Science.gov

Sample records for acid bacterium lactococcus

  1. The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403

    PubMed Central

    Bolotin, Alexander; Wincker, Patrick; Mauger, Stéphane; Jaillon, Olivier; Malarme, Karine; Weissenbach, Jean; Ehrlich, S. Dusko; Sorokin, Alexei

    2001-01-01

    Lactococcus lactis is a nonpathogenic AT-rich gram-positive bacterium closely related to the genus Streptococcus and is the most commonly used cheese starter. It is also the best-characterized lactic acid bacterium. We sequenced the genome of the laboratory strain IL1403, using a novel two-step strategy that comprises diagnostic sequencing of the entire genome and a shotgun polishing step. The genome contains 2,365,589 base pairs and encodes 2310 proteins, including 293 protein-coding genes belonging to six prophages and 43 insertion sequence (IS) elements. Nonrandom distribution of IS elements indicates that the chromosome of the sequenced strain may be a product of recent recombination between two closely related genomes. A complete set of late competence genes is present, indicating the ability of L. lactis to undergo DNA transformation. Genomic sequence revealed new possibilities for fermentation pathways and for aerobic respiration. It also indicated a horizontal transfer of genetic information from Lactococcus to gram-negative enteric bacteria of Salmonella-Escherichia group. [The sequence data described in this paper has been submitted to the GenBank data library under accession no. AE005176.] PMID:11337471

  2. Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis subsp. lactis TOMSC161, Isolated from a Nonscalded Curd Pressed Cheese

    PubMed Central

    Velly, H.; Abraham, A.-L.; Loux, V.; Delacroix-Buchet, A.; Fonseca, F.; Bouix, M.

    2014-01-01

    Lactococcus lactis is a lactic acid bacterium used in the production of many fermented foods, such as dairy products. Here, we report the genome sequence of L. lactis subsp. lactis TOMSC161, isolated from nonscalded curd pressed cheese. This genome sequence provides information in relation to dairy environment adaptation. PMID:25377704

  3. Complete genome sequence of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid.

    PubMed

    Kato, Hiroaki; Shiwa, Yuh; Oshima, Kenshiro; Machii, Miki; Araya-Kojima, Tomoko; Zendo, Takeshi; Shimizu-Kadota, Mariko; Hattori, Masahira; Sonomoto, Kenji; Yoshikawa, Hirofumi

    2012-04-01

    We report the complete genome sequence of Lactococcus lactis IO-1 (= JCM7638). It is a nondairy lactic acid bacterium, produces nisin Z, ferments xylose, and produces predominantly L-lactic acid at high xylose concentrations. From ortholog analysis with other five L. lactis strains, IO-1 was identified as L. lactis subsp. lactis.

  4. Complete Genome Sequence of the Prototype Lactic Acid Bacterium Lactococcus lactis subsp. cremoris MG1363▿

    PubMed Central

    Wegmann, Udo; O'Connell-Motherway, Mary; Zomer, Aldert; Buist, Girbe; Shearman, Claire; Canchaya, Carlos; Ventura, Marco; Goesmann, Alexander; Gasson, Michael J.; Kuipers, Oscar P.; van Sinderen, Douwe; Kok, Jan

    2007-01-01

    Lactococcus lactis is of great importance for the nutrition of hundreds of millions of people worldwide. This paper describes the genome sequence of Lactococcus lactis subsp. cremoris MG1363, the lactococcal strain most intensively studied throughout the world. The 2,529,478-bp genome contains 81 pseudogenes and encodes 2,436 proteins. Of the 530 unique proteins, 47 belong to the COG (clusters of orthologous groups) functional category “carbohydrate metabolism and transport,” by far the largest category of novel proteins in comparison with L. lactis subsp. lactis IL1403. Nearly one-fifth of the 71 insertion elements are concentrated in a specific 56-kb region. This integration hot-spot region carries genes that are typically associated with lactococcal plasmids and a repeat sequence specifically found on plasmids and in the “lateral gene transfer hot spot” in the genome of Streptococcus thermophilus. Although the parent of L. lactis MG1363 was used to demonstrate lysogeny in Lactococcus, L. lactis MG1363 carries four remnant/satellite phages and two apparently complete prophages. The availability of the L. lactis MG1363 genome sequence will reinforce its status as the prototype among lactic acid bacteria through facilitation of further applied and fundamental research. PMID:17307855

  5. Lactococcus piscium: a psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food-a review.

    PubMed

    Saraoui, T; Leroi, F; Björkroth, J; Pilet, M F

    2016-10-01

    The genus Lactococcus comprises 12 species, some known for decades and others more recently described. Lactococcus piscium, isolated in 1990 from rainbow trout, is a psychrotrophic lactic acid bacterium, probably disregarded because most of the strains are unable to grow at 30°C. During the last 10 years, this species has been isolated from a large variety of food: meat, seafood and vegetables, mostly packed under vacuum (VP) or modified atmosphere (MAP) and stored at chilled temperature. Recently, culture-independent techniques used for characterization of microbial ecosystems have highlighted the importance of Lc. piscium in food. Its role in food spoilage varies according to the strain and the food matrix. However, most studies have indicated that Lc. piscium spoils meat, whereas it does not degrade the sensory properties of seafood. Lactococcus piscium strains have a large antimicrobial spectrum, including Gram-positive and negative bacteria. In various seafoods, some strains have a protective effect against spoilage and can extend the sensory shelf-life of the products. They can also inhibit the growth of Listeria monocytogenes, by a cell-to-cell contact-dependent. This article reviews the physiological and genomic characteristics of Lc. piscium and discusses its spoilage or protective activities in food.

  6. Genome Sequence and Transcriptome Analysis of Meat-Spoilage-Associated Lactic Acid Bacterium Lactococcus piscium MKFS47

    PubMed Central

    Johansson, Per; Laine, Pia; Smolander, Olli-Pekka; Sonck, Matti; Rahkila, Riitta; Jääskeläinen, Elina; Paulin, Lars; Auvinen, Petri; Björkroth, Johanna

    2015-01-01

    Lactococcus piscium is a psychrotrophic lactic acid bacterium and is known to be one of the predominant species within spoilage microbial communities in cold-stored packaged foods, particularly in meat products. Its presence in such products has been associated with the formation of buttery and sour off-odors. Nevertheless, the spoilage potential of L. piscium varies dramatically depending on the strain and growth conditions. Additional knowledge about the genome is required to explain such variation, understand its phylogeny, and study gene functions. Here, we present the complete and annotated genomic sequence of L. piscium MKFS47, combined with a time course analysis of the glucose catabolism-based transcriptome. In addition, a comparative analysis of gene contents was done for L. piscium MKFS47 and 29 other lactococci, revealing three distinct clades within the genus. The genome of L. piscium MKFS47 consists of one chromosome, carrying 2,289 genes, and two plasmids. A wide range of carbohydrates was predicted to be fermented, and growth on glycerol was observed. Both carbohydrate and glycerol catabolic pathways were significantly upregulated in the course of time as a result of glucose exhaustion. At the same time, differential expression of the pyruvate utilization pathways, implicated in the formation of spoilage substances, switched the metabolism toward a heterofermentative mode. In agreement with data from previous inoculation studies, L. piscium MKFS47 was identified as an efficient producer of buttery-odor compounds under aerobic conditions. Finally, genes and pathways that may contribute to increased survival in meat environments were considered. PMID:25819958

  7. Genomic features of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid.

    PubMed

    Shimizu-Kadota, Mariko; Kato, Hiroaki; Shiwa, Yuh; Oshima, Kenshiro; Machii, Miki; Araya-Kojima, Tomoko; Zendo, Takeshi; Hattori, Masahira; Sonomoto, Kenji; Yoshikawa, Hirofumi

    2013-01-01

    Lactococcus lactis IO-1 (JCM7638) produces L-lactic acid predominantly when grown at high xylose concentrations, and its utilization is highly desired in the green plastics industry. Therefore it is worthwhile studying its genomic traits. In this study, we focused on (i) genes of possible horizontal transfer derivation (prophages, the nisin-sucrose transposon, and several restriction-modification systems), and (ii) genes for the synthetic pathways of amino acids and vitamins in the IO-1 genome. In view of the results of this analysis, we consider their meanings in strain IO-1.

  8. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis

    PubMed Central

    Zhang, Huimin; Wang, Qingjing; Fisher, Derek J.; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O.; Feng, Youjun

    2016-01-01

    Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake 3H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis. PMID:27161258

  9. Draft Genome Sequences of 11 Lactococcus lactis subsp. cremoris Strains

    PubMed Central

    Backus, Lennart; Boekhorst, Jos; Dijkstra, Annereinou; Beerthuyzen, Marke; Siezen, Roland J.; Bachmann, Herwig; van Hijum, Sacha A. F. T.

    2017-01-01

    ABSTRACT The lactic acid bacterium Lactococcus lactis is widely used for the fermentation of dairy products. Here, we present the draft genome sequences of 11 L. lactis subsp. cremoris strains isolated from different environments. PMID:28302789

  10. Draft Genome Sequences of 24 Lactococcus lactis Strains

    PubMed Central

    Backus, Lennart; Wels, Michiel; Boekhorst, Jos; Dijkstra, Annereinou R.; Beerthuyzen, Marke; Kelly, William J.; Siezen, Roland J.; van Hijum, Sacha A. F. T.

    2017-01-01

    ABSTRACT The lactic acid bacterium Lactococcus lactis is widely used for the production of fermented dairy products. Here, we present the draft genome sequences of 24 L. lactis strains isolated from different environments and geographic locations. PMID:28360177

  11. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    PubMed

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  12. Cyclopropanation of Membrane Unsaturated Fatty Acids Is Not Essential to the Acid Stress Response of Lactococcus lactis subsp. cremoris ▿

    PubMed Central

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-01-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-l-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells. PMID:21421775

  13. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris.

    PubMed

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-05-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.

  14. Sulfur Amino Acid Metabolism and Its Control in Lactococcus lactis IL1403

    PubMed Central

    Sperandio, Brice; Polard, Patrice; Ehrlich, Dusko S.; Renault, Pierre; Guédon, Eric

    2005-01-01

    Cysteine and methionine availability influences many processes in the cell. In bacteria, transcription of the specific genes involved in the synthesis of these two amino acids is usually regulated by different mechanisms or regulators. Pathways for the synthesis of cysteine and methionine and their interconversion were experimentally determined for Lactococcus lactis, a lactic acid bacterium commonly found in food. A new gene, yhcE, was shown to be involved in methionine recycling to cysteine. Surprisingly, 18 genes, representing almost all genes of these pathways, are under the control of a LysR-type activator, FhuR, also named CmbR. DNA microarray experiments showed that FhuR targets are restricted to this set of 18 genes clustered in seven transcriptional units, while cysteine starvation modifies the transcription level of several other genes potentially involved in oxidoreduction processes. Purified FhuR binds a 13-bp box centered 46 to 53 bp upstream of the transcriptional starts from the seven regulated promoters, while a second box with the same consensus is present upstream of the first binding box, separated by 8 to 10 bp. O-Acetyl serine increases FhuR binding affinity to its binding boxes. The overall view of sulfur amino acid metabolism and its regulation in L. lactis indicates that CysE could be a master enzyme controlling the activity of FhuR by providing its effector, while other controls at the enzymatic level appear to be necessary to compensate the absence of differential regulation of the genes involved in the interconversion of methionine and cysteine and other biosynthesis genes. PMID:15901700

  15. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    PubMed

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; Jiao, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  16. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis

    PubMed Central

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; Jiao, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production. PMID:26562776

  17. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.

    PubMed

    Amiri-Jami, Mitra; Lapointe, Gisele; Griffiths, Mansel W

    2014-04-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35 ± 0.5 mg g(-1) cell dry weight) and EPA (0.12 ± 0.04 mg g(-1) cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.

  18. Chemically defined media and auxotrophy of the prolific l-lactic acid producer Lactococcus lactis IO-1.

    PubMed

    Machii, Miki; Watanabe, Satoru; Zendo, Takeshi; Chibazakura, Taku; Sonomoto, Kenji; Shimizu-Kadota, Mariko; Yoshikawa, Hirofumi

    2013-05-01

    Two chemically defined media, CDM-1G and CDM-1X, that use glucose and xylose as carbon sources, respectively, were prepared for Lactococcus lactis strain IO-1. The maximal cell density at 600 nm in CDM-1G exceeded 2. Omission growth experiments indicated that IO-1 is auxotrophic for 2 vitamins and 6 amino acids.

  19. An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds.

    PubMed Central

    Yvon, M; Thirouin, S; Rijnen, L; Fromentier, D; Gripon, J C

    1997-01-01

    The enzymatic degradation of amino acids in cheese is believed to generate aroma compounds and therefore to be involved in the complex process of cheese flavor development. In lactococci, transamination is the first step in the degradation of aromatic and branched-chain amino acids which are precursors of aroma compounds. Here, the major aromatic amino acid aminotransferase of a Lactococcus lactis subsp. cremoris strain was purified and characterized. The enzyme transaminates the aromatic amino acids, leucine, and methionine. It uses the ketoacids corresponding to these amino acids and alpha-ketoglutarate as amino group acceptors. In contrast to most bacterial aromatic aminotransferases, it does not act on aspartate and does not use oxaloacetate as second substrate. It is essential for the transformation of aromatic amino acids to flavor compounds. It is a pyridoxal 5'-phosphate-dependent enzyme and is composed of two identical subunits of 43.5 kDa. The activity of the enzyme is optimal between pH 6.5 and 8 and between 35 and 45 degrees C, but it is still active under cheese-ripening conditions. PMID:9023921

  20. Complete Genome Sequence of Lactococcus piscium CNCM I-4031, a Bioprotective Strain for Seafood Products

    PubMed Central

    Marché, Laurent; Saraoui, Taous; Remenant, Benoit; Zagorec, Monique; Prévost, Hervé; Delbarre-Ladrat, Christine; Leroi, Françoise

    2017-01-01

    ABSTRACT Lactococcus piscium CNCM I-4031 is a psychotrophic foodborne lactic acid bacterium showing potential interest for the biopreservation of seafood products due to its inhibition properties toward pathogenic and spoilage bacteria. The analysis of its genome will provide a better understanding of the mechanisms of interaction between these bacteria. PMID:28126939

  1. Antagonistic lactic acid bacteria isolated from goat milk and identification of a novel nisin variant Lactococcus lactis

    PubMed Central

    2014-01-01

    Background The raw goat milk microbiota is considered a good source of novel bacteriocinogenic lactic acid bacteria (LAB) strains that can be exploited as an alternative for use as biopreservatives in foods. The constant demand for such alternative tools justifies studies that investigate the antimicrobial potential of such strains. Results The obtained data identified a predominance of Lactococcus and Enterococcus strains in raw goat milk microbiota with antimicrobial activity against Listeria monocytogenes ATCC 7644. Enzymatic assays confirmed the bacteriocinogenic nature of the antimicrobial substances produced by the isolated strains, and PCR reactions detected a variety of bacteriocin-related genes in their genomes. Rep-PCR identified broad genetic variability among the Enterococcus isolates, and close relations between the Lactococcus strains. The sequencing of PCR products from nis-positive Lactococcus allowed the identification of a predicted nisin variant not previously described and possessing a wide inhibitory spectrum. Conclusions Raw goat milk was confirmed as a good source of novel bacteriocinogenic LAB strains, having identified Lactococcus isolates possessing variations in their genomes that suggest the production of a nisin variant not yet described and with potential for use as biopreservatives in food due to its broad spectrum of action. PMID:24521354

  2. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44

    PubMed Central

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-01-01

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process. PMID:27306587

  3. Stability of active prophages in industrial Lactococcus lactis strains in the presence of heat, acid, osmotic, oxidative and antibiotic stressors.

    PubMed

    Ho, Chun-Hoong; Stanton-Cook, Mitchell; Beatson, Scott A; Bansal, Nidhi; Turner, Mark S

    2016-03-02

    Lactococcus lactis is a starter bacterium commonly used in cheese making where it has an important role in acid-mediated curd formation as well as the development of flavour compounds. Industrial L. lactis strains can harbour one or more inducible prophages which when induced can affect cell growth and possibly lead to cell lysis. This is undesirable during growth and fermentation, but can beneficially lead to faster release of enzymes during cheese ripening. Lactococci can encounter multiple stress inducing conditions during the production of cheese, such as low and high temperatures, low pH, high osmotic pressure and long-term incubation. In this study, we tested the effect of these industrial stressors on prophage induction in two cheese making L. lactis subsp. cremoris strains (ASCC890049 and ASCC890310) as well as the laboratory strain L. lactis MG1363. Firstly, in order to identify inducible prophages in these strains we exposed them to the prophage inducing chemical mitomycin C (MMC) for 1 and 2h and then subjected the total genomic DNA to next-generation Illumina sequencing. Mapping of sequence reads back to the genome sequences revealed regions which contained a much higher fold coverage indicating DNA replication. These regions were amplified by up to 332-fold per cell (relative to the control tufA gene) and were identified as having similarities to different subgroups of P335 phages including MG-5, TP901-1, ul36.k1, bIL286, TP712 and BK5-T. Next, quantitative PCR was used to confirm the strong induction of prophages by MMC and then determine the copy number of the inducible prophages following exposure to various growth inhibitory levels of HCl, lactic acid, high temperature, NaCl, hydrogen peroxide and bacitracin. With the exception of a slight induction (2 to 4-fold) with hydrogen peroxide and long-term incubation after 21days in one industrial strain, none of the other stressors induced prophage DNA replication. These findings show that the repression

  4. Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP) simulation medium under different gas compositions.

    PubMed

    Pothakos, Vasileios; Nyambi, Clarice; Zhang, Bao-Yu; Papastergiadis, Antonios; De Meulenaer, Bruno; Devlieghere, Frank

    2014-05-16

    Sweet bell peppers are a significant constituent of retail, chilled-stored and packaged food products like fresh salads, marinades and ready-to-eat (RTE) meals. Previously, through general screening of the Belgian market and by means of source tracking analysis in a plant manufacturing minimally processed, vegetable salads the susceptibility of fresh-cut sweet bell peppers to lactic acid bacterium (LAB) contamination was substantiated. The determination of the metabolic profiles of Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, two major psychrotrophic, spoilage-related LAB species, on sweet bell pepper (SBP) simulation medium under different packaging conditions - 1.) vacuum: 100% N2, 2.) air: 21% O2, 79% N2, 3.) MAP1: 30% CO2, 70% N2 and 4.) MAP2: 50% O2, 50% CO2 - facilitated a better understanding of the spoilage potential of these microbes as well as the presumptive contribution of O2 in the spectrum of produced volatile organic compounds (VOCs) associated with poor organoleptic properties of food products. Generally, none of the applied gas compositions inhibited the growth of the 4 L. gelidum subsp. gasicomitatum isolates, however the presence of O2 resulted in buttery off-odors by inducing primarily the accumulation of diacetyl and pungent "vinegar" smell due to acetic acid. The 3 tested isolates of L. piscium varied greatly among their growth dynamics and inhibition at MAP2. They exhibited either weak spoilage profile or very offensive metabolism confirming significant intraspecies diversity.

  5. Endocarditis caused by Lactococcus cremoris.

    PubMed

    Halldórsdóttir, Halla D; Haraldsdóttir, Vilhelmina; Bödvarsson, Asgeir; Thorgeirsson, Gestur; Kristjánsson, Már

    2002-01-01

    We describe a case of subacute endocarditis due to Lactococcus cremoris associated with consumption of unpasteurized milk. Treatment with amoxicillin-clavulanic acid and subsequently penicillin resulted in prompt sterilization of this patient's bloodstream and full recovery.

  6. Sec-Mediated Secretion of Bacteriocin Enterocin P by Lactococcus lactis

    PubMed Central

    Herranz, Carmen; Driessen, Arnold J. M.

    2005-01-01

    Most lactic acid bacterium bacteriocins utilize specific leader peptides and dedicated machineries for secretion. In contrast, the enterococcal bacteriocin enterocin P (EntP) contains a typical signal peptide that directs its secretion when heterologously expressed in Lactococcus lactis. Signal peptide mutations and the SecA inhibitor azide blocked secretion. These observations demonstrate that EntP is secreted by the Sec translocase. PMID:15812026

  7. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    PubMed

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity.

  8. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    PubMed

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS.

  9. Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of lactococcus lactis subsp. lactis.

    PubMed

    Stuart, M R; Chou, L S; Weimer, B C

    1999-02-01

    Two strains of Lactococcus lactis subsp. lactis were used to determine the influence of lactose and arginine on viability and amino acid use during carbohydrate starvation. Lactose provided energy for logarithmic-phase growth, and amino acids such as arginine provided energy after carbohydrate exhaustion. Survival time, cell numbers, and ATP concentrations increased with the addition of arginine to the basal medium. By the onset of lactose exhaustion, the concentrations of glycine-valine and glutamate had decreased by as much as 67% in L. lactis ML3, whereas the serine concentration increased by 97% during the same period. When no lactose was added, the concentrations of these amino acids remained constant. Similar trends were observed for L. lactis 11454. Without lactose or arginine, L. lactis ML3 was nonculturable on agar but was viable after 2 days, as measured by fluorescent viability stains and intracellular ATP levels. However, L. lactis 11454 without lactose or arginine remained culturable for at least 14 days. These data suggest that lactococci become viable but nonculturable in response to carbohydrate depletion. Additionally, these data indicate that amino acids other than arginine facilitate the survival of L. lactis during carbohydrate starvation.

  10. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis.

    PubMed

    Hmar, Rothangmawi Victoria; Prasad, Shashi Bala; Jayaraman, Guhan; Ramachandran, Kadathur B

    2014-12-01

    Microbial production of hyaluronic acid (HA) is an attractive substitute for extraction of this biopolymer from animal tissues. Natural producers such as Streptococcus zooepidemicus are potential pathogens; therefore, production of HA by recombinant bacteria that are generally recognized as safe (GRAS) organisms is a viable alternative that is being extensively explored. However, plasmid-based expression systems for HA production by recombinant bacteria have the inherent disadvantage of reduced productivity because of plasmid instability. To overcome this problem, the HA synthesis genes (hasA-hasB and hasA-hasB-hasC) from has-operon of S. zooepidemicus were integrated into the chromosome of Lactococcus lactis by site-directed, double-homologous recombination developing strains VRJ2AB and VRJ3ABC. The chromosomal integration stabilized the genes and obviated the instability observed in plasmid-expressed recombinant strains. The genome-integrated strains produced higher molecular weight (3.5-4 million Dalton [MDa]) HA compared to the plasmid-expressed strains (2 MDa). High molecular weight HA was produced when the intracellular concentration of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and uridine diphosphate-glucuronic acid (UDP-GlcUA) was almost equal and hasA to hasB ratio was low. This work suggests an optimal approach to obtain high molecular weight HA in recombinant strains.

  11. Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-09-01

    The aim of this study was to investigate the effect of nisin-inducible RecO expression on the stress tolerance of Lactococcus lactis NZ9000. RecO protein from Lactobacillus casei Zhang was introduced into Lactococcus lactis NZ9000 by using a nisin-inducible expression system. The recombinant strain (NZ-RecO) exhibited higher growth performances and survival rate compared with the control strain (NZ-Vector) under stress conditions. In addition, the NZ-RecO strain exhibited 1.37-, 1.41-, and 1.42-fold higher biomass, lactate production, lactate productivity, compared with the corresponding values for NZ-Vector during NaCl-stressed condition. Analysis of lactate dehydrogenase (LDH) activity showed that the production of RecO maintained the stability of LDH during salt stress. These results suggest that overproduction of RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Results presented in this study may help to enhance the industrial utility of lactic acid bacteria.

  12. Improved Acid Stress Survival of Lactococcus lactis Expressing the Histidine Decarboxylation Pathway of Streptococcus thermophilus CHCC1524*

    PubMed Central

    Trip, Hein; Mulder, Niels L.; Lolkema, Juke S.

    2012-01-01

    Degradative amino acid decarboxylation pathways in bacteria generate secondary metabolic energy and provide resistance against acid stress. The histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524 was functionally expressed in the heterologous host Lactococcus lactis NZ9000, and the benefits of the newly acquired pathway for the host were analyzed. During growth in M17 medium in the pH range of 5–6.5, a small positive effect was observed on the biomass yield in batch culture, whereas no growth rate enhancement was evident. In contrast, a strong benefit for the engineered L. lactis strain was observed in acid stress survival. In the presence of histidine, the pathway enabled cells to survive at pH values as low as 3 for at least 2 h, conditions under which the host cells were rapidly dying. The flux through the histidine decarboxylation pathway in cells grown at physiological pH was under strict control of the electrochemical proton gradient (pmf) across the membrane. Ionophores that dissipated the membrane potential (ΔΨ) and/or the pH gradient (ΔpH) strongly increased the flux, whereas the presence of glucose almost completely inhibited the flux. Control of the pmf over the flux was exerted by both ΔΨ and ΔpH and was distributed over the transporter HdcP and the decarboxylase HdcA. The control allowed for a synergistic effect between the histidine decarboxylation and glycolytic pathways in acid stress survival. In a narrow pH range around 2.5 the synergism resulted in a 10-fold higher survival rate. PMID:22351775

  13. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch.

    PubMed

    Okano, Kenji; Kimura, Sakurako; Narita, Junya; Fukuda, Hideki; Kondo, Akihiko

    2007-07-01

    To achieve direct and efficient lactic acid production from starch, a genetically modified Lactococcus lactis IL 1403 secreting alpha-amylase, which was obtained from Streptococcus bovis 148, was constructed. Using this strain, the fermentation of soluble starch was achieved, although its rate was far from efficient (0.09 g l(-1) h(-1) lactate). High-performance liquid chromatography revealed that maltose accumulated during fermentation, and this was thought to lead to inefficient fermentation. To accelerate maltose consumption, starch fermentation was examined using L. lactis cells adapted to maltose instead of glucose. This led to a decrease in the amount of maltose accumulation in the culture, and, as a result, a more rapid fermentation was accomplished (1.31 g l(-1) h(-1) lactate). Maximum volumetric lactate productivity was further increased (1.57 g l(-1) h(-1) lactate) using cells adapted to starch, and a high yield of lactate (0.89 g of lactate per gram of consumed sugar) of high optical purity (99.2% of L: -lactate) was achieved. In this study, we propose a new approach to lactate production by alpha-amylase-secreting L. lactis that allows efficient fermentation from starch using cells adapted to maltose or starch before fermentation.

  14. Identification of the Leucine-to-2-Methylbutyric Acid Catabolic Pathway of Lactococcus lactis† ‡

    PubMed Central

    Ganesan, Balasubramanian; Dobrowolski, Piotr; Weimer, Bart C.

    2006-01-01

    Nutrient starvation and nonculturability in bacteria lead to changes in metabolism not found during the logarithmic phase. Substrates alternate to those used during growth are metabolized in these physiological states, yielding secondary metabolites. In firmicutes and actinobacteria, amino acid catabolic pathways are induced during starvation and nonculturability. Examination of lactococci showed that the population entered a nonculturable state after carbohydrate depletion and was incapable of growth on solid media; however, the cells gained the ability to produce branched-chain fatty acids from amino acids. Gene expression profiling and in silico pathway analysis coupled with nuclear magnetic resonance spectroscopy were used to delineate the leucine catabolic pathway. Lactococci produced acetic and propionic acid during logarithmic growth and starvation. At the onset of nonculturability, 2-methylbutyric acid was produced via hydroxymethyl-glutaryl-coenzyme A (CoA) and acetyl-CoA, along with ATP and oxidation/reduction precursors. Gene expression profiling and genome sequence analysis showed that lactococci contained redundant genes for branched-chain fatty acid production that were regulated by an unknown mechanism linked to carbon metabolism. This work demonstrated the ability of a firmicute to induce new metabolic capabilities in the nonculturable state for producing energy and intermediates needed for transcription and translation. Phylogenetic analyses showed that homologues of these enzymes and their functional motifs were widespread across the domains of life. PMID:16751541

  15. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  16. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Xie, Gary; Dalin, Eileen; Tice, Hope; Chertkov, Olga; Land, Miriam L

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  17. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J. Chris; Pitluck, Sam; Land, Miriam L; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, Keelnathan T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  18. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1.

    PubMed

    Rhee, Mun Su; Moritz, Brélan E; Xie, Gary; Glavina Del Rio, T; Dalin, E; Tice, H; Bruce, D; Goodwin, L; Chertkov, O; Brettin, T; Han, C; Detter, C; Pitluck, S; Land, Miriam L; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O; Shanmugam, K T

    2011-12-31

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  19. Draft Genome Sequence of Lactococcus lactis subsp. lactis Strain YF11

    PubMed Central

    Du, Yuhui; Song, Lifu; Feng, Wenjing; Pei, Guangsheng; Zheng, Ping; Yu, Zhichao; Sun, Jibin

    2013-01-01

    Lactococcus lactis subsp. lactis strain YF11 is a food preservative bacterium with a high capacity to produce nisin. Here, we announce the draft genome sequence of Lactococcus lactis subsp. lactis YF11 (2,527,433 bp with a G+C content of 34.81%). PMID:23929487

  20. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  1. Mesophilic Lactic Acid Bacteria Diversity Encountered in Brazilian Farms Producing Milk with Particular Interest in Lactococcus lactis Strains.

    PubMed

    Luiz, L M P; Chuat, V; Madec, M N; Araújo, E A; de Carvalho, A F; Valence, F

    2016-10-01

    The milk produced in regions with different traditions in Brazil is used for artisanal product production, which is characterized by different sensorial characteristics. This study aimed to identify the bacterial ecosystem of farms located in a traditional dairy region in the state of Minas Gerais and to characterize Lactococcus lactis strains, the species of interest in this study, using a multilocus sequence typing (MLST) protocol and pulsed-field gel electrophoresis (PFGE) technique. Samples were collected from raw milk and dairy environment from six farms. A total of 50 isolates were analyzed using 16S rRNA sequencing and species-specific PCR. Five genera were identified: Lactobacillus, Leuconostoc, Lactococcus, Enterococcus, and Staphylococcus, from ten different species. MLST (with six housekeeping genes) and PFGE (with SmaI endonuclease) were used for the characterization of 20 isolates of Lactococcus lactis from a dairy collection in this study. Both methods revealed a high clonal diversity of strains with a higher discriminatory level for PFGE (15 pulsotypes), compared to MLST (12 ST). This study contributes to the preservation of the Brazilian dairy heritage and provides insights into a part of the LAB population found in raw milk and dairy environment.

  2. First Insights into the Genome of the Amino Acid-Metabolizing Bacterium Clostridium litorale DSM 5388

    PubMed Central

    Poehlein, Anja; Alghaithi, Hamed S.; Chandran, Lenin; Chibani, Cynthia M.; Davydova, Elena; Dhamotharan, Karthikeyan; Ge, Wanwan; Gutierrez-Gutierrez, David A.; Jagirdar, Advait; Khonsari, Bahar; Nair, Kamal Prakash P. R.

    2014-01-01

    Clostridium litorale is a Gram-positive, rod-shaped, and spore-forming bacterium, which is able to use amino acids such as glycine, sarcosine, proline, and betaine as single carbon and energy sources via Stickland reactions. The genome consists of a circular chromosome (3.41 Mb) and a circular plasmid (27 kb). PMID:25081264

  3. Effect of tannic acid on the transcriptome of the soil bacterium Pseudomonas protegens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannins are plant-produced organic compounds that are found in soils, are able to sequester iron, and have antimicrobial properties. We studied the effect of tannic acid on the molecular physiology of the soil-inhabiting biocontrol bacterium Pseudomonas protegens Pf-5 (formerly Pseudomonas fluoresce...

  4. Anaerobic Degradation of Cyanuric Acid, Cysteine, and Atrazine by a Facultative Anaerobic Bacterium

    PubMed Central

    Jessee, J. A.; Benoit, R. E.; Hendricks, A. C.; Allen, G. C.; Neal, J. L.

    1983-01-01

    A facultative anaerobic bacterium that rapidly degrades cyanuric acid (CA) was isolated from the sediment of a stream that received industrial wastewater effluent. CA decomposition was measured throughout the growth cycle by using a high-performance liquid chromatography assay, and the concomitant production of ammonia was also measured. The bacterium used CA or cysteine as a major, if not the sole, carbon and energy source under anaerobic, but not aerobic, conditions in a defined medium. The cell yield was greatly enhanced by the simultaneous presence of cysteine and CA in the medium. Cysteine was preferentially used rather than CA early in the growth cycle, but all of the CA was used without an apparent lag after the cysteine was metabolized. Atrazine was also degraded by this bacterium under anaerobic conditions in a defined medium. PMID:16346187

  5. An oleaginous bacterium that intrinsically accumulates long-chain free Fatty acids in its cytoplasm.

    PubMed

    Katayama, Taiki; Kanno, Manabu; Morita, Naoki; Hori, Tomoyuki; Narihiro, Takashi; Mitani, Yasuo; Kamagata, Yoichi

    2014-02-01

    Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.

  6. Effect of Tannic Acid on the Transcriptome of the Soil Bacterium Pseudomonas protegens Pf-5

    PubMed Central

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A.

    2013-01-01

    Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosynthesis in the soil- and rhizosphere-inhabiting bacterium Pseudomonas protegens Pf-5. PMID:23435890

  7. Metabolic and transcriptional analysis of acid stress in Lactococcus lactis, with a focus on the kinetics of lactic acid pools.

    PubMed

    Carvalho, Ana Lúcia; Turner, David L; Fonseca, Luís L; Solopova, Ana; Catarino, Teresa; Kuipers, Oscar P; Voit, Eberhard O; Neves, Ana Rute; Santos, Helena

    2013-01-01

    The effect of pH on the glucose metabolism of non-growing cells of L. lactis MG1363 was studied by in vivo NMR in the range 4.8 to 6.5. Immediate pH effects on glucose transporters and/or enzyme activities were distinguished from transcriptional/translational effects by using cells grown at the optimal pH of 6.5 or pre-adjusted to low pH by growth at 5.1. In cells grown at pH 5.1, glucose metabolism proceeds at a rate 35% higher than in non-adjusted cells at the same pH. Besides the upregulation of stress-related genes (such as dnaK and groEL), cells adjusted to low pH overexpressed H(+)-ATPase subunits as well as glycolytic genes. At sub-optimal pHs, the total intracellular pool of lactic acid reached approximately 500 mM in cells grown at optimal pH and about 700 mM in cells grown at pH 5.1. These high levels, together with good pH homeostasis (internal pH always above 6), imply intracellular accumulation of the ionized form of lactic acid (lactate anion), and the concomitant export of the equivalent protons. The average number, n, of protons exported with each lactate anion was determined directly from the kinetics of accumulation of intra- and extracellular lactic acid as monitored online by (13)C-NMR. In cells non-adjusted to low pH, n varies between 2 and 1 during glucose consumption, suggesting an inhibitory effect of intracellular lactate on proton export. We confirmed that extracellular lactate did not affect the lactate: proton stoichiometry. In adjusted cells, n was lower and varied less, indicating a different mix of lactic acid exporters less affected by the high level of intracellular lactate. A qualitative model for pH effects and acid stress adaptation is proposed on the basis of these results.

  8. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.

    PubMed

    Sheng, Juzheng; Ling, Peixue; Wang, Fengshan

    2015-02-01

    Hyaluronic acid (HA), a natural high molecular weight polysaccharide, is produced by Streptococcus zooepidemicus. However, Streptococcus has several drawbacks including its potential to produce exotoxins, so there is demand for an alternative HA source. Here, a recombinant HA biosynthesis operon, as well as the HA biosynthesis operon of S. zooepidemicus were introduced into L. lactis using the nisin-controlled expression system, respectively. HA was successfully synthesized by recombinant L. lactis. Furthermore, overexpression of the endogenous enzymes directing the synthesis of precursor sugars was effective at increasing HA production, and increasing the supply of UDP-activated monosaccharide donors aided synthesis of monodisperse HA polysaccharides. Besides GRAS host strain (L. lactis) and NICE system, the selecting marker (lacF gene) of the recombinant strain is also food grade. Therefore, HA produced by recombinant L. lactis overcomes the problems associated with Streptococcus and provides a source of food-grading HA appropriate for widespread biotechnological applications.

  9. A partial proteome reference map of the wine lactic acid bacterium Oenococcus oeni ATCC BAA-1163.

    PubMed

    Mohedano, María de la Luz; Russo, Pasquale; de Los Ríos, Vivian; Capozzi, Vittorio; Fernández de Palencia, Pilar; Spano, Giuseppe; López, Paloma

    2014-02-26

    Oenococcus oeni is the main lactic acid bacterium that carries out the malolactic fermentation in virtually all red wines and in some white and sparkling wines. Oenococcus oeni possesses an array of metabolic activities that can modify the taste and aromatic properties of wine. There is, therefore, industrial interest in the proteins involved in these metabolic pathways and related transport systems of this bacterium. In this work, we report the characterization of the O. oeni ATCC BAA-1163 proteome. Total and membrane protein preparations from O. oeni were standardized and analysed by two-dimensional gel electrophoresis. Using tandem mass spectrometry, we identified 224 different spots corresponding to 152 unique proteins, which have been classified by their putative function and subjected to bioinformatics analysis.

  10. The ABC-Type Multidrug Resistance Transporter LmrCD Is Responsible for an Extrusion-Based Mechanism of Bile Acid Resistance in Lactococcus lactis▿

    PubMed Central

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Lubelski, Jacek; Agustiandari, Herfita; Kuipers, Oscar P.; Driessen, Arnold J. M.

    2008-01-01

    Upon prolonged exposure to cholate and other toxic compounds, Lactococcus lactis develops a multidrug resistance phenotype that has been attributed to an elevated expression of the heterodimeric ABC-type multidrug transporter LmrCD. To investigate the molecular basis of bile acid resistance in L. lactis and to evaluate the contribution of efflux-based mechanisms in this process, the drug-sensitive L. lactis NZ9000 ΔlmrCD strain was challenged with cholate. A resistant strain was obtained that, compared to the parental strain, showed (i) significantly improved resistance toward several bile acids but not to drugs, (ii) morphological changes, and (iii) an altered susceptibility to antimicrobial peptides. Transcriptome and transport analyses suggest that the acquired resistance is unrelated to elevated transport activity but, instead, results from a multitude of stress responses, changes to the cell envelope, and metabolic changes. In contrast, wild-type cells induce the expression of lmrCD upon exposure to cholate, whereupon the cholate is actively extruded from the cells. Together, these data suggest a central role for an efflux-based mechanism in bile acid resistance and implicate LmrCD as the main system responsible in L. lactis. PMID:18790870

  11. Biosynthesis of the respiratory toxin bongkrekic acid in the pathogenic bacterium Burkholderia gladioli.

    PubMed

    Moebius, Nadine; Ross, Claudia; Scherlach, Kirstin; Rohm, Barbara; Roth, Martin; Hertweck, Christian

    2012-09-21

    Bongkrekic acid (BA), an infamous respiratory toxin of the pathogenic bacterium Burkholderia gladioli, causes lethal intoxications when tempe bongkrek is produced with contaminated Rhizopus oligosporus cultures. Genome sequencing of B. gladioli pathovar cocovenenans unveiled the genetic basis for BA biosynthesis, and pointed to a homologous bon gene cluster in a B. gladioli strain from an infected rice plant. For functional genetics in B. gladioli λ Red recombination was established. Dissection of the modular type I polyketide synthase (a trans-AT PKS) provided insights into complex polyketide assembly. Isoprenoid-like β-branching events and a six-electron oxidation of a methyl group to a carboxylic acid give rise to the unique branched tricarboxylic fatty acid. The role of the cytochrome P450 monooxygenase, BonL, was proven by structural elucidation of deoxybongkrekic acid from a mutant.

  12. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes.

    PubMed

    Zhang, Shuo; Winestrand, Sandra; Chen, Lin; Li, Dengxin; Jönsson, Leif J; Hong, Feng

    2014-10-08

    Lignocellulosic biomass serves as a potential alternative feedstock for production of bacterial nanocellulose (BNC), a high-value-added product of bacteria such as Gluconacetobacter xylinus. The tolerance of G. xylinus to lignocellulose-derived inhibitors (formic acid, acetic acid, levulinic acid, furfural, and 5-hydroxymethylfurfural) was investigated. Whereas 100 mM formic acid completely suppressed the metabolism of G. xylinus, 250 mM of either acetic acid or levulinic acid still allowed glucose metabolism and BNC production to occur. Complete suppression of glucose utilization and BNC production was observed after inclusion of 20 and 30 mM furfural and 5-hydroxymethylfurfural, respectively. The bacterium oxidized furfural and 5-hydroxymethylfurfural to furoic acid and 5-hydroxymethyl-2-furoic acid, respectively. The highest yields observed were 88% for furoic acid/furfural and 76% for 5-hydroxymethyl-2-furoic acid/5-hydroxymethylfurfural. These results are the first demonstration of the capability of G. xylinus to tolerate lignocellulose-derived inhibitors and to convert furan aldehydes.

  13. Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis TOMSC161.

    PubMed

    Velly, H; Bouix, M; Passot, S; Penicaud, C; Beinsteiner, H; Ghorbal, S; Lieben, P; Fonseca, F

    2015-01-01

    This work aimed at characterizing the biochemical and biophysical properties of the membrane of Lactococcus lactis TOMSC161 cells during fermentation at different temperatures, in relation to their freeze-drying and storage resistance. Cells were cultivated at two different temperatures (22 and 30 °C) and were harvested at different growth phases (from the middle exponential phase to the late stationary phase). Bacterial membranes were characterized by determining the fatty acid composition, the lipid phase transition, and the membrane fluidity. Cultivability and acidification activity losses of L. lactis were quantified after freezing, drying, and 3 months of storage. The direct measurement of membrane fluidity by fluorescence anisotropy was linked to lipid composition, and it was established that the cyclopropanation of unsaturated fatty acids with concomitant membrane rigidification during growth led to an increase in the freeze-drying and storage resistance of L. lactis. As expected, cultivating cells at a lower fermentation temperature than the optimum growth temperature induced a homeoviscous adaptation that was demonstrated by a lowered lipid phase transition temperature but that was not related to any improvement in freeze-drying resistance. L. lactis TOMSC161 was therefore able to develop a combined biochemical and biophysical response at the membrane level during fermentation. The ratio of cyclic fatty acids to unsaturated fatty acids (CFA/UFA) appeared to be the most relevant parameter associated with membrane rigidification and cell resistance to freeze-drying and storage. This study increased our knowledge about the physiological mechanisms that explain the resistance of lactic acid bacteria (LAB) to freeze-drying and storage stresses and demonstrated the relevance of complementary methods of membrane characterization.

  14. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation.

    PubMed

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    Soy sauce is a Japanese traditional seasoning composed of various constituents that are produced by various microbes during a long-term fermentation process. Due to the complexity of the process, the investigation of the constituent profile during fermentation is difficult. Metabolomics, the comprehensive study of low molecular weight compounds in biological samples, is thought to be a promising strategy for deep understanding of the constituent contribution to food flavor characteristics. Therefore, metabolomics is suitable for the analysis of soy sauce fermentation. Unfortunately, only few and unrefined studies of soy sauce fermentation using metabolomics approach have been reported. Therefore, we investigated changes in low molecular weight hydrophilic and volatile compounds of soy sauce using gas chromatography/mass spectrometry (GC/MS)-based non-targeted metabolic profiling. The data were analyzed by statistical analysis to evaluate influences of yeast and lactic acid bacterium on the constituent profile. Consequently, our results suggested a novel finding that lactic acid bacterium affected the production of several constituents such as cyclotene, furfural, furfuryl alcohol and methional in the soy sauce fermentation process.

  15. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Kohn, Alexandra; Mathiesen, Svein D.; Præsteng, Kirsti E.

    2008-08-01

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer ( Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 × 2.0-3.5 μm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

  16. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen.

    PubMed

    Sundset, Monica A; Kohn, Alexandra; Mathiesen, Svein D; Praesteng, Kirsti E

    2008-08-01

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer (Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 x 2.0-3.5 microm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

  17. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  18. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    PubMed

    Wang, Xiaoyu; Chen, Meili; Xiao, Jingfa; Hao, Lirui; Crowley, David E; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  19. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Megaspheara elsdenii T81 grew on either DL-lactate or D-glucose at similar rates (0.85 per h), but displayed major differences in the fermentation of these substrates. Lactate was fermented at up to 210-mM concentration to yield acetic, propionic, butyric, and valeric acids. The bacterium was able t...

  20. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)).

  1. A Highly Stable d-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus

    PubMed Central

    Furukawara, Makoto; Omae, Keishi; Tadokoro, Namiho; Saito, Yayoi; Abe, Katsumasa; Kera, Yoshio

    2014-01-01

    d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protein exhibited oxidase activity against neutral and basic d-amino acids and was significantly inhibited by a DAO inhibitor, benzoate, but not by any of the tested d-aspartate oxidase (DDO) inhibitors, thus indicating that the protein is DAO. RxDAO exhibited higher activities and affinities toward branched-chain d-amino acids, with the highest specific activity toward d-valine and catalytic efficiency (kcat/Km) toward d-leucine. Substrate inhibition was observed in the case of d-tyrosine. The enzyme had an optimum pH range and temperature of pH 7.5 to 10 and 65°C, respectively, and was stable between pH 5.0 and pH 8.0, with a T50 (the temperature at which 50% of the initial enzymatic activity is lost) of 64°C. No loss of enzyme activity was observed after a 1-week incubation period at 30°C. This enzyme was markedly inactivated by phenylmethylsulfonyl fluoride but not by thiol-modifying reagents and diethyl pyrocarbonate, which are known to inhibit certain DAOs. These results demonstrated that RxDAO is a highly stable DAO and suggested that this enzyme may be valuable for practical applications, such as the determination and quantification of branched-chain d-amino acids, and as a scaffold to generate a novel DAO via protein engineering. PMID:25217016

  2. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    PubMed

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment.

  3. Generation of Food-Grade Recombinant Lactic Acid Bacterium Strains by Site-Specific Recombination

    PubMed Central

    Martín, M. Cruz; Alonso, Juan C.; Suárez, Juan E.; Alvarez, Miguel A.

    2000-01-01

    The construction of a delivery and clearing system for the generation of food-grade recombinant lactic acid bacterium strains, based on the use of an integrase (Int) and a resolvo-invertase (β-recombinase) and their respective target sites (attP-attB and six, respectively) is reported. The delivery system contains a heterologous replication origin and antibiotic resistance markers surrounded by two directly oriented six sites, a multiple cloning site where passenger DNA could be inserted (e.g., the cI gene of bacteriophage A2), the int gene, and the attP site of phage A2. The clearing system provides a plasmid-borne gene encoding β-recombinase. The nonreplicative vector-borne delivery system was transformed into Lactobacillus casei ATCC 393 and, by site-specific recombination, integrated as a single copy in an orientation- and Int-dependent manner into the attB site present in the genome of the host strain. The transfer of the clearing system into this strain, with the subsequent expression of the β-recombinase, led to site-specific DNA resolution of the non-food-grade DNA. These methods were validated by the construction of a stable food-grade L. casei ATCC 393-derived strain completely immune to phage A2 infection during milk fermentation. PMID:10831443

  4. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil.

    PubMed

    Yan, Jun; Yan, Hui; Liu, Li Xue; Chen, Wen Feng; Zhang, Xiao Xia; Verástegui-Valdés, Myrthala M; Wang, En Tao; Han, Xiao Zeng

    2017-01-01

    One Gram-negative, aerobic, motile, rod-shaped bacterium, designated as FH14(T), was isolated from nodules of Phaseolus vulgaris grown in Hidalgo State of Mexico. Results based upon 16S rRNA gene (≥99.8 % similarities to known species), concatenated sequence (recA, atpD and glnII) analysis of three housekeeping genes (≤93.4 % similarities to known species) and average nucleotide identity (ANI) values of genome sequence (ranged from 87.6 to 90.0 % to related species) indicated the distinct position of strain FH14(T) within the genus Rhizobium. In analyses of symbiotic genes, only nitrogen fixation gene nifH was amplified that had nucleotide sequence identical to those of the bean-nodulating strains in R. phaseoli and R. vallis, while nodulation gene nodC gene was not amplified. The failure of nodulation to its original host P. vulgaris and other legumes evidenced the loss of its nodulation capability. Strain FH14(T) contained summed feature 8 (C18:1 ω6c/C18:1 ω7c, 59.96 %), C16:0 (10.6 %) and summed feature 2 (C12:0 aldehyde/unknown 10.928, 10.24 %) as the major components of cellular fatty acids. Failure to utilize alaninamide, and utilizing L-alanine, L-asparagine and γ-amino butyric acid as carbon source, distinguished the strain FH14(T) from the type strains for the related species. The genome size and DNA G+C content of FH14(T) were 6.94 Mbp and 60.8 mol %, respectively. Based on those results, a novel specie in Rhizobium, named Rhizobium hidalgonense sp. nov., was proposed, with FH14(T) (=HAMBI 3636(T) = LMG 29288(T)) as the type strain.

  5. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM

    PubMed Central

    Altermann, Eric; Russell, W. Michael; Azcarate-Peril, M. Andrea; Barrangou, Rodolphe; Buck, B. Logan; McAuliffe, Olivia; Souther, Nicole; Dobson, Alleson; Duong, Tri; Callanan, Michael; Lick, Sonja; Hamrick, Alice; Cano, Raul; Klaenhammer, Todd R.

    2005-01-01

    Lactobacillus acidophilus NCFM is a probiotic bacterium that has been produced commercially since 1972. The complete genome is 1,993,564 nt and devoid of plasmids. The average GC content is 34.71% with 1,864 predicted ORFs, of which 72.5% were functionally classified. Nine phage-related integrases were predicted, but no complete prophages were found. However, three unique regions designated as potential autonomous units (PAUs) were identified. These units resemble a unique structure and bear characteristics of both plasmids and phages. Analysis of the three PAUs revealed the presence of two R/M systems and a prophage maintenance system killer protein. A spacers interspersed direct repeat locus containing 32 nearly perfect 29-bp repeats was discovered and may provide a unique molecular signature for this organism. In silico analyses predicted 17 transposase genes and a chromosomal locus for lactacin B, a class II bacteriocin. Several mucus- and fibronectin-binding proteins, implicated in adhesion to human intestinal cells, were also identified. Gene clusters for transport of a diverse group of carbohydrates, including fructooligosaccharides and raffinose, were present and often accompanied by transcriptional regulators of the lacI family. For protein degradation and peptide utilization, the organism encoded 20 putative peptidases, homologs for PrtP and PrtM, and two complete oligopeptide transport systems. Nine two-component regulatory systems were predicted, some associated with determinants implicated in bacteriocin production and acid tolerance. Collectively, these features within the genome sequence of L. acidophilus are likely to contribute to the organisms' gastric survival and promote interactions with the intestinal mucosa and microbiota. PMID:15671160

  6. Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana.

    PubMed

    d'Ippolito, Giuliana; Dipasquale, Laura; Fontana, Angelo

    2014-09-01

    The heterotrophic bacterium Thermotoga neapolitana produces hydrogen by fermentation of sugars. Under capnophilic (carbon dioxide requiring) conditions, the process is preferentially associated with the production of lactic acid, which, as shown herein, is synthesized by reductive carboxylation of acetyl coenzyme A. The enzymatic coupling is dependent on the carbon dioxide stimulated activity of heterotetrameric pyruvate:ferredoxin oxidoreductase. Under the same culture conditions, T. neapolitana also operates the unfavorable synthesis of lactic acid from an exogenous acetate supply. This process, which requires carbon dioxide (or carbonate) and an unknown electron donor, allows for the conversion of carbon dioxide into added-value chemicals without biomass deconstruction.

  7. Identification and Characterization of a New 7-Aminocephalosporanic Acid Deacetylase from Thermophilic Bacterium Alicyclobacillus tengchongensis

    PubMed Central

    Ding, Jun-Mei; Yu, Ting-Ting; Han, Nan-Yu; Yu, Jia-Lin; Li, Jun-Jun; Yang, Yun-Juan; Tang, Xiang-Hua; Xu, Bo; Zhou, Jun-Pei

    2015-01-01

    ABSTRACT Deacetylation of 7-aminocephalosporanic acid (7-ACA) at position C-3 provides valuable starting material for producing semisynthetic β-lactam antibiotics. However, few enzymes have been characterized in this process before now. Comparative analysis of the genome of the thermophilic bacterium Alicyclobacillus tengchongensis revealed a hypothetical protein (EstD1) with typical esterase features. The EstD1 protein was functionally cloned, expressed, and purified from Escherichia coli BL21(DE3). It indeed displayed esterase activity, with optimal activity at around 65°C and pH 8.5, with a preference for esters with short-chain acyl esters (C2 to C4). Sequence alignment revealed that EstD1 is an SGNH hydrolase with the putative catalytic triad Ser15, Asp191, and His194, which belongs to carbohydrate esterase family 12. EstD1 can hydrolyze acetate at the C-3 position of 7-aminocephalosporanic acid (7-ACA) to form deacetyl-7-ACA, which is an important starting material for producing semisynthetic β-lactam antibiotics. EstD1 retained more than 50% of its initial activity when incubated at pH values ranging from 4 to 11 at 65°C for 1 h. To the best of our knowledge, this enzyme is a new SGNH hydrolase identified from thermophiles that is able to hydrolyze 7-ACA. IMPORTANCE Deacetyl cephalosporins are highly valuable building blocks for the industrial production of various kinds of semisynthetic β-lactam antibiotics. These compounds are derived mainly from 7-ACA, which is obtained by chemical or enzymatic processes from cephalosporin C. Enzymatic transformation of 7-ACA is the main method because of the adverse effects chemical deacylation brought to the environment. SGNH hydrolases are widely distributed in plants. However, the tools for identifying and characterizing SGNH hydrolases from bacteria, especially from thermophiles, are rather limited. Here, our work demonstrates that EstD1 belongs to the SGNH family and can hydrolyze acetate at the C-3 position of

  8. Influence of Artisan Bakery- or Laboratory-Propagated Sourdoughs on the Diversity of Lactic Acid Bacterium and Yeast Microbiotas

    PubMed Central

    Minervini, Fabio; Lattanzi, Anna; De Angelis, Maria; Gobbetti, Marco

    2012-01-01

    Seven mature type I sourdoughs were comparatively back-slopped (80 days) at artisan bakery and laboratory levels under constant technology parameters. The cell density of presumptive lactic acid bacteria and related biochemical features were not affected by the environment of propagation. On the contrary, the number of yeasts markedly decreased from artisan bakery to laboratory propagation. During late laboratory propagation, denaturing gradient gel electrophoresis (DGGE) showed that the DNA band corresponding to Saccharomyces cerevisiae was no longer detectable in several sourdoughs. Twelve species of lactic acid bacteria were variously identified through a culture-dependent approach. All sourdoughs harbored a certain number of species and strains, which were dominant throughout time and, in several cases, varied depending on the environment of propagation. As shown by statistical permutation analysis, the lactic acid bacterium populations differed among sourdoughs propagated at artisan bakery and laboratory levels. Lactobacillus plantarum, Lactobacillus sakei, and Weissella cibaria dominated in only some sourdoughs back-slopped at artisan bakeries, and Leuconostoc citreum seemed to be more persistent under laboratory conditions. Strains of Lactobacillus sanfranciscensis were indifferently found in some sourdoughs. Together with the other stable species and strains, other lactic acid bacteria temporarily contaminated the sourdoughs and largely differed between artisan bakery and laboratory levels. The environment of propagation has an undoubted influence on the composition of sourdough yeast and lactic acid bacterium microbiotas. PMID:22635989

  9. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    PubMed

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA.

  10. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2014-01-01

    This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239

  11. A Virulent Phage Infecting Lactococcus garvieae, with Homology to Lactococcus lactis Phages

    PubMed Central

    Eraclio, Giovanni; Tremblay, Denise M.; Lacelle-Côté, Alexia; Labrie, Simon J.; Fortina, Maria Grazia

    2015-01-01

    A new virulent phage belonging to the Siphoviridae family and able to infect Lactococcus garvieae strains was isolated from compost soil. Phage GE1 has a prolate capsid (56 by 38 nm) and a long noncontractile tail (123 nm). It had a burst size of 139 and a latent period of 31 min. Its host range was limited to only two L. garvieae strains out of 73 tested. Phage GE1 has a double-stranded DNA genome of 24,847 bp containing 48 predicted open reading frames (ORFs). Putative functions could be assigned to only 14 ORFs, and significant matches in public databases were found for only 17 ORFs, indicating that GE1 is a novel phage and its genome contains several new viral genes and encodes several new viral proteins. Of these 17 ORFs, 16 were homologous to deduced proteins of virulent phages infecting the dairy bacterium Lactococcus lactis, including previously characterized prolate-headed phages. Comparative genome analysis confirmed the relatedness of L. garvieae phage GE1 to L. lactis phages c2 (22,172 bp) and Q54 (26,537 bp), although its genome organization was closer to that of phage c2. Phage GE1 did not infect any of the 58 L. lactis strains tested. This study suggests that phages infecting different lactococcal species may have a common ancestor. PMID:26407890

  12. DNA Macroarray Profiling of Lactococcus lactis subsp. lactis IL1403 Gene Expression during Environmental Stresses†

    PubMed Central

    Xie, Yi; Chou, Lan-szu; Cutler, Adele; Weimer, Bart

    2004-01-01

    This report describes the use of an oligonucleotide macroarray to profile the expression of 375 genes in Lactococcus lactis subsp. lactis IL1403 during heat, acid, and osmotic stress. A set of known stress-associated genes in IL1403 was used as the internal control on the array. Every stress response was accurately detected using the macroarray, compared to data from previous reports. As a group, the expression patterns of the investigated metabolic genes were significantly altered by heat, acid, and osmotic stresses. Specifically, 13 to 18% of the investigated genes were differentially expressed in each of the environmental stress treatments. Interestingly, the methionine biosynthesis pathway genes (metA-metB1 and metB2-cysK) were induced during heat shock, but methionine utilization genes, such as metK, were induced during acid stress. These data provide a possible explanation for the differences between acid tolerance mechanisms of L. lactis strains IL1403 and MG1363 reported previously. Several groups of transcriptional responses were common among the stress treatments, such as repression of peptide transporter genes, including the opt operon (also known as dpp) and dtpT. Reduction of peptide transport due to environmental stress will have important implications in the cheese ripening process. Although stress responses in lactococci were extensively studied during the last decade, additional information about this bacterium was gained from the use of this metabolic array. PMID:15528540

  13. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji

    2015-01-01

    Production of optically pure lactic acid from lignocellulosic material for commercial purposes is hampered by several difficulties, including heterofermentation of pentose sugars and high energy consumption by mesophilic lactic acid bacteria. Here, we report a novel lactic acid bacterium, strain QU 50, that has the potential to produce optically pure l-lactic acid (≥99.2%) in a homofermentative manner from xylose under thermophilic conditions. Strain QU 50 was isolated from Egyptian fertile soil and identified as Enterococcus faecium QU 50 by analyzing its sugar fermentation pattern and 16S rRNA gene sequence. Enterococcus faecium QU 50 fermented xylose efficiently to produce lactic acid over wide pH (6.0-10.0) and temperature ranges (30-52°C), with a pH of 6.5 and temperature of 50°C being optimal. To our knowledge, this is the first report of homofermentative lactic acid production from xylose by a thermophilic lactic acid bacterium.

  14. Identification and Analysis of a Novel Group of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus

    PubMed Central

    McDonnell, Brian; Mahony, Jennifer; Neve, Horst; Hanemaaijer, Laurens; Noben, Jean-Paul; Kouwen, Thijs

    2016-01-01

    ABSTRACT We present the complete genome sequences of four members of a novel group of phages infecting Streptococcus thermophilus, designated here as the 987 group. Members of this phage group appear to have resulted from genetic exchange events, as evidenced by their “hybrid” genomic architecture, exhibiting DNA sequence relatedness to the morphogenesis modules of certain P335 group Lactococcus lactis phages and to the replication modules of S. thermophilus phages. All four identified members of the 987 phage group were shown to elicit adsorption affinity to both their cognate S. thermophilus hosts and a particular L. lactis starter strain. The receptor binding protein of one of these phages (as a representative of this novel group) was defined using an adsorption inhibition assay. The emergence of a novel phage group infecting S. thermophilus highlights the continuous need for phage monitoring and development of new phage control measures. IMPORTANCE Phage predation of S. thermophilus is an important issue for the dairy industry, where viral contamination can lead to fermentation inefficiency or complete fermentation failure. Genome information and phage-host interaction studies of S. thermophilus phages, particularly those emerging in the marketplace, are an important part of limiting the detrimental impact of these viruses in the dairy environment. PMID:27316953

  15. Fractionation of carbon isotopes in biosynthesis of fatty acids by a piezophilic bacterium Moritella japonica strain DSK1

    NASA Astrophysics Data System (ADS)

    Fang, Jiasong; Uhle, Maria; Billmark, Kaycie; Bartlett, Douglas H.; Kato, Chaki

    2006-04-01

    We examined stable carbon isotope fractionation in biosynthesis of fatty acids of a piezophilic bacterium Moritella japonica strain DSK1. The bacterium was grown to stationary phase at pressures of 0.1, 10, 20, and 50 MPa in media prepared using sterile-filtered natural seawater supplied with glucose as the sole carbon source. Strain DSK1 synthesized typical bacterial fatty acids (C 14-19 saturated, monounsaturated, and cyclopropane fatty acids) as well as long-chain polyunsaturated fatty acids (PUFA) (20:6 ω3). Bacterial cell biomass and individual fatty acids exhibited consistent pressure-dependent carbon isotope fractionations relative to glucose. The observed Δδ FA-glucose (-1.0‰ to -11.9‰) at 0.1 MPa was comparable to or slightly higher than fractionations reported in surface bacteria. However, bulk biomass and fatty acids became more depleted in 13C with pressure. Average carbon isotope fractionation (Δδ FA-glucose) at high pressures was much higher than that for surface bacteria: -15.7‰, -15.3‰, and -18.3‰ at 10, 20, and 50 MPa, respectively. PUFA were more 13C depleted than saturated and monounsaturated fatty acids at all pressures. The observed isotope effects may be ascribed to the kinetics of enzymatic reactions that are affected by hydrostatic pressure and to biosynthetic pathways that are different for short-chain and long-chain fatty acids. A simple quantitative calculation suggests that in situ piezophilic bacterial contribution of polyunsaturated fatty acids to marine sediments is nearly two orders of magnitude higher than that of marine phytoplankton and that the carbon isotope imprint of piezophilic bacteria can override that of surface phytoplankton. Our results have important implications for marine biogeochemistry. Depleted fatty acids reported in marine sediments and the water column may be derived simply from piezophilic bacteria resynthesis of organic matter, not from bacterial utilization of a 13C-depleted carbon source (i

  16. The amino acid sequence of the cytochrome c-554(547) from the chemolithotrophic bacterium Thiobacillus neapolitanus.

    PubMed Central

    Ambler, R P; Meyer, T E; Trudinger, P A; Kamen, M D

    1985-01-01

    An amino acid sequence is proposed for the cytochrome c-554(547) from the bacterium Thiobacillus neapolitanus N.C.I.B. 8539). It consists of a polypeptide chain of 91 residues, with a pair of haem-attachment cysteine residues at positions 15 and 18. There is similarity in sequence with each of the halves of the sequence of the dihaem cytochromes c4 and with a cytochrome c-554(548) from a halophilic strain of Paracoccus. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50127 (11 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1985) 225, 5. PMID:2988504

  17. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    PubMed Central

    Alberto, María R.; de Nadra, María C. Manca; Arena, Mario E.

