thus suggest that Gram-positive commensal bacteria are a major determinant of IEC turnover, and that their stimulatory effect is mediated by SCFAs. PMID:27232601

  2. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids

    PubMed Central

    Park, Jung-ha; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Kitamura, Yasuaki; Imada, Shinya; Usui, Yutaro; Hatano, Naoya; Shinohara, Masakazu; Saito, Yasuyuki; Murata, Yoji; Matozaki, Takashi

    2016-01-01

    The life span of intestinal epithelial cells (IECs) is short (3–5 days), and its regulation is thought to be important for homeostasis of the intestinal epithelium. We have now investigated the role of commensal bacteria in regulation of IEC turnover in the small intestine. The proliferative activity of IECs in intestinal crypts as well as the migration of these cells along the crypt-villus axis were markedly attenuated both in germ-free mice and in specific pathogen–free (SPF) mice treated with a mixture of antibiotics, with antibiotics selective for Gram-positive bacteria being most effective in this regard. Oral administration of chloroform-treated feces of SPF mice to germ-free mice resulted in a marked increase in IEC turnover, suggesting that spore-forming Gram-positive bacteria contribute to this effect. Oral administration of short-chain fatty acids (SCFAs) as bacterial fermentation products also restored the turnover of IECs in antibiotic-treated SPF mice as well as promoted the development of intestinal organoids in vitro. Antibiotic treatment reduced the phosphorylation levels of ERK, ribosomal protein S6, and STAT3 in IECs of SPF mice. Our results thus suggest that Gram-positive commensal bacteria are a major determinant of IEC turnover, and that their stimulatory effect is mediated by SCFAs. PMID:27232601

  3. Current status and emerging role of glutathione in food grade lactic acid bacteria

    PubMed Central

    2012-01-01

    Lactic acid bacteria (LAB) have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms. PMID:22920585

  4. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    PubMed Central

    Chapot-Chartier, Marie-Pierre

    2014-01-01

    Lactic acid bacteria (LAB) are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan (PG) to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze PG and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle. PMID:24904550

  5. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides.

    PubMed

    Schellenberger, Stefanie; Drake, Harold L; Kolb, Steffen

    2012-02-01

    Herbicides have the potential to impair the metabolism of soil microorganisms. The current study addressed the toxic effect of bentazon and 4-chloro-2-methylphenoxyacetic acid on aerobic and anaerobic Bacteria that are involved in cellulose and cellobiose degradation in an agricultural soil. Aerobic saccharide degradation was reduced at concentrations of herbicides above environmental values. Microbial processes (e.g. fermentations, ferric iron reduction) that were linked to anaerobic cellulose and cellobiose degradation were reduced in the presence of both herbicides at concentrations above and at those that occur in crop field soil. 16S rRNA gene transcript numbers of total Bacteria, and selected bacterial taxa (Clostridia [Group I], Planctomycetaceae, and two uncultivated taxa of Bacteroidetes) decreased more in anoxic than in oxic cellulose-supplemented soil microcosms in the presence of both herbicides. Collectively, the results suggested that the metabolism of anaerobic cellulose-degrading Bacteria was impaired by typical in situ herbicide concentrations, whereas in situ concentrations did not impair metabolism of aerobic cellulose- and cellobiose-degrading soil Bacteria. PMID:22098368

  6. Molecular and technological characterization of lactic acid bacteria from traditional fermented sausages of Basilicata region (Southern Italy).

    PubMed

    Bonomo, M G; Ricciardi, A; Zotta, T; Parente, E; Salzano, G

    2008-12-01

    Lactic acid bacteria (LAB) from traditional fermented sausages of the Basilicata region were investigated by ARDRA-PCR and RAPD-PCR for taxonomic identification at species and strain level and characterized on the basis of the growth and acidification at different temperatures, incubation times, levels of NaCl and KNO(2), hydrolysis of sarcoplasmatic and myofibrillar proteins and antimicrobial, peptide/amino acid release and nitrate reductase activities. Lactobacillus sakei was the predominant species (67%) followed by Pediococcus pentosaceus (16%), Leuconostoc carnosum (8%), Lactobacillus plantarum (4%), Lactobacillus brevis (2%) and Leuconostoc pseudomesenteroides (2%). The technological characterization revealed that most of the isolates had good acidifying and proteolytic properties. Moreover, Lb. sakei strains showed antimicrobial ability, while Leuconostoc strains the highest reduction of nitrates. This work was a preliminary study in the formulation of autochthonous starter cultures in order to standardize the production process of sausages, to preserve their typical organoleptic and sensory characteristics and to improve the quality of final product. PMID:22063864

  7. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    NASA Technical Reports Server (NTRS)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  8. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria.

    PubMed

    Peltonen, K; el-Nezami, H; Haskard, C; Ahokas, J; Salminen, S

    2001-10-01

    Various food commodities including dairy products may be contaminated with aflatoxins, which, even in small quantities, have detrimental effects on human and animal health. Several microorganisms have been reported to bind or degrade aflatoxins in foods and feeds. This study assessed the binding of aflatoxin B1 (AFB1) from contaminated solution by 20 strains of lactic acid bacteria and bifidobacteria. The selected strains are used in the food industry and comprised 12 Lactobacillus, five Bifidobacterium, and three Lactococcus strains. Bacteria and AFB1 were incubated (24 h, +37 degrees C) and the amount of unbound AFB1 was quantitated by HPLC. Between 5.6 and 59.7% AFB1 was bound from solution by these strains. Two Lactobacillus amylovorus strains and one Lactobacillus rhamnosus strain removed more than 50% AFB1 and were selected for further study. Bacterial binding of AFB1 by these strains was rapid, and more than 50% AFB1 was bound throughout a 72-h incubation period. Binding was reversible, and AFB1 was released by repeated aqueous washes. These findings further support the ability of specific strains of lactic acid bacteria to bind selected dietary contaminants. PMID:11699445

  9. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    PubMed

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions. PMID:26866280

  10. Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity.

    PubMed

    DeFrank, J J; Beaudry, W T; Cheng, T C; Harvey, S P; Stroup, A N; Szafraniec, L L

    1993-06-01

    Previously, a G-type nerve agent degrading enzyme activity was found in a halophilic bacterial isolate designated JD6.5. This organism was tentatively identified as an unknown species of the genus Alteromonas. In order to determine whether this type of enzyme activity was common in other species of Alteromonas, a screening program was initiated. A number of Alteromonas species and five halophilic bacterial isolates were cultured and their crude cell extracts screened for hydrolytic activity against several organophosphorus chemical agents and other related compounds. The samples were also screened for cross-reactivity with a monoclonal antibody raised against the purified enzyme from JD6.5 and for hybridization with a DNA probe based on its N-terminal amino acid sequence A wide spectrum of activities and reactivities were seen, suggesting a significant heterogeneity between the functionally similar enzymes that are present in these bacterial species. Enzymes of the type described here have considerable potential for the decontamination and demilitarization of chemical warfare agents. PMID:8393735

  11. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  12. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.

    PubMed

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2012-01-01

    The activity of two phenolic acids, gallic acid (GA) and ferulic acid (FA) at 1000 μg ml(-1), was evaluated on the prevention and control of biofilms formed by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. In addition, the effect of the two phenolic acids was tested on planktonic cell susceptibility, bacterial motility and adhesion. Biofilm prevention and control were tested using a microtiter plate assay and the effect of the phenolic acids was assessed on biofilm mass (crystal violet staining) and on the quantification of metabolic activity (alamar blue assay). The minimum bactericidal concentration for P. aeruginosa was 500 μg ml(-1) (for both phenolic acids), whilst for E. coli it was 2500 μg ml(-1) (FA) and 5000 μg ml(-1) (GA), for L. monocytogenes it was >5000 μg ml(-1) (for both phenolic acids), and for S. aureus it was 5000 μg ml(-1) (FA) and >5000 μg ml(-1) (GA). GA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. FA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. Colony spreading of S. aureus was completely inhibited by FA. The interference of GA and FA with bacterial adhesion was evaluated by the determination of the free energy of adhesion. Adhesion was less favorable when the bacteria were exposed to GA (P. aeruginosa, S. aureus and L. monocytogenes) and FA (P. aeruginosa and S. aureus). Both phenolics had preventive action on biofilm formation and showed a higher potential to reduce the mass of biofilms formed by the Gram-negative bacteria. GA and FA promoted reductions in biofilm activity >70% for all the biofilms tested. The two phenolic acids demonstrated the potential to inhibit bacterial motility and to prevent and control biofilms of four important human pathogenic bacteria. This study also emphasizes the potential of phytochemicals as an emergent source of biofilm

  13. GFP Reporter Screens for the Engineering of Amino Acid Degrading Enzymes from Libraries Expressed in Bacteria

    PubMed Central

    Paley, Olga; Agnello, Giulia; Cantor, Jason; Yoo, Tae Hyun; Georgiou, George; Stone, Everett

    2014-01-01

    There is significant interest in engineering human amino acid degrading enzymes as non-immunogenic chemotherapeutic agents. We describe a high-throughput fluorescence activated cell sorting (FACS) assay for detecting the catalytic activity of amino acid degrading enzymes in bacteria, at the single cell level. This assay relies on coupling the synthesis of the GFP reporter to the catalytic activity of the desired amino acid degrading enzyme in an appropriate E. coli genetic background. The method described here allows facile screening of much larger libraries (106–107) than was previously possible. We demonstrate the application of this technique in the screening of libraries of bacterial and human asparaginases and also for the catalytic optimization of an engineered human methionine gamma lyase. PMID:23423887

  14. Screening of potential probiotic lactic acid bacteria based on gastrointestinal properties and perfluorooctanoate toxicity.

    PubMed

    Xing, Jiali; Wang, Fan; Xu, Qi; Yin, Boxing; Fang, Dongsheng; Zhao, Jianxin; Zhang, Hao; Chen, Yong Q; Wang, Gang; Chen, Wei

    2016-08-01

    The consumption of lactic acid bacteria capable of binding or degrading food-borne carcinogens may reduce human exposure to these deleterious compounds. In this study, 25 Lactobacillus strains isolated from human, plant, or dairy environments were investigated for their potential probiotic capacity against perfluorooctanoate (PFOA) toxicity. The PFOA binding, tolerance ability, and acid and bile salt tolerance were investigated and assessed by principal component analysis. Additionally, the effect of different pH levels and binding times was assessed. These strains exhibited different degrees of PFOA binding; the strain with the highest PFOA binding capability was Lactobacillus plantarum CCFM738, which bound to 49.40 ± 1.5 % of available PFOA. This strain also exhibited relatively good cellular antioxidative properties, acid and bile salt tolerance, and adhesion to Caco-2 cells. This study suggests that L. plantarum CCFM738 could be used as a potential probiotic in food applications against PFOA toxicity. PMID:27094185

  15. Isolation of lactic acid bacteria from Malaysian foods and assessment of the isolates for industrial potential.

    PubMed

    Mohd Adnan, Ahmad Faris; Tan, Irene K P

    2007-05-01

    Two traditional fermented food 'tapai' (fermented tapioca) and 'tempoyak' (fermented durian flesh), chilli puree and fresh goat's milk were used as sources for the isolation of lactic acid bacteria (LAB). A total of 126 isolates were obtained and by sequential screening for catalase activity and Gram-staining, 55 were determined to be LAB out of which 16 were established to be homofermentative by the gel plug test. Seven isolates were identified by use of the API 50CHL kit and two lactobacilli strains and one lactococci strain were selected to study their growth and lactic acid production profiles in a time course experiment. The lactobacilli strains, both isolated from 'tapai', produced higher amounts of cells and lactic acid from glucose as compared to the lactococci strain isolated from fresh goat's milk. PMID:16872826

  16. Identification of acetic acid bacteria by restriction fragment length polymorphism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA.

