Sample records for acid base complexes

  1. Preparation and investigation of acetyl salicylic acid-caffeine complex for rectal administration.

    PubMed

    Fouad, Ehab A; El-Badry, Mahmoud; Alanazi, Fars K; Arafah, Maha M; Al-Ashban, Riyadh; Alsarra, Ibrahim A

    2010-06-01

    An acetyl salicylic acid-caffeine complex was prepared and evaluated for the potential use in rectal administration. The results revealed the formation of a complex between acetyl salicylic acid and caffeine in a 1:1 molar ratio by a charge transfer mechanism. The effects of acetyl salicylic acid and complex on the rectal tissues showed destruction in the mucosal epithelium in case of acetyl salicylic acid; however, no change in the rectal tissues was noticed upon the administration of the complex. The effect of suppository bases on the release of the complex was studied using Witepsol H15 as fatty base and polyethylene glycols (PEG) 1000 and 4000 as a water soluble suppository base. The release profiles of acetyl salicylic acid and the complex were faster from PEG than from that of Witepsol H15. The percent release for the complex and acetyl salicylic acid from PEG base were 45.8, and 34.9%, respectively. However, it was 8.7 and 7.8%, respectively, from Witepsol H15 fatty base. The release kinetic was found to follow the non-Fickian diffusion model for complex from the suppository bases. It was concluded that acetyl salicylic acid caffeine complex can be used safely for rectal administration.

  2. Preparation and investigation of acetyl salicylic acid-caffeine complex for rectal administration.

    PubMed

    Fouad, Ehab A; El-Badry, Mahmoud; Alanazi, Fars K; Arafah, Maha M; Al-Ashban, Riyadh; Alsarra, Ibrahim A

    2009-07-30

    An acetyl salicylic acid-caffeine complex was prepared and evaluated for the potential use in rectal administration. The results revealed the formation of a complex between acetyl salicylic acid and caffeine in a 1:1 molar ratio by a charge transfer mechanism. The effects of acetyl salicylic acid and complex on the rectal tissues showed destruction in the mucosal epithelium in case of acetyl salicylic acid; however, no change in the rectal tissues was noticed upon the administration of the complex. The effect of suppository bases on the release of the complex was studied using Witepsol H15 as fatty base and polyethylene glycols (PEG) 1000 and 4000 as a water soluble suppository base. The release profiles of acetyl salicylic acid and the complex were faster from PEG than from that of Witepsol H15. The percent release for the complex and acetyl salicylic acid from PEG base were 45.8, and 34.9%, respectively. However, it was 8.7 and 7.8%, respectively, from Witepsol H15 fatty base. The release kinetic was found to follow the non-Fickian diffusion model for complex from the suppository bases. It was concluded that acetyl salicylic acid caffeine complex can be used safely for rectal administration.

  3. Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy.

    PubMed

    Li, Z Jane; Abramov, Yuriy; Bordner, Jon; Leonard, Jason; Medek, Ales; Trask, Andrew V

    2006-06-28

    A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.

  4. Syntheses, structural, computational, and thermal analysis of acid-base complexes of picric acid with N-heterocyclic bases.

    PubMed

    Goel, Nidhi; Singh, Udai P

    2013-10-10

    Four new acid-base complexes using picric acid [(OH)(NO2)3C6H2] (PA) and N-heterocyclic bases (1,10-phenanthroline (phen)/2,2';6',2"-terpyridine (terpy)/hexamethylenetetramine (hmta)/2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz)) were prepared and characterized by elemental analysis, IR, NMR and X-ray crystallography. Crystal structures provide detailed information of the noncovalent interactions present in different complexes. The optimized structures of the complexes were calculated in terms of the density functional theory. The thermolysis of these complexes was investigated by TG-DSC and ignition delay measurements. The model-free isoconversional and model-fitting kinetic approaches have been applied to isothermal TG data for kinetics investigation of thermal decomposition of these complexes.

  5. Base-free production of H2 by dehydrogenation of formic acid using an iridium-bisMETAMORPhos complex.

    PubMed

    Oldenhof, Sander; de Bruin, Bas; Lutz, Martin; Siegler, Maxime A; Patureau, Frederic W; van der Vlugt, Jarl Ivar; Reek, Joost N H

    2013-08-26

    Erase the base: An iridium complex based on a cooperative ligand that functions as an internal base is reported. This complex can rapidly and cleanly dehydrogenate formic acid in absence of external base, a reaction that is required if formic acid is to be exploited as an energy carrier (see scheme). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]ṡnH2O. The conductivity values between 37 and 64 ohm-1 mol-1 cm2 in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH = 7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari > bshi > bsali > bsasi > bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium. The results of these studies indicated that the metal complexes exhibit a stronger antibacterial and antifungal efficiency than their corresponding Schiff base amino acid ligands.

  7. Silver(I) complexes of 2,4-dihydroxybenzaldehyde-amino acid Schiff bases-Novel noncompetitive α-glucosidase inhibitors.

    PubMed

    Zheng, Jingwei; Ma, Lin

    2015-01-01

    A series of silver(I) complexes of 2,4-dihydroxybenzaldehyde-amino acid Schiff bases were designed and tested for α-glucosidase inhibition. Our results indicate that all the silver complexes (4a-18a) possessed strong inhibitory activity at μmolL(-1) level, especially glutamine (12a) and histidine (18a) Schiff base silver(I) complexes exhibited an IC50 value of less than 0.01μmolL(-1). This series of compounds exhibited noncompetitive inhibition characteristics in kinetic studies. In addition, we investigated the mechanism of inhibition and the structure-activity relationships of the amino acid Schiff base silver complexes. Our results reveal that Schiff base silver complexes may be explored for their therapeutic potential as alternatives of α-glucosidase inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. An approach to complex acid-base problems

    PubMed Central

    Herd, Anthony M.

    2005-01-01

    OBJECTIVE To review rules and formulas for solving even the most complex acid-base problems. SOURCES OF INFORMATION MEDLINE was searched from January 1966 to December 2003. The search was limited to English-language review articles involving human subjects. Nine relevant review papers were found and provide the background. As this information is well established and widely accepted, it is not judged for strength of evidence, as is standard practice. MAIN MESSAGE An understanding of the body’s responses to acidemia or alkalemia can be gained through a set of four rules and two formulas that can be used to interpret almost any acid-base problems. Physicians should, however, remember the “golden rule” of acid-base interpretation: always look at a patient’s clinical condition. CONCLUSION Physicians practising in acute care settings commonly encounter acid-base disturbances. While some of these are relatively simple and easy to interpret, some are more complex. Even complex cases can be resolved using the four rules and two formulas. PMID:15751566

  9. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  10. Spectral and thermal study of the ternary complexes of nickel with sulfasalazine and some amino acids

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed A.

    2006-12-01

    The ternary complexes of Ni(II) with sulfasalazine (H 3SS) as a primary ligand and alanine (ala), aspartic acid (asp), histidene (hist), methionine (meth) and serine (ser) amino acids as secondary ligands have been synthesized. Characterization of the complexes was based on elemental analyses, IR, UV-vis, mass spectra, magnetic moment and thermal analysis (TG). The isolated complexes were found to have the general formula [M(HSS)(AA)]4H 2O (AA = ala, asp, hist, meth, or ser amino acid) where nickel is tetra-coordinated. The thermal stability of the complexes was studied and the weight losses for the decomposition of the complexes were calculated and correlated with the mass fragmentation pattern. In most cases, the amino acid moiety is removed along with the Schiff base moiety leaving NiO as a metallic residue. The metallic residue was confirmed by powder XRD measurements.

  11. Synthesis, structure elucidation, biological screening, molecular modeling and DNA binding of some Cu(II) chelates incorporating imines derived from amino acids

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; Abu-Dief, Ahmed M.; Ismael, Mohammed; Mohamed, Mounir A. A.; Hashem, Nahla Ali

    2016-01-01

    Three tridentate Schiff bases amino acids were prepared by direct condensation of 3-methoxysalicylaldehyde (MS) or 4-diethylaminosalicylaldehyde (DS) with α-amino acid ligands [L-phenylalanine (P), L-histidine (H) and DL-tryptophan (T)]. The prepared Schiff bases amino acids were investigated by melting points, elemental analysis, 1HNMR and 13CNMR, IR, UV-Vis spectra, conductivity and magnetic measurements analyses. Subsequently, copper was introduced and Cu(II) complexes formed. These complexes were analyzed by thermal and elemental analyses and further investigated by FT-IR and UV/Vis spectroscopies. The experimental results indicating that all Cu(II) complexes contain hydrated water molecules (except DSPCu complex) and don't contain coordinated water molecules. The kinetic and thermal parameters were extracted from the thermal data using Coast and Redfern method. The molar conductance values of the Schiff base amino acid ligands and their Cu(II) complexes were relatively low, showing that these compounds have non-electrolytic nature. Magnetic susceptibility measurements showed the diamagnetic nature of the Schiff base amino acid ligands and paramagnetic nature of their complexes. Additionally, a spectrophotometric method was determined to extract their stability constants. It was found that the complexes possess 1:2 (M:L) stoichiometry. The results suggested that 3-methoxysalicylaldehyde and 4-diethylaminosalicylaldehyde amino acid Schiff bases behave as monobasic tridentate ONO ligands and coordinate Cu(II) ions in octahedral geometry according to the general formula [Cu(HL)2]·nH2O. To further understanding the structural and electronic properties of these complexes, Density Functional Theory (DFT) calculations were employed and provided a satisfactory description. The optimized structures of MST Schiff base ligand and its complex were calculated using DFT. The antimicrobial activity of the Schiff base ligands and their complexes were screened against some types of bacteria such as Bacillus subtilis (+ve), Escherichia coli (-ve) and Micrococcus luteus (+ve) and some types of fungi such as Asperagillus niger, Candida glabrata and Saccharomyces cerevisiae. The results of these studies indicated that the metal complexes exhibit a stronger antibacterial and antifungal efficiency compared to their corresponding ligands. The complexes were screened for antiviral activity against a panel of DNA and RNA viruses. Minimum cytotoxic and minimum virus inhibitory concentrations of these complexes were determined. The mode of interaction between complexes and CT-DNA was monitored using absorption spectra, viscosity measurements and gel electrophoreses.

  12. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  13. Improving protein complex classification accuracy using amino acid composition profile.

    PubMed

    Huang, Chien-Hung; Chou, Szu-Yu; Ng, Ka-Lok

    2013-09-01

    Protein complex prediction approaches are based on the assumptions that complexes have dense protein-protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Levacheva, Irina; Samsonova, Olga; Biernasiuk, Anna; Malm, Anna; Lonsdale, Richard; Popiołek, Łukasz; Bakowsky, Udo; Hołyńska, Małgorzata

    2017-01-01

    Studies of the stability of a ligand derived from L-glutamic acid and ortho-vanillin and its new [Cu4] complex are presented. The [Cu4] complex contains a heterocubane [CuII4O4] core and pendant carboxylic groups increasing its solubility in water, also under basic conditions. The stability of the complex in different solvents is confirmed with ESI-MS studies and such experiments as successful recrystallization. The complex is stable also under physiological conditions whereas the ligand is partly decomposed to L-glutamic acid and ortho-vanillin.

  15. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  16. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  17. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    PubMed

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  18. A one-step colorimetric acid-base titration sensor using a complementary color changing coordination system.

    PubMed

    Cho, Hui Hun; Kim, Si Hyun; Heo, Jun Hyuk; Moon, Young Eel; Choi, Young Hun; Lim, Dong Cheol; Han, Kwon-Hoon; Lee, Jung Heon

    2016-06-21

    We report the development of a colorimetric sensor that allows for the quantitative measurement of the acid content via acid-base titration in a single-step. In order to create the sensor, we used a cobalt coordination system (Co-complex sensor) that changes from greenish blue colored Co(H2O)4(OH)2 to pink colored Co(H2O)6(2+) after neutralization. Greenish blue and pink are two complementary colors with a strong contrast. As a certain amount of acid is introduced to the Co-complex sensor, a portion of greenish blue colored Co(H2O)4(OH)2 changes to pink colored Co(H2O)6(2+), producing a different color. As the ratio of greenish blue and pink in the Co-complex sensor is determined by the amount of neutralization reaction occurring between Co(H2O)4(OH)2 and an acid, the sensor produced a spectrum of green, yellow green, brown, orange, and pink colors depending on the acid content. In contrast, the color change appeared only beyond the end point for normal acid-base titration. When we mixed this Co-complex sensor with different concentrations of citric acid, tartaric acid, and malic acid, three representative organic acids in fruits, we observed distinct color changes for each sample. This color change could also be observed in real fruit juice. When we treated the Co-complex sensor with real tangerine juice, it generated diverse colors depending on the concentration of citric acid in each sample. These results provide a new angle on simple but quantitative measurements of analytes for on-site usage in various applications, such as in food, farms, and the drug industry.

  19. Complexation of Nickel Ions by Boric Acid or (Poly)borates.

    PubMed

    Graff, Anais; Barrez, Etienne; Baranek, Philippe; Bachet, Martin; Bénézeth, Pascale

    2017-01-01

    An experiment based on electrochemical reactions and pH monitoring was performed in which nickel ions were gradually formed by oxidation of a nickel metal electrode in a solution of boric acid. Based on the experimental results and aqueous speciation modeling, the evolution of pH showed the existence of significant nickel-boron complexation. A triborate nickel complex was postulated at high boric acid concentrations when polyborates are present, and the equilibrium constants were determined at 25, 50 and 70 °C. The calculated enthalpy and entropy at 25 °C for the formation of the complex from boric acid and Ni 2+ ions are respectively equal to (65.6 ± 3.1) kJ·mol -1 and (0.5 ± 11.1) J·K -1 ·mol -1 . The results of this study suggest that complexation of nickel ions by borates can significantly enhance the solubility of nickel metal and nickel oxide depending on the concentration of boric acid and pH. First principles calculations were investigated and tend to show that the complex is thermodynamically stable and the nickel cation in solution should interact more strongly with the [Formula: see text] than with boric acid.

  20. NPIDB: Nucleic acid-Protein Interaction DataBase.

    PubMed

    Kirsanov, Dmitry D; Zanegina, Olga N; Aksianov, Evgeniy A; Spirin, Sergei A; Karyagina, Anna S; Alexeevski, Andrei V

    2013-01-01

    The Nucleic acid-Protein Interaction DataBase (http://npidb.belozersky.msu.ru/) contains information derived from structures of DNA-protein and RNA-protein complexes extracted from the Protein Data Bank (3846 complexes in October 2012). It provides a web interface and a set of tools for extracting biologically meaningful characteristics of nucleoprotein complexes. The content of the database is updated weekly. The current version of the Nucleic acid-Protein Interaction DataBase is an upgrade of the version published in 2007. The improvements include a new web interface, new tools for calculation of intermolecular interactions, a classification of SCOP families that contains DNA-binding protein domains and data on conserved water molecules on the DNA-protein interface.

  1. Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base difunctional catalysts for transesterification.

    PubMed

    Zeng, Ruijie; Sheng, Hongting; Zhang, Yongcang; Feng, Yan; Chen, Zhi; Wang, Junfeng; Chen, Man; Zhu, Manzhou; Guo, Qingxiang

    2014-10-03

    A practical lanthanide(III)-catalyzed transesterification of carboxylic esters, weakly reactive carbonates, and much less-reactive ethyl silicate with primary and secondary alcohols was developed. Heterobimetallic dinuclear lanthanide alkoxide complexes [Ln2Na8{(OCH2CH2NMe2)}12(OH)2] (Ln = Nd (I), Sm (II), and Yb (III)) were used as highly active catalysts for this reaction. The mild reaction conditions enabled the transesterification of various substrates to proceed in good to high yield. Efficient activation of transesterification may be endowed by the above complexes as cooperative acid-base difunctional catalysts, which is proposed to be responsible for the higher reactivity in comparison with simple acid/base catalysts.

  2. [What is the contribution of Stewart's concept in acid-base disorders analysis?].

    PubMed

    Quintard, H; Hubert, S; Ichai, C

    2007-05-01

    To explain the different approaches for interpreting acid-base disorders; to develop the Stewart model which offers some advantages for the pathophysiological understanding and the clinical interpretation of acid-base imbalances. Record of french and english references from Medline data base. The keywords were: acid-base balance, hyperchloremic acidosis, metabolic acidosis, strong ion difference, strong ion gap. Data were selected including prospective and retrospective studies, reviews, and case reports. Acid-base disorders are commonly analysed by using the traditional Henderson-Hasselbalch approach which attributes the variations in plasma pH to the modifications in plasma bicarbonates or PaCO2. However, this approach seems to be inadequate because bicarbonates and PaCO2 are completely dependent. Moreover, it does not consider the role of weak acids such as albuminate, in the determination of plasma pH value. According to the Stewart concept, plasma pH results from the degree of plasma water dissociation which is determined by 3 independent variables: 1) strong ion difference (SID) which is the difference between all the strong plasma cations and anions; 2) quantity of plasma weak acids; 3) PaCO2. Thus, metabolic acid-base disorders are always induced by a variation in SID (decreased in acidosis) or in weak acids (increased in acidosis), whereas respiratory disorders remains the consequence of a change in PaCO2. These pathophysiological considerations are important to analyse complex acid-base imbalances in critically ill patients. For example, due to a decrease in weak acids, hypoalbuminemia increases SID which may counter-balance a decrease in pH and an elevated anion gap. Thus if using only traditional tools, hypoalbuminemia may mask a metabolic acidosis, because of a normal pH and a normal anion gap. In this case, the association of metabolic acidosis and alkalosis is only expressed by respectively a decreased SID and a decreased weak acids concentration. This concept allows to establish the relationship between hyperchloremic acidosis and infusion of solutes which contain large concentration of chloride such as NaCl 0.9%. Finally, the Stewart concept permits to understand that sodium bicarbonate as well as sodium lactate induces plasma alkalinization. In fact, sodium remains in plasma, whereas anion (lactate or bicarbonate) are metabolized leading to an increase in plasma SID. Due to its simplicity, the traditional Henderson-Hasselbalch approach of acid-base disorders, remains commonly used. However, it gives an inadequate pathophysiological analysis which may conduct to a false diagnosis, especially with complex acid-base imbalances. Despite its apparent complexity, the Stewart concept permits to understand precisely the mechanisms of acid-base disorders. It has to become the most appropriate approach to analyse complex acid-base abnormalities.

  3. Disorders of Acid-Base Balance: New Perspectives

    PubMed Central

    Seifter, Julian L.; Chang, Hsin-Yun

    2017-01-01

    Background Disorders of acid-base involve the complex interplay of many organ systems including brain, lungs, kidney, and liver. Compensations for acid-base disturbances within the brain are more complete, while limitations of compensations are more apparent for most systemic disorders. However, some of the limitations on compensations are necessary to survival, in that preservation of oxygenation, energy balance, cognition, electrolyte, and fluid balance are connected mechanistically. Summary This review aims to give new and comprehensive perspective on understanding acid-base balance and identifying associated disorders. All metabolic acid-base disorders can be approached in the context of the relative losses or gains of electrolytes or a change in the anion gap in body fluids. Acid-base and electrolyte balance are connected not only at the cellular level but also in daily clinical practice. Urine chemistry is essential to understanding electrolyte excretion and renal compensations. Key Messages Many constructs are helpful to understand acid-base, but these models are not mutually exclusive. Electroneutrality and the close interconnection between electrolyte and acid-base balance are important concepts to apply in acid-base diagnoses. All models have complexity and shortcuts that can help in practice. There is no reason to dismiss any of the present constructs, and there is benefit in a combined approach. PMID:28232934

  4. Structural and Biological Behaviour of Co(II), Cu(II) and Ni(II) Metal Complexes of Some Amino Acid Derived Schiff-Bases

    PubMed Central

    Chohan, Zahid H.; Praveen, M.; Ghaffar, A.