    2012-01-01

    The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI) of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC), found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively) and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively). ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37–40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds. PMID:24031815

  18. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium.

    PubMed

    Alberto, María R; de Nadra, María C Manca; Arena, Mario E

    2012-01-01

    The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI) of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC), found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively) and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively). ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  19. Purification, characterization, gene cloning and nucleotide sequencing of D: -stereospecific amino acid amidase from soil bacterium: Delftia acidovorans.

    PubMed

    Hongpattarakere, Tipparat; Komeda, Hidenobu; Asano, Yasuhisa

    2005-12-01

    The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40 degrees C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45 degrees C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.

  20. Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima.

    PubMed Central

    Carballeira, N M; Reyes, M; Sostre, A; Huang, H; Verhagen, M F; Adams, M W

    1997-01-01

    The fatty acid compositions of the hyperthermophilic microorganisms Thermotoga maritima and Pyrococcus furiosus were studied and compared. A total of 37 different fatty acids were identified in T. maritima, including the novel 13,14-dimethyloctacosanedioic acid. In contrast, a total of 18 different fatty acids were characterized, as minor components, in P. furiosus, and these included saturated, monounsaturated, and dicarboxylic acids. This is the first report of fatty acids from an archaeon. PMID:9098079

  1. Fractionation of Carbon Isotopes in Biosynthesis of Fatty Acids by A Piezophilic Bacterium Moritella Japonica DSK1

    NASA Astrophysics Data System (ADS)

    Fang, J.; Uhle, M.; Bartlett, D.; Kato, C.

    2005-12-01

    We examined stable carbon isotope fractionation in biosynthesis of fatty acids of a piezophilic bacterium Moritella japonica DSK1. DSK1 was grown to stationary phase at pressures of 0.1, 10, 20, and 50 MPa in media prepared using natural seawater supplied with glucose with the sole carbon source. DSk1 synthesized typical bacterial fatty acids (C14-19 saturated, monounsaturated, and cyclopropane fatty acids) as well as long-chain polyunsaturated fatty acids (PUFA) (20:6ω3). Bacterial cell biomass and individual fatty acids exhibited consistent pressure-dependent carbon isotope fractionations relative to glucose. The observed ΔδFA-glucose (-1.0 to -11.9%) at 0.1 MPa was comparable to or slightly higher than fractionations reported on surface bacteria. However, Bulk biomass and fatty acids became more depleted in 13C with pressure. Average carbon isotope fractionation ΔδFA-glucose) at high pressures was much higher than that for surface bacteria: -15.7, -15.3, and -18.3‰ at 10, 20, and 50 MPa, respectively. PUFA were more 13C depleted than saturated and monounsaturated fatty acids at all pressures. The observed isotope effects may be ascribed to the kinetics of enzymatic reactions affected by hydrostatic pressure and to different biosynthetic pathways for short-chain and long-chain fatty acids. Our results have important implications for marine biogeochemistry. The 13C depleted fatty acids in marine sediments and water column may be derived simply from piezophilic bacteria resynthesis of organic matter, not from bacterial utilization of a 13C-depleted carbon source (i.e., methane). The interpretation of carbon isotope signatures of marine lipids must be based on principles derived from piezophilic bacteria.

  2. Modeling of the Competitive Growth of Listeria monocytogenes and Lactococcus lactis in Vegetable Broth

    PubMed Central

    Breidt, Frederick; Fleming, Henry P.

    1998-01-01

    Current mathematical models used by food microbiologists do not address the issue of competitive growth in mixed cultures of bacteria. We developed a mathematical model which consists of a system of nonlinear differential equations describing the growth of competing bacterial cell cultures. In this model, bacterial cell growth is limited by the accumulation of protonated lactic acid and decreasing pH. In our experimental system, pure and mixed cultures of Lactococcus lactis and Listeria monocytogenes were grown in a vegetable broth medium. Predictions of the model indicate that pH is the primary factor that limits the growth of L. monocytogenes in competition with a strain of L. lactis which does not produce the bacteriocin nisin. The model also predicts the values of parameters that affect the growth and death of the competing populations. Further development of this model will incorporate the effects of additional inhibitors, such as bacteriocins, and may aid in the selection of lactic acid bacterium cultures for use in competitive inhibition of pathogens in minimally processed foods. PMID:9726854

  3. Inhibition mechanism of Listeria monocytogenes by a bioprotective bacteria Lactococcus piscium CNCM I-4031.

    PubMed

    Saraoui, Taous; Fall, Papa Abdoulaye; Leroi, Françoise; Antignac, Jean-Philippe; Chéreau, Sylvain; Pilet, Marie France

    2016-02-01

    Listeria monocytogenes is a pathogenic Gram positive bacterium and the etiologic agent of listeriosis, a severe food-borne disease. Lactococcus piscium CNCM I-4031 has the capacity to prevent the growth of L. monocytogenes in contaminated peeled and cooked shrimp. To investigate the inhibititory mechanism, a chemically defined medium (MSMA) based on shrimp composition and reproducing the inhibition observed in shrimp was developed. In co-culture at 26 °C, L. monocytogenes was reduced by 3-4 log CFU g(-1) after 24 h. We have demonstrated that the inhibition was not due to secretion of extracellular antimicrobial compounds as bacteriocins, organic acids and hydrogen peroxide. Global metabolomic fingerprints of these strains in pure culture were assessed by liquid chromatography coupled with high resolution mass spectrometry. Consumption of glucose, amino-acids, vitamins, nitrogen bases, iron and magnesium was measured and competition for some molecules could be hypothesized. However, after 24 h of co-culture, when inhibition of L. monocytogenes occurred, supplementation of the medium with these compounds did not restore its growth. The inhibition was observed in co-culture but not in diffusion chamber when species were separated by a filter membrane. Taken together, these data indicate that the inhibition mechanism of L. monocytogenes by L. piscium is cell-to-cell contact-dependent.

  4. Identification of an Arachidonic Acid-Producing Bacterium and Description of Kineococcus arachidonicus sp. nov.

    SciTech Connect

    Fliermans, C.B.

    2001-05-15

    The identification of bacterial with the ability to produce polyunsaturated fatty acids as been limited almost exclusively to gram-negative, psychrophilic, marine microorganisms. Here we describe a new gram-type-positive bactgerium, strain SRS30216T, that produces the polyunsaturated fatty acid, arachidonic acid, and is neither psychrophilic nor a marine isolate.

  5. Lactococcus lactis ssp. lactis as Potential Functional
Starter Culture

    PubMed Central

    Cvrtila, Jelena; Topić, Ivana; Delaš, Frane; Markov, Ksenija

    2014-01-01

    Summary The aim of this study is to identify and characterise potential autochthonous functional starter cultures in homemade horsemeat sausage. The dominant microflora in the samples of horsemeat sausage were lactic acid bacteria (LAB), followed by micrococci. Among the LAB, Lactococcus lactis ssp. lactis and Lactobacillus plantarum were the dominant species, and since the first is not common in fermented sausages, we characterised it as a potential functional starter culture. Lactococcus lactis ssp. lactis produced a significant amount of lactic acid, displayed good growth capability at 12, 18 and 22 °C, growth in the presence of 5% NaCl, good viability after lyophilisation and in simulated gastric and small intestinal juice, antimicrobial activity against test pathogens, and good adhesive properties in vitro. PMID:27904322

  6. Isolation and characterization of Halomonas sp. strain IMPC, a p-coumaric acid-metabolizing bacterium that decarboxylates other cinnamic acids under hypersaline conditions.

    PubMed

    Abdelkafi, Slim; Labat, Marc; Casalot, Laurence; Chamkha, Mohamed; Sayadi, Sami

    2006-02-01

    A moderately halophilic, mesophilic, Gram-negative, motile, nonsporulating bacterium, designated strain IMPC, was isolated from a table-olive fermentation rich in aromatic compounds, after enrichment on p-coumaric acid under halophilic conditions. Strain IMPC was able to degrade p-coumaric acid. p-hydroxybenzaldehyde and p-hydroxybenzoic acid were detected as breakdown products from p-coumaric acid. Protocatechuic acid was identified as the final aromatic product of p-coumaric acid catabolism before ring fission. Strain IMPC transformed various cinnamic acids with substituent H, OH, CH(3) or OCH(3) in the para- and/or meta-position of the aromatic ring to the corresponding benzoic acids, indicating a specific selection. A beta-oxidation pathway was proposed for these transformations. Phylogenetic analysis of the 16S rRNA gene revealed that this isolate was a member of the genus Halomonas. Strain IMPC was closely related to Halomonas elongata ATCC 33173(T)and Halomonas eurihalina ATCC 49336(T).

  7. Lactococcus garvieae carries a chromosomally encoded pentapeptide repeat protein that confers reduced susceptibility to quinolones in Escherichia coli producing a cytotoxic effect.

    PubMed

    Gibello, Alicia; Díaz de Alba, Paula; Blanco, M Mar; Machuca, Jesus; Cutuli, M Teresa; Rodríguez-Martínez, José Manuel

    2014-09-01

    This study characterises a chromosomal gene of Lactococcus garvieae encoding a pentapeptide repeat protein designated as LgaQnr. This gene has been implicated in reduced susceptibility to quinolones in this bacterium, which is of relevance to both veterinary and human medicine. All of the L. garvieae isolates analysed were positive for the lgaqnr gene. The expression of lgaqnr in Escherichia coli reduced the susceptibility to quinolones, producing an adverse effect. The reduced susceptibility to ciprofloxacin was 16-fold in E. coli ATCC 25922 and 32-fold in E. coli DH10B, compared to the control strains. The minimum inhibitory concentration of nalidixic acid was also increased 4 or 5-fold. The effect of the expression of lgaqnr in E. coli was investigated by electron microscopy and was observed to affect the structure of the cell and the inner membrane of the recombinant cells.

  8. A CMP-N-acetylneuraminic acid synthetase purified from a marine bacterium, Photobacterium leiognathi JT-SHIZ-145.

    PubMed

    Kajiwara, Hitomi; Mine, Toshiki; Miyazaki, Tatsuo; Yamamoto, Takeshi

    2011-01-01

    A cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) synthetase was found in a crude extract prepared from Photobacterium leiognathi JT-SHIZ-145, a marine bacterium that also produces a β-galactoside α2,6-sialyltransferase. The CMP-Neu5Ac synthetase was purified from the crude extract of the cells by a combination of anion-exchange and gel filtration column chromatography. The purified enzyme migrated as a single band (60 kDa) on sodium dodecylsulfate-polyacrylamide gel electrophoresis. The activity of the enzyme was maximal at 35 °C at pH 9.0, and the synthetase required Mg(2+) for activity. Although these properties are similar to those of other CMP-Neu5Ac synthetases isolated from bacteria, this synthetase produced not only CMP-Neu5Ac from cytidine triphosphate and Neu5Ac, but also CMP-N-glycolylneuraminic acid from cytidine triphosphate and N-glycolylneuraminic acid, unlike CMP-Neu5Ac synthetase purified from Escherichia coli.

  9. Statistical optimization of cell disruption techniques for releasing intracellular X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis spp. lactis.

    PubMed

    Üstün-Aytekin, Özlem; Arısoy, Sevda; Aytekin, Ali Özhan; Yıldız, Ece

    2016-03-01

    X-prolyl dipeptidyl aminopeptidase (PepX) is an intracellular enzyme from the Gram-positive bacterium Lactococcus lactis spp. lactis NRRL B-1821, and it has commercial importance. The objective of this study was to compare the effects of several cell disruption methods on the activity of PepX. Statistical optimization methods were performed for two cavitation methods, hydrodynamic (high-pressure homogenization) and acoustic (sonication), to determine the more appropriate disruption method. Two level factorial design (2FI), with the parameters of number of cycles and pressure, and Box-Behnken design (BBD), with the parameters of cycle, sonication time, and power, were used for the optimization of the high-pressure homogenization and sonication methods, respectively. In addition, disruption methods, consisting of lysozyme, bead milling, heat treatment, freeze-thawing, liquid nitrogen, ethylenediaminetetraacetic acid (EDTA), Triton-X, sodium dodecyl sulfate (SDS), chloroform, and antibiotics, were performed and compared with the high-pressure homogenization and sonication methods. The optimized values of high-pressure homogenization were one cycle at 130 MPa providing activity of 114.47 mU ml(-1), while sonication afforded an activity of 145.09 mU ml(-1) at 28 min with 91% power and three cycles. In conclusion, sonication was the more effective disruption method, and its optimal operation parameters were manifested for the release of intracellular enzyme from a L. lactis spp. lactis strain, which is a Gram-positive bacterium.

  10. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  11. Cell Wall Anchoring of the Campylobacter Antigens to Lactococcus lactis

    PubMed Central

    Kobierecka, Patrycja A.; Olech, Barbara; Książek, Monika; Derlatka, Katarzyna; Adamska, Iwona; Majewski, Paweł M.; Jagusztyn-Krynicka, Elżbieta K.; Wyszyńska, Agnieszka K.

    2016-01-01

    Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein – CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type C. jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analyzed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ Lactic Acid Bacteria (LAB) strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered as an alternative vector to

  12. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans.

    PubMed

    Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T

    2007-07-01

    Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.

  13. Novel Antibacterial Activity of Lactococcus Lactis Subspecies Lactis Z11 Isolated from Zabady

    PubMed Central

    Enan, Gamal; Abdel-Shafi, Seham; Ouda, Sahar; Negm, Sally

    2013-01-01

    The purpose of this study was to select and characterize a probiotic bacterium with distinctive antimicrobial activities. In this respect, Lactococcus lactis subspecies lactis Z11 (L. lactis Z11) isolated from Zabady (Arabian yoghurt) inhibited other strains of lactic acid bacteria and some food-born pathogens including Listeria monocytogenes, Bacillus cereus and staphylococcus aureus. The inhibitory activity of cell free supernatant (CFS) of L. lactis Z11 isolated from zabady was lost by proteolytic enzymes, heat resistant. Consequently, the active substance(s) of CFS was characterized as a bacteriocin. This bacteriocin has been shown to consist of protein but has no lipidic or glucidic moieties in its active molecule. Its activity was stable in the pH range 2.0 to 7.0 and was not affected by organic solvents. The L. lactis Z11 bacteriocin was produced in CFS throughout the mide to the late exponential phase of growth of the producer organism and maximum bacteriocin production was obtained at initial pH 6.5 at incubation temperature of about 30°C. PMID:24151453

  14. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1.

    PubMed

    Maneerat, Suppasil; Nitoda, Teruhiko; Kanzaki, Hiroshi; Kawai, Fusako

    2005-06-01

    Strain SM1 was isolated as a biosurfactant-producing microorganism from seawater and presumptively identified as Myroides sp., based on morphology, biochemical characteristics and 16S rDNA sequence. The strain produced surface-active compounds in marine broth, which were purified, using emulsification activity for n-hexadecane as an indicator. The purified compounds were identified by thin-layer chromatography, (1)H- and (13)C-NMR spectra and fast atom bombardment mass spectrometry as cholic acid, deoxycholic acid and their glycine conjugates. Type strains of the genus Myroides, M. odoratus JCM7458 and M. odoramitimus JCM7460, also produced these compounds. Myroides sp. strain SM1 possessed a biosynthetic route to cholic acid from cholesterol. Thus, bile acids were found as new products of prokaryotic cells, genus Myroides.

  15. Complete genome sequence of Enterococcus mundtii QU 25, an efficient L-(+)-lactic acid-producing bacterium.

    PubMed

    Shiwa, Yuh; Yanase, Hiroaki; Hirose, Yuu; Satomi, Shohei; Araya-Kojima, Tomoko; Watanabe, Satoru; Zendo, Takeshi; Chibazakura, Taku; Shimizu-Kadota, Mariko; Yoshikawa, Hirofumi; Sonomoto, Kenji

    2014-08-01

    Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report the complete genome sequence of strain QU 25, primarily determined using Pacific Biosciences sequencing technology. The E. mundtii QU 25 genome comprises a 3 022 186-bp single circular chromosome (GC content, 38.6%) and five circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003. In all, 2900 protein-coding sequences, 63 tRNA genes, and 6 rRNA operons were predicted in the QU 25 chromosome. Plasmid pQY024 harbours genes for mundticin production. We found that strain QU 25 produces a bacteriocin, suggesting that mundticin-encoded genes on plasmid pQY024 were functional. For lactic acid fermentation, two gene clusters were identified-one involved in the initial metabolism of xylose and uptake of pentose and the second containing genes for the pentose phosphate pathway and uptake of related sugars. This is the first complete genome sequence of an E. mundtii strain. The data provide insights into lactate production in this bacterium and its evolution among enterococci.

  16. Characterization and Antibacterial Potential of Lactic Acid Bacterium Pediococcus pentosaceus 4I1 Isolated from Freshwater Fish Zacco koreanus

    PubMed Central

    Bajpai, Vivek K.; Han, Jeong-Ho; Rather, Irfan A.; Park, Chanseo; Lim, Jeongheui; Paek, Woon Kee; Lee, Jong Sung; Yoon, Jung-In; Park, Yong-Ha

    2016-01-01

    This study was undertaken to characterize a lactic acid bacterium 4I1, isolated from the freshwater fish, Zacco koreanus. Morphological, biochemical, and molecular characterization of 4I1 revealed it to be Pediococcus pentosaceus 4I1. The cell free supernatant (CFS) of P. pentosaceus 4I1 exhibited significant (p < 0.05) antibacterial effects (inhibition zone diameters: 16.5–20.4 mm) against tested foodborne pathogenic bacteria with MIC and MBC values of 250–500 and 500–1,000 μg/mL, respectively. Further, antibacterial action of CFS of P. pentosaceus 4I1 against two selected bacteria Staphylococcus aureus KCTC-1621 and Escherichia coli O157:H7 was determined in subsequent assays. The CFS of P. pentosaceus 4I1 revealed its antibacterial action against S. aureus KCTC-1621 and E. coli O157:H7 on membrane integrity as confirmed by a reduction in cell viability, increased potassium ion release (900 and 800 mmol/L), reduced absorption at 260-nm (3.99 and 3.77 OD), and increased relative electrical conductivity (9.9 and 9.7%), respectively. Gas chromatography–mass spectrometry (GC–MS) analysis of the CFS of P. pentosaceus 4I1 resulted in the identification of seven major compounds, which included amino acids, fatty acids and organic acids. Scanning electron microscopic-based morphological analysis further confirmed the antibacterial effect of CFS of P. pentosaceus 4I1 against S. aureus KCTC-1621 and E. coli O157:H7. In addition, the CFS of P. Pentosaceus 4I1 displayed potent inhibitory effects on biofilms formation by S. aureus KCTC-1621 and E. coli O157:H7. The study indicates the CFS of P. pentosaceus 4I1 offers an alternative means of controlling foodborne pathogens. PMID:28066360

  17. Characterization of a nitroreductase with selective nitroreduction properties in the food and intestinal lactic acid bacterium Lactobacillus plantarum WCFS1.

    PubMed

    Guillén, Hugo; Curiel, Jose Antonio; Landete, José María; Muñoz, Rosario; Herraiz, Tomás

    2009-11-11

    Nitroreductases reduce nitroaromatic compounds and other oxidants in living organisms, having interesting implications in environmental and human health. A putative nitrobenzoate reductase encoding gene (lp_0050) was recently annotated in the completed DNA sequence of lactic acid bacterium Lactobacillus plantarum WCFS1 strain. In this research, this L. plantarum gene was cloned and expressed, and the corresponding protein (PnbA) was biochemically characterized. This L. plantarum PnbA reductase is a 216 amino acid residue FMN-flavoprotein, which exhibits 23% identity with Pseudomonas putida and Ralstonia eutropha nitroreductases and <11% identity with those from enterobacteria such as E. cloacae . This reductase also showed 32-43% identity (65-72% similarity) to predicted PnbA proteins from other lactic acid bacteria. It utilized a wide range of electron acceptors including dichlorophenolindophenol (DCPIP), nitroblue tetrazolium (NBT), ferricyanide, and quinones (menadione, benzoquinone), but not pyridinium cations (paraquat and N-methyl-beta-carbolines), and it was inhibited by dicoumarol and diphenyliodonium. HPLC-MS and spectroscopic data showed that it specifically catalyzed the reduction of the 4-nitroaromatic group to the corresponding hydroxylamine in the presence of NAD(P)H. Kinetics parameters (V(max) and K(m)) showed a higher efficiency for the reduction of 2,4-dinitrobenzoate than for the reduction of 4-nitrobenzoate. It was chemoselective for the reduction of 4-nitrobenzoates, being unable to reduce other nitroaromatics. Then, L. plantarum PnbA reductase might be more specific than other microbial nitroreductases that reduce a wider range of nitroaromatic compounds. The physiological and functional role of nitroreductases remain unknown; however, their presence in lactic acid bacteria widely occurring in foods and the human intestinal tract should be of further interest.

  18. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  19. Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar.

    PubMed

    Iino, Takao; Suzuki, Rei; Tanaka, Naoto; Kosako, Yoshimasa; Ohkuma, Moriya; Komagata, Kazuo; Uchimura, Tai

    2012-07-01

    Two novel acetic acid bacteria, strains G5-1(T) and I5-1, were isolated from traditional kaki vinegar (produced from fruits of kaki, Diospyros kaki Thunb.), collected in Kumamoto Prefecture, Japan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains G5-1(T) and I5-1 formed a distinct subline in the genus Gluconacetobacter and were closely related to Gluconacetobacter swingsii DST GL01(T) (99.3% 16S rRNA gene sequence similarity). The isolates showed 96-100% DNA-DNA relatedness with each other, but <53% DNA-DNA relatedness with closely related members of the genus Gluconacetobacter. The isolates could be distinguished from closely related members of the genus Gluconacetobacter by not producing 2- and 5-ketogluconic acids from glucose, producing cellulose, growing without acetic acid and with 30% (w/v) d-glucose, and producing acid from sugars and alcohols. Furthermore, the genomic DNA G+C contents of strains G5-1(T) and I5-1 were a little higher than those of their closest phylogenetic neighbours. On the basis of the phenotypic characteristics and phylogenetic position, strains G5-1(T) and I5-1 are assigned to a novel species, for which the name Gluconacetobacter kakiaceti sp. nov. is proposed; the type strain is G5-1(T) (=JCM 25156(T)=NRIC 0798(T)=LMG 26206(T)).

  20. Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium.

    PubMed

    Slapšak, Nina; Cleenwerck, Ilse; De Vos, Paul; Trček, Janja

    2013-02-01

    Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529(T) and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Trček and Teuber [34] revealed the same but unique restriction profiles for LMG 1529(T) and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA-DNA hybridizations confirmed their novel species identity by 73% DNA-DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529(T) and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)(5)-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529(T) and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529(T) and SKU 1109 is C(18:1ω7c) (60.2-64.8%). The DNA G+C content of LMG 1529(T) and SKU 1109 is 62.5 and 63.3mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529(T) (=NBRC 14815(T)=NCIMB 8752(T)).

  1. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop.

    PubMed

    Li, Leilei; Praet, Jessy; Borremans, Wim; Nunes, Olga C; Manaia, Célia M; Cleenwerck, Ilse; Meeus, Ivan; Smagghe, Guy; De Vuyst, Luc; Vandamme, Peter

    2015-01-01

    In the frame of a bumble bee gut microbiota study, acetic acid bacteria (AAB) were isolated using a combination of direct isolation methods and enrichment procedures. MALDI-TOF MS profiling of the isolates and a comparison of these profiles with profiles of established AAB species identified most isolates as Asaia astilbis or as 'Commensalibacter intestini', except for two isolates (R-52486 and LMG 28161(T)) that showed an identical profile. A nearly complete 16S rRNA gene sequence of strain LMG 28161(T) was determined and showed the highest pairwise similarity to Saccharibacter floricola S-877(T) (96.5%), which corresponded with genus level divergence in the family Acetobacteraceae. Isolate LMG 28161(T) was subjected to whole-genome shotgun sequencing; a 16S-23S rRNA internal transcribed spacer (ITS) sequence as well as partial sequences of the housekeeping genes dnaK, groEL and rpoB were extracted for phylogenetic analyses. The obtained data confirmed that this isolate is best classified into a new genus in the family Acetobacteraceae. The DNA G+C content of strain LMG 28161(T) was 54.9 mol%. The fatty acid compositions of isolates R-52486 and LMG 28161(T) were similar to those of established AAB species [with C18:1ω7c (43.1%) as the major component], but the amounts of fatty acids such as C19:0 cyclo ω8c, C14:0 and C14:0 2-OH enabled to differentiate them. The major ubiquinone was Q-10. Both isolates could also be differentiated from the known genera of AAB by means of biochemical characteristics, such as their inability to oxidize ethanol to acetic acid, negligible acid production from melibiose, and notable acid production from d-fructose, sucrose and d-mannitol. In addition, they produced 2-keto-d-gluconate, but not 5-keto-d-gluconate from d-glucose. Therefore, the name Bombella intestini gen nov., sp. nov. is proposed for this new taxon, with LMG 28161(T) ( =DSM 28636(T) =R-52487(T)) as the type strain of the type species.

  2. Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Hooper, A.B.

    1992-07-01

    Suspensions of Nitrosomonas europaea catalyzed the oxidation of the commercial nitrification inhibitor nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine). Rapid oxidation of nitrapyrin (at a concentration of 10 microM) required the concomitant oxidation of ammonia, hydroxylamine, or hydrazine. The turnover rate was highest in the presence of 10 mM ammonia (0.8 nmol of nitrapyrin per min/mg of protein). The product of the reaction was 6-chloropicolinic acid. By the use of (18)O2, it was shown that one of the oxygens in 6-chloropicolinic acid came from diatomic oxygen and that the other came from water. Approximately 13% of the radioactivity of (2,6-(14)C) nitrapyrin was shown to bind to cells. Most (94%) of the latter was bound indiscriminately to membrane proteins. The nitrapyrin bound to membrane proteins may account for the observed inactivation of ammonia oxidation. (Copyright (c) 1992, American Society for Microbiology.)

  3. Biodegradation of Picolinic Acid by a Newly Isolated Bacterium Alcaligenes faecalis Strain JQ135.

    PubMed

    Qiu, Jiguo; Zhang, Junjie; Zhang, Yanting; Wang, Yuhong; Tong, Lu; Hong, Qing; He, Jian

    2017-04-01

    We isolated a bacterial strain JQ135 from municipal wastewater, which was capable of efficiently degrading picolinic acid (PA). Based on the physico-biochemical characteristics and 16S rDNA analysis, strain JQ135 was identified as Alcaligenes faecalis. In addition, strain JQ135 produced an orange pigment when cultured in the Luria-Bertani medium, which is different from the previously reported strains of A. faecalis. During the degradation of PA by the resting strain JQ135 cells, only one intermediate, 6-hydroxypicolinic acid (6HPA), was detected by ultraviolet spectrophotometry, high-pressure liquid chromatography, and liquid chromatography-mass spectrometry. A random transposon mutagenesis library of strain JQ135 was constructed. One mutant, Mut-G31, could convert PA into 6HPA without further degradation. The disrupted gene (orf2) was amplified from Mut-G31, and its product showed 32% identity to the 3-deoxy-D-manno-octulosonic acid kinase (KdkA) from Haemophilus influenzae. Results from complementation analysis confirmed that GTG was the initiation codon of the kdkA-like orf2, and that it was essential for PA biodegradation by strain JQ135. This study provides the first genetic evidence for the bacterial degradation of PA.

  4. Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum

    SciTech Connect

    David E. Cummings; Scott Fendorf; Rajesh K. Sani; Brent M. Peyton; Timothy S. Magnuson

    2007-01-01

    The potential for biological reduction of Cr(VI) under acidic conditions was evaluated with the acidophilic, facultatively metal-reducing bacterium Acidiphilium cryptum strain JF-5 to explore the role of acidophilic microorganisms in the Cr cycle in low-pH environments. An anaerobic suspension of washed A. cryptum cells rapidly reduced 50 M Cr(VI) at pH 3.2; biological reduction was detected from pH 1.7-4.7. The reduction product, confirmed by XANES analysis, was entirely Cr(III) that was associated predominantly with the cell biomass (70-80%) with the residual residing in the aqueous phase. Reduction of Cr(VI) showed a pH optimum similar to that for growth and was inhibited by 5 mM HgCl2, suggesting that the reaction was enzyme-mediated. Introduction of O2 into the reaction medium slowed the reduction rate only slightly, whereas soluble Fe(III) (as ferric sulfate) increased the rate dramatically, presumably by the shuttling of electrons from bioreduced Fe(II) to Cr(VI) in a coupled biotic-abiotic cycle. Starved cells could not reduce Cr(VI) when provided as sole electron acceptor, indicating that Cr(VI) reduction is not an energy-conserving process in A. cryptum. We speculate, rather, that Cr(VI) reduction is used here as a detoxification mechanism.

  5. Distribution and Functions of Phosphotransferase System Genes in the Genome of the Lactic Acid Bacterium Oenococcus oeni

    PubMed Central

    Jamal, Zohra; Miot-Sertier, Cécile; Thibau, François; Dutilh, Lucie; Lonvaud-Funel, Aline; Ballestra, Patricia; Le Marrec, Claire

    2013-01-01

    Oenococcus oeni, the lactic acid bacterium primarily responsible for malolactic fermentation in wine, is able to grow on a large variety of carbohydrates, but the pathways by which substrates are transported and phosphorylated in this species have been poorly studied. We show that the genes encoding the general phosphotransferase proteins, enzyme I (EI) and histidine protein (HPr), as well as 21 permease genes (3 isolated ones and 18 clustered into 6 distinct loci), are highly conserved among the strains studied and may form part of the O. oeni core genome. Additional permease genes differentiate the strains and may have been acquired or lost by horizontal gene transfer events. The core pts genes are expressed, and permease gene expression is modulated by the nature of the bacterial growth substrate. Decryptified O. oeni cells are able to phosphorylate glucose, cellobiose, trehalose, and mannose at the expense of phosphoenolpyruvate. These substrates are present at low concentrations in wine at the end of alcoholic fermentation. The phosphotransferase system (PTS) may contribute to the perfect adaptation of O. oeni to its singular ecological niche. PMID:23524676

  6. The effect of humic acid on uptake/adsorption of copper by a marine bacterium and two marine ciliates.

    PubMed

    Lores, E M; Snyder, R A; Pennock, J R

    1999-01-01

    The effect of humic acid (HA) on Cu uptake by a bacterium and two bacterivorus ciliates was investigated. The presence of HA resulted in a statistically significant (p<0.001) decrease in Cu associated with bacteria that were exposed to 67 microg Cu L(-1). Complexation of Cu appears to lower the availability of Cu with respect to bacterial cell surface binding and uptake. For ciliates, 10 mg HA L(-1) significantly reduced uptake of Cu by Uronema, but did not reduce uptake of Cu by Pleuronema. Uronema exposed to 67 microg Cu L(-1) accumulated 54% less Cu when 10 mg HA L(-1) was present (0.50 pg ciliate(-1) vs 0.23 pg ciliate(-1)). Uronema feeding on V. natriegens, took up less than half as much Cu as unfed Uronema when exposed to Cu without HA (0.41 pg Cu fed ciliate(-1) vs 0.86 pg Cu unfed ciliate(-1), but only 40% less when exposed to Cu and HA (0.31 pg Cu fed ciliate(-1) vs 0.51 pg Cu unfed ciliate(-1)). The lower % reduction attributable to fed ciliates in the presence of HA suggests that some of the Cu associated with HA is available through trophic processes.

  7. Microbacter margulisiae gen. nov., sp. nov., a propionigenic bacterium isolated from sediments of an acid rock drainage pond.

    PubMed

    Sánchez-Andrea, Irene; Sanz, Jose Luis; Stams, Alfons J M

    2014-12-01

    A novel anaerobic propionigenic bacterium, strain ADRI(T), was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4-0.6×1-1.7 µm), non-motile and non-spore-forming rods. Cells possessed a Gram-negative cell-wall structure and were vancomycin-resistant. Strain ADRI(T) utilized yeast extract and various sugars as substrates and formed propionate, lactate and acetate as major fermentation products. The optimum growth temperature was 30 °C and the optimum pH for growth was pH 6.5, but strain ADRI(T) was able to grow at a pH as low as 3.0. Oxidase, indole formation, and urease and catalase activities were negative. Aesculin and gelatin were hydrolysed. The predominant cellular fatty acids of strain ADRI(T) were anteiso-C15 : 0 (30.3 %), iso-C15 : 0 (29.2 %) and iso-C17 : 0 3-OH (14.9 %). Major menaquinones were MK-8 (52 %) and MK-9 (48 %). The genomic DNA G+C content was 39.9 mol%. Phylogenetically, strain ADRI(T) was affiliated to the family Porphyromonadaceae of the phylum Bacteroidetes. The most closely related cultured species were Paludibacter propionicigenes with 16S rRNA gene sequence similarity of 87.5 % and several species of the genus Dysgonomonas (similarities of 83.5-85.4 % to the type strains). Based on the distinctive ecological, phenotypic and phylogenetic characteristics of strain ADRI(T), a novel genus and species, Microbacter margulisiae gen. nov., sp. nov., is proposed. The type strain is ADRI(T) ( = JCM 19374(T) = DSM 27471(T)).

  8. Application of ethylene diamine tetra acetic acid degrading bacterium Burkholderia cepacia on biotreatment process.

    PubMed

    Chen, Wei-Ting; Shen, Shu-Min; Shu, Chi-Min

    2015-10-01

    Ethylene diamine tetra acetic acid (EDTA), the effluent of secondary biotreatment units, can be properly biodegraded by Burkholderia cepacia. Through batch degradation of EDTA, the raw wastewater of EDTA was controlled at 50 mg/L, and then nutrients was added in diluted wastewater to cultivate activated sludge, which the ratio of composition is depicted as "COD:N:P:Fe = 100:5:1:0.5". After 27 days, the removal efficiency of Fe-EDTA and COD was 100% and 92.0%, correspondingly. At the continuous process, the raw wastewater of EDTA was dictated at 166 mg/L before adding nutrients to cultivate activated sludge, in which the ratio of composition did also follow with batch process. After 22 days, the removal efficiency of Fe-EDTA and COD for experimental group was 71.46% and 62.58%, correspondingly. The results showed that the batch process was more suited for EDTA biodegradation.

  9. Iron sources used by the nonpathogenic lactic acid bacterium Lactobacillus sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry.

    PubMed

    Duhutrel, Philippe; Bordat, Christian; Wu, Ting-Di; Zagorec, Monique; Guerquin-Kern, Jean-Luc; Champomier-Vergès, Marie-Christine

    2010-01-01

    Lactobacillus sakei is a lactic acid bacterium naturally found on meat. Although it is generally acknowledged that lactic acid bacteria are rare species in the microbial world which do not have iron requirements, the genome sequence of L. sakei 23K has revealed quite complete genetic equipment dedicated to transport and use of this metal. Here, we aimed to investigate which iron sources could be used by this species as well as their role in the bacterium's physiology. Therefore, we developed a microscopy approach based on electron energy loss spectroscopy (EELS) analysis and nano-scale secondary-ion mass spectrometry (SIMS) in order to analyze the iron content of L. sakei cells. This revealed that L. sakei can use iron sources found in its natural ecosystem, myoglobin, hemoglobin, hematin, and transferrin, to ensure long-term survival during stationary phase. This study reveals that analytical image methods (EELS and SIMS) are powerful complementary tools for investigation of metal utilization by bacteria.

  10. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  11. Aminivibrio pyruvatiphilus gen. nov., sp. nov., an anaerobic, amino-acid-degrading bacterium from soil of a Japanese rice field.

    PubMed

    Honda, Takuya; Fujita, Takashi; Tonouchi, Akio

    2013-10-01

    A novel anaerobic bacterium that could ferment amino acids and organic acids was isolated from an anaerobic, propionate-oxidizing enrichment culture originating from soil of a rice field in Japan. Cells of the isolate, designated strain 4F6E(T), were Gram-staining-negative, oxidase- and catalase-negative, non-spore-forming, vibrio-shaped, motile rods (0.8×2.0-2.5 µm) with two or three lateral flagella. Growth occurred at 20-42 °C (optimum at 37-40 °C), at pH 6.4-8.4 (optimum at pH 7.3) and at 0-1.5 % (w/v) NaCl (optimum at 0-0.5 %). Good growth occurred on glycine, serine, cysteine, pyruvate and citrate, whereas poor growth was observed on threonine, glutamine, L-malate, α-ketoglutarate, peptone and Casamino acids. In co-culture with the hydrogen-utilizing methanogen Methanobacterium formicicum JCM 10132(T), strain 4F6E(T) oxidized alanine, valine, leucine, isoleucine, methionine, aspartate, glutamate, histidine, asparagine and fumarate. Yeast extract was required for growth. The G+C content of genomic DNA was 61.9 mol%. A phylogenetic analysis based on comparison of the 16S rRNA gene sequence showed that the type strains of Fretibacterium fastidiosum, Aminobacterium colombiense and Aminobacterium mobile, members of the family Synergistaceae, were the closest relatives of strain 4F6E(T), with low sequence similarities (89.3, 89.5 and 86.2 %, respectively). Strain 4F6E(T) contained iso-C13 : 0 (24.43 %), iso-C15 : 0 (16.47 %) and C19 : 1ω11c/C19 : 1ω9c (16.32 %) as the major fatty acids, which differed from those of F. fastidiosum, Aminobacterium colombiense and Aminobacterium mobile. On the basis of phenotypic, chemotaxonomic and phylogenetic differences between strain 4F6E(T) and the type strains of F. fastidiosum and Aminobacterium species, we propose that strain 4F6E(T) represents a novel genus and species, Aminivibrio pyruvatiphilus gen. nov., sp. nov. The type strain of Aminivibrio pyruvatiphilus is strain 4F6E(T) (

  12. Enterococcus bulliens sp. nov., a novel lactic acid bacterium isolated from camel milk.

    PubMed

    Kadri, Zaina; Spitaels, Freek; Cnockaert, Margo; Praet, Jessy; El Farricha, Omar; Swings, Jean; Vandamme, Peter

    2015-11-01

    Four lactic acid bacteria isolates obtained from fresh dromedary camel milk produced in Dakhla, a city in southern Morocco, were characterised in order to determine their taxonomic position. The four isolates had highly similar MALDI-TOF MS and RAPD fingerprints and identical 16S rRNA gene sequences. Comparative sequence analysis revealed that the 16S rRNA gene sequence of the four isolates was most similar to that of Enterococcus sulfureus ATCC 49903(T) and Enterococcus italicus DSM 15952(T) (99.33 and 98.59% similarity, respectively). However, sequence analysis of the phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) genes revealed that the taxon represented by strain LMG 28766(T) was well separated from E. sulfureus LMG 13084(T) and E. italicus LMG 22039(T), which was further confirmed by DNA-DNA hybridization values that were clearly below the species demarcation threshold. The novel taxon was easily differentiated from its nearest neighbour species through sequence analysis of protein encoding genes, MALDI-TOF mass spectrometry and multiple biochemical tests, but had a similar percentage G+C content of about 39%. We therefore propose to formally classify these isolates as Enterococcus bulliens sp. nov., with LMG 28766(T) (=CCMM B1177(T)) as the type strain.

  13. Asaia krungthepensis sp. nov., an acetic acid bacterium in the alpha-Proteobacteria.

    PubMed

    Yukphan, Pattaraporn; Potacharoen, Wanchern; Tanasupawat, Somboon; Tanticharoen, Morakot; Yamada, Yuzo

    2004-03-01

    Three bacterial strains were isolated from flowers collected in Bangkok, Thailand, by an enrichment-culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located in the lineage of the genus Asaia but constituted a cluster separate from the type strains of Asaia bogorensis and Asaia siamensis. The DNA base composition of the isolates was 60.2-60.5 mol% G+C, with a range of 0.3 mol%. The isolates constituted a taxon separate from Asaia bogorensis and Asaia siamensis on the basis of DNA-DNA relatedness. The isolates had morphological, physiological, biochemical and chemotaxonomic characteristics similar to those of the type strains of Asaia bogorensis and Asaia siamensis, but the isolates grew on maltose. The major ubiquinone was Q(10). On the basis of the results obtained, the name Asaia krungthepensis sp. nov. is proposed for the isolates. The type strain is isolate AA08(T) (=BCC 12978(T)=TISTR 1524(T)=NBRC 100057(T)=NRIC 0535(T)), which had a DNA G+C content of 60.3 mol% and was isolated from a heliconia flower ('paksaasawan' in Thai; Heliconia sp.) collected in Bangkok, Thailand.

  14. Rewiring Lactococcus lactis for Ethanol Production

    PubMed Central

    Dehli, Tore; Jensen, Peter Ruhdal

    2013-01-01

    Lactic acid bacteria (LAB) are known for their high tolerance toward organic acids and alcohols (R. S. Gold, M. M. Meagher, R. Hutkins, and T. Conway, J. Ind. Microbiol. 10:45–54, 1992) and could potentially serve as platform organisms for production of these compounds. In this study, we attempted to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed fermentation product was obtained by further inactivating the phosphotransacetylase (PTA) and the native alcohol dehydrogenase (ADHE). PMID:23377945

  15. Rewiring Lactococcus lactis for ethanol production.

    PubMed

    Solem, Christian; Dehli, Tore; Jensen, Peter Ruhdal

    2013-04-01

    Lactic acid bacteria (LAB) are known for their high tolerance toward organic acids and alcohols (R. S. Gold, M. M. Meagher, R. Hutkins, and T. Conway, J. Ind. Microbiol. 10:45-54, 1992) and could potentially serve as platform organisms for production of these compounds. In this study, we attempted to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed fermentation product was obtained by further inactivating the phosphotransacetylase (PTA) and the native alcohol dehydrogenase (ADHE).

  16. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Shibata, Keisuke; Sonomoto, Kenji

    2011-02-01

    Effective utilisation of cellulosic biomasses for economical lactic acid production requires a microorganism with potential ability to utilise efficiently its major components, glucose and cellobiose. Amongst 631 strains isolated from different environmental samples, strain QU 25 produced high yields of l-(+)-lactic acid of high optical purity from cellobiose. The QU 25 strain was identified as Enterococcus mundtii based on its sugar fermentation pattern and 16S rDNA sequence. The production of lactate by fermentation was optimised for the E. mundtii QU25 strain. The optimal pH and temperature for batch culturing were found to be 7.0°C and 43°C, respectively. E. mundtii QU 25 was able to metabolise a mixture of glucose and cellobiose simultaneously without apparent carbon catabolite repression. Moreover, under the optimised culture conditions, production of optically pure l-lactic acid (99.9%) increased with increasing cellobiose concentrations. This indicates that E. mundtii QU 25 is a potential candidate for effective lactic acid production from cellulosic hydrolysate materials.

  17. Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit

    PubMed Central

    Zadravec, Petra; Marečková, Lucie; Petroková, Hana; Hodnik, Vesna; Perišić Nanut, Milica; Anderluh, Gregor; Štrukelj, Borut; Malý, Petr; Berlec, Aleš

    2016-01-01

    Infections with shiga toxin-producing bacteria, like enterohemorrhagic Escherichia coli and Shigella dysenteriae, represent a serious medical problem. No specific and effective treatment is available for patients with these infections, creating a need for the development of new therapies. Recombinant lactic acid bacterium Lactococcus lactis was engineered to bind Shiga toxin by displaying novel designed albumin binding domains (ABD) against Shiga toxin 1 B subunit (Stx1B) on their surface. Functional recombinant Stx1B was produced in Escherichia coli and used as a target for selection of 17 different ABD variants (named S1B) from the ABD scaffold-derived high-complex combinatorial library in combination with a five-round ribosome display. Two most promising S1Bs (S1B22 and S1B26) were characterized into more details by ELISA, surface plasmon resonance and microscale thermophoresis. Addition of S1Bs changed the subcellular distribution of Stx1B, completely eliminating it from Golgi apparatus most likely by interfering with its retrograde transport. All ABD variants were successfully displayed on the surface of L. lactis by fusing to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA. Binding of Stx1B by engineered lactococcal cells was confirmed using flow cytometry and whole cell ELISA. Lactic acid bacteria prepared in this study are potentially useful for the removal of Shiga toxin from human intestine. PMID:27606705

  18. Soil acidity determines the effectiveness of an organic amendment and a native bacterium for increasing soil stabilisation in semiarid mine tailings.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Roldán, A

    2009-01-01

    Unstable mine tailings are vulnerable to water and air erosion, so it is important to promote their surface stabilisation in order to avoid the spread of heavy metals. In a greenhouse experiment, we assessed the effect of the addition of Aspergillus niger-treated sugar beet waste and inoculation with a native bacterium, Bacillus cereus, on the stabilisation of soil aggregates of two acidic, semiarid mine tailings, with different acidity degree, during watering and drying periods. Organic amendment raised the pH of both the moderately and highly acidic tailings, whereas the bacterial inoculation increased this parameter in the former. Only the amendment addition increased soil water-soluble carbon in both tailings compared with their controls, under either watering or drying conditions. Both the amendment and B. cereus enhanced water-soluble carbohydrates. Both treatments increased dehydrogenase activity and aggregate stability, particularly in the moderately acidic tailing under drying conditions. After soil drying, aggregate stability was increased by the amendment (about 66% higher than the control soil) and by the bacterium (about 45% higher than the control soil) in the moderately acidic tailing. The effectiveness of these treatments as structure-stabilisation methods for degraded, semiarid mine ecosystems appears to be restricted to tailings of moderate acidity.

  19. Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus

    NASA Technical Reports Server (NTRS)

    McManus, J. D.; Brune, D. C.; Han, J.; Sanders-Loehr, J.; Meyer, T. E.; Cusanovich, M. A.; Tollin, G.; Blankenship, R. E.

    1992-01-01

    Three small blue copper proteins designated auracyanin A, auracyanin B-1, and auracyanin B-2 have been isolated from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus. All three auracyanins are peripheral membrane proteins. Auracyanin A was described previously (Trost, J. T., McManus, J. D., Freeman, J. C., Ramakrishna, B. L., and Blankenship, R. E. (1988) Biochemistry 27, 7858-7863) and is not glycosylated. The two B forms are glycoproteins and have almost identical properties to each other, but are distinct from the A form. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis apparent monomer molecular masses are 14 (A), 18 (B-2), and 22 (B-1) kDa. The amino acid sequences of the B forms are presented. All three proteins have similar absorbance, circular dichroism, and resonance Raman spectra, but the electron spin resonance signals are quite different. Laser flash photolysis kinetic analysis of the reactions of the three forms of auracyanin with lumiflavin and flavin mononucleotide semiquinones indicates that the site of electron transfer is negatively charged and has an accessibility similar to that found in other blue copper proteins. Copper analysis indicates that all three proteins contain 1 mol of copper per mol of protein. All three auracyanins exhibit a midpoint redox potential of +240 mV. Light-induced absorbance changes and electron spin resonance signals suggest that auracyanin A may play a role in photosynthetic electron transfer. Kinetic data indicate that all three proteins can donate electrons to cytochrome c-554, the electron donor to the photosynthetic reaction center.

  20. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis.

    PubMed

    Yagnik, Bhrugu; Padh, Harish; Desai, Priti

    2016-04-01

    Use of food grade Lactococcus lactis (L. lactis) is fast emerging as a safe alternative for delivery of DNA vaccine. To attain efficient DNA delivery, L. lactis, a non-invasive bacterium is converted to invasive strain either by expressing proteins like Internalin A (InlA) or Fibronectin binding protein A (FnBPA) or through chemical treatments. However the safety status of invasive L. lactis is questionable. In the present report, we have shown that non-invasive L. lactis efficiently delivered the newly constructed reporter plasmid pPERDBY to mammalian cells without any chemical enhancers. The salient features of the vector are; I) Ability to replicate in two different hosts; Escherichia coli (E. coli) and Lactic Acid Bacteria (LAB), II) One of the smallest reporter plasmid for DNA vaccine, III) Enhanced Green Fluorescence Protein (EGFP) linked to Multiple Cloning Site (MCS), IV) Immunostimulatory CpG motifs functioning as an adjuvant. Expression of EGFP in pPERDBY transfected CHO-K1 and Caco-2 cells demonstrates its functionality. Non-invasive r-L. lactis was found efficient in delivering pPERDBY to Caco-2 cells. The in vitro data presented in this article supports the hypothesis that in the absence of invasive proteins or relevant chemical treatment, L. lactis was found efficient in delivering DNA to mammalian cells.

  1. Use of murine models to detect the allergenicity of genetically modified Lactococcus lactis NZ9000/pNZPNK.

    PubMed

    Chiang, Shen-Shih; Liu, Chin-Feng; Ku, Ting-Wei; Mau, Jeng-Leun; Lin, Hsin-Tang; Pan, Tzu-Ming

    2011-04-27

    By introducing aprN into Lactococcus lactis NZ9000, the genetically modified L. lactis NZ9000/pNZPNK successfully expressed the nattokinase. The safety assessment of this novel strain was based on allergenicity of pepsin digestion stability and murine model serologic identity. Subjecting to the GM strain and host to pepsin digestion, the soluble fractions and cell debris were fast degraded completely. Feeding with ovalbumin resulted in significantly higher production of IgG1 and IgE as compared to that of L. lactis NZ9000/pNZPNK or L. lactis NZ9000. Further, the serum IgG2a level increased dose-dependently at week 2 and induced immune reaction toward Th1 pathway. Secretion of cytokines IL-4 and IL-10 fed with lactococci was significantly lower than that of the OVA group. L. lactis NZ9000/pNZPNK did not increase the proliferation of type 2 helper T cells in spleen or induce allergenicity in BALB/c mice. On the basis of the results, the new GM lactic acid bacterium is regarded as safe to use.

  2. Investigation of Associations of Yarrowia lipolytica, Staphylococcus xylosus, and Lactococcus lactis in Culture as a First Step in Microbial Interaction Analysis▿ †

    PubMed Central

    Mansour, S.; Bailly, J.; Landaud, S.; Monnet, C.; Sarthou, A. S.; Cocaign-Bousquet, M.; Leroy, S.; Irlinger, F.; Bonnarme, P.

    2009-01-01

    The interactions that may occur between microorganisms in different ecosystems have not been adequately studied yet. We investigated yeast-bacterium interactions in a synthetic medium using different culture associations involving the yeast Yarrowia lipolytica 1E07 and two bacteria, Staphylococcus xylosus C2a and Lactococcus lactis LD61. The growth and biochemical characteristics of each microorganism in the different culture associations were studied. The expression of genes related to glucose, lactate, and amino acid catabolism was analyzed by reverse transcription followed by quantitative PCR. Our results show that the growth of Y. lipolytica 1E07 is dramatically reduced by the presence of S. xylosus C2a. As a result of a low amino acid concentration in the medium, the expression of Y. lipolytica genes involved in amino acid catabolism was downregulated in the presence of S. xylosus C2a, even when L. lactis was present in the culture. Furthermore, the production of lactate by both bacteria had an impact on the lactate dehydrogenase gene expression of the yeast, which increased up to 30-fold in the three-species culture compared to the Y. lipolytica 1E07 pure culture. S. xylosus C2a growth dramatically decreased in the presence of Y. lipolytica 1E07. The growth of lactic acid bacteria was not affected by the presence of S. xylosus C2a or Y. lipolytica 1E07, although the study of gene expression showed significant variations. PMID:19684166

  3. Monte-Carlo modeling of the central carbon metabolism of Lactococcus lactis: insights into metabolic regulation.

    PubMed

    Murabito, Ettore; Verma, Malkhey; Bekker, Martijn; Bellomo, Domenico; Westerhoff, Hans V; Teusink, Bas; Steuer, Ralf

    2014-01-01

    Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation. Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular, we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models.

  4. Protein turnover forms one of the highest maintenance costs in Lactococcus lactis.

    PubMed

    Lahtvee, Petri-Jaan; Seiman, Andrus; Arike, Liisa; Adamberg, Kaarel; Vilu, Raivo

    2014-07-01

    Protein turnover plays an important role in cell metabolism by regulating metabolic fluxes. Furthermore, the energy costs for protein turnover have been estimated to account for up to a third of the total energy production during cell replication and hence may represent a major limiting factor in achieving either higher biomass or production yields. This work aimed to measure the specific growth rate (μ)-dependent abundance and turnover rate of individual proteins, estimate the ATP cost for protein production and turnover, and compare this with the total energy balance and other maintenance costs. The lactic acid bacteria model organism Lactococcus lactis was used to measure protein turnover rates at μ = 0.1 and 0.5 h(-1) in chemostat experiments. Individual turnover rates were measured for ~75% of the total proteome. On average, protein turnover increased by sevenfold with a fivefold increase in growth rate, whilst biomass yield increased by 35%. The median turnover rates found were higher than the specific growth rate of the bacterium, which suggests relatively high energy consumption for protein turnover. We found that protein turnover costs alone account for 38 and 47% of the total energy produced at μ = 0.1 and 0.5 h(-1), respectively, and gene ontology groups Energy metabolism and Translation dominated synthesis costs at both growth rates studied. These results reflect the complexity of metabolic changes that occur in response to changes in environmental conditions, and signify the trade-off between biomass yield and the need to produce ATP for maintenance processes.

  5. Identification of Lactococcus-Specific Bacteriocins Produced by Lactococcal Isolates, and the Discovery of a Novel Bacteriocin, Lactococcin Z.

    PubMed

    Ishibashi, Naoki; Seto, Hiromi; Koga, Shoko; Zendo, Takeshi; Sonomoto, Kenji

    2015-09-01

    Lactic acid bacteria that produce Lactococcus-specific bacteriocins were isolated and identified as Lactococcus lactis from fresh corn or lettuce. Among them, four isolates were identified as lactococcin Q producers. Seven isolates showed antimicrobial activity against a lactococcin Q producer, L. lactis QU 4, as well as against nisin Z and lacticin Q producers belonging to L. lactis. Strain QU 7 was selected as a standard strain and showed no cross-immunity to lactococcin Q or other lactococcal bacteriocins. The bacteriocin produced by strain QU 7 was purified in three chromatographic steps, and its molecular mass was determined to be 5041.35 Da. The amino acid sequence analysis revealed that it is a novel class IId bacteriocin, referred to as lactococcin Z. It consisted of 45 amino acid residues. The lczA gene encoding the prepeptide of lactococcin Z showed homology to lactococcins A, B, and M. Thus, this report demonstrates a new example of Lactococcus-specific bacteriocins.

  6. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum

    SciTech Connect

    Svetlitshnyi, V.; Wiegel, J.; Rainey, F.

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-264{sup T}; DSM 11003) were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60{degrees}C, the pH range for growth determined at 25{degrees}C [pH{sup 25{degrees}C}] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH{sup 60{degrees}C} of 7.6 and 8.1). At a pH{sup 25{degrees}C} of 8.5 temperature range for growth was from 52 to 70{degrees}C, with an optimum between 60 and 66{degrees}C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  7. Garvieacin Q, a Novel Class II Bacteriocin from Lactococcus garvieae BCC 43578

    PubMed Central

    Zendo, Takeshi; Visessanguan, Wonnop; Roytrakul, Sittiruk; Pumpuang, Laphaslada; Jaresitthikunchai, Janthima; Sonomoto, Kenji

    2012-01-01

    Lactococcus garvieae BCC 43578 produces a novel class II bacteriocin, garvieacin Q (GarQ), 70 amino acids in length and containing a 20-amino-acid N-terminal leader peptide. It is cleaved at the Gly-Gly site to generate the mature GarQ (5,339 Da), which is especially inhibitory against Listeria monocytogenes ATCC 19115 and other L. garvieae strains. PMID:22210221

  8. Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9.

    PubMed

    Allen, Eric E; Bartlett, Douglas H

    2002-06-01

    Omega-3 polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA) have been shown to be of major importance in the promotion of cardiovascular health, proper human development and the prevention of some cancers. A high proportion of bacterial isolates from low-temperature and high-pressure marine environments produce EPA or DHA. This paper presents the sequence of a 33 kbp locus from the deep-sea bacterium Photobacterium profundum strain SS9 which includes four of the five genes required for EPA biosynthesis. As with other bacterial pfa (polyunsaturated fatty acid) genes, the deduced amino acid sequences encoded by the SS9 genes reveal large multidomain proteins that are likely to catalyse EPA biosynthesis by a novel polyketide synthesis mechanism. RNase protection experiments separated the SS9 pfa genes into two transcriptional units, pfaA-C and pfaD. The pfaA transcriptional start site was identified. Cultivation at elevated hydrostatic pressure or reduced temperature did not increase pfa gene expression despite the resulting increase in percentage composition of EPA under these conditions. However, a regulatory mutant was characterized which showed both increased expression of pfaA-D and elevated EPA percentage composition. This result suggests that a regulatory factor exists which coordinates pfaA-D transcription. Additional consideration regarding the activities required for PUFA synthesis is provided together with comparative analyses of bacterial pfa genes and gene products.

  9. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.

    PubMed

    Draghi, W O; Del Papa, M F; Hellweg, C; Watt, S A; Watt, T F; Barsch, A; Lozano, M J; Lagares, A; Salas, M E; López, J L; Albicoro, F J; Nilsson, J F; Torres Tejerizo, G A; Luna, M F; Pistorio, M; Boiardi, J L; Pühler, A; Weidner, S; Niehaus, K; Lagares, A

    2016-07-11

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0-6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia.

  10. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti

    PubMed Central

    Draghi, W. O.; Del Papa, M. F.; Hellweg, C.; Watt, S. A.; Watt, T. F.; Barsch, A.; Lozano, M. J.; Lagares, A.; Salas, M. E.; López, J. L.; Albicoro, F. J.; Nilsson, J. F.; Torres Tejerizo, G. A.; Luna, M. F.; Pistorio, M.; Boiardi, J. L.; Pühler, A.; Weidner, S.; Niehaus, K.; Lagares, A.

    2016-01-01

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0–6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia. PMID:27404346

  11. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    PubMed

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL(-1) and 0.6-0.7 ng mL(-1), respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces.

  12. Impact of osmotic stress on protein diffusion in Lactococcus lactis.

    PubMed

    Mika, Jacek T; Schavemaker, Paul E; Krasnikov, Victor; Poolman, Bert

    2014-11-01

    We measured translational diffusion of proteins in the cytoplasm and plasma membrane of the Gram-positive bacterium Lactococcus lactis and probed the effect of osmotic upshift. For cells in standard growth medium the diffusion coefficients for cytosolic proteins (27 and 582 kDa) and 12-transmembrane helix membrane proteins are similar to those in Escherichia coli. The translational diffusion of GFP in L. lactis drops by two orders of magnitude when the medium osmolality is increased by ∼ 1.9 Osm, and the decrease in mobility is partly reversed in the presence of osmoprotectants. We find a large spread in diffusion coefficients over the full population of cells but a smaller spread if only sister cells are compared. While in general the diffusion coefficients we measure under normal osmotic conditions in L. lactis are similar to those reported in E. coli, the decrease in translational diffusion upon osmotic challenge in L. lactis is smaller than in E. coli. An even more striking difference is that in L. lactis the GFP diffusion coefficient drops much more rapidly with volume than in E. coli. We discuss these findings in the light of differences in turgor, cell volume, crowding and cytoplasmic structure of Gram-positive and Gram-negative bacteria.

  13. The Plasmid Complement of the Cheese Isolate Lactococcus garvieae IPLA 31405 Revealed Adaptation to the Dairy Environment.