    PubMed

    Poblet, M; Rozès, N; Guillamón, J M; Mas, A

    2000-07-01

    Acetic acid bacteria (AAB) irreversibly spoil wines and represent a serious problem. Limited studies on the ecology of AAB during winemaking have been done due to the lack of rapid and precise techniques for their identification. RFLP analysis of PCR-amplified fragment of 16S rDNA was performed on AAB reference strains. The amplified rDNAs were approximately 870-bp long for all AAB species while no amplicons were detected for lactic acid bacteria and yeasts. Out of the four restriction enzymes tested, TaqI was the most efficient one and divided the studied AAB into six groups. However, complete differentiation among collection strains of Acetobacter pasteurianus and Gluconoacetobacter hansenii was not possible. PMID:10886617

  17. The Use of Lactic Acid Bacteria Starter Culture in the Production of Nunu, a Spontaneously Fermented Milk Product in Ghana.

    PubMed

    Akabanda, Fortune; Owusu-Kwarteng, James; Tano-Debrah, Kwaku; Parkouda, Charles; Jespersen, Lene

    2014-01-01

    Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL) was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures. PMID:26904646

  18. The Use of Lactic Acid Bacteria Starter Culture in the Production of Nunu, a Spontaneously Fermented Milk Product in Ghana

    PubMed Central

    Tano-Debrah, Kwaku; Parkouda, Charles; Jespersen, Lene

    2014-01-01

    Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL) was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures. PMID:26904646

  19. Phenotypic and genotypic diversity of dominant lactic acid bacteria isolated from traditional yoghurts produced by tribes of Iran

    PubMed Central

    RoushanZadeh, S; Eskandari, M. H.; Shekarforoush, S. S.; Hosseini, A

    2014-01-01

    Morphological, biochemical and molecular characteristics were studied to identify dominant lactic acid bacteria (LAB), isolated from traditional yoghurts produced by tribes of Iran. From 60 yoghurt samples, a total of 137 LAB isolates were determined, in which 66 and 71 were identified as lactic acid cocci and bacilli, respectively. Biochemical tests showed the occurrence of 9.76% mesophilic homofermentative, 10.98% mesophilic hetrofermentative, 26.83% thermophilic homofermentative and 47.56% mesophilic homofermentative cocci. As for lactic acid bacilli, mesophilic facultative hetrofermentative (26%); thermophilic obligate homofermentative (56%); mesophilic obligate hetrofermentative (18%) were found. Genetically the presence of the following species were verified: E. faecium; E. faecalis; E. durans; L. lactis subsp. lactis; St. thermophilus; Lb. delbruecki subsp. bulgaricus; Lb. brevis; Lb. diolivorans; Lb. helveticus; Lb. jensenii; Lb. plantarum. 9% of the Lactobacillus isolates showed incompatible results between phenotypic and genotypic characteristics. From the cocci isolates, 38.46% showed identical results between phylogenetic characteristics. The current study constitutes the first step in the designing process of LAB starter cultures, to protect the typical organoleptic characteristics of traditional yoghurt. The results could also be used to introduce new starter cultures for commercial use. PMID:27175129

  20. Microbial dynamics of Castelmagno PDO, a traditional Italian cheese, with a focus on lactic acid bacteria ecology.

    PubMed

    Dolci, Paola; Alessandria, Valentina; Rantsiou, Kalliopi; Rolle, Luca; Zeppa, Giuseppe; Cocolin, Luca

    2008-03-20

    The dynamics of dominant microflora throughout the manufacture and ripening processes were evaluated in three batches of traditional Castelmagno PDO cheese. Milk, curd and cheese samples, at different stages during cheesemaking, were collected and subjected to culture-dependent and -independent analysis. Traditional plating and genetic identification of lactic acid bacteria (LAB) isolates, and PCR-DGGE analysis of V1 region of 16S rRNA gene were carried out. The collected samples were also monitored by HPLC for the presence of organic acids, sugars and ketones. LAB resulted to be the prevailing microflora in all production stages although enterococci, coagulase-negative cocci and yeasts also showed considerable viable counts probably related to the presence, in the dairy samples analysed, of free short-chain fatty acids detected by HPLC. Lactococcus lactis subsp. lactis was the species most frequently isolated during Castelmagno PDO manufacture, while Lactobacillus plantarum and Lactobacillus paracasei were isolated with the highest frequencies from ripened Castelmagno PDO cheese samples. Occasionally strains of Lactobacillus delbrueckii subsp. lactis, Lactobacillus coryniformis subsp. torquens and Lactobacillus casei were isolated. The results obtained on Castelmagno PDO microflora underlines a partial correspondence between culture-dependent method and DGGE analysis. Thus, in this study, it is highlighted once more the importance to combine molecular culture-independent approaches with classical microbiological methods for the study of complex environmental communities occurring in food matrices. PMID:18272246

  1. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications

    PubMed Central

    2014-01-01

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed. PMID:25186038

  2. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications.

    PubMed

    Perez, Rodney H; Zendo, Takeshi; Sonomoto, Kenji

    2014-08-29

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed. PMID:25186038

  3. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    PubMed

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation. PMID:23604535

  4. Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Factor Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria

    PubMed Central

    Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne

    2006-01-01

    The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G−) commensals, such as members of the family Enterobacteriaceae, may, however, be immunomodulators that are as important as G+ organisms but tend to be overlooked. Dendritic cells (DCs) are crucial immune regulators, and therefore, the present study aimed at investigating differences among human gut flora-derived LAB and G− bacteria in their patterns of DC polarization. Human monocyte-derived DCs were exposed to UV-killed bacteria, and cytokine secretion and surface marker expression were analyzed. Profound differences in the DC polarization patterns were found among the strains. While strains of LAB varied greatly in their capacity to induce interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α), G− strains were consistently weak IL-12 and TNF-α inducers. All strains induced significant amounts of IL-10, but G− bacteria were far more potent IL-10 inducers than LAB. Interestingly, we found that when weakly IL-12- and TNF-α-inducing LAB and strong IL-12- and TNF-α-inducing LAB were mixed, the weakly IL-12- and TNF-α-inducing LAB efficiently inhibited otherwise strong IL-12- and TNF-α-inducing LAB, yet when weakly IL-12- and TNF-α-inducing LAB were mixed with G− bacteria, they synergistically induced IL-12 and TNF-α. Furthermore, strong IL-12- and TNF-α-inducing LAB efficiently up-regulated surface markers (CD40, CD83, CD86, and HLA-DR), which were inhibited by weakly IL-12- and TNF-α-inducing LAB. All G− bacteria potently up-regulated surface markers; however, these markers were not inhibited by weakly IL-12- and TNF-α-inducing LAB. These much divergent DC stimulation patterns among intestinal bacteria, which encompass both antagonistic and synergistic relationships, support the

  5. Phenotypic and phylogenetic analysis of lactic acid bacteria isolated from forage crops and grasses in the Tibetan Plateau.

    PubMed

    Pang, Huili; Tan, Zhongfang; Qin, Guangyong; Wang, Yanping; Li, Zongwei; Jin, Qingsheng; Cai, Yimin

    2012-02-01

    A total of 140 lactic acid bacteria (LAB) strains were isolated from corn, alfalfa, clover, sainfoin, and Indian goosegrass in the Tibetan Plateau. According to phenotypic and chemotaxonomic characteristics, 16S rDNA sequence, and recA gene PCR amplification, these LAB isolates were identified as belonging to five genera and nine species. Corn contained more LAB species than other forage crops. Leuconostoc pseudomesenteroides, Lactococcus lactis subsp. lactis, Lactobacillus brevis, and Weissella paramesenteroides were dominant members of the LAB population on alfalfa, clover, sainfoin, and Indian goosegrass, respectively. The comprehensive 16S rDNA and recA-based approach effectively described the LAB community structure of the relatively abundant LAB species distributed on different forage crops. This is the first report describing the diversity and natural populations of LAB associated with Tibetan forage crops, and most isolates grow well at or below 10°C. The results will be valuable for the future design of appropriate inoculants for silage fermentation in this very cold area. PMID:22367939

  6. Isolation and characterization of lactic acid bacteria from pobuzihi (fermented cummingcordia), a traditional fermented food in Taiwan.

    PubMed

    Chen, Yi-Sheng; Wu, Hui-Chung; Wang, Chiung-Mei; Lin, Chia-Chun; Chen, Yi-Ting; Jhong, Yu-Jyun; Yanagida, Fujitoshi

    2013-03-01

    Lactobacillus pobuzihii is a novel species which has been previously found in pobuzihi (fermented cummingcordia), a traditional fermented food in Taiwan. However, the lactic acid bacteria (LAB) microflora in pobuzihi has not been studied in detail. In this study, LAB from pobuzihi were isolated, identified, and characterized. A total of 196 LAB were isolated; 79 cultures were isolated from the sample collected from a manufacturing factory, 38 from pobuzihi samples collected from 4 different markets, and 79 from 2 fresh cummingcordia samples. These isolates were characterized phenotypically and then divided into eight groups (A to H) by restriction fragment length polymorphism analysis and sequencing of 16S ribosomal DNA. Lactobacillus plantarum was the most abundant LAB found in most samples during the fermentation of pobuzihi. On the other hand, Enterococcus casseliflavus and Weissella cibaria were, respectively, the major species found in the two fresh cummingcordia samples. A potential novel species or subspecies of lactococcal strain was found. In addition, seven L. plantarum and five W. cibaria strains showed inhibitory activity against the indicator strain Lactobacillus sakei JCM 1157(T). This is the first report describing the distribution and varieties of LAB existing in the pobuzihi during its fermentation process and the final product on the market. PMID:23011950

  7. Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations.

    PubMed

    Arroyo-López, F N; Bautista-Gallego, J; Domínguez-Manzano, J; Romero-Gil, V; Rodriguez-Gómez, F; García-García, P; Garrido-Fernández, A; Jiménez-Díaz, R

    2012-12-01

    This work examines the formation of poly-microbial communities adhered to the surface of Manzanilla olive fruits processed according to the Spanish style. The experimental design consisted of four pilot fermenters inoculated with four Lactobacillus pentosus strains, plus another fermenter which was not inoculated and fermented spontaneously. Lactic acid bacteria and yeasts were analysed in depth on olive epidermis throughout fermentation by plate count, molecular techniques and scanning electron microscopy. Data show that in all cases high population levels (above 8 log(10) CFU per olive) were reached for both groups of microorganisms at the second week of fermentation and that these counts never fell below 6 log(10) CFU per olive during the 3 months that fermenters were monitored. In situ observation of olive epidermis slices revealed a strong aggregation and adhesion between bacteria and yeasts by the formation of a matrix which embedded the microorganisms. Geotrichum candidum, Pichia galeiformis and Candida sorbosa were the main yeast species isolated from these biofilms at the end of fermentation (confirmed by RFLP analysis of the 5.8S-ITS region), while molecular characterization of lactobacilli isolates by means of RAPD-PCR with primer OPL(5) showed in many cases a high similarity in their banding profiles with the inoculated strains. Results obtained in this survey show the importance of studying the olive epidermis throughout fermentation, because ultimately, olives are ingested by consumers. PMID:22986192

  8. Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts.

    PubMed

    Delfini, Claudio; Cersosimo, Manuela; Del Prete, Vincenzo; Strano, Morela; Gaetano, Giuseppe; Pagliara, Adolfo; Ambrò, Stefano

    2004-04-01

    In wine making, the bacteriolytic activity of lysozyme has primarily been used to control the malolactic fermentation in wines. The use of lysozyme in musts before settling and the beginning of the alcoholic fermentation to inhibit the growth of lactic acid bacteria could be very beneficial. In a resistance test carried out in MT/b broth, lysozyme had greater antimicrobial activity toward Oenococcus oeni than Lactobacillus species. Several strains of wine bacteria belonging to Oenococcus proved sensitive to the bacteriolytic activity of lysozyme at low concentrations in both synthetic medium (MT/b) (50 mg/L), white must, or red must made with or without the skins (100 mg/L). Lactobacillus and Pediococcus strains survived at lysozyme concentrations of 200-500 and 500 mg/L, respectively, in MT/b and musts. Suspended solids in unclarified musts may strongly bind to lysozyme thereby causing its removal by filtration or centrifugation. One hour after lysozyme was added to musts, it was quantified by HPLC and found after centrifugation to be 40-50% and only 10% in musts made with or without the skins, respectively. Although appreciable amounts of lysozyme were bound to wine components, this did not appear to be a serious hindrance to lysozyme activity. PMID:15053521

  9. Synthetic Teichoic Acid Conjugate Vaccine against Nosocomial Gram-Positive Bacteria

    PubMed Central

    Laverde, Diana; Wobser, Dominique; Romero-Saavedra, Felipe; Hogendorf, Wouter; van der Marel, Gijsbert; Berthold, Martin; Kropec, Andrea; Codee, Jeroen; Huebner, Johannes

    2014-01-01

    Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria. PMID:25333799

  10. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation. PMID:26404012

  11. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification

    SciTech Connect

    Wimpee, C.F.; Nadeau, T.L.; Nealson, K.H. )

    1991-05-01

    By using two highly conserved regions of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, a cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies.