    1997-01-01

    Biologically active tridentate amino acid (Alanine, Glycine & Tyrosine) derived Schiff-bases and their Co(II), Cu(II) & Ni(II) complexes have been synthesised and characterised on the basis of their conductance and magnetic measurements, elemental analysis and 13C-NMR, 1H-NMR, IR and electronic spectral data. These Schiff-bases and their complexes have been evaluated for their antibacterial activity against bacterial species such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumonae, Proteus vulgarus and Pseudomonas aeruginosa and this activity data show the metal complexes to be more antibacterial than the Schiff-bases against one or more bacterial species. PMID:18475798

  5. Medical devices; immunology and microbiology devices; classification of nucleic acid-based devices for the detection of Mycobacterium tuberculosis complex and the genetic mutations associated with antibiotic resistance. Final order.

    PubMed

    2014-10-22

    The Food and Drug Administration (FDA) is classifying nucleic acid-based in vitro diagnostic devices for the detection of Mycobacterium tuberculosis complex (MTB-complex) and the genetic mutations associated with MTB-complex antibiotic resistance in respiratory specimens devices into class II (special controls). The Agency is classifying the device into class II (special controls) because special controls, in addition to general controls, will provide a reasonable assurance of safety and effectiveness of the device.

  6. Enhancement of Thermodynamic Gas-Phase Acidity and Basicity of Water by Means of Secondary Interactions.

    PubMed

    Montero-Campillo, M Merced; Alkorta, Ibon; Elguero, Jose

    2018-06-26

    A series of A···water, B···water complexes (A = acid, B =base) are studied at the G4 level of theory to show that water acidity or basicity can be modulated by non-covalent interactions. Protic and non-protic acids interacting with water form hydrogen bonds or other kind of non-covalent interactions, respectively, that may dramatically change the acidity of water up to almost 360 kJ·mol-1 in terms of enthalpy. Similarly, hydrogen bonds responsible for the interaction between typical small nitrogen-containing Lewis bases and water can enhance the proton affinity of water by almost 300 kJ·mol-1. Our results reveal that these large enhancements are linearly related with the binding energy of the charged complexes, and are determined by the Lewis acid-base properties of the molecule involved in the interaction, allowing a quite precise modulation of the corresponding acid-base properties of water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ursolic Acid Hydrazide Based Organometallic Complexes: Synthesis, Characterization, Antibacterial, Antioxidant and Docking Studies

    NASA Astrophysics Data System (ADS)

    Jabeen, Muafia; Ahmad, Sajjad; Shahid, Khadija; Sadiq, Abdul; Rashid, Umer

    2018-03-01

    In the current research work,eleven metal complexes were synthesized from the hydrazide derivative of ursolic acid. Metal complexes of tin, antimony and iron were synthesized and characterized by FT-IR and NMR spectroscopy. The antibacterial and antioxidant activities were performed for these complexes, which revealed that the metal complexes synthesized are more potent than their parent compounds. We observed that antioxidant activity showed by triphenyltin complex was significant and least activity have been shown by antimony trichloride complex.The synthesized metal complexes were then evaluated against two Gram-negative and two Gram-positive bacterial strains. Triphenyl tin complex emerged as potent antibacterial agent with MIC value of 8 μg/ml each against Shigellaspp, S. typhi and S. aureus. While, the MIC value againstS. pneumoniae is 4 μg/ml.Computational docking studies were carried out on molecular targets to interpret the results of antioxidant and antibacterial activities. Based on the results, it may be inferred that the metal complexes of ursolic acid are more active as compared to the parent drug and may be proved for some other pharmacological potential by further analysis.

  8. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sakthivel, A.; Pravin, N.

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 102 to 105 indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  9. Design, synthesis and evaluation of a new Mn - Contrast agent for MR imaging of myocardium based on the DTPA-phenylpentadecanoic acid complex

    NASA Astrophysics Data System (ADS)

    Belyanin, Maxim L.; Stepanova, Elena V.; Valiev, Rashid R.; Filimonov, Victor D.; Usov, Vladimir Y.; Borodin, Oleg Y.; Ågren, Hans

    2016-11-01

    In the present paper we describe the first synthesis and evaluation of a novel Mn (II) complex (DTPA-PPDA Mn (II)) which contains a C-15 fatty acid moiety that has high affinity to the heart muscle. The complexation energy of DTPA-PPDA Mn (II) evaluated by quantum chemistry methodology indicates that it essentially exceeds the corresponding value for the known DTPA Mn (II) complex. Molecular docking revealed that the affinity of the designed complex to the heart-type transport protein H-FABP well exceeds that of lauric acid. Phantom experiments in low-field MRI the designed contrast agent provides MR imaging comparable to gadopentetic acid.

  10. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2014-11-01

    Four new metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H3L) resulted from the condensation of the amino acid 2-amino-3-hydroxyprobanoic acid (serine) and acetylacetone have been synthesized and characterized by, elemental analyses, ES-MS, IR, UV-Vis., 1H NMR, 13C NMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that the Schiff-base ligand acts as bi-negative tridentate through the azomethine nitrogen, the deprotonated carboxylate oxygen and the enolic carbonyl oxygen. The optical band gaps measurements indicated the semi-conducting nature of these complexes. Molecular docking was used to predict the binding between the Schiff base ligand with the receptor of prostate cancer mutant H874Y. The interactions between the Cu(II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA in an intercalative mode.

  11. Electronic structure and acid-base properties of Kojic acid and its dimers. A DFT and quantum topology study

    NASA Astrophysics Data System (ADS)

    Aziz, Saadullah G.; Alyoubi, Abdulrahman O.; Elroby, Shaaban A.; Hilal, Rifaat H.

    2017-10-01

    Kojic acid is a polyfunctional heterocyclic compound, with several important reaction centres; it has a wide range of applications in the cosmetic, medicine, food, agriculture and chemical industries. The present study aims at better insight into its electronic structure and bonding characteristics. Thus, density functional theory at the M06-2x /6-311++G** level of theory is used to investigate its ground state electronic and acid-base properties. Protonation and deprotonation enthalpies are computed and analysed. The ability of Kojic acid to form both water complexes and dimers is explored. Several different complexes and dimer structures were examined. Natural bond order and quantum topology features of the charge density were analysed. The origin of the stability of the studied complexes and dimer structures can be traced to hydrogen bonding, π-conjugative and non-covalent dispersive interactions.

  12. Formulation and method for preparing gels comprising hydrous hafnium oxide

    DOEpatents

    Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C

    2013-08-06

    Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.

  13. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  15. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids.

    PubMed

    Singh, Har Lal; Singh, Jangbhadur; Mukherjee, A

    2013-01-01

    The present work stems from our interest in the synthesis, characterization, and antibacterial evaluation of organosilicon(IV) complexes of a class of amino-acid-based Schiff base which have been prepared by the interaction of ethoxytrimethylsilane with the Schiff bases (N OH) in 1 : 1 molar ratio. These complexes have been characterized by elemental analysis, molar conductance, and spectroscopic studies including electronic IR and NMR ((1)H, (13)C, and (29)Si) spectroscopy. The analytical and spectral data suggest trigonal bipyramidal geometry around the silicon atom in the resulting complexes. The ligands and their organosilicon complexes have also been evaluated for in vitro antimicrobial activity against bacteria (Bacillus cereus, Nocardia spp., E. aerogenes, Escherichia coli, Klebsiella spp., and Staphylococcus spp.). The complexes were found to be more potent as compared to the ligands.

  16. Students' Understanding of Acid, Base and Salt Reactions in Qualitative Analysis.

    ERIC Educational Resources Information Center

    Tan, Kim-Chwee Daniel; Goh, Ngoh-Khang; Chia, Lian-Sai; Treagust, David F.

    2003-01-01

    Uses a two-tier, multiple-choice diagnostic instrument to determine (n=915) grade 10 students' understanding of the acid, base, and salt reactions involved in basic qualitative analysis. Reports that many students did not understand the formation of precipitates and the complex salts, acid/salt-base reactions, and thermal decomposition involved in…

  17. Proton transfer complexes based on some π-acceptors having acidic protons with 3-amino-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4 H)-one donor: Synthesis and spectroscopic characterizations

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2011-05-01

    Charge transfer complexes based on 3-amino-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4 H)-one (ArNH 2) organic basic donor and pi-acceptors having acidic protons such as picric acid (PiA), hydroquinone (Q(OH) 2) and 3,5-dinitrobenzene (DNB) have been synthesized and spectroscopically studied. The sbnd NH3+ ammonium ion was formed under the acid-base theory through proton transfer from an acidic to basic centers in all charge transfer complexes resulted. The values of formation constant ( KCT) and molar extinction coefficient ( ɛCT) which were estimated from the spectrophotometric studies have a dramatic effect for the charge transfer complexes with differentiation of pi-acceptors. For further studies the vibrational spectroscopy of the [( ArNH3+)(PiA -)] (1), [( ArNH3+)(Q (OH)2-)] (2) and [( ArNH3+)(DNB -)] (3) of (1:1) charge transfer complexes of (donor: acceptor) were characterized by elemental analysis, infrared spectra, Raman spectra, 1H and 13CNMR spectra. The experimental data of elemental analyses of the charge transfer complexes (1), (2) and (3) were in agreement with calculated data. The IR and Raman spectra of (1), (2) and (3) are indicated to the presence of bands around 3100 and 1600 cm -1 distinguish to sbnd NH3+. The thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) techniques were performed to give knowledge about thermal stability behavior of the synthesized charge transfer complexes. The morphological features of start materials and charge transfer complexes were investigated using scanning electron microscopy (SEM) and optical microscopy.

  18. Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.

    2013-05-01

    New Fe(II) Schiff base amino acid complexes derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized by elemental analysis, IR, electronic spectra, and conductance measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. The investigated Schiff bases exhibited tridentate coordination mode with the general formulae [Fe(HL)2]·nH2O for all amino acids except L-histidine. But in case of L-histidine, the ligand acts as tetradentate ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their toxicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. The interaction between CT-DNA and the investigated complexes were followed by spectrophotometry and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA cleavage activity with the sequence: nhi > nari > nali > nasi > nphali. The thermodynamic Profile of the binding of nphali complex and CT-DNA was constructed by analyzing the experimental data of absorption titration and UV melting studies with the McGhee equation, van't Hoff's equation, and the Gibbs-Helmholtz equation.

  19. Zinc complexes as fluorescent chemosensors for nucleic acids: new perspectives for a "boring" element.

    PubMed

    Terenzi, Alessio; Lauria, Antonino; Almerico, Anna Maria; Barone, Giampaolo

    2015-02-28

    Zinc(II) complexes are effective and selective nucleic acid-binders and strongly fluorescent molecules in the low energy range, from the visible to the near infrared. These two properties have often been exploited to quantitatively detect nucleic acids in biological samples, in both in vitro and in vivo models. In particular, the fluorescent emission of several zinc(II) complexes is drastically enhanced or quenched by the binding to nucleic acids and/or upon visible light exposure, in a different fashion in bulk solution and when bound to DNA. The twofold objective of this perspective is (1) to review recent utilisations of zinc(II) complexes as selective fluorescent probes for nucleic acids and (2) to highlight their novel potential applications as diagnostic tools based on their photophysical properties.

  20. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  1. Compensation Effect in the Electrical Conduction Process in Some Nucleic Acid Base Complexes with Proflavine Dye

    NASA Astrophysics Data System (ADS)

    Sarkar, D.; Misra, T. N.

    1988-11-01

    Compensation behaviour has been found in electrical conduction process in proflavine complexes with nucleic acid bases, guanine, adenine, uracil and thymine. At low dye concentrations these semiconducting complexes follow a three constant compensation equation σ(T){=}σ0'\\exp (E/2kT0)\\exp (-E/2kT), σ0' and T0 being constants for a specific base. The other notations have their usual meaning. Consistent values of these constants have been obtained by different experimental methods of evaluation. These results suggest that compensation effect has a physical origin.

  2. Paediatric acid-base disorders: A case-based review of procedures and pitfalls

    PubMed Central

    Carmody, J Bryan; Norwood, Victoria F

    2013-01-01

    Acid-base disorders occur frequently in paediatric patients. Despite the perception that their analysis is complex and difficult, a straightforward set of rules is sufficient to interpret even the most complex disorders – provided certain pitfalls are avoided. Using a case-based approach, the present article reviews the fundamental concepts of acid-base analysis and highlights common mistakes and oversights. Specific topics include the proper identification of the primary disorder; distinguishing compensatory changes from additional primary disorders; use of the albumin-corrected anion gap to generate a differential diagnosis for patients with metabolic acidosis; screening for mixed disorders with the delta-delta formula; recognizing the limits of compensation; use of the anion gap to identify ‘hidden’ acidosis; and the importance of using information from the history and physical examination to identify the specific cause of a patient’s acid-base disturbance. PMID:24381489

  3. Corrosion of aluminium in soft drinks.

    PubMed

    Seruga, M; Hasenay, D

    1996-04-01

    The corrosion of aluminium (Al) in several brands of soft drinks (cola- and citrate-based drinks) has been studied, using an electrochemical method, namely potentiodynamic polarization. The results show that the corrosion of Al in soft drinks is a very slow, time-dependent and complex process, strongly influenced by the passivation, complexation and adsorption processes. The corrosion of Al in these drinks occurs principally due to the presence of acids: citric acid in citrate-based drinks and orthophosphoric acid in cola-based drinks. The corrosion rate of Al rose with an increase in the acidity of soft drinks, i.e. with increase of the content of total acids. The corrosion rates are much higher in the cola-based drinks than those in citrate-based drinks, due to the facts that: (1) orthophosphoric acid is more corrosive to Al than is citric acid, (2) a quite different passive oxide layer (with different properties) is formed on Al, depending on whether the drink is cola or citrate based. The method of potentiodynamic polarization was shown as being very suitable for the study of corrosion of Al in soft drinks, especially if it is combined with some non-electrochemical method, e.g. graphite furnace atomic absorption spectrometry (GFAAS).

  4. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.; Baklagina, Yu. G.; Romanov, D. P.; Kononova, S. V.; Volod'ko, A. V.; Ermak, I. M.; Klechkovskaya, V. V.; Skorik, Yu. A.

    2016-11-01

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan-hyaluronic acid, chitosan-alginic acid, and chitosan-carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  5. Pnicogen bonds between X═PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases.

    PubMed

    Alkorta, Ibon; Sánchez-Sanz, Goar; Elguero, José; Del Bene, Janet E

    2014-02-27

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the pnicogen bonded complexes formed between the acids O═PH3, S═PH3, HN═PH3, and H2C═PH3 and the bases NH3, NCH, N2, PH3, and PCH. All nitrogen and phosphorus bases form complexes in which the bases are lone pair electron donors. The binding energies of complexes involving the stronger bases NH3, NCH, and PH3 differentiate among the acids, but the binding energies of complexes with the weaker bases do not. These complexes are stabilized by charge transfer from the lone pair orbital of N or P to the σ*P═A orbital of X═PH3, where A is the atom of X directly bonded to P. PCH also forms complexes with the X═PH3 acids as a π electron donor to the σ*P═A orbital. The binding energies and the charge-transfer energies of the π complexes are greater than those of the complexes in which PCH is a lone pair donor. Whether the positive charge on P increases, decreases, or remains the same upon complex formation, the chemical shieldings of (31)P decrease in the complexes relative to the corresponding monomers. (1p)J(P-N) and (1p)J(P-P) values correlate best with the corresponding P-N and P-P distances as a function of the nature of the base. (1)J(P-A) values do not correlate with P-A distances. Rather, the absolute values of (1)J(P-O), (1)J(P-S), and (1)J(P-N) decrease upon complexation. Decreasing (1)J(P-A) values correlate linearly with increasing complex binding energies. In contrast, (1)J(P-C) values increase upon complexation and correlate linearly with increasing binding energies.

  6. Solid-state supramolecular architectures formed by co-crystallization of melamine and 2-, 3- and 4-fluorophenylacetic acids

    NASA Astrophysics Data System (ADS)

    Perpétuo, Genivaldo Julio; Janczak, Jan

    2018-01-01

    A family of supramolecular complexes of melamine with fluorophenylacetic acid isomers using solvent-assisted and evaporation-based techniques has been prepared. Crystallization of melamine with 2-fluorophenylacetic acid yield hydrated ionic supramolecular complex (1), whereas crystallization of melamine with 3- and 4-fluorophenylacetic acids leads to formation of neutral supramolecular complexes (2, 3), all with base to acid ratio of 1:2. The supramolecular assembly is driven by the noncovalent interactions, most commonly by the hydrogen bonds. The components of the crystal 1 interact via Nsbnd H⋯O and Osbnd H⋯N hydrogen bonds with R22(8) and R32(10) graphs forming ionic supramolecular complex, whereas the components in the crystals 2 and 3 interact with a graph of R22(8) forming neutral supramolecular complexes. The singly protonated melamin-1-ium residues in 1 interact each other via a pair of Nsbnd H⋯N hydrogen bonds forming one dimensional chains along [-110] that interact via Nsbnd H⋯O with deprotonated and neutral 2-fluorophenylacetic acid units and water molecules forming ribbon. In 2 and 3 co-crystals the melamine interacts with 3- and 4-fluorophenylacetic acids via a pair of Nsbnd H⋯O hydrogen bonds forming pseudo one-dimensional supramolecular chains along [010] direction. Hirshfeld surface and analysis of 2D fingerprint plots have been analysed both quantitatively and qualitatively interactions that governing the supramolecular organisation. The IR and Raman vibrational characterization of the supramolecular complexes 1-3 was supported by the spectra of their deuterated analogues.

  7. Signs of antimetastatic activity of palladium complexes of methylenediphosphonic acid in IR spectra

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Pekhnio, V. I.; Kozachkova, A. N.; Sharykina, N. I.

    2012-07-01

    We have used Fourier transform IR spectroscopy methods to study normal mouse lung tissue and also after subcutaneous transplantation of a B-16 melanoma tumor in the tissue. We also studied tissues with B-16 melanoma after they were treated with coordination compounds based on palladium complexes of methylenediphosphonic acid. The IR spectra of the lung tissues with metastases in the region of the C = O stretching vibrations are different from the IR spectra of normal tissue. We identified spectroscopic signs of the presence of metastases in the lung. We show that when a cancerous tumor is treated with a preparation of palladium complexes of methylenediphosphonic acid, the spectroscopic signs of the presence of metastases in the lung are missing. After treatment with the optimal dose of this drug, the IR spectrum of the lung tissue in which multiple metastases were present before treatment corresponds to the spectrum of normal tissue. We have determined the efficacy of the antitumor activity of coordination compounds based on palladium complexes of methylenediphosphonic acid.

  8. Modification in band gap of zirconium complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S.

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  9. Signal enhancement of carboxylic acids by inclusion with β-cyclodextrin in negative high-voltage-assisted laser desorption ionization mass spectrometry.

    PubMed

    Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Sun, Jiamu; Luo, Hai

    2014-01-15

    It is difficult to directly analyze carboxylic acids in complex mixtures by ambient high-voltage-assisted laser desorption ionization mass spectrometry (HALDI-MS) in negative ion mode due to the low ionization efficiency of carboxylic acids. A method for the rapid detection of carboxylic acids in negative HALDI-MS has been developed based on their inclusion with β-cyclodextrin (β-CD). The negative HALDI-MS signal-to-noise ratios (S/Ns) of aliphatic, aromatic and hetero atom-containing carboxylic acids can all be significantly improved by forming 1:1 complexes with β-CD. These complexes are mainly formed by specific inclusion interactions which are verified by their collision-induced dissociation behaviors in comparison with that of their corresponding maltoheptaose complexes. A HALDI-MS/MS method has been successfully developed for the detection of α-lipoic acid in complex cosmetics and ibuprofen in a viscous drug suspension. The negative HALDI-MS S/Ns of carboxylic acids can be improved up to 30 times via forming non-covalent complexes with β-CD. The developed method shows the advantages of being rapid and simple, and is promising for rapid detection of active ingredients in complex samples or fast screening of drugs and cosmetics. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Use of Tranexamic Acid Is Associated with Reduced Blood Product Transfusion in Complex Skull Base Neurosurgical Procedures: A Retrospective Cohort Study.