    PubMed

    Flórez, Ana Belén; Mayo, Baltasar

    2015-01-01

    Lactococcus garvieae is a lactic acid bacterium found in raw-milk dairy products as well as a range of aquatic and terrestrial environments. The plasmids in L. garvieae have received little attention compared to those of dairy Lactococcus lactis, in which the genes carried by these extrachromosomal elements are considered of adaptive value. The present work reports the sequencing and analysis of the plasmid complement of L. garvieae IPLA 31405, a strain isolated from a traditional, Spanish, starter-free cheese made from raw-milk. It consists of pLG9 and pLG42, of 9,124 and 42,240 nucleotides, respectively. Based on sequence and structural homology in the putative origin of replication (ori) region, pLG9 and pLG42 are predicted to replicate via a theta mechanism. Real-time, quantitative PCR showed the number of copies per chromosome equivalent of pLG9 and pLG42 to be around two and five, respectively. Sequence analysis identified eight complete open reading frames (orfs) in pLG9 and 36 in pLG42; these were organized into functional modules or cassettes containing different numbers of genes. These modules were flanked by complete or interrupted insertion sequence (IS)-like elements. Among the modules of pLG42 was a gene cluster encoding specific components of a phosphoenolpyruvate-phosphotransferase (PEP-PTS) system, including a phospho-β-galacosidase. The cluster showed a complete nucleotide identity respect to that in plasmids of L. lactis. Loss of pLG42 showed this to be involved in lactose assimilation. In the same plasmid, an operon encoding a type I restriction/modification (R/M) system was also identified. The specificity of this R/M system might be broadened by different R/M specificity subunits detected in pLG9 and in the bacterial chromosome. However, challenges of L. garvieae IPLA 31405 against L. lactis phages proved that the R/M system was not involved in phage resistance. Together, these results support the hypothesis that, as in L. lactis, pLG42

  14. The Plasmid Complement of the Cheese Isolate Lactococcus garvieae IPLA 31405 Revealed Adaptation to the Dairy Environment

    PubMed Central

    Flórez, Ana Belén; Mayo, Baltasar

    2015-01-01

    Lactococcus garvieae is a lactic acid bacterium found in raw-milk dairy products as well as a range of aquatic and terrestrial environments. The plasmids in L. garvieae have received little attention compared to those of dairy Lactococcus lactis, in which the genes carried by these extrachromosomal elements are considered of adaptive value. The present work reports the sequencing and analysis of the plasmid complement of L. garvieae IPLA 31405, a strain isolated from a traditional, Spanish, starter-free cheese made from raw-milk. It consists of pLG9 and pLG42, of 9,124 and 42,240 nucleotides, respectively. Based on sequence and structural homology in the putative origin of replication (ori) region, pLG9 and pLG42 are predicted to replicate via a theta mechanism. Real-time, quantitative PCR showed the number of copies per chromosome equivalent of pLG9 and pLG42 to be around two and five, respectively. Sequence analysis identified eight complete open reading frames (orfs) in pLG9 and 36 in pLG42; these were organized into functional modules or cassettes containing different numbers of genes. These modules were flanked by complete or interrupted insertion sequence (IS)-like elements. Among the modules of pLG42 was a gene cluster encoding specific components of a phosphoenolpyruvate-phosphotransferase (PEP-PTS) system, including a phospho-β-galacosidase. The cluster showed a complete nucleotide identity respect to that in plasmids of L. lactis. Loss of pLG42 showed this to be involved in lactose assimilation. In the same plasmid, an operon encoding a type I restriction/modification (R/M) system was also identified. The specificity of this R/M system might be broadened by different R/M specificity subunits detected in pLG9 and in the bacterial chromosome. However, challenges of L. garvieae IPLA 31405 against L. lactis phages proved that the R/M system was not involved in phage resistance. Together, these results support the hypothesis that, as in L. lactis, pLG42

  15. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum 'Synergistetes', isolated from an anaerobic sludge digester.

    PubMed

    Ganesan, Akila; Chaussonnerie, Sébastien; Tarrade, Anne; Dauga, Catherine; Bouchez, Théodore; Pelletier, Eric; Le Paslier, Denis; Sghir, Abdelghani

    2008-09-01

    A novel anaerobic, mesophilic, amino-acid-utilizing bacterium, strain 158T, was isolated from an anaerobic digester of a wastewater treatment plant. Cells of strain 158T were non-motile, rod-shaped (2.0-3.0 x 0.8-1.0 microm) and stained Gram-negative. Optimal growth occurred at 37 degrees C and pH 7.0 in an anaerobic basal medium containing 1 % Casamino acids. Strain 158T fermented arginine, histidine, lysine and serine and showed growth on yeast extract, brain-heart infusion (BHI) medium and tryptone, but not on carbohydrates, organic acids or alcohols. The end products of degradation were: acetate, butyrate, H2 and CO2 from arginine; acetate, propionate, butyrate, H2 and CO2 from lysine; and acetate, propionate, butyrate, valerate, H2 and CO2 from histidine, serine, BHI medium, Casamino acids and tryptone. The DNA G+C content was 55.8 mol%. The 16S rRNA gene sequence of strain 158T showed only 92.6 % sequence similarity with that of Synergistes jonesii, the only described species of the 'Synergistes' group. The major cellular fatty acids were iso-C(15:0) (16.63 %), iso-C(15:0) 3-OH (12.41 %) and C(17:1)omega6c (9.46 %) and the polar fatty acids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylamine; these fatty acid profiles did not resemble those of any recognized bacterial species. Due to the considerable differences in genotypic, phenotypic and phylogenetic characteristics between strain 158T and those of its nearest relative, it is proposed that strain 158T represents a novel species in a new genus, Cloacibacillus evryensis gen. nov., sp. nov., in the phylum 'Synergistetes'. The type strain is 158T (=DSM 19522T=JCM 14828T).

  16. Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171.

    PubMed

    Kumari, Archana; Akkoç, Nefise; Akçelik, Mustafa

    2012-04-01

    Lactic acid bacteria (LAB) are possessing ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this regard, novel bacteriocin compound secreting capability of LAB isolated from Tulum Cheese in Turkey was demonstrated. The synthesized bacteriocin was purified by ammonium sulphate precipitation, dialysis and gel filtration. The molecular weight (≈3.4 kDa) of obtained bacteriocin was confirmed by SDS-PAGE, which revealed single peptide band. Molecular identification of LAB strain isolated from Tulum Cheese was conducted using 16S rDNA gene sequencing as Lactococcus lactis ssp. lactis LL171. The amino acid sequences (KKIDTRTGKTMEKTEKKIELSLKNMKTAT) of the bacteriocin from Lactococcus lactis ssp. lactis LL171 was found unique and novel than reported bacteriocins. Further, the bacteriocin was possessed the thermostable property and active at wide range of pH values from 1 to 11. Thus, bacteriocin reported in this study has the potential applications property as food preservative agent.

  17. Effects of hydrostatic pressure and temperature on the uptake and respiration of amino acids by a facultatively psychrophilic marine bacterium.

    NASA Technical Reports Server (NTRS)

    Paul, K. L.; Morita, R. Y.

    1971-01-01

    Studies of pressure and temperature effects on glutamic acid transport and utilization indicated that hydrostatic pressure and low temperature inhibit glutamate transport more than glutamate respiration. The effects of pressure on transport were reduced at temperatures near the optimum. Similar results were obtained for glycine, phenylalanine, and proline. Pressure effects on the transport systems of all four amino acids were reversible to some degree. Both proline and glutamic acid were able to protect their transport proteins against pressure damage. The data presented indicate that the uptake of amino acids by cells under pressure is inhibited, which is the cause of their inability to grow under pressure.

  18. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms

    NASA Technical Reports Server (NTRS)

    Jackson, B. E.; Bhupathiraju, V. K.; Tanner, R. S.; Woese, C. R.; McInerney, M. J.

    1999-01-01

    Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 +/- 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the delta-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus.

  19. Growth and gas formation by Lactobacillus wasatchensis, a novel obligatory heterofermentative nonstarter lactic acid bacterium, in Cheddar-style cheese made using a Streptococcus thermophilus starter.

    PubMed

    Ortakci, Fatih; Broadbent, Jeffery R; Oberg, Craig J; McMahon, Donald J

    2015-11-01

    A novel slow-growing, obligatory heterofermentative, nonstarter lactic acid bacterium (NSLAB), Lactobacillus wasatchensis WDC04, was studied for growth and gas production in Cheddar-style cheese made using Streptococcus thermophilus as the starter culture. Cheesemaking trials were conducted using S. thermophilus alone or in combination with Lb. wasatchensis deliberately added to cheese milk at a level of ~10(4) cfu/mL. Resulting cheeses were ripened at 6 or 12°C. At d 1, starter streptococcal numbers were similar in both cheeses (~10(9) cfu/g) and fast-growing NSLAB lactobacilli counts were below detectable levels (<10(2) cfu/g). As expected, Lactobacillus wasatchensis counts were 3×10(5) cfu/g in cheeses inoculated with this bacterium and below enumeration limits in the control cheese. Starter streptococci decreased over time at both storage temperatures but declined more rapidly at 12°C, especially in cheese also containing Lb. wasatchensis. Populations of fast-growing NSLAB and the slow-growing Lb. wasatchensis reached 5×10(7) and 2×10(8) cfu/g, respectively, after 16 wk of storage at 12°C. Growth of NSLAB coincided with a reduction in galactose concentration in the cheese from 0.6 to 0.1%. Levels of galactose at 6°C had similar decrease. Gas formation and textural defects were only observed in cheese with added Lb. wasatchensis ripened at 12°C. Use of S. thermophilus as starter culture resulted in galactose accumulation that Lb. wasatchensis can use to produce CO2, which contributes to late gas blowing in Cheddar-style cheeses, especially when the cheese is ripened at elevated temperature.

  20. Development of a new DNA vaccine based on mycobacterial ESAT-6 antigen delivered by recombinant invasive Lactococcus lactis FnBPA+.

    PubMed

    Pereira, Vanessa Bastos; Saraiva, Tessália Diniz Luerce; Souza, Bianca Mendes; Zurita-Turk, Meritxell; Azevedo, Marcela Santiago Pacheco; De Castro, Camila Prósperi; Mancha-Agresti, Pamela; Dos Santos, Janete Soares Coelho; Santos, Ana Cristina Gomes; Faria, Ana Maria Caetano; Leclercq, Sophie; Azevedo, Vasco; Miyoshi, Anderson

    2015-02-01

    The use of the food-grade bacterium Lactococcus lactis as a vehicle for the oral delivery of DNA vaccine plasmids constitutes a promising strategy for vaccination. The delivery of DNA plasmids into eukaryotic cells is of critical importance for subsequent DNA expression and effectiveness of the vaccine. In this context, the use of the recombinant invasive L. lactis FnBPA+ (fibronectin-binding protein A) strain for the oral delivery of the eukaryotic expression vector vaccination using lactic acid bacteria (pValac), coding for the 6-kDa early secreted antigenic target (ESAT-6) gene of Mycobacterium tuberculosis, could represent a new DNA vaccine strategy against tuberculosis. To this end, the ESAT-6 sequence was cloned into the pValac vector; the L. lactis fibronectin-binding protein A (FnBPA)+ (pValac:ESAT-6) strain was obtained, and its immunological profile was checked in BALB/c mice. This strain was able to significantly increase interferon gamma (IFN-γ) production in spleen cells, showing a systemic T helper 1 (Th1) cell response. The mice also showed a significant increase in specific secretory immunoglobulin A (sIgA) production in colon tissue and fecal extracts. Thus, this is the first time that L. lactis has been used to deliver a plasmid DNA harboring a gene that encodes an antigen against tuberculosis through mucous membranes.

  1. The Ll.LtrB intron from Lactococcus lactis excises as circles in vivo: insights into the group II intron circularization pathway.

    PubMed

    Monat, Caroline; Quiroga, Cecilia; Laroche-Johnston, Felix; Cousineau, Benoit

    2015-07-01

    Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.

  2. Lysinibacillus endophyticus sp. nov., an indole-3-acetic acid producing endophytic bacterium isolated from corn root (Zea mays cv. Xinken-5).

    PubMed

    Yu, Jiang; Guan, Xuejiao; Liu, Chongxi; Xiang, Wensheng; Yu, Zhenhua; Liu, Xiaobing; Wang, Guanghua

    2016-10-01

    A Gram-positive, aerobic, motile, rod-shaped bacterium, designated strain C9(T), was isolated from surface sterilised corn roots (Zea mays cv. Xinken-5) and found to be able to produce indole-3-acetic acid. A polyphasic taxonomic study was carried out to determine the status of strain C9(T). The major cellular fatty acids were found to contain iso-C15:0, anteiso-C15:0 and anteiso-C17:0, and the only menaquinone was identified as MK-7. The polar lipid profile was found to contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and an unidentified lipid. The cell wall peptidoglycan was found to be of the A4α L-Lys-D-Asp type and the whole cell sugar was found to be glucose. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain C9(T) belongs to the genus Lysinibacillus and is closely related to Lysinibacillus chungkukjangi NBRC 108948(T) (98.1 % similarity) and Lysinibacillus sinduriensis DSM 27595(T) (98.0 %). However, the low levels of DNA-DNA relatedness and some differential phenotypic characteristics allowed the strain to be distinguished from its close relatives. Therefore, it is concluded that strain C9(T) represents a novel species of the genus Lysinibacillus, for which the name Lysinibacillus endophyticus sp. nov. is proposed. The type strain is C9(T) (=DSM 100506(T) = CGMCC 1.15291(T)).

  3. Favourable effects of eicosapentaenoic acid on the late step of the cell division in a piezophilic bacterium, Shewanella violacea DSS12, at high-hydrostatic pressures.

    PubMed

    Kawamoto, Jun; Sato, Takako; Nakasone, Kaoru; Kato, Chiaki; Mihara, Hisaaki; Esaki, Nobuyoshi; Kurihara, Tatsuo

    2011-08-01

    Shewanella violacea DSS12, a deep-sea bacterium, produces eicosapentaenoic acid (EPA) as a component of membrane phospholipids. Although various isolates from the deep sea, such as Photobacterium profundum SS9, Colwellia psychrerythraea 34H and various Shewanella strains, produce EPA- or docosahexaenoic acid-containing phospholipids, the physiological role of these polyunsaturated fatty acids remains unclear. In this article, we illustrate the physiological importance of EPA for high-pressure adaptation in strain DSS12 with the help of an EPA-deficient mutant (DSS12(pfaA)). DSS12(pfaA) showed significant growth retardation at 30 MPa, but not at 0.1 MPa. We also found that DSS12(pfaA) grown at 30 MPa forms filamentous cells. When an EPA-containing phospholipid (sn-1-oleoly-sn-2-eicosapentaenoyl phosphatidylethanolamine) was supplemented, the growth retardation and the morphological defect of DSS12(pfaA) were suppressed, indicating that the externally added EPA-containing phospholipid compensated for the loss of endogenous EPA. In contrast, the addition of an oleic acid-containing phospholipid (sn-1,2-dioleoyl phosphatidylethanolamine) did not affect the growth and the morphology of the cells. Immunofluorescent microscopic analysis with anti-FtsZ antibody revealed a number of Z-rings and separated nucleoids in DSS12(pfaA) grown at 30 MPa. These results demonstrate the physiological importance of EPA for the later step of Z-ring formation of S. violacea DSS12 under high-pressure conditions.

  4. Nucleotide and deduced amino acid sequences of a subtilisin-like serine protease from a deep-sea bacterium, Alkalimonas collagenimarina AC40(T).

    PubMed

    Kurata, Atsushi; Uchimura, Kohsuke; Shimamura, Shigeru; Kobayashi, Tohru; Horikoshi, Koki

    2007-11-01

    The acpI gene encoding an alkaline protease (AcpI) from a deep-sea bacterium, Alkalimonas collagenimarina AC40(T), was shotgun-cloned and sequenced. It had a 1,617-bp open reading frame encoding a protein of 538 amino acids. Based on analysis of the deduced amino acid sequence, AcpI is a subtilisin-like serine protease belonging to subtilase family A. It consists of a prepropeptide, a catalytic domain, and a prepeptidase C-terminal domain like other serine proteases from the genera Pseudomonas, Shewanella, Alteromonas, and Xanthomonas. Heterologous expression of the acpI gene in Escherichia coli cells yielded a 28-kDa recombinant AcpI (rAcpI), suggesting that both the prepropeptide and prepeptidase C-terminal domains were cleaved off to give the mature form. Analysis of N-terminal and C-terminal amino acid sequences of purified rAcpI showed that the mature enzyme would be composed of 273 amino acids. The optimal pH and temperature for the caseinolytic activity of the purified rAcpI were 9.0-9.5 and 45 degrees C in 100 mM glycine-NaOH buffer. Calcium ions slightly enhanced the enzyme activity and stability. The enzyme favorably hydrolyzed gelatin, collagen, and casein. AcpI from A. collagenimarina AC40(T) was also purified from culture broth, and its molecular mass was around 28 kDa, indicating that the cleavage manner of the enzyme is similar to that in E. coli cells.

  5. Fatty acids in bacterium Dietzia sp. grown on simple and complex hydrocarbons determined as FAME by GC-MS.

    PubMed

    Hvidsten, Ina; Mjøs, Svein Are; Bødtker, Gunhild; Barth, Tanja

    2015-09-01

    The influence of growth substrates on the fatty acids produced by Dietzia sp. A14101 has been studied to investigate how qualitative and semi-quantitative information on fatty acids correlates with the ability of this strain to access and utilize a wide range of water-immiscible HC-substrates by modifying the FA content and thus also the properties of the cellular membrane. After incubation on different substrates and media, the profiles of fatty acids (FA) were analyzed by gas chromatography and mass spectrometry (GC-MS). The equivalent chain length (ECL) index calibration system was employed to identify FA. The effect of each substrate on the cell surface charge and on the hydrophobicity of the cellular membrane was also investigated. The results indicate that the variation of the content of saturated fatty acids (SAT-FA) versus mono-unsaturated fatty acids (MUFA) was found to be the most pronounced while branched FA exhibited much less variation in spite of different substrate regimes. The regulation of the ratio of SAT-FA and MUFA seems to be coupled with the regulation of the charge and hydrophobicity of the outer cellular surface. The exposure to a water immiscible substrate led to the development of the negative cellular surface charge, production of carotenoid-type pigments and increased hydrophobicity of the cellular surface. The specific aspects of the adaptation mechanism could have implications for bioremediation and/or (M)EOR applications.

  6. Biological degradation of 4-chlorobenzoic acid by a PCB-metabolizing bacterium through a pathway not involving (chloro)catechol.

    PubMed

    Adebusoye, Sunday A

    2017-02-01

    Cupriavidus sp. strain SK-3, previously isolated on polychlorinated biphenyl mixtures, was found to aerobically utilize a wide spectrum of substituted aromatic compounds including 4-fluoro-, 4-chloro- and 4-bromobenzoic acids as a sole carbon and energy source. Other chlorobenzoic acid (CBA) congeners such as 2-, 3-, 2,3-, 2,5-, 3,4- and 3,5-CBA were all rapidly transformed to respective chlorocatechols (CCs). Under aerobic conditions, strain SK-3 grew readily on 4-CBA to a maximum concentration of 5 mM above which growth became impaired and yielded no biomass. Growth lagged significantly at concentrations above 3 mM, however chloride elimination was stoichiometric and generally mirrored growth and substrate consumption in all incubations. Experiments with resting cells, cell-free extracts and analysis of metabolite pools suggest that 4-CBA was metabolized in a reaction exclusively involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoic acid, which was then hydroxylated to protocatechuic acid (PCA) and subsequently metabolized via the β-ketoadipate pathway. When strain SK-3 was grown on 4-CBA, there was gratuitous induction of the catechol-1,2-dioxygenase and gentisate-1,2-dioxygenase pathways, even if both were not involved in the metabolism of the acid. While activities of the modified ortho- and meta-cleavage pathways were not detectable in all extracts, activity of PCA-3,4-dioxygenase was over ten-times higher than those of catechol-1,2- and gentisate-1,2-dioxygenases. Therefore, the only reason other congeners were not utilized for growth was the accumulation of CCs, suggesting a narrow spectrum of the activity of enzymes downstream of benzoate-1,2-dioxygenase, which exhibited affinity for a number of substituted analogs, and that the metabolic bottlenecks are either CCs or catabolites of the modified ortho-cleavage metabolic route.

  7. Diversity of the Lactic Acid Bacterium and Yeast Microbiota in the Switch from Firm- to Liquid-Sourdough Fermentation

    PubMed Central

    Di Cagno, Raffaella; Pontonio, Erica; Buchin, Solange; De Angelis, Maria; Lattanzi, Anna; Valerio, Francesca; Calasso, Maria

    2014-01-01

    Four traditional type I sourdoughs were comparatively propagated (28 days) under firm (dough yield, 160) and liquid (dough yield, 280) conditions to mimic the alternative technology options frequently used for making baked goods. After 28 days of propagation, liquid sourdoughs had the lowest pH and total titratable acidity (TTA), the lowest concentrations of lactic and acetic acids and free amino acids, and the most stable density of presumptive lactic acid bacteria. The cell density of yeasts was the highest in liquid sourdoughs. Liquid sourdoughs showed simplified microbial diversity and harbored a low number of strains, which were persistent. Lactobacillus plantarum dominated firm sourdoughs over time. Leuconostoc lactis and Lactobacillus brevis dominated only some firm sourdoughs, and Lactobacillus sanfranciscensis persisted for some time only in some firm sourdoughs. Leuconostoc citreum persisted in all firm and liquid sourdoughs, and it was the only species detected in liquid sourdoughs at all times; it was flanked by Leuconostoc mesenteroides in some sourdoughs. Saccharomyces cerevisiae, Candida humilis, Saccharomyces servazzii, Saccharomyces bayanus-Kazachstania sp., and Torulaspora delbrueckii were variously identified in firm and liquid sourdoughs. A total of 197 volatile components were identified through purge and trap–/solid-phase microextraction–gas chromatography-mass spectrometry (PT–/SPME–GC-MS). Aldehydes, several alcohols, and some esters were at the highest levels in liquid sourdoughs. Firm sourdoughs mainly contained ethyl acetate, acetic acid, some sulfur compounds, and terpenes. The use of liquid fermentation would change the main microbial and biochemical features of traditional baked goods, which have been manufactured under firm conditions for a long time. PMID:24632249

  8. Genes but Not Genomes Reveal Bacterial Domestication of Lactococcus Lactis

    PubMed Central

    Passerini, Delphine; Beltramo, Charlotte; Coddeville, Michele; Quentin, Yves; Ritzenthaler, Paul

    2010-01-01

    Background The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST) scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE). Methodology/Principal Findings The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content) did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST) differing by up to 230 kb in genome size. Conclusion/Significance The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between “environmental” strains, the main contributors to the genetic diversity within the subspecies, and “domesticated” strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the “domesticated” strains essentially arose through substantial genomic flux within the dispensable genome

  9. The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium

    PubMed Central

    Darsonval, Maud; Msadek, Tarek; Alexandre, Hervé

    2015-01-01

    Oenococcus oeni is a wine-associated lactic acid bacterium mostly responsible for malolactic fermentation in wine. In wine, O. oeni grows in an environment hostile to bacterial growth (low pH, low temperature, and ethanol) that induces stress response mechanisms. To survive, O. oeni is known to set up transitional stress response mechanisms through the synthesis of heat stress proteins (HSPs) encoded by the hsp genes, notably a unique small HSP named Lo18. Despite the availability of the genome sequence, characterization of O. oeni genes is limited, and little is known about the in vivo role of Lo18. Due to the lack of genetic tools for O. oeni, an efficient expression vector in O. oeni is still lacking, and deletion or inactivation of the hsp18 gene is not presently practicable. As an alternative approach, with the goal of understanding the biological function of the O. oeni hsp18 gene in vivo, we have developed an expression vector to produce antisense RNA targeting of hsp18 mRNA. Recombinant strains were exposed to multiple stresses inducing hsp18 gene expression: heat shock and acid shock. We showed that antisense attenuation of hsp18 affects O. oeni survival under stress conditions. These results confirm the involvement of Lo18 in heat and acid tolerance of O. oeni. Results of anisotropy experiments also confirm a membrane-protective role for Lo18, as previous observations had already suggested. This study describes a new, efficient tool to demonstrate the use of antisense technology for modulating gene expression in O. oeni. PMID:26452552

  10. Diversity of Lactic Acid Bacteria Associated with Fish and the Fish Farm Environment, Established by Amplified rRNA Gene Restriction Analysis▿

    PubMed Central

    Michel, Christian; Pelletier, Claire; Boussaha, Mekki; Douet, Diane-Gaëlle; Lautraite, Armand; Tailliez, Patrick

    2007-01-01

    Lactic acid bacteria have become a major source of concern for aquaculture in recent decades. In addition to true pathogenic species of worldwide significance, such as Streptococcus iniae and Lactococcus garvieae, several species have been reported to produce occasional fish mortalities in limited geographic areas, and many unidentifiable or ill-defined isolates are regularly isolated from fish or fish products. To clarify the nature and prevalence of different fish-associated bacteria belonging to the lactic acid bacterium group, a collection of 57 isolates of different origins was studied and compared with a set of 22 type strains, using amplified rRNA gene restriction analysis (ARDRA). Twelve distinct clusters were delineated on the basis of ARDRA profiles and were confirmed by sequencing of sodA and 16S rRNA genes. These clusters included the following: Lactococcus raffinolactis, L. garvieae, Lactococcus l., S. iniae, S. dysgalactiae, S. parauberis, S. agalactiae, Carnobacterium spp., the Enterococcus “faecium” group, a heterogeneous Enterococcus-like cluster comprising indiscernible representatives of Vagococcus fluvialis or the recently recognized V. carniphilus, V. salmoninarum, and Aerococcus spp. Interestingly, the L. lactis and L. raffinolactis clusters appeared to include many commensals of fish, so opportunistic infections caused by these species cannot be disregarded. The significance for fish populations and fish food processing of three or four genetic clusters of uncertain or complex definition, namely, Aerococcus and Enterococcus clusters, should be established more accurately. PMID:17337536

  11. The amino acid sequence of the zinc-requiring beta-lactamase II from the bacterium Bacillus cereus 569.

    PubMed

    Ambler, R P; Daniel, M; Fleming, J; Hermoso, J M; Pang, C; Waley, S G

    1985-09-23

    The amino acid sequence of the zinc-requiring beta-lactamase II from Bacillus cereus strain 569 has been determined. It consists of a single polypeptide chain of 227 residues. It is the only example so far fully characterized of a class B beta-lactamase, and is structurally and mechanistically distinct from both the widely distributed class A beta-lactamases (such as the Escherichia coli RTEM enzyme) and from the chromosomally encoded class C enzymes from Gram-negative bacteria.

  12. Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor.

    PubMed

    Díaz, C; Baena, S; Fardeau, M-L; Patel, B K C

    2007-08-01

    Strain ILE-2(T) was isolated from an upflow anaerobic sludge bed reactor treating brewery wastewater. The motile, non-sporulating, slightly curved cells (2-4 x 0.1 microm) stained Gram-negative and grew optimally at 42 degrees C and pH 7.1 with 0.5 % NaCl. The strain required yeast extract for growth and fermented Casamino acids, peptone, isoleucine, arginine, lysine, alanine, valine, glutamate, histidine, glutamine, methionine, malate, fumarate, glycerol and pyruvate to acetate, propionate and minor amounts of branched-chain fatty acids. Carbohydrates, formate, acetate, propionate, butyrate, isovalerate, methanol, ethanol, 1-propanol, butanol, lactate, succinate, starch, casein, gelatin, xylan and a number of other amino acids were not utilized. The DNA G+C content of strain ILE-2(T) was 52.7 mol%. 16S rRNA gene sequence analysis revealed that ILE-2(T) was distantly related to members of the genera Aminobacterium (83 % similarity) and Aminomonas (85 % similarity) in the family Syntrophomonadaceae, order Clostridiales, phylum Firmicutes. On the basis of the results of our polyphasic analysis, strain ILE-2(T) represents a novel species and genus within the family Syntrophomonadaceae, for which the name Aminiphilus circumscriptus gen. nov., sp. nov. is proposed. The type strain of Aminiphilus circumscriptus is ILE-2(T) (=DSM 16581(T) =JCM 14039(T)).

  13. Lactococcus lactis BFE920 activates the innate immune system of olive flounder (Paralichthys olivaceus), resulting in protection against Streptococcus iniae infection and enhancing feed efficiency and weight gain in large-scale field studies.

    PubMed

    Kim, Daniel; Beck, Bo Ram; Heo, Saet-Byeol; Kim, Jungjoon; Kim, Hyun Duk; Lee, Sun-Min; Kim, Youngchan; Oh, So Young; Lee, Kyungro; Do, HyungKi; Lee, KwanHee; Holzapfel, Wilhelm H; Song, Seong Kyu

    2013-11-01

    The protective effect of a food-grade lactic acid bacterium Lactococcus lactis BFE920 against disease of olive flounder (Paralichthys olivaceus) cultivated on a large scale was studied. Initially, antimicrobial activity of L. lactis against several fish pathogens was evaluated in vitro; the probiotic showed strong antibacterial activity against Streptococcus iniae, Streptococcus parauberis and Enterococcus viikkiensis, and moderate activity against Lactococcus garviae. When olive flounders were fed for two weeks with experimental diets containing varying concentrations of L. lactis (1 × 10(6), 5 × 10(6), 2.5 × 10(7) and 1.25 × 10(8) CFU/g feed), all the experimental feed groups showed 68-77% survival upon challenge with S. iniae. A field-scale feeding trial with L. lactis dietary supplement was conducted in a local fish farm (n = 12,000) for three months, and disease resistance, innate immune parameters and growth performance were evaluated. The average weight gain and feed efficiency were increased up to 6.8% and 8.5%, respectively. At the end of the feeding trial, the olive flounders were challenged with S. iniae. The L. lactis-fed group was protected from S. iniae challenge with a 66% survival rate. This disease protection is due to the flounder's innate immunity activated by the L. lactis administration: increased lysosomal activities and production of IL-12 and IFN-γ. These data clearly indicated that L. lactis BFE920 may be developed as a functional feed additive for protection against diseases, and for enhancement of feed efficiency and weight gain in olive flounder farming.

  14. High genetic diversity among strains of the unindustrialized lactic acid bacterium Carnobacterium maltaromaticum in dairy products as revealed by multilocus sequence typing.

    PubMed

    Rahman, Abdur; Cailliez-Grimal, Catherine; Bontemps, Cyril; Payot, Sophie; Chaillou, Stéphane; Revol-Junelles, Anne-Marie; Borges, Frédéric

    2014-07-01

    Dairy products are colonized with three main classes of lactic acid bacteria (LAB): opportunistic bacteria, traditional starters, and industrial starters. Most of the population structure studies were previously performed with LAB species belonging to these three classes and give interesting knowledge about the population structure of LAB at the stage where they are already industrialized. However, these studies give little information about the population structure of LAB prior their use as an industrial starter. Carnobacterium maltaromaticum is a LAB colonizing diverse environments, including dairy products. Since this bacterium was discovered relatively recently, it is not yet commercialized as an industrial starter, which makes C. maltaromaticum an interesting model for the study of unindustrialized LAB population structure in dairy products. A multilocus sequence typing scheme based on an analysis of fragments of the genes dapE, ddlA, glpQ, ilvE, pyc, pyrE, and leuS was applied to a collection of 47 strains, including 28 strains isolated from dairy products. The scheme allowed detecting 36 sequence types with a discriminatory index of 0.98. The whole population was clustered in four deeply branched lineages, in which the dairy strains were spread. Moreover, the dairy strains could exhibit a high diversity within these lineages, leading to an overall dairy population with a diversity level as high as that of the nondairy population. These results are in agreement with the hypothesis according to which the industrialization of LAB leads to a diversity reduction in dairy products.

  15. Probiotic assessment of Enterococcus durans 6HL and Lactococcus lactis 2HL isolated from vaginal microflora.

    PubMed

    Nami, Yousef; Abdullah, Norhafizah; Haghshenas, Babak; Radiah, Dayang; Rosli, Rozita; Khosroushahi, Ahmad Yari

    2014-08-01

    Forty-five lactic acid bacteria (LAB) were isolated from the vaginal specimens of healthy fertile women, and the identities of the bacteria were confirmed by sequencing of their 16S rDNA genes. Among these bacteria, only four isolates were able to resist and survive in low pH, bile salts and simulated in vitro digestion conditions. Lactococcus lactis 2HL, Enterococcus durans 6HL, Lactobacillus acidophilus 36YL and Lactobacillus plantarum 5BL showed the best resistance to these conditions. These strains were evaluated further to assess their ability to adhere to human intestinal Caco-2 cells. Lactococcus lactis 2HL and E. durans 6HL were the most adherent strains. In vitro tests under neutralized pH proved the antimicrobial activity of both strains. Results revealed that the growth of Escherichia coli O26, Staphylococcus aureus and Shigella flexneri was suppressed by both LAB strains. The antibiotic susceptibility tests showed that these strains were sensitive to all nine antibiotics: vancomycin, tetracycline, ampicillin, penicillin, gentamicin, erythromycin, clindamycin, sulfamethoxazole and chloramphenicol. These data suggest that E. durans 6HL and Lactococcus lactis 2HL could be examined further for their useful properties and could be developed as new probiotics.

  16. Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation.

    PubMed

    Fallico, Vincenzo; Ross, R Paul; Fitzgerald, Gerald F; McAuliffe, Olivia

    2011-11-01

    In this study, whole-genome microarrays were used to gain insights into the global molecular response of Lactococcus lactis subsp. lactis IL1403 at an early stage of infection with the lytic phage c2. The bacterium differentially regulated the expression of 61 genes belonging to 14 functional categories, including cell envelope processes (12 genes), regulatory functions (11 genes), and carbohydrate metabolism (7 genes). The nature of these genes suggests a complex response involving four main mechanisms: (i) induction of membrane stress proteins, (ii) d-alanylation of cell wall lipoteichoic acids (LTAs), (iii) maintenance of the proton motive force (PMF), and (iv) energy conservation. The phage presence is sensed as a membrane stress in L. lactis subsp. lactis IL1403, which activated a cell wall-targeted response probably orchestrated by the concerted action of membrane phage shock protein C-like homologues, the global regulator SpxB, and the two-component system CesSR. The bacterium upregulated genes (ddl and dltABCD) responsible for incorporation of d-alanine esters into LTAs, an event associated with increased resistance to phage attack in Gram-positive bacteria. The expression of genes (yshC, citE, citF) affecting both PMF components was also regulated to restore the physiological PMF, which was disrupted following phage infection. While mobilizing the response to the phage-mediated stress, the bacterium activated an energy-saving program by repressing growth-related functions and switching to anaerobic respiration, probably to sustain the PMF and the overall cell response to phage. To our knowledge, this represents the first detailed description in L. lactis of the molecular mechanisms involved in the host response to the membrane perturbations mediated by phage infection.

  17. Identification of a 4-deoxy-L-erythro-5-hexoseulose uronic acid reductase, FlRed, in an alginolytic bacterium Flavobacterium sp. strain UMI-01.

    PubMed

    Inoue, Akira; Nishiyama, Ryuji; Mochizuki, Shogo; Ojima, Takao

    2015-01-16

    In alginate-assimilating bacteria, alginate is depolymerized to unsaturated monosaccharide by the actions of endolytic and exolytic alginate lyases (EC 4.2.2.3 and EC 4.2.2.11). The monosaccharide is non-enzymatically converted to 4-deoxy-L-ery thro-5-hexoseulose uronic acid (DEH), then reduced to 2-keto-3-deoxy-D-gluconate (KDG) by a specific reductase, and metabolized through the Entner-Doudoroff pathway. Recently, the NADPH-dependent reductase A1-R that belongs to short-chain dehydrogenases/reductases (SDR) superfamily was identified as the DEH-reductase in Sphingomonas sp. A1. We have subsequently noticed that an SDR-like enzyme gene, flred, occurred in the genome of an alginolytic bacterium Flavobacterium sp. strain UMI-01. In the present study, we report on the deduced amino-acid sequence of flred and DEH-reducing activity of recombinant FlRed. The deduced amino-acid sequence of flred comprised 254 residues and showed 34% amino-acid identities to that of A1-R from Sphingomonas sp. A1 and 80%-88% to those of SDR-like enzymes from several alginolytic bacteria. Common sequence motifs of SDR-superfamily enzymes, e.g., the catalytic tetrad Asn-Lys-Tyr-Ser and the cofactor-binding sequence Thr-Gly-x-x-x-Gly-x-Gly in Rossmann fold, were completely conserved in FlRed. On the other hand, an Arg residue that determined the NADPH-specificity of Sphingomonas A1-R was replaced by Glu in FlRed. Thus, we investigated cofactor-preference of FlRed using a recombinant enzyme. As a result, the recombinant FlRed (recFlRed) was found to show high specificity to NADH. recFlRed exhibited practically no activity toward variety of aldehyde, ketone, keto ester, keto acid and aldose substrates except for DEH. On the basis of these results, we conclude that FlRed is the NADH-dependent DEH-specific SDR of Flavobacterium sp. strain UMI-01.

  18. Characterization of lactose utilization and β-galactosidase in Lactobacillus brevis KB290, the hetero-fermentative lactic acid bacterium.

    PubMed

    Honda, Hiroyuki; Yajima, Nobuhiro; Saito, Tadao

    2012-12-01

    Unlike dairy lactic acid bacteria, Lactobacillus brevis cannot ferment milk. We characterized the lactose utilization by L. brevis KB290. In a carbohydrate fermentation assay using API 50 CHL, we showed during 7 days L. brevis did not ferment lactose. L. brevis grew to the stationary phase in 2 weeks in MRS broth containing lactose as the carbon source. L. brevis slowly consumed the lactose in the medium. L. brevis hydrolyzed lactose and a lactose analog, o-nitrophenyl-β-D-galactopyranoside (ONPGal). This β-galactosidase activity for ONPGal was not repressed by glucose, galactose, fructose, xylose, or maltose showing the microorganism may not have carbon catabolite repression. We purified the L. brevis β-galactosidase using ammonium sulfate precipitation and several chromatographies. The enzyme's molecular weight is estimated at 72 and 37 kDa using SDS-PAGE analysis. The N-terminal amino acid sequence of the larger protein was 90 % similar to the sequence of the putative β-galactosidase (YP_796339) and the smaller protein was identical to the sequence of the putative β-galactosidase (YP_796338) in L. brevis ATCC367. This suggests the enzyme is a heterodimeric β-galactosidase. The specific activity of the purified enzyme for lactose is 55 U/mg. We speculate inhibition of lactose transport delays the lactose utilization in L. brevis KB290.

  19. Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand.

    PubMed

    Hosoya, Shoichi; Arunpairojana, Vullapa; Suwannachart, Chatrudee; Kanjana-Opas, Akkharawit; Yokota, Akira

    2006-12-01

    Three strains of gliding bacteria, 24(T), 62 and 71, isolated from a marine sponge and algae from the southern coastline of Thailand, were studied using a polyphasic approach to clarify their taxonomic positions. A phylogenetic analysis based on 16S rRNA gene sequences showed that the three isolates formed a distinct lineage within the family 'Saprospiraceae' of the phylum Bacteroidetes and were related to members of the genus Saprospira. The G+C contents of the isolates were in the range 38-39 mol%. The major respiratory quinone was MK-7. The predominant cellular fatty acids were 20 : 4omega6c (arachidonic acid), 16 : 0 and iso-17 : 0. On the basis of morphological, physiological and chemotaxonomic characteristics, together with DNA-DNA hybridization data and 16S rRNA gene sequences, the isolates represent a novel species of a novel genus, for which the name Aureispira marina gen. nov., sp. nov. is proposed. The type strain of Aureispira marina is 24(T) (=IAM 15389(T)=TISTR 1719(T)).

  20. Insertion sequence elements in Lactococcus garvieae.

    PubMed

    Eraclio, Giovanni; Ricci, Giovanni; Fortina, Maria Grazia

    2015-01-25

    Insertion sequences are the simplest intracellular Mobile Genetic Elements which can occur in very high numbers in prokaryotic genomes, where they play an important evolutionary role by promoting genome plasticity. As such, the studies on the diversity and distribution of insertion sequences in genomes not yet investigated can contribute to improve the knowledge on a bacterial species and to identify new transposable elements. The present work describes the occurrence of insertion sequences in Lactococcus garvieae, an opportunistic emerging zoonotic and human pathogen, also associated with different food matrices. To date, no insertion elements have been described for L. garvieae in the IS element database. The analysis of the twelve published L. garvieae genomes identified 15 distinct insertion sequences that are members of the IS3, IS982, IS6, IS21 and IS256 families, including five new elements. Most of the insertion sequences in L. garvieae show substantial homology to the Lactococcus lactis elements, suggesting the movement of IS between these two species phylogenetically closely related. ISLL6 elements belonging to IS3 family were most abundant, with several copies distributed in 9 of the 12 genomes analyzed. An alignment analysis of two complete genomes carrying multi-copies of this insertion sequence indicates a possible involvement of ISLL6 in chromosomal rearrangement.

  1. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans.

    PubMed

    Hernandez, J M; Baker, S H; Lorbach, S C; Shively, J M; Tabita, F R

    1996-01-01

    The cbbL cbbS and cbbM genes of Thiobacillus denitrificans, encoding form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), respectively, were found to complement a RubisCO-negative mutant of Rhodobacter sphaeroides to autotrophic growth. Endogenous T. denitrificans promoters were shown to function in R. sphaeroides, resulting in high levels of cbbL cbbS and cbbM expression in the R. sphaeroides host. This expression system provided high levels of both T. denitrificans enzymes, each of which was highly purified. The deduced amino acid sequence of the form I enzyme indicated that the large subunit was closely homologous to previously sequenced form I RubisCO enzymes from sulfur-oxidizing bacteria. The form I T. denitrificans enzyme possessed a very low substrate specificity factor and did not exhibit fallover, and yet this enzyme showed a poor ability to recover from incubation with ribulose 1,5-bisphosphate. The deduced amino acid sequence of the form II T. denitrificans enzyme resembled those of other form II RubisCO enzymes. The substrate specificity factor was characteristically low, and the lack of fallover and the inhibition by ribulose 1,5-bisphosphate were similar to those of form II RubisCO obtained from nonsulfur purple bacteria. Both form I and form II RubisCO from T. denitrificans possessed high KCO2 values, suggesting that this organism might suffer in environments containing low levels of dissolved CO2. These studies present the initial description of the kinetic properties of form I and form II RubisCO from a chemoautotrophic bacterium that synthesizes both types of enzyme.

  2. Influence of nitrogen substrates and substrate C:N ratios on the nitrogen isotopic composition of amino acids from the marine bacterium Vibrio harveyi

    NASA Astrophysics Data System (ADS)

    Maki, K.; Ohkouchi, N.; Chikaraishi, Y.; Fukuda, H.; Miyajima, T.; Nagata, T.

    2014-09-01

    Nitrogen (N) isotopic compositions of individual hydrolysable amino acids (δ15NAAs) in N pools have been increasingly used for trophic position assessment and evaluation of sources and transformation processes of organic matter in marine environments. However, there are limited data about variability in δ15NAAs patterns and how this variability influences marine bacteria, an important mediator of trophic transfer and organic matter transformation. We explored whether marine bacterial δ15NAAs profiles change depending on the type and C:N ratio of the substrate. The δ15NAAs profile of a marine bacterium, Vibrio harveyi, was examined using medium containing either glutamate, alanine or ammonium as the N source [substrate C:N ratios (range, 3 to 20) were adjusted with glucose]. The data were interpreted as a reflection of isotope fractionations associated with de novo synthesis of amino acids by bacteria. Principal component analysis (PCA) using the δ15N offset values normalized to glutamate + glutamine δ15N revealed that δ15NAAs profiles differed depending on the N source and C:N ratio of the substrate. High variability in the δ15N offset of alanine and valine largely explained this bacterial δ15NAAs profile variability. PCA was also conducted using bacterial and phytoplankton (cyanobacteria and eukaryotic algae) δ15NAAs profile data reported previously. The results revealed that bacterial δ15NAAs patterns were distinct from those of phytoplankton. Therefore, the δ15NAAs profile is a useful indicator of biochemical responses of bacteria to changes in substrate conditions, serving as a potentially useful method for identifying organic matter sources in marine environments.

  3. Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough.

    PubMed

    Toffin, Laurent; Zink, Klaus; Kato, Chiaki; Pignet, Patricia; Bidault, Adeline; Bienvenu, Nadège; Birrien, Jean-Louis; Prieur, Daniel

    2005-01-01

    A piezotolerant, mesophilic, marine lactic acid bacterium (strain LT20T) was isolated from a deep sub-seafloor sediment core collected at Nankai Trough, off the coast of Japan. Cells were Gram-positive, rod-shaped, non-sporulating and non-motile. The NaCl concentration range for growth was 0-120 g l(-1), with the optimum at 10-20 g l(-1). The temperature range for growth at pH 7.0 was 4-50 degrees C, with the optimum at 37-40 degrees C. The optimum pH for growth was 7.0-8.0. The optimum pressure for growth was 0.1 MPa with tolerance up to 30 MPa. The main cellular phospholipids were phosphatidylglycerols (25 %), diphosphatidylglycerols (34 %) and a group of compounds tentatively identified as ammonium-containing phosphatidylserines (32 %); phosphatidylethanolamines (9 %) were minor components. The fatty acid composition was dominated by side chains of 16 : 0, 14 : 0 and 16 : 1. The G+C content of the genomic DNA was 42 mol%. On the basis of 16S rRNA gene sequence analysis and the secondary structure of the V6 region, this organism was found to belong to the genus Marinilactibacillus and was closely related to Marinilactibacillus psychrotolerans M13-2(T) (99 %), Marinilactibacillus sp. strain MJYP.25.24 (99 %) and Alkalibacterium olivapovliticus strain ww2-SN4C (97 %). Despite the high similarity between their 16S rRNA gene sequences (99 %), the DNA-DNA hybridization levels were less than 20 %. On the basis of physiological and genetic characteristics, it is proposed that this organism be classified as a novel species, Marinilactibacillus piezotolerans sp. nov. The type strain is LT20T (=DSM 16108T=JCM 12337T).

  4. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans.

    PubMed Central

    Hernandez, J M; Baker, S H; Lorbach, S C; Shively, J M; Tabita, F R

    1996-01-01

    The cbbL cbbS and cbbM genes of Thiobacillus denitrificans, encoding form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), respectively, were found to complement a RubisCO-negative mutant of Rhodobacter sphaeroides to autotrophic growth. Endogenous T. denitrificans promoters were shown to function in R. sphaeroides, resulting in high levels of cbbL cbbS and cbbM expression in the R. sphaeroides host. This expression system provided high levels of both T. denitrificans enzymes, each of which was highly purified. The deduced amino acid sequence of the form I enzyme indicated that the large subunit was closely homologous to previously sequenced form I RubisCO enzymes from sulfur-oxidizing bacteria. The form I T. denitrificans enzyme possessed a very low substrate specificity factor and did not exhibit fallover, and yet this enzyme showed a poor ability to recover from incubation with ribulose 1,5-bisphosphate. The deduced amino acid sequence of the form II T. denitrificans enzyme resembled those of other form II RubisCO enzymes. The substrate specificity factor was characteristically low, and the lack of fallover and the inhibition by ribulose 1,5-bisphosphate were similar to those of form II RubisCO obtained from nonsulfur purple bacteria. Both form I and form II RubisCO from T. denitrificans possessed high KCO2 values, suggesting that this organism might suffer in environments containing low levels of dissolved CO2. These studies present the initial description of the kinetic properties of form I and form II RubisCO from a chemoautotrophic bacterium that synthesizes both types of enzyme. PMID:8550452

  5. Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes.

    PubMed

    Hamdi, Olfa; Ben Hania, Wajdi; Postec, Anne; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia; Ollivier, Bernard; Fardeau, Marie-Laure

    2015-02-01

    A new Gram-staining-positive, non-sporulating, mesophilic, amino acid-degrading anaerobic bacterium, designated strain OTA 102(T), was isolated from an anaerobic sequencing batch reactor treating wastewater from cooking tuna. The cells were curved rods (0.6-2.5×0.5 µm) and occurred singly or in pairs. The strain was motile by means of one lateral flagellum. Strain OTA 102(T) grew at temperatures between 30 and 45 °C (optimum 40 °C), between pH 6.0 and 8.4 (optimum pH 7.2) and NaCl concentrations between 1 and 5 % (optimum 2 %, w/v). Strain OTA 102(T) required yeast extract for growth. Serine, threonine, glycine, cysteine, citrate, fumarate, α-ketoglutarate and pyruvate were fermented. When co-cultured with Methanobacterium formicicum as the hydrogen scavenger, strain OTA 102(T) oxidized alanine, valine, leucine, isoleucine, aspartate, tyrosine, methionine, histidine and asparagine. The genomic DNA G+C content of strain OTA 102(T) was 41.7 mol%. The main fatty acid was iso-C15 : 0. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain OTA 102(T) was related to Aminobacterium colombiense and Aminobacterium mobile (95.5 and 95.2 % similarity, respectively), of the phylum Synergistetes. On the basis of phylogenetic, genetic and physiological characteristics, strain OTA 102(T) is proposed to represent a novel species of the genus Aminobacterium, Aminobacterium thunnarium sp. nov. The type strain is OTA 102(T) ( = DSM 27500(T) = JCM 19320(T)).

  6. Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae.

    PubMed

    Xu, Shu; Pan, Xiayan; Luo, Jianying; Wu, Jian; Zhou, Zehua; Liang, Xiaoyu; He, Yawen; Zhou, Mingguo

    2015-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the casual agent of bacterial blight, which is one of the most serious diseases of rice. The antibiotic phenazine-1-carboxylic acid (PCA), which is primarily produced by Pseudomonas spp., was found and previously reported very effective against Xoo. However, the biological effects of PCA on Xoo remain unclear. In this study, we found that PCA increased the accumulation of reactive oxygen species (ROS) and reduced the activities of catalase (CAT) and superoxide dismutase (SOD) in Xoo. Xoo was more sensitive to H2O2 than Xanthomonas oryzae pv. oryzicola (Xoc), and had a much lower expression of CAT genes. In addition, proteomic analysis indicated that PCA inhibited carbohydrate metabolism and nutrient uptake in Xoo, and analysis of carbon source utilization further confirmed that carbohydrate metabolism in Xoo was repressed by PCA. In conclusion, PCA acted as a redox-cycling agent that disturbed the redox balance in Xoo and reduced CAT and SOD activities, resulting in higher accumulation of ROS, altered carbohydrate metabolism, and lower energy production and nutrient uptake. Moreover, a deficient antioxidant system in Xoo made it very sensitive to PCA.

  7. Hematite Reduction Buffers Acid Generation and Enhances Nutrient Uptake by a Fermentative Iron Reducing Bacterium, Orenia metallireducens Strain Z6.

    PubMed

    Dong, Yiran; Sanford, Robert A; Chang, Yun-Juan; McInerney, Michael J; Fouke, Bruce W

    2017-01-03

    Fermentative iron-reducing organisms have been identified in a variety of environments. Instead of coupling iron reduction to respiration, they have been consistently observed to use ferric iron minerals as an electron sink for fermentation. In the present study, a fermentative iron reducer, Orenia metallireducens strain Z6, was shown to use iron reduction to enhance fermentation not only by consuming electron equivalents, but also by generating alkalinity that effectively buffers the pH. Fermentation of glucose by this organism in the presence of a ferric oxide mineral, hematite (Fe2O3), resulted in enhanced glucose decomposition compared with fermentation in the absence of an iron source. Parallel evidence (i.e., genomic reconstruction, metabolomics, thermodynamic analyses, and calculation of electron transfer) suggested hematite reduction as a proton-consuming reaction effectively consumed acid produced by fermentation. The buffering effect of hematite was further supported by a greater extent of glucose utilization by strain Z6 in media with increasing buffer capacity. Such maintenance of a stable pH through hematite reduction for enhanced glucose fermentation complements the thermodynamic interpretation of interactions between microbial iron reduction and other biogeochemical processes. This newly discovered feature of iron reducer metabolism also has significant implications for groundwater management and contaminant remediation by providing microbially mediated buffering systems for the associated microbial and/or chemical reactions.

  8. Genome Sequence and Analysis of the Oral Bacterium Fusobacterium nucleatum Strain ATCC 25586

    PubMed Central

    Kapatral, Vinayak; Anderson, Iain; Ivanova, Natalia; Reznik, Gary; Los, Tamara; Lykidis, Athanasios; Bhattacharyya, Anamitra; Bartman, Allen; Gardner, Warren; Grechkin, Galina; Zhu, Lihua; Vasieva, Olga; Chu, Lien; Kogan, Yakov; Chaga, Oleg; Goltsman, Eugene; Bernal, Axel; Larsen, Niels; D'Souza, Mark; Walunas, Theresa; Pusch, Gordon; Haselkorn, Robert; Fonstein, Michael; Kyrpides, Nikos; Overbeek, Ross

    2002-01-01

    We present a complete DNA sequence and metabolic analysis of the dominant oral bacterium Fusobacterium nucleatum. Although not considered a major dental pathogen on its own, this anaerobe facilitates the aggregation and establishment of several other species including the dental pathogens Porphyromonas gingivalis and Bacteroides forsythus. The F. nucleatum strain ATCC 25586 genome was assembled from shotgun sequences and analyzed using the ERGO bioinformatics suite (http://www.integratedgenomics.com). The genome contains 2.17 Mb encoding 2,067 open reading frames, organized on a single circular chromosome with 27% GC content. Despite its taxonomic position among the gram-negative bacteria, several features of its core metabolism are similar to that of gram-positive Clostridium spp., Enterococcus spp., and Lactococcus spp. The genome analysis has revealed several key aspects of the pathways of organic acid, amino acid, carbohydrate, and lipid metabolism. Nine very-high-molecular-weight outer membrane proteins are predicted from the sequence, none of which has been reported in the literature. More than 137 transporters for the uptake of a variety of substrates such as peptides, sugars, metal ions, and cofactors have been identified. Biosynthetic pathways exist for only three amino acids: glutamate, aspartate, and asparagine. The remaining amino acids are imported as such or as di- or oligopeptides that are subsequently degraded in the cytoplasm. A principal source of energy appears to be the fermentation of glutamate to butyrate. Additionally, desulfuration of cysteine and methionine yields ammonia, H2S, methyl mercaptan, and butyrate, which are capable of arresting fibroblast growth, thus preventing wound healing and aiding penetration of the gingival epithelium. The metabolic capabilities of F. nucleatum revealed by its genome are therefore consistent with its specialized niche in the mouth. PMID:11889109

  9. Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring.

    PubMed

    Yoneda, Yasuko; Yoshida, Takashi; Kawaichi, Satoshi; Daifuku, Takashi; Takabe, Keiji; Sako, Yoshihiko

    2012-07-01

    A novel anaerobic, Fe(III)-reducing, hydrogenogenic, carboxydotrophic bacterium, designated strain Ug1(T), was isolated from a volcanic acidic hot spring in southern Kyushu Island, Japan. Cells of the isolate were rod-shaped (1.0-3.0 µm long) and motile due to peritrichous flagella. Strain Ug1(T) grew chemolithoautotrophically on CO (100% in the gas phase) with reduction of ferric citrate, amorphous iron (III) oxide, 9,10-anthraquinone 2,6-disulfonate, thiosulfate or elemental sulfur. No carboxydotrophic growth occurred with sulfate, sulfite, nitrate or fumarate as electron acceptor. During growth on CO, H(2) and CO(2) were produced. Growth occurred on molecular hydrogen as an energy source and carbon dioxide as a sole carbon source. Growth was observed on various organic compounds under an N(2) atmosphere with the reduction of ferric iron. The temperature range for carboxydotrophic growth was 50-70 °C, with an optimum at 65 °C. The pH(25 °C) range for growth was 4.6-8.6, with an optimum between 6.0 and 6.5. The doubling time under optimum conditions using CO with ferric citrate was 1.5 h. The DNA G+C content was 42.2 mol%. Analysis of 16S rRNA gene sequences demonstrated that this strain belongs to the thermophilic carboxydotrophic bacterial genus Carboxydothermus, with sequence similarities of 94.1-96.6% to members of this genus. The isolate can be distinguished from other members of the genus Carboxydothermus by its ability to grow with elemental sulfur or thiosulfate coupled to CO oxidation. On the basis of phylogenetic analysis and unique physiological features, the isolate represents a novel species of the genus Carboxydothermus for which the name Carboxydothermus pertinax sp. nov. is proposed; the type strain of the novel species is Ug1(T) (=DSM 23698(T)=NBRC 107576(T)).

  10. Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance.

    PubMed

    Carvalho, Ana Lúcia; Cardoso, Filipa S; Bohn, Andreas; Neves, Ana Rute; Santos, Helena

    2011-06-01

    Trehalose accumulation is a common cell defense strategy against a variety of stressful conditions. In particular, our team detected high levels of trehalose in Propionibacterium freudenreichii in response to acid stress, a result that led to the idea that endowing Lactococcus lactis with the capacity to synthesize trehalose could improve the acid tolerance of this organism. To this end, we took advantage of the endogenous genes involved in the trehalose catabolic pathway of L. lactis, i.e., trePP and pgmB, encoding trehalose 6-phosphate phosphorylase and β-phosphoglucomutase, respectively, which enabled the synthesis of trehalose 6-phosphate. Given that L. lactis lacks trehalose 6-phosphate phosphatase, the respective gene, otsB, from the food-grade organism P. freudenreichii was used to provide the required activity. The trehalose yield was approximately 15% in resting cells and in mid-exponential-phase cells grown without pH control. The intracellular concentration of trehalose reached maximal values of approximately 170 mM, but at least 67% of the trehalose produced was found in the growth medium. The viability of mutant and control strains was examined after exposure to heat, cold or acid shock, and freeze-drying. The trehalose-producing strains showed improved tolerance (5- to 10-fold-higher survivability) to acid (pH 3) and cold shock (4°C); there was also a strong improvement in cell survival in response to heat shock (45°C), and no protection was rendered against dehydration. The insight provided by this work may help the design of food-grade strains optimized for the dairy industry as well as for oral drug delivery.

  11. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    PubMed

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin.

  12. Surface Display of the Receptor-Binding Region of the Lactobacillus brevis S-Layer Protein in Lactococcus lactis Provides Nonadhesive Lactococci with the Ability To Adhere to Intestinal Epithelial Cells

    PubMed Central

    Åvall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-01-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium. PMID:12676705

  13. Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells.

    PubMed

    Avall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-04-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.

  14. Encapsulated Lactococcus lactis with enhanced gastrointestinal survival for the development of folate enriched functional foods.

    PubMed

    Divya, Jayakumar Beena; Nampoothiri, Kesavan Madhavan

    2015-01-01

    Two lactic acid bacteria (LAB) isolated from cow's milk were identified as Lactococcus lactis strains and designated as L. lactis CM22 and L. lactis CM28. They were immobilised by co-encapsulation using alginate and mannitol and by hybrid entrapment with skim milk, glycerol, CaCO3 and alginate. The encapsulated cells survived better in simulated gastrointestinal conditions compared to the free cells. The percentage survival of probiotics encapsulated by hybrid entrapment method was 62.74% for L. lactis CM22 and 68% for L. lactis CM28. Studies to check their efficacy in fermentative fortification of skim milk and ice cream revealed an enhancement in folate level.

  15. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone.

    PubMed

    Freguia, Stefano; Masuda, Masaki; Tsujimura, Seiya; Kano, Kenji

    2009-09-01

    Lactococcus lactis is a gram-positive, normally homolactic fermenter that is known to produce several kinds of membrane associated quinones, which are able to mediate electron transfer to extracellular electron acceptors such as Fe(3+), Cu(2+) and hexacyanoferrate. Here we show that this bacterium is also capable of performing extracellular electron transfer to anodes by utilizing at least two soluble redox mediators, as suggested by the two-step catalytic current developed. One of these two mediators was herein suggested to be 2-amino-3-dicarboxy-1,4-naphthoquinone (ACNQ), via evaluation of standard redox potential, ability of the bacterium to exploit the quinone when exogenously provided, as well as by high performance liquid chromatography coupled with UV spectrum analysis. During electricity generation, L. lactis slightly deviated from its normal homolactic metabolism by excreting acetate and pyruvate in stoichiometric amounts with respect to the electrical current. In this metabolism, the anode takes on the role of electron sink for acetogenic fermentation. The finding that L. lactis self-catalyses anodic electron transfer by excretion of redox mediators is remarkable as the mechanisms of extracellular electron transfer by pure cultures of gram-positive bacteria had previously never been elucidated.

  16. Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency.

    PubMed

    Maggi, Matías; Negri, Pedro; Plischuk, Santiago; Szawarski, Nicolás; De Piano, Fiorella; De Feudis, Leonardo; Eguaras, Martín; Audisio, Carina

    2013-12-27

    The European honey bee Apis mellifera is known to be affected by many parasites and pathogens that have great impact over the insect development. Among parasites affecting bee health, Nosema ceranae is one of the main biotic factors affecting colony populations. As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. The main goal of the current study was to assess the effect of the oral administration of the metabolites produced by Lactobacillus johnsonii CRL1647 (mainly organic acids) supplemented in syrup, on: (I) N. ceranae sporulation dynamics before and after fumagillin application, and (II) performance of A. mellifera colonies. Different experiments were conducted to evaluate the effects of these bacterial metabolites on bees: in vitro administration revealed no toxic effects against bees. Colonies fed with the lactic acids incremented their beehive population and also the amount of fat bodies per bee. Finally, the organic acids reduced the intensity of the pathogen after the second application of treatment as well as enhanced the fumagillin efficiency. This study provides important information for the development of new control substances against nosemosis.