  12. Efficacy of microencapsulated lactic acid bacteria in Helicobater pylori eradication therapy

    PubMed Central

    Khalil, Maha A.; El-Sheekh, Mostafa M.; El-Adawi, Hala I.; El-Deeb, Nehal M.; Hussein, Mohamed Z.

    2015-01-01

    Background: Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in the effectiveness to exert health benefits for a patient. This study focuses on providing probiotic living cells with a physical barrier against adverse environmental conditions. Materials and Methods: Microencapsulation of the selected lactic acid bacteria (LAB) using chitosan and alginate was performed. Physical examination of the formulated LAB microcapsules was observed using phase contrast inverted microscope and scanning electron microscope (SEM). Finally, the survival of microencapsulated and noncapsulated bacteria was cheeked in the simulated human gastric tract (GT). The potential antimicrobial activity of the most potent microencapsulated LAB strain was in vivo evaluated in rabbit models. Results: Microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 were loaded with 1.03 × 1010 CFU viable bacteria/g, 1.9 × 1010 CFU viable bacteria/g, and 5.5 × 109 CFU viable bacteria/g, respectively. The survival of microencapsulated cells was significantly higher than that of the free cells after exposure to simulated gastric juice (SGJ) at pH 2. Additionally, in simulated small intestine juice (SSJ), larger amounts of the selected LAB cells were found, whereas in simulated colon juice (SCJ), the released LAB reached the maximum counts. In vivo results pointed out that an 8-week supplementation with a triple therapy of a microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 might be able to reduce H. pylori. Conclusion: Microencapsulated probiotics could possibly compete with and downregulate H. pylori infection in humans. PMID:26929759

  13. Near infrared-caged d-amino acids multifunctional assembly for simultaneously eradicating biofilms and bacteria.

    PubMed

    Wei, Weili; Bing, Wei; Ren, Jinsong; Qu, Xiaogang

    2015-08-14

    A nanodevice composed of an upconverting nanoparticle (UCNP) core and a thin TiO2 shell surface modified with d-amino acids was designed. Due to the UCNP core, NIR light can be converted to high-energy UV photons. As a consequence, UV light can stimulate the TiO2 shell to produce antibacterial reactive oxygen species (ROS) and trigger the release of free d-amino acids (antibiofilm agents). PMID:26166676

  14. Application of antimicrobial-producing lactic acid bacteria to control pathogens in ready-to-use vegetables.

    PubMed

    Vescovo, M; Torriani, S; Orsi, C; Macchiarolo, F; Scolari, G

    1996-08-01

    Five psychrotrophic strains of lactic acid bacteria (Lactobacillus casei, Lact. plantarum and Pediococcus spp.) were isolated from 22 samples of commercial salads. These strains were shown to inhibit Aeromonas hydrophila, Listeria monocytogenes, Salmonella typhimurium and Staphylococcus aureus on MRS agar, in salads and in juice prepared from vegetable salads. Lactobacillus casei IMPCLC34 was most effective in reducing total mesophilic bacteria and the coliform group; Aer. hydrophila, Salm. typhimurium and Staph. aureus disappeared after 6 d of storage, while the counts for L. monocytogenes remained constant. The potential application of antimicrobial-producing lactic acid bacteria as biopreservatives of ready-to-use vegetables is suggested. PMID:8760320

  15. Evidence of Two Functionally Distinct Ornithine Decarboxylation Systems in Lactic Acid Bacteria

    PubMed Central

    Romano, Andrea; Trip, Hein; Lonvaud-Funel, Aline; Lolkema, Juke S.

    2012-01-01

    Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and l-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol. PMID:22247134

  16. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?

    PubMed

    Rudnick, M B; van Veen, J A; de Boer, W

    2015-10-01

    Mycophagous (=fungus feeding) soil bacteria of the genus Collimonas have been shown to colonize and grow on hyphae of different fungal hosts as the only source of energy and carbon. The ability to exploit fungal nutrient resources might require a strategy for collimonads to sense fungi in the soil matrix. Oxalic acid is ubiquitously secreted by soil fungi, serving different purposes. In this study, we investigated the possibility that collimonads might use oxalic acid secretion to localize a fungal host and move towards it. We first confirmed earlier indications that collimonads have a very limited ability to use oxalic acid as growth substrate. In a second step, with using different assays, we show that oxalic acid triggers bacterial movement in such a way that accumulation of cells can be expected at micro-sites with high free oxalic acid concentrations. Based on these observations we propose that oxalic acid functions as a signal molecule to guide collimonads to hyphal tips, the mycelial zones that are most sensitive for mycophagous bacterial attack. PMID:25858310

  17. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level.

    PubMed

    Yamada, Y; Hoshino, K; Ishikawa, T

    1997-08-01

    Thirty-six strains of acetic acid bacteria classified in the genera Acetobacter, Gluconobacter, and Acidomonas were examined for their partial base sequences in positions 1220 through 1375, 156 bases, of 16S rRNA. The strains of the Q10-equipped Gluconobacter species examined were divided into two subgroups, which included the type strains of Gluconobacter oxydans, the type species of the genus Gluconobacter, and of a second species, Gluconobacter cerinus, respectively. The base differences numbered four between the two type strains. The strains of the Q9-equipped species examined classified in the type subgenus Acetobacter of the genus Acetobacter were not very distant phylogenetically from those of the genus Gluconobacter. The calculated number of base differences was 9-6 between the type strains of G. oxydans and G. cerinus and the type strains of Acetobacter aceti and Acetobacter pasteurianus. In contrast, the strains of the Q10-equipped species examined classified in the subgenus Gluconoacetobacter of the genus Acetobacter were very distant phylogenetically from those of the Acetobacter and Gluconobacter species mentioned above. The number of base differences was calculated to be 14-8. Furthermore, the strains of the methanol-assimilating, Q10-equipped species of the genus Acidomonas examined were located in phylogenetically isolated positions. The type strain of Acidomonas methanolica (identical to Acetobacter methanolicus), the type species of the genus Acidomonas, had 16-9 base differences. The data obtained here indicated that the members of the subgenus Gluconoacetobacter of the genus Acetobacter can be distinguished at the generic level. The new genus Gluconoacetobacter was proposed with the type species, Gluconoacetobacter liquefaciens, in recognition of the genus Acidomonas along with the genera Acetobacter and Gluconobacter in the classification of the acetic acid bacteria. PMID:9301103

  18. An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases.

    PubMed

    Sashihara, T; Sueki, N; Ikegami, S

    2006-08-01

    Allergic diseases are reported to be caused by a skew in the balance between T helper type 1 and 2 cells. Because some lactic acid bacteria have been shown to stimulate IL-12 (p70) production, which in turn shifts the balance between the T helper type 1 and 2 cell response from the latter to the former, they have the potential to either prevent or ameliorate disease conditions or both. They have therefore been extensively studied in the recent past for their probiotic activities. Nevertheless, much less information is available concerning the microbial factors that determine the strain-dependent ability to affect the production of cytokines. The objectives of our study were first to select potentially probiotic lactobacilli that strongly stimulate cytokine production in vitro, and then to determine whether the selected Lactobacillus strains could suppress antigen-specific IgE production in vivo by using allergic model animals. Finally, our investigation was extended to analyze which bacterial components were responsible for the observed biological activity. Twenty strains of heat-killed lactobacilli isolated from humans were screened for their stimulatory activity for the production of IL-12 (p70) by murine splenocytes in vitro. The results showed that some strains of Lactobacillus plantarum and Lactobacillus gasseri had a higher stimulatory activity for IL-12 (p70) production than the other lactobacilli tested; however, this effect was strain dependent rather than species dependent. Oral administration of the heat-killed strains that showed higher stimulatory activity for IL-12 (p70) production tended to reduce the serum antigen-specific IgE levels in ovalbumin-sensitized BALB/c mice compared with the controls. Among the lactobacilli tested, L. gasseri OLL2809 showed the highest activity in reducing the level of antigen-specific IgE. Furthermore, the stimulatory activity for IL-12 (p70) production was found to be reduced after treating the lactobacilli with N

  19. Lactic acid bacteria activating innate immunity improve survival in bacterial infection model of silkworm.

    PubMed

    Nishida, Satoshi; Ono, Yasuo; Sekimizu, Kazuhisa

    2016-02-01

    Lactic acid bacteria (LAB) have been thought to be helpful for human heath in the gut as probiotics. It recently was noted that activity of LAB stimulating immune systems is important. Innate immune systems are conserved in mammals and insects. Silkworm has innate immunity in response to microbes. Microbe-associated molecular pattern (ex. peptidoglycan and β-glucan) induces a muscle contraction of silkworm larva. In this study, we established an efficient method to isolate lactic acid bacteria derived from natural products. We selected a highly active LAB to activate the innate immunity in silkworm by using the silkworm muscle contraction assay, as well. The assay revealed that Lactococcus lactis 11/19-B1 was highly active on the stimulation of the innate immunity in silkworm. L. lactis 11/19-B1 solely fermented milk with casamino acid and glucose. This strain would be a starter strain to make yogurt. Compared to commercially available yogurt LAB, L. lactis 11/19-B1 has higher activity on silkworm contraction. Silkworm normally ingested an artificial diet mixed with L. lactis 11/19-B1 or a yogurt fermented with L. lactis 11/19-B1. Interestingly, silkworms that ingested the LAB showed tolerance against the pathogenicity of Pseudomonas aeruginosa. These data suggest that Lactococcus lactis 11/19-B1 would be expected to be useful for making yogurt and probiotics to activate innate immunity. PMID:26971556

  20. Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei.

    PubMed

    Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong

    2016-01-01

    Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF. PMID:26712629

  1. Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria.

    PubMed Central

    Fautz, E; Rosenfelder, G; Grotjahn, L

    1979-01-01

    The fatty acids present in the total hydrolysates of several gliding bacteria (Myxococcus fulvus, Stigmatella aurantiaca, Cytophaga johnsonae, Cytophaga sp. strain samoa and Flexibacter elegans) were analyzed by combined gas-liquid chromatography and mass spectrometry. In addition to 13-methyl-tetradecanoic acid, 15-methyl-hexadecanoic acid, hexadecanoic acid, and hexadecenoic acid, 2- and 3-hydroxy fatty acids comprised up to 50% of the total fatty acids. The majority was odd-numbered and iso-branched. Small amounts of even-numbered and unbranched fatty acids were also present. Whereas 2-hydroxy-15-methyl hexadecanoic acid was characteristic for myxobacteria, 2-hydroxy-13-methyl-tetradecanoic acid, 3-hydroxy-13-methyl-tetradecanoic acid, and 3-hydroxy-15-methyl-hexadecanoic acid were dominant in the Cytophaga-Flexibacter group. PMID:118159

  2. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.

    PubMed

    Elshaghabee, Fouad M F; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  3. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions

    PubMed Central

    Elshaghabee, Fouad M. F.; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J.

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  4. Different Species of Magnetotactic Bacteria Produce Magnetosomes in Surprisingly Diverse Ways

    NASA Astrophysics Data System (ADS)

    Rahn-Lee, L.; Komeili, A.