    PubMed

    Mebel, Dmitry; Akagami, Ryojo; Flexman, Alana M

    2016-02-01

    Compared with other procedures, complex skull base neurosurgery has the potential for increased intraoperative blood loss yet coagulation near eloquent cranial structures should be minimized. The safety and efficacy of the antifibrinolytic, tranexamic acid in elective neurosurgical procedures is not known. Our primary objective was to determine the relationship between the use of tranexamic acid and transfusion at our institution. Our secondary objective was to determine the incidence of adverse events associated with the use of tranexamic acid. In this retrospective cohort study, we included all patients who underwent complex skull base neurosurgical procedures at our institution between 2001 and 2013. Tranexamic acid was introduced during these procedures in 2006. Patient and surgical variables, transfusion data, and adverse events in the perioperative period were abstracted from the medical record. The rates of transfusion and adverse events were compared between patients who did and did not receive tranexamic acid. Multivariate regression was used to identify independent predictors of perioperative transfusion. We compared 245 patients who received tranexamic acid with 274 patients who did not receive the drug during the study period. The 2 groups were similar, with the exception that patients who received tranexamic acid had larger tumors (mean, 3.5 vs 2.9 cm; P < 0.001) and longer procedures (mean, 7.2 vs 6.2 hours, P < 0.001). The rate of perioperative transfusion in patients who received tranexamic acid was lower (7% vs 13%, P = 0.04). After adjusting for preoperative hemoglobin, tumor diameter, and surgical procedure category, the use of tranexamic acid was independently predictive of perioperative transfusion (adjusted odds ratio, 0.32; 95% confidence interval, 0.15-0.65, P = 0.002). The rates of thromboembolic events and seizure were similar between the 2 groups. Our results demonstrate that tranexamic acid use is associated with reduced transfusion rates in our study population, with no apparent increase in seizure or thrombotic complications. Our data support the need for further randomized clinical trials to evaluate the efficacy and safety of tranexamic acid on perioperative blood loss during complex skull base neurosurgery.

  11. Picolinic acid based Cu(II) complexes with heterocyclic bases--crystal structure, DNA binding and cleavage studies.

    PubMed

    Pulimamidi, Rabindra Reddy; Nomula, Raju; Pallepogu, Raghavaiah; Shaik, Hussain

    2014-05-22

    In view of the importance of picolinic acid (PA) in preventing cell growth and arresting cell cycle, new PA based metallonucleases were designed with a view to study their DNA binding and cleavage abilities. Three new Cu(II) complexes [Cu(II)(DPPA)].4H2O (1),[Cu(II)(DPPA)(bpy)].5H2O (2) and [Cu(II)(DPPA)(phen)].5H2O (3), were synthesized using a picolinic acid based bifunctional ligand (DPPA) and heterocyclic bases (where DPPA: Pyridine-2-carboxylic acid {2-phenyl-1-[(pyridin-2-ylmethyl)-carbonyl]-ethyl}-amide; bpy: 2, 2'-bipyridine and phen: 1, 10-phenanthroline). DPPA was obtained by coupling 2-picolinic acid and 2-picolyl amine with l-phenylalanine through amide bond‌‌. Complexes were structurally characterized by a single crystal X-ray crystallography. The molecular structure of 1 shows Cu(II) center essentially in a square planar coordination geometry, while complex 2 shows an approximate five coordinated square-pyramidal geometry. Eventhough we could not isolate single crystal for complex (3), its structure was established based on other techniques. The complex (3) also exhibits five coordinate square pyramidal geometry. The complexes show good binding affinity towards CT-DNA. The binding constants (Kb) decrease in the order 1.35 ± 0.01 × 10(5) (3) > 1.23 ± 0.01 × 10(5) (2) > 8.3 ± 0.01 × 10(4) (1) M(-1). They also exhibit efficient nuclease activity towards supercoiled pUC19 DNA both in the absence and presence of external agent (H2O2). The kinetic studies reveal that the hydrolytic cleavage reactions follow the pseudo first-order rate constant and the hydrolysis rates are in the range of (5.8-8.0) × 10(7) fold rate enhancement compared to non-catalyzed double stranded DNA (3.6 × 10(-8) h(-1)). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Study of Nanocomposites of Amino Acids and Organic Polyethers by Means of Mass Spectrometry and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Zobnina, V. G.; Kosevich, M. V.; Chagovets, V. V.; Boryak, O. A.

    A problem of elucidation of structure of nanomaterials based on combination of proteins and polyether polymers is addressed on the monomeric level of single amino acids and oligomers of PEG-400 and OEG-5 polyethers. Efficiency of application of combined approach involving experimental electrospray mass spectrometry and computer modeling by molecular dynamics simulation is demonstrated. It is shown that oligomers of polyethers form stable complexes with amino acids valine, proline, histidine, glutamic, and aspartic acids. Molecular dynamics simulation has shown that stabilization of amino acid-polyether complexes is achieved due to winding of the polymeric chain around charged groups of amino acids. Structural motives revealed for complexes of single amino acids with polyethers can be realized in structures of protein-polyether nanoparticles currently designed for drug delivery.

  13. Design of stereoelectronically promoted super lewis acids and unprecedented chemistry of their complexes.

    PubMed

    Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek

    2014-09-01

    A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization of the Unusual Product from the Reaction between Cobalt(II) Chloride, Ethane-1,2-diamine, and Hydrochloric Acid: An Undergraduate Project Involving an Unknown Metal Complex.

    ERIC Educational Resources Information Center

    Curtis, Neil F.; And Others

    1986-01-01

    Discusses the need for student research-type chemistry projects based upon "unknown" metal complexes. Describes an experiment involving the product from the reaction between cobalt(II) chloride, ethane-1,2-diamine (en) and concentrated hydrochloric acid. Outlines the preparation of the cobalt complex, along with procedure, results and…

  15. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  16. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    PubMed Central

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  17. pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?

    PubMed Central

    Yuan, Shuguang; Le Roy, Katrien; Venken, Tom; Lammens, Willem; Van den Ende, Wim; De Maeyer, Marc

    2012-01-01

    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst. PMID:22662155

  18. Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)

    NASA Astrophysics Data System (ADS)

    Pal, Dharm; Keshav, Amit

    2016-04-01

    An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.

  19. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less

  20. Simultaneous determination of thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II) based on isothermal titration calorimetry data.

    PubMed

    Tesmar, Aleksandra; Wyrzykowski, Dariusz; Muñoz, Eva; Pilarski, Bogusław; Pranczk, Joanna; Jacewicz, Dagmara; Chmurzyński, Lech

    2017-04-01

    The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co 2 + and Ni 2 + ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L -1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co 2 + and Ni 2 + complexes and their thermodynamic stabilities are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  1. The effects of linear assembly of two carbazole groups on acid-base and DNA-binding properties of a ruthenium(II) complex.

    PubMed

    Chen, Xi; Xue, Long-Xin; Ju, Chun-Chuan; Wang, Ke-Zhi

    2013-07-01

    A novel Ru(II) complex of [Ru(bpy)2(Hbcpip)](ClO4)2 {where bpy=2,2-bipyridine, Hbcpip=2-(4-(9H-3,9'-bicarbazol-9-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} is synthesized and characterized. Calf-thymus DNA-binding properties of the complex were studied by UV-vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, thermal denaturation and DNA viscosity measurements. The results indicate that the complex partially intercalated into the DNA with a binding constant of (5.5±1.4)×10(5) M(-1) in buffered 50 mM NaCl. The acid-base properties of the complex were also studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constant values were derived. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Complexation induced fluorescence and acid-base properties of dapoxyl dye with γ-cyclodextrin: a drug-binding application using displacement assays.

    PubMed

    Pal, Kaushik; Mallick, Suman; Koner, Apurba L

    2015-06-28

    Host-guest complexation of dapoxyl sodium sulphonate (DSS), an intramolecular charge transfer dye with water-soluble and non-toxic macrocycle γ-cyclodextrin (γ-CD), has been investigated in a wide pH range. Steady-state absorption, fluorescence and time-resolved fluorescence measurements confirm the positioning of DSS into the hydrophobic cavity of γ-CD. A large fluorescence enhancement ca. 30 times, due to 1 : 2 complex formation and host-assisted guest-protonation have been utilised for developing a method for the utilisation of CD based drug-delivery applications. A simple fluorescence-displacement based approach is implemented at physiological pH for the assessment of binding strength of pharmaceutically useful small drug molecules (ibuprofen, paracetamol, methyl salicylate, salicylic acid, aspirin, and piroxicam) and six important antibiotic drugs (resazurin, thiamphenicol, chloramphenicol, ampicillin, kanamycin, and sorbic acid) with γ-CD.

  3. Charge-transfer complexes of phenylephrine with nitrobenzene derivatives

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.

    2004-04-01

    The molecular charge-transfer complexes of phenylephrine with picric acid and m-dinitrobenzene have been studied and investigated by IR, 1H NMR electronic spectra in organic solvents and buffer solutions, respectively. Simple and selective methods are proposed for the determination of phenylephrine hydrochloride in bulk form and in tablets. The two methods are based on the formation of charge-transfer complexes between drug base as a n-donor (D) and picric acid, m-dinitrobenzene as π-acceptor (A). The products exhibit absorption maxima at 497 and 560 nm in acetonitrile for picric acid and m-dinitrobenzene, respectively. The coloured product exhibits an absorption maximum at 650 nm in dioxane. The sensitive kinetic methods for the determination phynylephrine hydrochloride are described. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time at 20 min.

  4. Enantioselective Fluorescent Recognition of Chiral Acids by Cyclohexane-1,2-diamine-Based Bisbinaphthyl Molecules

    PubMed Central

    Li, Zi-Bo; Lin, Jing; Sabat, Michal; Hyacinth, Marilise; Pu, Lin

    2008-01-01

    The cyclohexane-1,2-diamine-based bisbinaphthyl macrocycles (S)-/(R)-5 and their cyclic and acyclic analogs are synthesized. The interactions of these compounds with various chiral acids are studied. Compounds (S)-/(R)-5 exhibit highly enantioselective fluorescent responses and high fluorescent sensitivity toward α-hydroxycarboxylic acids and N-protected amino acids. Among these interactions, (S)-mandelic acid (10−3 M) led to over 20 fold fluorescence enhancement of (S)-5 (1.0 × 10−5 M in benzene/0.05% DME) at the monomer emission and (S)-hexahydromandelic acid (10−3 M) led to over 80 fold fluorescence enhancement. These results demonstrate that (S)-5 is useful as an enantioselective fluorescent sensor for the recognition of the chiral acids. On the basis of the study of the structures of (S)-5 and the previously reported 1,2-diphenylethylenediamine-based bisbinaphthyl macrocycle (S)-4, the large fluorescence enhancement of (S)-5 with achirality-matched α-hydroxycarboxylic acid is attributed to the formation of a structurally rigidified host-guest complex and the further interaction of this complex with the acid to suppress the photo-induced electron transfer fluorescent quenching caused by the nitrogens in (S)-5. PMID:17530897

  5. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  6. Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes.

    PubMed

    Reddy, Kumbam Lingeshwar; Kumar, Anabathula Manoj; Dhir, Abhimanew; Krishnan, Venkata

    2016-11-01

    New pyrene and anthracene based copper complexes 4 and 7 respectively were designed, synthesized and characterized. The fluorescence behaviour of both 4 and 7 were evaluated towards nitro aromatics and anions. Both 4 and 7 possess high selectivity for the detection of well-known explosive picric acid (PA) by showing maximum fluorescence affinity. Furthermore, complex 4 showed similar sensing efficiency towards PA at different pH ranges. It was also used for real world applications, as illustrated by the very fast detection of PA from soil samples observed directly by naked eye.

  7. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  8. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  9. Synthesis and effect of a new Terbium gibberellic complex on the histopathological alteration induced by Gibberellic acid on liver and kidney of mice Mus musculus.

    PubMed

    Seleem, Amin A; Hussein, Belal H M

    2018-03-25

    The objective of this study was to synthesize Gibberellic lanthanide complex and evaluate its biological activity to reduce the Gibberellic acid toxicity on liver and kidney. The new bis(Gibberellic)-nitro-terbium(III) complex was characterized by different analytical methods: elemental analyses, UV-Vis, molar ratio, fluorescence, FT-IR, and TGA-DTA measurements. Thirty newborns were classified into three groups control, Gibberellic acid, and Terbium gibberellic acid complex. Livers and kidneys of studied groups proceed for general histology and immunohistochemical staining of Cyr61, cytochrome C, and TNFR2. From the absorption titration measurements, the binding constants of DNA with Tb(III)-(GA) 2 complex and free ligand were found to be 3.9 × 10 4 and 2.1 × 10 3  m -1 , respectively, with the stoichiometry of 1:1. Hypochromism was observed from the absorption titration experiment which indicates the intercalation of Tb(III)-(GA) 2 complex between the base pairs of DNA. Gibberellic acid-treated group showed alteration in the histological picture of livers and kidneys that accompanied with the reduction in the expression of Cyr61, cyt C, and TNFR2. The amelioration was observed in Gibberellic acid complex with Terbium group. The study concluded that Terbium gibberellic complex is less dangerous effects than Gibberellic acid alone. © 2018 John Wiley & Sons A/S.

  10. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    PubMed

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  11. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.

    PubMed

    Fujita, Etsuko; Muckerman, James T; Himeda, Yuichiro

    2013-01-01

    Recent investigations of the interconversion of CO2 and formic acid using Ru, Ir and Fe complexes are summarized in this review. During the past several years, both the reaction rates and catalyst stabilities have been significantly improved. Remarkably, the interconversion (i.e., reversibility) has also been achieved under mild conditions in environmentally benign water solvent by slightly changing the pH of the aqueous solution. Only a few catalysts seem to reflect a bio-inspired design such as the use of proton responsive ligands, ligands with pendent bases or acids for a second-coordination-sphere interaction, electroresponsive ligands, and/or ligands having a hydrogen bonding function with a solvent molecule or an added reagent. The most successful of these is an iridium dinuclear complex catalyst that at least has the first three of these characteristics associated with its bridging ligand. By utilizing an acid/base equilibrium for proton removal, the ligand becomes a strong electron donor, resulting in Ir(I) character with a vacant coordination site at each metal center in slightly basic solution. Complemented by DFT calculations, kinetic studies of the rates of formate production using a related family of Ir complexes with and without such functions on the ligand reveal that the rate-determining step for the CO2 hydrogenation is likely to be H2 addition through heterolytic cleavage involving a "proton relay" through the pendent base. The dehydrogenation of formic acid, owing to the proton responsive ligands changing character under slightly acidic pH conditions, is likely to occur by a mechanism with a different rate-determining step. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Preparation, characterisation and study of in vitro biologically active azamacrocyclic Cu(II) dicarboxylate complexes

    NASA Astrophysics Data System (ADS)

    Antonijević-Nikolić, Mirjana; Antić-Stanković, Jelena; Tanasković, Sladjana B.; Korabik, Maria J.; Gojgić-Cvijović, Gordana; Vučković, Gordana

    2013-12-01

    New cationic Cu(II) complexes with N, N‧, N″, N″‧-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and aliphatic dicarboxylic acids: pentanedioic (glutaric acid = glutH2), hexanedioic acid (adipic acid = adipH2) and decanedioic acid (sebacic acid = sebH2) of general formula [Cu4(L)(tpmc)2](ClO4)6·xH2O, L = glut, x = 2; L = adip, x = 7; L = seb, x = 6 were isolated. Their composition and charges are proposed based on elemental analyses and molar conductivity measurements. By the comparison of their UV-Vis, reflectance, FTIR and EPR spectral data, CV and SQUID magnetic measurements, with those for the complex with butanedioic acid (succinic acid = succH2) of known molecular structure and analysis of LC/MS spectra, geometry with two [Cu2tpmc]4+ units bridged by dicarboxylate dianion engaging all oxygens is proposed. Within units, Cu(II) ions are also bridged with N portion of cyclam ring. All four complexes were screened to in vitro antimicrobial and cytotoxic activity along with free primary and secondary ligands, Cu(II) salt and solvent controls. Detected antibacterial and cytotoxic activity for the complexes was enhanced in most cases than the corresponding controls.

  13. Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li

    2015-12-15

    Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were alsomore » investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.« less

  14. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    PubMed

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-04-01

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Using Spreadsheets to Produce Acid-Base Titration Curves.

    ERIC Educational Resources Information Center

    Cawley, Martin James; Parkinson, John

    1995-01-01

    Describes two spreadsheets for producing acid-base titration curves, one uses relatively simple cell formulae that can be written into the spreadsheet by inexperienced students and the second uses more complex formulae that are best written by the teacher. (JRH)

  16. Can conventional bases and unsaturated hydrocarbons be converted into gas-phase superacids that are stronger than most of the known oxyacids? The role of beryllium bonds.

    PubMed

    Yáñez, Manuel; Mó, Otilia; Alkorta, Ibon; Elguero, José

    2013-08-26

    The association of BeX2 (X: H, F, Cl) derivatives with azoles leads to a dramatic increase of their intrinsic acidity. Hence, whereas 1H-tetrazole can be considered as a typical N base in the gas phase, the complex 1H-tetrazole-BeCl2 is predicted to be, through the use of high-level G4 ab initio calculations, a nitrogen acid stronger than perchloric acid. This acidity enhancement is due to a more favorable stabilization of the deprotonated species after the beryllium bond is formed, because the deprotonated anion is a much better electron donor than the neutral species. Consequently, this is a general phenomenon that should be observed for any Lewis base, including those in which the basic site is a hydroxy group, an amino group, a carbonyl group, an aromatic N atom, a second-row atom, or the π system of unsaturated hydrocarbons. The consequence is that typical bases like aniline or formamide lead to BeX2 complexes that are stronger acids than phosphoric or chloric acids. Similarly, water, methanol, and SH2 become stronger acids than sulfuric acid, pyridine becomes a C acid almost as strong as acetic acid, and unsaturated hydrocarbons such as ethylene and acetylene become acids as strong as nitric and sulfuric acids, respectively. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Lashin, Fakhr El-Din

    2013-07-01

    In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of L-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi > nari > nali > nasi > nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.

  18. Self nanoemulsifying drug delivery system of stabilized ellagic acid-phospholipid complex with improved dissolution and permeability.

    PubMed

    Avachat, Amelia M; Patel, Vijay G

    2015-07-01

    Ellagic acid (EA), a plant polyphenol known for its wide-range of health benefits has limited use due to its low oral bioavailability. In this study, a new self-nanoemulsifying drug delivery system (SNEDDS), based on the phospholipid complex technique, was developed to improve the oral bioavailability of ellagic acid. Ellagic acid-phospholipid complex was prepared by an anti-solvent method and characterized. Enhanced lipophilicity after the formation of ellagic acid-phospholipid complex was verified through solubility studies. Preliminary screening was carried out to select oil, surfactant and co-surfactant. Ternary phase diagrams were constructed to identify the area of nanoemulsification. Formulations were optimized on the basis of globule size, cloud point and robustness to dilution. The optimized SNEDDS of ellagic acid-phospholipid complex showed mean globule size of 106 ± 0.198 nm and cloud point at 83-85 °C. The in vitro drug release from SNEDDS was found to be higher compared to EA suspension and complex, while ex vivo studies showed increased permeation from SNEDDS compared to EA suspension. Moreover, SNEDDS overcome the food effect which was shown by EA suspension. Thus, SNEDDS were found to be influential in improving the release performance of EA, indicating their potential to improve the oral bioavailability of EA.