  17. Bacterium-Like Particles for Efficient Immune Stimulation of Existing Vaccines and New Subunit Vaccines in Mucosal Applications

    PubMed Central

    Van Braeckel-Budimir, Natalija; Haijema, Bert Jan; Leenhouts, Kees

    2013-01-01

    The successful development of a mucosal vaccine depends critically on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle, derived from bacteria, used in mucosal subunit vaccines. The non-living particles, designated bacterium-like particles are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine. PMID:24062748

  18. Efficient Overproduction of Membrane Proteins in Lactococcus lactis Requires the Cell Envelope Stress Sensor/Regulator Couple CesSR

    PubMed Central

    Pinto, Joao P. C.; Kuipers, Oscar P.; Marreddy, Ravi K. R.; Poolman, Bert; Kok, Jan

    2011-01-01

    Background Membrane proteins comprise an important class of molecules whose study is largely frustrated by several intrinsic constraints, such as their hydrophobicity and added requirements for correct folding. Additionally, the complexity of the cellular mechanisms that are required to insert membrane proteins functionally in the membrane and to monitor their folding state makes it difficult to foresee the yields at which one can obtain them or to predict which would be the optimal production host for a given protein. Methods and Findings We describe a rational design approach to improve the lactic acid bacterium Lactococcus lactis as a producer of membrane proteins. Our transcriptome data shows that the two-component system CesSR, which senses cell envelope stresses of different origins, is one of the major players when L. lactis is forced to overproduce the endogenous membrane protein BcaP, a branched-chain amino acid permease. Growth of the BcaP-producing L. lactis strain and its capability to produce membrane proteins are severely hampered when the CesSR system itself or particular members of the CesSR regulon are knocked out, notably the genes ftsH, oxaA2, llmg_2163 and rmaB. Overexpressing cesSR reduced the growth defect, thus directly improving the production yield of BcaP. Applying this rationale to eukaryotic proteins, some of which are notoriously more difficult to produce, such as the medically-important presenilin complex, we were able to significantly diminish the growth defect seen in the wild-type strain and improve the production yield of the presenilin variant PS1Δ9-H6 more than 4-fold. Conclusions The results shed light into a key, and perhaps central, membrane protein quality control mechanism in L. lactis. Modulating the expression of CesSR benefited the production yields of membrane proteins from different origins. These findings reinforce L. lactis as a legitimate alternative host for the production of membrane proteins. PMID:21818275

  19. Antifungal and sprout regulatory bioactivities of phenylacetic acid, indole-3-acetic acid, and tyrosol isolated from the potato dry rot suppressive bacterium Enterobacter cloacae S11:T:07.

    PubMed

    Slininger, P J; Burkhead, K D; Schisler, D A

    2004-12-01

    Enterobacter cloacae S11: T:07 (NRRL B-21050) is a promising biological control agent that has significantly reduced both fungal dry rot disease and sprouting in laboratory and pilot potato storages. The metabolites phenylacetic acid (PAA), indole-3-acetic acid (IAA), and tyrosol (TSL) were isolated from S11:T:07 liquid cultures provided with three different growth media. The bioactivities of these metabolites were investigated via thin-layer chromatography bioautography of antifungal activity, wounded potato assays of dry rot suppressiveness, and cored potato eye assays of sprout inhibition. Relative accumulations of PAA, IAA, and TSL in cultures were nutrient dependent. For the first time, IAA, TSL, and PAA were shown to have antifungal activity against the dry rot causative pathogen Gibberella pulicaris, and to suppress dry rot infection of wounded potatoes. Disease suppression was optimal when all three metabolites were applied in combination. Dosages of IAA that resulted in disease suppression also resulted in sprout inhibition. These results suggest the potential for designing culture production and formulation conditions to achieve a dual purpose biological control agent able to suppress both dry rot and sprouting of stored potatoes.

  20. Evaluation of lactic acid bacterium fermentation products and food-grade chemicals to control Listeria monocytogenes in blue crab (Callinectes sapidus) meat.

    PubMed Central

    Degnan, A J; Kaspar, C W; Otwell, W S; Tamplin, M L; Luchansky, J B

    1994-01-01

    Fresh blue crab (Callinectes sapidus) meat was obtained from retail markets in Florida and sampled for viable Listeria monocytogenes. The pathogen was found in crabmeat in three of four different lots tested by enrichment and at levels of 75 CFU/g in one of the same four lots by direct plating. Next, crabmeat was steam sterilized, inoculated with a three-strain mixture of L. monocytogenes (ca. 5.5 log10 CFU/g), washed with various lactic acid bacterium fermentation products (2,000 to 20,000 arbitrary units [AU]/ml of wash) or food-grade chemicals (0.25 to 4 M), and stored at 4 degrees C. Counts of the pathogen remained relatively constant in control samples during storage for 6 days, whereas in crabmeat washed with Perlac 1911 or MicroGard (10,000 to 20,000 AU), numbers initially decreased (0.5 to 1.0 log10 unit/g) but recovered to original levels within 6 days. Numbers of L. monocytogenes cells decreased 1.5 to 2.7 log10 units/g of crabmeat within 0.04 day when washed with 10,000 to 20,000 AU of Alta 2341, enterocin 1083, or Nisin per ml. Thereafter, counts increased 0.5 to 1.6 log10 units within 6 days. After washing with food-grade chemicals, modest reductions (0.4 to 0.8 log10 unit/g) were observed with sodium acetate (4 M), sodium diacetate (0.5 or 1 M), sodium lactate (1 M), or sodium nitrite (1.5 M). However, Listeria counts in crabmeat washed with 2 M sodium diacetate decreased 2.6 log10 units/g within 6 days. In addition, trisodium phosphate reduced L. monocytogenes counts from 1.7 (0.25 M) to > 4.6 (1 M) log10 units/g within 6 days.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7944362

  1. Regulatory phenotyping reveals important diversity within the species Lactococcus lactis.

    PubMed

    Bachmann, Herwig; Starrenburg, Marjo J C; Dijkstra, Annereinou; Molenaar, Douwe; Kleerebezem, Michiel; Rademaker, Jan L W; van Hylckama Vlieg, Johan E T

    2009-09-01

    The diversity in regulatory phenotypes among a collection of 84 Lactococcus lactis strains isolated from dairy and nondairy origin was explored. The specific activities of five enzymes were assessed in cell extracts of all strains grown in two different media, a nutritionally rich broth and a relatively poor chemically defined medium. The five investigated enzymes, branched chain aminotransferase (BcaT), aminopeptidase N (PepN), X-prolyl dipeptidyl peptidase (PepX), alpha-hydroxyisocaproic acid dehydrogenase (HicDH), and esterase, are involved in nitrogen and fatty acid metabolism and catalyze key steps in the production of important dairy flavor compounds. The investigated cultures comprise 75 L. lactis subsp. lactis isolates (including 7 L. lactis subsp. lactis biovar diacetylactis isolates) and 9 L. lactis subsp. cremoris isolates. All L. lactis subsp. cremoris and 22 L. lactis subsp. lactis (including 6 L. lactis subsp. lactis biovar diacetylactis) cultures originated from a dairy environment. All other cultures originated from (fermented) plant materials and were isolated at different geographic locations. Correlation analysis of specific enzyme activities revealed significantly different regulatory phenotypes for dairy and nondairy isolates. The enzyme activities in the two investigated media were in general poorly correlated and revealed a high degree of regulatory diversity within this collection of closely related strains. To the best of our knowledge, these results represent the most extensive diversity analysis of regulatory phenotypes within a single bacterial species to date. The presented findings underline the importance of the availability of screening procedures for, e.g., industrially relevant enzyme activities in models closely mimicking application conditions. Moreover, they corroborate the notion that regulatory changes are important drivers of evolution.

  2. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation.

    PubMed

    Martín, Rebeca; Chain, Florian; Miquel, Sylvie; Natividad, Jane M; Sokol, Harry; Verdu, Elena F; Langella, Philippe; Bermúdez-Humarán, Luis G

    2014-01-01

    Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a "proof-of-concept," our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces.

  3. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease

    PubMed Central

    Chain, F.; Marquant, R.; Tailhades, J.; Miquel, S.; Carlier, L.; Bermúdez-Humarán, L. G.; Pigneur, B.; Lequin, O.; Kharrat, P.; Thomas, G.; Rainteau, D.; Aubry, C.; Breyner, N.; Afonso, C.; Lavielle, S.; Grill, J.-P.; Chassaing, G.; Chatel, J. M.; Trugnan, G.; Xavier, R.; Langella, P.

    2016-01-01

    Background Crohn's disease (CD) associated dysbiosis is characterized by a loss of Faecalibacterium prausnitzii, whose culture supernatant exerts an anti-inflammatory effect both in vitro and in vivo. However, the chemical nature of the anti-inflammatory compounds has not yet been determined. Methods Peptidomic analysis using mass spectrometry was applied to F. prausnitzii supernatant. Anti-inflammatory effects of identified peptides were tested in vitro directly on intestinal epithelial cell lines and on cell lines transfected with a plasmid construction coding for the candidate protein encompassing these peptides. In vivo, the cDNA of the candidate protein was delivered to the gut by recombinant Lactic Acid Bacteria to prevent DNBS-colitis in mice. Results The seven peptides, identified in the F. prausnitzii culture supernatants, derived from a single Microbial Anti-inflammatory Molecule (MAM), a protein of 15 kDa and comprising 53% of nonpolar residues. This last feature prevented the direct characterization of the putative anti-inflammatory activity of MAM-derived peptides. Transfection of MAM cDNA in epithelial cells led to a significant decrease in the activation of the NF-κB pathway with a dose-dependent effect. Finally, the use of a food-grade bacterium, Lactococcus lactis, delivering a plasmid encoding MAM was able to alleviate DNBS-induced colitis in mice. Conclusion A 15kDa protein with anti-inflammatory properties is produced by F. prausnitzii, a commensal bacterium involved in CD pathogenesis. This protein is able to inhibit the NF-κB pathway in intestinal epithelial cells and to prevent colitis in an animal model. PMID:26045134

  4. The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods.

    PubMed

    Gibello, Alicia; Galán-Sánchez, Fátima; Blanco, M Mar; Rodríguez-Iglesias, Manuel; Domínguez, Lucas; Fernández-Garayzábal, José F

    2016-12-01

    Lactococcus garvieae is a relevant worldwide fish pathogen affecting various farmed and wild marine and freshwater species. It has also been isolated from other animals, such as ruminants with subclinical mastitis and pigs with pneumonia. From the early 90s, L. garvieae has been associated with different human infections, mainly endocarditis. During the last five years, human infections by this bacterium appear to be increasing, likely due to the improvement in microbiological methods for bacterial identification and the alertness of this bacterium by physicians. Human L. garvieae infections have been associated with the consumption or the handling of contaminated raw fish or seafood, and recently, a genetic study showed that meat, raw milk and dairy products may also be food sources of human L. garvieae infections. However, the status of L. garvieae as a potential zoonotic bacterium is still controversial to date. In this work, we describe four new human infections by L. garvieae in elderly and inmunocompromised patients, and we show an overview on L. garvieae microbiology, epidemiology, virulence factors and relationship with its presence in foods.

  5. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors.

  6. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  7. Detection and viability of Lactococcus lactis throughout cheese ripening.

    PubMed

    Ruggirello, Marianna; Dolci, Paola; Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.

  8. Gene inactivation in Lactococcus lactis: histidine biosynthesis.

    PubMed Central

    Delorme, C; Godon, J J; Ehrlich, S D; Renault, P

    1993-01-01

    Lactococcus lactis strains from dairy and nondairy sources were tested for the ability to grow in the absence of histidine. Among 60 dairy strains tested, 56 required histidine, whereas only 1 of 11 nondairy strains had this requirement. Moreover, 10 of the 56 auxotrophic strains were able to grow in the presence of histidinol (Hol+), the immediate histidine precursor. This indicates that adaptation to milk often results in histidine auxotrophy. The histidine operon was detected by Southern hybridization in eight dairy auxotrophic strains tested. A large part of the histidine operon (8 kb, containing seven histidine biosynthetic genes and three unrelated open reading frames [ORFs]) was cloned from an auxotroph, which had an inactive hisD gene, as judged by its inability to grow on histidinol. Complementation analysis of three genes, hisA, hisB, and hisG, in Escherichia coli showed that they also were inactive. Sequence analysis of the cloned histidine region, which revealed 98.6% overall homology with that of the previously analyzed prototrophic strain, showed the presence of frameshift mutations in three his genes, hisC, hisG, and hisH, and two genes unrelated to histidine biosynthesis, ORF3 and ORF6. In addition, several mutations were detected in the promoter region of the operon. Northern (RNA) hybridization analysis showed a much lower amount of the his transcript in the auxotrophic strain than in the prototrophic strain. The mutations detected account for the histidine auxotrophy of the analyzed strain. Certain other dairy auxotrophic strains carry a lower number of mutations, since they were able to revert either to a Hol+ phenotype or to histidine prototrophy. Images PMID:7687248

  9. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: evaluation of the probiotic potential.

    PubMed

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties.

  10. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Evaluation of the probiotic potential

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties. PMID:25477942

  11. Validation of a model for growth of Lactococcus lactis and Listeria innocua in a structured gel system: effect of monopotassium phosphate.

    PubMed

    Antwi, M; Theys, T E; Bernaerts, K; Van Impe, J F; Geeraerd, A H

    2008-07-31

    The effect of monopotassium phosphate (KH(2)PO(4)) on the chemical environment and on growth of Listeria innocua and Lactococcus lactis in coculture were investigated in a liquid and in a gelled microbiological medium at 12 degrees C and an initial pH of 6.2. As expected, addition of KH(2)PO(4) to both the liquid and gelled media resulted in an increase in buffering capacity. This effect on buffering capacity changed the profiles of lactic acid dissociation and pH evolution. At all gelatin concentrations studied, addition of KH(2)PO(4) increased the growth rate and the stationary cell concentration of L. lactis. In addition, the growth rate of L. innocua slightly increased but, in contrast, the stationary cell concentration remained unchanged. A new class of predictive models developed previously in our research team to quantify the effect of food model gel structure on microbial growth [Antwi, M., Bernaerts, K., Van Impe, J. F., Geeraerd, A. H., 2007. Modelling the combined effect of food model system and lactic acid on L. innocua and L. lactis growth in mono- and coculture. International Journal of Food Microbiology 120, 71-84] was applied. Our analysis indicate that KH(2)PO(4) influenced the parameters of the chemical and microbiological subprocesses of the model. Nonetheless, the growth model satisfactorily predicted the stationary cell concentration when (i) the undissociated lactic acid concentrations at which L. innocua and L. lactis growth cease were chosen as previously reported, and (ii) all other parameters of the chemical and microbiological subprocesses were computed for each medium. This confirms that the undissociated lactic acid concentrations at which growth ceases is a unique property of a bacterium and does not, within our case study, depend on growth medium. The study indicates that microbial growth depends on the interplay between the individual food components which affect the physicochemical properties of the food, such as the buffering

  12. Protective effect of clove oil-supplemented fish diets on experimental Lactococcus garvieae infection in tilapia.

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2009-09-01

    The essential oils extracted from the four herbs, cinnamon (Cinnamomum verum), clove (Syzygium aromaticum), ginger (Zingiber officinale) and holy basil (Ocimum sanctum), were investigated for their antimicrobial activity and mode of action against Lactococcus garvieae, a fish pathogenic bacteria causing lactococcosis. Of all the tested oils, clove oil had the strongest inhibitory effect and exhibited a bactericidal mode of action against the pathogenic bacterium. When an intraperitoneal infection of tilapia (Oreochromis niloticus) with L. garvieae was performed, the median lethal dose (LD(50)) was determined to be 1.78x10(2) CFU/fish. For an in vivo trial, no mortality was apparent in fish fed on the fish diets supplemented with 3% (w/w) of clove oil and with 0.5% (w/w) of oxytetracycline 5 d prior to the infection with L. garvieae. These results indicate that clove oil had a protective effect on experimental L. garvieae infection in tilapia and the potential to replace antibiotics for controlling the disease.

  13. Recombinant protein expression in Lactococcus lactis using the P170 expression system.

    PubMed

    Jørgensen, Casper M; Vrang, Astrid; Madsen, Søren M

    2014-02-01

    The use of the Gram-positive bacterium Lactococcus lactis in recombinant protein production has several advantages, including the organism's long history of safe use in food production and the fact that it does not produce endotoxins. Furthermore the current non-dairy L. lactis production strains contain few proteases and can secrete stable recombinant protein to the growth medium. The P170 expression system used for recombinant protein production in L. lactis utilizes an inducible promoter, P170, which is up-regulated as lactate accumulates in the growth medium. We have optimised the components of the expression system, including improved promoter strength, signal peptides and isolation of production strains with increased productivity. Recombinant proteins are produced in a growth medium with no animal-derived components as a simple batch fermentation requiring minimal process control. The accumulation of lactate in the growth medium does, however, inhibit growth and limits the yield from batch and fed-batch processes. We therefore combined the P170 expression system with the REED™ technology, which allows control of lactate concentration by electro-dialysis during fermentation. Using this combination, production of the Staphylococcus aureus nuclease reached 2.5 g L(-1).

  14. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate

    PubMed Central

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance. PMID:26388459

  15. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate.

    PubMed

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-09-21

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance.

  16. Precision genome engineering in lactic acid bacteria.

    PubMed

    van Pijkeren, Jan Peter; Britton, Robert A

    2014-08-29

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety.

  17. Precision genome engineering in lactic acid bacteria

    PubMed Central

    2014-01-01

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  18. Partial characterization of an rpoD-like gene of Lactococcus lactis subsp. lactis ML3 with a polymerase chain reaction-based approach.

    PubMed

    Gansel, X; Dutreix, M; Hartke, A; Boutibonnes, P; Auffray, Y

    1993-11-01

    With degenerated oligonucleotide primers for conserved regions of bacterial sigma factor proteins, a 117-bp internal DNA fragment of an rpoD-like gene of Lactococcus lactis subsp. lactis ML3 was amplified by the polymerase chain reaction (PCR). The DNA sequence of this PCR product was determined by cycle sequencing, and the deduced amino acid sequence of this internal fragment showed an extensive homology with the known sigma factor sequences from six other microorganisms and present a 13-amino acid region corresponding to the typical "RpoD box" of primary sigma factors. This PCR product was used as a probe to specifically detect sigma homologs in Pediococcus acidilactici, Leuconostoc lactis, Lactobacillus helveticus, Lactobacillus acidophilus, Enterococcus faecalis, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris. These data are consistent with the existence of a high similarity between the primary sigma factors from diverse Gram-positive microorganisms.

  19. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: characterization of the bacteriocin.

    PubMed

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality.

  20. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Characterization of the bacteriocin

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality. PMID:25763065

  1. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain

    PubMed Central

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S.; Esteban, Luis; Alarcón, Sergio

    2016-01-01

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. PMID:26847906

  2. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain.

    PubMed

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S; Esteban, Luis; Alarcón, Sergio; Magni, Christian

    2016-02-04

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains.

  3. 3-mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyzes the initial step of 3-mercaptopropionate catabolism in the 3,3-thiodipropionic acid-degrading bacterium variovorax paradoxus.

    PubMed

    Bruland, Nadine; Wübbeler, Jan Hendrik; Steinbüchel, Alexander

    2009-01-02

    The thioether 3,3-thiodipropionic acid can be used as precursor substrate for biotechnological synthesis of 3-mercaptopropionic acid-containing polythioesters. Therefore, the hitherto unknown catabolism of this compound was elucidated to engineer novel and improved polythioester biosynthesis pathways in the future. Bacteria capable of using 3,3-thiodipropionic acid as the sole source of carbon and energy for growth were enriched from the environment. From eleven isolates, TBEA3, TBEA6, and SFWT were morphologically and physiologically characterized. Their 16 S rDNAs and other features affiliated these isolates to the beta-subgroup of the proteobacteria. Tn5::mob mutagenesis of isolate Variovorax paradoxus TBEA6 yielded ten mutants fully or partially impaired in growth on 3,3-thiodipropionic acid. Genotypic characterization of two 3,3-thiodipropionic acid-negative mutants demonstrated the involvement of a bacterial cysteine dioxygenase (EC 1.13.11.22) homologue in the further catabolism of the 3,3-thiodipropionic acid cleavage product 3-mercaptopropionic acid. Detection of 3-sulfinopropionate in the supernatant of one of these mutants during cultivation on 3,3-thiodipropionic acid as well as in vivo and in vitro enzyme assays using purified protein demonstrated oxygenation of 3-mercaptopropionic acid to 3-sulfinopropionate by this enzyme; cysteine and cysteamine were not used as substrate. Beside cysteine dioxygenase and cysteamine dioxygenase, this 3-mercaptopropionic acid dioxygenase is the third example for a thiol dioxygenase and the first report about the microbial catabolism of 3-mercaptopropionic acid. Insertion of Tn5::mob in a gene putatively coding for a family III acyl-CoA-transferase resulted in the accumulation of 3-sulfinopropionate during cultivation on 3,3-thiodipropionic acid, indicating that this compound is further metabolized to 3-sulfinopropionyl-CoA and subsequently to propionyl-CoA.

  4. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  5. Osteomyelitis and possible endocarditis secondary to Lactococcus garvieae: a first case report

    PubMed Central

    James, P; Hardman, S.; Patterson, D.

    2000-01-01

    Although osteomyelitis is commonly caused by staphylococcal infection, the first case of a lumbar osteomyelitis secondary to Lactococcus garvieae is reported. The case was complicated by possible endocarditis of an aortic valve prosthesis.


Keywords: Lactococcus garvieae; osteomyelitis PMID:10775286

  6. Genome Sequence of a Lactococcus lactis Strain Isolated from Salmonid Intestinal Microbiota

    PubMed Central

    Opazo, Rafael; Gajardo, Felipe; Ruiz, Mauricio

    2016-01-01

    Lactococcus lactis is a common inhabitant of the intestinal microbiota of salmonids, especially those in aquaculture systems. Here, we present a genome sequence of a Lactococcus lactis strain isolated from the intestinal contents of rainbow trout reared in Chile. PMID:27563049

  7. Whole-Genome Sequence Analysis of Bombella intestini LMG 28161T, a Novel Acetic Acid Bacterium Isolated from the Crop of a Red-Tailed Bumble Bee, Bombus lapidarius

    PubMed Central

    Li, Leilei; Illeghems, Koen; Van Kerrebroeck, Simon; Borremans, Wim; Cleenwerck, Ilse; Smagghe, Guy; De Vuyst, Luc

    2016-01-01

    The whole-genome sequence of Bombella intestini LMG 28161T, an endosymbiotic acetic acid bacterium (AAB) occurring in bumble bees, was determined to investigate the molecular mechanisms underlying its metabolic capabilities. The draft genome sequence of B. intestini LMG 28161T was 2.02 Mb. Metabolic carbohydrate pathways were in agreement with the metabolite analyses of fermentation experiments and revealed its oxidative capacity towards sucrose, D-glucose, D-fructose and D-mannitol, but not ethanol and glycerol. The results of the fermentation experiments also demonstrated that the lack of effective aeration in small-scale carbohydrate consumption experiments may be responsible for the lack of reproducibility of such results in taxonomic studies of AAB. Finally, compared to the genome sequences of its nearest phylogenetic neighbor and of three other insect associated AAB strains, the B. intestini LMG 28161T genome lost 69 orthologs and included 89 unique genes. Although many of the latter were hypothetical they also included several type IV secretion system proteins, amino acid transporter/permeases and membrane proteins which might play a role in the interaction with the bumble bee host. PMID:27851750

  8. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers

    PubMed Central

    2013-01-01

    Background Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont’s contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Results Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. Conclusion We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of

  9. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    PubMed

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.

  10. Incidence of nisin Z production in Lactococcus lactis subsp. lactis TFF 221 isolated from Thai fermented foods.

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2008-10-01

    Lactic acid bacteria isolated from various Thai fermented foods were screened for the presence of nisin gene by using PCR with primers specific to nisin A structural gene. Only one strain, Lactococcus lactis subsp. lactis TFF 221, isolated from kung jom, a traditional shrimp paste, was found to carry a nisin gene. The TFF 221 nisin had antimicrobial activity against not only closely related lactic acid bacteria but also some foodborne pathogens. It was heat stable and inactivated by alpha-chymotrypsin and proteinase K. Some characteristics of TFF 221 nisin were found to be very similar to those of nisin A produced by Lactococcus lactis subsp. lactis NCDO 2111. Both of them had the same antimicrobial spectrum and MICs against all indicator bacteria. However, when assayed with indicator organisms, in all cases the TFF 221 nisin produced larger zones of inhibition in agar diffusion assays than the nisin A did. Sequencing of the TFF 221 nisin gene showed that it was the natural nisin variant, nisin Z, as indicated by the substitution of asparagine residue instead of histidine at position 27. The nisin determinant in strain TFF 221 was found to be located on a conjugative transposon residing in the chromosome. The ability of the nisin produced by L. lactis subsp. lactis TFF 221 to inhibit a wide range of foodborne pathogens may be useful in improving the food safety of the fermented product, especially in the Thai environment, which suffers from perennial problems of poor food hygiene.

  11. Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation.

    PubMed

    Desfossés-Foucault, Émilie; LaPointe, Gisèle; Roy, Denis

    2014-05-16

    The starter cultures (Lactococcus sp.) and non-starter lactic acid bacteria (mostly Lactobacillus spp.) are essential to flavor development of Cheddar cheese. The aim of this study was to elucidate the transcriptional interaction between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 in mixed cultures during simulated Cheddar cheese manufacture (Pearce activity test) and ripening (slurry). Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of 34 genes common to both bacteria and for eight genes specific to either L. lactis subsp. cremoris SK11 or L. paracasei ATCC 334. The multifactorial analysis (MFA) performed on fold change results for each gene revealed that the genes linked to stress, protein and peptide degradation as well as carbohydrate metabolism of L. paracasei ATCC 334 were especially overexpressed in mixed culture with L. lactis subsp. cremoris SK11 during the ripening simulation. For L. lactis subsp. cremoris SK11, genes coding for amino acid metabolism were more expressed during the cheese manufacture simulation, especially in single culture. These results show how complementary functions of starter and NSLAB contribute to activities useful for flavor development.

  12. In Situ Determination of the Intracellular pH of Lactococcus lactis and Lactobacillus plantarum during Pressure Treatment

    PubMed Central

    Molina-Gutierrez, Adriana; Stippl, Volker; Delgado, Antonio; Gänzle, Michael G.; Vogel, Rudi F.

    2002-01-01

    Hydrostatic pressure may affect the intracellular pH of microorganisms by (i) enhancing the dissociation of weak organic acids and (ii) increasing the permeability of the cytoplasmic membrane and inactivation of enzymes required for pH homeostasis. The internal pHs of Lactococcus lactis and Lactobacillus plantarum during and after pressure treatment at 200 and 300 MPa and at pH values ranging from 4.0 to 6.5 were determined. Pressure treatment at 200 MPa for up to 20 min did not reduce the viability of either strain at pH 6.5. Pressure treatment at pH 6.5 and 300 MPa reduced viable cell counts of Lactococcus lactis and Lactobacillus plantarum by 5 log after 20 and 120 min, respectively. Pressure inactivation was faster at pH 5 or 4. At ambient pressure, both strains maintained a transmembrane pH gradient of 1 pH unit at neutral pH and about 2 pH units at pH 4.0. During pressure treatment at 200 and 300 MPa, the internal pH of L. lactis was decreased to the value of the extracellular pH during compression. The same result was observed during treatment of Lactobacillus plantarum at 300 MPa. Lactobacillus plantarum was unable to restore the internal pH after a compression-decompression cycle at 300 MPa and pH 6.5. Lactococcus lactis lost the ability to restore its internal pH after 20 and 4 min of pressure treatment at 200 and 300 MPa, respectively. As a consequence, pressure-mediated stress reactions and cell death may be considered secondary effects promoted by pH and other environmental conditions. PMID:12200293

  13. Draft genome sequence of Sporolactobacillus inulinus strain CASD, an efficient D-lactic acid-producing bacterium with high-concentration lactate tolerance capability.

    PubMed

    Yu, Bo; Su, Fei; Wang, Limin; Xu, Ke; Zhao, Bo; Xu, Ping

    2011-10-01

    Sporolactobacillus inulinus CASD is an efficient D-lactic acid producer with high optical purity. Here we report for the first time the draft genome sequence of S. inulinus (2,930,096 bp). The large number of annotated two-component system genes makes it possible to explore the mechanism of extraordinary lactate tolerance of S. inulinus CASD.

  14. Proteomic Signature of Lactococcus lactis NCDO763 Cultivated in Milk†

    PubMed Central

    Gitton, Christophe; Meyrand, Mickael; Wang, Juhui; Caron, Christophe; Trubuil, Alain; Guillot, Alain; Mistou, Michel-Yves

    2005-01-01

    We have compared the proteomic profiles of L. lactis subsp. cremoris NCDO763 growing in the synthetic medium M17Lac, skim milk microfiltrate (SMM), and skim milk. SMM was used as a simple model medium to reproduce the initial phase of growth of L. lactis in milk. To widen the analysis of the cytoplasmic proteome, we used two different gel systems (pH ranges of 4 to 7 and 4.5 to 5.5), and the proteins associated with the cell envelopes were also studied by two-dimensional electrophoresis. In the course of the study, we analyzed about 800 spots and identified 330 proteins by mass spectrometry. We observed that the levels of more than 50 and 30 proteins were significantly increased upon growth in SMM and milk, respectively. The large redeployment of protein synthesis was essentially associated with an activation of pathways involved in the metabolism of nitrogenous compounds: peptidolytic and peptide transport systems, amino acid biosynthesis and interconversion, and de novo biosynthesis of purines. We also showed that enzymes involved in reactions feeding the purine biosynthetic pathway in one-carbon units and amino acids have an increased level in SMM and milk. The analysis of the proteomic data suggested that the glutamine synthetase (GS) would play a pivotal role in the adaptation to SMM and milk. The analysis of glnA expression during growth in milk and the construction of a glnA-defective mutant confirmed that GS is an essential enzyme for the development of L. lactis in dairy media. This analysis thus provides a proteomic signature of L. lactis, a model lactic acid bacterium, growing in its technological environment. PMID:16269754

  15. A Computational Study of Amensalistic Control of Listeria monocytogenes by Lactococcus lactis under Nutrient Rich Conditions in a Chemostat Setting

    PubMed Central

    Khassehkhan, Hassan; Eberl, Hermann J.

    2016-01-01

    We study a previously introduced mathematical model of amensalistic control of the foodborne pathogen Listeria monocytogenes by the generally regarded as safe lactic acid bacteria Lactococcus lactis in a chemostat setting under nutrient rich growth conditions. The control agent produces lactic acids and thus affects pH in the environment such that it becomes detrimental to the pathogen while it is much more tolerant to these self-inflicted environmental changes itself. The mathematical model consists of five nonlinear ordinary differential equations for both bacterial species, the concentration of lactic acids, the pH and malate. The model is algebraically too involved to allow a comprehensive, rigorous qualitative analysis. Therefore, we conduct a computational study. Our results imply that depending on the growth characteristics of the medium in which the bacteria are cultured, the pathogen can survive in an intermediate flow regime but will be eradicated for slower flow rates and washed out for higher flow rates. PMID:28231156

  16. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis.

    PubMed Central

    Kilstrup, M; Jacobsen, S; Hammer, K; Vogensen, F K

    1997-01-01

    The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during life in excess nutrients, by comparison of prototrophic wild-type strains and auxotrophic domesticated (dairy) strains. In a study of the capacity of domesticated strains to perform directed responses toward various stress conditions, we have analyzed the heat and salt stress response in the established L. lactis subsp. cremoris laboratory strain MG1363, which was originally derived from a dairy strain. After two-dimensional separation of proteins, the DnaK, GroEL, and GroES heat shock proteins, the HrcA (Orf1) heat shock repressor, and the glycolytic enzymes pyruvate kinase, glyceral-dehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase were identified by a combination of Western blotting and direct N-terminal amino acid sequencing of proteins from the gels. Of 400 to 500 visible proteins, 17 were induced more than twofold during heat stress. Two classes of heat stress proteins were identified from their temporal induction pattern. The fast-induced proteins (including DnaK) showed an abruptly increased rate of synthesis during the first 10 min, declining to intermediate levels after 15 min. GroEL and GroES, which also belong to this group, maintained a high rate of synthesis after 15 min. The class of slowly induced proteins exhibited a gradual increase in the rate of synthesis after the onset of stress. Unlike other organisms, all salt stress-induced proteins in L. lactis were also subjected to heat stress induction. DnaK, GroEL, and GroES showed similar temporal patterns of induction during salt stress, resembling the timing during heat stress although at a lower induction level. These data indicate an overlap between the heat shock and salt stress responses in L. lactis. PMID:9143115

  17. Role of two amino acid residues' insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121.

    PubMed

    Li, Lizhen; Yang, Jian; Li, Jie; Long, Lijuan; Xiao, Yunzhu; Tian, Xinpeng; Wang, Fazuo; Zhang, Si

    2015-05-01

    α-Amylases from Bacillus licheniformis (BLA) and Bacillus amyloliquefaciens (BAA) are both important industrial enzymes with high similarity in structure but significant differences in thermostability. The mechanisms underlying this discrepancy are still poorly understood. Here, we investigated the role of two amino acids' insertion on the thermostability of these two group amylases. A newly obtained thermophilic amylase AMY121 was found much closer to BLA in both primary structure and enzymological properties. Two amino acids' insertion widespread among BAA group α-amylases was identified as one of the key factors leading to the thermostability differences, since thermostability of insertion mutants (AMY121-EG and AMY121-AA) from AMY121 significantly decreased, while that of deletion mutant from BAA increased. Moreover, we proposed that conformational disturbance caused by insertion mutation might weaken the calcium-binding affinity and consequently decrease the enzyme thermostability.

  18. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    SciTech Connect

    Dees, C.; Ringleberg, D.; Scott, T.C.; Phelps, T.

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  19. Uptake of α-Ketoglutarate by Citrate Transporter CitP Drives Transamination in Lactococcus lactis

    PubMed Central

    Pudlik, Agata M.

    2013-01-01

    Transamination is the first step in the conversion of amino acids into aroma compounds by lactic acid bacteria (LAB) used in food fermentations. The process is limited by the availability of α-ketoglutarate, which is the best α-keto donor for transaminases in LAB. Here, uptake of α-ketoglutarate by the citrate transporter CitP is reported. Cells of Lactococcus lactis IL1403 expressing CitP showed significant levels of transamination activity in the presence of α-ketoglutarate and one of the amino acids Ile, Leu, Val, Phe, or Met, while the same cells lacking CitP showed transamination activity only after permeabilization of the cell membrane. Moreover, the transamination activity of the cells followed the levels of CitP in a controlled expression system. The involvement of CitP in the uptake of the α-keto donor was further demonstrated by the increased consumption rate in the presence of l-lactate, which drives CitP in the fast exchange mode of transport. Transamination is the only active pathway for the conversion of α-ketoglutarate in IL1403; a stoichiometric conversion to glutamate and the corresponding α-keto acid from the amino acids was observed. The transamination activity by both the cells and the cytoplasmic fraction showed a remarkably flat pH profile over the range from pH 5 to pH 8, especially with the branched-chain amino acids. Further metabolism of the produced α-keto acids into α-hydroxy acids and other flavor compounds required the coupling of transamination to glycolysis. The results suggest a much broader role of the citrate transporter CitP in LAB than citrate uptake in the citrate fermentation pathway alone. PMID:23204417

  20. Dethiosulfatibacter aminovorans gen. nov., sp. nov., a novel thiosulfate-reducing bacterium isolated from coastal marine sediment via sulfate-reducing enrichment with Casamino acids.

    PubMed

    Takii, Susumu; Hanada, Satoshi; Tamaki, Hideyuki; Ueno, Yutaka; Sekiguchi, Yuji; Ibe, Akihiro; Matsuura, Katsumi

    2007-10-01

    A sulfate-reducing enrichment culture originating from coastal marine sediment of the eutrophic Tokyo Bay, Japan, was successfully established with Casamino acids as a substrate. A thiosulfate reducer, strain C/G2(T), was isolated from the enrichment culture after further enrichment with glutamate. Cells of strain C/G2(T) were non-motile rods (0.6-0.8 microm x 2.2-4.8 microm) and were found singly or in pairs and sometimes in short chains. Spores were not formed. Cells of strain C/G2(T) stained Gram-negatively, despite possessing Gram-positive cell walls. The optimum temperature for growth was 28-30 degrees C, the optimum pH was around 7.8 and the optimum salt concentration was 20-30 g l(-1). Lactate, pyruvate, serine, cysteine, threonine, glutamate, histidine, lysine, arginine, Casamino acids, peptone and yeast extract were fermented as single substrates and no sugar was used as a fermentative substrate. A Stickland reaction was observed with some pairs of amino acids. Fumarate, alanine, proline, phenylalanine, tryptophan, glutamine and aspartate were utilized only in the presence of thiosulfate. Strain C/G2(T) fermented glutamate to H2, CO2, acetate and propionate. Thiosulfate and elemental sulfur were reduced to sulfide. Sulfate, sulfite and nitrate were not utilized as electron acceptors. The growth of strain C/G2(T) on Casamino acids or glutamate was enhanced by co-culturing with Desulfovibrio sp. isolated from the original mixed culture enriched with Casamino acids. The DNA G+C content of strain C/G2(T) was 41.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain C/G2(T) formed a distinct cluster with species of the genus Sedimentibacter. The closest relative was Sedimentibacter hydroxybenzoicus (with a gene sequence similarity of 91 %). On the basis of its phylogenetic and phenotypic properties, strain C/G2(T) (=JCM 13356(T)=NBRC 101112(T)=DSM 17477(T)) is proposed as representing a new genus and novel species, Dethiosulfatibacter

  1. Falcatimonas natans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor of cattle waste.

    PubMed

    Watanabe, Misa; Kaku, Nobuo; Ueki, Katsuji; Ueki, Atsuko

    2016-11-01

    A strictly anaerobic bacterial strain (WN011T) was isolated from a methanogenic reactor treating waste from cattle farms. Cells of the strain were Gram-stain-negative curved rods with a polar flagellum. Spores were not produced. The optimum temperature for growth was 35-37 °C and the optimum pH was 6.7. The strain did not utilize carbohydrates as growth substrates. The strain grew in PY medium and produced acetate, butyrate, isovalerate and H2 as well as propionate and isobutyrate as minor products. Amino acids (l-isoleucine, l-leucine, l-lysine, l-serine, l-threonine and l-valine) added to PY medium enhanced growth of the strain and increased the amounts of fermentation products. Oxidase, catalase and nitrate-reducing activities were negative. Hydrogen sulfide was produced. The genomic DNA G+C content was 38.8 mol%. Compounds related to iso-C15 : 0 (fatty acid, dimethylacetal and aldehyde) were detected as predominant components by the cellular fatty acids analysis. The diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid. On the basis of 16S rRNA gene sequences, three clones from wastewater were very closely related to strain WN011T (up to 99.9 % sequence similarity). The most closely related described species were those in cluster XIVa of the class Clostridia such as Ruminococcus gauvreauii (93.8 % 16S rRNA gene sequence similarity), Clostridium fimetarium (93.5 %) and Clostridium bolteae(93.5 %). Based on the distinct differences in phylogenetic and phenotypic characteristics of strain WN011T from those of related species, it is concluded that strain WN011T represents a novel species of a new genus in the family Lachnospiraceae, for which the name Falcatimonas natans gen. nov., sp. nov. is proposed. The type strain of the type species is WN011T (=JCM 16476T=DSM 22923T).

  2. Quantitative PCR for the specific quantification of Lactococcus lactis and Lactobacillus paracasei and its interest for Lactococcus lactis in cheese samples.

    PubMed

    Achilleos, Christine; Berthier, Françoise

    2013-12-01

    The first objective of this work was to develop real-time quantitative PCR (qPCR) assays to quantify two species of mesophilic lactic acid bacteria technologically active in food fermentation, including cheese making: Lactococcus lactis and Lactobacillus paracasei. The second objective was to compare qPCR and plate counts of these two species in cheese samples. Newly designed primers efficiently amplified a region of the tuf gene from the target species. Sixty-three DNA samples from twenty different bacterial species, phylogenetically related or commonly found in raw milk and dairy products, were selected as positive and negative controls. Target DNA was successfully amplified showing a single peak on the amplicon melting curve; non-target DNA was not amplified. Quantification was linear over 5 log units (R(2) > 0.990), down to 22 gene copies/μL per well for Lc. lactis and 73 gene copies/μL per well for Lb. paracasei. qPCR efficiency ranged from 82.9% to 93.7% for Lc. lactis and from 81.1% to 99.5% for Lb. paracasei. At two stages of growth, Lc. lactis was quantified in 12 soft cheeses and Lb. paracasei in 24 hard cooked cheeses. qPCR proved to be useful for quantifying Lc. lactis, but not Lb. paracasei.

  3. Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant.

    PubMed

    Kim, Byung-Chun; Seung Jeon, Byoung; Kim, Seil; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2015-12-01

    A strictly anaerobic, Gram-stain-positive, non-spore-forming, rod-shaped bacterial strain, designated BS-1T, was isolated from an anaerobic digestion reactor during a study of bacteria utilizing galactitol as the carbon source. Its cells were 0.3-0.5 μm × 2-4 μm, and they grew at 35-45 °C and at pH 6.0-8.0. Strain BS-1T produced H2, CO2, ethanol, acetic acid, butyric acid and caproic acid as metabolic end products of anaerobic fermentation. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain BS-1T represented a novel bacterial genus within the family Ruminococcaceae, Clostridium Cluster IV. The type strains that were most closely related to strain BS-1T were Clostridium sporosphaeroides KCTC 5598T (94.5 %), Clostridium leptum KCTC 5155T (94.3 %), Ruminococcus bromii ATCC 27255T (92.1 %) and Ethanoligenens harbinense YUAN-3T (91.9 %). Strain BS-1T had 17.6 % and 20.9 % DNA-DNA relatedness values with C. sporosphaeroides DSM 1294T and C. leptum DSM 753T, respectively. The major components of the cellular fatty acids were C16 : 0 dimethyl aldehyde (DMA) (22.1 %), C16 : 0 aldehyde (14.1 %) and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA; 10.0 %). The genomic DNA G+C content was 50.0 mol%. Phenotypic and phylogenetic characteristics allowed strain BS-1T to be clearly distinguished from other taxa of the genus Clostridium Cluster IV. On the basis of these data, the isolate is considered to represent a novel genus and novel species within Clostridium Cluster IV, for which the name Caproiciproducens galactitolivorans gen. nov., sp. nov. is proposed. The type species is BS-1T ( = JCM 30532T and KCCM 43048T).

  4. Short communication: Presence of Lactococcus and lactococcal exopolysaccharide operons on the leaves of Pinguicula vulgaris supports the traditional source of bacteria present in Scandinavian ropy fermented milk.

    PubMed

    Porcellato, Davide; Tranvåg, Malena; Narvhus, Judith

    2016-09-01

    Some traditional Scandinavian fermented milk products have a pronounced ropy consistency due to the presence of exopolysaccharide-producing strains of Lactococcus lactis ssp. cremoris. Norwegian food folklore describes how leaves from the carnivorous plant Pinguicula vulgaris (common butterwort) may be added to milk to initiate the fermentation of the traditional fermented milk product tettemelk. However, scientific confirmation of the link between the plant and the milk product has not been previously published. In the present study, the microbiome on 20 samples of P. vulgaris leaves collected from 5 different rural geographical locations in Norway and from 4 samples of commercial tettemelk was analyzed using high-throughput sequencing methods. The leaf microbiota of P. vulgaris was dominated by Proteobacteria and Firmicutes and the genus Lactococcus was demonstrated in all leaf samples. In addition, DNA extracted from the leaf microbiome contained genes identical to those responsible for exopolysaccharide production in Lactococcus. These results confirm the traditional use of P. vulgaris as a source of bacteria for the Norwegian ropy fermented milk product tettemelk and indicate that P. vulgaris microbiomes can be a potential source of lactic acid bacteria with interesting dairy technological features.

  5. Alcohol dehydrogenase activity in Lactococcus chungangensis: application in cream cheese to moderate alcohol uptake.

    PubMed

    Konkit, Maytiya; Choi, Woo Jin; Kim, Wonyong

    2015-09-01

    Many human gastrointestinal facultative anaerobic and aerobic bacteria possess alcohol dehydrogenase (ADH) activity and are therefore capable of oxidizing ethanol to acetaldehyde. However, the ADH activity of Lactococcus spp., except Lactococcus lactis ssp. lactis, has not been widely determined, though they play an important role as the starter for most cheesemaking technologies. Cheese is a functional food recognized as an aid to digestion. In the current study, the ADH activity of Lactococcus chungangensis CAU 28(T) and 11 reference strains from the genus Lactococcus was determined. Only 5 strains, 3 of dairy origin, L. lactis ssp. lactis KCTC 3769(T), L. lactis ssp. cremoris KCCM 40699(T), and Lactococcus raffinolactis DSM 20443(T), and 2 of nondairy origin, Lactococcus fujiensis NJ317(T) and Lactococcus chungangensis CAU 28(T) KCTC 13185(T), showed ADH activity and possessed the ADH gene. All these strains were capable of making cheese, but the highest level of ADH activity was found in L. chungangensis, with 45.9nmol/min per gram in tryptic soy broth and 65.8nmol/min per gram in cream cheese. The extent that consumption of cheese, following imbibing alcohol, reduced alcohol uptake was observed by following the level of alcohol in the serum of mice. The results show a potential novel benefit of cheese as a dairy functional food.

  6. Aldehyde dehydrogenase activity in Lactococcus chungangensis: Application in cream cheese to reduce aldehyde in alcohol metabolism.

    PubMed

    Konkit, Maytiya; Choi, Woo Jin; Kim, Wonyong

    2016-03-01

    Previous studies have shown that the metabolic capability of colonic microflora may be at least as high as that of the liver or higher than that of the whole human body. Aldehyde dehydrogenase (ALDH) is an enzyme produced by these bacteria that can metabolize acetaldehyde, produce from ethanol to acetate. Lactococcus species, which is commonly used as a starter in dairy products, was recently found to possess the ALDH gene, and the activity of this enzyme was determined. In this study, the ALDH activity of Lactococcus chungangensis CAU 28(T) and 11 other type strains in the genus Lactococcus was studied. Only 5 species, 3 of dairy origin (Lactococcus lactis ssp. lactis KCTC 3769(T), Lactococcus lactis ssp. cremoris KCCM 40699(T), and Lactococcus raffinolactis DSM 20443(T)) and 2 of nondairy origin (Lactococcus fujiensis NJ317(T) and L. chungangensis CAU 28(T)), showed ALDH activity and possessed a gene encoding ALDH. All of these strains were capable of making cream cheese. Among the strains, L. chungangensis produced cream cheese that contained the highest level of ALDH and was found to reduce the level of acetaldehyde in the serum of mice. These results predict a promising role for L. chungangensis CAU28(T) to be used in cheese that can be developed as functional food.

  7. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993.

    PubMed

    Belova, Svetlana E; Kulichevskaya, Irina S; Bodelier, Paul L E; Dedysh, Svetlana N

    2013-03-01

    A novel species is proposed for two facultatively methanotrophic representatives of the genus Methylocystis, strains H2s(T) and S284, which were isolated from an acidic (pH 4.3) Sphagnum peat-bog lake (Teufelssee, Germany) and an acidic (pH 3.8) peat bog (European North Russia), respectively. Cells of strains H2s(T) and S284 are aerobic, Gram-negative, non-motile, curved coccoids or short rods that contain an intracytoplasmic membrane system typical of type-II methanotrophs. They possess both a soluble and a particulate methane monooxygenase (MMO); the latter is represented by two isozymes, pMMO1 and pMMO2. The preferred growth substrates are methane and methanol. In the absence of C1 substrates, however, these methanotrophs are capable of slow growth on acetate. Atmospheric nitrogen is fixed by means of an aerotolerant nitrogenase. Strains H2s(T) and S284 grow between pH 4.2 and 7.6 (optimum pH 6.0-6.5) and at 8-37 °C (optimum 25-30 °C). The major fatty acids are C18 : 1ω8c, C18 : 1ω7c and C16 : 1ω7c; the major quinone is Q-8. The DNA G+C content is 62.0-62.3 mol%. Strains H2s(T) and S284 share identical 16S rRNA gene sequences, which displayed 96.6-97.3 % similarity to sequences of other taxonomically characterized members of the genus Methylocystis. Therefore, strains H2s(T) and S284 are classified as members of a novel species, for which the name Methylocystis bryophila sp. nov. is proposed; strain H2s(T) ( = DSM 21852(T)  = VKM B-2545(T)) is the type strain.

  8. Modeling the acid-base properties of bacterial surfaces: A combined spectroscopic and potentiometric study of the gram-positive bacterium Bacillus subtilis.

    PubMed

    Leone, Laura; Ferri, Diego; Manfredi, Carla; Persson, Per; Shchukarev, Andrei; Sjöberg, Staffan; Loring, John

    2007-09-15

    In this study, macroscopic and spectroscopic data were combined to develop a surface complexation model that describes the acid-base properties of Bacillus subtilis. The bacteria were freeze-dried and then resuspended in 0.1 M NaCl ionic medium. Macroscopic measurements included potentiometric acid-base titrations and electrophoretic mobility measurements. In addition, ATR-FTIR spectra of wet pastes from suspensions of Bacillus subtilis at different pH values were collected. The least-squares program MAGPIE was used to generate a surface complexation model that takes into account the presence of three acid-base sites on the surface: tripple bond COOH, tripple bond NH+, and tripple bond PO-, which were identified previously by XPS measurements. Both potentiometric titration data and ATR-FTIR spectra were used quantitatively, and electrostatic effects at the charged bacterial surface were accounted for using the constant capacitance model. The model was calculated using two different approaches: in the first one XPS data were used to constrain the ratio of the total concentrations of all three surface sites. The capacitance of the double layer, the total buffer capacity, and the deprotonation constants of the tripple bond NH+, tripple bond POH, and tripple bond COOH species were determined in the fit. A second approach is presented in which the ratio determined by XPS of the total concentrations of tripple bond NH+ to tripple bond PO- sites is relaxed. The total concentration of tripple bond PO- sites was determined in the fit, while the deprotonation constant for tripple bond POH was manually varied until the minimization led to a model which predicted an isoelectric point that resulted in consistency with electrophoretic mobility data. The model explains well the buffering capacity of Bacillus subtilis suspensions in a wide pH range (between pH=3 and pH=9) which is of considerable environmental interest. In particular, a similar quantitative use of the IR data

  9. Identification and characterization of the alpha-acetolactate synthase gene from Lactococcus lactis subsp. lactis biovar diacetylactis.

    PubMed Central

    Marugg, J D; Goelling, D; Stahl, U; Ledeboer, A M; Toonen, M Y; Verhue, W M; Verrips, C T

    1994-01-01

    The conversion of 3-13C-labelled pyruvate in an acetoin-producing clone from a Lactococcus lactis subsp. lactis biovar diacetylactis strain DSM 20384 plasmid bank in Escherichia coli was studied by 13C nuclear magnetic resonance analysis. The results showed that alpha-acetolactate was the first metabolic product formed from pyruvate, whereas acetoin appeared at a much slower rate and reached only low concentrations. This alpha-acetolactate production shows that the cells express the gene for alpha-acetolactate synthase (als). Nucleotide sequence analysis identified an open reading frame encoding a protein of 554 amino acids. The deduced amino acid sequence exhibits extensive similarities to those of known alpha-acetolactate synthases from both prokaryotes and eukaryotes. The als gene is expressed on a monocistronic transcriptional unit, which is transcribed from a promoter located just upstream of the coding region. Images PMID:8017926

  10. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate

    PubMed Central

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  11. Characterization of the multiple molecular mechanisms underlying RsaL control of phenazine-1-carboxylic acid biosynthesis in the rhizosphere bacterium Pseudomonas aeruginosa PA1201.

    PubMed

    Sun, Shuang; Chen, Bo; Jin, Zi-Jing; Zhou, Lian; Fang, Yun-Ling; Thawai, Chitti; Rampioni, Giordano; He, Ya-Wen

    2017-03-18

    Phenazines are important secondary metabolites that have been found to affect a broad spectrum of organisms. Two almost identical gene clusters phz1 and phz2 are responsible for phenazines biosynthesis in the rhizobacterium Pseudomonas aeruginosa PA1201. Here, we show that the transcriptional regulator RsaL is a potent repressor of phenazine-1-carboxylic acid (PCA) biosynthesis. RsaL negatively regulates phz1 expression and positively regulates phz2 expression via multiple mechanisms. First, RsaL binds to a 25-bp DNA region within the phz1 promoter to directly repress phz1 expression. Second, RsaL indirectly regulates the expression of both phz clusters by decreasing the activity of the las and pqs quorum sensing (QS) systems, and by promoting the rhl QS system. Finally, RsaL represses phz1 expression through the downstream transcriptional regulator CdpR. RsaL directly binds to the promoter region of cdpR to positively regulate its expression, and subsequently CdpR regulates phz1 expression in a negative manner. We also show that RsaL represents a new mechanism for the turnover of the QS signal molecule N-3-oxododecanoyl-homoserine lactone (3-oxo-C12-HSL). Overall, this study elucidates RsaL control of phenazines biosynthesis and indicates that a PA1201 strain harboring deletions in both the rsaL and cdpR genes could be used to improve the industrial production of PCA.

  12. Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: suboptimal pH growth inhibition of a lactic acid bacterium.

    PubMed

    Wolf, Barry F; Fogler, H Scott

    2005-01-05

    Bacterial profile modification (BPM), a form of tertiary oil recovery, diverts water from the water-flooded high-permeability zone into the oil-bearing low-permeability zone. During field use, exopolymer-producing bacteria plug the high-permeability zone only in the immediate vicinity of the injection point (the near-well bore region). For effective BPM the plug must penetrate far into the formation. Slowing the specific growth rate, lengthening the lag phase, and slowing the polymerization rate are techniques that can prolong the onset of biopolymer gelation and extend the depth of the biological plug. In batch experiments, the growth of Leuconostoc mesenteroides NRRL-B523 was inhibited by the synergistic effects of high substrate loading and an alkaline pH. Exponential growth was delayed up to 190 h. It was observed that cell division was significantly retarded until the medium pH, reduced by the acid byproducts of fermentation, reached a critical value of 6.79 +/- 0.06. A mathematical model was developed to describe the relationship between specific growth rate, lag time, and medium pH.

  13. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae.

    PubMed

    Sequeiros, Cynthia; Garcés, Marisa E; Vallejo, Marisol; Marguet, Emilio R; Olivera, Nelda L

    2015-04-01

    Bacteriocin-producing Lactococcus lactis TW34 was isolated from marine fish. TW34 bacteriocin inhibited the growth of the fish pathogen Lactococcus garvieae at 5 AU/ml (minimum inhibitory concentration), whereas the minimum bactericidal concentration was 10 AU/ml. Addition of TW34 bacteriocin to L. garvieae cultures resulted in a decrease of six orders of magnitude of viable cells counts demonstrating a bactericidal mode of action. The direct detection of the bacteriocin activity by Tricine-SDS-PAGE showed an active peptide with a molecular mass ca. 4.5 kDa. The analysis by MALDI-TOF-MS detected a strong signal at m/z 2,351.2 that corresponded to the nisin leader peptide mass without the initiating methionine, whose sequence STKDFNLDLVSVSKKDSGASPR was confirmed by MS/MS. Sequence analysis of nisin structural gene confirmed that L. lactis TW34 was a nisin Z producer. This nisin Z-producing strain with probiotic properties might be considered as an alternative in the prevention of lactococcosis, a global disease in aquaculture systems.

  14. Purification and Characterization of an Aminopeptidase from Lactococcus lactis subsp. cremoris AM2

    PubMed Central

    Neviani, E.; Boquien, C. Y.; Monnet, V.; Thanh, L. Phan; Gripon, J.-C.

    1989-01-01

    An aminopeptidase was purified from cell extracts of Lactococcus lactis subsp. cremoris AM2 by ion-exchange chromatography. After electrophoresis of the purified enzyme in the presence or absence of sodium dodecyl sulfate, one protein band was detected. The enzyme was a 300-kilodalton hexamer composed of identical subunits not linked by disulfide bridges. Activity was optimal at 40°C and pH 7 and was inhibited by classical thiol group inhibitors. The aminopeptidase hydrolyzed naphthylamide-substituted amino acids, as well as dipeptides and tripeptides. Longer protein chains such as the B chain of insulin were hydrolyzed, but at a much slower rate. The Michaelis constant (Km) and the maximal rate of hydrolysis (Vmax) were, respectively, 4.5 mM and 3,600 pkat/mg for the substrate l-histidyl-β-naphthylamide. Amino acid analysis showed that the enzyme contained low levels of hydrophobic residues. The partial N-terminal sequence of the first 19 residues of the mature enzyme was determined. Polyclonal antibodies were obtained from the purified enzyme, and after immunoblotting, there was no cross-reaction between these antibodies and other proteins in the crude extract. Images PMID:16348010

  15. Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene.

    PubMed Central

    Sanders, J W; Leenhouts, K J; Haandrikman, A J; Venema, G; Kok, J

    1995-01-01

    In an analysis of the stress response of Lactococcus lactis, three proteins that were induced under low pH culture conditions were detected. One of these was identified as the lactococcal superoxide dismutase (SodA) by N-terminal amino acid sequence analysis. The gene encoding this protein, designated sodA, was cloned by the complementation of a sodA sodB Escherichia coli strain. The deduced amino acid sequence of L. lactis SodA showed the highest degree of similarity to the manganese-containing Sod (MnSod) of Bacillus stearothermophilus. A promoter upstream of the sodA gene was identified by primer extension analysis, and an inverted repeat surrounding the -35 hexanucleotide of this promoter is possibly involved in the regulation of the expression of sodA. The expression of sodA was analyzed by transcriptional fusions with a promoterless lacZ gene. The induction of beta-galactosidase activity occurred in aerated cultures. Deletion experiments revealed that a DNA fragment of more than 130 bp surrounding the promoter was needed for the induction of lacZ expression by aeration. The growth rate of an insertion mutant of sodA did not differ from that of the wild type in standing cultures but was decreased in aerated cultures. PMID:7665513

  16. Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403.

    PubMed

    Abicht, Helge K; Gonskikh, Yulia; Gerber, Simon D; Solioz, Marc

    2013-06-01

    Lactococcus lactis possesses a pronounced extracellular Cu(2+)-reduction activity which leads to the accumulation of Cu(+) in the medium. The kinetics of this reaction were not saturable by increasing copper concentrations, suggesting a non-enzymic reaction. A copper-reductase-deficient mutant, isolated by random transposon mutagenesis, had an insertion in the menE gene, which encodes O-succinylbenzoic acid CoA ligase. This is a key enzyme in menaquinone biosynthesis. The ΔmenE mutant was deficient in short-chain menaquinones, and exogenously added menaquinone complemented the copper-reductase-deficient phenotype. Haem-induced respiration of wild-type L. lactis efficiently suppressed copper reduction, presumably by competition by the bd-type quinol oxidase for menaquinone. As expected, the ΔmenE mutant was respiration-deficient, but could be made respiration-proficient by supplementation with menaquinone. Growth of wild-type cells was more copper-sensitive than that of the ΔmenE mutant, due to the production of Cu(+) ions by the wild-type. This growth inhibition of the wild-type was strongly attenuated if Cu(+) was scavenged with the Cu(I) chelator bicinchoninic acid. These findings support a model whereby copper is non-enzymically reduced at the membrane by menaquinones. Respiration effectively competes for reduced quinones, which suppresses copper reduction. These findings highlight novel links between copper reduction, respiration and Cu(+) toxicity in L. lactis.

  17. Familial Adenomatous Polyposis Manifesting as Lactococcus Endocarditis: A Case Report and Review of the Association of Lactococcus with Underlying Gastrointestinal Disease

    PubMed Central

    Bazemore, Taylor C.; Maskarinec, Stacey A.; Zietlow, Kahli; Hendershot, Edward F.

    2016-01-01

    A 45-year-old male with a prosthetic aortic valve presented to the hospital with several months of generalized malaise. On admission, he was noted to have anemia of unclear etiology and subsequently became febrile with multiple blood cultures growing Lactococcus garvieae. Inpatient workup was concerning for infectious endocarditis (IE) secondary to Lactococcus. The patient was discharged home with appropriate antimicrobial therapy; however, he was readmitted for persistent, symptomatic anemia and underwent colonoscopy, which revealed innumerable colonic polyps consistent with Familial Adenomatous Polyposis (FAP) that was later confirmed with genetic testing. Surveillance computed tomography (CT) imaging of the aortic repair later demonstrated valve dehiscence with surrounding fluid collection; he underwent redo surgery and was found to have destruction of the aortic annulus and a large pseudoaneurysm. Histopathology of the valve prosthesis confirmed IE. It is suspected that the patient developed Lactococcus IE from enteric translocation. Review of the literature provides several reports of Lactococcus infections in association with underlying gastrointestinal disease, including colorectal cancer. Given this association, we raise the question of whether the diagnosis of Lactococcus IE should evoke suspicion and encourage evaluation for gastrointestinal pathology, as occurs with Streptococcus bovis. PMID:27818810

  18. Comparison of antigenic proteins from Lactococcus garvieae KG- and KG+ strains that are recognized by olive flounder (Paralichthys olivaceus) antibodies.