    2015-12-01

    Magnetotactic Bacteria (MTB) are major participants in bio-geomagnetism and serve as models for understanding magneto-reception by animals. These single-cell organisms construct magnetosome organelles consisting of chains of membrane-bound single-domain nano-crystals of magnetite or greigite that are uniform in size and shape. How are these organelles and crystals constructed? Our current model is based on studying the alpha-proteobacterial MTB, which produce magnetosomes containing cubo-octahedral magnetite crystals. However, different species of MTB synthesize crystals of different shapes and sizes that are arranged within the cell in different ways. For example, the delta-proteobacterial MTB Desulfovibrio magneticus RS-1 produces elongated, bullet-shaped magnetite crystals. By comparing the genes required for a magnetic response in RS-1 to our alpha-proteobacterial model, I identify new genes that are required for synthesizing these different magnetosomes. Surprisingly, the phenotypes of mutants that have a limited magnetic response indicate that the fundamental way that magnetosomes are produced and organized within the cell are different between the delta- and alpha-protobacterial MTBs. Upon closer examination of the properties of RS-1 magnetosomes, I suggest that we need to expand our understanding of what a magnetosome is.

  5. Enrichment of conjugated linoleic acid (CLA) in hen eggs and broiler chickens meat by lactic acid bacteria.

    PubMed

    Herzallah, Saqer

    2013-01-01

    1. The aim of this work was to compare conjugated linoleic acid (CLA) concentrations in chickens supplemented with 4 American Tissue Culture Collection (ATCC) bacterial strains, Lactobacillus plantarum, Lactobacillus lactis, Lactobacillus casei and Lactobacillus fermentum, and 4 isolates of Lactobacillus reuteri from camel, cattle, sheep and goat rumen extracts. 2. Micro-organisms were grown anaerobically in MRS broth, and 10(6) CFU/ml of bacteria were administered orally to mixed-sex, 1-d-old broiler chickens weekly for 4 weeks and to 23-week-old layer hens weekly for 6 weeks. 3. The 4 strains were evaluated for their effects on synthesis of CLA in hen eggs and broiler meat cuts. 4. Administration of pure Lactobacillus and isolated L. reuteri strains from camel, cattle, goat and sheep led to significantly increased CLA concentrations of 0.2-1.2 mg/g of fat in eggs and 0.3-1.88 mg/g of fat in broiler chicken flesh homogenates of leg, thigh and breast. 5. These data demonstrate that lactic acid bacteria of animal origin (L. reuteri) significantly enhanced CLA synthesis in both eggs and broiler meat cuts. PMID:24397511

  6. [Fatty acids in different edible fish species from Mexico].

    PubMed

    Castro González, María Isabel; Rodríguez, Ana Gabriela Maafs; Galindo Gómez, Carlos

    2013-12-01

    Different biotic and abiotic factors determine the fatty acid (FA) composition of fish tissues and organs. This information is useful for humans due to the fact that fish consumption is associated with health benefits. The aim of the present study was to identify the variation in the concentration of fatty acids, according to different factors, among ten edible marine fish species in Mexico, collected from June to December 2009 in the largest fish market in Mexico City: Euthynnus alletteratus, Sciaenops ocellatus, Bairdiella chrysoura, Sphyraena guachancho, Symphurus elongatus, Istiophorus platypterus, Ophichthus rex, Eugerres plumieri, Eucinostomus entomelas and Oreochromrnis mossambicus. Lipid content was gravimetrically quantified, the fatty acids were determined using a gas chromatograph and the results were statistically analyzed. Total lipid content ranged from 0.93 to 1.95 g/100 g in E. entomelas and O. urolepis hornorum, respectively. E. alletteratus, B. chrysoura, S. elongatus, I. platypterus, O. rex and E. plumieri presented the following order in FA concentration: Polyunsaturated FA (PUFA)>Saturated FA (SFA)>Monounsaturated FA (MUFA). S. ocellatus, S. guachancho and E. entomelas presented SFA>PUFA>MUFA; and only O. mossambicus presented SFA>MUFA>PUFA. O. mossambicus had the highest concentration (mg/100 g) of SFA (559.40) and MUFA (442.60), while B. chrysoura presented the highest content (mg/100 g) of PUFA (663.03), n-3 PUFA (514.03), EPA+DHA (506.10) and n-6 PUFA (145.80). Biotic and abiotic factors of the analyzed fish significantly influenced their FA concentration. Subtropical species presented 42.1% more EPA+DHA than tropical specie. Values presented here will vary according to the changes in the ecosystem and characteristics of each fish species, however the information generated in the present study is useful for improving fish consumption recommendations. PMID:24432548

  7. The potential of lactic acid bacteria for the production of safe and wholesome food.

    PubMed

    Hammes, W P; Tichaczek, P S

    1994-03-01

    By tradition lactic acid bacteria (LAB) are involved in the production of fermented foods. These constitute one quarter of our diet and are characterized by a safe history, certain beneficial health effects, and an extended shelf life when compared with raw materials. The various fermenting substrates are habitats for specific LAB that differ in their metabolic potential. The health effects exerted by LAB are the following: 1. Production of lactic acid and minor amounts of acetic and formic acid. These cause: a drop in pH and thereby growth inhibition of food spoiling or poisoning bacteria; killing of certain pathogens; detoxification by degradation of noxious compounds of plant origin (usually in combination with plant-derived enzymatic activities). 2. Production of antimicrobial compounds (e.g. bacteriocins, H2O2, fatty acids). 3. Probiotic effects as live organisms in food. The wholesomeness of LAB can also be extended to fields outside human nutrition, as they may act as probiotics in animal production or as plant protectives in agriculture and thus contribute to healthy raw materials for food production. Modern concepts or perspectives of the application of LAB include the following: 1. Selection of the best adapted and safely performing LAB strains. 2. Selection of strains with probiotic effects. 3. Selection of strains with health-promoting effects (e.g. production of vitamins or essential amino acids, anti-tumour activity). 4. Selection of strains with food protective activities (inhibiting spoilage or food pathogens). These strains can be added to food or used as starters in food fermentations. They may be found as wild-type organisms or can be obtained by genetic engineering.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8178575

  8. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds

    PubMed Central

    Papagianni, Maria

    2012-01-01

    Lactic acid bacteria (LAB) are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review. PMID:24688663

  9. Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria.

    PubMed Central

    Coffin, R B; Velinsky, D J; Devereux, R; Price, W A; Cifuentes, L A

    1990-01-01

    The natural abundance of stable carbon isotopes measured in bacterial nucleic acids extracted from estuarine bacterial concentrates was used to trace sources of organic matter for bacteria in aquatic environments. The stable carbon isotope ratios of Pseudomonas aeruginosa and nucleic acids extracted from cultures resembled those of the carbon source on which bacteria were grown. The carbon isotope discrimination between the substrate and total cell carbon from bacterial cultures averaged 2.3% +/- 0.6% (n = 13). Furthermore, the isotope discrimination between the substrate and nucleic acids extracted from bacterial cultures was 2.4% +/- 0.4% (n = 10), not significantly different from the discrimination between bacteria and the substrate. Estuarine water samples were prefiltered through 1-micron-pore-size cartridge filters. Bacterium-sized particles in the filtrates were concentrated with tangential-flow filtration and centrifugation, and nucleic acids were then extracted from these concentrates. Hybridization with 16S rRNA probes showed that approximately 90% of the nucleic acids extracted on two sample dates were of eubacterial origin. Bacteria and nucleic acids from incubation experiments using estuarine water samples enriched with dissolved organic matter from Spartina alterniflora and Cyclotella caspia had stable carbon isotope values similar to those of the substrate sources. In a survey that compared diverse estuarine environments, stable carbon isotopes of bacteria grown in incubation experiments ranged from -31.9 to -20.5%. The range in isotope values of nucleic acids extracted from indigenous bacteria from the same waters was similar, -27.9 to -20.2%. Generally, the lack of isotope discrimination between bacteria and nucleic acids that was noted in the laboratory was observed in the field.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2389930

  10. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water.

    PubMed

    Elsanhoty, Rafaat M; Al-Turki, I A; Ramadan, Mohamed Fawzy

    2016-01-01

    In this study selected lactic acid bacteria (LAB, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantrium and Streptococcus thermophiles) and probiotic bacteria (Bifidobacterium angulatum) were tested for their ability in removing heavy metals (HM) including cadmium (Cd), lead (Pb) and arsenic (As) as well as aflatoxin B1 (AFB1) from contaminated water. The biosorption parameters (pH, bacterial concentration, contact time and temperature) of removal using individual as well as mixed LAB and probiotic bacteria were studied. Removal of HM and AFB1 depended on the strain, wherein the process was strongly pH-dependent with high removal ability at a pH close to neutral. The increase in bacterial concentration enhanced the removal of Cd, Pb and As. Also, increasing of contact time and temperature increased the ability of LAB to remove HM. The effect of contact time on Cd removal was slightly different when freshly cultured cells were used. The removal of Cd, Pb and As decreased with the increase in the initial metal concentration. The most effective HM removers were Lactobacillus acidophilus and Bifidobacterium angulatum. The system was found to be adequate for concentrations of HM under investigation. At the end of the operation, the concentration of HM reached the level allowed by the World Health Organization regulations. PMID:27508367

  11. Uric Acid-Degrading Bacteria in Guts of Termites [Reticulitermes flavipes (Kollar)] †

    PubMed Central

    Potrikus, C. J.; Breznak, John A.

    1980-01-01

    Uricolytic bacteria were present in guts of Reticulitermes flavipes in populations up to 6 × 104 cells per gut. Of 82 strains isolated under strict anaerobic conditions, most were group N Streptococcus sp., Bacteroides termitidis, and Citrobacter sp. All isolates used uric acid (UA) as an energy source anaerobically, but not aerobically, and NH3 was the major nitrogenous product of uricolysis. However, none of the isolates had an absolute requirement for UA. Utilization of heterocyclic compounds other than UA was limited. Fresh termite gut contents also degraded UA anaerobically, as measured by 14CO2 evolution from [2-14C]UA. The magnitude of anaerobic uricolysis [0.67 pmol of UA catabolized/(gut × h)] was entirely consistent with the population density of uricolytic bacteria in situ. Uricolytic gut bacteria may convert UA in situ to products usable by termites for carbon, nitrogen, energy, or all three. This possibility is consistent with the fact that R. flavipes termites from UA, but they do not void the purine in excreta despite the lack of uricase in their tissues. PMID:16345587

  12. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis

    PubMed Central

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality. PMID:12514026

  13. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil.

    PubMed

    Armada, Elisabeth; Roldán, Antonio; Azcon, Rosario

    2014-02-01

    The effectiveness of autochthonous plant growth-promoting rhizobacteria was studied in Lavandula dentata and Salvia officinalis growing in a natural arid Mediterranean soil under drought conditions. These bacteria identified as Bacillus megaterium (Bm), Enterobacter sp. (E), Bacillus thuringiensis (Bt), and Bacillus sp. (Bsp). Each bacteria has different potential to meliorate water limitation and alleviating drought stress in these two plant species. B. thuringiensis promoted growth and drought avoidance in Lavandula by increasing K content, by depressing stomatal conductance, and it controlled shoot proline accumulation. This bacterial effect on increasing drought tolerance was related to the decrease of glutathione reductase (GR) and ascorbate peroxidase (APX) that resulted sensitive indexes of lower cellular oxidative damage involved in the adaptative drought response in B. thuringiensis-inoculated Lavandula plants. In contrast, in Salvia, having intrinsic lower shoot/root ratio, higher stomatal conductance and lower APX and GR activities than Lavandula, the bacterial effects on nutritional, physiological and antioxidant enzymatic systems were lower. The benefit of bacteria depended on intrinsic stress tolerance of plant involved. Lavadula demonstrated a greater benefit than Salvia to control drought stress when inoculated with B. thuringiensis. The bacterial drought tolerance assessed as survival, proline, and indolacetic acid production showed the potential of this bacteria to help plants to grow under drought conditions. B. thuringiensis may be used for Lavandula plant establishment in arid environments. Particular characteristic of the plant species as low shoot/root ratio and high stomatal conductance are important factors controlling the bacterial effectiveness improving nutritional, physiological, and metabolic plant activities. PMID:24337805

  14. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria.