  19. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    NASA Astrophysics Data System (ADS)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  20. On the behaviour of biradicaloid [P(μ-NTer)]2 towards Lewis acids and bases.

    PubMed

    Hinz, Alexander; Schulz, Axel; Villinger, Alexander

    2016-05-07

    The well-known diphosphadiazane-1,3-diyl [P(μ-NTer)]2 (Ter = 2,6-bis(2,4,6-trimethyl-phenyl)-phenyl) was treated with Lewis bases such as N-heterocyclic carbenes and Lewis acids e.g. gold(i) chloride complexes. In the reaction with the Lewis base, fragmentation of the P2N2 framework was observed, yielding a salt of the type [(NHC)2P](+)[(TerN)2P](-) in a clean reaction. The reaction of [P(μ-NTer)]2 with gold(i) chloride afforded 1 : 1 and 1 : 2 complexes. The dinuclear complex [(ClAu)2P(μ-NTer)2P] displays a bridging P atom between both gold centers, as has been observed for P based zwitterions.

  1. Wormlike micelle formation by acylglutamic acid with alkylamines.

    PubMed

    Sakai, Kenichi; Nomura, Kazuyuki; Shrestha, Rekha Goswami; Endo, Takeshi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko

    2012-12-21

    Rheological properties of alkyl dicarboxylic acid-alkylamine complex systems have been characterized. The complex materials employed in this study consist of an amino acid-based surfactant (dodecanoylglutamic acid, C12Glu) and a tertiary alkylamine (dodecyldimethylamine, C12DMA) or a secondary alkylamine (dodecylmethylamine, C12MA). (1)H NMR and mass spectroscopic data have suggested that C12Glu forms a stoichiometric 1:1 complex with C12DMA and C12MA. Rheological measurements have suggested that the complex systems yield viscoelastic wormlike micellar solutions and the rheological behavior is strongly dependent on the aqueous solution pH. This pH-dependent behavior results from the structural transformation of the wormlike micelles to occur in the narrow pH range 5.5-6.2 (in the case of C12Glu-C12DMA system); i.e., positive curved aggregates such as spherical or rodlike micelles tend to be formed at high pH values. Our current study offers a unique way to obtain viscoelastic wormlike micellar solutions by means of alkyl dicarboxylic acid-alkylamine complex as gemini-like amphiphiles.

  2. Acidity enhancement of unsaturated bases of group 15 by association with borane and beryllium dihydride. Unexpected boron and beryllium Brønsted acids.

    PubMed

    Martín-Sómer, Ana; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2015-01-21

    The intrinsic acidity of CH2[double bond, length as m-dash]CHXH2, HC[triple bond, length as m-dash]CXH2 (X = N, P, As, Sb) derivatives and of their complexes with BeH2 and BH3 has been investigated by means of high-level density functional theory and molecular orbital ab initio calculations, using as a reference the ethyl saturated analogues. The acidity of the free systems steadily increases down the group for the three series of derivatives, ethyl, vinyl and ethynyl. The association with both beryllium dihydride and borane leads to a very significant acidity enhancement, being larger for BeH2 than for BH3 complexes. This acidity enhancement, for the unsaturated compounds, is accompanied by a change in the acidity trends down the group, which do not steadily decrease but present a minimum value for both the vinyl- and the ethynyl-phosphine. When the molecule acting as the Lewis acid is beryllium dihydride, the π-type complexes in which the BeH2 molecules interact with the double or triple bond are found, in some cases, to be more stable, in terms of free energies, than the conventional complexes in which the attachment takes place at the heteroatom, X. The most important finding, however, is that P, As, and Sb ethynyl complexes with BeH2 do not behave as P, As, or Sb Brønsted acids, but unexpectedly as Be acids.

  3. Separation of compounds with multiple -OH groups from dilute aqueous solutions via complexation with organoboronate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Tina Kuo Fung

    1992-05-01

    The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25°C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB -, with all complexes containing only one NPB - per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation withmore » B(OH) 4 - (aq.), i.e. the complexation constants increase with increasing number of -OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB -) at higher concentrations. The -OH group on the NPB - which is left uncomplexed after one solute molecule had bound to the other two -OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA + can extract lactic acid to an extent comparable to the uptake of lactic acid by NPB -. The complexation is probably through formation of an acid-base ion pair. Losses of NPBA into the aqueous phase could lead to problems, poor economics in industrial separation processes. One way of overcoming this problem would be to incorporate the NPBA onto a solid support.« less

  4. Separation of compounds with multiple -OH groups from dilute aqueous solutions via complexation with organoboronate. [1,2-propanediol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Tina Kuo Fung.

    1992-05-01

    The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25{degree}C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB{sup {minus}}, with all complexes containing only one NPB{sup {minus}} per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation withmore » B(OH){sub 4}{sup {minus}} (aq.), i.e. the complexation constants increase with increasing number of {minus}OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB{sup {minus}}) at higher concentrations. The {minus}OH group on the NPB{sup {minus}} which is left uncomplexed after one solute molecule had bound to the other two {minus}OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA{sup +} can extract lactic acid to an extent comparable to the uptake of lactic acid by NPB{sup {minus}}. The complexation is probably through formation of an acid-base ion pair. Losses of NPBA into the aqueous phase could lead to problems, poor economics in industrial separation processes. One way of overcoming this problem would be to incorporate the NPBA onto a solid support.« less

  5. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  6. A theoretical study on the mechanistic highlights behind the Brønsted-acid dependent mer-fac isomerization of homoleptic carbenic iridium complexes for PhOLEDs.

    PubMed

    Setzer, Tobias; Lennartz, Christian; Dreuw, Andreas

    2017-06-06

    Recently, a successful Brønsted-acid mediated geometric isomerization of the meridional homoleptic carbenic iridium(iii) complexes tris-(N-phenyl,N-methyl-benzimidazol-2-yl)iridium(iii) (1) and tris-(N-phenyl,N-benzyl-benzimidazol-2-yl)iridium(iii) (2) into their facial form has been reported. In the present work the pronounced acid-dependency of this particular isomerization procedure is revisited and additional mechanistic pathways are taken into account. Moreover, the acid-induced material decomposition is addressed. All calculations are carried out using density functional theory (DFT) while the environmental effects in solution are accounted for by the COSMO-RS model. The simulated results clearly reveal the outstanding importance of the complex interplay between acid strength, coordinating power of the corresponding base and the steric influence of the ligand system in contrast to the plain calculation of minimum energy pathways for selected complexes. Eventually, general rules to enhance the material-specific reaction yields are provided.

  7. Synthesis and luminescent properties of the novel poly(ethylene-co-acrylic acid) films based on surface modification with lanthanide (Eu3+, Tb3+) complexes

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Chu, Yang; Yu, Zhenjiang; Hao, Haixia; Wu, Qingyao; Xie, Hongde

    2017-10-01

    Two kinds of novel fluorescent films have been successfully synthesized by surface modification on the poly(ethylene-co-acrylic acid) films using the lanthanide (Eu3+, Tb3+) complexes. The process consists of three steps: conversion of carboxylic acid groups on the surface of the poly(ethylene-co-acrylic acid) films to acid chloride groups, synthesis of the lanthanide complexes bearing amino groups, and amidation to form the modified films. To characterize the modified films, Fourier transform infrared, thermogravimetric analysis, static water contact angle measurements and photoluminescence tests have been employed. Fourier transform infrared verifies the successful preparation of the lanthanide complexes and the modified poly(ethylene-co-acrylic acid) films. These films can emit strong characteristic red and green light under UV light excitation. In addition, the films both have short lifetime (1.14 ms and 1.21 ms), high thermal stability (Td = 408 °C and 411 °C) and, compared with unmodified ones, increased hydrophilicity. All these results suggest that the modified films have potential application as luminescent materials under high temperature.

  8. Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation

    NASA Astrophysics Data System (ADS)

    Alsalme, Ali; Laeeq, Sameen; Dwivedi, Sourabh; Khan, Mohd. Shahnawaz; Al Farhan, Khalid; Musarrat, Javed; Khan, Rais Ahmad

    2016-06-01

    We have synthesized two new complexes of platinum (1) and ruthenium (2) with α-amino acid, L-alanine, and 2,3-dihydroxybenzaldehyde derived Schiff base (L). The ligand and both complexes were characterized by using elemental analysis and several other spectroscopic techniques viz; IR, 1H, 13C NMR, EPR, and ESI-MS. Furthermore, the protein-binding ability of synthesized complexes was monitored by UV-visible, fluorescence and circular dichroism techniques with a model protein, human serum albumin (HSA). Both the PtL2 and RuL2 complexes displayed significant binding towards HSA. Also, in vitro cytotoxicity assay for both complexes was carried out on human hepatocellular carcinoma cancer (HepG2) cell line. The results showed concentration-dependent inhibition of cell viability. Moreover, the generation of reactive oxygen species was also evaluated, and results exhibited substantial role in cytotoxicity.

  9. On-line Ammonia Sensor and Invisible Security Ink by Fluorescent Zwitterionic Spirocyclic Meisenheimer Complex

    PubMed Central

    Das, Tanmay; Pramanik, Apurba; Haldar, Debasish

    2017-01-01

    Ammonia is not only a highly important gas for civilization but also contribute significantly for climate change and human health hazard. Highly sensitive ammonia sensor has been developed from a fluorescent zwitterionic spirocyclic Meisenheimer complex. Moreover, formation of this Meisenheimer complex can also be utilized for selective as well as naked eye instant detection of nitro aromatic explosive picric acid. The presence of a quaternary nitrogen atom directly attached to the spiro carbon is the unique feature of this Meisenheimer complex. This excellent photoluminescent (PL) Meisenheimer complex has two distinct stimuli responsive sites. One is sensitive towards acid while the other one is towards the base. These two positions can be modulated by adding one equivalent acid and one equivalent base to result two new products which are non fluorescent. One of these two non fluorescent species was found very exciting because of its UV/Vis transparency. Utilizing this concept we have fabricated an on-line sensor for measuring ammonia in dry or humid and condensing sewer air. The sensor was robust against ambient temperature and humidity variation. We have also developed an invisible ink from this Meisenheimer complex, with potential application for security purpose. PMID:28091542

  10. On-line Ammonia Sensor and Invisible Security Ink by Fluorescent Zwitterionic Spirocyclic Meisenheimer Complex.

    PubMed

    Das, Tanmay; Pramanik, Apurba; Haldar, Debasish

    2017-01-16

    Ammonia is not only a highly important gas for civilization but also contribute significantly for climate change and human health hazard. Highly sensitive ammonia sensor has been developed from a fluorescent zwitterionic spirocyclic Meisenheimer complex. Moreover, formation of this Meisenheimer complex can also be utilized for selective as well as naked eye instant detection of nitro aromatic explosive picric acid. The presence of a quaternary nitrogen atom directly attached to the spiro carbon is the unique feature of this Meisenheimer complex. This excellent photoluminescent (PL) Meisenheimer complex has two distinct stimuli responsive sites. One is sensitive towards acid while the other one is towards the base. These two positions can be modulated by adding one equivalent acid and one equivalent base to result two new products which are non fluorescent. One of these two non fluorescent species was found very exciting because of its UV/Vis transparency. Utilizing this concept we have fabricated an on-line sensor for measuring ammonia in dry or humid and condensing sewer air. The sensor was robust against ambient temperature and humidity variation. We have also developed an invisible ink from this Meisenheimer complex, with potential application for security purpose.

  11. On-line Ammonia Sensor and Invisible Security Ink by Fluorescent Zwitterionic Spirocyclic Meisenheimer Complex

    NASA Astrophysics Data System (ADS)

    Das, Tanmay; Pramanik, Apurba; Haldar, Debasish

    2017-01-01

    Ammonia is not only a highly important gas for civilization but also contribute significantly for climate change and human health hazard. Highly sensitive ammonia sensor has been developed from a fluorescent zwitterionic spirocyclic Meisenheimer complex. Moreover, formation of this Meisenheimer complex can also be utilized for selective as well as naked eye instant detection of nitro aromatic explosive picric acid. The presence of a quaternary nitrogen atom directly attached to the spiro carbon is the unique feature of this Meisenheimer complex. This excellent photoluminescent (PL) Meisenheimer complex has two distinct stimuli responsive sites. One is sensitive towards acid while the other one is towards the base. These two positions can be modulated by adding one equivalent acid and one equivalent base to result two new products which are non fluorescent. One of these two non fluorescent species was found very exciting because of its UV/Vis transparency. Utilizing this concept we have fabricated an on-line sensor for measuring ammonia in dry or humid and condensing sewer air. The sensor was robust against ambient temperature and humidity variation. We have also developed an invisible ink from this Meisenheimer complex, with potential application for security purpose.

  12. An AIE-active boron-difluoride complex: multi-stimuli-responsive fluorescence and application in data security protection.

    PubMed

    Zhu, Xiaolin; Liu, Rui; Li, Yuhao; Huang, Hai; Wang, Qiang; Wang, Danfeng; Zhu, Xuan; Liu, Shishen; Zhu, Hongjun

    2014-11-04

    A novel AIE-active boron-difluoride complex (PTZ) was synthesized which exhibits multi-stimuli responsive characteristics. Its colours and emissions can be switched by mechanical grinding, organic solvent vapours and acid/base vapours. This complex can be utilized in data encryption and decryption based on the protonation-deprotonation effect.

  13. Preparation and spectroscopic studies on charge-transfer complexes of 2,2'-bipyridine with picric and chloranilic acids

    NASA Astrophysics Data System (ADS)

    Teleb, Said M.; Gaballa, Akmal S.

    2005-11-01

    Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H 2CA) have been studied in CHCl 3 and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH 2)(CA)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants ( KC) for the complexes were shown to be dependent on the structure of the electron acceptors used.

  14. Preparation and spectroscopic studies on charge-transfer complexes of 2,2'-bipyridine with picric and chloranilic acids.

    PubMed

    Teleb, Said M; Gaballa, Akmal S

    2005-11-01

    Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H(2)CA) have been studied in CHCl(3) and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH(2))(CA)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants (K(C)) for the complexes were shown to be dependent on the structure of the electron acceptors used.

  15. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    PubMed

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pK a 's (estimated error of 1.3 pK a units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol -1 , were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pK a units. A linear correlation exhibiting a 2.6 pK a unit change of the Lewis acid-water adduct per ten kcal mol -1 change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pK a units. On average, a ten kcal mol -1 change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pK a unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pK a of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pK a of a main group dihydrogen complex is described. The pK a of H 2 -B(C 6 F 5 ) 3 was determined to be 5.8 ± 0.2 in acetonitrile.

  16. Dynamic Buffer Capacity in Acid-Base Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz

    The generalized concept of 'dynamic' buffer capacity β V is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin; Zhou, Pei; Zheng, Chunying

    A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in amore » novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.« less

  18. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Huifang; Xu, David C.; Wang, Yifeng

    Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and selectivity. As a result, the new correlation can also enhance our ability for predicting the speciation, mobility, and toxicity of heavy metals in the earth environments and biological systems.« less

  19. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands

    DOE PAGES

    Xu, Huifang; Xu, David C.; Wang, Yifeng

    2017-10-26

    Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and selectivity. As a result, the new correlation can also enhance our ability for predicting the speciation, mobility, and toxicity of heavy metals in the earth environments and biological systems.« less

  20. Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs

    NASA Astrophysics Data System (ADS)

    Çakar, Soner; Özacar, Mahmut

    2016-06-01

    In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.

  1. Diagnosis of complex acid-base disorders: physician performance versus the microcomputer.

    PubMed

    Schreck, D M; Zacharias, D; Grunau, C F

    1986-02-01

    Patients with acid-base disturbances that are often complex frequently present to the emergency department. The sometimes hectic nature of the ED can preclude the appropriate quantitative analysis required by these disorders, especially when mixed disturbances are present. A computer program using generally accepted acid-base and electrolyte formulae was developed for use on the Apple II+ or IBM-PC microcomputer. Each of a series of 35 acid-base disturbances incorporating single, double, and triple disorders was correctly identified by the computer in less than 45 seconds. Problem sets based on the same 35 disturbances were presented to 21 physician-subjects at various levels of training from the emergency medicine, internal medicine, pediatrics, surgery, and family practice specialties. Although the physicians were given unlimited time and the necessary formulae to reach a diagnosis, they were requested to perform their analyses in the same fashion used in the ED. Although times varied widely, no physician spent more than five minutes on any problem. The physician correct response rates were 86%, 49%, and 17% for single, double, and triple disorders, respectively. The primary disorder correct response rate was 89% for double disorders and 94% for triple disorders. The primary and secondary disorder correct response rate was 58% for triple disorders. The data suggest that the microcomputer may be beneficial in the rapid assessment of complex disorders.

  2. Use of an exchange method to estimate the association and dissociation rate constants of cadmium complexes formed with low-molecular-weight organic acids commonly exuded by plant roots.

    PubMed

    Schneider, André; Nguyen, Christophe

    2011-01-01

    Organic acids released from plant roots can form complexes with cadmium (Cd) in the soil solution and influence metal bioavailability not only due to the nature and concentration of the complexes but also due to their lability. The lability of a complex influences its ability to buffer changes in the concentration of free ions (Cd); it depends on the association (, m mol s) and dissociation (, s) rate constants. A resin exchange method was used to estimate and (m mol s), which is the conditional estimate of depending on the calcium (Ca) concentration in solution. The constants were estimated for oxalate, citrate, and malate, three low-molecular-weight organic acids commonly exuded by plant roots and expected to strongly influence Cd uptake by plants. For all three organic acids, the and estimates were around 2.5 10 m mol s and 1.3 × 10 s, respectively. Based on the literature, these values indicate that the Cd- low-molecular-weight organic acids complexes formed between Cd and low-molecular-weight organic acids may be less labile than complexes formed with soil soluble organic matter but more labile than those formed with aminopolycarboxylic chelates. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Synthesis, spectroscopic, thermal and electrical conductivity studies of three charge transfer complexes formed between 1,3-di[( E)-1-(2-hydroxyphenyl)methylideneamino]-2-propanol Schiff base and different acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ibrahim, Mohamed M.; Moussa, Mohamed A. A.

    2012-01-01

    Charge-transfer complexes (CTC) resulting from interactions of 1,3-di[( E)-1-(2-hydroxyphenyl) methylideneamino]-2-propanol Schiff base with some acceptors such as iodine (I2), bromine (Br2), and picric acid (PiA) have been isolated in the solid state in a chloroform solvent at room temperature. Based on elemental analysis, UV-Vis, infrared, and 1H NMR spectra, and thermogravimetric analysis (TG/DTG) of the solid CTC, [(Schiff)(I2)] (1), [(Schiff)(Br2)] complexes with a ratio of 1:1 and [(Schiff)(PiA)3] complexes with 1:3 have been prepared. In the picric acid complex, infrared and 1H NMR spectroscopic data indicate that the charge-transfer interaction is associated with a hydrogen bonding, whereas the iodine and bromine complexes were interpreted in terms of the formation of dative ion pairs [Schiff+, I{2/•-}] and [Schiff+, Br{2/•-}], respectively. Kinetic parameters were obtained for each stage of thermal degradation of the CT complexes using Coats-Redfern and Horowitz-Metzger methods. DC electrical properties as a function of temperature of these charge transfer complexes have been studied.

  4. The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking.

    PubMed

    Cerný, Jirí; Hobza, Pavel

    2005-04-21

    The performance of the recently introduced X3LYP density functional which was claimed to significantly improve the accuracy for H-bonded and van der Waals complexes was tested for extended H-bonded and stacked complexes (nucleic acid base pairs and amino acid pairs). In the case of planar H-bonded complexes (guanine...cytosine, adenine...thymine) the DFT results nicely agree with accurate correlated ab initio results. For the stacked pairs (uracil dimer, cytosine dimer, adenine...thymine and guanine...cytosine) the DFT fails completely and it was even not able to localize any minimum at the stacked subspace of the potential energy surface. The geometry optimization of all these stacked clusters leads systematically to the planar H-bonded pairs. The amino acid pairs were investigated in the crystal geometry. DFT again strongly underestimates the accurate correlated ab initio stabilization energies and usually it was not able to describe the stabilization of a pair. The X3LYP functional thus behaves similarly to other current functionals. Stacking of nucleic acid bases as well as interaction of amino acids was described satisfactorily by using the tight-binding DFT method, which explicitly covers the London dispersion energy.