    PubMed

    Shin, Gee-Wook; Nho, Seong-Won; Park, Seong-Bin; Jang, Ho-Bin; Cha, In-Seok; Ha, Mi-Ae; Kim, Young-Rim; Dalvi, Rishikesh S; Joh, Seong-Joon; Jung, Tae-Sung

    2009-10-20

    Lactococcus garvieae is an important etiological agent of lactococcosis in various fish species including olive flounder (Paralichthys olivaceus). In this study, proteomic and immunoproteomic analyses were employed to compare the antigenic profiles of strains KG9408, MS93003, and NSS9310 strains of L. garvieae. Proteomic analysis using two-dimensional gel electrophoresis (2-DE) revealed differences in five protein spots among the different L. garvieae strains. In immunoproteomic analysis, there was a significant difference in the 2-DE immunoblot profiles of the L. garvieae strains using sera collected from fish surviving infection with either L. garvieae strains KG9408 or NSS9310. These sera reacted with 8 and 7 unique antigenic protein spots, respectively. Heat shock protein (HSP) 70 and DNA-directed RNA polymerase were among the specific antigens recognized by the anti-NSS9310 serum. In addition, the anti-NSS9310 and anti-KG9408 olive flounder sera reacted with 25 common antigenic protein spots of all the L. garvieae strains, which included elongation factor (EF)-Tu, arginine deiminase (AD), inosine-5'-monophosphate dehydrogenase (IMPD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphomannomutase (PMM), L-lactate dehydrogenase (L-LDH), 6-phosphofructokinase and UDP-galactose 4-epimerase (UDP-galactose). Based on the present results, the 8 antigens recognized by the anti-KG9408 serum and the 25 common antigens recognized by both sera may serve as potential markers for developing an effective vaccine against this bacterium.

  19. The Pool of ADP and ATP Regulates Anaerobic Product Formation in Resting Cells of Lactococcus lactis

    PubMed Central

    Palmfeldt, Johan; Paese, Marco; Hahn-Hägerdal, Bärbel; van Niel, Ed W. J.

    2004-01-01

    Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of Pi was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed. PMID:15345435

  20. Secretory expression of a heterologous nattokinase in Lactococcus lactis.

    PubMed

    Liang, Xiaobo; Zhang, Lixin; Zhong, Jin; Huan, Liandong

    2007-05-01

    Nattokinase has been reported as an oral health product for the prevention of atherosclerosis. We developed a novel strategy to express a nattokinase from Bacillus subtilis in a live delivery vehicle, Lactococcus lactis. Promoter P( nisZ) and signal peptide SP(Usp) were used for inducible and secretory expression of nattokinase in L. lactis. Western blotting analysis demonstrated that nattokinase was successfully expressed, and about 94% of the enzyme was secreted to the culture. The recombinant nattokinase showed potent fibrinolytic activity, equivalent to 41.7 urokinase units per milliliter culture. Expression and delivery of such a fibrinolytic enzyme in the food-grade vehicle L. lactis would facilitate the widespread application of nattokinase in the control and prevention of thrombosis diseases.

  1. Cloning, Characterization, Controlled Overexpression, and Inactivation of the Major Tributyrin Esterase Gene of Lactococcus lactis

    PubMed Central

    Fernández, Leonides; Beerthuyzen, Marke M.; Brown, Julie; Siezen, Roland J.; Coolbear, Tim; Holland, Ross; Kuipers, Oscar P.

    2000-01-01

    The gene encoding the major intracellular tributyrin esterase of Lactococcus lactis was cloned using degenerate DNA probes based on 19 known N-terminal amino acid residues of the purified enzyme. The gene, named estA, was sequenced and found to encode a protein of 258 amino acid residues. The transcription start site was mapped 233 nucleotides upstream of the start codon, and a canonical promoter sequence was identified. The deduced amino acid sequence of the estA product contained the typical GXSXG motif found in most lipases and esterases. The protein was overproduced up to 170-fold in L. lactis by use of the nisin-controlled expression system recently developed for lactic acid bacteria. The estA gene was inactivated by chromosomal integration of a temperature-sensitive integration vector. This resulted in the complete loss of esterase activity, which could then be recovered after complementation of the constructed esterase-deficient strain with the wild-type estA gene. This confirms that EstA is the main enzyme responsible for esterase activity in L. lactis. Purified recombinant enzyme showed a preference for short-chain acyl esters, surprisingly also including phospholipids. Medium- and long-acyl-chain lipids were also hydrolyzed, albeit less efficiently. Intermediate characteristics between esterases and lipases make intracellular lactococcal EstA difficult to classify in either of these two groups of esterolytic enzymes. We suggest that, in vivo, EstA could be involved in (phospho)lipid metabolism or cellular detoxification or both, as its sequence showed significant similarity to S-formylglutathione hydrolase (FGH) of Paracoccus denitrificans and human EstD (or FGH), which are part of a universal formaldehyde detoxification pathway. PMID:10742212

  2. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.

    PubMed

    del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Linares, Daniel M; Fernández, Maria; Martín, Maria Cruz; Alvarez, Miguel A

    2015-06-01

    Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains.

  3. Lactococcus lactis LMG2081 Produces Two Bacteriocins, a Nonlantibiotic and a Novel Lantibiotic

    PubMed Central

    Mirkovic, Nemanja; Polovic, Natalija; Vukotic, Goran; Jovcic, Branko; Miljkovic, Marija; Radulovic, Zorica; Diep, Dzung B.

    2016-01-01

    Bacteriocin producers normally possess dedicated immunity systems to protect themselves from their own bacteriocins. Lactococcus lactis strains LMG2081 and BGBM50 are known as lactococcin G producers. However, BGBM50 was sensitive to LMG2081, which indicated that LMG2081 might produce additional bacteriocins that are not present in BGBM50. Therefore, whole-genome sequencing of the two strains was performed, and a lantibiotic operon (called lctLMG) was identified in LMG2081 but not in BGBM50. The lctLMG operon contains six open reading frames; the first three genes, lmgA, lmgM, and lmgT, are involved in the biosynthesis and export of bacteriocin, while the other three genes, lmgF, lmgE, and lmgG, are involved in lantibiotic immunity. Mutational analysis confirmed that the lctLMG operon is responsible for the additional antimicrobial activity. Specifically, site-directed mutation within this operon rendered LMG2081 inactive toward BGBM50. Subsequent purification and electrospray ionization–time of flight mass spectrometric analysis confirmed that the lantibiotic bacteriocin called lacticin LMG is exported as a 25-amino-acid peptide. Lacticin LMG is highly similar to the lacticin 481 group. It is interesting that a bacteriocin producer produces two different classes of bacteriocins, whose operons are located in the chromosome and a plasmid. PMID:26896142

  4. Molecular Characterization of a Recombinant Manganese Superoxide Dismutase from Lactococcus lactis M4

    PubMed Central

    Chor Leow, Thean; Foo, Hooi Ling; Abdul Rahim, Raha

    2014-01-01

    A superoxide dismutase (SOD) gene of Lactococcus lactis M4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression of sodA under T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD of L. lactis IL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172). PMID:24592392

  5. Effects of diverse environmental conditions on {phi}LC3 prophage stability in Lactococcus lactis.

    PubMed

    Lunde, Merete; Aastveit, Are Halvor; Blatny, Janet Martha; Nes, Ingolf F

    2005-02-01

    The effects of various growth conditions on spontaneous phiLC3 prophage induction in Lactococcus lactis subsp. cremoris IMN-C1814 was analyzed with a half fraction of a 4(4) factorial experimental design. The four factors included in the study were nutrient availability, acidity, osmolarity, and temperature, each applied at four levels. These environmental factors are related to the fermentation processes in the dairy industry, in which bacteriophage attacks on sensitive starter strains are a constant threat to successful fermentation processes. The frequency of spontaneous phiLC3 induction was determined by quantitative analyses of restored DNA attachment sites (attB) on the bacterial chromosomes in a population of lysogenic cells. Statistical analysis revealed that all four environmental factors tested affected phiLC3 prophage stability and that the environmental factors were involved in interactions (interactions exist when the effect of one factor depends on the level of another factor). The spontaneous phiLC3 induction frequency varied from 0.08 to 1.76%. In general, the induction frequency remained at the same rate or decreased when level 1 to 3 of the four environmental factors was applied. At level 4, which generally gave the least favorable growth conditions, the induction frequency was either unchanged, decreased, or increased, depending on the type of stress. It appeared that the spontaneous induction frequency was independent of the growth behavior of the host. It was the environmental growth conditions that were the decisive factor in induction frequency.

  6. Isolation of halotolerant Lactococcus lactis subsp. lactis from intestinal tract of coastal fish.

    PubMed

    Itoi, Shiro; Abe, Takeshi; Washio, Sayaka; Ikuno, Erika; Kanomata, Yuna; Sugita, Haruo

    2008-01-15

    We isolated lactic acid bacteria from the intestinal tract of the pufferfish Takifugu niphobles caught in Shimoda, Shizuoka, Japan by using MRS broth prepared with 50% seawater. Additional screening was carried out using phenotypic tests such as Gram staining, cell morphology, catalase, oxidase and fermentation of glucose. Subsequently 227 isolates screened by the phenotypic tests were subjected to species-specific PCR for Lactococcus lactis, resulting in four positive isolates. The 16S rRNA gene sequences from three isolates were highly similar to that of L. lactis subsp. lactis (DNA database accession number M58837), while that of one isolate was identical to that of Leuconostoc mesenteroides (AB023246). These isolates were characterized by API 50 CH for carbohydrate fermentation and other phenotypic criteria for salt tolerance, and the characteristics were compared with those of L. lactis subsp. lactis from a cheese starter culture. The carbohydrate fermentation profiles of these isolates were characteristic of L. lactis subsp. lactis strains, whereas the tolerance of these isolates to salt was higher than that of L. lactis subsp. lactis from the cheese starter culture: the new L. lactis isolates showed high salt tolerance in MRS-agar plates containing 200% seawater or 6% sodium chloride. This is the first report of the isolation of halotolerant strains of L. lactis subsp. lactis from a marine environment.

  7. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis.

    PubMed

    Ladero, Victor; Rattray, Fergal P; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2011-09-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution.

  8. Lactococcus lactis LMG2081 Produces Two Bacteriocins, a Nonlantibiotic and a Novel Lantibiotic.

    PubMed

    Mirkovic, Nemanja; Polovic, Natalija; Vukotic, Goran; Jovcic, Branko; Miljkovic, Marija; Radulovic, Zorica; Diep, Dzung B; Kojic, Milan

    2016-04-01

    Bacteriocin producers normally possess dedicated immunity systems to protect themselves from their own bacteriocins.Lactococcus lactis strains LMG2081 and BGBM50 are known as lactococcin G producers. However, BGBM50 was sensitive to LMG2081, which indicated that LMG2081 might produce additional bacteriocins that are not present in BGBM50. Therefore, whole-genome sequencing of the two strains was performed, and a lantibiotic operon (called lctLMG) was identified in LMG2081 but not in BGBM50. The lctLMG operon contains six open reading frames; the first three genes,lmgA ,lmgM, and lmgT, are involved in the biosynthesis and export of bacteriocin, while the other three genes,lmgF,lmgE, and lmgG, are involved in lantibiotic immunity. Mutational analysis confirmed that the lctLMG operon is responsible for the additional antimicrobial activity. Specifically, site-directed mutation within this operon rendered LMG2081 inactive toward BGBM50. Subsequent purification and electrospray ionization-time of flight mass spectrometric analysis confirmed that the lantibiotic bacteriocin called lacticin LMG is exported as a 25-amino-acid peptide. Lacticin LMG is highly similar to the lacticin 481 group. It is interesting that a bacteriocin producer produces two different classes of bacteriocins, whose operons are located in the chromosome and a plasmid.

  9. [Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp. lactis 194-K].

    PubMed

    Ustiugova, E A; Timofeeva, A V; Stoianova, L G; Netrusov, A I; Katrukha, G S

    2012-01-01

    The Lactococcus lactis subsp. lactis 194-K strain has been established to be able to produce two bacteriocins, one of which was identified as the known lantibiotic nisin A, and the other 194-D bacteriocin represents a polypeptide with a 2589-Da molecular mass and comprises 20 amino acid residues. Both bacteriocins were produced in varying proportions in all of the studied nutrient media, which support the growth of the producer. Depending on the cultivation medium, the nisin A content was 380- to 1123-fold lower in the 194-K stain culture fluid than that of the 194-D peptide. In comparision to to nisin A Bacteriocin 194-D possessed a wide range of antibacterial activity and suppressed the growth of both Gram-positive and Gram-negative bacteria. An optimal medium for 194-D bacteriocin synthesis was shown to be a fermentation medium which contained yeast extract, casein hydrolysate, and potassium phosphate. The biosynthesis ofbacteriocin 194-D by the 194-K strain in these media occurred parallel to producer growth, and its maximal accumulation in the culture fluid was observed at 14-20 h of the strain's growth.

  10. Insights into new bacteriophages of Lactococcus garvieae belonging to the family Podoviridae.

    PubMed

    Ghasemi, Seyed Mahdi; Bouzari, Majid; Shaykh Baygloo, Nima; Chang, Hyo-Ihl

    2014-11-01

    Lactococcus garvieae is an emerging pathogen responsible for lactococcosis, a serious disease in trout aquaculture. The identification of new bacteriophages against L. garvieae strains may be an effective way to fight this disease and to study the pathogen's biology. Three L. garvieae phages, termed WP-1, WWP-2 and SP-2, were isolated from different environments, and their morphological features, genome restriction profiles and structural protein patterns were studied. Random cloning of HindIII-cut fragments was performed, and the fragments were partially sequenced for each phage. Although slight differences were observed by transmission electron microscopy, all of the phages had hexagonal heads and short non-contractile tails and were classified as members of the family Podoviridae. Restriction digestion analysis of the nucleic acids of the different phages revealed that the HindIII and AseI digests produced similar DNA fragment patterns. Additionally, SDS-PAGE analysis indicated that the isolated phages have similar structural proteins. The sequence BLAST results did not show any significant similarity with other previously identified phages. To the best of our knowledge, this study provides the first molecular characterization of L. garvieae phages.

  11. Isolation of nisin-producing Lactococcus lactis strains from dry fermented sausages.

    PubMed

    Rodríguez, J M; Cintas, L M; Casaus, P; Horn, N; Dodd, H M; Hernández, P E; Gasson, M J

    1995-02-01

    A total of 4608 lactic acid bacteria (LAB) were isolated from 24 Spanish fermented sausages and screened for bacteriocin production. Two strains, BB24 and G18, produced bacteriocins that inhibited a broad spectrum of Gram-positive bacteria. BB24 and G18 were tentatively identified as Lactococcus lactis by carbohydrate fermentation patterns and other biochemical characteristics. The characterization of their bacteriocins suggested that both could be the well-known lantibiotic nisin. This was confirmed by PCR analysis of their genomic DNA. Nucleotide sequencing revealed that they produced nisin A. The fact that BB24 and G18 were isolated from sausages produced in two different regions of Spain suggests that nisin-producing L. lactis strains may be more widespread in meat products than previously thought. Nisin produced by L. lactis BB24 has been purified to homogeneity by a procedure that included ammonium sulphate precipitation and cation-exchange, hydrophobic-interaction and reverse-phase chromatography. The purification procedure was simple, rapid and reproducible.

  12. Genome-Wide Transcriptional Responses to Carbon Starvation in Nongrowing Lactococcus lactis

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2015-01-01

    This paper describes the transcriptional adaptations of nongrowing, retentostat cultures of Lactococcus lactis to starvation. Near-zero-growth cultures (μ = 0.0001 h−1) obtained by extended retentostat cultivation were exposed to starvation by termination of the medium supply for 24 h, followed by a recovery period of another 24 h by reinitiating the medium supply to the retentostat culture. During starvation, the viability of the culture was largely retained, and the expression of genes involved in transcription and translational machineries, cell division, and cell membrane energy metabolism was strongly repressed. Expression of these genes was largely recovered following the reinitiation of the medium supply. Starvation triggered the elevated expression of genes associated with synthesis of branched-chain amino acids, histidine, purine, and riboflavin. The expression of these biosynthesis genes was found to remain at an elevated level after reinitiation of the medium supply. In addition, starvation induced the complete gene set predicted to be involved in natural competence in L. lactis KF147, and the elevated expression of these genes was sustained during the subsequent recovery period, but our attempts to experimentally demonstrate natural transformation in these cells failed. Mining the starvation response gene set identified a conserved cis-acting element that resembles the lactococcal CodY motif in the upstream regions of genes associated with transcription and translational machineries, purine biosynthesis, and natural transformation in L. lactis, suggesting a role for CodY in the observed transcriptome adaptations to starvation in nongrowing cells. PMID:25636846

  13. Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures.

    PubMed

    Guerra, Nelson Pérez; Castro, Lorenzo Pastrana

    2003-10-01

    Synthesis of nisin as well as biomass production by Lactococcus lactis subsp. lactis CECT (Colección Española de Cultivos Tipo) 539 on both hydrolysed mussel-processing waste and whey medium were followed in three fixed volume fed-batch fermentations, with re-alkalization cycles. The two cultures on mussel-processing waste (MPW) were fed with a 240 g/l concentrated glucose and with a concentrated MPW (about 100 g of glucose/l). The culture on whey was fed with a mixture of concentrated whey (48 g of total sugars/l) and a 400 g/l concentrated lactose. The three cultures were mainly characterized with higher nisin titres [49.7, 109.6 and 124.7 bacteriocin activity units (AU)/ml respectively] compared with the batch process on de Man, Rogosa and Sharpe [(1960) J. Appl. Bacteriol. 23, 130-135] medium (49.6 AU/ml), MPW (9.5 AU/ml) and whey (22.5 AU/ml) [1 AU/ml is the amount of antibacterial compound needed to obtain 50% growth inhibition (LD50) compared with control tubes]. In the three fed-batch cultures a shift from homolactic to mixed-acid fermentation was observed, and other products (acetic acid, butane-2,3-diol or ethanol) in addition to lactic acid were detectable in the medium. However, their contributions to the total antibacterial activity of the post-incubates (the cell-free culture supernatant obtained at the end of the fermentation process) of L. lactis CECT 539 against Carnobacterium piscicola CECT 4020 were very low.

  14. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  15. First Report of a Hip Prosthetic and Joint Infection Caused by Lactococcus garvieae in a Woman Fishmonger▿

    PubMed Central

    Aubin, G. G.; Bémer, P.; Guillouzouic, A.; Crémet, L.; Touchais, S.; Fraquet, N.; Boutoille, D.; Reynaud, A.; Lepelletier, D.; Corvec, S.

    2011-01-01

    We describe the first case of hip prosthetic infection due to Lactococcus garvieae. The patient, a 71-year-old woman fishmonger, developed a hip infection 7 years after total hip arthroplasty. The origin of infection was possibly due to the manipulation or intake of seafood or fish contaminated with Lactococcus garvieae. PMID:21367987

  16. First report of a hip prosthetic and joint infection caused by Lactococcus garvieae in a woman fishmonger.

    PubMed

    Aubin, G G; Bémer, P; Guillouzouic, A; Crémet, L; Touchais, S; Fraquet, N; Boutoille, D; Reynaud, A; Lepelletier, D; Corvec, S

    2011-05-01

    We describe the first case of hip prosthetic infection due to Lactococcus garvieae. The patient, a 71-year-old woman fishmonger, developed a hip infection 7 years after total hip arthroplasty. The origin of infection was possibly due to the manipulation or intake of seafood or fish contaminated with Lactococcus garvieae.

  17. Molecular Description and Industrial Potential of Tn6098 Conjugative Transfer Conferring Alpha-Galactoside Metabolism in Lactococcus lactis▿ †

    PubMed Central

    Machielsen, Ronnie; Siezen, Roland J.; van Hijum, Sacha A. F. T.; van Hylckama Vlieg, Johan E. T.

    2011-01-01

    A novel 51-kb conjugative transposon of Lactococcus lactis, designated Tn6098, encoding the capacity to utilize α-galactosides such as raffinose and stachyose, was identified and characterized. Alpha-galactosides are a dominant carbon source in many plant-derived foods. Most dairy lactococcus strains are unable to use α-galactosides as a growth substrate, yet many of these strains are known to have beneficial industrial traits. Conjugal transfer of Tn6098 was demonstrated from the plant-derived donor strain L. lactis KF147 to the recipient L. lactis NZ4501, a derivative of the dairy model strain L. lactis MG1363. The integration of Tn6098 into the genome of the recipient strain was confirmed by Illumina sequencing of the transconjugant L. lactis NIZO3921. The molecular structure of the integration site was confirmed by a PCR product spanning the insertion site. A 15-bp direct repeat sequence (TTATACCATAATTAC) is present on either side of Tn6098 in the chromosome of L. lactis KF147. One copy of this sequence is also present in the L. lactis MG1363 chromosome and represents the sole integration site. Phenotypic characterization of all strains showed that the transconjugant has not only acquired the ability to grow well in soy milk, a substrate rich in α-galactosides, but also has retained the flavor-forming capabilities of the recipient strain L. lactis MG1363. This study demonstrates how (induced) conjugation can be used to exploit the beneficial industrial traits of industrial dairy lactic acid bacteria in fermentation of plant-derived substrates. PMID:21115709

  18. Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection.

    PubMed

    Pérez-Sánchez, Tania; Balcázar, José Luis; Merrifield, Daniel L; Carnevali, Oliana; Gioacchini, Giorgia; de Blas, Ignacio; Ruiz-Zarzuela, Imanol

    2011-08-01

    The aim of the present study was to investigate the effect of lactic acid bacteria (LAB) on the control of lactococcosis as well as to assess the impact of probiotics on the expression of immune-related genes in the head kidney and intestine of rainbow trout (Oncorhynchus mykiss). Lactobacillus plantarum, Lactococcus lactis and Leuconostoc mesenteroides, were administered orally at 10⁶ CFU g⁻¹ feed to fish for 36 days. Twenty-one days after the start of the feeding period, fish were challenged with Lactococcus garvieae. Only the fish fed the diet containing Lb. plantarum showed significantly (P < 0.05) improved protection against L. garvieae compared to the control. Subsequently, real-time PCR was employed to determine the mRNA levels of IL-1β, IL-8, IL-10 and TNF-α in the head kidney, and IL-8, Tlr5 and IgT in the intestine of the control and Lb. plantarum groups. IL-1β, IL-10 and TNF-α gene expression were significantly up-regulated by Lb. plantarum. Moreover, the mRNA levels of IL-10, IL-8 and IgT were significantly higher in the Lb. plantarum group after L. garvieae infection, suggesting that Lb. plantarum can stimulate the immune response of rainbow trout. PCR-DGGE revealed no detectable levels of the probiotics or the pathogen present on the distal intestinal mucosa. These findings demonstrate that direct probiotic-host interactions with the intestine are not always necessary to induce host stimulatory responses which ultimately enhance disease resistance. Furthermore, as L. garvieae did not colonise the intestinal tract, and therefore likely did not infect via this route, the antagonistic properties of the probiotic candidate towards L. garvieae were likely of little influence in mediating the improved disease resistance which could be attributed to the elevated immunological response.

  19. Dynamics of lactic acid bacteria populations in Rioja wines by PCR-DGGE, comparison with culture-dependent methods.

    PubMed

    González-Arenzana, Lucía; López, Rosa; Santamaría, Pilar; López-Alfaro, Isabel

    2013-08-01

    Lactic acid bacteria populations of red wine samples from industrial fermentations, including two different vinification methods were studied. For this investigation, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis was employed to supplement previous results that were obtained by culture-dependent methods. PCR-DGGE was aimed to study two targeted genes, 16S ribosomal DNA (rDNA) and rpoB, and the results were useful to evaluate the microbial populations in wine samples. Moreover, an improvement of a detection limit determined so far for DGGE analysis was obtained with the method described in this study, what made possible to identify lactic acid bacteria populations below 10(1) colony-forming unit/mL. The species Oenococcus oeni was the most frequently detected bacterium, but identifications close to species Oenococcus kitaharae and Lactococcus lactis that are not often found in wine were firstly identified in samples of this research. PCR-DGGE allowed to detect 9 out of 11 lactic acid bacteria species identified in this study (nine by PCR-16S rDNA/DGGE and four by PCR-rpoB/DGGE), while five species were detected using the modified de Man, Rogosa and Sharpe agar. Therefore, the two methods were demonstrated to be complementary. This finding suggests that analysis of the lactic acid bacteria population structure in wine should be carried out using both culture-dependent and culture-independent techniques with more than one primer pair.

  20. Histidine biosynthesis genes in Lactococcus lactis subsp. lactis.

    PubMed Central

    Delorme, C; Ehrlich, S D; Renault, P

    1992-01-01

    The genes of Lactococcus lactis subsp. lactis involved in histidine biosynthesis were cloned and characterized by complementation of Escherichia coli and Bacillus subtilis mutants and DNA sequencing. Complementation of E. coli hisA, hisB, hisC, hisD, hisF, hisG, and hisIE genes and the B. subtilis hisH gene (the E. coli hisC equivalent) allowed localization of the corresponding lactococcal genes. Nucleotide sequence analysis of the 11.5-kb lactococcal region revealed 14 open reading frames (ORFs), 12 of which might form an operon. The putative operon includes eight ORFs which encode proteins homologous to enzymes involved in histidine biosynthesis. The operon also contains (i) an ORF encoding a protein homologous to the histidyl-tRNA synthetases but lacking a motif implicated in synthetase activity, which suggests that it has a role different from tRNA aminoacylation, and (ii) an ORF encoding a protein that is homologous to the 3'-aminoglycoside phosphotransferases but does not confer antibiotic resistance. The remaining ORFs specify products which have no homology with proteins in the EMBL and GenBank data bases. PMID:1400209

  1. Characterization of Lactococcus lactis subsp. lactis isolated from surface waters.

    PubMed

    Svec, P; Sedlácek, I

    2008-01-01

    A group of nine presumptive enterococci was isolated on enterococcal selective media Slanetz-Bartley agar and/or kanamycin-esculin-azide agar during a screening of Enterococcus spp. in surface waters. All strains formed a homogeneous cluster separated from all enterococcal species using rep-PCR fingerprinting with the (GTG)5 primer but they matched fingerprints revealed by Lactococcus lactis subsp. lactis representatives. Further identification using extensive biotyping and automated ribotyping with EcoRI (RiboPrinter microbial characterization system) confirmed all strains as L. lactis subsp. lactis in full correspondence with the (GTG)5-PCR. We demonstrated that L. lactis subsp. lactis strains occur in different surface waters and can be confused with enterococci due to their positive growth on selective enterococcal media as well as positive results in tests commonly used for identification of the genus Enterococcus (esculin hydrolysis, acetoin and pyrrolidonyl arylamidase production, growth at 10 degrees C and in 6.5% NaCl). The (GTG)5-PCR fingerprinting was revealed as a reliable and fast method for the identification of L. lactis subsp lactis while automated ribotyping with EcoRI proved to be a good tool for intrasubspecies typing purposes.

  2. Evolution of Lactococcus lactis phages within a cheese factory.

    PubMed

    Rousseau, Geneviève M; Moineau, Sylvain

    2009-08-01

    We have sequenced the double-stranded DNA genomes of six lactococcal phages (SL4, CB13, CB14, CB19, CB20, and GR7) from the 936 group that were isolated over a 9-year period from whey samples obtained from a Canadian cheese factory. These six phages infected the same two industrial Lactococcus lactis strains out of 30 tested. The CB14 and GR7 genomes were found to be 100% identical even though they were isolated 14 months apart, indicating that a phage can survive in a cheese plant for more than a year. The other four genomes were related but notably different. The length of the genomes varied from 28,144 to 32,182 bp, and they coded for 51 to 55 open reading frames. All five genomes possessed a 3' overhang cos site that was 11 nucleotides long. Several structural proteins were also identified by nano-high-performance liquid chromatography-tandem mass spectrometry, confirming bioinformatic analyses. Comparative analyses suggested that the most recently isolated phages (CB19 and CB20) were derived, in part, from older phage isolates (CB13 and CB14/GR7). The organization of the five distinct genomes was similar to the previously sequenced lactococcal phage genomes of the 936 group, and from these sequences, a core genome was determined for lactococcal phages of the 936 group.

  3. Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain.

    PubMed

    Fernández de Palencia, Pilar; de la Plaza, Marta; Mohedano, M Luz; Martínez-Cuesta, M Carmen; Requena, Teresa; López, Paloma; Peláez, Carmen

    2004-06-15

    The amino acid conversion to volatile compounds by lactic acid bacteria is important for aroma formation in cheese. In this work, we analyzed the effect of the lytic bacteriocin Lacticin 3147 on transamination of isoleucine and further formation of the volatile compound 2-methylbutanal in cheese. The Lacticin 3147 producing strain Lactococcus lactis IFPL3593 was fluorescently tagged (IFPL3593-GFP) by conjugative transfer of the plasmid pMV158GFP from Streptococcus pneumoniae, and used as starter in cheese manufacture. Starter adjuncts were the bacteriocin-sensitive strains L. lactis T1 and L. lactis IFPL730, showing branched chain amino acid aminotransferase and alpha-keto acid decarboxylase activity, respectively. Adjunct strains were selected to complete the isoleucine conversion pathway and, hence, increase formation of 2-methylbutanal conferring aroma to the cheese. The non-bacteriocin-producing strain L. lactis IFPL359-GFP was included as starter in the control batch. Fluorescent tagging of the starter strains allowed their tracing in cheese during ripening by fluorescence microscopy and confocal scanning laser microscopy. The bacteriocin produced by L. lactis IFPL3593-GFP enhanced lysis of the adjuncts with a concomitant increase in isoleucine transamination and about a two-fold increase of the derived volatile compound 2-methylbutanal. This led to an enhancement of the cheese aroma detected by a sensory panel. The improvement of cheese flavour and aroma may be of significant importance for the dairy industry.

  4. Expression of Staphylococcus aureus clumping factor A in Lactococcus lactis subsp. cremoris using a new shuttle vector.

    PubMed

    Que, Y A; Haefliger, J A; Francioli, P; Moreillon, P

    2000-06-01

    Staphylococcus aureus harbors redundant adhesins mediating tissue colonization and infection. To evaluate their intrinsic role outside of the staphylococcal background, a system was designed to express them in Lactococcus lactis subsp. cremoris 1363. This bacterium is devoid of virulence factors and has a known genetic background. A new Escherichia coli-L. lactis shuttle and expression vector was constructed for this purpose. First, the high-copy-number lactococcal plasmid pIL253 was equipped with the oriColE1 origin, generating pOri253 that could replicate in E. coli. Second, the lactococcal promoters P23 or P59 were inserted at one end of the pOri253 multicloning site. Gene expression was assessed by a luciferase reporter system. The plasmid carrying P23 (named pOri23) expressed luciferase constitutively at a level 10,000 times greater than did the P59-containing plasmid. Transcription was absent in E. coli. The staphylococcal clumping factor A (clfA) gene was cloned into pOri23 and used as a model system. Lactococci carrying pOri23-clfA produced an unaltered and functional 130-kDa ClfA protein attached to their cell walls. This was indicated both by the presence of the protein in Western blots of solubilized cell walls and by the ability of ClfA-positive lactococci to clump in the presence of plasma. ClfA-positive lactococci had clumping titers (titer of 4,112) similar to those of S. aureus Newman in soluble fibrinogen and bound equally well to solid-phase fibrinogen. These experiments provide a new way to study individual staphylococcal pathogenic factors and might complement both classical knockout mutagenesis and modern in vivo expression technology and signature tag mutagenesis.

  5. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer.

    PubMed

    de Azevedo, Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, Jerry M; Chatel, Jean-Marc

    2015-09-11

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen β-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen.

  6. Roles of Thioredoxin Reductase during the Aerobic Life of Lactococcus lactis

    PubMed Central

    Vido, Karin; Diemer, Hélène; Van Dorsselaer, Alain; Leize, Emmanuelle; Juillard, Vincent; Gruss, Alexandra; Gaudu, Philippe

    2005-01-01

    Thiol-disulfide bond balance is generally maintained in bacteria by thioredoxin reductase-thioredoxin and/or glutathione-glutaredoxin systems. Some gram-positive bacteria, including Lactococcus lactis, do not produce glutathione, and the thioredoxin system is presumed to be essential. We constructed an L. lactis trxB1 mutant. The mutant was obtained under anaerobic conditions in the presence of dithiothreitol (DTT). Unexpectedly, the trxB1 mutant was viable without DTT and under aerated static conditions, thus disproving the essentiality of this system. Aerobic growth of the trxB1 mutant did not require glutathione, also ruling out the need for this redox maintenance system. Proteomic analyses showed that known oxidative stress defense proteins are induced in the trxB1 mutant. Two additional effects of trxB1 were not previously reported in other bacteria: (i) induction of proteins involved in fatty acid or menaquinone biosynthesis, indicating that membrane synthesis is part of the cellular response to a redox imbalance, and (ii) alteration of the isoforms of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GapB). We determined that the two GapB isoforms in L. lactis differed by the oxidation state of catalytic-site cysteine C152. Unexpectedly, a decrease specific to the oxidized, inactive form was observed in the trxB1 mutant, possibly because of proteolysis of oxidized GapB. This study showed that thioredoxin reductase is not essential in L. lactis and that its inactivation triggers induction of several mechanisms acting at the membrane and metabolic levels. The existence of a novel redox function that compensates for trxB1 deficiency is suggested. PMID:15629931

  7. Expression of food-grade phytase in Lactococcus lactis from optimized conditions in milk broth.

    PubMed

    Miao, Yuzhi; Xu, Hui; Fei, Baojin; Qiao, Dairong; Cao, Yi

    2013-07-01

    The major objective of this study was to engineer lactic acid bacteria to produce the enzyme phytase from a gene native to Bacillus subtilis GYPB04. The phytase gene (phyC) of B. subtilis GYPB04 was cloned into the plasmid pMG36e for expression in Lactococcus lactis. The enzyme activity in L. lactis cultured in GM17 broth was 20.25 U/mL at 36°C. The expressed phytase was characterized as active in a pH range of 2.0-9.0 at a temperature range of 20-80°C, with an optimum pH of 5.5-6.5 and temperature of 60°C. When cultured in food-grade milk broth, the transformed L. lactis grew to an OD(600 nm) value of 1.05 and had a phytase yield of 13.58 U/mL. In same broth under optimized conditions for cell growth and phytase production, the transformant reached an OD(600 nm) value of 1.68 and a phytase yield of 42.12 U/mL, representing approximately 1.6-fold and 3.1-fold increases, respectively, compared to growth in natural milk broth. Fermentation was scaled to 5 L under optimized conditions, and product analysis revealed a final OD(600 nm) value of 1.89 and an extracellular enzyme activity of 24.23 U/mL. The results of this study may be used in the dairy fermentation industry for the development of functional, healthy yogurts and other fermented dairy foods that provide both active phytase and viable probiotics to the consumer.

  8. Characterization of Plasmids in a Human Clinical Strain of Lactococcus garvieae

    PubMed Central

    Blanco, M. Mar; López-Campos, Guillermo H.; Cutuli, M. Teresa; Fernández-Garayzábal, José F.

    2012-01-01

    The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen. PMID:22768237

  9. Lactococcus lactis metabolism and gene expression during growth on plant tissues.

    PubMed

    Golomb, Benjamin L; Marco, Maria L

    2015-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations.

  10. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    PubMed Central

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  11. Fate of Lactococcus lactis starter cultures during late ripening in cheese models.

    PubMed

    Ruggirello, Marianna; Cocolin, Luca; Dolci, Paola

    2016-10-01

    The presence of Lactococcus lactis, commonly employed as starter culture, was, recently, highlighted and investigated during late cheese ripening. Thus, the main goal of the present study was to assess the persistence and viability of this microorganism throughout manufacturing and ripening of model cheeses. Eight commercial starters, constituted of L. lactis subsp. lactis and L. lactis subsp. cremoris, were inoculated in pasteurized milk in order to manufacture miniature cheeses, ripened for six months. Samples were analysed at different steps (milk after inoculum, curd after cutting, curd after pressing and draining, cheese immediately after salting and cheese at 7, 15, 30, 60, 90, 120, 150 and 180 days of ripening) and submitted to both culture-dependent (traditional plating on M17) and -independent analysis (reverse transcription-quantitative PCR). On the basis of direct RNA analysis, L. lactis populations were detected in all miniature cheeses up to the sixth month of ripening, confirming the presence of viable cells during the whole ripening process, including late stages. Noteworthy, L. lactis was detected by RT-qPCR in cheese samples also when traditional plating failed to indicate its presence. This discrepancy could be explain with the fact that lactococci, during ripening process, enter in a stressed physiological state (viable not culturable, VNC), which might cause their inability to grow on synthetic medium despite their viability in cheese matrix. Preliminary results obtained by "resuscitation" assays corroborated this hypothesis and 2.5% glucose enrichment was effective to recover L. lactis cells in VNC state. The capability of L. lactis to persist in late ripening, and the presence of VNC cells which are known to shift their catabolism to peptides and amino acids consumption, suggests a possible technological role of this microorganism in cheese ripening with a possible impact on flavour formation.

  12. Expression of the immunoreactive buckwheat major allergenic storage protein in Lactococcus lactis.

    PubMed

    Shigemori, Suguru; Yonekura, Shinichi; Sato, Takashi; Otani, Hajime; Shimosato, Takeshi

    2013-04-01

    Proteins from buckwheat (Fagopyrum esculentum) are strong allergens that can cause serious symptoms, including anaphylaxis, in patients with hypersensitivity. In this study, we successfully developed a modified lactic acid bacterial vector (pNSH) and a recombinant strain of Lactococcus lactis NZ9000 (NZ9000) that produced a major allergenic storage protein of buckwheat, Fagag1 (61.2 kDa, GenBank accession number AF152003), with or without a green fluorescent protein (GFP) tag. GFP fluorescence allows for rapid, simple, and accurate measurement of target protein expression by microscopy or fluorimetry. We describe a convenient method for production of rGFP-Fagag1 fusion and rFagag1 proteins with a good yield in an advantageous probiotic host. We found that in vitro treatment of splenocytes isolated from buckwheat crude protein-immunized mice with rFagag1 increased the expression of allergic inflammation cytokines such as IL-4, IL-13, and IL-17 F. Because it was less antigenic, rGFP-Fagag1 protein from NZ9000 might be of limited use; however, rFagag1 from NZ9000 evoked a robust response as measured by induction of IL-4 and IL-17 F expression levels. The observed allergic activity is indicative of a Th2 cell-mediated immune response and is similar to the effects induced by exposure to buckwheat crude protein. Our results suggest that expression of rFagag1 in NZ9000 may facilitate in vivo applications of this system aimed at improving the specificity of immunological responses to buckwheat allergens.

  13. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis

    PubMed Central

    Dijkstra, Annereinou R.; Alkema, Wynand; Starrenburg, Marjo J. C.; van Hijum, Sacha A. F. T.; Bron, Peter A.

    2016-01-01

    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nan

  14. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.

    PubMed

    Dijkstra, Annereinou R; Alkema, Wynand; Starrenburg, Marjo J C; Hugenholtz, Jeroen; van Hijum, Sacha A F T; Bron, Peter A

    2016-01-01

    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nan

  15. Food-grade cloning and expression system for Lactococcus lactis.

    PubMed Central

    Platteeuw, C; van Alen-Boerrigter, I; van Schalkwijk, S; de Vos, W M

    1996-01-01

    A versatile set of cloning and expression vectors has been developed for application in self-cloning and other genetic modifications of Lactococcus lactis. The expression vectors were equipped with the controlled and strong lacA promoter of the lactococcal lactose operon. In addition, the transcriptional terminator of the aminopeptidase N gene, pepN, was inserted, which in some cases increased the genetic stabilities of the vectors and the cloned DNA. The small, 0.3-kb lacF gene encoding the soluble carrier enzyme IIALac was used as a dominant selection marker in the plasmid-free L. lactis strain NZ3000 carrying an in-frame deletion of the chromosomal lacF gene. Lactose-utilizing transformants were easily selected on lactose indicator plates at high frequencies and showed a copy number of approximately 50 plasmids per cell. All vectors were stably maintained in the lacF strain NZ3000 when grown on lactose, and only the high-level expression vectors showed some instability when their host was grown on glucose-containing medium. The application potentials of the expression vectors carrying the lacF marker were determined by cloning of the promoterless Escherichia coli gusA reporter gene under control of the lacA promoter followed by analysis of its expression. While in one of the vectors this resulted in a promoter-down mutation in the -10 region of the lacA promoter, in other vectors high-level and controlled expression of the gusA gene was observed. PMID:8975595

  16. Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese

    PubMed Central

    Le Boucher, Clémentine; Gagnaire, Valérie; Briard-Bion, Valérie; Jardin, Julien; Maillard, Marie-Bernadette; Dervilly-Pinel, Gaud; Le Bizec, Bruno; Lortal, Sylvie; Jeanson, Sophie

    2015-01-01

    In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening. PMID:26497453

  17. Effect of sodium acetate on the adhesion to porcine gastric mucin in a Lactococcus lactis strain grown on fructose.

    PubMed

    Kimoto-Nira, Hiromi; Moriya, Naoko; Yamasaki, Seishi; Takenaka, Akio; Suzuki, Chise

    2016-06-01

    The association of lactic acid bacteria with mucosal surfaces plays important roles in the beneficial effects of these bacteria on human health, such as colonization of the gastrointestinal tract for pathogen antagonism. Previously, we found that the adhesion of Lactococcus lactis 7-1 to porcine gastric mucin was higher with fructose than with lactose, galactose or xylose as the carbon source. In this study, we examined the effect of growth conditions on the adhesion of strain 7-1 grown on fructose. Medium components affect the adhesion: the adhesion of strain 7-1 grown with sodium acetate was higher than that without it. The enhancement of adhesion by sodium acetate was not observed under aerobic conditions. Cellular properties grown with or without sodium acetate were characterized: strain 7-1 grown with sodium acetate had similar sugar contents, and different fatty acid composition to those grown without it. Strain 7-1 grown with sodium acetate showed significantly lower cell yield and significantly higher hydrophobicity than those grown without it, which is associated with higher adhesion. Fructose and sodium acetate are frequently used in the food industry; this study may reveal a simple way to enhance the adhesion of lactic acid bacteria by growing them with these substances.

  18. Antimicrobial susceptibilities and random amplified polymorphic DNA-PCR fingerprint characterization of Lactococcus lactis ssp. lactis and Lactococcus garvieae isolated from bovine intramammary infections.

    PubMed

    Plumed-Ferrer, C; Barberio, A; Franklin-Guild, R; Werner, B; McDonough, P; Bennett, J; Gioia, G; Rota, N; Welcome, F; Nydam, D V; Moroni, P

    2015-09-01

    In total, 181 streptococci-like bacteria isolated from intramammary infections (IMI) were submitted by a veterinary clinic to Quality Milk Production Services (QMPS, Cornell University, Ithaca, NY). The isolates were characterized by sequence analysis, and 46 Lactococcus lactis ssp. lactis and 47 Lactococcus garvieae were tested for susceptibility to 17 antibiotics. No resistant strains were found for β-lactam antibiotics widely used in clinical practice (penicillin, ampicillin, and amoxicillin), and all minimum inhibitory concentrations (MIC) were far from the resistance breakpoints. Eight strains had MIC intermediate to cefazolin. The random amplification of polymorphic DNA (RAPD)-PCR fingerprint patterns showed a slightly higher heterogeneity for Lc. lactis ssp. lactis isolates than for Lc. garvieae isolates.

  19. Comparative genome analysis of Lactococcus garvieae using a suppression subtractive hybridization library: discovery of novel DNA signatures.

    PubMed

    Kim, Wonyong; Park, Hee Kuk; Thanh, Hien Dang; Lee, Bo-Young; Shin, Jong Wook; Shin, Hyoung-Shik

    2011-12-01

    Lactococcus garvieae, the pathogenic species in the genus Lactococcus, is recognized as an emerging pathogen in fish, animals, and humans. Despite the widespread distribution and emerging clinical significance of L. garvieae, little is known about the genomic content of this microorganism. Suppression subtractive hybridization was performed to identify the genomic differences between L. garvieae and Lactococcus lactis ssp. lactis, its closest phylogenetic neighbor, and the type species of the genus Lactococcus. Twenty-seven clones were specific to L. garvieae and were highly different from Lactococcus lactis in their nucleotide and protein sequences. Lactococcus garvieae primer sets were subsequently designed for two of these clones corresponding to a pyrH gene and a novel DNA signature for application in the specific detection of L. garvieae. The primer specificities were evaluated relative to three previously described 16S rRNA gene-targeted methods using 32 Lactococcus and closely related strains. Both newly designed primer sets were highly specific to L. garvieae and performed better than did the existing primers. Our findings may be useful for developing more stable and accurate tools for the discrimination of L. garvieae from other closely related species.

  20. Recombinant Lactococcus lactis Expressing Haemagglutinin from a Polish Avian H5N1 Isolate and Its Immunological Effect in Preliminary Animal Trials.

    PubMed

    Szczepankowska, Agnieszka K; Szatraj, Katarzyna; Sałański, Przemysław; Rózga, Agnieszka; Górecki, Roman K; Bardowski, Jacek K

    2017-01-01

    Lactic acid bacteria (LAB) are Gram-positive, nonpathogenic microorganisms that are gaining much interest as antigen producers for development of live vaccine vectors. Heterologous proteins of different origin have been successfully expressed in various LAB species, including Lactococcus lactis. Recombinant L. lactis strains have been shown to induce specific local and systemic immune responses against various antigens. Our study aimed at constructing a L. lactis strain expressing haemagglutinin of a Polish avian H5H1 influenza isolate and examining its effect on animals. Expression of the cloned H5 gene was achieved using the nisin-controlled gene expression system. Detection of the intracellular H5 antigen produced in L. lactis was performed by Western blot analysis and confirmed using mass spectrometry. The potential of L. lactis recombinant cells to induce an immune response was examined by setting up preliminary immunization trials on chickens and mice. Obtained sera were tested for specific antibodies by ELISA assays. The results of these studies are a promising step toward developing a vaccine against the bird flu using Lactococcus lactis cells as bioreactors for efficient antigen production and delivery to the mucosal surface.

  1. Expression of avian influenza haemagglutinin (H5) and chicken interleukin 2 (chIL-2) under control of the ptcB promoter in Lactococcus lactis.

    PubMed

    Szatraj, Katarzyna; Szczepankowska, Agnieszka K; Sączyńska, Violetta; Florys, Katarzyna; Gromadzka, Beata; Łepek, Krzysztof; Płucienniczak, Grażyna; Szewczyk, Bogusław; Zagórski-Ostoja, Włodzimierz; Bardowski, Jacek

    2014-01-01

    Gram-positive and nonpathogenic lactic acid bacteria (LAB) are considered to be promising candidates for the development of new, safe systems of heterologous protein expression. Recombinant LAB has been shown to induce specific local and systemic immune response against selected pathogens, and could be a good alternative to classical attenuated carriers. The main goal of our study was to express the avian influenza haemagglutinin (H5) and chicken interleukin 2 (chIL-2) in Lactococcus lactis. Results of this study were anticipated to lead to construction of lactococcal strain(s) with potential vaccine properties against the avian influenza A (H5N1) virus. Expression of the cloned H5 gene, its His-tagged variant and chIL-2 gene, under the control of the ptcB gene promoter was attested by RT-PCR on transcriptional level and Western or dot blot analysis on translational level, demonstrating that system can be an attractive solution for production of heterologous proteins. The results of the preliminary animal trial conducted in mice are a promising step toward development of a vaccine against avian bird flu using Lactococcus lactis cells as antigen carriers.

  2. Recombinant Lactococcus lactis Expressing Haemagglutinin from a Polish Avian H5N1 Isolate and Its Immunological Effect in Preliminary Animal Trials

    PubMed Central

    Szatraj, Katarzyna; Sałański, Przemysław; Rózga, Agnieszka; Górecki, Roman K.; Bardowski, Jacek K.

    2017-01-01

    Lactic acid bacteria (LAB) are Gram-positive, nonpathogenic microorganisms that are gaining much interest as antigen producers for development of live vaccine vectors. Heterologous proteins of different origin have been successfully expressed in various LAB species, including Lactococcus lactis. Recombinant L. lactis strains have been shown to induce specific local and systemic immune responses against various antigens. Our study aimed at constructing a L. lactis strain expressing haemagglutinin of a Polish avian H5H1 influenza isolate and examining its effect on animals. Expression of the cloned H5 gene was achieved using the nisin-controlled gene expression system. Detection of the intracellular H5 antigen produced in L. lactis was performed by Western blot analysis and confirmed using mass spectrometry. The potential of L. lactis recombinant cells to induce an immune response was examined by setting up preliminary immunization trials on chickens and mice. Obtained sera were tested for specific antibodies by ELISA assays. The results of these studies are a promising step toward developing a vaccine against the bird flu using Lactococcus lactis cells as bioreactors for efficient antigen production and delivery to the mucosal surface. PMID:28321412

  3. Draft Genome Sequence of the Putrescine-Producing Strain Lactococcus lactis subsp. lactis 1AA59

    PubMed Central

    del Rio, Beatriz; Linares, Daniel M.; Fernandez, María; Mayo, Baltasar; Martín, M. Cruz

    2015-01-01

    We report here the 2,576,542-bp genome annotated draft assembly sequence of Lactococcus lactis subsp. lactis 1AA59. This strain—isolated from a traditional cheese—produces putrescine, one of the most frequently biogenic amines found in dairy products. PMID:26089428

  4. Nucleotide sequence of the Lactococcus lactis NCDO 763 (ML3) rpoD gene.

    PubMed

    Gansel, X; Hartke, A; Boutibonnes, P; Auffray, Y

    1993-10-19

    The complete nucleotide sequence of rpoD gene from Lactococcus lactis has been determined. The nucleotide data have indicated the presence of an open reading frame of 1020 base pairs encoding a polypeptide which shares the framework structure for principal sigma factors of eubacteria strains.

  5. Increasing the Heme-Dependent Respiratory Efficiency of Lactococcus lactis by Inhibition of Lactate Dehydrogenase

    PubMed Central

    Arioli, Stefania; Zambelli, Daniele; Guglielmetti, Simone; De Noni, Ivano; Pedersen, Martin B.; Pedersen, Per Dedenroth; Dal Bello, Fabio

    2013-01-01

    The discovery of heme-induced respiration in Lactococcus lactis has radically improved the industrial processes used for the biomass production of this species. Here, we show that inhibition of the lactate dehydrogenase activity of L. lactis during growth under respiration-permissive conditions can stimulate aerobic respiration, thereby increasing not only growth efficiency but also the robustness of this organism. PMID:23064338

  6. A Case of Infective Endocarditis and Pulmonary Septic Emboli Caused by Lactococcus lactis

    PubMed Central

    Habib, Adib; Asli, Nazih; Geffen, Yuval; Miron, Dan; Elias, Nael

    2016-01-01

    Infective endocarditis is a rare condition in children with normal hearts. We present here a case of previously healthy eleven-year-old girl with infective endocarditis and pulmonary septic emboli caused by a very rare bacterial etiology (Lactococcus lactis). Identification of this pathogen was only made by polymerase chain reaction. PMID:27774332

  7. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aminopeptidase enzyme preparation derived from... Listing of Specific Substances Affirmed as GRAS § 184.1985 Aminopeptidase enzyme preparation derived from lactococcus lactis. (a) Aminopeptidase enzyme preparation is derived from the nonpathogenic and...

  8. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aminopeptidase enzyme preparation derived from... Aminopeptidase enzyme preparation derived from lactococcus lactis. (a) Aminopeptidase enzyme preparation is... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC...

  9. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aminopeptidase enzyme preparation derived from... Aminopeptidase enzyme preparation derived from lactococcus lactis. (a) Aminopeptidase enzyme preparation is... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC...

  10. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aminopeptidase enzyme preparation derived from... Aminopeptidase enzyme preparation derived from lactococcus lactis. (a) Aminopeptidase enzyme preparation is... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC...

  11. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aminopeptidase enzyme preparation derived from... Aminopeptidase enzyme preparation derived from lactococcus lactis. (a) Aminopeptidase enzyme preparation is... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC...

  12. Complete Genome Sequence of Lactococcus lactis subsp. lactis A12, a Strain Isolated from Wheat Sourdough

    PubMed Central

    Guellerin, Maéva; Passerini, Delphine; Fontagné-Faucher, Catherine; Robert, Hervé; Gabriel, Valérie; Loux, Valentin; Klopp, Christophe; Le Loir, Yves; Coddeville, Michèle; Daveran-Mingot, Marie-Line; Ritzenthaler, Paul

    2016-01-01

    We report here the complete genome sequence of Lactococcus lactis subsp. lactis strain A12, a strain isolated from sourdough. The circular chromosome and the four plasmids reveal genes involved in carbohydrate metabolism that are potentially required for the persistence of this strain in such a complex ecosystem. PMID:27634985

  13. Complete Genome Sequence of Lactococcus lactis subsp. lactis A12, a Strain Isolated from Wheat Sourdough.

    PubMed

    Guellerin, Maéva; Passerini, Delphine; Fontagné-Faucher, Catherine; Robert, Hervé; Gabriel, Valérie; Loux, Valentin; Klopp, Christophe; Le Loir, Yves; Coddeville, Michèle; Daveran-Mingot, Marie-Line; Ritzenthaler, Paul; Le Bourgeois, Pascal

    2016-09-15

    We report here the complete genome sequence of Lactococcus lactis subsp. lactis strain A12, a strain isolated from sourdough. The circular chromosome and the four plasmids reveal genes involved in carbohydrate metabolism that are potentially required for the persistence of this strain in such a complex ecosystem.

  14. Lacticin LC14, a new bacteriocin produced by Lactococcus lactis BMG6.14: isolation, purification and partial characterization.

    PubMed

    Lasta, Samar; Ouzari, Hadda; Andreotti, Nicolas; Fajloun, Ziad; Mansuelle, Pascal; Boudabous, Abdellatif; Sampieri, Francois; Sabatier, Jean Marc

    2012-08-01

    A new bacteriocin, lacticin LC14, produced by Lactococcus lactis BMG6.14, was isolated and characterized. It was purified to homogeneity from overnight broth culture by ammonium sulfate precipitation, Sep-Pak chromatography, and two steps of reversed-phase HPLC. Lacticin LC14 showed bactericidal-type antimicrobial activity against several lactic acid bacteria and pathogenic strains including Listeria monocytogenes. It was inactivated by proteinase K and pronase E, but was resistant to papain, lysozyme, lipase and catalase. Lacticin LC14 was heat resistant, stable over a wide range of pH (2-10) and after treatment by solvents and detergents. Its N-terminal end was found unreactive towards Edman sequencing. Based on MALDI-TOF mass spectrometry, its molecular mass was 3333.7 Da. LC14 amino acid composition revealed a high proportion of hydrophobic residues, but no modified ones. LC14 may be able to challenge other well known other bacteriocins in probiotic and therapeutic applications.

  15. Effect of autochthonous bacteriocin-producing Lactococcus lactis on bacterial population dynamics and growth of halotolerant bacteria in Brazilian charqui.

    PubMed

    Biscola, Vanessa; Abriouel, Hikmate; Todorov, Svetoslav Dimitrov; Capuano, Verena Sant'Anna Cabral; Gálvez, Antonio; Franco, Bernadette Dora Gombossy de Melo

    2014-12-01

    Charqui is a fermented, salted and sun-dried meat product, widely consumed in Brazil and exported to several countries. Growth of microorganisms in this product is unlikely due to reduced Aw, but halophilic and halotolerant bacteria may grow and cause spoilage. Charqui is a good source of lactic acid bacteria able to produce antimicrobial bacteriocins. In this study, an autochthonous bacteriocinogenic strain (Lactococcus lactis subsp. lactis 69), isolated from charqui, was added to the meat used for charqui manufacture and evaluated for its capability to prevent the growth of spoilage bacteria during storage up to 45 days. The influence of L. lactis 69 on the bacterial diversity during the manufacturing of the product was also studied, using denaturing gradient gel electrophoresis (DGGE). L. lactis 69 did not affect the counts and diversity of lactic acid bacteria during manufacturing and storage, but influenced negatively the populations of halotolerant microorganisms, reducing the spoilage potential. The majority of tested virulence genes was absent, evidencing the safety and potential technological application of this strain as an additional hurdle to inhibit undesirable microbial growth in this and similar fermented meat products.

  16. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration

    PubMed Central

    Linares, Daniel M.; del Rio, Beatriz; Redruello, Begoña; Martin, M. Cruz; de Jong, Anne; Kuipers, Oscar P.; Fernandez, Maria

    2015-01-01

    Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine, a biogenic amine that raises food safety and spoilage concerns, via the agmatine deiminase (AGDI) pathway. The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene cluster. The role of the catabolic genes aguB, aguD, aguA, and aguC has been studied, but knowledge regarding the role of aguR (the first gene in the cluster) remains limited. In the present work, aguR was found to be a very low level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (aguBDAC). In response to agmatine, AguR acts as a transcriptional activator of the aguB promoter (PaguB), which drives the transcription of the aguBDAC operon. Inverted sequences required for PaguB activity were identified by deletion analysis. Further work indicated that AguR is a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and, accordingly, regulates the transcription of the aguBDAC operon through a C-terminal cytoplasmic DNA-binding domain typically found in LuxR-like proteins. PMID:26116671

  17. Impact of Aeration and Heme-Activated Respiration on Lactococcus lactis Gene Expression: Identification of a Heme-Responsive Operon▿ †

    PubMed Central

    Pedersen, Martin Bastian; Garrigues, Christel; Tuphile, Karine; Brun, Célia; Vido, Karin; Bennedsen, Mads; Møllgaard, Henrik; Gaudu, Philippe; Gruss, Alexandra

    2008-01-01

    Lactococcus lactis is a widely used food bacterium mainly characterized for its fermentation metabolism. However, this species undergoes a metabolic shift to respiration when heme is added to an aerobic medium. Respiration results in markedly improved biomass and survival compared to fermentation. Whole-genome microarrays were used to assess changes in L. lactis expression under aerobic and respiratory conditions compared to static growth, i.e., nonaerated. We observed the following. (i) Stress response genes were affected mainly by aerobic fermentation. This result underscores the differences between aerobic fermentation and respiration environments and confirms that respiration growth alleviates oxidative stress. (ii) Functions essential for respiratory metabolism, e.g., genes encoding cytochrome bd oxidase, menaquinone biosynthesis, and heme uptake, are similarly expressed under the three conditions. This indicates that cells are prepared for respiration once O2 and heme become available. (iii) Expression of only 11 genes distinguishes respiration from both aerobic and static fermentation cultures. Among them, the genes comprising the putative ygfCBA operon are strongly induced by heme regardless of respiration, thus identifying the first heme-responsive operon in lactococci. We give experimental evidence that the ygfCBA genes are involved in heme homeostasis. PMID:18487342

  18. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration.

    PubMed

    Linares, Daniel M; Del Rio, Beatriz; Redruello, Begoña; Ladero, Victor; Martin, M Cruz; de Jong, Anne; Kuipers, Oscar P; Fernandez, Maria; Alvarez, Miguel A

    2015-09-01

    Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine, a biogenic amine that raises food safety and spoilage concerns, via the agmatine deiminase (AGDI) pathway. The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene cluster. The role of the catabolic genes aguB, aguD, aguA, and aguC has been studied, but knowledge regarding the role of aguR (the first gene in the cluster) remains limited. In the present work, aguR was found to be a very low level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (aguBDAC). In response to agmatine, AguR acts as a transcriptional activator of the aguB promoter (PaguB), which drives the transcription of the aguBDAC operon. Inverted sequences required for PaguB activity were identified by deletion analysis. Further work indicated that AguR is a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and, accordingly, regulates the transcription of the aguBDAC operon through a C-terminal cytoplasmic DNA-binding domain typically found in LuxR-like proteins.

  19. A "MICROTUBULE" IN A BACTERIUM

    PubMed Central

    van Iterson, Woutera; Hoeniger, Judith F. M.; van Zanten, Eva Nijman

    1967-01-01

    A study of the anchorage of the flagella in swarmers of Proteus mirabilis led to the incidental observation of microtubules. These microtubules were found in thin sections and in whole mount preparations of cells from which most of the content had been released by osmotic shock before staining negatively with potassium phosphotungstate (PTA). The microtubules are in negatively stained preparations about 200 A wide, i.e. somewhat thicker than the flagella (approximately 130 A). They are thus somewhat thinner than most microtubules recorded for other cells. They are referred to as microtubules because of their smooth cylindrical wall, or cortex, surrounding a hollow core which is readily filled with PTA when stained negatively. Since this is probably the first time that such a structure is described inside a bacterium, we do not know for certain whether it represents a normal cell constituent or an abnormality, for instance of the type of "polysheaths" (16). PMID:10976198

  20. The lipopolysaccharide of a chloridazon-degrading bacterium.

    PubMed

    Weisshaar, R; Lingens, F

    1983-12-01

    Lipopolysaccharide of a chloridazon-degrading bacterium was obtained by a two-stage extraction procedure with phenol/EDTA in a yield of 0.3% of dried bacteria. The carbohydrate moiety consisted of heptose, 3-deoxyoctulosonic acid and D-glucose in a molar ratio of 1:2:2 X 3. Lipid A was composed of 1 mol 2,3-diamino-2,3-dideoxy-D-glucose, 2 mol amide-bound and 2.6 mol ester-bound fatty acids/mol. Amide-bound fatty acids were 3-hydroxydodecanoic acid and 3-hydroxyhexadecanoic acid; dodecanoic acid and R-(-)-3-hydroxydodec-5-cis-enoic acid were found to be present in ester linkage. Under conditions of acidic hydrolysis, the latter was converted into the cis and trans isomers of 5-hexyltetrahydrofuran-2-acetic acid. Dodecanoic acid was demonstrated to be linked with the hydroxy groups of the amide-bound fatty acids. The taxonomic significance of these results, especially the demonstration of 2,3-diamino-2, 3-dideoxy-D-glucose, is discussed.