    PubMed

    Schmid, Markus; Walsh, Kerry; Webb, Rick; Rijpstra, W Irene C; van de Pas-Schoonen, Katinka; Verbruggen, Mark Jan; Hill, Thomas; Moffett, Bruce; Fuerst, John; Schouten, Stefan; Damsté, Jaap S Sinninghe; Harris, James; Shaw, Phil; Jetten, Mike; Strous, Marc

    2003-11-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus "Scalindua brodae" and "Scalindua wagneri" considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus "Scalindua sorokinii", was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far. PMID:14666981

  15. Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites.

    PubMed

    De Muynck, Cassandra; Leroy, Annelies I J; De Maeseneire, Sofie; Arnaut, Filip; Soetaert, Wim; Vandamme, Erick J

    2004-01-01

    The aim of this study was to assess the potential of lactic acid bacteria to inhibit the outgrowth of some common food-spoiling fungi. Culture supernatants of 17 Lactic acid bacterial strains as well as of three commercial probiotic cultures were evaluated for antifungal activity using an agar-diffusion method. The method parameters were chosen in order to reveal compounds for potential use in food (bio)preservation. Thirteen strains showed antifungal activity of which five strains were very promising: Lactobacillus acidophilus LMG 9433, L. amylovorus DSM 20532, L. brevis LMG 6906, L. coryniformis subsp. coryniformis LMG 9196 and L. plantarum LMG 6907. Four of these five strains were further examined; it was found that the produced antifungal metabolites were pH-dependent. The exact chemical nature of these substances has not been revealed yet. PMID:15646380

  16. Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria1[C][W][OA

    PubMed Central

    Rudrappa, Thimmaraju; Czymmek, Kirk J.; Paré, Paul W.; Bais, Harsh P.

    2008-01-01

    Beneficial soil bacteria confer immunity against a wide range of foliar diseases by activating plant defenses, thereby reducing a plant's susceptibility to pathogen attack. Although bacterial signals have been identified that activate these plant defenses, plant metabolites that elicit rhizobacterial responses have not been demonstrated. Here, we provide biochemical evidence that the tricarboxylic acid cycle intermediate l-malic acid (MA) secreted from roots of Arabidopsis (Arabidopsis thaliana) selectively signals and recruits the beneficial rhizobacterium Bacillus subtilis FB17 in a dose-dependent manner. Root secretions of l-MA are induced by the foliar pathogen Pseudomonas syringae pv tomato (Pst DC3000) and elevated levels of l-MA promote binding and biofilm formation of FB17 on Arabidopsis roots. The demonstration that roots selectively secrete l-MA and effectively signal beneficial rhizobacteria establishes a regulatory role of root metabolites in recruitment of beneficial microbes, as well as underscores the breadth and sophistication of plant-microbial interactions. PMID:18820082

  17. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  18. Unusual novel n-4 polyunsaturated fatty acids in cold-seep mussels (Bathymodiolus japonicus and Bathymodiolus platifrons), originating from symbiotic methanotrophic bacteria.

    PubMed

    Saito, Hiroaki

    2008-07-25

    Novel fatty acids originated from the two cold-seep mussels Bathymodiolus japonicus and Bathymodiolus platifrons, which host methane-oxidizing bacteria, were determined by using gas chromatography-mass spectrometry analysis of the 4,4-dimethyloxazoline derivatives. The major polyunsaturated fatty acids (PUFAs) in the two mussels belong to unusual n-4 and n-7 methylene interrupted PUFAs, such as 18:3 n-7,10,13 (Delta5,8,11-18:3), 18:4 n-4,7,10,13 (Delta5,8,11,14-18:4), 20:3n-7,10,13 (Delta7,10,13-20:3), 20:4n-4,7,10,13 (Delta7,10,13,16-20:4), and 21:4n-7,10,13,16 (Delta5,8,11,14-20:4). The similarity of fatty acids in the two Bathymodiolus species produced by the symbiotic bacteria, indicate occurrence of highly homologous mussel symbionts. In contrast to the lipids of shallow-water mussel Mytilus galloprovincialis, which contains photosynthetic n-3 PUFAs, the two Bathymodiolus mussels were lacking in docosahexaenoic acid and icosapentaenoic acid even though they are marine animals. These findings suggest the Bathymodiolus species survive independently of photosynthetic products, similar to the Calyptogena clams, which house sulfur-oxidizing bacteria and whose lipid contains n-4 non-methylene interrupted PUFAs (20:3n-4,7,15 (Delta5,13,16-20:3), 20:4n-1,4,7,15 (Delta5,13,16,19-20:4), and 21:3n-4,7,16 (Delta5,14,17-20:3)). The similarity in n-4 fatty acids between the mussels and the clam suggests that these bivalves depend on analogous n-4 family PUFAs and that the n-4 PUFA family is a characteristic of all vent bivalves depending on geothermal energy. The differences of the n-4 PUFAs between the mussels and the clam suggest a generic specificity of symbiotic bacteria and differences in lipid physiology between thiotrophic and methanotrophic symbionts. Such a highly diversified variety of n-4 family PUFAs in the mussels and the clam under different environments presumably increase the great potential of the chemosynthetic bacteria. PMID:18571657

  19. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces.

    PubMed

    Ji, Keunho; Jang, Na Young; Kim, Young Tae

    2015-09-01

    The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β- glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'- azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics. PMID:25951843

  20. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation.

    PubMed

    Coda, Rossana; Cagno, Raffaella Di; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-02-01

    Cereal-based foods represent a very important source of biological as well as of cultural diversity, as testified by the wide range of derived fermented products. A trend that is increasingly attracting bakery industries as well as consumers is the use of non-conventional flours for the production of novel products, characterised by peculiar flavour and better nutritional value. Lactic acid bacteria microbiota of several non-wheat cereals and pseudo-cereals has been recently deeply investigated with the aim of studying the biodiversity and finding starter cultures for sourdough fermentation. Currently, the use of ancient or ethnic grains is mainly limited to traditional typical foods and the bread making process is not well standardised with consequent negative effects on the final properties. The challenge in fermenting such grains is represented by the necessity to combine good technology and sensory properties with nutritional/health benefits. The choice of the starter cultures has a critical impact on the final quality of cereal-based products, and strains that dominate and outcompete contaminants should be applied for specific sourdough fermentations. In this sense, screening and characterisation of the lactic acid bacteria microbiota is very useful in the improvement of a peculiar flour, from both a nutritional and technological point of view. PMID:24230473

  1. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. PMID:27058913

  2. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products.

    PubMed

    Capozzi, Vittorio; Russo, Pasquale; Dueñas, María Teresa; López, Paloma; Spano, Giuseppe

    2012-12-01

    Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed. PMID:23093174

  3. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria.

    PubMed

    Endo, Akihito; Salminen, Seppo

    2013-09-01

    Fructophilic lactic acid bacteria (FLAB) are a specific group of lactic acid bacteria (LAB) characterized and described only recently. They prefer fructose as growth substrate and inhabit only fructose-rich niches. Honeybees are high-fructose-consuming insects and important pollinators in nature, but reported to be decreasing in the wild. In the present study, we analyzed FLAB microbiota in honeybees, larvae, fresh honey and bee pollen. A total of 66 strains of LAB were isolated from samples using a selective isolation technique for FLAB. Surprisingly, all strains showed fructophilic characteristics. The 66 strains and ten FLAB strains isolated from flowers in a separate study were genotypically separated into six groups, four of which being identified as Lactobacillus kunkeei and two as Fructobacillus fructosus. One of the L. kunkeei isolates showed antibacterial activity against Melissococcus plutonius, a causative pathogen of European foulbrood, this protection being attributable to production of an antibacterial peptide or protein. Culture-independent analysis suggested that bee products and larvae contained simple Lactobacillus-group microbiota, dominated by L. kunkeei, although adult bees carried a more complex microbiota. The findings clearly demonstrate that honeybees and their products are rich sources of FLAB, and FLAB are potential candidates for future bee probiotics. PMID:23845309

  4. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    PubMed Central

    Ňancucheo, Ivan; Johnson, D. Barrie

    2012-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ∼2.2–2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5–30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided ‘proof of principle’ that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity. PMID:21895996

  5. Modelling and predicting the simultaneous growth of Escherichia coli and lactic acid bacteria in milk.

    PubMed

    Ačai, P; Valík, L'; Medved'ová, A; Rosskopf, F

    2016-09-01

    Modelling and predicting the simultaneous competitive growth of Escherichia coli and starter culture of lactic acid bacteria (Fresco 1010, Chr. Hansen, Hørsholm, Denmark) was studied in milk at different temperatures and Fresco inoculum concentrations. The lactic acid bacteria (LAB) were able to induce an early stationary state in E. coli The developed model described and tested the growth inhibition of E. coli (with initial inoculum concentration 10(3) CFU/mL) when LAB have reached maximum density in different conditions of temperature (ranging from 12 ℃ to 30 ℃) and for various inoculum sizes of LAB (ranging from approximately 10(3) to 10(7) CFU/mL). The prediction ability of the microbial competition model (the Baranyi and Roberts model coupled with the Gimenez and Dalgaard model) was first performed only with parameters estimated from individual growth of E. coli and the LAB and then with the introduced competition coefficients evaluated from co-culture growth of E. coli and LAB in milk. Both the results and their statistical indices showed that the model with incorporated average values of competition coefficients improved the prediction of E. coli behaviour in co-culture with LAB. PMID:26683482

  6. Prediction of acid lactic-bacteria growth in turkey ham processed by high hydrostatic pressure

    PubMed Central

    Mathias, S.P.; Rosenthal, A.; Gaspar, A.; Aragão, G.M.F.; Slongo-Marcusi, A.

    2013-01-01

    High hydrostatic pressure (HHP) has been investigated and industrially applied to extend shelf life of meat-based products. Traditional ham packaged under microaerophilic conditions may sometimes present high lactic acid bacteria population during refrigerated storage, which limits shelf life due to development of unpleasant odor and greenish and sticky appearance. This study aimed at evaluating the shelf life of turkey ham pressurized at 400 MPa for 15 min and stored at 4, 8 and 12 °C, in comparison to the non pressurized product. The lactic acid bacteria population up to 107 CFU/g of product was set as the criteria to determine the limiting shelf life According to such parameter the pressurized sample achieved a commercial viability within 75 days when stored at 4 °C while the control lasted only 45 days. Predictive microbiology using Gompertz and Baranyi and Roberts models fitted well both for the pressurized and control samples. The results indicated that the high hydrostatic pressure treatment greatly increased the turkey ham commercial viability in comparison to the usual length, by slowing down the growth of microorganisms in the product. PMID:24159279

  7. The effects of a new therapeutic triclosan/copolymer/sodium-fluoride dentifrice on oral bacteria, including odorigenic species.