  5. Complexation of lanthanides and actinides by acetohydroxamic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.J.; Sinkov, S.I.; Choppin, G.R.

    2008-07-01

    Acetohydroxamic acid (AHA) has been proposed as a suitable reagent for the complexant-based, as opposed to reductive, stripping of plutonium and neptunium ions from the tributylphosphate solvent phase in advanced PUREX or UREX processes designed for future nuclear-fuel reprocessing. Stripping is achieved by the formation of strong hydrophilic complexes with the tetravalent actinides in nitric acid solutions. To underpin such applications, knowledge of the complexation constants of AHA with all relevant actinide (5f) and lanthanide (4f) ions is therefore important. This paper reports the determination of stability constants of AHA with the heavier lanthanide ions (Dy-Yb) and also U(IV) andmore » Th(IV) ions. Comparisons with our previously published AHA stability-constant data for 4f and 5f ions are made. (authors)« less

  6. A charge transfer amplified fluorescent Hg2+ complex for detection of picric acid and construction of logic functions.

    PubMed

    Kumar, Manoj; Reja, Shahi Imam; Bhalla, Vandana

    2012-12-07

    A chemosensor 3 based on the N,N-dimethylaminocinnamaldehyde has been synthesized which shows fluorescence turn-on response with Hg(2+) ions, and the in situ prepared 3-Hg(2+) complex has been used for detection of picric acid via electrostatic interaction and construction of a combinatorial logic circuit with NOR and INHIBIT logic functions.

  7. Interactions of Enolizable Barbiturate Dyes.

    PubMed

    Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan

    2016-04-11

    The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  9. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    NASA Astrophysics Data System (ADS)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  10. Stability of coordination compounds of Ni2+ and Co2+ ions with succinic acid anion in water-ethanol solvents

    NASA Astrophysics Data System (ADS)

    Tukumova, N. V.; Dieu Thuan, Tran Thi; Usacheva, T. R.; Koryshev, N. E.; Sharnin, V. A.

    2017-04-01

    Stability constants of the coordination compounds of nickel(II) and cobalt(II) ions with succinic acid anion in water-ethanol solvents are determined via potentiometric titration at ionic strength of 0.1 and at T = 298.15 K. It is found that logβ values of monoligand complexes of these ions and succinic acid anions rise along with the content of ethanol in solution ( X EtOH = 0-0.7 mole fractions). Based on an analysis of the thermodynamic characteristics of the solvation of the reagents involved in complex formation, it is found that the increased stability of succinate complexes of nickel(II) and cobalt(II) ions in water-ethanol solvents is mainly determined by the weakening of the solvation of succinic acid anion (Y2-).

  11. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  12. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  13. Mixed-ligand cobalt(II) complexes of bioinorganic and medicinal relevance, involving dehydroacetic acid and β-diketones: Their synthesis, hyphenated experimental-DFT, thermal and bactericidal facets

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N.

    2015-11-01

    The present report pertains to synthesis and combined experimental-DFT studies of a series of four novel mixed-ligand complexes of cobalt(II) of the general composition [Co(dha)(L)(H2O)2], where dhaH = dehydroacetic acid, LH = β-ketoenolates viz., o-acetoacetotoluidide (o-aatdH), o-acetoacetanisidide (o-aansH), acetylacetone (acacH) or 1-benzoylacetone (1-bac). The resulting complexes were formulated based on elemental analysis, molar conductance, magnetic measurements, mass spectrometric, IR, electronic, electron spin resonance and cyclic voltammetric studies. The TGA based thermal behavior of one representative complex was evaluated. Molecular geometry optimizations and vibrational frequency calculations have been performed with Gaussian 09 software package by using density functional theory (DFT) methods with B3LYP/LANL2MB combination for dhaH and one of its complexes, [Co(dha)(1-bac)(H2O)2]. Theoretical data has been found in an excellent agreement with the experimental results. Based on experimental and theoretical data, suitable trans-octahedral structure has been proposed for the present class of complexes. Moreover, the complexes also showed a satisfactory antibacterial activity.

  14. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids.

    PubMed

    Essawy, Amr A; Afifi, Manal A; Moustafa, H; El-Medani, S M

    2014-10-15

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids

    NASA Astrophysics Data System (ADS)

    Essawy, Amr A.; Afifi, Manal A.; Moustafa, H.; El-Medani, S. M.

    2014-10-01

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed.

  16. Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines.

    PubMed

    Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes

    2017-08-10

    Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Supramolecular control over recognition and efficient detection of picric acid.

    PubMed

    Béreau, Virginie; Duhayon, Carine; Sutter, Jean-Pascal

    2014-10-18

    Bimetallic Schiff-base Al(3+) complexes bearing ester functions at the periphery of the ligands are shown to be efficient fluorescent chemosensors for picric acid detection. The prominent role of an association between the chemosensor and the picric acid in the detection process is demonstrated. The detection of picric acid in water is achieved with the sensor deposited on paper.

  18. Structure and functioning of the acid-base system in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kuliński, Karol; Schneider, Bernd; Szymczycha, Beata; Stokowski, Marcin

    2017-12-01

    The marine acid-base system is relatively well understood for oceanic waters. Its structure and functioning is less obvious for the coastal and shelf seas due to a number of regionally specific anomalies. In this review article we collect and integrate existing knowledge of the acid-base system in the Baltic Sea. Hydrographical and biogeochemical characteristics of the Baltic Sea, as manifested in horizontal and vertical salinity gradients, permanent stratification of the water column, eutrophication, high organic-matter concentrations and high anthropogenic pressure, make the acid-base system complex. In this study, we summarize the general knowledge of the marine acid-base system as well as describe the peculiarities identified and reported for the Baltic Sea specifically. In this context we discuss issues such as dissociation constants in brackish water, different chemical alkalinity models including contributions by organic acid-base systems, long-term changes in total alkalinity, anomalies of borate alkalinity, and the acid-base effects of biomass production and mineralization. Finally, we identify research gaps and specify limitations concerning the Baltic Sea acid-base system.

  19. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.

    PubMed

    Li, Xiukai; Zhang, Yugen

    2016-10-06

    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Demetalation of Fe, Mn, and Cu chelates and complexes: application to the NMR analysis of micronutrient fertilizers.

    PubMed

    López-Rayo, Sandra; Lucena, Juan J; Laghi, Luca; Cremonini, Mauro A

    2011-12-28

    The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate. Results showed that the removal of the paramagnetic ions was complete, allowing us to obtain (1)H NMR spectra characterized by narrow peaks. The quantification of the ligands by NMR and high-performance liquid chromatography showed that their complete recovery was granted. The NMR analysis enabled detection and quantification of unknown impurities without the need of pure compounds as internal standards.

  1. Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron.

    PubMed

    Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa

    2015-02-14

    The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.

  2. Bromamine Decomposition Revisited: A Holistic Approach for Analyzing Acid and Base Catalysis Kinetics.

    PubMed

    Wahman, David G; Speitel, Gerald E; Katz, Lynn E

    2017-11-21

    Chloramine chemistry is complex, with a variety of reactions occurring in series and parallel and many that are acid or base catalyzed, resulting in numerous rate constants. Bromide presence increases system complexity even further with possible bromamine and bromochloramine formation. Therefore, techniques for parameter estimation must address this complexity through thoughtful experimental design and robust data analysis approaches. The current research outlines a rational basis for constrained data fitting using Brønsted theory, application of the microscopic reversibility principle to reversible acid or base catalyzed reactions, and characterization of the relative significance of parallel reactions using fictive product tracking. This holistic approach was used on a comprehensive and well-documented data set for bromamine decomposition, allowing new interpretations of existing data by revealing that a previously published reaction scheme was not robust; it was not able to describe monobromamine or dibromamine decay outside of the conditions for which it was calibrated. The current research's simplified model (3 reactions, 17 constants) represented the experimental data better than the previously published model (4 reactions, 28 constants). A final model evaluation was conducted based on representative drinking water conditions to determine a minimal model (3 reactions, 8 constants) applicable for drinking water conditions.

  3. Spectral, coordination and thermal properties of 5-arylidene thiobarbituric acids

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; El-Marghany, Adel; Orabi, Adel; Ali, Alaa E.; Sayed, Reham

    2013-04-01

    Synthesis of 5-arylidine thiobarbituric acids containing different functional groups with variable electronic characters were described and their Co2+, Ni2+ and Cu2+ complexes. The stereochemistry and mode of bonding of 5-(substituted benzylidine)-2-TBA complexes were achieved based on elemental analysis, spectral (UV-VIS, IR, 1H NMR, MS), magnetic susceptibility and conductivity measurements. The ligands were of bidentate and tridentate bonding through S, N and O of pyrimidine nucleolus. All complexes were of octahedral configuration. The thermal data of the complexes pointed to their stability. The mechanism of the thermal decomposition is discussed. The thermodynamic parameters of the dissociation steps were evaluated and discussed.

  4. Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent

    DOEpatents

    King, C. Judson; Husson, Scott M.

    1999-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.

  5. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  6. Synthesis, spectral, thermal and optical properties of Schiff-base complexes derived from 2(E)-2-((z)-4-hydroxypent-3-en-2-ylideneamino)-5-guanidinopentanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2017-09-01

    New metal complexes derived from the in situ reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H2L) resulted from the condensation of 2-amino-5-guanidinopentanoic acid (arginine) and acetylacetone have been synthesized. The resulting complexes have been characterized by, elemental analyses, ES-MS, IR, Raman spectra, UV-Vis., 1HNMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that, The Schiff-base ligand acts as bi-negative tridentate coordinating via azomethine nitrogen, enolic carbonyl oxygen and carboxylate oxygen after displacement of hydrogen. The thermodynamic parameters E∗, ΔH, ΔG and ΔS of the isolated complexes have been calculated. The optical band gap (Eg) values of Cu, Co, Ni and Zn were found to be 3.3, 3.4, 3.7 and 4.3 eV, respectively, arising from direct transitions. Optical band gap measurements indicate the semi-conductivity nature of these complexes.

  7. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  8. Sphingolipid biosynthesis upregulation by TOR Complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress

    PubMed Central

    Guerreiro, Joana F.; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel

    2016-01-01

    Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus, understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for S. cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the Target of Rapamycin (TOR) Complex 2 (TORC2). We show here by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of L-serine: palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus, appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks. PMID:27671892

  9. Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: the accelerating effect of certain alcohols and amines.

    PubMed

    Munshi, Pradip; Main, A Denise; Linehan, John C; Tai, Chih-Cheng; Jessop, Philip G

    2002-07-10

    A trace amount of alcohol cocatalyst and a stoichiometric amount of base are required during the hydrogenation of CO(2) to formic acid catalyzed by ruthenium trimethylphosphine complexes. Variation of the choice of alcohol and base causes wide variation in the rate of reaction. Acidic, nonbulky alcohols and triflic acid increase the rate of hydrogenation an order of magnitude above that which can be obtained with traditionally used methanol or water. Similarly, use of DBU rather than NEt(3) increases the rate of reaction by an order of magnitude. Turnover frequencies up to 95,000 h(-1) have now been obtained, and even higher rates should be possible using the cocatalyst and amine combinations identified herein. Preliminary in situ NMR spectroscopic observations are described, and the possible roles of the alcohol and base are discussed.

  10. Estimation of yohimbine base in complex mixtures by quantitative HPTLC application.

    PubMed

    Adel-Kader, Maged Saad; Alwahebi, Naif Wahebi Hamadan; Alam, Prawez

    2017-01-01

    The indole alkaloid Yohimbine has been used for over two centuries in the treatment of erectly dysfunction. Several formulations containing yohimbine salts, yohimbe bark power or extract are marketed worldwide. Determination of the amount of yohimbine in such formulation is a challenging task due to their complex nature. Extraction followed by acid-base purification resulted in a relatively pure alkaloids containing fractions. The exact amounts of yohimbine free base in different formulations were determined by densitometric HPTLC validated methods using silica gel TLC plates. Standard curve for yohimbine was generated using yohimbine hydrochloride subjected to the same acid-base treatment as the used samples. All formulations found to contain yohimbine though some with less concentration than the labeled amount.

  11. Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.

    PubMed

    Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M

    2010-08-14

    Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.

  12. Fluorimetric determinations of nucleic acids using iron, osmium and samarium complexes of 4,7-diphenyl-1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Salem, A. A.

    2006-09-01

    New sensitive, reliable and reproducible fluorimetric methods for determining microgram amounts of nucleic acids based on their reactions with Fe(II), Os(III) or Sm(III) complexes of 4,7-diphenyl-1,10-phenanthroline are proposed. Two complementary single stranded synthetic DNA sequences based on calf thymus as well as their hybridized double stranded were used. Nucleic acids were found to react instantaneously at room temperature in Tris-Cl buffer pH 7, with the investigated complexes resulting in decreasing their fluorescence emission. Two fluorescence peaks around 388 and 567 nm were obtained for the three complexes using excitation λmax of 280 nm and were used for this investigation. Linear calibration graphs in the range 1-6 μg/ml were obtained. Detection limits of 0.35-0.98 μg/ml were obtained. Using the calibration graphs for the synthetic dsDNA, relative standard deviations of 2.0-5.0% were obtained for analyzing DNA in the extraction products from calf thymus and human blood. Corresponding Recovery% of 80-114 were obtained. Student's t-values at 95% confidence level showed insignificant difference between the real and measured values. Results obtained by these methods were compared with the ethidium bromide method using the F-test and satisfactory results were obtained. The association constants and number of binding sites of synthetic ssDNA and dsDNA with the three complexes were estimated using Rosenthanl graphic method. The interaction mechanism was discussed and an intercalation mechanism was suggested for the binding reaction between nucleic acids and the three complexes.

  13. Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone

    2014-09-02

    The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation ofmore » the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  14. Oxalate metal complexes in aerosol particles: implications for the hygroscopicity of oxalate-containing particles

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takahashi, Y.

    2011-05-01

    Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to weaken the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA) play an important role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN) and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is an important component of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca) and zinc (Zn) in aerosols collected at Tsukuba in Japan. Size-fractionated aerosol samples were collected for this purpose using an impactor aerosol sampler. It was shown that 10-60% and 20-100% of the total Ca and Zn in the finer particles (<2.1 μm) were present as Ca and Zn oxalate complexes, respectively. Oxalic acid is hygroscopic and can thus increase the CCN activity of aerosol particles, while complexes with various polyvalent metal ions such as Ca and Zn are not hygroscopic, which cannot contribute to the increase of the CCN activity of aerosols. Based on the concentrations of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not always increase the hygroscopicity of aerosols in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is advisable that the cooling effect of organic aerosols should be estimated by including the information on metal oxalate complexes and metal complexes with other dicarboxylic acids in aerosols.

  15. NMR studies of protein-nucleic acid interactions.

    PubMed

    Varani, Gabriele; Chen, Yu; Leeper, Thomas C

    2004-01-01

    Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

  16. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  17. A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment

    NASA Astrophysics Data System (ADS)

    Pacardo, Dennis B.; Neupane, Bhanu; Rikard, S. Michaela; Lu, Yue; Mo, Ran; Mishra, Sumeet R.; Tracy, Joseph B.; Wang, Gufeng; Ligler, Frances S.; Gu, Zhen

    2015-07-01

    A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics.A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01568e

  18. Two Iron Complexes as Homogeneous and Heterogeneous Catalysts for the Chemical Fixation of Carbon Dioxide.

    PubMed

    Karan, Chandan Kumar; Bhattacharjee, Manish

    2018-04-16

    Two new bimetallic iron-alkali metal complexes of amino acid (serine)-based reduced Schiff base ligand were synthesized and structurally characterized. Their efficacy as catalysts for the chemical fixation of carbon dioxide was explored. The heterogeneous version of the catalytic reaction was developed by the immobilization of these homogeneous bimetallic iron-alkali metal complexes in an anion-exchange resin. The resin-bound complexes can be used as recyclable catalysts up to six cycles.

  19. Metal complexes of quinolone antibiotics and their applications: an update.

    PubMed

    Uivarosi, Valentina

    2013-09-11

    Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, X.; Patel, D.J.

    The authors report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-Tr) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets records in H/sub 2/O and D/sub 2/O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding themore » dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A large set of intermolecular contacts established from nuclear Overhauser effects (NOEs) between antibiotic and nucleic acid protons in the echinomycin-tetranucleotide complexes in solution are consistent with corresponding contacts reported for echinomycin-oligonucleotide complexes in the crystalline state. The authors demonstrate that the G x G base pairs adopt Watson-Crick pairing in both d(ACGT) and d(TCGA) complexes in solution. By contrast, the A1 x T4 base pairs adopt Hoogsteen pairing for the echinomycin-d(A1-C2-G3-Tr) complex while the T1 x A4 base pairs adopt Watson-Crick pairing for the echinomycin-d(T1-C2-G3-A4) complex in aqueous solution. These results emphasize the role of sequence in discriminating between Watson-Crick and Hoogsteen pairs at base pairs flanking the echinomycin bisintercalation site in solution.« less

  1. Oxidative peptide /and amide/ formation from Schiff base complexes

    NASA Technical Reports Server (NTRS)

    Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.

    1982-01-01

    One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.

  2. Gene silencing activity of siRNA polyplexes based on thiolated N,N,N-trimethylated chitosan.

    PubMed

    Varkouhi, Amir K; Verheul, Rolf J; Schiffelers, Raymond M; Lammers, Twan; Storm, Gert; Hennink, Wim E

    2010-12-15

    N,N,N-Trimethylated chitosan (TMC) is a biodegradable polymer emerging as a promising nonviral vector for nucleic acid and protein delivery. In the present study, we investigated whether the introduction of thiol groups in TMC enhances the extracellular stability of the complexes based on this polymer and promotes the intracellular release of siRNA. The gene silencing activity and the cellular cytotoxicity of polyplexes based on thiolated TMC were compared with those based on the nonthiolated counterpart and the regularly used lipidic transfection agent Lipofectamine. Incubation of H1299 human lung cancer cells expressing firefly luciferase with siRNA/thiolated TMC polyplexes resulted in 60-80% gene silencing activity, whereas complexes based on nonthiolated TMC showed less silencing (40%). The silencing activity of the complexes based on Lipofectamine 2000 was about 60-70%. Importantly, the TMC-SH polyplexes retained their silencing activity in the presence of hyaluronic acid, while nonthiolated TMC polyplexes hardly showed any silencing activity, demonstrating their stability against competing anionic macromolecules. Under the experimental conditions tested, the cytotoxicity of the thiolated and nonthiolated siRNA complexes was lower than those based on Lipofectamine. Given the good extracellular stability and good silencing activity, it is concluded that polyplexes based on TMC-SH are attractive systems for further in vivo evaluations.

  3. Next-generation purex flowsheets with acetohydroxamic acid as complexant for FBR and thermal-fuel reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shekhar; Koganti, S.B.

    2008-07-01

    Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing basedmore » FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)« less

  4. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, X. T.; Showkat, A. M.; Wang, Z.