  1. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster

    PubMed Central

    Tarazanova, Mariya; Beerthuyzen, Marke; Siezen, Roland; Fernandez-Gutierrez, Marcela M.; de Jong, Anne; van der Meulen, Sjoerd; Kok, Jan; Bachmann, Herwig

    2016-01-01

    Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell. PMID:27941999

  2. Gene Cloning and Expression and Secretion of Listeria monocytogenes Bacteriophage-Lytic Enzymes in Lactococcus lactis

    PubMed Central

    Gaeng, Susanne; Scherer, Siegfried; Neve, Horst; Loessner, Martin J.

    2000-01-01

    Bacteriophage lysins (Ply), or endolysins, are phage-encoded cell wall lytic enzymes which are synthesized late during virus multiplication and mediate the release of progeny virions. Bacteriophages of the pathogen Listeria monocytogenes encode endolysin enzymes which specifically hydrolyze the cross-linking peptide bridges in Listeria peptidoglycan. Ply118 is a 30.8-kDa l-alanoyl-d-glutamate peptidase and Ply511 (36.5 kDa) acts as N-acetylmuramoyl-l-alanine amidase. In order to establish dairy starter cultures with biopreservation properties against L. monocytogenes contaminations, we have introduced ply118 and ply511 into Lactococcus lactis MG1363 by using a pTRKH2 backbone. The genes were expressed under control of the lactococcal promoter P32, which proved superior to other promoters (P21 and P59) tested in this study. High levels of active enzymes were produced and accumulated in the cytoplasmic cell fractions but were not released from the cells at significant levels. Therefore, ply511 was genetically fused with the SPslpA nucleotide sequence encoding the Lactobacillus brevis S-layer protein signal peptide. Expression of SPslpA–ply511 from pSL-PL511 resulted in secretion of functional Ply511 enzyme from L. lactis cells. One clone expressed an unusually strong lytic activity, which was found to be due to a 115-bp deletion that occurred within the 3′-end coding sequence of SPslpA–ply511, which caused a frameshift mutation and generated a stop codon. Surprisingly, the resulting carboxy-terminal deletion of 80 amino acids in the truncated Ply511Δ(S262–K341) mutant polypeptide strongly increased its lytic activity. Proteolytic processing of the secretion competent SPSlpA-Ply511 propeptide following membrane translocation had no influence on enzyme activity. Immunoblotting experiments using both cytoplasmic and supernatant fractions indicated that the enzyme was quantitatively exported from the cells and secreted into the surrounding medium, where it

  3. Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis.

    PubMed

    Gaeng, S; Scherer, S; Neve, H; Loessner, M J

    2000-07-01

    Bacteriophage lysins (Ply), or endolysins, are phage-encoded cell wall lytic enzymes which are synthesized late during virus multiplication and mediate the release of progeny virions. Bacteriophages of the pathogen Listeria monocytogenes encode endolysin enzymes which specifically hydrolyze the cross-linking peptide bridges in Listeria peptidoglycan. Ply118 is a 30.8-kDa L-alanoyl-D-glutamate peptidase and Ply511 (36.5 kDa) acts as N-acetylmuramoyl-L-alanine amidase. In order to establish dairy starter cultures with biopreservation properties against L. monocytogenes contaminations, we have introduced ply118 and ply511 into Lactococcus lactis MG1363 by using a pTRKH2 backbone. The genes were expressed under control of the lactococcal promoter P32, which proved superior to other promoters (P21 and P59) tested in this study. High levels of active enzymes were produced and accumulated in the cytoplasmic cell fractions but were not released from the cells at significant levels. Therefore, ply511 was genetically fused with the (SP)slpA nucleotide sequence encoding the Lactobacillus brevis S-layer protein signal peptide. Expression of (SP)slpA-ply511 from pSL-PL511 resulted in secretion of functional Ply511 enzyme from L. lactis cells. One clone expressed an unusually strong lytic activity, which was found to be due to a 115-bp deletion that occurred within the 3'-end coding sequence of (SP)slpA-ply511, which caused a frameshift mutation and generated a stop codon. Surprisingly, the resulting carboxy-terminal deletion of 80 amino acids in the truncated Ply511 Delta(S262-K341) mutant polypeptide strongly increased its lytic activity. Proteolytic processing of the secretion competent (SP)SlpA-Ply511 propeptide following membrane translocation had no influence on enzyme activity. Immunoblotting experiments using both cytoplasmic and supernatant fractions indicated that the enzyme was quantitatively exported from the cells and secreted into the surrounding medium, where it

  4. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster.

    PubMed

    Tarazanova, Mariya; Beerthuyzen, Marke; Siezen, Roland; Fernandez-Gutierrez, Marcela M; de Jong, Anne; van der Meulen, Sjoerd; Kok, Jan; Bachmann, Herwig

    2016-01-01

    Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell.

  5. Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese.

    PubMed

    Flasarová, Radka; Pachlová, Vendula; Buňková, Leona; Menšíková, Anna; Georgová, Nikola; Dráb, Vladimír; Buňka, František

    2016-03-01

    The aim of this study was to compare the biogenic amine production of two starter strains of Lactococcus lactis subsp. cremoris (strains from the Culture Collection of Dairy Microorganisms - CCDM 824 and CCDM 946) with decarboxylase positive activity in a model system of Dutch-type cheese during a 90-day ripening period at 10°C. During ripening, biogenic amine and free amino acid content, microbiological characteristics and proximate chemical properties were observed. By the end of the ripening period, the putrescine content in both samples with the addition of the biogenic amine producing strain almost evened out and the concentration of putrescine was >800mg/kg. The amount of tyramine in the cheeses with the addition of the strain of CCDM 824 approached the limit of 400mg/kg by the end of ripening. In the cheeses with the addition of the strain of CCDM 946 it even exceeded 500mg/kg. In the control samples, the amount of biogenic amines was insignificant.

  6. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection.

  7. Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Putrescine-Producing Lactococcus lactis ▿ †

    PubMed Central

    Ladero, Victor; Rattray, Fergal P.; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A.

    2011-01-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution. PMID:21803900

  8. Sequence and stress-response analyses of the DNA mismatch repair gene hexA in Lactococcus lactis.

    PubMed

    Ren, J; Park, J H; Dunn, N W; Kim, W S

    2001-10-01

    The DNA mismatch repair gene hexA was identified in Lactococcus lactis by PCR amplification by using a pair of primers homologous to the DNA-binding Dps protein. The gene in its entirety, including the regulatory regions, was sequenced, by using a strategy of chromosomal walking based on two PCR protocols. The open reading frame of 2526 bp was preceded by a strong ribosome-binding site (AGGAAG) and was followed by a potential transcription terminator (hairpin loop structure). The 5' terminus of the hexA mRNA was located 135 bp upstream of the start codon, and putative -10 and -35 regions were identified. The deduced amino acid sequence revealed two motifs, the ATP/GTP-binding site (P-loop) and the "MutS family signature". The hexA promoter was cloned into pMU1327, which contained a promoter-less CAT reporter gene, and the promoter activity was examined under oxidative-stress conditions. It appears that the promoter activity is down-shifted by H2O2 at 4 mM.

  9. Application of a mathematical model and Differential Evolution algorithm approach to optimization of bacteriocin production by Lactococcus lactis C7.

    PubMed

    Moonchai, Sompop; Madlhoo, Weeranuch; Jariyachavalit, Kanidtha; Shimizu, Hiroshi; Shioya, Suteaki; Chauvatcharin, Somchai

    2005-11-01

    The effect of pH and temperature on cell growth and bacteriocin production in Lactococcus lactis C7 was investigated in order to optimize the production of bacteriocin. The study showed that the bacteriocin production was growth-associated, but declined after reaching the maximum titer. The decrease of bacteriocin was caused by a cell-bound protease. Maximum bacteriocin titer was obtained at pH 5.5 and at 22 degrees C. In order to obtain a global optimized solution for production of bacteriocin, the optimal temperature for bacteriocin production was further studied. Mathematical models were developed for cell growth, substrate consumption, lactic acid production and bacteriocin production. A Differential Evolution algorithm was used both to estimate the model parameters from the experimental data and to compute a temperature profile for maximizing the final bacteriocin titer and bacteriocin productivity. This simulation showed that maximum bacteriocin production was obtained at the optimal temperature profile, starting at 30 degrees C and terminating at 22 degrees C, which was validated by experiment. This temperature profile yielded 20% higher maximum bacteriocin productivity than that obtained at a constant temperature of 22 degrees C, although the total amount of bacteriocin obtained was slightly decreased.

  10. Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: control of transcription initiation by specific dipeptides.

    PubMed Central

    Marugg, J D; Meijer, W; van Kranenburg, R; Laverman, P; Bruinenberg, P G; de Vos, W M

    1995-01-01

    Transcriptional gene fusions with the Escherichia coli beta-glucuronidase gene (gusA) were used to study the medium- and growth-dependent expression of the divergently transcribed genes involved in proteinase production (prtP and prtM) of Lactococcus lactis SK11. The results show that both the prtP and prtM genes are controlled at the transcriptional level by the peptide content of the medium and, to a lesser extent, by the growth rate. A more than 10-fold regulation in beta-glucuronidase activity was observed for both prtP and prtM promoters in batch and continuous cultures. The level of expression of the prtP and prtM promoters was high in whey permeate medium with relatively low concentrations of peptides, whereas at increased concentrations the expression of the promoters was repressed. The lowest level of expression was observed in peptide- and amino acid-rich laboratory media, such as glucose-M17 and MRS. The addition of specific dipeptides, such as leucylproline and prolylleucine, to the growth medium negatively affected the expression of the prtP-gusA fusions. The repression by dipeptides was not observed in mutants defective in the uptake of di-tripeptides, indicating that the internal concentration of dipeptides or derivatives is important in the regulation of proteinase production. PMID:7768792

  11. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk.

    PubMed

    Alegría, Angel; Delgado, Susana; Roces, Clara; López, Belén; Mayo, Baltasar

    2010-09-30

    Sixty bacterial strains were encountered by random amplification of polymorphic DNA (RAPD) and repetitive extragenic palindromic (REP) typing in a series of 306 Lactococcus lactis isolates collected during the manufacturing and ripening stages of five traditional, starter-free cheeses made from raw milk. Among the 60 strains, 17 were shown to produce bacteriocin-like compounds in both solid and liquid media. At a genotypic level, 16 of the strains were identified by molecular methods as belonging to L. lactis subsp. lactis and one to L. lactis subsp. cremoris. Among the L. lactis subsp. lactis strains, phenotypic and genetic data determined that eleven produced either nisin A (nine strains) or nisin Z (two strains), and that five produced lactococcin 972. Variable levels of the two bacteriocins were produced by different strains. In addition, nisin was shown to be produced in inexpensive, dairy- and meat-based media, which will allow the practical application of its producing strains in industrial processes. Specific PCR and nucleotide and deduced amino acid sequence analysis identified the inhibitor produced by the single L. lactis subsp. cremoris isolate as a lactococcin G-like bacteriocin. Beyond the use of bacteriocins as functional ingredients for the biopreservation of foods, the newly identified bacteriocin-producing L. lactis strains from traditional cheeses may also be useful for designing starter cultures with protective properties and/or adjunct cultures for accelerating cheese ripening.

  12. Heterologous production of methionine-gamma-lyase from Brevibacterium linens in Lactococcus lactis and formation of volatile sulfur compounds.

    PubMed

    Hanniffy, Sean B; Philo, Mark; Peláez, Carmen; Gasson, Michael J; Requena, Teresa; Martínez-Cuesta, M C

    2009-04-01

    The conversion of methionine to volatile sulfur compounds (VSCs) is of great importance in flavor formation during cheese ripening and is the focus of biotechnological approaches toward flavor improvement. A synthetic mgl gene encoding methionine-gamma-lyase (MGL) from Brevibacterium linens BL2 was cloned into a Lactococcus lactis expression plasmid under the control of the nisin-inducible promoter PnisA. When expressed in L. lactis and purified as a recombinant protein, MGL was shown to degrade L-methionine as well as other sulfur-containing compounds such as L-cysteine, L-cystathionine, and L-cystine. Overproduction of MGL in recombinant L. lactis also resulted in an increase in the degradation of these compounds compared to the wild-type strain. Importantly, gas chromatography-mass spectrometry analysis identified considerably higher formation of methanethiol (and its oxidized derivatives dimethyl disulfide and dimethyl trisulfide) in reactions containing either purified protein, whole cells, or cell extracts from the heterologous L. lactis strain. This is the first report of production of MGL from B. linens in L. lactis. Given their significance in cheese flavor development, the use of lactic acid bacteria with enhanced VSC-producing abilities could be an efficient way to enhance cheese flavor development.

  13. Isolation and Characterisation of Bacteriocin
and Aggregation-Promoting Factor Production in
Lactococcus lactis ssp. lactis BGBM50 Strain

    PubMed Central

    Mirkovic, Nemanja; Radulovic, Zorica; Uzelac, Gordana; Lozo, Jelena; Obradovic, Dragojlo; Topisirovic, Ljubisa

    2015-01-01

    Summary Lactococcus lactis ssp. lactis BGBM50, a producer of lactococcin G and aggregation-promoting factor, was isolated from selected lactic acid bacteria taken from semi-hard cheese traditionally produced in the village Žanjic, Montenegro. Strain BGBM50 harbours a number of plasmids of different sizes. Plasmid curing experiments showed that genes for bacteriocin production are located on pBM140, a plasmid 140 kb in length. PCR analysis with primers specific for lactococcin Q and G genes gave fragment of the expected size. In addition, after plasmid curing of strain BGBM50, different derivatives with altered phenotypes were obtained, among them BGBM50-34 strain, which retained bacteriocin synthesis but had enhanced aggregation ability. PMID:27904354

  14. Chemical synthesis and characterization of J46 peptide, an atypical class IIa bacteriocin from Lactococcus lactis subsp. cremoris J46 Strain.

    PubMed

    Lasta, Samar; Fajloun, Ziad; Darbon, Hervé; Mansuelle, Pascal; Andreotti, Nicolas; Sabatier, Jean-Marc; Boudabous, Abdellatif; Sampieri, François

    2008-02-01

    Bacteriocin J46 is a 27-residue polypeptide produced by Lactococcus lactis subsp. cremoris J46 in fermented milk. The natural form of J46 (nJ46) exhibits a broad antimicrobial spectrum. Herein, we produced the synthetic form of J46 (sJ46) by solid-phase chemical synthesis. The biochemical and physico-chemical properties of sJ46, as well as its antimicrobial activity, were found to be identical to those of its natural counterpart nJ46. It showed a potent antimicrobial activity against both lactic acid bacteria and other Gram-positive microorganisms. (1)H-NMR conformational analysis of sJ46 indicates that it adopts a flexible random coil structure.

  15. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products

    PubMed Central

    Milanowski, Maciej; Pomastowski, Paweł; Railean-Plugaru, Viorica; Rafińska, Katarzyna; Ligor, Tomasz; Buszewski, Bogusław

    2017-01-01

    The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma–mass spectrometry (ICP-MS) was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs) extracted from bacterial cells was performed. PMID:28362838

  16. A flagellin-producing Lactococcus strain: interactions with mucin and enteropathogens.

    PubMed

    Sánchez, Borja; López, Patricia; González-Rodríguez, Irene; Suárez, Ana; Margolles, Abelardo; Urdaci, María C

    2011-05-01

    Bacillus cereus CH is a probiotic strain used in human nutrition whose adhesion to mucin is dependent on its surface-associated flagellin. Flagellins from the surface of several probiotic Bacillus strains were efficiently extracted with 5 M LiCl and identified by peptide fingerprinting. Based on the proteomic analysis, cloning of the gene coding for the flagellin of B. cereus CH was performed in the lactococcal vector pNZ8110 under the control of a nisin-inducible promoter. The resulting strain, Lactococcus lactis CH, produced a surface-associated flagellin after 6 h of induction with nisin. The recombinant Lactococcus strain adhered strongly to mucin-coated polystyrene plates, whilst inhibiting competitively the adhesion of the pathogens Escherichia coli LMG2092 and Salmonella enterica ssp. enterica LMG15860 to the same molecule. Strain CH could be used in further experimentation for the characterization of the molecular mechanism of action of this probiotic B. cereus CH flagellin.

  17. Evaluation of aroma generation of Lactococcus lactis with an electronic nose and sensory analysis.

    PubMed

    Gutiérrez-Méndez, N; Vallejo-Cordoba, B; González-Córdova, A F; Nevárez-Moorillón, G V; Rivera-Chavira, B

    2008-01-01

    There is an increased interest in exploring the potential of new Lactococcus lactis strains isolated from different natural ecosystems for the production of aroma compounds. Thus, the objective of this study was to screen the aroma generation of Lactococcus lactis strains isolated from different sources by an electronic nose and sensory evaluation for their potential use in starter cheese cultures. Twenty-three strains of Lactococcus lactis were isolated from dairy sources such as artisanal raw-milk cheeses, nondairy sources, and commercial starter cultures (industrial). All the strains were assessed for their ability to produce aromas by an electronic nose and sensory analysis after their incubation in milk. Some phenotypic characteristics of technological importance such as lactose fermentation, proteolytic activity, and citrate utilization were also evaluated. Lactococcus lactis strains showed clear phenotypic differences related to their isolation source. Strains isolated from raw-milk dairy products or commercial starter cultures presented faster lactose fermentation and proteolytic activity than those presented by strains isolated from nondairy sources. Additionally, strains isolated from dairy and nondairy sources presented better citrate utilization than strains isolated from commercial dairy starters. On the other hand, there was not a clear relationship between the source of isolation and the ability of lactococci strains to produce aroma. Principal components analysis of electronic nose data revealed 4 distinctive groups based on aroma profiles. Additionally, odor intensity scores (yogurt-like and Fresco cheese-like) for these 4 groups revealed the nature of their differences. In general, strains from dairy products presented intense yogurt-like and Fresco cheese-like aromas, with the latter being the most intense for one specific strain. On the other hand, the majority of wild strains from nondairy sources presented a stronger yogurt-like aroma, whereas

  18. Influence of cofermentation by amylolytic Lactobacillus plantarum and Lactococcus lactis strains on the fermentation process and rheology of sorghum porridge.

    PubMed

    Mukisa, Ivan M; Byaruhanga, Yusuf B; Muyanja, Charles M B K; Aijuka, Matthew; Schüller, Reidar B; Sahlstrøm, Stefan; Langsrud, Thor; Narvhus, Judith A

    2012-08-01

    Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to <4.5 within 12 h, while malt as a carrier of wild starter took about 20 h. Coculturing increased lactic acid yield by 46% and 76.8% compared to the yields of MNC 21 and MNC 24 monocultures, respectively. The coculture accumulated significantly larger (P < 0.05) amounts of maltose and diacetyl than the monocultures. Sorghum malt control and the coculture hydrolyzed more starch in sorghum porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G'), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials.

  19. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    PubMed

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production.

  20. Lactococcus lactis NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum

    PubMed Central

    Zuercher, Adrian W.; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick

    2012-01-01

    Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms. PMID:21961022

  1. Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel anaerobic, mesophilic, amino-acid-fermenting bacterium, designated strain CL-84T, was isolated from the swine intestinal tract on mucin-based media. The bacterium had curved-rod cells (0.8-1.2 µm x 3.5-5.0 µm), stained Gram negative, and was non-motile with no evidence of spores. CL-84T pro...

  2. Microbiology of Cheddar cheese made with different fat contents using a Lactococcus lactis single-strain starter.

    PubMed

    Broadbent, J R; Brighton, C; McMahon, D J; Farkye, N Y; Johnson, M E; Steele, J L

    2013-07-01

    Flavor development in low-fat Cheddar cheese is typified by delayed or muted evolution of desirable flavor and aroma, and a propensity to acquire undesirable meaty-brothy or burnt-brothy off-flavor notes early in ripening. The biochemical basis for these flavor deficiencies is unclear, but flavor production in bacterial-ripened cheese is known to rely on microorganisms and enzymes present in the cheese matrix. Lipid removal fundamentally alters cheese composition, which can modify the cheese microenvironment in ways that may affect growth and enzymatic activity of starter or nonstarter lactic acid bacteria (NSLAB). Additionally, manufacture of low-fat cheeses often involves changes to processing protocols that may substantially alter cheese redox potential, salt-in-moisture content, acid content, water activity, or pH. However, the consequences of these changes on microbial ecology and metabolism remain obscure. The objective of this study was to investigate the influence of fat content on population dynamics of starter bacteria and NSLAB over 9 mo of aging. Duplicate vats of full fat, 50% reduced-fat, and low-fat (containing <6% fat) Cheddar cheeses were manufactured at 3 different locations with a single-strain Lactococcus lactis starter culture using standardized procedures. Cheeses were ripened at 8°C and sampled periodically for microbiological attributes. Microbiological counts indicated that initial populations of nonstarter bacteria were much lower in full-fat compared with low-fat cheeses made at all 3 sites, and starter viability also declined at a more rapid rate during ripening in full-fat compared with 50% reduced-fat and low-fat cheeses. Denaturing gradient gel electrophoresis of cheese bacteria showed that the NSLAB fraction of all cheeses was dominated by Lactobacillus curvatus, but a few other species of bacteria were sporadically detected. Thus, changes in fat level were correlated with populations of different bacteria, but did not appear to

  3. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.

    PubMed

    Flahaut, Nicolas A L; Wiersma, Anne; van de Bunt, Bert; Martens, Dirk E; Schaap, Peter J; Sijtsma, Lolke; Dos Santos, Vitor A Martins; de Vos, Willem M

    2013-10-01

    Lactococcus lactis subsp. cremoris MG1363 is a paradigm strain for lactococci used in industrial dairy fermentations. However, despite of its importance for process development, no genome-scale metabolic model has been reported thus far. Moreover, current models for other lactococci only focus on growth and sugar degradation. A metabolic model that includes nitrogen metabolism and flavor-forming pathways is instrumental for the understanding and designing new industrial applications of these lactic acid bacteria. A genome-scale, constraint-based model of the metabolism and transport in L. lactis MG1363, accounting for 518 genes, 754 reactions, and 650 metabolites, was developed and experimentally validated. Fifty-nine reactions are directly or indirectly involved in flavor formation. Flux Balance Analysis and Flux Variability Analysis were used to investigate flux distributions within the whole metabolic network. Anaerobic carbon-limited continuous cultures were used for estimating the energetic parameters. A thorough model-driven analysis showing a highly flexible nitrogen metabolism, e.g., branched-chain amino acid catabolism which coupled with the redox balance, is pivotal for the prediction of the formation of different flavor compounds. Furthermore, the model predicted the formation of volatile sulfur compounds as a result of the fermentation. These products were subsequently identified in the experimental fermentations carried out. Thus, the genome-scale metabolic model couples the carbon and nitrogen metabolism in L. lactis MG1363 with complete known catabolic pathways leading to flavor formation. The model provided valuable insights into the metabolic networks underlying flavor formation and has the potential to contribute to new developments in dairy industries and cheese-flavor research.

  4. Production of Fibronectin Binding Protein A at the surface of Lactococcus lactis increases plasmid transfer in vitro and in vivo.

    PubMed

    Pontes, Daniela; Innocentin, Silvia; Del Carmen, Silvina; Almeida, Juliana Franco; Leblanc, Jean-Guy; de Moreno de Leblanc, Alejandra; Blugeon, Sébastien; Cherbuy, Claire; Lefèvre, François; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Chatel, Jean-Marc

    2012-01-01

    Lactococci are noninvasive lactic acid bacteria frequently used as protein delivery vectors and, more recently, as DNA delivery vehicles. We previously showed that Lactococcus lactis (LL) expressing the Fibronectin-Binding Protein A of Staphylococcus aureus (LL-FnBPA+) showed higher internalization rates in vitro in Caco-2 cells than the native (wt) lactococci and were able to deliver a eukaryotic Green Fluorescent Protein (GFP) expression plasmid in 1% of human Caco-2 cells. Here, using the bovine beta-lactoglobulin (BLG), one of the major cow's milk allergen, and GFP we characterized the potential of LL-FnBPA+ as an in vivo DNA vaccine delivery vehicle. We first showed that the invasive strain LL-FnBPA+ carrying the plasmid pValac:BLG (LL-FnBPA+ BLG) was more invasive than LL-BLG and showed the same invasivity as LL-FnBPA+. Then we demonstrated that the Caco-2 cells, co-incubated with LL-FnBPA+ BLG produced up to 30 times more BLG than the Caco-2 cells co-incubated with the non invasive LL-BLG. Using two different gene reporters, BLG and GFP, and two different methods of detection, EIA and fluorescence microscopy, we showed in vivo that: i) in order to be effective, LL-FnBPA+ required a pre-coating with Fetal Calf Serum before oral administration; ii) plasmid transfer occurred in enterocytes without regard to the strains used (invasive or not); iii) the use of LL-FnBPA+ increased the number of mice producing BLG, but not the level of BLG produced. We thus confirmed the good potential of invasive recombinant lactic acid bacteria as DNA delivery vector in vivo.

  5. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis

    SciTech Connect

    Sun Xingmin . E-mail: Xingmin_Sun@brown.edu; Goehler, Andre; Heller, Knut J. . E-mail: knut.heller@bfel.de; Neve, Horst

    2006-06-20

    The ltp gene, located within the lysogeny module of temperate Streptococcus thermophilus phage TP-J34, has been shown to be expressed in lysogenic strain S. thermophilus J34. It codes for a lipoprotein, as demonstrated by inhibition of cleavage of the signal sequence by globomycin. Exposure of Ltp on the surface of Lactococcus lactis protoplasts bearing a plasmid-encoded copy of ltp has been demonstrated by immunogold labeling and electron microscopy. Expression of ltp in prophage- and plasmid-cured S. thermophilus J34-6f interfered with TP-J34 infection. While plating efficiency was reduced by a factor of about 40 and lysis of strain J34-6f in liquid medium was delayed considerably, phage adsorption was not affected at all. Intracellular accumulation of phage DNA was shown to be inhibited by Ltp. This indicates interference of Ltp with infection at the stage of triggering DNA release and injection into the cell, indicating a role of Ltp in superinfection exclusion. Expression of ltp in L. lactis Bu2-60 showed that the same superinfection exclusion mechanism was strongly effective against phage P008, a member of the lactococcal 936 phage species: no plaque-formation was detectable with even 10{sup 9} phage per ml applied, and lysis in liquid medium did not occur. In Lactococcus also, Ltp apparently inhibited phage DNA release and/or injection. Ltp appears to be a member of a family of small, secreted proteins with a 42 amino acids repeat structure encoded by genes of Gram-positive bacteria. Some of these homologous genes are part of the genomes of prophages.

  6. Diversity Analysis of Dairy and Nondairy Lactococcus lactis Isolates, Using a Novel Multilocus Sequence Analysis Scheme and (GTG)5-PCR Fingerprinting▿

    PubMed Central

    Rademaker, Jan L. W.; Herbet, Hélène; Starrenburg, Marjo J. C.; Naser, Sabri M.; Gevers, Dirk; Kelly, William J.; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E. T.

    2007-01-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene. PMID:17890345

  7. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments.

  8. Genome Sequence of the Butyrate-Producing Anaerobic Bacterium Anaerostipes hadrus PEL 85.

    PubMed

    Kant, Ravi; Rasinkangas, Pia; Satokari, Reetta; Pietilä, Taija E; Palva, Airi

    2015-04-02

    Anaerostipes hadrus PEL 85, which was isolated from human feces, is a Gram-positive rod-shaped bacterium. The species may play an important role in gut health, as it was previously reported to produce butyric acid. Here, we present the genome assembly of PEL 85, a novel strain of A. hadrus.

  9. Characterization of a Lactococcus lactis strain that secretes a major epitope of bovine beta-lactoglobulin and evaluation of its immunogenicity in mice.

    PubMed

    Chatel, Jean-Marc; Nouaille, Sebastien; Adel-Patient, Karine; Le Loir, Yves; Boe, Herman; Gruss, Alexandra; Wal, Jean-Michel; Langella, Philippe

    2003-11-01

    Bovine beta-lactoglobulin (Blg) is one of the major cow's milk allergens. Peptide 41-60 of Blg (Blg41-60) was described as a murine T-cell determinant and a murine, rat, and human immunoglobulin E (IgE) epitope. The aim of this study was the expression of Blg41-60 as a fusion protein in the food-grade bacterium Lactococcus lactis and the characterization of its immunogenicity in mice. We constructed a recombinant strain of L. lactis capable of inducible production and secretion of Blg41-60::Nuc, a fusion protein between Blg41-60 and the mature part of the staphylococcal nuclease (Nuc). The highest production yield of Blg41-60::Nuc (32.5 mg/liter) was reached 4 h after induction. At this time, up to 75% of Blg41-60::Nuc was secreted. When monoclonal antibodies specific for Blg41-60 were used, purified Blg41-60::Nuc and synthetic Blg41-60 exhibited very similar immunoreactivities. Subcutaneous coadministration of purified Blg41-60::Nuc and killed nonrecombinant L. lactis resulted in the induction of specific anti-Blg41-60 IgG2a and IgG1. The IgG1/IgG2a ratio and the lack of specific IgE suggest a Th1-type immune response, i.e., a nonallergic response. Similar administrations of the killed Blg41-60::Nuc-producing L. lactis strain did not elicit a specific immune response, whereas a transitory mucosal IgA-specific immune response was induced in mice after oral administration of the live Blg41-60::Nuc-producing L. lactis strain.

  10. Characterization of a Lactococcus lactis Strain That Secretes a Major Epitope of Bovine Beta-Lactoglobulin and Evaluation of Its Immunogenicity in Mice

    PubMed Central

    Chatel, Jean-Marc; Nouaille, Sebastien; Adel-Patient, Karine; Le Loir, Yves; Boe, Herman; Gruss, Alexandra; Wal, Jean-Michel; Langella, Philippe

    2003-01-01

    Bovine β-lactoglobulin (Blg) is one of the major cow's milk allergens. Peptide 41-60 of Blg (Blg41-60) was described as a murine T-cell determinant and a murine, rat, and human immunoglobulin E (IgE) epitope. The aim of this study was the expression of Blg41-60 as a fusion protein in the food-grade bacterium Lactococcus lactis and the characterization of its immunogenicity in mice. We constructed a recombinant strain of L. lactis capable of inducible production and secretion of Blg41-60::Nuc, a fusion protein between Blg41-60 and the mature part of the staphylococcal nuclease (Nuc). The highest production yield of Blg41-60::Nuc (32.5 mg/liter) was reached 4 h after induction. At this time, up to 75% of Blg41-60::Nuc was secreted. When monoclonal antibodies specific for Blg41-60 were used, purified Blg41-60::Nuc and synthetic Blg41-60 exhibited very similar immunoreactivities. Subcutaneous coadministration of purified Blg41-60::Nuc and killed nonrecombinant L. lactis resulted in the induction of specific anti-Blg41-60 IgG2a and IgG1. The IgG1/IgG2a ratio and the lack of specific IgE suggest a Th1-type immune response, i.e., a nonallergic response. Similar administrations of the killed Blg41-60::Nuc-producing L. lactis strain did not elicit a specific immune response, whereas a transitory mucosal IgA-specific immune response was induced in mice after oral administration of the live Blg41-60::Nuc-producing L. lactis strain. PMID:14602621

  11. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.

  12. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    PubMed

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  13. High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater

    SciTech Connect

    Ramsay, Bradley D.; Hwang, Chiachi; Woo, Hannah L.; Carroll, Sue L.; Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; Peters, Lin; Chertkov, Olga; Held, Brittany; Detter, John C.; Han, Cliff S.; Tapia, Roxanne; Land, Miriam L.; Hauser, Loren J.; Kyrpides, Nikos C.; Ivanova, Natalia N.; Mikhailova, Natalia; Pagani, Loanna; Woyke, Tanja; Arkin, Adam P.; Dehal, Paramvir; Chivian, Dylan; Criddle, Craig S.; Wu, Weimin; Chakraborty, Romy; Hazen, Terry C.; Fields, Matthew W.

    2015-03-12

    Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing δ-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.

  14. Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis.

    PubMed

    Gu, Wenliang; Xia, Qiyu; Yao, Jing; Fu, Shaoping; Guo, Jianchun; Hu, Xinwen

    2015-04-01

    Sweet plant proteins, which are safe, natural, low-calorie sweeteners, may be suitable replacements for sugars in the food and beverage industries. Mabinlin II, a sweet plant protein, shows the most pronounced heat stability and acid resistance of any of the six known types of plant sweet proteins. However, mabinlin II is difficult to extract from the Capparis masaikai plant, which is itself becoming increasingly scarce. This limits the use of naturally acquired mabinlin II. In this study, recombinant mabinlin II proteins were expressed and purified in Escherichia coli and in food-grade Lactococcus lactis. Recombinant mabinlin II proteins MBL-BH (containing the B-chains of mabinlin II downstream fused with His-tag) and MBL-ABH (containing the A- and B-chains of mabinlin II downstream fused with His-tag) were expressed in E. coli in the form of inclusion bodies. They were then purified and renatured. The refolded MBL-BH was found to be 100 times sweeter than sucrose by weight, but it was not heat-stable. Refolded MBL-ABH was neither sweet nor heat-stable. Recombinant mabinlin II proteins were secreted and expressed intracellularly in food-grade L. lactis, in which the concentrated cell samples and culture medium samples were detected using enzyme-linked immunosorbent assay and Western blotting analysis with anti-mabinlin II polyclonal antibody. This study demonstrated that the single B chain of mabinlin II has a sweet taste. The recombinant mabinlin II proteins have been successfully expressed in food-grade L. lactis, which is a crucial step in the production of mabinlin II through microorganism expression systems.

  15. Genome‐scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi‐strain arrays

    PubMed Central

    Siezen, Roland J.; Bayjanov, Jumamurat R.; Felis, Giovanna E.; van der Sijde, Marijke R.; Starrenburg, Marjo; Molenaar, Douwe; Wels, Michiel; van Hijum, Sacha A. F. T.; van Hylckama Vlieg, Johan E. T.

    2011-01-01

    Summary Lactococcus lactis produces lactic acid and is widely used in the manufacturing of various fermented dairy products. However, the species is also frequently isolated from non‐dairy niches, such as fermented plant material. Recently, these non‐dairy strains have gained increasing interest, as they have been described to possess flavour‐forming activities that are rarely found in dairy isolates and have diverse metabolic properties. We performed an extensive whole‐genome diversity analysis on 39 L. lactis strains, isolated from dairy and plant sources. Comparative genome hybridization analysis with multi‐strain microarrays was used to assess presence or absence of genes and gene clusters in these strains, relative to all L. lactis sequences in public databases, whereby chromosomal and plasmid‐encoded genes were computationally analysed separately. Nearly 3900 chromosomal orthologous groups (chrOGs) were defined on basis of four sequenced chromosomes of L. lactis strains (IL1403, KF147, SK11, MG1363). Of these, 1268 chrOGs are present in at least 35 strains and represent the presently known core genome of L. lactis, and 72 chrOGs appear to be unique for L. lactis. Nearly 600 and 400 chrOGs were found to be specific for either the subspecies lactis or subspecies cremoris respectively. Strain variability was found in presence or absence of gene clusters related to growth on plant substrates, such as genes involved in the consumption of arabinose, xylan, α‐galactosides and galacturonate. Further niche‐specific differences were found in gene clusters for exopolysaccharides biosynthesis, stress response (iron transport, osmotolerance) and bacterial defence mechanisms (nisin biosynthesis). Strain variability of functions encoded on known plasmids included proteolysis, lactose fermentation, citrate uptake, metal ion resistance and exopolysaccharides biosynthesis. The present study supports the view of L. lactis as a species with a very flexible

  16. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism

    PubMed Central

    van der Meulen, Sjoerd B.; de Jong, Anne; Kok, Jan

    2016-01-01

    ABSTRACT RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species. PMID:26950529

  17. Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis

    PubMed Central

    2014-01-01

    Background Many probiotic bacteria have been described as promising tools for the treatment and prevention of inflammatory bowel diseases (IBDs). Most of these bacteria are lactic acid bacteria, which are part of the healthy human microbiota. However, little is known about the effects of transient bacteria present in normal diets, including Lactococcus lactis. Methods In the present study, we analysed the immunomodulatory effects of three L. lactis strains in vitro using intestinal epithelial cells. L. lactis NCDO 2118 was administered for 4 days to C57BL/6 mice during the remission period of colitis induced by dextran sodium sulphate (DSS). Results Only one strain, L. lactis NCDO 2118, was able to reduce IL-1β-induced IL-8 secretion in Caco-2 cells, suggesting a potential anti-inflammatory effect. Oral treatment using L. lactis NCDO 2118 resulted in a milder form of recurrent colitis than that observed in control diseased mice. This protective effect was not attributable to changes in secretory IgA (sIgA); however, NCDO 2118 administration was associated with an early increase in IL-6 production and sustained IL-10 production in colonic tissue. Mice fed L. lactis NCDO 2118 had an increased number of regulatory CD4+ T cells (Tregs) bearing surface TGF-β in its latent form (Latency-associated peptide-LAP) in the mesenteric lymph nodes and spleen. Conclusions Here, we identified a new probiotic strain with a potential role in the treatment of IBD, and we elucidated some of the mechanisms underlying its anti-inflammatory effect. PMID:25110521

  18. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens

    PubMed Central

    Armas, Federica; Camperio, Cristina

    2017-01-01

    Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions. PMID:28068371

  19. The Lcn972 Bacteriocin-Encoding Plasmid pBL1 Impairs Cellobiose Metabolism in Lactococcus lactis▿

    PubMed Central

    Campelo, Ana B.; Gaspar, Paula; Roces, Clara; Rodríguez, Ana; Kok, Jan; Kuipers, Oscar P.; Neves, Ana Rute; Martínez, Beatriz

    2011-01-01

    pBL1 is a Lactococcus lactis theta-replicating 10.9-kbp plasmid that encodes the synthetic machinery of the bacteriocin Lcn972. In this work, the transcriptomes of exponentially growing L. lactis strains with and without pBL1 were compared. A discrete response was observed, with a total of 10 genes showing significantly changed expression. Upregulation of the lactococcal oligopeptide uptake (opp) system was observed, which was likely linked to a higher nitrogen demand required for Lcn972 biosynthesis. Strikingly, celB, coding for the membrane porter IIC of the cellobiose phosphoenolpyruvate-dependent phosphotransferase system (PTS), and the upstream gene llmg0186 were downregulated. Growth profiles for L. lactis strains MG1363, MG1363/pBL1, and MG1363 ΔcelB grown in chemically defined medium (CDM) containing cellobiose confirmed slower growth of MG1363/pBL1 and MG1363 ΔcelB, while no differences were observed with growth on glucose. The presence of pBL1 shifted the fermentation products toward a mixed acid profile and promoted substantial changes in intracellular pool sizes for glycolytic intermediates in cells growing on cellobiose as determined by high-pressure liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Overall, these data support the genetic evidence of a constriction in cellobiose uptake. Notably, several cell wall precursors accumulated, while other UDP-activated sugar pools were lower, which could reflect rerouting of precursors toward the production of structural or storage polysaccharides. Moreover, cells growing slowly on cellobiose and those lacking celB were more tolerant to Lcn972 than cellobiose-adapted cells. Thus, downregulation of celB could help to build up a response against the antimicrobial activity of Lcn972, enhancing self-immunity of the producer cells. PMID:21890668

  20. Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis.

    PubMed

    Shigemori, Suguru; Ihara, Masaki; Sato, Takashi; Yamamoto, Yoshinari; Nigar, Shireen; Ogita, Tasuku; Shimosato, Takeshi

    2017-01-01

    Interleukin 6 (IL-6) is an important pathogenic factor in development of various inflammatory and autoimmune diseases and cancer. Blocking antibodies against molecules associated with IL-6/IL-6 receptor signaling are an attractive candidate for the prevention or therapy of these diseases. In this study, we developed a genetically modified strain of Lactococcus lactis secreting a single-chain variable fragment antibody against mouse IL-6 (IL6scFv). An IL6scFv-secretion vector was constructed by cloning an IL6scFv gene fragment into a lactococcal secretion plasmid and was electroporated into L. lactis NZ9000 (NZ-IL6scFv). Secretion of recombinant IL6scFv (rIL6scFv) by nisin-induced NZ-IL6scFv was confirmed by western blotting and was optimized by tuning culture conditions. We found that rIL6scFv could bind to commercial recombinant mouse IL-6. This result clearly demonstrated the immunoreactivity of rIL6scFv. This is the first study to engineer a genetically modified strain of lactic acid bacteria (gmLAB) that produces a functional anti-cytokine scFv. Numerous previous studies suggested that mucosal delivery of biomedical proteins using gmLAB is an effective and low-cost way to treat various disorders. Therefore, NZ-IL6scFv may be an attractive tool for the research and development of new IL-6 targeting agents for various inflammatory and autoimmune diseases as well as for cancer.

  1. Genome Sequence of Klebsiella pneumoniae YZUSK-4, a Bacterium Proposed as a Starter Culture for Fermented Meat Products.

    PubMed

    Yu, Hai; Yin, Yongqi; Xu, Lin; Yan, Ming; Fang, Weiming; Ge, Qingfeng

    2015-07-23

    Klebsiella pneumoniae strain YZUSK-4, isolated from Chinese RuGao ham, is an efficient branched-chain aminotransferase-producing bacterium that can be used widely in fermented meat products to enhance flavor. The draft genome sequence of strain YZUSK-4 may provide useful genetic information on branched-chain amino acid aminotransferase production and branched-chain amino acid metabolism.

  2. Genome Sequence of Klebsiella pneumoniae YZUSK-4, a Bacterium Proposed as a Starter Culture for Fermented Meat Products

    PubMed Central

    Yu, Hai; Yin, Yongqi; Yan, Ming; Fang, Weiming; Ge, Qingfeng

    2015-01-01

    Klebsiella pneumoniae strain YZUSK-4, isolated from Chinese RuGao ham, is an efficient branched-chain aminotransferase-producing bacterium that can be used widely in fermented meat products to enhance flavor. The draft genome sequence of strain YZUSK-4 may provide useful genetic information on branched-chain amino acid aminotransferase production and branched-chain amino acid metabolism. PMID:26205853

  3. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    PubMed

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  4. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings

    SciTech Connect

    Burd, G.I.; Dixon, D.G.; Glick, B.R.

    1998-10-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

  5. Transcriptome analysis of grey mullet (Mugil cephalus) after challenge with Lactococcus garvieae.

    PubMed

    Byadgi, Omkar; Chen, Yao-Chung; Barnes, Andrew C; Tsai, Ming-An; Wang, Pei-Chyi; Chen, Shih-Chu

    2016-11-01

    Grey mullet (Mugil cephalus) is an economically important fish species in Taiwan mariculture industry. Moreover, grey mullet are common hosts of a bacterial infection by Lactococcus garvieae. However, until now the information related to the immune system of grey mullet is unclear. Therefore, to understand the molecular basis underlying the host immune response to L. garvieae infection, Illumina HiSeq™ 2000 was used to analyse the head kidney and spleen transcriptome of infected grey mullet. De novo assembly of paired-end reads yielded 55,203 unigenes. Comparative analysis of the expression profiles between bacterial challenge fish and control fish identified a total of 7192 from head kidney and 7280 in spleen differentially expressed genes (P < 0.05), including 4211 upregulated genes and 2981 downregulated genes in head kidney, while in spleen 3598 genes were upregulated and 3682 downregulated. A significant enrichment analysis of these differentially expressed genes (DEG) in spleen and head kidney revealed major immune-related pathways, including complement and coagulation cascades, Toll-like receptor signalling, and antigen processing and presentation. Moreover, selected DEGs were validated using qPCR. Altogether, the results obtained on immune-related genes may allow for a better understanding of immunity in grey mullet to Lactococcus garvieae, carrying out detailed functional analysis of these genes and developing strategies for efficient immune protection against infections in grey mullet.

  6. Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris Wg2.

    PubMed Central

    Tan, P S; Pos, K M; Konings, W N

    1991-01-01

    An endopeptidase has been purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that includes diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, hydroxylapatite chromatography, and fast protein liquid chromatography over an anion-exchange column and a hydrophobic-interaction column. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a molecular mass of the purified enzyme of 70,000 Da. The endopeptidase can degrade several oligopeptides into various tetra-, tri-, and dipeptides. The endopeptidase has no aminopeptidase, carboxypeptidase, dipeptidase, or tripeptidase activity. It is optimally active at pH 6.0 to 6.5 and in the temperature range of 30 to 38 degrees C. The enzyme is inactivated by the chemical agents 1,10-phenanthroline, ethylenedinitrilotetraacetate, beta-mercaptoethanol, and phenylmethylsulfonyl fluoride and is inhibited by Cu2+ and Zn2+. The ethylenedinitrilotetraacetate- or 1,10-phenanthroline-treated enzyme can be reactivated by Co2+. Immunoblotting with specific antibodies raised against the purified endopeptidase indicated that the enzyme is also present in other Lactococcus spp., as well as in Lactobacillus spp. and Streptococcus salivarius subsp. thermophilus. Images PMID:1785932

  7. First Case Report of a Late Onset Knee Periprosthetic Joint Infection Caused by Lactococcus garvieae

    PubMed Central

    2016-01-01

    Lactococcus garvieae is known as a Gram-positive, catalase-negative, and facultatively anaerobic fish pathogen. The association between Lactococcus spp. and human infectious diseases is described as being mainly associated with lumbar osteomyelitis, hepatic abscess, and infective endocarditis. In the literature of orthopedic post-prosthetic infections, L. garvieae was associated with a case of hip prosthetic infection in a fishmonger woman. We present the case of a 79-year-old male patient with multiple comorbidities, who is admitted to our center with a 5-day history of pain, swelling, and motility disorder of the right knee by the presence of a bicondylar knee replacement surgery, which was performed due to gonarthrosis 17 years ago. The radiographies of the right knee revealed no signs of displacement or loosening of the prothesis. After multiple radical debridements including VAC therapy and targeted antibiotic therapy we have managed to defeat the infection without exchange arthroplasty. Although we could not demonstrate the source of infection, we can only presume that in our case the source of infection was represented by the ingestion of possibly contaminated food. The patient had a habit of eating Nile perch fish (Lates niloticus) every 4 weeks. We illustrated once more the possibility of a late onset L. garvieae related orthopedic periprosthetic joint infection by multiple comorbidities. PMID:27833769

  8. Analysis of the genome content of Lactococcus garvieae by genomic interspecies microarray hybridization

    PubMed Central

    2010-01-01

    Background Lactococcus garvieae is a bacterial pathogen that affects different animal species in addition to humans. Despite the widespread distribution and emerging clinical significance of L. garvieae in both veterinary and human medicine, there is almost a complete lack of knowledge about the genetic content of this microorganism. In the present study, the genomic content of L. garvieae CECT 4531 was analysed using bioinformatics tools and microarray-based comparative genomic hybridization (CGH) experiments. Lactococcus lactis subsp. lactis IL1403 and Streptococcus pneumoniae TIGR4 were used as reference microorganisms. Results The combination and integration of in silico analyses and in vitro CGH experiments, performed in comparison with the reference microorganisms, allowed establishment of an inter-species hybridization framework with a detection threshold based on a sequence similarity of ≥ 70%. With this threshold value, 267 genes were identified as having an analogue in L. garvieae, most of which (n = 258) have been documented for the first time in this pathogen. Most of the genes are related to ribosomal, sugar metabolism or energy conversion systems. Some of the identified genes, such as als and mycA, could be involved in the pathogenesis of L. garvieae infections. Conclusions In this study, we identified 267 genes that were potentially present in L. garvieae CECT 4531. Some of the identified genes could be involved in the pathogenesis of L. garvieae infections. These results provide the first insight into the genome content of L. garvieae. PMID:20233401

  9. Effects of rheological change by addition of carboxymethylcellulose in culture media of an air-lift fermentor on poly-D-3-hydroxybutyric acid productivity in autotrophic culture of hydrogen-oxidizing bacterium, Alcaligenes eutrophus.

    PubMed

    Taga, N; Tanaka, K; Ishizaki, A

    1997-03-05

    The effects of rheological change by addition of sodium carboxymethylcellulose (CMC) to culture medium in an air-lift-type fermentor on autotrophic production of poly-(D-3-hydroxybutyric acid) [P(3HB)] by two-stage culture of Alcaligenes eutrophus is investigated. Addition of 0.05% CMC increased P(3HB) production rate during the P(3HB) accumulation phase to twice that of the control culture. It was thought that addition of a small amount of CMC was beneficial for production of P(3HB) employing the air-lift fermentor under safe autotrophic culture conditions in wich oxygen concentration was maintained below 6.9% (v/v). the volumetric mass transfer coefficient (K(L)a) observed in the presence of CMC is shown to correlated with the P(3HB) production rate obtained. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 529-533, 1997.

  10. BIOLOG MICROLOG® IDENTIFICATION OF Lactococcus garvieae INFECTION IN NILE TILAPIA Oreochromis niloticus AND PINTADO Pseudoplathystoma corruscans FROM BRAZIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactococcus garvieae infection in cultured Nile tilapia, Oreochromis niloticus, and pintado, Pseudoplathystoma corruscans from Brazil is reported. This is the first evidence of the presence of this pathogen from Brazilian fish and the first report of L. garvieae infection in either Nile tilapia or ...

  11. Complete Genome Sequence of Lactococcus lactis Strain AI06, an Endophyte of the Amazonian Açaí Palm.

    PubMed

    McCulloch, John Anthony; de Oliveira, Viviane Matoso; de Almeida Pina, André Vicioli; Pérez-Chaparro, Paula Juliana; de Almeida, Lara Mendes; de Vasconcelos, Janaina Mota; de Oliveira, Layanna Freitas; da Silva, Daisy Elaine Andrade; Rogez, Hervé Louis Ghislain; Cretenet, Marina; Mamizuka, Elsa Masae; Nunes, Marcio Roberto Teixeira

    2014-11-20

    We report the genome, in a single chromosome, of Lactococcus lactis strain AI06, isolated from the mesocarp of the açaí fruit (Euterpe oleracea) in eastern Amazonia, Brazil. This strain is an endophyte of the açaí palm and also a component of the microbiota of the edible food product.

  12. Complete Genome Sequence of Lactococcus lactis Strain AI06, an Endophyte of the Amazonian Açaí Palm

    PubMed Central

    de Oliveira, Viviane Matoso; de Almeida Pina, André Vicioli; Pérez-Chaparro, Paula Juliana; de Almeida, Lara Mendes; de Vasconcelos, Janaina Mota; de Oliveira, Layanna Freitas; da Silva, Daisy Elaine Andrade; Rogez, Hervé Louis Ghislain; Cretenet, Marina; Mamizuka, Elsa Masae; Nunes, Marcio Roberto Teixeira

    2014-01-01

    We report the genome, in a single chromosome, of Lactococcus lactis strain AI06, isolated from the mesocarp of the açaí fruit (Euterpe oleracea) in eastern Amazonia, Brazil. This strain is an endophyte of the açaí palm and also a component of the microbiota of the edible food product. PMID:25414513

  13. Structure modeling and functional analysis of recombinant dextransucrase from Weissella confusa Cab3 expressed in Lactococcus lactis.

    PubMed

    Shukla, Shraddha; Verma, Anil Kumar; Kajala, Ilkka; Nyyssolä, Antti; Baruah, Rwivoo; Katina, Kati; Juvonen, Riikka; Tenkanen, Maija; Goyal, Arun

    2016-11-16

    The dextransucrase gene from Weissella confusa Cab3, having an open reading frame of 4.2 kb coding for 1,402 amino acids, was amplified, cloned, and expressed in Lactococcus lactis. The recombinant dextransucrase, WcCab3-rDSR was expressed as extracellular enzyme in M17 medium with a specific activity of 1.5 U/mg which after purification by PEG-400 fractionation gave 6.1 U/mg resulting in 4-fold purification. WcCab3-rDSR was expressed as soluble and homogeneous protein of molecular mass, approximately, 180 kDa as analyzed by SDS-PAGE. It displayed maximum enzyme activity at 35°C at pH 5.0 in 50 mM sodium acetate buffer. WcCab3-rDSR gave Km of 6.2 mM and Vm of 6.3 µmol/min/mg. The characterization of dextran synthesized by WcCab3-rDSR by Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses revealed the structural similarities with the dextran produced by the native dextransucrase. The modeled structure of WcCab3-rDSR using the crystal structures of dextransucrase from Lactobacillus reuteri (protein data bank, PDB id: 3HZ3) and Streptococcus mutans (PDB id: 3AIB) as templates depicted the presence of different domains such as A, B, C, IV, and V. The domains A and B are circularly permuted in nature having (β/α)8 triose phosphate isomerase-barrel fold making the catalytic core of WcCab3-rDSR. The structure superposition and multiple sequence alignment analyses of WcCab3-rDSR with available structures of enzymes from family 70 GH suggested that the amino acid residue Asp510 acts as a nucleophile, Glu548 acts as a catalytic acid/base, whereas Asp621 acts as a transition-state stabilizer and these residues are found to be conserved within the family.

  14. Isolation, screening and characterization of bacteriocin-producing lactic acid bacteria isolated from traditional fermented food.

    PubMed

    El-Shafei, H A; Abd-El-Sabour, H; Ibrahim, N; Mostafa, Y A

    2000-03-01

    100 lactic acid bacterial strains isolated from traditional fermented foods (yoghurt, milk cream, sour dough and milk) were screened for bacteriocin production. Twenty six strains producing a nisin-like bacteriocin were selected. Most of these isolates gave only a narrow inhibitory spectrum, although one showed a broad inhibitory spectrum against the indicator strains tested, this strain was determined as Lactococcus lactis. The influence of several parameters on the fermentative production of nisin by Lactococcus lactis was studied. Production of nisin was optimal at 30 degrees C and in the pH range 5.5-6.3. The effect of different sulphur and nitrogen sources on Lactococcus lactis growth and nisin production was studied. Magnesium sulfate and manganese sulfate were found to be the best sulphur sources while triammonium citrate was the best inorganic nitrogen source and meat extract, peptone and yeast extract were the best organic nitrogen source for nisin production.

  15. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  16. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium Pseudomonas aeruginosa PA31x, Against Vibrio anguillarum In vitro and in a Zebrafish In vivo Model.

    PubMed

    Zhang, Linlin; Tian, Xueying; Kuang, Shan; Liu, Ge; Zhang, Chengsheng; Sun, Chaomin

    2017-01-01

    Phenazine and its derivatives are very important secondary metabolites produced from Pseudomonas spp. and have exhibited broad-spectrum antifungal and antibacterial activities. However, till date, there are few reports about marine derived Pseudomonas and its production of phenazine metabolites. In this study, we isolated a marine Pseudomonas aeruginosa strain PA31x which produced natural product inhibiting the growth of Vibrio anguillarum C312, one of the most serious bacterial pathogens in marine aquaculture. Combining high-resolution electro-spray-ionization mass spectroscopy and nuclear magnetic resonance spectroscopy analyses, the functional compound against V. anguillarum was demonstrated to be phenazine-1-carboxylic acid (PCA), an important phenazine derivative. Molecular studies indicated that the production of PCA by P. aeruginosa PA31x was determined by gene clusters phz1 and phz2 in its genome. Electron microscopic results showed that treatment of V. anguillarum with PCA developed complete lysis of bacterial cells with fragmented cytoplasm being released to the surrounding environment. Additional evidence indicated that reactive oxygen species generation preceded PCA-induced microbe and cancer cell death. Notably, treatment with PCA gave highly significant protective activities against the development of V. anguillarum C312 on zebrafish. Additionally, the marine derived PCA was further found to effectively inhibit the growth of agricultural pathogens, Acidovorax citrulli NP1 and Phytophthora nicotianae JM1. Taken together, this study reveals that marine Pseudomonas derived PCA carries antagonistic activities against both aquacultural and agricultural pathogens, which broadens the application fields of PCA.

  17. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium Pseudomonas aeruginosa PA31x, Against Vibrio anguillarum In vitro and in a Zebrafish In vivo Model

    PubMed Central

    Zhang, Linlin; Tian, Xueying; Kuang, Shan; Liu, Ge; Zhang, Chengsheng; Sun, Chaomin

    2017-01-01

    Phenazine and its derivatives are very important secondary metabolites produced from Pseudomonas spp. and have exhibited broad-spectrum antifungal and antibacterial activities. However, till date, there are few reports about marine derived Pseudomonas and its production of phenazine metabolites. In this study, we isolated a marine Pseudomonas aeruginosa strain PA31x which produced natural product inhibiting the growth of Vibrio anguillarum C312, one of the most serious bacterial pathogens in marine aquaculture. Combining high-resolution electro-spray-ionization mass spectroscopy and nuclear magnetic resonance spectroscopy analyses, the functional compound against V. anguillarum was demonstrated to be phenazine-1-carboxylic acid (PCA), an important phenazine derivative. Molecular studies indicated that the production of PCA by P. aeruginosa PA31x was determined by gene clusters phz1 and phz2 in its genome. Electron microscopic results showed that treatment of V. anguillarum with PCA developed complete lysis of bacterial cells with fragmented cytoplasm being released to the surrounding environment. Additional evidence indicated that reactive oxygen species generation preceded PCA-induced microbe and cancer cell death. Notably, treatment with PCA gave highly significant protective activities against the development of V. anguillarum C312 on zebrafish. Additionally, the marine derived PCA was further found to effectively inhibit the growth of agricultural pathogens, Acidovorax citrulli NP1 and Phytophthora nicotianae JM1. Taken together, this study reveals that marine Pseudomonas derived PCA carries antagonistic activities against both aquacultural and agricultural pathogens, which broadens the application fields of PCA. PMID:28289406

  18. Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product.

    PubMed

    Biscola, V; Todorov, S D; Capuano, V S C; Abriouel, H; Gálvez, A; Franco, B D G M

    2013-03-01

    A Lactococcus lactis subsp. lactis strain (L. lactis 69) capable to produce a heat-stable bacteriocin was isolated from charqui, a Brazilian fermented, salted and sun-dried meat product. The bacteriocin inhibited, in vitro, Listeria monocytogenes, Staphylococcus aureus, several lactic acid bacteria isolated from foods and spoilage halotolerant bacteria isolated from charqui. The activity of the bacteriocin was not affected by pH (2.0-10.0), heating (100 °C), and chemical agents (1% w/v). Treatment of growing cells of L. monocytogenes ScottA with the cell-free supernatant of L. lactis 69 resulted in complete cell inactivation. L. lactis 69 harbored the gene for the production of a nisin-like bacteriocin, and the amino acid sequence of the active peptide was identical to sequences previously described for nisin Z. However, differences were observed regarding the leader peptide. Besides, the isolate was able to survive and produce bacteriocins in culture medium with NaCl content up to 20%, evidencing a potential application as an additional hurdle in the preservation of charqui.

  19. Dynamic Analysis of the Lactococcus lactis Transcriptome in Cheeses Made from Milk Concentrated by Ultrafiltration Reveals Multiple Strategies of Adaptation to Stresses ▿

    PubMed Central

    Cretenet, Marina; Laroute, Valérie; Ulvé, Vincent; Jeanson, Sophie; Nouaille, Sébastien; Even, Sergine; Piot, Michel; Girbal, Laurence; Le Loir, Yves; Loubière, Pascal; Lortal, Sylvie; Cocaign-Bousquet, Muriel

    2011-01-01

    Lactococcus lactis is used extensively for the production of various cheeses. At every stage of cheese fabrication, L. lactis has to face several stress-generating conditions that result from its own modification of the environment as well as externally imposed conditions. We present here the first in situ global gene expression profile of L. lactis in cheeses made from milk concentrated by ultrafiltration (UF-cheeses), a key economical cheese model. The transcriptomic response of L. lactis was analyzed directly in a cheese matrix, starting from as early as 2 h and continuing for 7 days. The growth of L. lactis stopped after 24 h, but metabolic activity was maintained for 7 days. Conservation of its viability relied on an efficient proteolytic activity measured by an increasing, quantified number of free amino acids in the absence of cell lysis. Extensive downregulation of genes under CodY repression was found at day 7. L. lactis developed multiple strategies of adaptation to stressful modifications of the cheese matrix. In particular, expression of genes involved in acidic- and oxidative-stress responses was induced. L. lactis underwent unexpected carbon limitation characterized by an upregulation of genes involved in carbon starvation, principally due to the release of the CcpA control. We report for the first time that in spite of only moderately stressful conditions, lactococci phage is repressed under UF-cheese conditions. PMID:21075879

  20. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147.

    PubMed Central

    Ryan, M P; Rea, M C; Hill, C; Ross, R P

    1996-01-01

    Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products. PMID:8593062

  1. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147.

    PubMed

    Ryan, M P; Rea, M C; Hill, C; Ross, R P

    1996-02-01

    Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products.

  2. First isolation and characterization of Lactococcus garvieae from Brazilian Nile tilapia, Oreochromis niloticus, (L.), and pintado, Pseudoplathystoma corruscans (Spix and Agassiz)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactococcus garvieae infection in cultured Nile tilapia, Oreochromis niloticus, (Linnaeus) and pintado, Pseudoplathystoma corruscans, (Spix and Agassiz) from Brazil is reported. The commercial bacterial identification system, Biolog Microlog®, confirmed the identity of L. garvieae. Infectivity tri...