    PubMed

    Furgang, David; Sreenivasan, Prem K; Zhang, Yun Po; Fine, Daniel H; Cummins, Diane

    2003-09-01

    This investigation examined the in vitro and ex vivo antimicrobial effects of a new dentifrice, Colgate Total Advanced Fresh, formulated with triclosan/copolymer/sodium fluoride, on oral bacteria, including those odorigenic bacteria implicated in bad breath. The effects of Colgate Total Advanced Fresh were compared to commercially available fluoride dentifrices that served as controls. Three experimental approaches were undertaken for these studies. In the first approach, the dentifrice formulations were tested in vitro against 13 species of oral bacteria implicated in bad breath. The second approach examined the antimicrobial activity derived from dentifrice that was adsorbed to and released from hydroxyapatite disks. In this approach, dentifrice-treated hydroxyapatite disks were immersed in a suspension of bacteria, and reduction in bacterial viability from the release of bioactive agents from hydroxyapatite was determined. The third approach examined the effect of treating bacteria immediately after their removal from the oral cavity of 11 adult human volunteers. This ex vivo study examined the viability of cultivable oral bacteria after dentifrice treatment for 2 minutes. Antimicrobial effects were determined by plating Colgate Total Advanced Fresh and control-dentifrice-treated samples on enriched media (for all cultivable oral bacteria) and indicator media (for hydrogen-sulfide-producing organisms), respectively. Results indicated that the antimicrobial effects of Colgate Total Advanced Fresh were significantly greater than either of the other dentifrices for all 13 oral odorigenic bacterial strains tested in vitro (P < or = 0.05). In the second approach, Colgate Total Advanced Fresh-treated hydroxyapatite disks were significantly more active in reducing bacterial growth than the other dentifrices tested (P < or = 0.05). Finally, ex vivo treatment of oral bacteria with Colgate Total Advanced Fresh demonstrated a 90.9% reduction of all oral cultivable bacteria

  8. Species-specific fate of bacteria in house flies and impact on vector potential for pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    House flies ingest bacteria during filth-feeding and consequently can transport microbes from septic environments to human habitats and food. Vector potential is influenced both by flies encountering pathogens and by the fate of bacteria in the fly alimentary canal. In order for pathogens to be tran...

  9. Killing of Mycolic Acid-Containing Bacteria Aborted Induction of Antibiotic Production by Streptomyces in Combined-Culture.

    PubMed

    Asamizu, Shumpei; Ozaki, Taro; Teramoto, Kanae; Satoh, Katsuya; Onaka, Hiroyasu

    2015-01-01

    Co-culture of Streptomyces with mycolic acid-containing bacteria (MACB), which we termed "combined-culture," alters the secondary metabolism pattern in Streptomyces and has been a useful method for the discovery of bioactive natural products. In the course of our investigation to identify the inducing factor(s) of MACB, we previously observed that production of pigments in Streptomyces lividans was not induced by factors such as culture extracts or mycolic acids. Although dynamic changes occurred in culture conditions because of MACB, the activation of pigment production by S. lividans was observed in a limited area where both colonies were in direct contact. This suggested that direct attachment of cells is a requirement and that components on the MACB cell membrane may play an important role in the response by S. lividans. Here we examined whether this response was influenced by dead MACB that possess intact mycolic acids assembled on the outer cell membrane. Formaldehyde fixation and γ-irradiation were used to prepare dead cells that retain their shape and mycolic acids of three MACB species: Tsukamurella pulmonis, Rhodococcus erythropolis, and Rhodococcus opacus. Culturing tests verified that S. lividans does not respond to the intact dead cells of three MACB. Observation of combined-culture by scanning electron microscopy (SEM) indicated that adhesion of live MACB to S. lividans mycelia were a significant interaction that resulted in formation of co-aggregation. In contrast, in the SEM analysis, dead cells were not observed to adhere. Therefore, direct attachment by live MACB cells is proposed as one of the possible factors that causes Streptomyces to alter its specialized metabolism in combined-culture. PMID:26544713

  10. Effects of maturity stage and lactic acid bacteria on the fermentation quality and aerobic stability of Siberian wildrye silage.

    PubMed

    Li, Ping; Bai, Shiqie; You, Minghong; Shen, Yixin

    2016-09-01

    It is difficult to make good quality of silage from alpine gramineous from the Qinghai Tibetan plateau. The effects of lactic acid bacteria (LAB) on the fermentation quality and aerobic stability of Siberian wildrye silage were studied in southeast of the Qinghai Tibetan plateau. Siberian wildrye materials were freshly cut at the sprouting stage, flowering stage, and milky stage. Silage was prepared by using a small-scale silage fermentation system (bag silos). Lactobacillus plantarum (LP, 5 × 10(8) cfu/kg FM), Lactobacillus buchneri (LB, 5 × 10(8) cfu/kg FM) and their mixture (LP+LB, 5 × 10(8) cfu/kg FM) as silage additives were separately added to ensiled forages, and no additive served as control (CK). These bag silos were kept at room temperature (<15°C), and the silage qualities were analyzed after 60 days of ensiling. The number of indigenous LAB on fresh materials was less than that of yeasts and molds, and LAB species showed specification adapted to low temperature. LAB inoculated silages had lower (P < 0.05) pH value, NH 3-N/TN and butyric acid content compared with control silage. Silage treated with LB had higher contents of acetic acid, propionic acid, WSC and CP. However, the aerobic stability of silages inoculated with LAB did not differ significantly between stages (P > 0.05). When fermentation characteristics, chemical composition, and aerobic stability were considered, treatment with L. plantarum resulted in high quality of Siberian wildrye silage harvested at the flowering stage in the alpine region. PMID:27625768

  11. Killing of Mycolic Acid-Containing Bacteria Aborted Induction of Antibiotic Production by Streptomyces in Combined-Culture

    PubMed Central

    Asamizu, Shumpei; Ozaki, Taro; Teramoto, Kanae; Satoh, Katsuya; Onaka, Hiroyasu

    2015-01-01

    Co-culture of Streptomyces with mycolic acid-containing bacteria (MACB), which we termed “combined-culture,” alters the secondary metabolism pattern in Streptomyces and has been a useful method for the discovery of bioactive natural products. In the course of our investigation to identify the inducing factor(s) of MACB, we previously observed that production of pigments in Streptomyces lividans was not induced by factors such as culture extracts or mycolic acids. Although dynamic changes occurred in culture conditions because of MACB, the activation of pigment production by S. lividans was observed in a limited area where both colonies were in direct contact. This suggested that direct attachment of cells is a requirement and that components on the MACB cell membrane may play an important role in the response by S. lividans. Here we examined whether this response was influenced by dead MACB that possess intact mycolic acids assembled on the outer cell membrane. Formaldehyde fixation and γ-irradiation were used to prepare dead cells that retain their shape and mycolic acids of three MACB species: Tsukamurella pulmonis, Rhodococcus erythropolis, and Rhodococcus opacus. Culturing tests verified that S. lividans does not respond to the intact dead cells of three MACB. Observation of combined-culture by scanning electron microscopy (SEM) indicated that adhesion of live MACB to S. lividans mycelia were a significant interaction that resulted in formation of co-aggregation. In contrast, in the SEM analysis, dead cells were not observed to adhere. Therefore, direct attachment by live MACB cells is proposed as one of the possible factors that causes Streptomyces to alter its specialized metabolism in combined-culture. PMID:26544713

  12. Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves.

    PubMed

    Fessard, Amandine; Bourdon, Emmanuel; Payet, Bertrand; Remize, Fabienne

    2016-07-01

    From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted. PMID:27197991

  13. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice.

    PubMed

    LeBlanc, Jean Guy; del Carmen, Silvina; Miyoshi, Anderson; Azevedo, Vasco; Sesma, Fernando; Langella, Philippe; Bermúdez-Humarán, Luis G; Watterlot, Laurie; Perdigon, Gabriela; de Moreno de LeBlanc, Alejandra

    2011-02-10

    Reactive oxygen species are involved in various aspects of intestinal inflammation and tumor development. Decreasing their levels using antioxidant enzymes, such as catalase (CAT) or superoxide dismutase (SOD) could therefore be useful in the prevention of certain diseases. Lactic acid bacteria (LAB) are ideal candidates to deliver these enzymes in the gut. In this study, the anti-inflammatory effects of CAT or SOD producing LAB were evaluated using a trinitrobenzenesulfonic acid (TNBS) induced Crohn's disease murine model. Engineered Lactobacillus casei BL23 strains producing either CAT or SOD, or the native strain were given to mice before and after intrarectal administration of TNBS. Animal survival, live weight, intestinal morphology and histology, enzymatic activities, microbial translocation to the liver and cytokines released in the intestinal fluid were evaluated. The mice that received CAT or SOD-producing LAB showed a faster recovery of initial weight loss, increased enzymatic activities in the gut and lesser extent of intestinal inflammation compared to animals that received the wild-type strain or those that did not receive bacterial supplementation. Our findings suggest that genetically engineered LAB that produce antioxidant enzymes could be used to prevent or decrease the severity of certain intestinal pathologies. PMID:21167883

  14. Application of culture culture-independent molecular biology based methods to evaluate acetic acid bacteria diversity during vinegar processing.

    PubMed

    Ilabaca, Carolina; Navarrete, Paola; Mardones, Pamela; Romero, Jaime; Mas, Albert

    2008-08-15

    Acetic acid bacteria (AAB) are considered fastidious microorganisms because they are difficult to isolate and cultivate. Different molecular approaches were taken to detect AAB diversity, independently of their capacity to grow in culture media. Those methods were tested in samples that originated during traditional vinegar production. Bacterial diversity was assessed by analysis of 16S rRNA gene, obtained by PCR amplifications of DNA extracted directly from the acetification container. Bacterial composition was analyzed by RFLP-PCR of 16S rRNA gene, Temporal Temperature Gradient Gel Electrophoresis (TTGE) separation of amplicons containing region V3-V5 of 16S rRNA gene and cloning of those amplicons. TTGE bands and clones were grouped based on their electrophoretic pattern similarity and sequenced to be compared with reference strains. The main microorganism identified in vinegar was Acetobacter pasteurianus, which at the end of the acetification process was considered to be the only microorganism present. The diversity was the highest at 2% acetic acid, where indefinite species of Gluconacetobacter xylinus/europaeus/intermedius were also present. PMID:18571262

  15. Novel method based on chromogenic media for discrimination and selective enumeration of lactic acid bacteria in fermented milk products.

    PubMed

    Galat, Anna; Dufresne, Jérôme; Combrisson, Jérôme; Thépaut, Jérôme; Boumghar-Bourtchai, Leyla; Boyer, Mickaël; Fourmestraux, Candice

    2016-05-01

    Microbial analyses of fermented milk products require selective methods to discriminate between close species simultaneously present in high amounts. A culture-based method combining novel chromogenic agar media and appropriate incubation conditions was developed to enumerate lactic acid bacteria (LAB) strains in fermented milk. M1 agar, containing two chromogenic substrates, allowed selective enumeration of Lactobacillus rhamnosus, two strains of Lactobacillus paracasei subsp. paracasei and Streptococcus salivarius subsp. thermophilus based on differential β-galactosidase and β-glucosidase activities. Depending on the presence of some or all of the above strains, M1 agar was supplemented with L-rhamnose or vancomycin and incubations were carried out at 37 °C or 44 °C to increase selectivity. A second agar medium, M2, containing one chromogenic substrates was used to selectively enumerate β-galactosidase producing Lactobacillus delbrueckii subsp. bulgaricus at 47 °C. By contrast with the usual culture media, the chromogenic method allowed unambiguous enumeration of each species, including discrimination between the two L. paracasei, up to 10(9) CFU/g of fermented milk. In addition, the relevance of the method was approved by enumerating reference ATCC strains in pure cultures and fermented milk product. The method could also be used for enumerations on non-Danone commercial fermented milk products containing strains different from those used in this study, showing versatility of the method. To our knowledge, this is the first description of a chromogenic culture method applied to selective enumeration of LAB. PMID:26742619

  16. Isolation and identification of cultivable lactic acid bacteria in traditional yak milk products of Gansu Province in China.

    PubMed

    Bao, QiuHua; Liu, WenJun; Yu, Jie; Wang, Weihong; Qing, ManJun; Chen, Xia; Wang, Fang; Zhang, Jiachao; Zhang, Wenyi; Qiao, Jianmin; Sun, Tiansong; Zhang, Heping

    2012-01-01

    Various traditional fermented yak milk and raw milk foods could be considered as an abundant resource for obtaining novel lactic acid bacteria (LAB) with unique properties. Eighty-eight samples of yak milk products were collected from Gansu Province in China. Three hundred and nineteen strains of LAB isolated from these samples were identified by phenotypic methods, 16S rRNA gene sequence analysis and PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) technology. Among the isolates, one hundred and sixty-four isolates (51.41% of the total) were classified under Lactobacilli, and one hundred and fifty-five (48.59%) belonged to cocci. All the isolates were classified to six genera (Lactobacillus, Lactococcus, Leuconostoc, Streptococcus, Enterococcus and Weissella) and twenty-one species. Lactobacillus helveticus (87 strains), Leuconostoc mesenteroides subsp. mesenteroides (49 strains), Streptococcus thermophilus (39 strains), Lactobacillus casei (31 strains) and Lactococcus lactis subsp. lactis (19 strains) were considered as the predominant populations in the yak milk products. The results showed that there were abundant genus and species LAB existing in yak milk products in Gansu Province in China. The obtained LAB pure cultures may be a valuable source for further starter selection. PMID:22688240

  17. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.