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrenemore » grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.« less

  5. A set of new transition metal-based coordination complexes dependent upon Hpztza ligand (Hpztza=2-(5-(pyrazin-2-yl)-2H-tetrazol-2-yl) acetic acid)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jie; Shen Lei; Yang Gaowen, E-mail: ygwsx@126.com

    2012-02-15

    Reaction of MCl{sub 2}{center_dot}4H{sub 2}O (M=Zn, Cd, Mn, Co, Ni) with 2-(5-(pyrazin-2-yl)-2H-tetrazol-2-yl) acetic acid (Hpztza) yielded a set of new M(II)/pztza complexes, [Cd(pztza){sub 2}(H{sub 2}O){sub 6}]{center_dot}3H{sub 2}O{center_dot}(Hpztza) (1), [M(pztza){sub 2}(H{sub 2}O){sub 2}; M=Cd(2), Zn(7), Mn(9)], [Cd(pztza){sub 2}]{center_dot}2(CH{sub 3}OH) (3), [Co(pztza){sub 2}(H{sub 2}O){sub 2}]{center_dot}6H{sub 2}O (4), [Co(pztza)(H{sub 2}O)Cl] (6) and [M(pztza){sub 2}(H{sub 2}O){sub 2}]{center_dot}2H{sub 2}O [M=Co(5), Zn(8), Ni(10)]. These compounds were structurally characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction. Complex 1 featured a mononuclear structure, complexes 4, 5, 7, 8, 10 showed 1D chains and complexes 2, 3, 6, 9 displayed 2D layer structures. Furthermore, the luminescence propertiesmore » of 1-10 were investigated at room temperature in the solid state. - Graphical abstract: Ten new coordination polymers with 2-(5-(pyrazin-2-yl)-2H-tetrazol-2-yl) acetic acid (Hpztza) ligand have been synthesized and their structures have been characterized. All of the complexes show photoluminescence at room temperature. Highlights: Black-Right-Pointing-Pointer Ten novel transition metal-based coordination complexes with 2-(5-(pyrazin-2-yl)-2H-tetrazol-2-yl) acetic acid (Hpztza) are reported. Black-Right-Pointing-Pointer Complexes 1-10 are described as mononuclear structure, 1D and 2D frameworks with diverse architecture. Black-Right-Pointing-Pointer Six coordination complexes show emission at room temperature in the solid state.« less

  6. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers.

    PubMed

    Davis, M E; Pun, S H; Bellocq, N C; Reineke, T M; Popielarski, S R; Mishra, S; Heidel, J D

    2004-01-01

    Non-viral (synthetic) nucleic acid delivery systems have the potential to provide for the practical application of nucleic acid-based therapeutics. We have designed and prepared a tunable, non-viral nucleic acid delivery system that self-assembles with nucleic acids and centers around a new class of polymeric materials; namely, linear, water-soluble cyclodextrin-containing polymers. The relationships between polymer structure and gene delivery are illustrated, and the roles of the cyclodextrin moieties for minimizing toxicity and forming inclusion complexes in the self-assembly processes are highlighted. This vehicle is the first example of a polymer-based gene delivery system formed entirely by self-assembly.

  7. Separation of Gd-humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-Sephadex A-25 for the fractionation analysis.

    PubMed

    Matsumiya, Hiroaki; Inoue, Hiroto; Hiraide, Masataka

    2014-10-01

    Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column. The Gd-humic complexes were subsequently dissociated with 1M nitric acid to desorb the humic fraction of Gd. The two-step desorption with small volumes of the eluting agents allowed the 100-fold preconcentration for the fractionation analysis of Gd at low ng L(-1) levels by inductively coupled plasma-mass spectrometry (ICP-MS). On the other hand, Gd(III) neither complexed with humic substances nor DTPA, i.e., free species, was not sorbed on the column. The free Gd in the effluent was preconcentrated 100-fold by a conventional solid-phase extraction with an iminodiacetic acid-type chelating resin and determined by ICP-MS. The proposed analytical fractionation method was applied to river water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Vanadium and nickel complexes in petroleum resid acid, base, and neutral fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, C.D.; Green, J.D.

    1993-01-01

    Acid and base fractions from petroleum vacuum resids with no detectable (by visible spectrophotometry) quantities of porphyrinic Ni or V complexes were hydrotreated under various conditions to determine if significant amounts of porphyrinic metals were released, via disassociation or other means, upon hydrotreating. No significant quantities were observed, thereby indicating that nonporphyrinic metals were not simply associated, complexed or otherwise masked (in terms of visible spectrophotometric response) porphyrinic metal complexes. However, it is possible that hydrotreating was simply not effective in breaking up these associates and/or that some porphyrinic forms of metal were in fact released but were rapidly destroyedmore » by hydrotreating. In addition, three liquid chromatographic (LC) separation methods were sequentially applied to Cerro Negro (Orinoco belt Venezuelan heavy crude) >700[degree]C resid in an effort to separate and concentrate the metal complexes present. Nonaqueous ion exchange chromatography was used initially to separate the resid into acid, base and neutral types. Two concentrates containing 19,500 and 13,500 ppm total V, or an estimated 19 and 13 wt % V-containing compounds respectively, were obtained. The degree of enrichment of Ni compounds obtained was significantly lower. By visible spectrophotometry, using vanadyl etioporphyrin as a standard, each of the concentrates contained near a 1:1 ratio of porphyrinic:nonporphyrinic V complexes. Analogous separation behavior for porphyrinic versus nonporphyrinic metal forms was observed throughout much of the work, thereby suggesting that a comparable diversity of structures existed within each general class of metal compounds. The generally wide dispersion of both Ni and V over the LC separation scheme suggests a structural variety of metal complexes that is comparable to that observed for other heteroatoms (N, S, O) in petroleum.« less

  9. Vanadium and nickel complexes in petroleum resid acid, base, and neutral fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, C.D.; Green, J.D.

    1993-01-01

    Acid and base fractions from petroleum vacuum resids with no detectable (by visible spectrophotometry) quantities of porphyrinic Ni or V complexes were hydrotreated under various conditions to determine if significant amounts of porphyrinic metals were released, via disassociation or other means, upon hydrotreating. No significant quantities were observed, thereby indicating that nonporphyrinic metals were not simply associated, complexed or otherwise masked (in terms of visible spectrophotometric response) porphyrinic metal complexes. However, it is possible that hydrotreating was simply not effective in breaking up these associates and/or that some porphyrinic forms of metal were in fact released but were rapidly destroyedmore » by hydrotreating. In addition, three liquid chromatographic (LC) separation methods were sequentially applied to Cerro Negro (Orinoco belt Venezuelan heavy crude) >700{degree}C resid in an effort to separate and concentrate the metal complexes present. Nonaqueous ion exchange chromatography was used initially to separate the resid into acid, base and neutral types. Two concentrates containing 19,500 and 13,500 ppm total V, or an estimated 19 and 13 wt % V-containing compounds respectively, were obtained. The degree of enrichment of Ni compounds obtained was significantly lower. By visible spectrophotometry, using vanadyl etioporphyrin as a standard, each of the concentrates contained near a 1:1 ratio of porphyrinic:nonporphyrinic V complexes. Analogous separation behavior for porphyrinic versus nonporphyrinic metal forms was observed throughout much of the work, thereby suggesting that a comparable diversity of structures existed within each general class of metal compounds. The generally wide dispersion of both Ni and V over the LC separation scheme suggests a structural variety of metal complexes that is comparable to that observed for other heteroatoms (N, S, O) in petroleum.« less

  10. Tetracoordinate Imidazole-Based Boron Complexes for the Selective Detection of Picric Acid.

    PubMed

    Dhanunjayarao, Kunchala; Mukundam, Vanga; Venkatasubbaiah, Krishnan

    2016-11-07

    N,N-Dimethylamine and N,N-diphenylamine-decorated highly fluorescent imidazole borates have been synthesized and investigated as new fluorophores for the selective detection of trinitrophenol/picric acid (PA). Structural studies of a probe 1 and PA (1·PA) complex revealed that the adduct formed by the deprotonation of PA by the -NMe 2 group along with weak interactions is responsible for the selective detection of PA over other polynitrated organic compounds.

  11. A heterobimetallic Ga/Yb-Schiff base complex for catalytic asymmetric alpha-addition of isocyanides to aldehydes.

    PubMed

    Mihara, Hisashi; Xu, Yingjie; Shepherd, Nicholas E; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2009-06-24

    Development of a new heterobimetallic Ga(O-iPr)(3)/Yb(OTf)(3)/Schiff base 2d complex for catalytic asymmetric alpha-additions of isocyanides to aldehydes is described. Schiff base 2d derived from o-vanillin was suitable to utilize cationic rare earth metal triflates with good Lewis acidity in bimetallic Schiff base catalysis. The Ga(O-iPr)(3)/Yb(OTf)(3)/Schiff base 2d complex promoted asymmetric alpha-additions of alpha-isocyanoacetamides to aryl, heteroaryl, alkenyl, and alkyl aldehydes in good to excellent enantioselectivity (88-98% ee).

  12. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II) Complexes.

    PubMed

    Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand

    2016-12-17

    In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans . All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.

  13. Complexity in Acid–Base Titrations: Multimer Formation Between Phosphoric Acids and Imines

    PubMed Central

    Malm, Christian; Kim, Heejae; Wagner, Manfred

    2017-01-01

    Abstract Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid–base aggregates challenging. Here, we track such acid–base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid–base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid‐base association constant is only around six times larger than that for the acid binding to an acid‐base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. PMID:28597513

  14. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    PubMed Central

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237

  15. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains.

    PubMed

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.

  16. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  17. An efficient optical-electrochemical dual probe for highly sensitive recognition of dopamine based on terbium complex functionalized reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhou, Zhan; Wang, Qianming

    2014-04-01

    A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA).A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06156f

  18. SE-72/AS-72 generator system based on Se extraction/ As reextraction

    DOEpatents

    Fassbender, Michael Ernst; Ballard, Beau D

    2013-09-10

    The preparation of a .sup.72Se/.sup.72As radioisotope generator involves forming an acidic aqueous solution of an irradiated alkali bromide target such as a NaBr target, oxidizing soluble bromide in the solution to elemental bromine, removing the elemental bromine, evaporating the resulting solution to a residue, removing hydrogen chloride from the residue, forming an acidic aqueous solution of the residue, adding a chelator that selectively forms a chelation complex with selenium, and extracting the chelation complex from the acidic aqueous solution into an organic phase. As the .sup.72Se generates .sup.72As in the organic phase, the .sup.72As may be extracted repeatedly from the organic phase with an aqueous acid solution.

  19. Dinuclear copper(II) octaazamacrocyclic complex in a PVC coated GCE and graphite as a voltammetric sensor for determination of gallic acid and antioxidant capacity of wine samples.

    PubMed

    Petković, B B; Stanković, D; Milčić, M; Sovilj, S P; Manojlović, D

    2015-01-01

    A novel efficient differential pulse voltammetric (DPV) method for determination gallic acid (GA) was developed by using an electrochemical sensor based on [Cu2tpmc](ClO4)4 immobilized in PVC matrix and coated on graphite (CGE) or classy carbon rod (CGCE). The proposed method is based on the gallic acid oxidation process at formed [Cu2tpmcGA](3+) complex at the electrode surface. The complexation was explored by molecular modeling and DFT calculations. Voltammograms for both sensors, recorded in a HNO3 as a supporting electrolyte at pH 2 and measured in 2.5×10(-7) to 1.0×10(-4) M of GA, resulted with two linear calibration curves (for higher and lower GA concentration range). The detection limit at CGE was 1.48×10(-7) M, while at CGCE was 4.6×10(-6) M. CGE was successfully applied for the determination of the antioxidant capacity based on GA equivalents for white, rosé and red wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Synthetic Biology Research Program, National University of Singapore, Singapore

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fattymore » acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.« less

  1. Analysis of the polyphenols content in medicinal plants based on the reduction of Cu(II)/bicinchoninic complexes.

    PubMed

    Marino, Daniele Cestari; Sabino, Larissa Zuppardo Lacerda; Armando, José; Ruggiero, Andrea De Andrade; Moya, Horacio Dorigan

    2009-12-09

    A spectrophotometric method is proposed for the determination of the polyphenols content in aqueous extracts of plants. The method is based on the reduction of Cu(II) to Cu(I) by polyphenols, in the presence of bicinchoninic acid in a buffered medium (ammonium acetate, pH 7.0) with the formation of Cu(I)/BCA complexes. A calibration curve of absorbance (at 558 nm) vs tannic acid concentration is linear (r = 0.995; n = 7) with tannic acid from 0.1 to 0.7 micromol L(-1). The limit of detection and relative standard deviation were 40 nmol L(-1) (99% confidence level) and 3.8% (0.4 micromol L(-1) tannic acid, n = 7), respectively. For the aqueous extracts of Hamamelis virginiana L., Maytenus ilicifolia Mart. ex Reissek, Hydrocotyle bonariensis Lam, Annona muricata L., Myrciaria cauliflora (Mart.) O. Berg., Caesearia sylvestris Sw., Schinus terebinthifolia (Raddi), and Stryphnodendron adstringens (Mart.) Coville, the total polyphenol contents, expressed as tannic acid, were 3.5, 1.3, 2.0, 3.1, 15.4, 3.1, 9.1, and 6.9%, respectively.

  2. Age-dependent physiological dynamics in acid-base balance, electrolytes, and blood metabolites in growing goats.

    PubMed

    Redlberger, S; Fischer, S; Köhler, H; Diller, R; Reinhold, P

    2017-11-01

    There is a paucity of published data reporting acid-base equilibrium in goats, and no information is available on how the acid-base complexity changes when suckling goat kids become ruminants. The aims of this study were to evaluate young healthy goats for age-related changes in serum proteins, metabolites, and electrolytes; differences in results when the Henderson-Hasselbalch equation or strong ion approaches were used were also assessed. To assess biological variability and reproducibility, two consecutive long-term studies, each lasting from the 6th to 56th week of life (wl), were performed in 15 (Study 1) and 10 (Study 2) animals. Blood gas analysis, serum biochemical analysis, and electrophoresis were performed on venous blood, and acid-base information was obtained using the traditional Henderson-Hasselbalch approach, Stewart's strong ion model, and Constable's simplified strong ion model. In all goats within the first 4-5 months, serum concentrations of glucose, l-lactate, and inorganic phosphate decreased significantly, while serum concentrations of total protein, albumin, and gamma globulin increased. Consequently, nonvolatile weak acids (A tot Alb and A tot TP ) increased. At the end of this 'adaptation period', i.e. when milk was replaced by purely plant-based food, significantly lower bicarbonate and base excess values were accompanied by blood pH that shifted towards acidosis. Electrolytes (Na + , K + , Ca 2+ , and Cl - ), anion gap, strong ion difference, and strong ion gap did not show age-dependent trends. In conclusion, somatic growth and development of gastro-intestinal fermentation in growing goats act as complex sources of physiological variability on acid-base equilibrium that was not reflected by the Henderson-Hasselbalch equation only. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.

    PubMed

    Sedova, Ada; Banavali, Nilesh K

    2017-03-14

    Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.

  4. Hydrothermal synthesis and crystal structure of alkaline earth metal (Mg, Ca) based on 2,5-Dimethylbenzene-1,4-diylbis(methylene) diphosphonic acid

    NASA Astrophysics Data System (ADS)

    Xie, Y. C.; Cheng, Q. R.; Pan, Z. Q.

    2018-02-01

    New magnesium phosphonates Mg(H2L)31 (H4L = 2,5-dimethylbenzene-1,4 -diylbis(methylene)diphosphonic acid) and Ca(H2L)·2H2O 2 have been hydrothermally synthesized from H4L and the corresponding metal salts. Complex 1 and 2 have been characterized by IR, powder and single-crystal X-ray diffraction methods. Complex 1 crystallizes in trigonal space group R-3c and complex 2 belongs to the triclinic space group. The complexes both form two-dimensional (2D) network structure and show three-dimensional (3D) network through hydrogen bonds. Thermal stability of complex 1 and 2 have also been investigated. CCDC: 1534599 for 1; 1536423 for 2.

  5. Visual detection of nucleic acids based on Mie scattering and the magnetophoretic effect.

    PubMed

    Zhao, Zichen; Chen, Shan; Ho, John Kin Lim; Chieng, Ching-Chang; Chen, Ting-Hsuan

    2015-12-07

    Visual detection of nucleic acid biomarkers is a simple and convenient approach to point-of-care applications. However, issues of sensitivity and the handling of complex bio-fluids have posed challenges. Here we report on a visual method detecting nucleic acids using Mie scattering of polystyrene microparticles and the magnetophoretic effect. Magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) were surface-functionalised with oligonucleotide probes, which can hybridise with target oligonucleotides in juxtaposition and lead to the formation of MMPs-targets-PMPs sandwich structures. Using an externally applied magnetic field, the magnetophoretic effect attracts the sandwich structure to the sidewall, which reduces the suspended PMPs and leads to a change in the light transmission via the Mie scattering. Based on the high extinction coefficient of the Mie scattering (∼3 orders of magnitude greater than that of the commonly used gold nanoparticles), our results showed the limit of detection to be 4 pM using a UV-Vis spectrometer or 10 pM by direct visual inspection. Meanwhile, we also demonstrated that this method is compatible with multiplex assays and detection in complex bio-fluids, such as whole blood or a pool of nucleic acids, without purification in advance. With a simplified operation procedure, low instrumentation requirement, high sensitivity and compatibility with complex bio-fluids, this method provides an ideal solution for visual detection of nucleic acids in resource-limited settings.

  6. Synthesis, spectroscopic, thermal and antimicrobial investigations of charge-transfer complexes formed from the drug procaine hydrochloride with quinol, picric acid and TCNQ

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.

    2012-12-01

    Intermolecular charge-transfer or proton-transfer complexes between the drug procaine hydrochloride (PC-HCl) as a donor and quinol (QL), picric acid (PA) or 7,7',8,8'-tetracyanoquinodimethane (TCNQ) as a π-acceptor have been synthesized and spectroscopically studied in methanol at room temperature. Based on elemental analyses and photometric titrations, the stoichiometry of the complexes (donor:acceptor molar ratios) was determined to be 1:1 for all three complexes. The formation constant (KCT), molar extinction coefficient (ɛCT) and other spectroscopic data have been determined using the Benesi-Hildebrand method and its modifications. The newly synthesized CT complexes have been characterized via elemental analysis, IR, Raman, 1H NMR, and electronic absorption spectroscopy. The morphological features of these complexes were investigated using scanning electron microscopy (SEM), and the sharp, well-defined Bragg reflections at specific 2θ angles have been identified from the powder X-ray diffraction patterns. Thermogravimetric analyses (TGAs) and kinetic thermodynamic parameters were also used to investigate the thermal stability of the synthesized solid CT complexes. Finally, the CT complexes were screened for their antibacterial and antifungal activities against various bacterial and fungal strains, and only the complex obtained using picric acid exhibited moderate antibacterial activity against all of the tested strains.

  7. Changes in acid-base and ion balance during exercise in normoxia and normobaric hypoxia.

    PubMed

    Lühker, Olaf; Berger, Marc Moritz; Pohlmann, Alexander; Hotz, Lorenz; Gruhlke, Tilmann; Hochreiter, Marcel

    2017-11-01

    Both exercise and hypoxia cause complex changes in acid-base homeostasis. The aim of the present study was to investigate whether during intense physical exercise in normoxia and hypoxia, the modified physicochemical approach offers a better understanding of the changes in acid-base homeostasis than the traditional Henderson-Hasselbalch approach. In this prospective, randomized, crossover trial, 19 healthy males completed an exercise test until voluntary fatigue on a bicycle ergometer on two different study days, once during normoxia and once during normobaric hypoxia (12% oxygen, equivalent to an altitude of 4500 m). Arterial blood gases were sampled during and after the exercise test and analysed according to the modified physicochemical and Henderson-Hasselbalch approach, respectively. Peak power output decreased from 287 ± 9 Watts in normoxia to 213 ± 6 Watts in hypoxia (-26%, P < 0.001). Exercise decreased arterial pH to 7.21 ± 0.01 and 7.27 ± 0.02 (P < 0.001) during normoxia and hypoxia, respectively, and increased plasma lactate to 16.8 ± 0.8 and 17.5 ± 0.9 mmol/l (P < 0.001). While the Henderson-Hasselbalch approach identified lactate as main factor responsible for the non-respiratory acidosis, the modified physicochemical approach additionally identified strong ions (i.e. plasma electrolytes, organic acid ions) and non-volatile weak acids (i.e. albumin, phosphate ion species) as important contributors. The Henderson-Hasselbalch approach might serve as basis for screening acid-base disturbances, but the modified physicochemical approach offers more detailed insights into the complex changes in acid-base status during exercise in normoxia and hypoxia, respectively.