  3. The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. lactis.

    PubMed

    Buňková, Leona; Buňka, František; Pollaková, Eva; Podešvová, Tereza; Dráb, Vladimír

    2011-05-27

    The aim of this work was to study, under model conditions, combined effects of the concentration of lactose (0-1% w/v), NaCl (0-2% w/v) and aero/anaerobiosis on the growth and tyramine production in 3 strains of Lactococcus lactis subsp. lactis and 2 strains of L. lactis subsp. cremoris. The levels of the factors tested were chosen with respect to the conditions which can occur during the real process of natural cheese production, including the culture temperature (10 ± 1°C). In all strains tested, tyrosine decarboxylation was most influenced by NaCl concentration; the highest production of tyramine was obtained within the culture with the highest (2% w/v) salt concentration applied. Two of the strains L. lactis subsp. lactis produced tyramine only in broth with the highest NaCl concentration tested. In the remaining 3 strains of L. lactis, tyramine was detected under all conditions applied. The tested concentration of lactose and aero/anaerobiosis had a less significant effect on tyramine decarboxylation. However, it was also found that at the same concentrations of NaCl and lactose, a higher amount of tyramine was detected under anaerobic conditions. In all strains tested, tyramine decarboxylation started during the active growth phase of the cells.

  4. Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL 1403 reveals a large genome inversion.

    PubMed Central

    Le Bourgeois, P; Lautier, M; van den Berghe, L; Gasson, M J; Ritzenthaler, P

    1995-01-01

    A physical and genetic map of the chromosome of the Lactococcus lactis subsp. cremoris reference strain MG1363 was established. The physical map was constructed for NotI, ApaI, and SmaI enzymes by using a strategy that combines creation of new rare restriction sites by the random-integration vector pRL1 and ordering of restriction fragments by indirect end-labeling experiments. The MG1363 chromosome appeared to be circular and 2,560 kb long. Seventy-seven chromosomal markers were located on the physical map by hybridization experiments. Integration via homologous recombination of pRC1-derived plasmids allowed a more precise location of some lactococcal genes and determination of their orientation on the chromosome. The MG1363 chromosome contains six rRNA operons; five are clustered within 15% of the chromosome and transcribed in the same direction. Comparison of the L. lactis subsp. cremoris MG1363 physical map with those of the two L. lactis subsp. lactis strains IL1403 and DL11 revealed a high degree of restriction polymorphism. At the genetic organization level, despite an overall conservation of gene organization, strain MG1363 presents a large inversion of half of the genome in the region containing the rRNA operons. PMID:7751295

  5. Biophysical characterization of the type III secretion tip proteins and the tip proteins attached to bacterium-like particles.

    PubMed

    Choudhari, Shyamal P; Chen, Xiaotong; Kim, Jae Hyun; Van Roosmalen, Maarten L; Greenwood, Jamie C; Joshi, Sangeeta B; Picking, William D; Leenhouts, Kees; Middaugh, C Russell; Picking, Wendy L

    2015-02-01

    Bacterium-like particles (BLPs), derived from Lactococcus lactis, offer a self-adjuvanting delivery vehicle for subunit protein vaccines. Proteins can be specifically loaded onto the BLPs via a peptidoglycan anchoring (PA) domain. In this study, the tip proteins IpaD, SipD, and LcrV belonging to type III secretion systems of Shigella flexneri, Salmonella enterica, and Yersinia enterocolitica, respectively, were fused to the PA and loaded onto the BLPs. Herein, we biophysically characterized these nine samples and condensed the spectroscopic results into three-index empirical phase diagrams (EPDs). The EPDs show distinctions between the IpaD/SipD and LcrV subfamilies of tip proteins, based on their physical stability, even upon addition of the PA. Upon attachment to the BLPs, the BLPs become defining moiety in the spectroscopic measurements, leaving the tip proteins to have a subtle yet modulating effect on the structural integrity of the tip proteins-BLPs binding. In summary, this work provides a comprehensive view of physical stability of the tip proteins and tip protein-BLPs and serves as a baseline for screening of excipients to increase the stability of the tip protein-BLPs for future vaccine formulation.

  6. Paradigms: examples from the bacterium Xylella fastidiosa.

    PubMed

    Purcell, Alexander

    2013-01-01

    The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species.

  7. Pneumonia caused by a previously undescribed bacterium.

    PubMed Central

    Hopfer, R L; Mills, K; Fainstein, V; Fischer, H E; Luna, M P

    1982-01-01

    A new and as yet unidentified bacterium was isolated from the lung tissue of a cancer patient with bilateral pneumonia. Clinically, the pneumonia was consistent with legionellosis; the organism cultured from the lung grew only on the charcoal-yeast extract agar routinely used for Legionella isolation. Subsequent testing, however, showed the organism to be quite distinct from the known Legionella species in its biochemical, antigenic, and growth characteristics. Images PMID:7130363

  8. Characterization of a novel extremely alkalophilic bacterium

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Deal, P. H.

    1977-01-01

    A new alkalophilic bacterium, isolated from a natural spring of high pH is characterized. It is a Gram-positive, non-sporulating, motile rod requiring aerobic and alkaline conditions for growth. The characteristics of this organism resemble those of the coryneform group of bacteria; however, there are no accepted genera within this group with which this organism can be closely matched. Therefore, a new genus may be warranted.

  9. Coprisamides A and B, new branched cyclic peptides from a gut bacterium of the dung beetle Copris tripartitus.

    PubMed

    Um, Soohyun; Park, So Hyun; Kim, Jihye; Park, Hyen Joo; Ko, Keebeom; Bang, Hea-Son; Lee, Sang Kook; Shin, Jongheon; Oh, Dong-Chan

    2015-03-06

    Coprisamides A and B (1 and 2) were isolated from a bacterium in the gut of the dung beetle Copris tripartitus. Spectroscopic analysis revealed that the planar structures of 1 and 2 are novel cyclic heptapeptides bearing unusual units, such as β-methylaspartic acid and 2,3-diaminopropanoic acid branched to valine and 2-heptatrienyl cinnamic acid. Absolute configurations were established by chemical derivatization and chiroptical spectroscopy. The coprisamides displayed significant activity for induction of quinone reductase.

  10. Biocidal Inactivation of Lactococcus lactis Bacteriophages: Efficacy and Targets of Commonly Used Sanitizers.

    PubMed

    Hayes, Stephen; Murphy, James; Mahony, Jennifer; Lugli, Gabriele A; Ventura, Marco; Noben, Jean-Paul; Franz, Charles M A P; Neve, Horst; Nauta, Arjen; Van Sinderen, Douwe

    2017-01-01

    Lactococcus lactis strains, being intensely used in the dairy industry, are particularly vulnerable to members of the so-called 936 group of phages. Sanitization and disinfection using purpose-made biocidal solutions is a critical step in controlling phage contamination in such dairy processing plants. The susceptibility of 36 936 group phages to biocidal treatments was examined using 14 biocides and commercially available sanitizers. The targets of a number of these biocides were investigated by means of electron microscopic and proteomic analyses. The results from this study highlight significant variations in phage resistance to biocides among 936 phages. Furthermore, rather than possessing resistance to specific biocides or biocide types, biocide-resistant phages tend to possess a broad tolerance to multiple classes of antimicrobial compounds.

  11. Tight controlled expression and secretion of Lactobacillus brevis SlpA in Lactococcus lactis.

    PubMed

    Hollmann, Axel; Saviello, Mariano; Delfederico, Lucrecia; Saraiva, Tessália Diniz Luerce; Barh, Debmalya; Jain, Neha; Tiwari, Sandeep; Chandra, Sudha; Gupta, Krishnakant; Zambare, Vasudeo; Kumar, Anil; Christopher, Lew; Misra, Amarendra Narayan; Kumavath, Ranjith N; Azevedo, Vasco; Semorile, Liliana; Miyoshi, Anderson

    2012-07-01

    Prokaryotes commonly present outer cell wall structures composed of a crystalline array of proteinaceous subunits, known as surface layers (S-layers). The ORF encoding the S-layer protein (SlpA) of Lactobacillus brevis was cloned into Lactococcus lactis under the transcriptional control of the xylose-inducible expression system (XIES). SlpA was secreted into the extracellular medium, as determined by immunoblotting, and assays on the kinetics of SlpA production revealed that repression of the system with glucose did not require the depletion of xylose from the medium that allows transitory ORF expression. The successful use of XIES to express S-layer proteins in the versatile and generally recognized as safe species L. lactis opens new possibilities for an efficient production and isolation of SlpA S-layer protein for its various applications in biotechnology and importantly as an antigen-carrying vehicle.

  12. Dual recombinant Lactococcus lactis for enhanced delivery of DNA vaccine reporter plasmid pPERDBY.

    PubMed

    Yagnik, Bhrugu; Sharma, Drashya; Padh, Harish; Desai, Priti

    2017-03-04

    Food grade Lactococcus lactis (L. lactis) has been widely used as an antigen and DNA delivery vehicle. We had previously reported the use of non-invasive L. lactis for the delivery of newly constructed immunostimulatory DNA vaccine reporter plasmid, pPERDBY. In the present report, we outline the construction of dual recombinant L. lactis expressing Internalin A of Listeria monocytogenes and harbouring pPERDBY (LL InlA+ pPERDBY) to enhance the DNA delivery efficiency of L. lactis. After confirmation and validation of LL InlA+ pPERDBY, its DNA delivery potential was compared with previously developed non-invasive r- L. lactis::pPERDBY. The use of invasive L. lactis resulted in around three fold increase in number of Enhanced Green Fluorescent Protein expressing Caco- cells. Thus, these findings reinforce the prospective application of invasive strain of L. lactis in delivery of DNA/RNA and antigens.

  13. Biocidal Inactivation of Lactococcus lactis Bacteriophages: Efficacy and Targets of Commonly Used Sanitizers

    PubMed Central

    Hayes, Stephen; Murphy, James; Mahony, Jennifer; Lugli, Gabriele A.; Ventura, Marco; Noben, Jean-Paul; Franz, Charles M. A. P.; Neve, Horst; Nauta, Arjen; Van Sinderen, Douwe

    2017-01-01

    Lactococcus lactis strains, being intensely used in the dairy industry, are particularly vulnerable to members of the so-called 936 group of phages. Sanitization and disinfection using purpose-made biocidal solutions is a critical step in controlling phage contamination in such dairy processing plants. The susceptibility of 36 936 group phages to biocidal treatments was examined using 14 biocides and commercially available sanitizers. The targets of a number of these biocides were investigated by means of electron microscopic and proteomic analyses. The results from this study highlight significant variations in phage resistance to biocides among 936 phages. Furthermore, rather than possessing resistance to specific biocides or biocide types, biocide-resistant phages tend to possess a broad tolerance to multiple classes of antimicrobial compounds. PMID:28210242

  14. Energy-Based Dynamic Model for Variable Temperature Batch Fermentation by Lactococcus lactis†

    PubMed Central

    Dougherty, Daniel P.; Breidt, Jr., Frederick; McFeeters, Roger F.; Lubkin, Sharon R.

    2002-01-01

    We developed a mechanistic mathematical model for predicting the progression of batch fermentation of cucumber juice by Lactococcus lactis under variable environmental conditions. In order to overcome the deficiencies of presently available models, we use a dynamic energy budget approach to model the dependence of growth on present as well as past environmental conditions. When parameter estimates from independent experimental data are used, our model is able to predict the outcomes of three different temperature shift scenarios. Sensitivity analyses elucidate how temperature affects the metabolism and growth of cells through all four stages of fermentation and reveal that there is a qualitative reversal in the factors limiting growth between low and high temperatures. Our model has an applied use as a predictive tool in batch culture growth. It has the added advantage of being able to suggest plausible and testable mechanistic assumptions about the interplay between cellular energetics and the modes of inhibition by temperature and end product accumulation. PMID:11976123

  15. Antioxidant activity of phosphorylated exopolysaccharide produced by Lactococcus lactis subsp. lactis.

    PubMed

    Guo, Yuxing; Pan, Daodong; Sun, Yangying; Xin, Lingying; Li, Hua; Zeng, Xiaoqun

    2013-09-12

    Exopolysaccharide (EPS) of Lactococcus lactis subsp. lactis was isolated and purified from MRS culture broth. Phosphorylated exopolysaccharide (P-EPS) was synthesized by using the purified EPS and sodium hexametaphosphate (SHMP). The in vitro and in vivo antioxidant activity of EPS and P-EPS was analyzed. Both EPS and P-EPS displayed superoxide anion (O(2-•)), hydroxyl radical (OH•) and DPPH scavenging activity. Catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity increased in serum and the livers of mice treated with EPS and P-EPS, while malondialdehyde (MDA) levels decreased. P-EPS was shown to prevent the progression of D-galactose-induced oxidative stress in hepatocytes in vivo. P-EPS showed stronger in vitro and in vivo antioxidant activity than EPS.

  16. The Transcriptional and Gene Regulatory Network of Lactococcus lactis MG1363 during Growth in Milk

    PubMed Central

    de Jong, Anne; Hansen, Morten E.; Kuipers, Oscar P.; Kilstrup, Mogens; Kok, Jan

    2013-01-01

    In the present study we examine the changes in the expression of genes of Lactococcus lactis subspecies cremoris MG1363 during growth in milk. To reveal which specific classes of genes (pathways, operons, regulons, COGs) are important, we performed a transcriptome time series experiment. Global analysis of gene expression over time showed that L. lactis adapted quickly to the environmental changes. Using upstream sequences of genes with correlated gene expression profiles, we uncovered a substantial number of putative DNA binding motifs that may be relevant for L. lactis fermentative growth in milk. All available novel and literature-derived data were integrated into network reconstruction building blocks, which were used to reconstruct and visualize the L. lactis gene regulatory network. This network enables easy mining in the chrono-transcriptomics data. A freely available website at http://milkts.molgenrug.nl gives full access to all transcriptome data, to the reconstructed network and to the individual network building blocks. PMID:23349698

  17. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    PubMed

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; de Carvalho, Antônio Fernandes; Cocolin, Luca; Nero, Luís Augusto

    2015-12-02

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption.

  18. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1976-01-01

    The previously described extremely halophilic bacterium, strain M6, metabolizes a variety of carbohydrates with the production of acid. In addition, the organism produces nitrite (but no gas) from nitrate, is motile, and grows most rapidly at about 50 C. These characteristics distinguish it from all previously described halophilic bacteria in the genus Halobacterium. It is suggested that it be designated as a new species, Halobacterium saccharovorum.

  19. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese.

    PubMed

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2015-03-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products.

  20. Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties.

    PubMed

    Giaouris, Efstathios; Chapot-Chartier, Marie-Pierre; Briandet, Romain

    2009-04-30

    The cell surface physicochemical properties of 50 Lactococcus lactis strains of different subspecies and isolated from different origins (dairy, vegetal and animal) were examined. Cell surface hydrophobicity and Lewis acid-base properties were evaluated by affinity measurements to solvents in a partitioning test, while the global electrical charge of the cells was assessed by micro-electrophoresis using a laser zeta-meter. A global multivariate analysis of the results revealed a high natural diversity of L. lactis cell surface properties. While 52% of the strains present a hydrophilic and electronegative cell wall surface, a group of strikingly hydrophobic strains (12% of the strains) and a group of strains with unusual low charged surface (18%) were identified. Adhesion on polystyrene microtitre plates was evaluated for twelve strains selected from the multivariate analysis as representatives of the various observed cell wall surface physicochemical patterns. A significant correlation between adhesion, hydrophobicity and low electronegativity was observed when adhesion was performed in a low ionic strength suspending medium. The most adhesive strains were hydrophobic or low charged. The presence of repulsive electrostatic interactions led to a decrease in adhesion of the most negatively charged hydrophilic strains. The present study highlights the diversity of L. lactis cell surface physicochemical properties, diversity that could not be connected to the origin or to the subspecies of the strains.

  1. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2015-01-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products. PMID:26221109

  2. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells.

    PubMed

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-09-15

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.

  3. On Lactococcus lactis UL719 competitivity and nisin (Nisaplin®) capacity to inhibit Clostridium difficile in a model of human colon

    PubMed Central

    Le Lay, Christophe; Fernandez, Benoit; Hammami, Riadh; Ouellette, Marc; Fliss, Ismail

    2015-01-01

    Clostridium difficile is the most frequently identified enteric pathogen in patients with nosocomially acquired, antibiotic-associated diarrhea and pseudomembranous colitis. Although metronidazole and vancomycin were effective, an increasing number of treatment failures and recurrence of C. difficile infection are being reported. Use of probiotics, particularly metabolically active lactic acid bacteria, was recently proposed as an alternative for the medical community. The aim of this study was to assess a probiotic candidate, nisin Z-producer Lactococcus lactis UL719, competitivity and nisin (Nisaplin®) capacity to inhibit C. difficile in a model of human colon. Bacterial populations was enumerated by qPCR coupled to PMA treatment. L. lactis UL719 was able to survive and proliferate under simulated human colon, did not alter microbiota composition, but failed to inhibit C. difficile. While a single dose of 19 μmol/L (5× the MIC) was not sufficient to inhibit C. difficile, nisin at 76 μmol/L (20×the MIC) was effective at killing the pathogen. Nisin (at 76 μmol/L) caused some temporary changes in the microbiota with Gram-positive bacteria being the mostly affected. These results highlight the capacity of L. lactis UL719 to survive under simulated human colon and the efficacy of nisin as an alternative in the treatment of C. difficile infections. PMID:26441942

  4. In vitro inhibition of Citrobacter freundii, a red-leg syndrome associated pathogen in raniculture, by indigenous Lactococcus lactis CRL 1584.

    PubMed

    Pasteris, Sergio E; Guidoli, Marcos G; Otero, María C; Bühler, Marta I; Nader-Macías, María E

    2011-08-05

    Red-leg syndrome (RLS) is one of the main infectious diseases that cause economic losses in Lithobates catesbeianus hatcheries, Citrobacter freundii being an etiological agent. Treatment or prevention with therapeutics or chemicals results in modifications of the indigenous microbiota, development of antibiotic resistance, presence of their residues in food and enhancement of production costs. Thus, probiotics could be used as an alternative therapy. Lactic acid bacteria are part of the indigenous microbiota of healthy frogs and can prevent pathogen colonization by different mechanisms, including the production of antagonistic substances. In this work, the evaluation and characterization of the inhibition of C. freundii CFb by Lactococcus lactis subsp. lactis CRL 1584, a potentially probiotic candidate, were carried out. This strain produced lactic acid, H(2)O(2) and bacteriocin in static and shaken conditions and inhibited pathogen growth in associative cultures, with an earlier inhibition under agitated conditions. The elimination of each of the antimicrobial metabolites partially abolished the inhibition of the pathogen, suggesting that the inhibitory effect could be attributed to a combined action of the three antagonistic molecules. Electron microphotographs revealed the damage caused by L. lactis CRL 1584 supernatants to C. freundii cells. The addition of pure lactic acid, H(2)O(2) and bacteriocin to the culture media showed that each metabolite caused different morphological modifications in C. freundii, in agreement with the effect on viable cell counts. The results support the possibility that L. lactis CRL 1584 might be considered as a probiotic to be used in the prevention of RLS in raniculture.

  5. Isolation of a bacteriocin-producing lactococcus lactis and application of its bacteriocin to manage spoilage bacteria in high-value marine fish under different storage temperatures.

    PubMed

    Sarika, A R; Lipton, A P; Aishwarya, M S; Dhivya, R S

    2012-07-01

    The bacteriocins of lactic acid bacteria have considerable potential for biopreservation. The Lactococcus lactis strain PSY2 (GenBank account no. JF703669) isolated from the surface of marine perch Perca flavescens produced antibacterial activity against pathogenic and spoilage-causing Gram-positive and Gram-negative bacteria viz. Arthrobacter sp., Acinetobacter sp., Bacillus subtilis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus and possessed broad inhibitory spectrum. The biopreservative efficacy of the bacteriocin PSY2 was evaluated using fillets of reef cod, Epinephelus diacanthus. The fillets (10 g) were sprayed with 2.0 ml of 1,600 AU/ml bacteriocin, wrapped and kept under different storage temperatures viz., 4, 0 and -18 °C. The biopreservative extended the shelf-life of fillets stored at 4 °C to >21 days as against <14 days observed in the untreated samples. The total count of spoilage bacteria was reduced by 2.5 logarithmic units in the treated sample during the 14th day of storage as against the control. Chemical analysis revealed a significant change (P < 0.05) in the pH value, free fatty acid (as % oleic acid), total volatile base nitrogen and total methyl amine content in the treated samples. The overall acceptability in terms of sensory attributes was significantly higher in the bacteriocin-treated samples stored for 21 days at 4 °C while the untreated samples became unacceptable by the 14th day. The biopreservative gave no significant effect at -18 °C. Thus, the bacteriocin derived from L. lactis PSY2 gave increased protection against spoilage bacteria and offers an alternative for the preservation of high-value sea foods.

  6. Carbohydrates act as receptors for the periodontitis-associated bacterium Porphyromonas gingivalis: a study of bacterial binding to glycolipids.

    PubMed

    Hellström, Ulrika; Hallberg, Eva C; Sandros, Jens; Rydberg, Lennart; Bäcker, Annika E

    2004-06-01

    In this study we show for the first time the use of carbohydrate chains on glycolipids as receptors for the periodontitis-associated bacterium Porphyromonas gingivalis. Previous studies have shown that this bacterium has the ability to adhere to and invade the epithelial lining of the dental pocket. Which receptor(s) the adhesin of P. gingivalis exploit in the adhesion to epithelial cells has not been shown. Therefore, the binding preferences of this specific bacterium to structures of carbohydrate origin from more than 120 different acid and nonacid glycolipid fractions were studied. The bacteria were labeled externally with (35)S and used in a chromatogram binding assay. To enable detection of carbohydrate receptor structures for P. gingivalis, the bacterium was exposed to a large number of purified total glycolipid fractions from a variety of organs from different species and different histo-blood groups. P. gingivalis showed a preference for fractions of human and pig origin for adhesion. Both nonacid and acid glycolipids were used by the bacterium, and a preference for shorter sugar chains was noticed. Bacterial binding to human acid glycolipid fractions was mainly obtained in the region of the chromatograms where sulfated carbohydrate chains usually are found. However, the binding pattern to nonacid glycolipid fractions suggests a core chain of lactose bound to the ceramide part as a tentative receptor structure. The carbohydrate binding of the bacterium might act as a first step in the bacterial invasion process of the dental pocket epithelium, subsequently leading to damage to periodontal tissue and tooth loss.

  7. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  8. A bacterium that can grow by using arsenic instead of phosphorus

    USGS Publications Warehouse

    Wolfe-Simon, Felisa; Blum, J.S.; Kulp, T.R.; Gordon, G.W.; Hoeft, S.E.; Pett-Ridge, J.; Stolz, J.F.; Webb, S.M.; Weber, P.K.; Davies, P.C.W.; Anbar, A.D.; Oremland, R.S.

    2011-01-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  9. A bacterium that can grow by using arsenic instead of phosphorus.

    PubMed

    Wolfe-Simon, Felisa; Switzer Blum, Jodi; Kulp, Thomas R; Gordon, Gwyneth W; Hoeft, Shelley E; Pett-Ridge, Jennifer; Stolz, John F; Webb, Samuel M; Weber, Peter K; Davies, Paul C W; Anbar, Ariel D; Oremland, Ronald S

    2011-06-03

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  10. A bacterium that can grow by using arsenic instead of phosphorus

    SciTech Connect

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  11. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis

    PubMed Central

    2014-01-01

    Background Lactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus. Results Attempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation. Conclusions Inserting the Lcn972 cluster into

  12. Cell surface display system for Lactococcus lactis: a novel development for oral vaccine.

    PubMed

    Raha, A R; Varma, N R S; Yusoff, K; Ross, E; Foo, H L

    2005-07-01

    The food-grade Lactococcus lactis is a potential vector to be used as a live vehicle for the delivery of heterologous proteins for vaccine and pharmaceutical purposes. We constructed a plasmid vector pSVac that harbors a 255-bp single-repeat sequence of the cell wall-binding protein region of the AcmA protein. The recombinant plasmid was transformed into Escherichia coli and expression of the gene fragment was driven by the T7 promoter of the plasmid. SDS-PAGE showed the presence of the putative AcmA' fragment and this was confirmed by Western blot analysis. The protein was isolated and purified using a His-tag affinity column. When mixed with a culture of L. lactis MG1363, ELISA and immunofluorescence assays showed that the cell wall-binding fragment was anchored onto the outer surface of the bacteria. This indicated that the AcmA' repeat unit retained the active site for binding onto the cell wall surface of the L. lactis cells. Stability assays showed that the fusion proteins (AcmA/A1, AcmA/A3) were stably docked onto the surface for at least 5 days. The AcmA' fragment was also shown to be able to strongly bind onto the cell surface of naturally occurring lactococcal strains and Lactobacillus and, with less strength, the cell surface of Bacillus sphericus. The new system designed for cell surface display of recombinant proteins on L. lactis was evaluated for the expression and display of A1 and A3 regions of the VP1 protein of enterovirus 71 (EV71). The A1 and A3 regions of the VP1 protein of EV71 were cloned upstream to the cell wall-binding domains of AcmA protein and successfully expressed as AcmA/A1 and AcmA/A3. Whole-cell ELISA showed the successful display of VP1 protein epitopes of EV71 on the surface of L. lactis. The success of the anchoring system developed in this study for docking the A1 and A3 epitopes of VP1 onto the surface of L. lactis cells opens up the possibilities of peptide and protein display for not only Lactococcus but also for other gram

  13. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium.

    PubMed Central

    Heitkamp, M A; Franklin, W; Cerniglia, C E

    1988-01-01

    Microbiological analyses of sediments located near a point source for petrogenic chemicals resulted in the isolation of a pyrene-mineralizing bacterium. This isolate was identified as a Mycobacterium sp. on the basis of its cellular and colony morphology, gram-positive and strong acid-fast reactions, diagnostic biochemical tests, 66.6% G + C content of the DNA, and high-molecular-weight mycolic acids (C58 to C64). The mycobacterium mineralized pyrene when grown in a mineral salts medium supplemented with nutrients but was unable to utilize pyrene as a sole source of carbon and energy. The mycobacterium grew well at 24 and 30 degrees C and minimally at 35 degrees C. No growth was observed at 5 or 42 degrees C. The mycobacterium grew well at salt concentrations up to 4%. Pyrene-induced Mycobacterium cultures mineralized 5% of the pyrene after 6 h and reached a maximum of 48% mineralization within 72 h. Treatment of induced and noninduced cultures with chloramphenicol showed that pyrene-degrading enzymes were inducible in this Mycobacterium sp. This bacterium could also mineralize other polycyclic aromatic hydrocarbons and alkyl- and nitro-substituted polycyclic aromatic hydrocarbons including naphthalene, phenanthrene, fluoranthene, 3-methylcholanthrene, 1-nitropyrene, and 6-nitrochrysene. This is the first report of a bacterium able to extensively mineralize pyrene and other polycyclic aromatic hydrocarbons containing four aromatic rings. Images PMID:3202633

  14. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    PubMed

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism.

  15. Utilization of Phenylpropanoids by Newly Isolated Bacterium Pseudomonas sp. TRMK1.

    PubMed

    T R, Monisha; I, Mukram; B, Kirankumar; Reddy, Pooja V; Nayak, Anand S; Karegoudar, T B

    2017-01-25

    A bacterium Pseudomonas sp. TRMK1 capable of utilizing various phenylpropanoids was isolated from agro-industrial waste by enrichment culture technique. It is gram-negative, motile, aerobic, and able to utilize three different phenolic acids such as p-coumaric, ferulic, and caffeic acids at concentrations of 5, 10, and 15 mM in 18 h of incubation. The residual concentration of phenolic acids was analyzed by HPLC. The catabolic pathway of p-coumaric, ferulic, and caffeic acids is suggested based on the characterization of metabolic intermediates by GC, GC-HRMS, and different enzymatic assays. Further, Pseudomonas sp. TRMK1 utilizes a wide range of mixture of phenolic acids present in the synthetic effluent.

  16. Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium

    SciTech Connect

    Mittelman, M.W.; Geesey, G.G.

    1985-04-01

    Copper-binding activity by exopolymers from adherent cells of freshwater-sediment bacterium was demonstrated by a combination of equilibrium dialysis and flameless atomic absorption spectrometry. Crude, cell-free exopolymer preparations containing protein and polysaccharide components bound up to 37 nmol of Cu per mg (dry weight). A highly purified exopolysaccharide preparation bound up to 253 nmol of Cu per mg of carbohydrate. The conditional stability constant for the crude exopolymer-Cu complex was 7.3 x 10/sup 8/. This value was similar to those obtained for Cu complexes formed with humic acids and xanthan, an exopolysaccharide produced by Xanthomonas campestris. Studies conducted at copper concentrations, pHs, and temperatures found in sediments from which the bacterium was isolated indicated that the exopolymers were capable of binding copper under natural conditions.

  17. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    PubMed

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points.

  18. Draft Genome Sequence of the Suttonella ornithocola Bacterium

    PubMed Central

    Waldman Ben-Asher, Hiba; Yerushalmi, Rebecca; Wachtel, Chaim; Barbiro-Michaely, Efrat

    2017-01-01

    ABSTRACT   We report here the draft genome sequence of the Suttonella ornithocola bacterium. To date, this bacterium, found in birds, passed only phylogenetic and phenotypic analyses. To our knowledge, this is the first publication of the Suttonella ornithocola genome sequence. The genetic profile provides a basis for further analysis of its infection pathways. PMID:28209820

  19. Comparative Phenotypic and Molecular Genetic Profiling of Wild Lactococcus lactis subsp. lactis Strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris Genotypes, Isolated from Starter-Free Cheeses Made of Raw Milk▿

    PubMed Central

    Fernández, Elena; Alegría, Ángel; Delgado, Susana; Martín, M. Cruz; Mayo, Baltasar

    2011-01-01

    Twenty Lactococcus lactis strains with an L. lactis subsp. lactis phenotype isolated from five traditional cheeses made of raw milk with no added starters belonging to the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes (lactis and cremoris genotypes, respectively; 10 strains each) were subjected to a series of phenotypic and genetic typing methods, with the aims of determining their phylogenetic relationships and suitability as starters. Pulsed-field gel electrophoresis (PFGE) analysis of intact genomes digested with SalI and SmaI proved that all strains were different except for three isolates of the cremoris genotype, which showed identical PFGE profiles. Multilocus sequence typing (MLST) analysis using internal sequences of seven loci (namely, atpA, rpoA, pheS, pepN, bcaT, pepX, and 16S rRNA gene) revealed considerable intergenotype nucleotide polymorphism, although deduced amino acid changes were scarce. Analysis of the MLST data for the present strains and others from other dairy and nondairy sources showed that all of them clustered into the cremoris or lactis genotype group, by using both independent and combined gene sequences. These two groups of strains also showed distinctive carbohydrate fermentation and enzyme activity profiles, with the strains in the cremoris group showing broader profiles. However, the profiles of resistance/susceptibility to 16 antibiotics were very similar, showing no atypical resistance, except for tetracycline resistance in three identical cremoris genotype isolates. The numbers and concentrations of volatile compounds produced in milk by the strains belonging to these two groups were clearly different, with the cremoris genotype strains producing higher concentrations of more branched-chain, derived compounds. Together, the present results support the idea that the lactis and cremoris genotypes of phenotypic Lactococcus lactis subsp. lactis actually represent true subspecies. Some strains of the two subspecies

  20. The Carbohydrate Metabolism Signature of Lactococcus lactis Strain A12 Reveals Its Sourdough Ecosystem Origin

    PubMed Central

    Passerini, Delphine; Coddeville, Michèle; Le Bourgeois, Pascal; Loubière, Pascal; Ritzenthaler, Paul; Fontagné-Faucher, Catherine; Cocaign-Bousquet, Muriel

    2013-01-01

    Lactococcus lactis subsp. lactis strain A12 was isolated from sourdough. Combined genomic, transcriptomic, and phenotypic analyses were performed to understand its survival capacity in the complex sourdough ecosystem and its role in the microbial community. The genome sequence comparison of strain A12 with strain IL1403 (a derivative of an industrial dairy strain) revealed 78 strain-specific regions representing 23% of the total genome size. Most of the strain-specific genes were involved in carbohydrate metabolism and are potentially required for its persistence in sourdough. Phenotype microarray, growth tests, and analysis of glycoside hydrolase content showed that strain A12 fermented plant-derived carbohydrates, such as arabinose and α-galactosides. Strain A12 exhibited specific growth rates on raffinose that were as high as they were on glucose and was able to release sucrose and galactose outside the cell, providing soluble carbohydrates for sourdough microflora. Transcriptomic analysis identified genes specifically induced during growth on raffinose and arabinose and reveals an alternative pathway for raffinose assimilation to that used by other lactococci. PMID:23872564

  1. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    PubMed Central

    del Rio, Beatriz; Linares, Daniel M.; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P.; Ladero, Victor; Alvarez, Miguel A.

    2015-01-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514. PMID:26697381

  2. Global Transcriptome Analysis of Lactococcus garvieae Strains in Response to Temperature

    PubMed Central

    Aguado-Urda, Mónica; Gibello, Alicia; Blanco, M. del Mar; Fernández-Garayzábal, José F.; López-Alonso, Victoria; López-Campos, Guillermo H.

    2013-01-01

    Lactococcus garvieae is an important fish and an opportunistic human pathogen. The genomic sequences of several L. garvieae strains have been recently published, opening the possibility of global studies on the biology of this pathogen. In this study, a whole genome DNA microarray of two strains of L. garvieae was designed and validated. This DNA microarray was used to investigate the effects of growth temperature (18°C and 37°C) on the transcriptome of two clinical strains of L. garvieae that were isolated from fish (Lg8831) and from a human case of septicemia (Lg21881). The transcriptome profiles evidenced a strain-specific response to temperature, which was more evident at 18°C. Among the most significant findings, Lg8831 was found to up-regulate at 18°C several genes encoding different cold-shock and cold-induced proteins involved in an efficient adaptive response of this strain to low-temperature conditions. Another relevant result was the description, for the first time, of respiratory metabolism in L. garvieae, whose gene expression regulation was temperature-dependent in Lg21881. This study provides new insights about how environmental factors such as temperature can affect L. garvieae gene expression. These data could improve our understanding of the regulatory networks and adaptive biology of this important pathogen. PMID:24223997

  3. Variable volume fed-batch fermentation for nisin production by Lactococcus lactis subsp. lactis W28.

    PubMed

    Wu, Zhaoliang; Wang, Lin; Jing, Yingjun; Li, Xueliang; Zhao, Yanli

    2009-03-01

    A feeding technology that was suitable for improving the nisin production by Lactococcus lactis subsp. lactis W28 was established. The effects of initial sucrose concentration (ISC) in the fermentation broth, feeding time, and feeding rate on the fermentation were studied. It was observed that a fed-batch culture (ISC = 10 g l(-1)) with 100 ml sucrose solution (190 g l(-1)) being evenly fed (9-10 ml h(-1)) into the fermenter after 3-h fermentation gave the best performance in terms of biomass and nisin yield. Under these conditions, the total biomass and the total nisin yield were approximately 23% and 51% higher than those in batch fermentation, respectively. When the sucrose concentration was controlled at 5-10 g l(-1) in variable volume intermittent fed-batch fermentation (VVIF) with ISC = 10 g l(-1), the total biomass and the total nisin yield were 29% and 60% above those in batch fermentation, respectively. The VVIF proved to be effective to eliminate the substrate inhibition by maintaining sucrose at appropriate levels. It is also easy to be scaled up, since various parameters involved in industrial production were taken into account.

  4. Oral immunization of mice with Lactococcus lactis expressing the rotavirus VP8* protein.

    PubMed

    Rodríguez-Díaz, Jesús; Montava, Rebeca; Viana, Rosa; Buesa, Javier; Pérez-Martínez, Gaspar; Monedero, Vicente

    2011-06-01

    The efficacy of recombinant Lactococcus lactis as a delivery vehicle for a rotavirus antigen was evaluated in a mouse model. The rotavirus VP8* protein was expressed intracellularly and extracellularly in L. lactis wild type and in an alr mutant deficient in alanine racemase activity, necessary for the synthesis of the cell-wall component D: -alanine. When the mucosal immune response was evaluated by measuring VP8*-specific IgA antibody in faeces, wild-type L. lactis triggered a low IgA synthesis only when the secreting strain was used. In contrast, VP8*-specific IgA was detected in faeces of both groups of mice orally given the alr mutant expressing extracellular VP8* and intracellular VP8*, which reached levels similar to that obtained with the wild type secreting strain. However, oral administration of the recombinant strains did not induce serum IgG or IgA responses. L. lactis cell-wall mutants may therefore provide certain advantages when low-antigenic proteins are expressed intracellularly. However, the low immune response obtained by using this antigen-bacterial host combination prompts to the use of new strains and vaccination protocols in order to develop acceptable rotavirus immunization levels.

  5. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment.

    PubMed

    Cavanagh, Daniel; Fitzgerald, Gerald F; McAuliffe, Olivia

    2015-05-01

    Lactococcus lactis is an organism of substantial economic importance, used extensively in the production of fermented foods and widely held to have evolved from plant strains. The domestication of this organism to the milk environment is associated with genome reduction and gene decay, and the acquisition of specific genes involved in protein and lactose utilisation by horizontal gene transfer. In recent years, numerous studies have focused on uncovering the physiology and molecular biology of lactococcal strains from the wider environment for exploitation in the dairy industry. This in turn has facilitated comparative genome analysis of lactococci from different environments and provided insight into the natural phenotypic and genetic diversity of L. lactis. This diversity may be exploited in dairy fermentations to develop products with improved quality and sensory attributes. In this review, we discuss the classification of L. lactis and the problems that arise with phenotype/genotype designation. We also discuss the adaptation of non-dairy lactococci to milk, the traits associated with this adaptation and the potential application of non-dairy lactococci to dairy fermentations.

  6. Systematic identification of tRNAome and its dynamics in Lactococcus lactis

    PubMed Central

    Puri, Pranav; Wetzel, Collin; Saffert, Paul; W.Gaston, Kirk; Russell, Susan P.; Varela, Juan A. Cordero; van der Vlies, Pieter; Zhang, Gong; Limbach, Patrick A.; Ignatova, Zoya; Poolman, Bert

    2014-01-01

    Transfer RNAs (tRNA) through their abundance and modification pattern significantly influence protein translation. Here, we present a systematic analysis of the tRNAome of Lactococcus lactis. Using the next-generation sequencing approach, we identified 40 tRNAs which carry 16 different posttranscriptional modifications as revealed by mass spectrometry analysis. While small modifications are located in the tRNA body, hypermodified nucleotides are mainly present in the anticodon loop, which through wobbling expand the decoding potential of the tRNAs. Using tRNA-based microarrays, we also determined the dynamics in tRNA abundance upon changes in the growth rate and heterologous protein overexpression stress. With a four-fold increase in the growth rate, the relative abundance of tRNAs cognate to low abundance codons decrease, while the tRNAs cognate to major codons remain mostly unchanged. Significant changes in the tRNA abundances are observed upon protein overexpression stress, which does not correlate with the codon usage of the overexpressed gene but rather reflects the altered expression of housekeeping genes. PMID:25040919

  7. Intranasal immunization of recombinant Lactococcus lactis induces protection against H5N1 virus in ferrets.

    PubMed

    Lei, Han; Peng, Xiaojue; Ouyang, Jiexiu; Zhao, Daxian; Jiao, Huifeng; Shu, Handing; Ge, Xinqi

    2015-01-22

    The increasing outbreaks of highly pathogenic avian influenza A (HPAI) H5N1 viruses in birds and human bring out an urgent need to develop a safe and effective vaccine to control and prevent H5N1 infection. Lactococcus lactis (L. lactis) based vaccine platform is a promising approach for mucosal H5N1 vaccine development. Intranasal immunization is the potential to induce mucosal immune response which is associated with protective immunity. To develop a safe and effective mucosal vaccine against HAPI H5N1, we extended our previous study by evaluating the immunogenicity of L. lactis-psA-HA1 in the absence of adjuvant via intranasal route in the ferret model. Ferrets administered intranasally with L. lactis-pgsA-HA1 could elicit robust humoral and mucosal immune responses, as well as significant HI titers. Importantly, ferrets were completely protected from H5N1 virus challenge. These findings suggest that L. lactis-pgsA-HA1 can be considered an alternative mucosal vaccine during A/H5N1 pandemic.

  8. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin

    PubMed Central

    Castelain, Mickaël; Duviau, Marie-Pierre; Canette, Alexis; Schmitz, Philippe; Loubière, Pascal; Cocaign-Bousquet, Muriel; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-01-01

    Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis. PMID:27010408

  9. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein.

    PubMed

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-04-05

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)-small molecule ubiquitin-like modifier protein (SUMO)-metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 10(10) Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract.

  10. Production of galactooligosaccharides using a hyperthermophilic β-galactosidase in permeabilized whole cells of Lactococcus lactis.

    PubMed

    Yu, L; O'Sullivan, D J

    2014-02-01

    Galactooligosaccharides (GOS) are novel prebiotic food ingredients that can be produced from lactose using β-galactosidase, but the process is more efficient at higher temperatures. To efficiently express the lacS gene from the hyperthermophile Sulfolobus solfataricus, in Lactococcus lactis a synthetic gene (lacSt) with optimized codon usage for Lc. lactis was designed and synthesized. This hyperthermostable β-galactosidase enzyme was successfully overexpressed in Lc. lactis LM0230 using a nisin-controlled gene expression system. Enzyme-containing cells were then killed and permeabilized using 50% ethanol and were used to determine both hydrolysis and transgalactosylation activity. The optimum conditions for GOS synthesis was found to be at pH 6.0 and 85 °C. A maximum production of 197 g/L of GOS tri- and tetrasaccharides was obtained from 40% initial lactose, after 55 h of incubation. The total GOS yield increased with the initial lactose concentration, whereas the highest lactose conversion rate (72%) was achieved from a low lactose solution (5%). Given that a significant proportion of the remaining lactose would be expected to be converted into disaccharide GOS, this should enable the future development of a cost-effective approach for the conversion of whey-based substrates into GOS-enriched food ingredients using this cell-based technology.

  11. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand.

    PubMed

    Liu, Jianming; Kandasamy, Vijayalakshmi; Würtz, Anders; Jensen, Peter Ruhdal; Solem, Christian

    2016-11-01

    Having a sufficient supply of energy, usually in the form of ATP, is essential for all living organisms. In this study, however, we demonstrate that it can be beneficial to reduce ATP availability when the objective is microbial production. By introducing the ATP hydrolyzing F1-ATPase into a Lactococcus lactis strain engineered into producing acetoin, we show that production titer and yield both can be increased. At high F1-ATPase expression level, the acetoin production yield could be increased by 10 %; however, because of the negative effect that the F1-ATPase had on biomass yield and growth, this increase was at the cost of volumetric productivity. By lowering the expression level of the F1-ATPase, both the volumetric productivity and the final yield could be increased by 5 % compared to the reference strain not overexpressing the F1-ATPase, and in batch fermentation, it was possible to convert 176 mM (32 g/L) of glucose into 146.5 mM (12.9 g/L) acetoin with a yield of 83 % of the theoretical maximum. To further demonstrate the potential of the cell factory developed, we complemented it with the lactose plasmid pLP712, which allowed for growth and acetoin production from a dairy waste stream, deproteinized whey. Using this cheap and renewable feedstock, efficient acetoin production with a titer of 157 mM (14 g/L) acetoin was accomplished.

  12. The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors.

    PubMed

    McCabe, Orla; Spinelli, Silvia; Farenc, Carine; Labbé, Myriam; Tremblay, Denise; Blangy, Stéphanie; Oscarson, Stefan; Moineau, Sylvain; Cambillau, Christian

    2015-05-01

    Each phage infects a limited number of bacterial strains through highly specific interactions of the receptor-binding protein (RBP) at the tip of phage tail and the receptor at the bacterial surface. Lactococcus lactis is covered with a thin polysaccharide pellicle (hexasaccharide repeating units), which is used by a subgroup of phages as a receptor. Using L. lactis and phage 1358 as a model, we investigated the interaction between the phage RBP and the pellicle hexasaccharide of the host strain. A core trisaccharide (TriS), derived from the pellicle hexasaccharide repeating unit, was chemically synthesised, and the crystal structure of the RBP/TriS complex was determined. This provided unprecedented structural details of RBP/receptor site-specific binding. The complete hexasaccharide repeating unit was modelled and found to aptly fit the extended binding site. The specificity observed in in vivo phage adhesion assays could be interpreted in view of the reported structure. Therefore, by combining synthetic carbohydrate chemistry, X-ray crystallography and phage plaquing assays, we suggest that phage adsorption results from distinct recognition of the RBP towards the core TriS or the remaining residues of the hexasacchride receptor. This study provides a novel insight into the adsorption process of phages targeting saccharides as their receptors.

  13. NMR resonance assignments of the lantibiotic immunity protein NisI from Lactococcus lactis.

    PubMed

    Hacker, Carolin; Christ, Nina Alexandra; Duchardt-Ferner, Elke; Korn, Sophie; Berninger, Lucija; Kötter, Peter; Entian, Karl-Dieter; Wöhnert, Jens

    2015-10-01

    The lantibiotic nisin is a small antimicrobial peptide which acts against a wide range of Gram-positive bacteria. Nisin-producing Lactococcus lactis strains express four genes for self-protection against their own antimicrobial compound. This immunity system consists of the lipoprotein NisI and the ABC transporter NisFEG. NisI is attached to the outside of the cytoplasmic membrane via a covalently linked diacylglycerol anchor. Both the lipoprotein and the ABC transporter are needed for full immunity but the exact immunity mechanism is still unclear. To gain insights into the highly specific immunity mechanism of nisin producing strains on a structural level we present here the backbone resonance assignment of NisI (25.8 kDa) as well as the virtually complete (1)H,(15)N,(13)C chemical shift assignments for the isolated 12.7 kDa N-terminal and 14.6 kDa C-terminal domains of NisI.

  14. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein

    PubMed Central

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-01-01

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)–small molecule ubiquitin-like modifier protein (SUMO)–metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 1010 Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract. PMID:27045906

  15. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  16. Evolution of a biomass-fermenting bacterium to resist lignin phenolics.

    PubMed

    Cerisy, Tristan; Souterre, Tiffany; Torres-Romero, Ismael; Boutard, Magali; Dubois, Ivan; Patrouix, Julien; Labadie, Karine; Berrabah, Wahiba; Salanoubat, Marcel; Doring, Volker; Tolonen, Andrew

    2017-03-31

    Increasing the resistance of plant-fermenting bacteria to lignocellulosic inhibitors is useful to understand microbial adaptation and to develop candidate strains for consolidated bioprocessing. Here we study and improve inhibitor resistance in Clostridium phytofermentans (also called Lachnoclostridium phytofermentans), a model anaerobe that ferments lignocellulosic biomass. We survey the resistance of this bacterium to a panel of biomass inhibitors, and then evolve strains that grow in increasing concentrations of the lignin phenolic, ferulic acid, by automated, long-term growth selection in an anaerobic GM3 automat. Ultimately, strains resist multiple inhibitors and grow robustly at the solubility limit of ferulate while retaining the ability to ferment cellulose. We analyze genome-wide transcription patterns during ferulate stress and genomic variants that arose along the ferulate growth selection, revealing how cells adapt to inhibitors by changes in gene dosage and regulation, membrane fatty acid structure, and the surface layer. Collectively, this study demonstrates an automated framework for evolution of anaerobes and gives insight into the genetic mechanisms by which bacteria survive exposure to chemical inhibitors.Importance Fermentation of plant biomass is a key part of carbon cycling in diverse ecosystems. Further, industrial biomass fermentation could provide a renewable alternative to fossil fuels. Plants are primarily composed of lignocellulose, a matrix of polysaccharides and polyphenolic lignin. Thus, when microorganisms degrade lignocellulose to access sugars, they also release phenolic and acidic inhibitors. Here, we study how the plant-fermenting bacterium Clostridium phytofermentans resists plant inhibitors using the lignin phenolic, ferulic acid. We examine how the cell responds to abrupt ferulate stress by measuring changes in gene expression. We evolve increasingly resistant strains by automated, long-term cultivation at progressively higher

  17. Sensory and physicochemical evolution of tropical cooked peeled shrimp inoculated by Brochothrix thermosphacta and Lactococcus piscium CNCM I-4031 during storage at 8°C.

    PubMed

    Fall, Papa Abdoulaye; Pilet, Marie France; Leduc, François; Cardinal, Mireille; Duflos, Guillaume; Guérin, Camille; Joffraud, Jean-Jacques; Leroi, Françoise

    2012-01-16

    This study investigated the sensory quality and physicochemical evolution (pH, glucose, l-lactic acid, biogenic amine, free amino-acids and volatile compounds) during storage at 8°C of cooked peeled shrimp inoculated with the specific spoilage bacteria Brochothrix thermosphacta alone or mixed with the protective strain Lactococcus piscium CNCM I-4031. Growth of both bacteria was monitored at regular intervals during storage by microbial counts and the thermal temperature gradient gel electrophoresis (TTGE) technique. Bacterial counts showed that L. piscium and B. thermosphacta inoculated at 7 log CFU/g and 3 log CFU/g were well adapted to shrimp, reaching a maximum level of 9 log CFU/g after 4days and 10days respectively. In mixed culture, the growth of B. thermosphacta was reduced by 3.2±0.1 log CFU/g. The TTGE technique allowed monitoring the colonisation of the strains on the shrimp matrix and confirming the dominance of L. piscium in mixed culture throughout the experiment. Sensory analysis confirmed that B. thermosphacta spoiled the product after 11days, when its cell number attained 8 log CFU/g with the emission of strong butter/caramel off-odours. This sensory profile could be linked to the production of 2,3 butanedione, cyclopentanol, 3-methylbutanol, 3-methylbutanal, 2-methylbutanal, 4-methyl-3-chloro-3-pentanol and ethanol, which were produced in more significant quantities in the B. thermosphacta batch than in the batches in which the protective strain was present. On the contrary, TVBN and TMA were not suitable as quality indicators for B. thermosphacta spoilage activity. In the products where the protective L. piscium strain was present, no adverse effect on sensory quality was noted by the sensory panels. Moreover, biogenic amine assessment did not show any histamine or tyramine production by this strain, underlining its safety profile. Both strains produced lactic acid (1850mg/kg in L. piscium and B. thermosphacta batch on days 3 and 10

  18. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    USGS Publications Warehouse

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  19. Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum.

    PubMed

    Hensen, Daniela; Sperling, Detlef; Trüper, Hans G; Brune, Daniel C; Dahl, Christiane

    2006-11-01

    Two different pathways for thiosulphate oxidation are present in the purple sulphur bacterium Allochromatium vinosum: oxidation to tetrathionate and complete oxidation to sulphate with obligatory formation of sulphur globules as intermediates. The tetrathionate:sulphate ratio is strongly pH-dependent with tetrathionate formation being preferred under acidic conditions. Thiosulphate dehydrogenase, a constitutively expressed monomeric 30 kDa c-type cytochrome with a pH optimum at pH 4.2 catalyses tetrathionate formation. A periplasmic thiosulphate-oxidizing multienzyme complex (Sox) has been described to be responsible for formation of sulphate from thiosulphate in chemotrophic and phototrophic sulphur oxidizers that do not form sulphur deposits. In the sulphur-storing A. vinosum we identified five sox genes in two independent loci (soxBXA and soxYZ). For SoxA a thiosulphate-dependent induction of expression, above a low constitutive level, was observed. Three sox-encoded proteins were purified: the heterodimeric c-type cytochrome SoxXA, the monomeric SoxB and the heterodimeric SoxYZ. Gene inactivation and complementation experiments proved these proteins to be indispensable for thiosulphate oxidation to sulphate. The intermediary formation of sulphur globules in A. vinosum appears to be related to the lack of soxCD genes, the products of which are proposed to oxidize SoxY-bound sulphane sulphur. In their absence the latter is instead transferred to growing sulphur globules.

  20. Metabolic Evolution of a Deep-Branching Hyperthermophilic Chemoautotrophic Bacterium

    PubMed Central

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere. PMID:24516572

  1. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    PubMed

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  2. Bioengineering of a Nisin A‐producing Lactococcus lactis to create isogenic strains producing the natural variants Nisin F, Q and Z

    PubMed Central

    Piper, Clare; Hill, Colin; Cotter, Paul D.; Ross, R. Paul

    2011-01-01

    Summary Nisin is the prototypical example of the lantibiotic family of antimicrobial peptides and has been employed as a food preservative for over half a century. It has also attracted attention due to its potency against a number of multidrug‐resistant clinical pathogens. Nisin A is the originally isolated form of Nisin and a further five natural variants have been described which differ by up to 10 amino acids (of 34 in total in Nisin A). Nisins A, Z, F and Q are produced by Lactococcus lactis, while Nisins U and U2 are produced by Streptococcus sp. In this study we bioengineered the nisA gene of a Nisin A producer to generate genes encoding Nisins Z, F, Q, U and U2. We determined that while active Nisin Z, F and Q can be produced against this genetic background, active forms of Nisin U and U2 are not generated. Minimum inhibitory concentration studies with Nisin A, Z, F and Q variants against a series of different clinically significant pathogens establish differences in specific activities against selected targets. Nisin F was most impressive, being the most active, or one of the most active, against the MRSA strain ST 525, EC 676, EC 725, VISA 22900, VISA 22781, hVISA 35197, Staphylococcus aureus 8325‐4 and L. lactis HP. Nisin Z was most active against ST 299, hVISA 32683 and, together with Nisin F, HP but had contrastingly poor activity against ST 525, EC 676 and 8325‐4. Nisin F, Q and A exhibited similar potency against VISA 22900. This was the only target against which Nisin Q and Nisin A were among the most active variants. PMID:21375711

  3. Phenotypic and Genetic Characterization of Lactococcus garvieae Isolated in Spain from Lactococcosis Outbreaks and Comparison with Isolates of Other Countries and Sources

    PubMed Central

    Vela, A. I.; Vázquez, J.; Gibello, A.; Blanco, M. M.; Moreno, M. A.; Liébana, P.; Albendea, C.; Alcalá, B.; Mendez, A.; Domínguez, L.; Fernández-Garayzábal, J. F.

    2000-01-01

    The phenotypic and genetic analysis results for 84 isolates of Lactococcus garvieae (including 62 strains from trout with lactococcosis from four different countries, 7 strains from cows and water buffalos with subclinical mastitis, 3 from water, and 10 from human clinical samples) are presented. There was great phenotypic heterogeneity (13 different biotypes) based on the acidification of saccharose, tagatose, mannitol, and cyclodextrin and the presence of the enzymes pyroglutamic acid arylamidase and N-acetyl-β-glucosaminidase. L. garvieae also exhibited high genetic diversity by pulsed-field gel electrophoresis (PFGE), with 19 different pulsotypes among the isolates of L. garvieae studied. Only epidemiologically related strains, like the Spanish and Italian fish isolates and the cow and water buffalo isolates, displayed a close genetic relationship by PFGE, while the strains isolated from sporadic clinical cases, like the human isolates, were genetically unrelated. Overall, a general correlation between phenotypic and genetic data was observed. Epidemiological analysis of biotype and PFGE results indicated that the trout lactococcosis outbreaks in Spain and Portugal and those in France and Italy were produced by genetically unrelated clones. In Spain, two different clones were detected; the outbreaks diagnosed from 1995 onward were produced by a clone (biotype 2, pulsotype A1) which, although genetically related, was different from the one that was responsible for the outbreaks studied between 1991 and 1994 (biotype 1, pulsotype B). The Portuguese isolate had a biochemical profile identical to that of the Spanish strain isolated from 1995 onward and is also genetically closely related to this strain (pulsotype A2). There was a close relationship between the two pulsotypes (E and F) found in the Italian isolates. The French isolate (biotype 3, pulsotype D) was not genetically related to any other L. garvieae fish isolate. These results suggest the existence of

  4. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major.

    PubMed

    Dawood, Mahmoud A O; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; El Basuini, Mohammed F; Hossain, Md Sakhawat; Nhu, Truong H; Dossou, Serge; Moss, Amina S

    2016-02-01

    Pagrus major fingerlings (3·29 ± 0·02 g) were fed with basal diet (control) supplemented with Lactobacillus rhamnosus (LR), Lactococcus lactis (LL), and L. rhamnosus + L. lactis (LR + LL) at 10(6) cell g(-1) feed for 56 days. Feeding a mixture of LR and LL significantly increased feed utilization (FER and PER), intestine lactic acid bacteria (LAB) count, plasma total protein, alternative complement pathway (ACP), peroxidase, and mucus secretion compared with the other groups (P < 0.05). Serum lysozyme activity (LZY) significantly increased in LR + LL when compared with the control group. Additionally, fish fed the LR + LL diet showed a higher growth performance (Fn wt, WG, and SGR) and protein digestibility than the groups fed an individual LR or the control diet. Superoxide dismutase (SOD) significantly increased in LR and LR + LL groups when compared with the other groups. Moreover, the fish fed LR or LL had better improvement (P < 0.05) in growth, feed utilization, body protein and lipid contents, digestibility coefficients (dry matter, protein, and lipid), protease activity, total intestine and LAB counts, hematocrit, total plasma protein, biological antioxidant potential, ACP, serum and mucus LZY and bactericidal activities, peroxidase, SOD, and mucus secretion than the control group. Interestingly, fish fed diets with LR + LL showed significantly lower total cholesterol and triglycerides when compared with the other groups (P < 0.05). These data strongly suggest that a mixture of LR and LL probiotics may serve as a healthy immunostimulating feed additive in red sea bream aquaculture.

  5. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals.

    PubMed

    Savijoki, K; Kahala, M; Palva, A

    1997-02-28

    A secretion cassette, based on the expression and secretion signals of a S-layer protein (SlpA) from Lactobacillus brevis, was constructed. E. coli beta-lactamase (Bla) was used as the reporter protein to determine the functionality of the S-layer signals for heterologous expression and secretion in Lactococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus gasseri and Lactobacillus casei using a low-copy-number plasmid derived from pGK12. In all hosts tested, the bla gene was expressed under the slpA signals and all Bla activity was secreted to the culture medium. The Lb. brevis S-layer promoters were very efficiently recognized in L. lactis, Lb. brevis and Lb. plantarum, whereas in Lb. gasseri the slpA promoter region appeared to be recognized at a lower level and in Lb. casei the level of transcripts was below the detection limit. The production of Bla was mainly restricted to the exponential phase of growth. The highest yield of Bla was obtained with L. lactis and Lb. brevis. Without pH control, substantial degradation of Bla occurred during prolonged cultivations with all lactic acid bacteria (LAB) tested. When growing L. lactis and Lb. brevis under pH control, the Bla activity could be stabilized also at the stationary phase. L. lactis produced up to 80 mg/l of Bla which to our knowledge represents the highest amount of a heterologous protein secreted by LAB so far. The short production phase implied a very high rate of secretion with a calculated value of 5 x 10(5) Bla molecules/cell per h. Such a high rate was also observed with Lb. plantarum, whereas in Lb. brevis the competition between the wild type slpA gene and the secretion construct probably lowered the rate of Bla production. The results obtained indicate wide applicability of the Lb. brevis slpA signals for efficient protein production and secretion in LAB.

  6. Epidermal growth factor-expressing Lactococcus lactis enhances growth performance of early-weaned pigs fed diets devoid of blood plasma.

    PubMed

    Bedford, A; Li, Z; Li, M; Ji, S; Liu, W; Huai, Y; de Lange, C F M; Li, J

    2012-12-01

    The effect of supplementing Lactococcus lactis (L. lactis) that was engineered to express epidermal growth factor (EGF-LL) to early-weaned pigs fed diets with typical levels of blood plasma (5%) or diets without blood plasma [blood plasma was substituted with soybean (Glycine max) meal and fish meal, based on amino acid supply] was examined. A total of 108 weaned piglets (19-26 d of age; mean initial BW 6.58 kg; 9 pigs per pen) were fed ad libitum according to a 2-phase feeding program without growth promoters. Three pens were assigned to each of 4 treatments: i) blood plasma-containing diet with blank bacterial growth medium (BP-Con), ii) blood plasma-containing diet with fermented EGF-LL (BP-EGF), iii) blood plasma-free diet with blank bacterial growth medium (BPF-Con), and iv) blood plasma-free diet with fermented EGF-LL (BPF-EGF). The amount of epidermal growth factor (EGF) was determined in the fermentation product and pigs were allotted 60 μg EGF/kg BW/d for 3 wk postweaning. There were no differences in overall growth performance between BP-Con and BP-EGF pigs and no differences in overall growth performance between LoCon and BPF-EGF pigs. Pigs fed BPF-EGF showed increased daily BW gain (410 vs. 260 g/d; P < 0.01) and gain:feed (0.67 vs. 0.58; P < 0.05) compared to BPF-Con pigs in wk 3 postweaning; this was comparable to values for the BP-Con group (400 g/d and 0.64). These results indicate that supplementation with EGF-LL can be effective in enhancing the performance of early-weaned piglets fed a low complexity diet and reduces the need for feeding high-quality animal proteins and antibiotics.

  7. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617

  8. Lactococcus lactis expressing food-grade β-galactosidase alleviates lactose intolerance symptoms in post-weaning Balb/c mice.