    PubMed

    Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

    2014-01-01

    Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion. PMID:25353947

  18. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains.

    PubMed

    Garcia, Estefânia F; Luciano, Winnie A; Xavier, Danilo E; da Costa, Whyara C A; de Sousa Oliveira, Kleber; Franco, Octávio L; de Morais Júnior, Marcos A; Lucena, Brígida T L; Picão, Renata C; Magnani, Marciane; Saarela, Maria; de Souza, Evandro L

    2016-01-01

    This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains. PMID:27625647

  19. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains

    PubMed Central

    Garcia, Estefânia F.; Luciano, Winnie A.; Xavier, Danilo E.; da Costa, Whyara C. A.; de Sousa Oliveira, Kleber; Franco, Octávio L.; de Morais Júnior, Marcos A.; Lucena, Brígida T. L.; Picão, Renata C.; Magnani, Marciane; Saarela, Maria; de Souza, Evandro L.

    2016-01-01

    This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains. PMID:27625647

  20. A prebiotic role of Ecklonia cava improves the mortality of Edwardsiella tarda-infected zebrafish models via regulating the growth of lactic acid bacteria and pathogen bacteria.

    PubMed

    Lee, WonWoo; Oh, Jae Young; Kim, Eun-A; Kang, Nalae; Kim, Kil-Nam; Ahn, Ginnae; Jeon, You-Jin

    2016-07-01

    In this study, the beneficial prebiotic roles of Ecklonia cava (E. cava, EC) were evaluated on the growth of lactic acid bacteria (LAB) and pathogen bacteria and the mortality of pathogen-bacteria infected zebrafish model. The result showed that the original E. cava (EC) led to the highest growth effects on three LABs (Lactobacillus brevis, L. brevis; Lactobacillus pentosus, L. pentosus; Lactobacillus plantarum; L. plantarum) and it was dose-dependent manners. Also, EC, its Celluclast enzymatic (ECC) and 100% ethanol extracts (ECE) showed the anti-bacterial activities on the fish pathogenic bacteria such as (Edwardsiella tarda; E. tarda, Streptococcus iniae; S. iniae, and Vibrio harveyi; V. harveyi). Interestingly, EC induced the higher production of the secondary metabolites from L. plantarum in MRS medium. The secondary metabolites produced by EC significantly inhibited the growth of pathogen bacteria. In further in vivo study, the co-treatment of EC and L. plantarum improved the growth and mortality of E. tarda-infected zebrafish as regulating the expression of inflammatory molecules such as iNOS and COX2. Taken together, our present study suggests that the EC plays an important role as a potential prebiotic and has a protective effect against the infection caused by E. tarda injection in zebrafish. Also, our conclusion from this evidence is that EC can be used and applied as a useful prebiotic. PMID:27192145

  1. Antimicrobial activity of an Amazon medicinal plant (Chancapiedra) (Phyllanthus niruri L.) against Helicobacter pylori and lactic acid bacteria.

    PubMed

    Ranilla, Lena Gálvez; Apostolidis, Emmanouil; Shetty, Kalidas

    2012-06-01

    The potential of water extracts of the Amazon medicinal plant Chancapiedra (Phyllanthus niruri L.) from Ecuador and Peru for antimicrobial activity against Helicobacter pylori and different strains of lactic acid bacteria such as Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum was investigated. H. pylori was inhibited by both water extracts in a dose dependent manner, whereas lactic acid bacterial growth was not affected. Both extracts contained ellagic acid and hydroxycinnamic acid derivatives and exhibited high free radical scavenging linked-antioxidant activities (89%). However, gallic acid was detected only in the Ecuadorian extract. Preliminary studies on the mode of action of Chancapiedra against H. pylori revealed that inhibition may not involve proline dehydrogenase-based oxidative phosphorylation inhibition associated with simple mono-phenolics and could involve ellagitannins or other non-phenolic compounds through a yet unknown mechanism. This study provides evidence about the potential of Chancapiedra for H. pylori inhibition without affecting beneficial lactic acid bacteria. PMID:22034238

  2. Unified Theory of Bacterial Sialometabolism: How and Why Bacteria Metabolize Host Sialic Acids

    PubMed Central

    Vimr, Eric R.

    2013-01-01

    Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection. PMID:23724337

  3. Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia).

    PubMed

    Muir, Ryann M; Ibáñez, Ana M; Uratsu, Sandra L; Ingham, Elizabeth S; Leslie, Charles A; McGranahan, Gale H; Batra, Neelu; Goyal, Sham; Joseph, Jorly; Jemmis, Eluvathingal D; Dandekar, Abhaya M

    2011-04-01

    Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro. PMID:21279669

  4. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut.

    PubMed

    Pereira, Dora I A; Gibson, Glenn R

    2002-09-01

    The objective of this study was to evaluate the effect of human gut-derived lactic acid bacteria and bifidobacteria on cholesterol levels in vitro. Continuous cultures inoculated with fecal material from healthy human volunteers with media supplemented with cholesterol and bile acids were used to enrich for potential cholesterol assimilators among the indigenous bacterial populations. Seven potential probiotics were found: Lactobacillus fermentum strains F53 and KC5b, Bifidobacterium infantis ATCC 15697, Streptococcus bovis ATCC 43143, Enterococcus durans DSM 20633, Enterococcus gallinarum, and Enterococcus faecalis. A comparative evaluation regarding the in vitro cholesterol reduction abilities of these strains along with commercial probiotics was undertaken. The degree of acid and bile tolerance of strains was also evaluated. The human isolate L. fermentum KC5b was able to maintain viability for 2 h at pH 2 and to grow in a medium with 4,000 mg of bile acids per liter. This strain was also able to remove a maximum of 14.8 mg of cholesterol per g (dry weight) of cells from the culture medium and therefore was regarded as a candidate probiotic. PMID:12200334

  5. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. PMID:26796423

  6. Evaluation of epidemiological studies of intestinal bacteria that affected occurrence of colorectal cancer: studies of prevention of colorectal tumors by dairy products and lactic acid bacteria.

    PubMed

    Kawano, Atsuko; Ishikawa, Hideki; Nakamura, Tomiyo; Kono, Koichi

    2010-05-01

    Enviromental factors have been consistently associated with colon cancer risk. In particular, consumption of Western-style diet including red meat is the most widely accepted etiologic risk factor. It has been reported that dietary factors change the proportion of intestinal flora, and it also affects the composition of fecal bile acids and the intestinal activity of some mutagens. In addition, it was suggested that modulating the composition of intestinal flora may reduce the occurrence of colorectal cancer. In this review, we present the clinical studies on the association between intestinal flora and the risk of colorectal cancer that have been carried out to date. The clinical studies of intestinal bacteria related to colorectal cancer risk have not shown consistent results so far, compared with the accomplishments of some basic studies. On the other hand, it was suggested in some clinical studies that lactic acid bacteria reduce the occurrence of colorectal cancer. PMID:20508386

  7. In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium.

    PubMed

    Mahdavi, Hamed; Prasad, Vinay; Liu, Yang; Ulrich, Ania C

    2015-01-01

    In this study, the biodegradation of total acid-extractable organics (TAOs), commonly called naphthenic acids (NAs), was investigated. An indigenous microbial culture containing algae and bacteria was taken from the surface of a tailings pond and incubated over the course of 120days. The influence of light, oxygen and the presence of indigenous algae and bacteria, and a diatom (Navicula pelliculosa) on the TAO removal rate were elucidated. The highest biodegradation rate was observed with bacteria growth only (without light exposure) with a half-life (t(1/2)) of 203days. The algae-bacteria consortium enhanced the detoxification process, however, bacterial biomass played the main role in toxicity reduction. Principal component analysis (PCA) conducted on FT-IR spectra, identified functional groups and bonds (representing potential markers for biotransformation of TAOs) as follows: hydroxyl, carboxyl and amide groups along with CH, arylH, arylOH and NH bonds. PMID:25841188

  8. The cell membrane and the struggle for life of lactic acid bacteria.

    PubMed

    Konings, Wil N

    2002-08-01

    The major life-threatening event for lactic acid bacteria (LAB) in their natural environment is the depletion of their energy sources and LAB can survive such conditions only for a short period of time. During periods of starvation LAB can exploit optimally the potential energy sources in their environment usually by applying proton motive force generating membrane transport systems. These systems include in addition to the proton translocating F0F1-ATPase: a respiratory chain when hemin is present in the medium, electrogenic solute uptake and excretion systems, electrogenic lactate/proton symport and precursor/product exchange systems. Most of these metabolic energy-generating systems offer as additional bonus the prevention of a lethal decrease of the internal and external pH. LAB have limited biosynthetic capacities and rely heavily on the presence of essential components such as sources of amino acids in their environment. The uptake of amino acids requires a major fraction of the available metabolic energy of LAB. The metabolic energy cost of amino acid uptake can be reduced drastically by accumulating oligopeptides instead of the individual amino acids and by proton motive force-generating efflux of excessively accumulated amino acids. Other life-threatening conditions that LAB encounter in their environment are rapid changes in the osmolality and the exposure to cytotoxic compounds, including antibiotics. LAB respond to osmotic upshock or downshock by accumulating or releasing rapidly osmolytes such as glycine-betaine. The life-threatening presence of cytotoxic compounds, including antibiotics, is effectively counteracted by powerful drug extruding multidrug resistance systems. The number and variety of defense mechanisms in LAB is surprisingly high. Most defense mechanisms operate in the cytoplasmic membrane to control the internal environment and the energetic status of LAB. Annotation of the functions of the genes in the genomes of LAB will undoubtedly

  9. 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species.

    PubMed

    Sakko, M; Moore, C; Novak-Frazer, L; Rautemaa, V; Sorsa, T; Hietala, P; Järvinen, A; Bowyer, P; Tjäderhane, L; Rautemaa, R

    2014-04-01

    The amino acid derivative 2-hydroxyisocaproic acid (HICA) is a nutritional additive used to increase muscle mass. Low levels can be detected in human plasma as a result of leucine metabolism. It has broad antibacterial activity but its efficacy against pathogenic fungi is not known. The aim was to test the efficacy of HICA against Candida and Aspergillus species. Efficacy of HICA against 19 clinical and reference isolates representing five Candida and three Aspergillus species with variable azole antifungal sensitivity profiles was tested using a microdilution method. The concentrations were 18, 36 and 72 mg ml(-1) . Growth was determined spectrophotometrically for Candida isolates and by visual inspection for Aspergillus isolates, viability was tested by culture and impact on morphology by microscopy. HICA of 72 mg ml(-1) was fungicidal against all Candida and Aspergillus fumigatus and Aspergillus terreus isolates. Lower concentrations were fungistatic. Aspergillus flavus was not inhibited by HICA. HICA inhibited hyphal formation in susceptible Candida albicans and A. fumigatus isolates and affected cell wall integrity. In conclusion, HICA has broad antifungal activity against Candida and Aspergillus at concentrations relevant for topical therapy. As a fungicidal agent with broad-spectrum bactericidal activity, it may be useful in the topical treatment of multispecies superficial infections. PMID:24125484

  10. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite

    PubMed Central

    Moreau, Jennifer L.; Sun, Limin; Chow, Laurence C.; Xu, Hockin H. K.