  8. Visual Reading Method for Detection of Bacterial Tannase

    PubMed Central

    Osawa, R.; Walsh, T. P.

    1993-01-01

    Tannase activity of bacteria capable of degrading tannin-protein complexes was determined by a newly developed visual reading method. The method is based on two phenomena: (i) the ability of tannase to hydrolyze methyl gallate to release free gallic acid and (ii) the green to brown coloration of gallic acid after prolonged exposure to oxygen in an alkaline condition. The method has been successfully used to detect the presence of tannase in the cultures of bacteria capable of degrading tannin-protein complexes. PMID:16348918

  9. Composition, Characterization and Antibacterial activity of Mn(II), Co(II),Ni(II), Cu(II) Zn(II) and Cd(II) mixed ligand complexes Schiff base derived from Trimethoprim with 8-Hydroxy quinoline

    NASA Astrophysics Data System (ADS)

    Numan, Ahmed T.; Atiyah, Eman M.; Al-Shemary, Rehab K.; Ulrazzaq, Sahira S. Abd

    2018-05-01

    New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin-2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment measurements. These measurements indicate that the ligand [HL] coordinates with metal (II) ion in a tridentate manner through the oxygen and nitrogen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligands [HL], [HQ] and their complexes are studied against (gram positive) and (gram negative) bacteria.

  10. Cationic Lipid-Nucleic Acid Complexes for Gene Delivery And Silencing: Pathways And Mechanisms for Plasmid Dna And Sirna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewert, K.K.; Zidovska, A.; Ahmad, A.

    2012-07-17

    Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viralmore » vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.« less

  11. General base-general acid catalysis by terpenoid cyclases.

    PubMed

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  12. General Base-General Acid Catalysis by Terpenoid Cyclases§

    PubMed Central

    Pemberton, Travis A.; Christianson, David W.

    2016-01-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains. PMID:27072285

  13. Enhancing fluorescence intensity of Ellagic acid in Borax-HCl-CTAB micelles

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Huang, Wei; Zhang, Shuai; Liu, Guokui; Li, Kexiang; Tang, Bo

    2011-03-01

    Ellagic acid (C 14H 6O 8), a naturally occurring phytochemical, found mainly in berries and some nuts, has anticarcinogenic and antioxidant properties. It is found that fluorescence of Ellagic acid (EA) is greatly enhanced by micelle of cetyltrimethylammonium bromide (CTAB) surfactant. Based on this effect, a sensitive proposed fluorimetric method was applied for the determination of Ellagic acid in aqueous solution. In the Borax-HCl buffer, the fluorescence intensity of Ellagic acid in the presence of CTAB is proportional to the concentration of Ellagic acid in range from 8.0 × 10 -10 to 4.0 × 10 -5 mol L -1; and the detection limits are 3.2 × 10 -10 mol L -1 and 5.9 × 10 -10 mol L -1 excited at 266 nm and 388 nm, respectively. The actual samples of pomegranate rinds are simply manipulated and satisfactorily determined. The interaction mechanism studies argue that the negative EA-Borax complex is formed and solubilized in the cationic surfactant CTAB micelle in this system. The fluorescence intensity of EA enhances because the CTAB micelle provides a hydrophobic microenvironment for EA-Borax complex, which can prevent collision with water molecules and decrease the energy loss of EA-Borax complex.

  14. Acidity and complex formation studies of 3-(adenine-9-yl)-propionic and 3-(thymine-1-yl)-propionic acids in ethanol-water media

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.

    2015-05-01

    The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (ΔG, ΔH, ΔS) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.

  15. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    PubMed Central

    Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818

  16. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    PubMed Central

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  17. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  18. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  19. Diastereoselective formation of metallamacrocyclic (arene)Ru(II) and CpRh(III) complexes.

    PubMed

    Lehaire, Marie-Line; Scopelliti, Rosario; Herdeis, Lorenz; Polborn, Kurt; Mayer, Peter; Severin, Kay

    2004-03-08

    The reaction of [(arene)RuCl(2)](2) (arene = cymene, 1,3,5-C(6)H(3)Me(3)) and [CpRhCl(2)](2) half-sandwich complexes with tridentate heterocyclic ligands in the presence of base has been investigated. In all cases, the chloro-ligands were substituted to give metallacyclic products with ring sizes between 4 and 18 atoms. The cyclization occurs in a highly diastereoselective fashion with chiral recognition between the different metal fragments. The complexes were comprehensively characterized by elemental analysis, NMR spectroscopy, and single crystal X-ray crystallography. For 2-hydroxy-nicotinic acid and 2-amino-nicotinic acid, dinuclear structures were obtained (15-17) whereas for 2,3-dihydroxyquinoline, 2,3-dihydroxyquinoxaline, and 6-methyl-2,3-phenazinediol, trimeric assemblies were found (19-22), and for 4-imidazolecarboxylic acid, a tetrameric assembly (18) was found.

  20. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yao-Kang; Feng, Yun-Long, E-mail: sky37@zjnu.edu.c; Liu, Ji-Wei

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexesmore » based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.« less

  1. Stacking interactions in PUF-RNA complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yiling Koh, Yvonne; Wang, Yeming; Qiu, Chen

    2012-07-02

    Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stackingmore » amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to 'target' versus 'off-target' interactions, and thus be an important consideration in the design of proteins with new specificities.« less

  2. Organotin(IV) carboxylates based on 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetic acid: Syntheses, crystal structures, luminescent properties and antitumor activities

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Liang, Jingwen; Xie, Jingyi; Liu, Xin; Zhu, Dongsheng; Dong, Yuan

    2017-10-01

    Organotin carboxylates based on an amide carboxylic acid 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetic acid (HL): [(Bn2Sn)2O2L]2·2C6H6 (1) (Bn = benzyl group) and (Ph2Sn)(L)2 (2) were synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and X-ray crystallography diffraction analysis. Complex 1 is dimeric carboxylate tetraorganodistannoxane and show a "ladder-like" molecular structure. Complex 2 is a dialkyltin carboxylate monomer possessing crystallographically imposed two-fold symmetry. Ligand in 1 and 2 adopts unidentate and bidentate coordination respectively. Both 1 and 2 form 1D, 2D and 3D supramolecular organizations in the solid state mediated through Csbnd H⋯O and π⋯π interactions which are discussed in detail. The luminescent properties and preliminary antitumor activities about this series of complexes were also studied.

  3. Methylene-bis[(aminomethyl)phosphinic acids]: synthesis, acid-base and coordination properties.

    PubMed

    David, Tomáš; Procházková, Soňa; Havlíčková, Jana; Kotek, Jan; Kubíček, Vojtěch; Hermann, Petr; Lukeš, Ivan

    2013-02-21

    Three symmetrical methylene-bis[(aminomethyl)phosphinic acids] bearing different substituents on the central carbon atom, (NH(2)CH(2))PO(2)H-C(R(1))(R(2))-PO(2)H(CH(2)NH(2)) where R(1) = OH, R(2) = Me (H(2)L(1)), R(1) = OH, R(2) = Ph (H(2)L(2)) and R(1),R(2) = H (H(2)L(3)), were synthesized. Acid-base and complexing properties of the ligands were studied in solution as well as in the solid state. The ligands show unusually high basicity of the nitrogen atoms (log K(1) = 9.5-10, log K(2) = 8.5-9) if compared with simple (aminomethyl)phosphinic acids and, consequently, high stability constants of the complexes with studied divalent metal ions. The study showed the important role of the hydroxo group attached to the central carbon atom of the geminal bis(phosphinate) moiety. Deprotonation of the hydroxo group yields the alcoholate anion which tends to play the role of a bridging ligand and induces formation of polynuclear complexes. Solid-state structures of complexes [H(2)N=C(NH(2))(2)][Cu(2)(H(-1)L(2))(2)]CO(3)·10H(2)O and Li(2)[Co(4)(H(-1)L(1))(3)(OH)]·17.5H(2)O were determined by X-ray diffraction. The complexes show unexpected geometries forming dinuclear and cubane-like structures, respectively. The dinuclear copper(II) complex contains a bridging μ(2)-alcoholate group with the (-)O-P(=O)-CH(2)-NH(2) fragments of each ligand molecule chelated to the different central ion. In the cubane cobalt(II) complex, one μ(3)-hydroxide and three μ(3)-alcoholate anions are located in the cube vertices and both phosphinate groups of one ligand molecule are chelating the same cobalt(II) ion while each of its amino groups are bound to different neighbouring metal ions. All such three metal ions are bridged by the alcoholate group of a given ligand.

  4. Primer on clinical acid-base problem solving.

    PubMed

    Whittier, William L; Rutecki, Gregory W

    2004-03-01

    Acid-base problem solving has been an integral part of medical practice in recent generations. Diseases discovered in the last 30-plus years, for example, Bartter syndrome and Gitelman syndrome, D-lactic acidosis, and bulimia nervosa, can be diagnosed according to characteristic acid-base findings. Accuracy in acid-base problem solving is a direct result of a reproducible, systematic approach to arterial pH, partial pressure of carbon dioxide, bicarbonate concentration, and electrolytes. The 'Rules of Five' is one tool that enables clinicians to determine the cause of simple and complex disorders, even triple acid-base disturbances, with consistency. In addition, other electrolyte abnormalities that accompany acid-base disorders, such as hypokalemia, can be incorporated into algorithms that complement the Rules and contribute to efficient problem solving in a wide variety of diseases. Recently urine electrolytes have also assisted clinicians in further characterizing select disturbances. Acid-base patterns, in many ways, can serve as a 'common diagnostic pathway' shared by all subspecialties in medicine. From infectious disease (eg, lactic acidemia with highly active antiviral therapy therapy) through endocrinology (eg, Conn's syndrome, high urine chloride alkalemia) to the interface between primary care and psychiatry (eg, bulimia nervosa with multiple potential acid-base disturbances), acid-base problem solving is the key to unlocking otherwise unrelated diagnoses. Inasmuch as the Rules are clinical tools, they are applied throughout this monograph to diverse pathologic conditions typical in contemporary practice.

  5. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.

    2008-12-01

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  6. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  7. Experimental determination and modeling of arsenic complexation with humic and fulvic acids.

    PubMed

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-08-30

    The complexation of humic acid (HA) and fulvic acid (FA) with arsenic (As) in water was studied. Experimental results indicate that arsenic may form complexes with HA and FA with a higher affinity for arsenate than for arsenite. With the presence of iron oxide based adsorbents, binding of arsenic to HA/FA in water was significantly suppressed, probably due to adsorption of As and HA/FA. A two-site ligand binding model, considering only strong and weak site types of binding affinity, was successfully developed to describe the complexation of arsenic on the two natural organic fractions. The model showed that the numbers of weak sites were more than 10 times those of strong sites on both HA and FA for both arsenic species studied. The numbers of both types of binding sites were found to be proportional to the HA concentrations, while the apparent stability constants, defined for describing binding affinity between arsenic and the sites, are independent of the HA concentrations. To the best of our knowledge, this is the first study to characterize the impact of HA concentrations on the applicability of the ligand binding model, and to extrapolate the model to FA. The obtained results may give insights on the complexation of arsenic in HA/FA laden groundwater and on the selection of more effective adsorption-based treatment methods for natural waters. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Linear Titration Curves of Acids and Bases.

    PubMed

    Joseph, N R

    1959-05-29

    The Henderson-Hasselbalch equation, by a simple transformation, becomes pH - pK = pA - pB, where pA and pB are the negative logarithms of acid and base concentrations. Sigmoid titration curves then reduce to straight lines; titration curves of polyelectrolytes, to families of straight lines. The method is applied to the titration of the dipeptide glycyl aminotricarballylic acid, with four titrable groups. Results are expressed as Cartesian and d'Ocagne nomograms. The latter is of a general form applicable to polyelectrolytes of any degree of complexity.

  9. Scaling Relations for Acidity and Reactivity of Zeolites

    PubMed Central

    2017-01-01

    Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH3CN), ammonia (NH3), trimethylamine (N(CH3)3), and pyridine (C5H5N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH3CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH3CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH3 adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology. PMID:29142616

  10. Azelaic Acid: Evidence-based Update on Mechanism of Action and Clinical Application.

    PubMed

    Schulte, Brian C; Wu, Wesley; Rosen, Ted

    2015-09-01

    Azelaic acid is a complex molecule with many diverse activities. The latter include anti-infective and anti-inflammatory action. The agent also inhibits follicular keratinization and epidermal melanogenesis. Due to the wide variety of biological activities, azelaic acid has been utilized as a management tool in a broad spectrum of disease states and cutaneous disorders. This paper reviews the clinical utility of azelaic acid, noting the quality of the evidence supporting each potential use.

  11. Hydrogen bonded binary molecular adducts derived from exobidentate N-donor ligand with dicarboxylic acids: Acid⋯imidazole hydrogen-bonding interactions in neutral and ionic heterosynthons

    NASA Astrophysics Data System (ADS)

    Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi

    2011-01-01

    Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.

  12. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    NASA Astrophysics Data System (ADS)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  13. Fluorescent sensors based on boronic acids

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher R.; James, Tony D.

    1999-05-01

    Sensor systems have long been needed for detecting the presence in solution of certain chemically or biologically important species. Sensors are used in a wide range of applications from simple litmus paper that shows a single color change in acidic or basic environments to complex biological assays that use enzymes, antibodies and antigens to display binding events. With this work the use of boronic acids in the design and synthesis of sensors for saccharides (diols) will be presented. The fluorescent sensory systems rely on photoinduced electron transfer (PET) to modulate the observed fluorescence. When saccharides form cyclic boronate esters with boronic acids, the Lewis acidity of the boronic acid is enhanced and therefore the Lewis acid-base interaction between the boronic acid and a neighboring amine is strengthened. The strength of this acid-base interaction modulates the PET from the amine (acting as a quencher) to anthracene (acting as a fluorophore). These compounds show increased fluorescence at neutral pH through suppression of the PET from nitrogen to anthracene on saccharide binding. The general strategy for the development of saccharide selective systems will be discussed. The potential of the boronic acid based systems will be illustrated using the development of glucose and glucosamine selective fluorescent sensors as examples.

  14. Comparative Network-Based Recovery Analysis and Proteomic Profiling of Neurological Changes in Valproic Acid-Treated Mice

    PubMed Central

    2013-01-01

    Despite its prominence for characterization of complex mixtures, LC–MS/MS frequently fails to identify many proteins. Network-based analysis methods, based on protein–protein interaction networks (PPINs), biological pathways, and protein complexes, are useful for recovering non-detected proteins, thereby enhancing analytical resolution. However, network-based analysis methods do come in varied flavors for which the respective efficacies are largely unknown. We compare the recovery performance and functional insights from three distinct instances of PPIN-based approaches, viz., Proteomics Expansion Pipeline (PEP), Functional Class Scoring (FCS), and Maxlink, in a test scenario of valproic acid (VPA)-treated mice. We find that the most comprehensive functional insights, as well as best non-detected protein recovery performance, are derived from FCS utilizing real biological complexes. This outstrips other network-based methods such as Maxlink or Proteomics Expansion Pipeline (PEP). From FCS, we identified known biological complexes involved in epigenetic modifications, neuronal system development, and cytoskeletal rearrangements. This is congruent with the observed phenotype where adult mice showed an increase in dendritic branching to allow the rewiring of visual cortical circuitry and an improvement in their visual acuity when tested behaviorally. In addition, PEP also identified a novel complex, comprising YWHAB, NR1, NR2B, ACTB, and TJP1, which is functionally related to the observed phenotype. Although our results suggest different network analysis methods can produce different results, on the whole, the findings are mutually supportive. More critically, the non-overlapping information each provides can provide greater holistic understanding of complex phenotypes. PMID:23557376

  15. Electrocatalytic Hydrogen Production by a Nickel(II) Complex with a Phosphinopyridyl Ligand.

    PubMed

    Tatematsu, Ryo; Inomata, Tomohiko; Ozawa, Tomohiro; Masuda, Hideki

    2016-04-18

    A novel nickel(II) complex [Ni(L)2 Cl]Cl with a bidentate phosphinopyridyl ligand 6-((diphenylphosphino)methyl)pyridin-2-amine (L) was synthesized as a metal-complex catalyst for hydrogen production from protons. The ligand can stabilize a low Ni oxidation state and has an amine base as a proton transfer site. The X-ray structure analysis revealed a distorted square-pyramidal Ni(II)  complex with two bidentate L ligands in a trans arrangement in the equatorial plane and a chloride anion at the apex. Electrochemical measurements with the Ni(II) complex in MeCN indicate a higher rate of hydrogen production under weak acid conditions using acetic acid as the proton source. The catalytic current increases with the stepwise addition of protons, and the turnover frequency is 8400 s(-1) in 0.1 m [NBu4 ][ClO4 ]/MeCN in the presence of acetic acid (290 equiv) at an overpotential of circa 590 mV. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates.

    PubMed

    Henriksen, A; Smith, A T; Gajhede, M

    1999-12-03

    We have solved the x-ray structures of the binary horseradish peroxidase C-ferulic acid complex and the ternary horseradish peroxidase C-cyanide-ferulic acid complex to 2.0 and 1.45 A, respectively. Ferulic acid is a naturally occurring phenolic compound found in the plant cell wall and is an in vivo substrate for plant peroxidases. The x-ray structures demonstrate the flexibility and dynamic character of the aromatic donor binding site in horseradish peroxidase and emphasize the role of the distal arginine (Arg(38)) in both substrate oxidation and ligand binding. Arg(38) hydrogen bonds to bound cyanide, thereby contributing to the stabilization of the horseradish peroxidase-cyanide complex and suggesting that the distal arginine will be able to contribute with a similar interaction during stabilization of a bound peroxy transition state and subsequent O-O bond cleavage. The catalytic arginine is additionally engaged in an extensive hydrogen bonding network, which also includes the catalytic distal histidine, a water molecule and Pro(139), a proline residue conserved within the plant peroxidase superfamily. Based on the observed hydrogen bonding network and previous spectroscopic and kinetic work, a general mechanism of peroxidase substrate oxidation is proposed.

  17. Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.

    PubMed

    Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th

    2005-03-01

    The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.

  18. Trivalent Lewis Acidic Cations Govern the Electronic Properties and Stability of Heterobimetallic Complexes of Nickel.