    PubMed

    Li, Jingjie; Zhang, Wen; Wang, Chuan; Yu, Qian; Dai, Ruirui; Pei, Xiaofang

    2012-12-01

    The endogenous β-galactosidase expressed in intestinal microbes is demonstrated to help humans in lactose usage, and treatment associated with the promotion of beneficial microorganism in the gut is correlated with lactose tolerance. From this point, a kind of recombinant live β-galactosidase delivery system using food-grade protein expression techniques and selected probiotics as vehicle was promoted by us for the purpose of application in lactose intolerance subjects. Previously, a recombinant Lactococcus lactis MG1363 strain expressing food-grade β-galactosidase, the L. lactis MG1363/FGZW, was successfully constructed and evaluated in vitro. This study was conducted to in vivo evaluate its efficacy on alleviating lactose intolerance symptoms in post-weaning Balb/c mice, which were orally administered with 1 × 10⁶ CFU or 1 × 10⁸ CFU of L. lactis MG1363/FGZW daily for 4 weeks before lactose challenge. In comparison with naïve mice, the mice administered with L. lactis MG1363/FGZW showed significant alleviation of diarrhea symptoms in less total feces weight within 6 h post-challenge and suppressed intestinal motility after lactose challenge, although there was no significant increase of β-galactosidase activity in small intestine. The alleviation also correlated with higher species abundance, more Bifidobacterium colonization, and stronger colonization resistance in mice intestinal microflora. Therefore, this recombinant L. lactis strain effectively alleviated diarrhea symptom induced by lactose uptake in lactose intolerance model mice with the probable mechanism of promotion of lactic acid bacteria to differentiate and predominantly colonize in gut microbial community, thus making it a promising probiotic for lactose intolerance subjects.

  9. Improvement of LysM-mediated surface display of designed ankyrin repeat proteins (DARPins) in recombinant and nonrecombinant strains of Lactococcus lactis and Lactobacillus Species.

    PubMed

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-03-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities.

  10. Trimming of two major type 1 diabetes driving antigens, GAD65 and IA-2, allows for successful expression in Lactococcus lactis.

    PubMed

    Robert, S; Van Huynegem, K; Gysemans, C; Mathieu, C; Rottiers, P; Steidler, L

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease characterised by excessive immune reactions against auto-antigens of pancreatic β-cells. Restoring auto-antigen tolerance remains the superior therapeutic strategy. Oral auto-antigen administration uses the tolerogenic nature of the gut-associated immune system to induce antigen-specific tolerance. However, due to gastric degradation, proper mucosal product delivery often imposes a challenge. Recombinant Lactococcus lactis have proven to be effective and safe carriers for gastrointestinal delivery of therapeutic products: L. lactis secreting diabetes-associated auto-antigens in combination with interleukin (IL)-10 have demonstrated therapeutic efficacy in a well-defined mouse model for T1D. Here, we describe the construction of recombinant L. lactis secreting the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and tyrosine phosphatase-like protein ICA512 (IA-2), two major T1D-related auto-antigens. Attempts to secrete full size human GAD65 and IA-2 protein by L. lactis were unsuccessful. Trimming of GAD65 and IA-2 was investigated to optimise antigen secretion while maintaining sufficient bacterial growth. GAD65370-575 and IA-2635-979 showed to be efficiently secreted by recombinant L. lactis. Antigen secretion was verified by immunoblotting. Plasmid-derived GAD65 and IA-2 expression was combined in single strains with human IL-10 expression, a desired combination to allow tolerance induction. This study reports the generation of recombinant L. lactis secreting two major diabetes-related auto-antigens: human GAD65 and IA-2, by themselves or combined with the anti-inflammatory cytokine human IL-10. Prohibitive sequence obstacles hampering antigen secretion were resolved by trimming the full size proteins.

  11. Functional Genetic Analysis of the GarML Gene Cluster in Lactococcus garvieae DCC43 Gives New Insights into Circular Bacteriocin Biosynthesis

    PubMed Central

    Gabrielsen, Christina; Brede, Dag A.; Salehian, Zhian; Nes, Ingolf F.

    2014-01-01

    Garvicin ML (GarML) is a circular bacteriocin produced by Lactococcus garvieae DCC43. The recently published draft genome of this strain allowed determination of the genetic background for bacteriocin production. Bioinformatic analysis identified a gene cluster consisting of nine open reading frames likely involved in the production of and immunity to GarML. The garA gene encodes the bacteriocin precursor, garX a large transmembrane protein, garBCDE a putative immunity protein (garB) followed by an ATPase and two transmembrane proteins, and garFGH a putative ABC transporter complex. Functional genetic analysis revealed that deletion of garFGH had no effect on sensitivity to or production of GarML. In contrast, deletion of garBCDE or inactivation of garX resulted in high-level sensitivity to GarML and completely abolished production of active bacteriocin. Mass spectrometry of culture supernatants revealed that wild-type cultures contained the mature circular form as well as the linear forms of the bacteriocin, both with and without the three-amino-acid leader sequence, while bacteriocin-negative mutants contained only the linear forms. These results indicate that cleavage of the leader peptide precedes circularization and is likely performed by a functional entity separate from the GarML gene cluster. To our knowledge, this is the first conclusive evidence for these processes being separated in time. Loss of immunity and antimicrobial activity in addition to our inability to detect the circular bacteriocin in the ΔgarBCDE and garX::pCG47 mutants demonstrate that both these units are indispensable for GarML biosynthesis as well as immunity. Furthermore, the results indicate that these genes are implicated in the circularization of the bacteriocin and that their functions are probably interlinked. PMID:24336941

  12. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 (gdpP) induced by high-temperature growth.

    PubMed

    Smith, William M; Pham, Thi Huong; Lei, Lin; Dou, Junchao; Soomro, Aijaz H; Beatson, Scott A; Dykes, Gary A; Turner, Mark S

    2012-11-01

    During construction of several gene deletion mutants in Lactococcus lactis MG1363 which involved a high-temperature (37.5°C) incubation step, additional spontaneous mutations were observed which resulted in stable heat resistance and in some cases salt-hypersensitive phenotypes. Whole-genome sequencing of one strain which was both heat resistant and salt hypersensitive, followed by PCR and sequencing of four other mutants which shared these phenotypes, revealed independent mutations in llmg_1816 in all cases. This gene encodes a membrane-bound stress signaling protein of the GdpP family, members of which exhibit cyclic dimeric AMP (c-di-AMP)-specific phosphodiesterase activity. Mutations were predicted to lead to single amino acid substitutions or protein truncations. An independent llmg_1816 mutant (Δ1816), created using a suicide vector, also displayed heat resistance and salt hypersensitivity phenotypes which could be restored to wild-type levels following plasmid excision. L. lactis Δ1816 also displayed improved growth in response to sublethal concentrations of penicillin G. High-temperature incubation of a wild-type industrial L. lactis strain also resulted in spontaneous mutation of llmg_1816 and heat-resistant and salt-hypersensitive phenotypes, suggesting that this is not a strain-specific phenomenon and that it is independent of a plasmid integration event. Acidification of milk by the llmg_1816-altered strain was inhibited by lower salt concentrations than the parent strain. This study demonstrates that spontaneous mutations can occur during high-temperature growth of L. lactis and that inactivation of llmg_1816 leads to temperature resistance and salt hypersensitivity.

  13. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine

    PubMed Central

    del Rio, Beatriz; Redruello, Begoña; Martin, M. Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P.; Ladero, Victor; Alvarez, Miguel A.

    2015-01-01

    The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1], [2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR) via glucose, but not by other sugars such as lactose or galactose [1], [3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1], [3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17) as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under Accession no. GSE74808. PMID:26981381

  14. A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis.

    PubMed Central

    Sanders, J W; Venema, G; Kok, J

    1997-01-01

    A chloride-inducible promoter previously isolated from the chromosome of Lactococcus lactis (J. W. Sanders, G. Venema, J. Kok, and K. Leenhouts, Mol. Gen. Genet., in press) was exploited for the inducible expression of homologous and heterologous genes. An expression cassette consisting of the positive-regulator gene gadR, the chloride-inducible promoter Pgad, and the translation initiation signals of gadC was amplified by PCR. The cassette was cloned upstream of Escherichia coli lacZ, the holin-lysin cassette (lytPR) of the lactococcal bacteriophage r1t, and the autolysin gene of L. lactis, acmA. Basal activity of Pgad resulted in a low level of expression of all three proteins. Growth in the presence of 0.5 M NaCl of a strain containing the gadC::lacZ fusion resulted in a 1,500-fold increase of beta-galactosidase activity. The background activity levels of LytPR and AcmA had no deleterious effects on cell growth, but induction of lysin expression by addition of 0.5 M NaCl resulted in inhibition of growth. Lysis was monitored by following the release of the cytoplasmic marker enzyme PepX. Released PepX activity was maximal at 1 day after induction of lytPR expression with 0.1 M NaCl. Induction of acmA expression resulted in slower release of PepX from the cells. The presence of the inducing agent NaCl resulted in the stabilization of osmotically fragile cells. PMID:9406408

  15. Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media.

    PubMed Central

    McIntyre, D A; Harlander, S K

    1989-01-01

    The impact of growth conditions on electroporation of Lactococcus lactis subsp. lactis LM0230 (previously designated Streptococcus lactis LM0230) was evaluated. Cells grown in M17 broth supplemented with 0.5% glucose (M17-Glu) and two chemically defined synthetic media, FMC and RPMI 1640, all supplemented with 0.24% DL-threonine or 0.5% glycine, were harvested, washed with double-distilled water, diluted, and porated in the presence of 1 microgram of pGB301 DNA with a Transfector 100 (BTX, Inc., San Diego, Calif.) or a Gene Pulser (Bio-Rad Laboratories, Richmond, Calif.). Transformants were recovered at consistently higher efficiencies for cells grown in FMC or RPMI 1640 (10(3) to 10(4) transformants per micrograms of DNA) than for cells grown in M17-Glu (10(1) to 10(2) transformants per micrograms of DNA). Other parameters influencing electroporation of L. lactis cells grown in chemically defined media were growth phase and final concentration of cells, concentration of plasmid DNA, voltage achieved during poration, and expression conditions. A high degree of variability in transformation efficiencies was evident for replicate samples of cells pulsed with either electroporation machine. A trend toward decreased variability was observed for duplicate samples of cells prepared on the same day. In addition, storage studies done with a large batch of cells prepared on the same day indicated that freezing dry cell pellets at -60 degrees C had no deleterious effect on transformation efficiencies over a 30-day period when a new 0.2-cm cuvette was used for porating each sample. PMID:2513778

  16. A protective and safe intranasal RSV vaccine based on a recombinant prefusion-like form of the F protein bound to bacterium-like particles.

    PubMed

    Rigter, Alan; Widjaja, Ivy; Versantvoort, Hanneke; Coenjaerts, Frank E J; van Roosmalen, Maarten; Leenhouts, Kees; Rottier, Peter J M; Haijema, Bert Jan; de Haan, Cornelis A M

    2013-01-01

    Respiratory syncytial virus (RSV) is an important cause of respiratory tract disease in infants and the elderly. Currently, no licensed vaccine against RSV is available. Here we describe the development of a safe and effective intranasal subunit vaccine that is based on recombinant fusion (F) protein bound to the surface of immunostimulatory bacterium-like particles (BLPs) derived from the food-grade bacterium Lactococcus lactis. Different variants of F were analyzed with respect to their conformation and reactivity with neutralizing antibodies, assuming that F proteins mimicking the metastable prefusion form of RSV F expose a more extensive and relevant epitope repertoire than F proteins corresponding to the postfusion structure. Our results indicate that the recombinant soluble ectodomain of RSV F readily adopts a postfusion conformation, generation of which cannot be prevented by C-terminal addition of a trimerization motif, but whose formation is prevented by mutation of the two furin cleavage sites in F. While the putative postfusion form of F is recognized well by the monoclonal antibody Palivizumab, this is much less so for the more potently neutralizing, prefusion-specific antibodies D25 and AM22. Both addition of the trimerization motif and mutation of the furin cleavage sites increased the reactivity of F with D25 and AM22, with the highest reactivity being observed for F proteins in which both these features were combined. Intranasal vaccination of mice or cotton rats with BLPs loaded with this latter prefusion-like F protein (BLP-F), resulted in the potent induction of F-specific immunoglobulins and in significantly decreased virus titers in the lungs upon RSV challenge. Moreover, and in contrast to animals vaccinated with formalin-inactivated RSV, animals that received BLP-F exhibited high levels of F-specific secretory IgA in the nose and RSV-neutralizing antibodies in sera, but did not show symptoms of enhanced disease after challenge with RSV.

  17. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118.

    PubMed

    Flynn, Sarah; van Sinderen, Douwe; Thornton, Gerardine M; Holo, Helge; Nes, Ingolf F; Collins, J Kevin

    2002-04-01

    ABP-118, a small heat-stable bacteriocin produced by Lactobacillus salivarius subsp. salivarius UCC118, a strain isolated from the ileal-caecal region of the human gastrointestinal tract, was purified to homogeneity. Using reverse genetics, a DNA fragment specifying part of ABP-118 was identified on a 10769 bp chromosomal region. Analysis of this region revealed that ABP-118 was a Class IIb two-peptide bacteriocin composed of Abp118alpha, which exhibited the antimicrobial activity, and Abp118beta, which enhanced the antimicrobial activity. The gene conferring strain UCC118 immunity to the action of ABP-118, abpIM, was identified downstream of the abp118beta gene. Located further downstream of abp118beta, several ORFs were identified whose deduced proteins resembled those of proteins involved in bacteriocin regulation and secretion. Heterologous expression of ABP-118 was achieved in Lactobacillus plantarum, Lactococcus lactis and Bacillus cereus. In addition, the abp118 locus encoded an inducing peptide, AbpIP, which was shown to play a role in the regulation of ABP-118 production. This novel bacteriocin is, to the authors' knowledge, the first to be isolated from a known human probiotic bacterium and to be characterized at the genetic level.

  18. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  19. Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.

    PubMed

    Tsuihiji, Hisayoshi; Yamazaki, Yoichi; Kamikubo, Hironari; Imamoto, Yasushi; Kataoka, Mikio

    2006-03-01

    Halorhodospira halophila is a halophilic photosynthetic bacterium classified as a purple sulfur bacterium. We found that H. halophila generates hydrogen gas during photoautotrophic growth as a byproduct of a nitrogenase reaction. In order to consider the applied possibilities of this photobiological hydrogen generation, we cloned and characterized the structural and regulatory genes encoding the nitrogenase, nifH, nifD and nifA, from H. halophila. This is the first description of the nif genes for a purple sulfur bacterium. The amino-acid sequences of NifH and NifD indicated that these proteins are an Fe protein and a part of a MoFe protein, respectively. The important residues are conserved completely. The sequence upstream from the nifH region and sequence similarities of nifH and nifD with those of the other organisms suggest that the regulatory system might be a NifL-NifA system; however, H. halophila lacks nifL. The amino-acid sequence of H. halophila NifA is closer to that of the NifA of the NifL-NifA system than to that of NifA without NifL. H. halophila NifA does not conserve either the residue that interacts with NifL or the important residues involved in NifL-independent regulation. These results suggest the existence of yet another regulatory system, and that the development of functional systems and their molecular counterparts are not necessarily correlated throughout evolution. All of these Nif proteins of H. halophila possess an excess of acidic residues, which acts as a salt-resistant mechanism.

  20. Influence of dietary peas and organic acids and probiotic supplementation on performance and caecal microbial ecology of broiler chickens.

    PubMed

    Czerwiński, J; Højberg, O; Smulikowska, S; Engberg, R M; Mieczkowska, A

    2010-04-01

    1. The effect of dietary pea and addition of organic acid blend (OA) or probiotic (Pro) on performance and caecal microbial ecology of broiler chickens was studied. 2. A growth trial was conducted with 160 Ross 308 female broilers from d 1 to 35 of age. There were 8 treatment groups based on either control (S) or white pea (P). Both S and P were supplemented with OA (Galliacid - fumaric acid, calcium formate, calcium propionate and potassium sorbate coated with plant triglycerides, Vetagro) and or with Pro (LABYuc-Probio - lactic acid bacteria, Saccharomyces cerevisiae and Yucca schidigeri extract, Mifarmex GmbH). 3. Inclusion of peas in the diet increased feed intake and decreased gain:feed ratio in comparison to the control diet. Neither probiotic nor OA supplementations affected broiler performance. 4. The caecal microbiota was characterised in 37-d-old birds by fluorescent in situ hybridisation (FISH) and terminal-restriction fragment length polymorphism (T-RFLP). Total bacterial counts in caecal contents were slightly higher for birds fed the pea diets, but were not affected by OA or Pro supplements. 5. Neither pea nor Pro affected the Lactobacillus/Enterococcus and Streptococcus/Lactococcus counts in caecal contents, whereas OA supplementation slightly increased the Lactobacillus/Enterococcus counts. The composition of the Lactobacillus/Enterococcus population was altered by inclusion of peas as revealed by the T-RFLP patterns. 6. The DNA fingerprint further suggested that the caecal microbiota was dominated by the lactic acid bacterium Streptococcus alactolyticus. 7. In ileal contents, the concentration of short-chain fatty acids (SCFA) was decreased only by Pro supplementation. In caecal contents, the SCFA concentration was higher for birds fed on the pea diets, and increased significantly with Pro supplementation 8. In conclusion, the results indicate that the use of pea and probiotics in broiler feed may stimulate the caecal commensal microbiota (growth

  1. Cytoplasmic and Periplasmic Proteomic Signatures of Exponentially Growing Cells of the Psychrophilic Bacterium Pseudoalteromonas haloplanktis TAC125 ▿ †

    PubMed Central

    Wilmes, Boris; Kock, Holger; Glagla, Susanne; Albrecht, Dirk; Voigt, Birgit; Markert, Stephanie; Gardebrecht, Antje; Bode, Rüdiger; Danchin, Antoine; Feller, Georges; Hecker, Michael; Schweder, Thomas

    2011-01-01

    The psychrophilic model bacterium Pseudoalteromonas haloplanktis is characterized by remarkably fast growth rates under low-temperature conditions in a range from 5°C to 20°C. In this study the proteome of cellular compartments, the cytoplasm and periplasm, of P. haloplanktis strain TAC125 was analyzed under exponential growth conditions at a permissive temperature of 16°C. By means of two-dimensional protein gel electrophoresis and mass spectrometry, a first inventory of the most abundant cytoplasmic and periplasmic proteins expressed in a peptone-supplemented minimal medium was established. By this approach major enzymes of the amino acid catabolism of this marine bacterium could be functionally deduced. The cytoplasmic proteome showed a predominance of amino acid degradation pathways and tricarboxylic acid (TCA) cycle enzymes but also the protein synthesis machinery. Furthermore, high levels of cold acclimation and oxidative stress proteins could be detected at this moderate growth temperature. The periplasmic proteome was characterized by a significant abundance of transporters, especially of highly expressed putative TonB-dependent receptors. This high capacity for protein synthesis, efficient amino acid utilization, and substrate transport may contribute to the fast growth rates of the copiotrophic bacterium P. haloplanktis in its natural environments. PMID:21183643

  2. Lactococcus lactis spp lactis infection in infants with chronic diarrhea: two cases report and literature review in children.

    PubMed

    Karaaslan, Ayse; Soysal, Ahmet; Kepenekli Kadayifci, Eda; Yakut, Nurhayat; Ocal Demir, Sevliya; Akkoc, Gulsen; Atici, Serkan; Sarmis, Abdurrahman; Ulger Toprak, Nurver; Bakir, Mustafa

    2016-03-31

    Lactococcus lactis is a gram-positive, facultative anaerobic coccus that is occasionally isolated from human mucocutaneous surfaces such as the intestines. It is used in the dairy industry for milk acidification and is mostly nonpathogenic in immunocompetent humans, however a number of cases of infection with L. lactis have been reported in recent years. In this article, we describe two cases of infection due to L. lactis in patients with chronic diarrhea. The first case is a five-month-old boy who was operated on for volvulus on his first day of life and had ileostomy with subsequent diagnosis of chronic diarrhea and bacteremia due to L. Lactis. The second case is a six-month-old girl with the diagnosis of chronic diarrhea that developed after a catheter-related bloodstream infection. Both of the infections due to L. Lactis spp lactis were successfully treated with intravenous vancomycin therapy. Although Lactococcus species is mostly known as nonpathogenic, it should be kept in mind as a potential pathogen, especially in patients with gastrointestinal disorders.

  3. Effect of recombinant Lactococcus lactis producing myelin peptides on neuroimmunological changes in rats with experimental allergic encephalomyelitis.

    PubMed

    Kasarełło, K; Szczepankowska, A; Kwiatkowska-Patzer, B; Lipkowski, A W; Gadamski, R; Sulejczak, D; Łachwa, M; Biały, M; Bardowski, J

    2016-01-01

    Multiple sclerosis (MS) is a human autoimmune neurodegenerative disease with an unknown etiology. Despite various therapies, there is no effective cure for MS. Since the mechanism of the disease is based on autoreactive T-cell responses directed against myelin antigens, oral tolerance is a promising approach for the MS treatment. Here, the experiments were performed to assess the impact of oral administration of recombinant Lactococcus lactis producing encephalogenic fragments of three myelin proteins: myelin basic protein, proteolipid protein, and myelin oligodendrocyte glycoprotein, on neuroimmunological changes in rats with experimental allergic encephalomyelitis (EAE) - an animal model of MS. Lactococcus lactis whole-cell lysates were administered intragastrically at two doses (103 and 106 colony forming units) in a twenty-fold feeding regimen to Lewis rats with EAE. Spinal cord slices were subjected to histopathological analysis and morphometric evaluation, and serum levels of cytokines (IL-1b, IL-10, TNF-α and IFN-γ) were measured. Results showed that administration of the L. lactis preparations at the tested doses to rats with EAE, diminished the histopathological changes observed in EAE rats and reduced the levels of serum IL-1b, IL-10 and TNF-α, previously increased by evoking EAE. This suggests that oral delivery of L. lactis producing myelin peptide fragments could be an alternative strategy to induce oral tolerance for the treatment of MS.

  4. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods.

    PubMed

    Sheng, Yao; Yang, Xuan; Lian, Yuanyuan; Zhang, Boyang; He, Xiaoyun; Xu, Wentao; Huang, Kunlun

    2016-09-01

    Heavy metal contamination poses a major threat to the environment and human health for their potential toxicity and non-biodegradable properties. At present, some probiotics bacteria are reported to have great potential to eliminate heavy metals from food and water. In this study, resistance properties of a newly isolated Lactococcus lactis subsp. lactis for cadmium were studied by antioxidant assays and proteomics analysis. Antioxidant capacity of this strain was significantly activated under cadmium stress indicated by Fenton reaction, DPPH assay, SOD assay and GSH assay. Intracellular antioxidant enzyme systems, such as superoxide dismutase, glutathione reductase and catalase were suggested to play vital roles in the activated antioxidant capacity. The up-regulated cadA was associated with the activated P-type ATPases that plays an important role in cadmium resistance. Proteomics analysis identified 12 over-expressed proteins under 50mg/L cadmium stress and these proteins are abundant in oxidative stress response and energy metabolism regulation, which were considered as consequences as cadmium resistance of the strain. Thus, the probiotics Lactococcus lactis subsp. lactis may resist cadmium stress through antioxidant approach and enhanced energy metabolism. The food grade lactis strain may be applied in metal decontamination in environment and food/feed.

  5. Structure of the O-specific polysaccharide of the bacterium Proteus vulgaris O23.

    PubMed

    Perepelov, A V; Shashkov, A S; Babichka, D; Senchenkova, S N; Bartodziejska, B; Rozalski, A; Knirel, Y A

    2000-09-01

    An acidic O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Proteus vulgaris O23 (strain PrK 44/57) and found to contain 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2-deoxy-D-glucose, and D-galacturonic acid. Based on 1H- and 13C-NMR spectroscopic studies, including two-dimensional correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), nuclear Overhauser effect spectroscopy (NOESY), and 1H,13C heteronuclear multiple-quantum coherence (HMQC) experiments, the following structure of the branched tetrasaccharide repeating unit of the polysaccharide was established: [figure], where the degree of O-acetylation of the terminal GalA residue at position 4 is about 80%. A structural similarity of the O-specific polysaccharides of P. vulgaris O23 and P. mirabilis O23 is discussed.

  6. Characterization of the Structural Gene Encoding Nisin F, a New Lantibiotic Produced by a Lactococcus lactis subsp. lactis Isolate from Freshwater Catfish (Clarias gariepinus)▿

    PubMed Central

    de Kwaadsteniet, M.; ten Doeschate, K.; Dicks, L. M. T.

    2008-01-01

    Lactococcus lactis F10, isolated from freshwater catfish, produces a bacteriocin (BacF) active against Staphylococcus aureus, Staphylococcus carnosus, Lactobacillus curvatus, Lactobacillus plantarum, and Lactobacillus reuteri. The operon encoding BacF is located on a plasmid. Sequencing of the structural gene revealed no homology to other nisin genes. Nisin F is described. PMID:18039827

  7. Draft genome sequence of Lactococcus garvieae str. PAQ102015-99, an outbreak strain isolated from a commercial trout farm in the Northwestern United States.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We announce the draft genome assembly of Lactococcus garvieae str. PAQ102015-99, a recently isolated strain from an outbreak of lactococcosis at a commercial trout farm in the Northwestern US. The draft genome comprises 14 contigs totaling 2,068,357 bp with an N50 of 496,618 bp and average G+C conte...

  8. Genome Sequence of Lactococcus garvieae IPLA 31405, a Bacteriocin-Producing, Tetracycline-Resistant Strain Isolated from a Raw-Milk Cheese

    PubMed Central

    Flórez, Ana Belén; Reimundo, Pilar; Delgado, Susana; Fernández, Elena; Alegría, Ángel; Guijarro, José A.

    2012-01-01

    This work describes the draft genome sequence of Lactococcus garvieae IPLA 31405, isolated from a traditional Spanish cheese. The genome contains a lactose-galactose operon, a bacteriocin locus, two integrated phages, a transposon harboring an active tet(M) gene, and two theta-type plasmid replicons. Genes encoding virulence factors were not recorded. PMID:22933752

  9. Genome Sequence Analysis of the Biogenic Amine-Producing Strain Lactococcus lactis subsp. cremoris CECT 8666 (Formerly GE2-14).

    PubMed

    Ladero, Victor; Del Rio, Beatriz; Linares, Daniel M; Fernandez, Maria; Mayo, Baltasar; Martin, M Cruz; Alvarez, Miguel A

    2014-10-23

    We here report a 2,801,031-bp annotated draft assembly for the Lactococcus lactis subsp. cremoris GE2-14 genome. This dairy strain produces the biogenic amine putrescine. This sequence may help identify the mechanisms regulating putrescine biosynthesis and throw light on ways to reduce its presence in fermented foods.

  10. Genome Sequence Analysis of the Biogenic Amine-Producing Strain Lactococcus lactis subsp. cremoris CECT 8666 (Formerly GE2-14)

    PubMed Central

    del Rio, Beatriz; Linares, Daniel M.; Fernandez, Maria; Mayo, Baltasar; Martin, M. Cruz; Alvarez, Miguel A.

    2014-01-01

    We here report a 2,801,031-bp annotated draft assembly for the Lactococcus lactis subsp. cremoris GE2-14 genome. This dairy strain produces the biogenic amine putrescine. This sequence may help identify the mechanisms regulating putrescine biosynthesis and throw light on ways to reduce its presence in fermented foods. PMID:25342694

  11. Pangenome Evolution in the Marine Bacterium Alteromonas

    PubMed Central

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7–83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9–5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  12. Overproduction of Hydrogen From an Anaerobic Bacterium

    DTIC Science & Technology

    2008-12-01

    ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4 December 2008, The original document contains color images...0.02 mg/L folic acid, 0.1 mg/L pyridoxine-HCl, 0.05 mg/L thiamine-HCl, 0.05 mg/L riboflavin , 0.05 mg/L nicotinic acid, 0.05 mg/L calcium

  13. Biochemical characterization of cellulose-binding proteins (CBPA and CBPB) from the rumen cellulolytic bacterium Eubacterium cellulosolvens 5.

    PubMed

    Yoshimatsu, Miho; Toyoda, Atsushi; Onizawa, Naoki; Nakamura, Yutaka; Minato, Hajime

    2007-10-01

    The cellulose-binding proteins, CBPA and CBPB, of rumen cellulolytic bacterium Eubacterium cellulosolvens 5 were biochemically characterized, and their properties were compared. Recombinant CBPA and CBPB were a typical 1,4-beta-endoglucanase. Both proteins bound to insoluble polysaccharides such as Avicel cellulose, acid swollen cellulose, lichenan, chitin, and oat spelt xylan. On the other hand, only recombinant CBPB bound to agarose and starch.

  14. Phenotypic Variation in the Plant Pathogenic Bacterium Acidovorax citrulli

    PubMed Central

    Shrestha, Ram Kumar; Rosenberg, Tally; Makarovsky, Daria; Eckshtain-Levi, Noam; Zelinger, Einat; Kopelowitz, June; Sikorski, Johannes; Burdman, Saul

    2013-01-01

    Acidovorax citrulli causes bacterial fruit blotch (BFB) of cucurbits, a disease that threatens the cucurbit industry worldwide. Despite the economic importance of BFB, little is known about pathogenicity and fitness strategies of the bacterium. We have observed the phenomenon of phenotypic variation in A. citrulli. Here we report the characterization of phenotypic variants (PVs) of two strains, M6 and 7a1, isolated from melon and watermelon, respectively. Phenotypic variation was observed following growth in rich medium, as well as upon isolation of bacteria from inoculated plants or exposure to several stresses, including heat, salt and acidic conditions. When grown on nutrient agar, all PV colonies possessed a translucent appearance, in contrast to parental strain colonies that were opaque. After 72 h, PV colonies were bigger than parental colonies, and had a fuzzy appearance relative to parental strain colonies that are relatively smooth. A. citrulli colonies are generally surrounded by haloes detectable by the naked eye. These haloes are formed by type IV pilus (T4P)-mediated twitching motility that occurs at the edge of the colony. No twitching haloes could be detected around colonies of both M6 and 7a1 PVs, and microscopy observations confirmed that indeed the PVs did not perform twitching motility. In agreement with these results, transmission electron microscopy revealed that M6 and 7a1 PVs do not produce T4P under tested conditions. PVs also differed from their parental strain in swimming motility and biofilm formation, and interestingly, all assessed variants were less virulent than their corresponding parental strains in seed transmission assays. Slight alterations could be detected in some DNA fingerprinting profiles of 7a1 variants relative to the parental strain, while no differences at all could be seen among M6 variants and parental strain, suggesting that, at least in the latter, phenotypic variation is mediated by slight genetic and/or epigenetic

  15. Mechanism of Attenuation of Uranyl Toxicity by Glutathione in Lactococcus lactis

    PubMed Central

    Obeid, Muhammad H.; Oertel, Jana

    2016-01-01

    ABSTRACT Both prokaryotic and eukaryotic organisms possess mechanisms for the detoxification of heavy metals, and these mechanisms are found among distantly related species. We investigated the role of intracellular glutathione (GSH), which, in a large number of taxa, plays a role in protection against the toxicity of common heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism. Its physiological condition allowed study of putative GSH-dependent uranyl detoxification mechanisms without interference from additional reactive oxygen species. By microcalorimetric measurements of metabolic heat during cultivation, it was shown that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10 to 150 μM. In this concentration range, no effect was observed with copper, which was used as a reference for redox metal toxicity. At higher copper concentrations, GSH aggravated metal toxicity. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH rather than to the reducing thiol group involved in copper interactions. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH. The opposite effects on uranyl and on copper toxicity can be related to the difference in coordination chemistry of the respective metal-GSH complexes, which cause distinct growth phase-specific effects on enzyme-metal interactions. IMPORTANCE Understanding microbial metal resistance is of particular importance for bioremediation, where microorganisms are employed for the removal of heavy metals from the environment. This strategy is increasingly being considered for uranium. However, little is known about the molecular mechanisms of uranyl detoxification. Existing studies of different taxa show little systematics but hint at a role of glutathione (GSH

  16. Evidence for distinct L-methionine catabolic pathways in the yeast Geotrichum candidum and the bacterium Brevibacterium linens.

    PubMed

    Arfi, Kenza; Landaud, Sophie; Bonnarme, Pascal

    2006-03-01

    Tracing experiments were carried out to identify volatile and nonvolatile L-methionine degradation intermediates and end products in the yeast Geotrichum candidum and in the bacterium Brevibacterium linens, both of which are present in the surface flora of certain soft cheeses and contribute to the ripening reactions. Since the acid-sensitive bacterium B. linens is known to produce larger amounts and a greater variety of volatile sulfur compounds (VSCs) than the yeast G. candidum produces, we examined whether the L-methionine degradation routes of these microorganisms differ. In both microorganisms, methanethiol and alpha-ketobutyrate are generated; the former compound is the precursor of other VSCs, and the latter is subsequently degraded to 2,3-pentanedione, which has not been described previously as an end product of L-methionine catabolism. However, the L-methionine degradation pathways differ in the first steps of L-methionine degradation. L-Methionine degradation is initiated by a one-step degradation process in the bacterium B. linens, whereas a two-step degradation pathway with 4-methylthio-2-oxobutyric acid (MOBA) and 4-methylthio-2-hydroxybutyric acid (MHBA) as intermediates is used in the yeast G. candidum. Since G. candidum develops earlier than B. linens during the ripening process, MOBA and MHBA generated by G.candidum could also be used as precursors for VSC production by B. linens.

  17. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    SciTech Connect

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.; McInerney, M.J.; Oren, A.; Woese, C.R.

    1994-07-01

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth was inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.

  18. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  19. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius

    DOE PAGES

    Aston, John E.; Apel, William A.; Lee, Brady D.; ...

    2015-11-05

    Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence ofmore » 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.« less

  20. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius

    SciTech Connect

    Aston, John E.; Apel, William A.; Lee, Brady D.; Thompson, David N.; Lacey, Jeffrey A.; Newby, Deborah T.; Reed, David. W.; Thompson, Vicki S.

    2015-11-05

    Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence of 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.

  1. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA.

    PubMed

    Simbahan, Jessica; Drijber, Rhae; Blum, Paul

    2004-09-01

    A thermo-acidophilic Gram-positive bacterium, strain CsHg2T, which grows aerobically at 35-65 degrees C (optimum 55 degrees C) and at pH 2.0-6.0 (optimum 4.0), was isolated from a geothermal pool located in Coso Hot Springs in the Mojave Desert, California, USA. Phylogenetic analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to the type strains of Alicyclobacillus acidocaldarius (97.8 % identity) and Alicyclobacillus sendaiensis (96.9 %), three Japanese strains denoted as UZ-1, KHA-31 and MIH 332 (96.1-96.5 %) and Alicyclobacillus genomic species FR-6 (96.3 %). Phenotypic characteristics including temperature and pH optima, G+C composition, acid production from a variety of carbon sources and sensitivity to different metal salts distinguished CsHg2T from A. acidocaldarius, A. sendaiensis and FR-6. The cell lipid membrane was composed mainly of omega-cyclohexyl fatty acid, consistent with membranes from other Alicyclobacillus species. Very low DNA-DNA hybridization values between CsHg2T and the type strains of Alicyclobacillus indicate that CsHg2T represents a distinct species. On the basis of these results, the name Alicyclobacillus vulcanalis sp. nov. is proposed for this organism. The type strain is CsHg2T (ATCC BAA-915T = DSM 16176T).

  2. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets

    PubMed Central

    2014-01-01

    Background Epidermal growth factor (EGF) is an important growth factor in regulation of cell proliferation, differentiation, survival and apoptosis. Studies showed that food-grade Lactococcus lactis (L. lactis) and NICE expression system have superior performance in exogenous protein expression. This study aimed to construct and express porcine EGF (pEGF), and use L. lactis as vehicle for producing and delivering pEGF. Furthermore, investigating biological activity of pEGF and exploring applications feasibility of combination effects of L. lactis and pEGF on early weaned piglets’ production. Results A recombinant Lactococcus lactis which produced and secreted pEGF at 1000 ng/ml in culture supernatant was generated. Secreted pEGF was a fully biologically active protein, as demonstrated by its capacity to stimulate L929 mouse fibroblast cell line proliferation in vitro. For in vivo study, forty piglets were randomly allocated to control, antibiotic control, empty vector-expressing L. lactis (LL-EV) and pEGF-secreting L. lactis (LL-pEGF). After 14 d of rearing, final body weight and average daily gain in LL-pEGF were greater (P < 0.05, 8.95 vs. 8.37 kg, 206.1 vs. 157.7 g/day, respectively) than those in control, but no significant differences between LL-pEGF, LL-EV and antibiotic control. Overall period average daily feed intake was higher in LL-pEGF, LL-EV and antibiotic control than in control (P < 0.05, 252.9, 255.6, 250.0, 207.3 g/day, respectively). No significant difference was observed on ADFI/ADG. LL-pEGF increased villous height in the duodenum, jejunum and ileum than in control and LL-EV (P < 0.05). Sucrase in the 3 intestinal segments, aminopeptidase A in the duodenum and Jejunum, aminopeptidase N and dipeptidase IV in the duodenum in LL-pEGF were higher than those in control (P < 0.05). Furthermore, Escherichia coli and Enterococcus counts decreased in the ileum and Lactobacillus increased in the ileum and cecum digesta in LL-pEGF compare with the

  3. Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae.

    PubMed

    Araújo, Carlos; Muñoz-Atienza, Estefanía; Pérez-Sánchez, Tania; Poeta, Patrícia; Igrejas, Gilberto; Hernández, Pablo E; Herranz, Carmen; Ruiz-Zarzuela, Imanol; Cintas, Luis M

    2015-12-01

    Probiotics represent an alternative to chemotherapy and vaccination to control fish diseases, including lactococcosis caused by Lactococcus garvieae. The aims of this study were (i) to determine the in vitro probiotic properties of three bacteriocinogenic Lactococcus lactis subsp. cremoris of aquatic origin, (ii) to evaluate in vivo the ability of L. cremoris WA2-67 to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against infection by L. garvieae, and (iii) to demonstrate the role of nisin Z (NisZ) production as an anti-infective mechanism. The three L. cremoris strains survived in freshwater at 18 °C for 7 days, withstood exposure to pH 3.0 and 10 % (v/v) rainbow trout bile, and showed different cell surface hydrophobicity (37.93-58.52 %). The wild-type NisZ-producer L. cremoris WA2-67 and its non-bacteriocinogenic mutant L. cremoris WA2-67 ∆nisZ were administered orally (10(6) CFU/g) to rainbow trout for 21 days and, subsequently, fish were challenged with L. garvieae CLG4 by the cohabitation method. The fish fed with the bacteriocinogenic strain L. cremoris WA2-67 reduced significantly (p < 0.01) the mortality (20 %) compared to the fish treated with its non-bacteriocinogenic knockout isogenic mutant (50 %) and the control (72.5 %). We demonstrated the effectiveness of L. cremoris WA2-67 to protect rainbow trout against infection with the invasive pathogen L. garvieae and the relevance of NisZ production as an anti-infective mechanism. This is the first report demonstrating the effective in vivo role of LAB bacteriocin (NisZ) production as a mechanism to protect fish against bacterial infection. Our results suggest that the wild-type NisZ-producer strain L. cremoris WA2-67 could be used in fish farming to prevent lactococcosis in rainbow trout.

  4. Natural populations of lactic acid bacteria isolated from vegetable residues and silage fermentation.

    PubMed

    Yang, J; Cao, Y; Cai, Y; Terada, F

    2010-07-01

    Natural populations of lactic acid bacteria (LAB) and silage fermentation of vegetable residues were studied. Fifty-two strains of LAB isolated from cabbage, Chinese cabbage, and lettuce residues were identified and characterized. The LAB strains were gram-positive and catalase-negative bacteria, which were divided into 6 groups (A to F) according to morphological and biochemical characteristics. The strains in group A were rods that did not produce gas from glucose and formed the d and l isomers of lactate. Groups B and C were homofermentative cocci that formed l-lactic acid. Groups D, E, and F were heterofermentative cocci that formed d-lactic acid. Based on 16S rDNA gene sequence analysis, group A to F strains were identified as Lactobacillus plantarum, Lactococcus piscium, Lactococcus lactis, Leuconostoc citreum, Weissella soli and Leuconostoc gelidum, respectively. The prevalent LAB, predominantly homofermentative lactobacilli, consisted of Lactobacillus plantarum (34.6%), Weissella soli (19.2%), Leuconostoc gelidum (15.4%), Leuconostoc citreum (13.5%), Lactococcus lactis (9.6%), and Lactococcus piscium (7.7%). Lactobacillus plantarum was the dominant member of the LAB population in 3 types of vegetable residues. These vegetable residues contained a high level of crude protein (20.2 to 28.4% of dry matter). These silages prepared by using a small-scale fermentation system were well preserved, with low pH and a relatively high content of lactate. This study suggests that the vegetable residues contain abundant LAB species and nutrients, and that they could be well preserved by making silage, which is a potentially good vegetable protein source for livestock diets.

  5. Lactococcus lactis SpOx Spontaneous Mutants: a Family of Oxidative-Stress-Resistant Dairy Strains§

    PubMed Central

    Rochat, Tatiana; Gratadoux, Jean-Jacques; Corthier, Gérard; Coqueran, Bérard; Nader-Macias, Maria-Elena; Gruss, Alexandra; Langella, Philippe

    2005-01-01

    Numerous industrial bacteria generate hydrogen peroxide (H2O2), which may inhibit the growth of other bacteria in mixed ecosystems. We isolated spontaneous oxidative-stress-resistant (SpOx) Lactococcus lactis mutants by using a natural selection method with milk-adapted strains on dairy culture medium containing H2O2. Three SpOx mutants displayed greater H2O2 resistance. One of them, SpOx3, demonstrated better behavior in different oxidative-stress situations: (i) higher long-term survival upon aeration in LM17 and milk and (ii) the ability to grow with H2O2-producing Lactobacillus delbrueckii subsp. delbrueckii strains. Furthermore, the transit kinetics of the SpOx3 mutant in the digestive tract of a human flora-associated mouse model was not affected. PMID:15870374

  6. The MG1363 and IL1403 Laboratory Strains of Lactococcus lactis and Several Dairy Strains Are Diploid▿ †

    PubMed Central

    Michelsen, Ole; Hansen, Flemming G.; Albrechtsen, Bjarne; Jensen, Peter Ruhdal

    2010-01-01

    Bacteria are normally haploid, maintaining one copy of their genome in one circular chromosome. We have examined the cell cycle of laboratory strains of Lactococcus lactis, and, to our surprise, we found that some of these strains were born with two complete nonreplicating chromosomes. We determined the cellular content of DNA by flow cytometry and by radioactive labeling of the DNA. These strains thus fulfill the criterion of being diploid. Several dairy strains were also found to be diploid while a nondairy strain and several other dairy strains were haploid in slow-growing culture. The diploid and haploid strains differed in their sensitivity toward UV light, in their cell size, and in their D period, the period between termination of DNA replication and cell division. PMID:20023021

  7. Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads.

    PubMed

    Yeung, Timothy W; Arroyo-Maya, Izlia J; McClements, David J; Sela, David A

    2016-04-01

    Probiotics are beneficial microbes often added to food products to enhance the health and wellness of consumers. A major limitation to producing efficacious functional foods containing probiotic cells is their tendency to lose viability during storage and gastrointestinal transit. In this study, the impact of encapsulating probiotics within food-grade hydrogel particles to mitigate sensitivity to environmental stresses was examined. Confocal fluorescence microscopy confirmed that Lactococcus lactis were trapped within calcium alginate beads formed by dripping a probiotic-alginate mixture into a calcium solution. Encapsulation improved the viability of the probiotics during aerobic storage: after seven days, less than a two-log reduction was observed in encapsulated cells stored at room temperature, demonstrating that a high concentration of cells survived relative to non-encapsulated bacteria. These hydrogel beads may have applications for improving the stability and efficacy of probiotics in functional foods.

  8. Construction and characterization of a Lactococcus lactis strain deficient in intracellular ClpP and extracellular HtrA proteases.

    PubMed

    Cortes-Perez, N G; Poquet, I; Oliveira, M; Gratadoux, J J; Madsen, S M; Miyoshi, A; Corthier, G; Azevedo, V; Langella, P; Bermúdez-Humarán, L G

    2006-09-01

    A Lactococcus lactis strain deficient in both its major proteases, intracellular (ClpP) and extracellular (HtrA), was constructed and characterized. This strain, hereafter called clpP-htrA, could be obtained only by conjugation between a clpP donor strain and an htrA recipient strain in the NZ9000 context, allowing heterologous gene expression under the control of the NICE (nisin-controlled expression) system. The clpP-htrA double mutant showed both higher stress tolerance (e.g. high temperature and ethanol resistance) and higher viability than single clpP or htrA mutant strains. In addition, the secretion rate of two heterologous proteins (staphylococcal nuclease Nuc and Nuc-E7) was also higher in clpP-htrA than in the wild-type strain. This strain should be a useful host for high-level production and quality of stable heterologous proteins.

  9. Changes in biosynthesis of exopolysaccharide in Lactococcus lactis subspecies cremoris treated by moderate pulsed electric field treatment.

    PubMed

    Ohba, Tetsuro; Uemura, Kunihiko; Nabetani, Hiroshi

    2017-01-17

    Metabolome analysis and physicochemical analyses were executed with cell extracts of a Lactococcus lactis subspecies cremoris strain treated by moderate pulsed electric field (PEF) to elucidate the mechanism of enhanced production of exopolysaccharide (EPS) by the treatment. Metabolome analysis by capillary electrophoresis time of flight mass spectrometry annotated 224 metabolites from the cytoplasmic extract of the strain, which, however, showed no significant changes in metabolites related to the EPS production. Electron microscopic observation and chemical analysis of undecaprenoids as carrier of EPS biosynthetic intermediates suggested that PEF treatment dissociated immature EPSs from the intermediates due to the focal electro-condensation of hydrogen ions at the cell surface. Thus, liberated undecaprenyl phosphates were recycled efficiently, which resulted in mass increase of EPS with smaller molecular weight. The study suggested the feasibility of moderate PEF treatment as a food processing technique and revealed the mechanism of enhanced production of EPS by the treatment.

  10. Engineering BmpA as a carrier for surface display of IgG-binding domain on Lactococcus lactis.

    PubMed

    Zadravec, Petra; Mavrič, Anja; Bogovič Matijasic, Bojana; Štrukelj, Borut; Berlec, Aleš

    2014-01-01

    Basic membrane protein A (BmpA) is a potential carrier protein for surface display of the IgG-binding domain on Lactococcus lactis. We have shown that it can increase the adhesion of bacteria to the intestinal cell model by 1.3-fold and have improved BmpA-based surface display by engineering the BmpA molecule. The bulk of the BmpA molecule was shown to be important in surface display; however, limited shortening (variant Bmp1) resulted in a large increase in the surface display ability. The closeness of the N- and the C-terminals in the Bmp1 model and the inefficiency of the spacer suggest that the distance of the passenger from the membrane is not of prime importance in surface display.

  11. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  12. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  13. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    PubMed Central

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  14. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.

    PubMed

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Panico, Antonio; Lens, Piet N L; Esposito, Giovanni; Fontana, Angelo

    2015-06-04

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  15. Acid hydrolysis of sugarcane bagasse for lactic acid production.

    PubMed

    Laopaiboon, Pattana; Thani, Arthit; Leelavatcharamas, Vichean; Laopaiboon, Lakkana

    2010-02-01

    In order to use sugarcane bagasse as a substrate for lactic acid production, optimum conditions for acid hydrolysis of the bagasse were investigated. After lignin extraction, the conditions were varied in terms of hydrochloric (HCl) or sulfuric (H(2)SO(4)) concentration (0.5-5%, v/v), reaction time (1-5h) and incubation temperature (90-120 degrees C). The maximum catalytic efficiency (E) was 10.85 under the conditions of 0.5% of HCl at 100 degrees C for 5h, which the main components (in gl(-1)) in the hydrolysate were glucose, 1.50; xylose, 22.59; arabinose, 1.29; acetic acid, 0.15 and furfural, 1.19. To increase yield of lactic acid production from the hydrolysate by Lactococcus lactis IO-1, the hydrolysate was detoxified through amberlite and supplemented with 7 g l(-1) of xylose and 7 g l(-1) of yeast extract. The main products (in gl(-1)) of the fermentation were lactic acid, 10.85; acetic acid, 7.87; formic acid, 6.04 and ethanol, 5.24.

  16. Crassaminicella profunda gen. nov., sp. nov., an anaerobic marine bacterium isolated from deep-sea sediments.

    PubMed

    Lakhal, Raja; Pradel, Nathalie; Postec, Anne; Ollivier, Bernard; Cayol, Jean-Luc; Godfroy, Anne; Fardeau, Marie-Laure; Galés, Grégoire

    2015-09-01

    A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766H(T), was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002  m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H(T) grew at temperatures of 25-45 °C (optimum 30 °C), pH 6.7-8.1 (optimum 7.5) and in a salinity of 5-60 g l(-1) NaCl (optimum 30 g l(-1)). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14  : 0, C16 : 1ω7, C16 : 1ω7 DMA and C16 : 0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G+C content of the genomic DNA was 33.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H(T) was affiliated to cluster XI of the order Clostridiales, phylum Firmicutes. The closest phylogenetic relative of Ra1766H(T) was Geosporobacter subterraneus (94.2% 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H(T) ( = DSM 27501(T) = JCM 19377(T)) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella profunda.

  17. Pontibacter diazotrophicus sp. nov., a Novel Nitrogen-Fixing Bacterium of the Family Cytophagaceae

    PubMed Central

    Xu, Linghua; Zeng, Xian-Chun; Nie, Yao; Luo, Xuesong; Zhou, Enmin; Zhou, Lingli; Pan, Yunfan; Li, Wenjun

    2014-01-01

    Few diazotrophs have been found to belong to the family Cytophagaceae so far. In the present study, a Gram-negative, rod-shaped bacterium that forms red colonies, was isolated from sands of the Takalamakan desert. It was designated H4XT. Phylogenetic and biochemical analysis indicated that the isolate is a new species of the genus Pontibacter. The 16S rRNA gene of H4XT displays 94.2–96.8% sequence similarities to those of other strains in Pontibacter. The major respiratory quinone is menaquinone-7 (MK-7). The DNA G+C content is 46.6 mol%. The major cellular fatty acids are iso-C15∶0, C16∶1ω5c, summed feature 3 (containing C16∶1ω6c and/or C16∶1ω7c) and summed feature 4 (comprising anteiso-C17∶1B and/or iso-C17∶1I). The major polar lipids are phosphatidylethanolamine (PE), one aminophospholipid (APL) and some unknown phospholipids (PLs). It is interesting to see that this bacterium can grow very well in a nitrogen-free medium. PCR amplification suggested that the bacterium possesses at least one type of nitrogenase gene. Acetylene reduction assay showed that H4XT actually possesses nitrogen-fixing activity. Therefore, it can be concluded that H4XT is a new diazotroph. We thus referred it to as Pontibacter diazotrophicus sp. nov. The type strain is H4XT ( = CCTCC AB 2013049T = NRRL B-59974T). PMID:24647674

  18. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    SciTech Connect

    Imam, S.H.; Greene, R.V.; Griffin, H.L. )

    1990-05-01

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. {sup 35}S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA (ethylene hlycol-bis({beta}-aminoethyl ether)-N,N,N{prime}N{prime}-tetraacetic acid) had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction.

  19. Chitin Utilization by the Insect-Transmitted Bacterium Xylella fastidiosa▿ †

    PubMed Central

    Killiny, Nabil; Prado, Simone S.; Almeida, Rodrigo P. P.

    2010-01-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa. PMID:20656858

  20. In vitro and in vivo characterization of DNA delivery using recombinant Lactococcus lactis expressing a mutated form of L. monocytogenes Internalin A

    PubMed Central

    2012-01-01

    Background The use of food-grade Lactic Acid Bacteria (LAB) as DNA delivery vehicles represents an attractive strategy to deliver DNA vaccines at the mucosal surfaces as they are generally regarded as safe (GRAS). We previously showed that either native Lactococcus lactis (LL) or recombinant invasive LL expressing Fibronectin Binding Protein A of Staphylococcus aureus (LL-FnBPA+) or Internalin A of Listeria monocytogenes (LL-InlA+), were able to deliver and trigger DNA expression by epithelial cells, either in vitro or in vivo. InlA does not bind to its receptor, the murine E-cadherin, thus limiting the use of LL-InlA+ in in vivo murine models. Moreover, FnBPA binds to its receptors, integrins, via fibronectin introducing another limiting factor. In order to avoid the limitations of LL-InlA+ and LL-FnBPA+, a new L. lactis strain was engineered to produce a previously described mutated form of InlA (LL-mInlA+) allowing the binding of mInlA on murine E-cadherin. Results After showing the expression of mInLA at the surface of LL-mInlA+ strain, in vitro gentamycin survival assay in Caco-2 cells showed that LL-mInlA+ is 1000 times more invasive than LL. LL-mInlA+ invasivity was also validated by fluorescence microscopy. LL and LL-mInlA+ were transformed with pValacBLG, a plasmid containing the cDNA of bovine β-Lactoglobulin (BLG), resulting in strains LL-BLG and LL-mInlA+BLG. The plasmid transfer in vitro using LL-mInlA+BLG was increased 10 times compared to LL-BLG. Moreover, the number of mice producing BLG in isolated enterocytes after oral administration of LL-mInlA+BLG in vivo was slightly higher than after oral administration of LL-BLG. Conclusions We confirmed in this study that the production of mInlA at the surface of L. lactis is a promising strategy for plasmid transfer in vitro and in vivo. PMID:23253484

  1. Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection.

    PubMed

    Jounai, Kenta; Sugimura, Tetsu; Ohshio, Konomi; Fujiwara, Daisuke

    2015-01-01

    When activated by viral infection, plasmacytoid dendritic cells (pDCs) play a primary role in the immune response through secretion of IFN-α. Lactococcus lactis subsp. lactis JCM5805 (JCM5805) is a strain of lactic acid bacteria (LAB) that activates murine and human pDCs to express type I and type III interferons (IFNs). JCM5805 has also been shown to activate pDCs via a Toll-like receptor 9 (TLR9) dependent pathway. In this study, we investigated the anti-viral effects of oral administration of JCM5805 using a mouse model of murine parainfluenza virus (mPIV1) infection. JCM5805-fed mice showed a drastic improvement in survival rate, prevention of weight loss, and reduction in lung histopathology scores compared to control mice. We further examined the mechanism of anti-viral effects elicited by JCM5805 administration using naive mice. Microscopic observations showed that JCM5805 was incorporated into CD11c+ immune cells in Peyer's patches (PP) and PP pDCs were significantly activated and the expression levels of IFNs were significantly increased. Interestingly, nevertheless resident pDCs at lung were not activated and expressions levels of IFNs at whole lung tissue were not influenced, the expressions of anti-viral factors induced by IFNs, such as Isg15, Oasl2, and Viperin, at lung were up-regulated in JCM5805-fed mice compared to control mice. Therefore expressed IFNs from intestine might be delivered to lung and IFN stimulated genes might be induced. Furthermore, elevated expressions of type I IFNs from lung lymphocytes were observed in response to mPIV1 ex vivo stimulation in JCM5805-fed mice compared to control. This might be due to increased ratio of pDCs located in lung were significantly increased in JCM5805 group. Taken together, a specific LAB strain might be able to affect anti-viral immunological profile in lung via activation of intestinal pDC leading to enhanced anti-viral phenotype in vivo.

  2. Assessment of the Diversity of Dairy Lactococcus lactis subsp. lactis Isolates by an Integrated Approach Combining Phenotypic, Genomic, and Transcriptomic Analyses ▿ †

    PubMed Central

    Tan-a-ram, Punthip; Cardoso, Tamara; Daveran-Mingot, Marie-Line; Kanchanatawee, Sunthorn; Loubière, Pascal; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2011-01-01

    The intrasubspecies diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in an ultrafiltration cheese model. The six strains were isolated from various sources, but all exhibited a dairy phenotype (growth in ultrafiltration cheese model and high acidification rate). The six strains exhibited similar behaviors in terms of growth during cheese ripening, while different acidification capabilities were detected. Even if all strains displayed large genomic similarities, sharing a large core genome of almost 2,000 genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences that potentially could account for the observed different acidification capabilities. This work demonstrated that significant transcriptomic polymorphisms exist even among Lactococcus lactis subsp. lactis strains with the same dairy origin. PMID:21131529

  3. Origin of the putrescine-producing ability of the coagulase-negative bacterium Staphylococcus epidermidis 2015B.

    PubMed

    Coton, Emmanuel; Mulder, Niels; Coton, Monika; Pochet, Sylvie; Trip, Hein; Lolkema, Juke S

    2010-08-01

    A multiplex PCR method, aimed at the detection of genes associated with biogenic amine production, identified the odc gene encoding ornithine decarboxylase in 1 of 15 strains of Staphylococcus epidermidis. The ability of the positive strain, S. epidermidis 2015B, to produce putrescine in vitro was demonstrated by high-performance liquid chromatography (HPLC). In this strain, the odc gene was detected on plasmid DNA, suggesting that the ability to form putrescine is carried by a mobile element, which explains the fact that the trait is strain dependent within the S. epidermidis species. A 6,292-bp nucleotide sequence harboring the putative odc gene was determined. S. epidermidis ornithine decarboxylase (ODC) showed 60 to 65% sequence identity with known ODCs of Gram-positive as well as Gram-negative bacteria. Downstream of the odc gene, a gene encoding a putative amino acid transporter was found that shared 59% sequence identity with the ornithine/putrescine exchanger (PotE) of Escherichia coli. Cloning and expression of the potE gene of S. epidermis 2015B in Lactococcus lactis demonstrated that the gene product transported ornithine and putrescine into the cells and efficiently exchanged putrescine for ornithine. Analysis of the flanking regions showed high identity levels with different S. epidermidis plasmid sequences, which would confirm the plasmidic location of the odc operon. It follows that the odc and potE gene pair encodes a putrescine-producing pathway in S. epidermis 2015B that was acquired through horizontal gene transfer.

  4. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  5. Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi.

    PubMed Central

    Shen, H; Gilkes, N R; Kilburn, D G; Miller, R C; Warren, R A

    1995-01-01

    The gene cbhB from the cellulolytic bacterium Cellulomonas fimi encodes a polypeptide of 1090 amino acids. Cellobiohydrolase B (CbhB) is 1037 amino acids long, with a calculated molecular mass of 109765 Da. The enzyme comprises five domains: an N-terminal catalytic domain of 643 amino acids, three fibronectin type III repeats of 97 amino acids each, and a C-terminal cellulose-binding domain of 104 amino acids. The catalytic domain belongs to family 48 of glycosyl hydrolases. CbhB has a very low activity on CM-cellulose. Viscometric analysis of CM-cellulose hydrolysis indicates that the enzyme is an exoglucanase. Cellobiose is the major product of hydrolysis of cellulose. In common with two other exoglycanases from C. fimi, CbhB has low but detectable endoglucanase activity. CbhB is the second exo-cellobiohydrolase found in C. fimi. Therefore, the cellulase system of C. fimi resembles those of fungi in comprising multiple endoglucanases and cellobiohydrolases. Images Figure 5 PMID:7575482

  6. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  7. Complete Genome of the Cellulolytic Ruminal Bacterium Ruminococcus albus 7

    SciTech Connect

    Suen, Garret; Stevenson, David M; Bruce, David; Chertkov, Olga; Copeland, A; Cheng, Jan-Fang; Detter, J. Chris; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Ovchinnikova, Galina; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Boyum, Julie; Mead, David; Weimer, Paul J

    2011-01-01

    Ruminococcus albus 7 is a highly cellulolytic ruminal bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome of this microbe. This genome will be useful for rumen microbiology and cellulosome biology and in biofuel production, as one of its major fermentation products is ethanol.

  8. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminococcus albus 7 is a highly cellulolytic rumen bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome for this microbe. This genome will be useful for rumen microbiology, cellulosome biology, and in biofuel production, as one of its major fermentation product...

  9. Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity.

    PubMed

    Fiołka, Marta J; Zagaja, Mirosław P; Piersiak, Tomasz D; Wróbel, Marek; Pawelec, Jarosław

    2010-09-01

    The new bacterial strain with antimycobacterial activity has been isolated from the midgut of Dendrobaena veneta (Annelida). Biochemical and molecular characterization of isolates from 18 individuals identified all as Raoultella ornithinolytica genus with 99% similarity. The bacterium is a possible symbiont of the earthworm D. veneta. The isolated microorganism has shown the activity against four strains of fast-growing mycobacteria: Mycobacterium butiricum, Mycobacterium jucho, Mycobacterium smegmatis and Mycobacterium phlei. The multiplication of the gut bacterium on plates with Sauton medium containing mycobacteria has caused a lytic effect. After the incubation of the cell free extract prepared from the gut bacterium with four strains of mycobacteria in liquid Sauton medium, the cells of all tested strains were deformed and divided to small oval forms and sometimes created long filaments. The effect was observed by the use of light, transmission and scanning microscopy. Viability of all examined species of mycobacteria was significantly decreased. The antimycobacterial effect was probably the result of the antibiotic action produced by the gut bacterium of the earthworm. The application of ultrafiltration procedure allowed to demonstrate that antimicrobial substance with strong antimycobacterial activity from bacterial culture supernatant, is a protein with the molecular mass above 100 kDa.

  10. Lytic Activity of LysH5 Endolysin Secreted by Lactococcus lactis Using the Secretion Signal Sequence of Bacteriocin Lcn972

    PubMed Central

    Rodríguez-Rubio, Lorena; G