    2012-01-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size were synthesized via a spray-drying technique and incorporated into a resin. Flexural strength of nanocomposite with 10 to 30% NACP fillers matched the strength of a commercial hybrid composite (p > 0.1). Nanocomposite with 40% NACP matched the strength of a microfill composite, which was 2-fold that of a resin-modified glass ionomer. Nanocomposite with 40% NACP neutralized a lactic acid solution of pH 4 by rapidly increasing the pH to 5.69 in 10 min. In contrast, the commercial controls had pH staying at near 4. Using Streptoccocus mutans, an agar disk-diffusion test showed no inhibition zone for commercial controls. In contrast, the inhibition zone was (2.5 ± 0.7) mm for nanocomposite with 40% NACP. Crystal violet staining showed that S. mutans coverage on nanocomposite was 1/4 that on commercial composite. In conclusion, novel calcium–phosphate nanocomposite matched the mechanical properties of commercial composite and rapidly neutralized lactic acid of pH 4. The nanocomposite appeared to moderately reduce the S. mutans growth, and further study is needed to obtain strong antimicrobial properties. The new nanocomposite may have potential to reduce secondary caries and restoration fracture, two main challenges facing tooth cavity restorations. PMID:21504057

  11. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite.

    PubMed

    Moreau, Jennifer L; Sun, Limin; Chow, Laurence C; Xu, Hockin H K

    2011-07-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size were synthesized via a spray-drying technique and incorporated into a resin. Flexural strength of nanocomposite with 10 to 30% NACP fillers matched the strength of a commercial hybrid composite (p > 0.1). Nanocomposite with 40% NACP matched the strength of a microfill composite, which was 2-fold that of a resin-modified glass ionomer. Nanocomposite with 40% NACP neutralized a lactic acid solution of pH 4 by rapidly increasing the pH to 5.69 in 10 min. In contrast, the commercial controls had pH staying at near 4. Using Streptoccocus mutans, an agar disk-diffusion test showed no inhibition zone for commercial controls. In contrast, the inhibition zone was (2.5 ± 0.7) mm for nanocomposite with 40% NACP. Crystal violet staining showed that S. mutans coverage on nanocomposite was 1/4 that on commercial composite. In conclusion, novel calcium-phosphate nanocomposite matched the mechanical properties of commercial composite and rapidly neutralized lactic acid of pH 4. The nanocomposite appeared to moderately reduce the S. mutans growth, and further study is needed to obtain strong antimicrobial properties. The new nanocomposite may have potential to reduce secondary caries and restoration fracture, two main challenges facing tooth cavity restorations. PMID:21504057

  12. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  13. Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria

    PubMed Central

    Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso

    2016-01-01

    The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485

  14. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice.

    PubMed

    Zhang, Youcai; Limaye, Pallavi B; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  15. Dysfunction of Organic Anion Transporting Polypeptide 1a1 Alters Intestinal Bacteria and Bile Acid Metabolism in Mice

    PubMed Central

    Zhang, Youcai; Limaye, Pallavi B.; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  16. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yuan, Xiangcheng; Xu, Jie; Harrison, Paul J.; He, Lei; Yin, Kedong

    2015-09-01

    Free living viruses are ubiquitous in marine waters and concentrations are usually several times higher than the bacterial abundance. These viruses are capable of lysing host bacteria and therefore, play an important role in the microbial loop in oligotrophic waters. However, few studies have been conducted to compare the role of viruses in regulating bacterial abundance and heterotrophic activities between natural oligotrophic waters and anthropogenic influenced eutrophic waters. In this study, we examined viral effects on bacterial functions of four single bacterial species incubated with natural viral assemblages in seawater samples from eutrophic and oligotrophic waters. The viral-lysis of bacteria was significantly higher in eutrophic than oligotrophic waters. This suggests that viruses were capable of controlling bacterial abundance, respiration and production in the eutrophic waters. Cellular bacterial respiration and production was higher with viruses than without viruses, which was more evident in the oligotrophic waters. These results indicate that viruses can slow down bacterial consumption of oxygen and reduce bacteria-induced eutrophication effects in anthropogenic eutrophic waters, but switch to the role of sustaining the bacterial population when nutrients are limiting. There were bacterial species differences in resisting viral attack, which can influence the dominance and biodiversity of bacterial species in coastal waters.

  17. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters

    PubMed Central

    Liu, Hao; Yuan, Xiangcheng; Xu, Jie; Harrison, Paul J.; He, Lei; Yin, Kedong

    2015-01-01

    Free living viruses are ubiquitous in marine waters and concentrations are usually several times higher than the bacterial abundance. These viruses are capable of lysing host bacteria and therefore, play an important role in the microbial loop in oligotrophic waters. However, few studies have been conducted to compare the role of viruses in regulating bacterial abundance and heterotrophic activities between natural oligotrophic waters and anthropogenic influenced eutrophic waters. In this study, we examined viral effects on bacterial functions of four single bacterial species incubated with natural viral assemblages in seawater samples from eutrophic and oligotrophic waters. The viral-lysis of bacteria was significantly higher in eutrophic than oligotrophic waters. This suggests that viruses were capable of controlling bacterial abundance, respiration and production in the eutrophic waters. Cellular bacterial respiration and production was higher with viruses than without viruses, which was more evident in the oligotrophic waters. These results indicate that viruses can slow down bacterial consumption of oxygen and reduce bacteria-induced eutrophication effects in anthropogenic eutrophic waters, but switch to the role of sustaining the bacterial population when nutrients are limiting. There were bacterial species differences in resisting viral attack, which can influence the dominance and biodiversity of bacterial species in coastal waters. PMID:26404394

  18. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese.

    PubMed

    Østergaard, Nina Bjerre; Eklöw, Annelie; Dalgaard, Paw

    2014-10-01

    Four mathematical models were developed and validated for simultaneous growth of mesophilic lactic acid bacteria from added cultures and Listeria monocytogenes, during chilled storage of cottage cheese with fresh- or cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic- and sorbic acid and the interaction between these environmental factors. Growth models were developed by combining new and existing cardinal parameter values. Subsequently, the reference growth rate parameters (μref at 25°C) were fitted to a total of 52 growth rates from cottage cheese to improve model performance. The inhibiting effect of mesophilic lactic acid bacteria from added cultures on growth of L. monocytogenes was efficiently modelled using the Jameson approach. The new models appropriately predicted the maximum population density of L. monocytogenes in cottage cheese. The developed models were successfully validated by using 25 growth rates for L. monocytogenes, 17 growth rates for lactic acid bacteria and a total of 26 growth curves for simultaneous growth of L. monocytogenes and lactic acid bacteria in cottage cheese. These data were used in combination with bias- and accuracy factors and with the concept of acceptable simulation zone. Evaluation of predicted growth rates of L. monocytogenes in cottage cheese with fresh- or cultured cream dressing resulted in bias-factors (Bf) of 1.07-1.10 with corresponding accuracy factor (Af) values of 1.11 to 1.22. Lactic acid bacteria from added starter culture were on average predicted to grow 16% faster than observed (Bf of 1.16 and Af of 1.32) and growth of the diacetyl producing aroma culture was on average predicted 9% slower than observed (Bf of 0.91 and Af of 1.17). The acceptable simulation zone method showed the new models to successfully predict maximum population density of L. monocytogenes when growing together with lactic acid bacteria in cottage cheese. 11 of 13 simulations of L

  19. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  20. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    PubMed

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product. PMID:26818985

  1. Distribution of. delta. -aminolevulinic acid biosynthetic pathways among phototrophic and related bacteria

    SciTech Connect

    Avissar, Y.J.; Beale, S.I. ); Ormerod, J.G. )

    1989-04-01

    Two biosynthetic pathways are known for the universal tetrapyrrole precursor, {delta}-aminolevulinic acid (ALA): condensation of glycine and succinyl-CoA to form ALA with the loss of C-1 of glycine as CO{sub 2}, and conversion of the intact carbon skeleton of glutamate to ALA in a process requiring tRNA{sup Glu}, ATP, Mg{sup 2+}, NADPH, and pyridoxal phosphate. The distribution of the two ALA biosynthetic pathways among various bacterial genera was determined, using cell-free extracts obtained from representative organisms. Evidence for the operation of the glutamate pathway was obtained by the measurement of RNase-sensitive label incorporation from glutamate into ALA using 3,4-({sup 3}H)glutamate and 1-({sup 14}C)glutamate as substrate. The glycine pathway was indicated by RNase-insensitive incorporation of level from 2-({sup 14}C)glycine into ALA. The distribution of the two pathways among the bacteria tested was in general agreement with their previously phylogenetic relationships and clearly indicates that the glutamate pathway is the more ancient process, whereas the glycine pathway probably evolved much later. The glutamate pathway is the more widely utilized one among bacteria, while the glycine pathway is apparently limited to the {alpha} subgroup of purple bacteria (including Rhodobacter, Rhodospirillum, and Rhizobium). E. coli was found ALA via the glutamate pathway. The ALA-requiring hemA mutant of E. coli was determined to lack the dehydrogenase activity that utilizes glutamyl-tRNA as a substrate.

  2. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-01

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. PMID:26002560

  3. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site.

    PubMed

    Berg, Gabriele; Opelt, Katja; Zachow, Christin; Lottmann, Jana; Götz, Monika; Costa, Rodrigo; Smalla, Kornelia

    2006-05-01

    Rhizobacteria with antagonistic activity towards plant pathogens play an essential role in root growth and plant health and are influenced by plant species in their abundance and composition. To determine the extent of the effect of the plant species and of the site on the abundance and composition of bacteria with antagonistic activity towards Verticillium dahliae, bacteria isolated from the rhizosphere of two Verticillium host plants, oilseed rape and strawberry, and from bulk soil were analysed at three different locations in Germany over two growing seasons. A total of 6732 bacterial isolates screened for in vitro antagonism towards Verticillium resulted in 560 active isolates, among which Pseudomonas (77%) and Serratia (6%) were the most dominant genera. The rhizosphere effect on the antagonistic bacterial community was shown by an enhanced proportion of antagonistic isolates, by enrichment of specific amplified ribosomal DNA restriction analysis types, species and genotypes, and by a reduced diversity in the rhizosphere in comparison to bulk soil. Such an effect was influenced by the plant species and by the site of its cultivation. Altogether, 16S rRNA gene sequencing of 66 isolates resulted in the identification of 22 different species. Antagonists of the genus Serratia were preferentially isolated from oilseed rape rhizosphere, with the exception of one site. For isolates of Pseudomonas and Serratia, plant-specific and site-specific genotypes were found. PMID:16629754

  4. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    PubMed Central

    Mohn, W W

    1995-01-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793937

  5. Biodiversity of Denitrifying and Dinitrogen-Fixing Bacteria in an Acid Forest Soil

    PubMed Central

    Rösch, Christopher; Mergel, Alexander; Bothe, Hermann

    2002-01-01

    Isolated soil DNA from an oak-hornbeam forest close to Cologne, Germany, was suitable for PCR amplification of gene segments coding for the 16S rRNA and nitrogenase reductase (NifH), nitrous oxide reductase (NosZ), cytochrome cd1-containing nitrite reductase (NirS), and Cu-containing nitrite reductase (NirK) of denitrification. For each gene segment, diverse PCR products were characterized by cloning and sequencing. None of the 16S rRNA gene sequences was identical to any deposited in the data banks, and therefore each of them belonged to a noncharacterized bacterium. In contrast, the analyzed clones of nifH gave only a few different sequences, which occurred many times, indicating a low level of species richness in the N2-fixing bacterial population in this soil. Identical nifH sequences were also detected in PCR amplification products of DNA of a soil approximately 600 km distant from the Cologne area. Whereas biodiversity was high in the case of nosZ, only a few different sequences were obtained with nirK. With respect to nirS, cloning and sequencing of the PCR products revealed that many false gene segments had been amplified with DNA from soil but not from cultured bacteria. With the 16S rRNA gene data, many sequences of uncultured bacteria belonging to the Acidobacterium phylum and actinomycetes showed up in the PCR products when isolated DNA was used as the template, whereas sequences obtained for nifH and for the denitrification genes were closely related to those of the proteobacteria. Although in such an experimental approach one has to cope with the enormous biodiversity in soils and only a