    PubMed

    Kumar, Amit; Lionetti, Davide; Day, Victor W; Blakemore, James D

    2018-01-02

    Assembly of heterobimetallic complexes is synthetically challenging due to the propensity of ditopic ligands to bind metals unselectively. Here, we employ a novel divergent approach for selective preparation of a variety of bimetallic complexes within a ditopic macrocyclic ligand platform. In our approach, nickel is readily coordinated to a Schiff base cavity, and then a range of redox-inactive cations (M=Na + , Ca 2+ , Nd 3+ , and Y 3+ ) are installed in a pendant crown-ether-like site. This modular strategy allows access to complexes with the highly Lewis acidic trivalent cations Nd 3+ and Y 3+ , a class of compounds that were previously inaccessible. Spectroscopic and electrochemical studies reveal wide variations in properties that are governed most strongly by the trivalent cations. Exposure to dimethylformamide drives loss of Nd 3+ and Y 3+ from the pendant crown-ether site, suggesting solvent effects must be carefully considered in future applications involving use of highly Lewis acidic metals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A novel stable 3D luminescent uranyl complex for highly efficient and sensitive recognition of Ru3+ and biomolecules

    NASA Astrophysics Data System (ADS)

    Tian, Hong-Hong; Chen, Liang-Ting; Zhang, Rong-Lan; Zhao, Jian-She; Liu, Chi-Yang; Weng, Ng Seik

    2018-02-01

    A novel highly stable 3D luminescent uranyl coordination polymer, namely {[UO2(L)]·DMA}n (1), was assembled with uranyl salt and a glycine-derivative ligand [6-(carboxymethyl-amino)-4-oxo-4,5-dihydro-[1,3,5]triazin-2-ylamino]-acetic acid (H2L) under solvothermal reaction. Besides, It was found that complex 1 possesses excellent luminescent properties, particularly the efficient selectivity and sensitivity in the recognition of Ru3+, biomacromolecule bovine serum albumin (BSA), biological small molecules dopamine (DA), ascorbic acid (AA) and uric acid (UA) in the water solution based on a "turn-off" mechanism. Accordingly, the luminescent explorations also demonstrated that complex 1 could be acted as an efficient luminescent probe with high quenching efficiency and low detection limit for selectively detecting Ru3+ and biomolecules (DA, AA, UA and BSA). It was noted that the framework structure of complex 1 still remains highly stable after quenching, which was verified by powder X-ray diffraction (PXRD).

  20. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    NASA Astrophysics Data System (ADS)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  1. Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression.

    PubMed

    Coelho, Lúcia H G; Gutz, Ivano G R

    2006-03-15

    A chemometric method for analysis of conductometric titration data was introduced to extend its applicability to lower concentrations and more complex acid-base systems. Auxiliary pH measurements were made during the titration to assist the calculation of the distribution of protonable species on base of known or guessed equilibrium constants. Conductivity values of each ionized or ionizable species possibly present in the sample were introduced in a general equation where the only unknown parameters were the total concentrations of (conjugated) bases and of strong electrolytes not involved in acid-base equilibria. All these concentrations were adjusted by a multiparametric nonlinear regression (NLR) method, based on the Levenberg-Marquardt algorithm. This first conductometric titration method with NLR analysis (CT-NLR) was successfully applied to simulated conductometric titration data and to synthetic samples with multiple components at concentrations as low as those found in rainwater (approximately 10 micromol L(-1)). It was possible to resolve and quantify mixtures containing a strong acid, formic acid, acetic acid, ammonium ion, bicarbonate and inert electrolyte with accuracy of 5% or better.

  2. Lewis acid-base interactions in weakly bound formaldehyde complexes with CO2, HCN, and FCN: considerations on the cooperative H-bonding effects.

    PubMed

    Rivelino, Roberto

    2008-01-17

    Ab initio quantum chemistry calculations reveal that HCN and mainly FCN can form Lewis acid-base complexes with formaldehyde associated with cooperative H bonds, as first noticed by Wallen et al. (Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 14818-14819) for CO2-philic materials under supercritical conditions. The present results, obtained with MP2(Full)/aug-cc-pVDZ calculations, show that the degeneracy of the nu(2) mode in free HCN or FCN is removed upon complexation in the same fashion as that of CO2. The splitting of these bands along with the electron structure analysis provides substantial evidence of the interaction of electron lone pairs of the carbonyl oxygen with the electron-deficient carbon atom of the cyanides. Also, this work investigates the role of H bonds acting as additional stabilizing interactions in the complexes by performing the energetic and geometric characterization.

  3. Enhanced Stereoselectivity of a Cu(II) Complex Chiral Auxiliary in the Synthesis of Fmoc-L-γ-carboxyglutamic Acid | Center for Cancer Research

    Cancer.gov

    Bridging bioinorganic chemistry with asymmetric synthesis: a naturally occurring metalloprotein is used for the structure-based evolution of chiral auxiliaries that prove to be effective in the synthesis of Fmoc-L-γ-carboxyglutamic acid.

  4. Influencing of resorption and side-effects of salicylic acid by complexing with beta-cyclodextrin.

    PubMed

    Szejtli, J; Gerlóczy, A; Sebestyén, G; Fónagy, A

    1981-04-01

    After oral administration of 14C-labelled salicylic acid and its beta-cyclodextrin complex to rats, the blood radioactivity-level increases in the first 2 h than decreases. The blood level obtained with the inclusion complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid take place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves show that the free salicylic acid is completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increases the pK value of all hydroxy-benzoic acids. Direct observations reveals that complex formation decreases the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex.

  5. An efficient optical-electrochemical dual probe for highly sensitive recognition of dopamine based on terbium complex functionalized reduced graphene oxide.

    PubMed

    Zhou, Zhan; Wang, Qianming

    2014-05-07

    A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA).

  6. Potentiometric Determination of Phytic Acid and Investigations of Phytate Interactions with Some Metal Ions.

    PubMed

    Marolt, Gregor; Pihlar, Boris

    2015-01-01

    Determination of correct amount (concentration) of phytic acid is of vital importance when dealing with protonation and/or metal complexation equilibria. A novel approach for precise and reliable assay of phytic acid, based on the difference between end points by potentiometric titration, has been presented. Twelve phytic acid protons are classified into three groups of acidity, which enables detection of 2 to 3 distinct equivalent points (EPs) depending on experimental conditions, e.g. counter-ion concentration. Using the differences between individual EPs enables correct phytate determination as well as identification of potential contamination and/or determination of initial protonation degree. Impact of uncertainty of phytate amount on the calculation of protonation constants has been evaluated using computer simulation program (Hyperquad2013). With the analysis of titration curves different binding sites on phytate ligand have been proposed for complexation of Ca2+ and Fe3+ ions.

  7. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Zhao, Liangliang; Wu, Xia; Huang, Fei; Wang, Minqin; Liu, Xiaodan

    2014-03-01

    It is found that the plasmon effect of silver nanoparticles (AgNPs) helps to enhance the fluorescence intensity of the quercetin (Qu) and nucleic acids system. Qu exhibited strong fluorescence enhancement when it bound to nucleic acids in the presence of AgNPs. Based on this, a sensitive method for the determination of nucleic acids was developed. The detection limits for the nucleic acids (S/N = 3) were reduced to the ng mL-1 level. The interaction mechanism of the AgNPs-fish sperm DNA (fsDNA)-Qu system was also investigated in this paper. This complex system of Qu and AgNPs was also successfully used for the detection of nucleic acids in agarose gel electrophoresis analysis. Preliminary results indicated that AgNPs also helped to improve sensitivity in the fluorescence image analysis of Qu combined with cellular contents in Arabidopsis thaliana protoplasts.

  8. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  9. New Role of Flavin as a General Acid-Base Catalyst with No Redox Function in Type 2 Isopentenyl-diphosphate Isomerase*S⃞

    PubMed Central

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-01-01

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes. PMID:19158086

  10. New role of flavin as a general acid-base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase.

    PubMed

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-Ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-04-03

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes.

  11. Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes.

    PubMed

    Wang, Yongxiang; Li, Jishan; Wang, Hao; Jin, Jianyu; Liu, Jinhua; Wang, Kemin; Tan, Weihong; Yang, Ronghua

    2010-08-01

    Conformationally constraint nucleic acid probes were usually designed by forming an intramolecular duplex based on Watson-Crick hydrogen bonds. The disadvantages of these approaches are the inflexibility and instability in complex environment of the Watson-Crick-based duplex. We report that this hydrogen bonding pattern can be replaced by metal-ligation between specific metal ions and the natural bases. To demonstrate the feasibility of this principle, two linear oligonucleotides and silver ions were examined as models for DNA hybridization assay and adenosine triphosphate detection. The both nucleic acids contain target binding sequences in the middle and cytosine (C)-rich sequences at the lateral portions. The strong interaction between Ag(+) ions and cytosines forms stable C-Ag(+)-C structures, which promises the oligonucleotides to form conformationally constraint formations. In the presence of its target, interaction between the loop sequences and the target unfolds the C-Ag(+)-C structures, and the corresponding probes unfolding can be detected by a change in their fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using Ag(+) ion complexes instead of traditional Watson-Crick-based duplex. In particular, the intrinsic feature of the metal-ligation motif facilitates the design of functional nucleic acids probes by independently varying the concentration of Ag(+) ions in the medium.

  12. Hollow porous ionic liquids composite polymers based solid phase extraction coupled online with high performance liquid chromatography for selective analysis of hydrophilic hydroxybenzoic acids from complex samples.

    PubMed

    Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing

    2017-02-10

    Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM + Cl - ) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Changes in the electric dipole vector of human serum albumin due to complexing with fatty acids.

    PubMed Central

    Scheider, W; Dintzis, H M; Oncley, J L

    1976-01-01

    The magnitude of the electric dipole vector of human serum albumin, as measured by the dielectric increment of the isoionic solution, is found to be a sensitive, monotonic indicator of the number of moles (up to at least 5) of long chain fatty acid complexed. The sensitivity is about three times as great as it is in bovine albumin. New methods of analysis of the frequency dispersion of the dielectric constant were developed to ascertain if molecular shape changes also accompany the complexing with fatty acid. Direct two-component rotary diffusion constant analysis is found to be too strongly affected by cross modulation between small systematic errors and physically significant data components to be a reliable measure of structural modification. Multicomponent relaxation profiles are more useful as recognition patterns for structural comparisons, but the equations involved are ill-conditioned and solutions based on standard least-squares regression contain mathematical artifacts which mask the physically significant spectrum. By constraining the solution to non-negative coefficients, the magnitude of the artifacts is reduced to well below the magnitudes of the spectral components. Profiles calculated in this way show no evidence of significant dipole direction or molecular shape change as the albumin is complexed with 1 mol of fatty acid. In these experiments albumin was defatted by incubation with adipose tissue at physiological pH, which avoids passing the protein through the pH of the N-F transition usually required in defatting. Addition of fatty acid from soluion in small amounts of ethanol appears to form a complex indistinguishable from the "native" complex. PMID:6087

  14. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    PubMed Central

    Topham, Christopher M.; Smith, Jeremy C.

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNA·DNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs. PMID:17071666

  15. Studies related to primitive chemistry. A proton and nitrogen-14 nuclear magnetic resonance amino acid and nucleic acid constituents and a and their possible relation to prebiotic

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.; Cohen, E. A.; Shiller, A. M.; Chan, S. I.

    1973-01-01

    Preliminary proton nuclear magnetic resonance (NMR) studies were made to determine the applicability of this technique for the study of interactions between monomeric and polymeric amino acids with monomeric nucleic acid bases and nucleotides. Proton NMR results for aqueous solutions (D2O) demonstrated interactions between the bases cytosine and adenine and acidic and aromatic amino acids. Solutions of 5'-AMP admixed with amino acids exhibited more complex behavior but stacking between aromatic rings and destacking at high amino acids concentration was evident. The multisite nature of 5'-AMP was pointed out. Chemical shift changes for adenine and 5'-AMP with three water soluble polypeptides demonstrated that significant interactions exist. It was found that the linewidth-pH profile of each amino acid is unique. It is concluded that NMR techniques can give significant and quantitative data on the association of amino acid and nucleic acid constituents.

  16. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  17. Spectrophotometric determination of uric acid and some redeterminations of its solubility

    USGS Publications Warehouse

    Norton, D.R.; Plunkett, M.A.; Richards, F.A.

    1954-01-01

    The present study was initiated in order to develop a rapid and accurate method for the determination of uric acid in fresh, brackish, and sea water. It was found that the spectrophotometric determination of uric acid based upon its reaction with arsenophosphotungstic acid reagent in the presence of cyanide ion meets this objective. The absorbancy of the blue complex was measured at 890 m??. Slight variations from Beer's law were generally found. The results show the effects of pH, reaction time, concentration of reagents, and temperature upon color development and precipitate formation. Disodium dihydrogen ethylenediamine tetraacetate (Versene) was used as a buffering and complexirig agent. The results are significant in that they give the absorption spectrum of the blue complex and the effects of variables upon its absorbancy. Studies were made with the method to determine the stability of reagents and standard solutions and to determine the rate of bacterial decomposition of uric acid. Measurements of the solubility of uric acid are reported.

  18. Complexes of oxovanadium(IV), dioxovanadium(V) and dioxouranium(VI) with aminoacids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lagrange, P.; Schneider, M.; Lagrange, J.

    1998-11-01

    The equilibria between three oxocations (VO2+, VO2+ and UO22+) and several ?- aminoacids (glycine, serine, asparagine, lysine, aspartic acid and glutamic acid) are studied in aqueous solution. Stoichiometry and stability of the complexes formed are determined from a combination of potentiometric and spectroscopic measurements. Solution structures of the different complexes are proposed based on the thermodynamic results. The oxovanadium(IV) complexes appear less stable than the corresponding dioxouranium(VI) and dioxovanadium(V) complexes. VO2+ can be bound to only one ligand to form monodentate or chelate complexes. UO22+ and VO2+ cations may be chelated by one or two ligands. Les équilibres entre trois oxocations, VO2+, VO2+ et UO22+ et plusieurs α-aminoacides, glycine, sérine, asparagine, lysine et acides aspartique et glutamique, sont étudiés en solution aqueuse par potentiométrie couplée à la spectrophotométrie. Les complexes de VO2+ sont moins stables que les complexes de VO2+ et UO22+ de même stoechiométrie. VO2+ ne peut se lier qu'à un seul ligand pour former soit des complexes monodentés, soit des chélates. UO22+ et VO2+ peuvent être chélatés par un ou deux ligands. Des structures hypothétiques en solution sont proposées.

  19. Guiding principles for peptide nanotechnology through directed discovery.

    PubMed

    Lampel, A; Ulijn, R V; Tuttle, T

    2018-05-21

    Life's diverse molecular functions are largely based on only a small number of highly conserved building blocks - the twenty canonical amino acids. These building blocks are chemically simple, but when they are organized in three-dimensional structures of tremendous complexity, new properties emerge. This review explores recent efforts in the directed discovery of functional nanoscale systems and materials based on these same amino acids, but that are not guided by copying or editing biological systems. The review summarises insights obtained using three complementary approaches of searching the sequence space to explore sequence-structure relationships for assembly, reactivity and complexation, namely: (i) strategic editing of short peptide sequences; (ii) computational approaches to predicting and comparing assembly behaviours; (iii) dynamic peptide libraries that explore the free energy landscape. These approaches give rise to guiding principles on controlling order/disorder, complexation and reactivity by peptide sequence design.

  20. Rhodium-catalyzed 1,4-addition of arylboronic acids to alpha,beta-unsaturated carbonyl compounds: large accelerating effects of bases and ligands.

    PubMed

    Itooka, Ryoh; Iguchi, Yuki; Miyaura, Norio

    2003-07-25

    The effects of ligands and bases in the rhodium(I)-catalyzed 1,4-addition of arylboronic acids to alpha,beta-unsaturated carbonyl compounds were reinvestigated to carry out the reaction under mild conditions. Rhodium(I) complexes possessing a 1,5-cyclooctadiene (cod) and a hydroxo ligand such as [RhOH(cod)](2) exhibited excellent catalyst activities compared to those of the corresponding rhodium-acac or -chloro complexes and their phosphine derivatives. The reaction was further accelerated in the presence of KOH, thus allowing the 1,4-addition even at 0 degrees C. A cationic rhodium(I)-(R)-binap complex, [Rh(R-binap)(nbd)]BF(4), catalyzed the reaction at 25-50 degrees C in the presence of Et(3)N with high enantioselectivities of up to 99% ee for alpha,beta-unsaturated ketones, 92% for aldehydes, 94% for esters, and 92% for amides.

  1. Identification of Bacteriophage N4 Virion RNA Polymerase-Nucleic Acid Interactions in Transcription Complexes*

    PubMed Central

    Davydova, Elena K.; Kaganman, Irene; Kazmierczak, Krystyna M.; Rothman-Denes, Lucia B.

    2009-01-01

    Bacteriophage N4 mini-virion RNA polymerase (mini-vRNAP), the 1106-amino acid transcriptionally active domain of vRNAP, recognizes single-stranded DNA template-containing promoters composed of conserved sequences and a 3-base loop–5-base pair stem hairpin structure. The major promoter recognition determinants are a purine located at the center of the hairpin loop (–11G) and a base at the hairpin stem (–8G). Mini-vRNAP is an evolutionarily highly diverged member of the T7 family of RNAPs. A two-plasmid system was developed to measure the in vivo activity of mutant mini-vRNAP enzymes. Five mini-vRNAP derivatives, each containing a pair of cysteine residues separated by ∼100 amino acids and single cysteine-containing enzymes, were generated. These reagents were used to determine the smallest catalytically active polypeptide and to map promoter, substrate, and RNA-DNA hybrid contact sites to single amino acid residues in the enzyme by using end-labeled 5-iododeoxyuridine- and azidophenacyl-substituted oligonucleotides, cross-linkable derivatives of the initiating nucleotide, and RNA products with 5-iodouridine incorporated at specific positions. Localization of functionally important amino acid residues in the recently determined crystal structures of apomini-vRNAP and the mini-vRNAP-promoter complex and comparison with the crystal structures of the T7 RNAP initiation and elongation complexes allowed us to predict major rearrangements in mini-vRNAP in the transition from transcription initiation to elongation similar to those observed in T7 RNAP, a task otherwise precluded by the lack of sequence homology between N4 mini-vRNAP and T7 RNAP. PMID:19015264

  2. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free amino acids. Complex amino acid precursors with high molecular weights could be formed in simulated dense cloud environments. They would have been altered in the early solar system by irradiation with soft X-rays from the young Sun, which caused increase of hydrophobicity of the organics of interstellar origin. They were taken up by parent bodies of meteorites or comets, and could have been delivered to the Earth by meteorites, comets and cosmic dusts. Cosmic dusts were so small that they were directly exposed to the solar radiation, which might be critical for the survivability of organics in them. In order to evaluate the roles of space dusts as carriers of bioorganic compounds to the primitive Earth, we are planning the Tanpopo Mission, where collection of cosmic dusts by using ultra low-density aerogel, and exposure of amino acids and their precursors for years are planned by utilizing the Japan Experimental Module / Exposed Facility of the ISS [2]. The mission is now scheduled to start in 2013. We thank Dr. Katsunori Kawasaki of Tokyo Institute of Technology, and Dr. Satoshi Yoshida of National Institute of Radiological Sciences for their help in particles irradiation. We also thank to the members of JAXA Tanpopo Working Group (PI: Prof. Akihiko Yamagishi) for their helpful discussion. [1] K. Kobayashi, et al., in ``Astrobiology: from Simple Molecules to Primitive Life,'' ed. by V. Basiuk, American Scientific Publishers, Valencia, CA, (2010), pp. 175-186. [2] K. Kobayashi, et al., Trans. Jpn. Soc. Aero. Space Sci., in press (2012).

  3. Nucleic acid binding drugs. Part XIII. Molecular motion in a drug-nucleic acid model system: thermal motion analysis of a proflavine-dinucleoside crystal structure.

    PubMed Central

    Aggarwal, A K; Neidle, S

    1985-01-01

    The high-resolution crystal structure of the intercalation complex between proflavine and cytidylyl-3',5'-guanosine (CpG) has been studied by thermalmotion analysis. This has provided information on the translational and librational motions of individual groups in the complex. Many of these motions are similar to, though of larger magnitude than in uncomplexed dinucleosides. Pronounced librational effects were observed along the base pairs and in the plane of the drug chromophore. PMID:4034394

  4. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    DOEpatents

    Horwitz, Earl Philip; Gatrone, Ralph Carl; Nash, Kenneth LaVerne

    1997-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  5. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    PubMed Central

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  6. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance.

    PubMed

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance.

  7. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nicotinamide-ascorbic acid complex. 172.315... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed conditions...

  8. Robust Structure and Reactivity of Aqueous Arsenous Acid-Platinum(II) Anticancer Complexes**

    PubMed Central

    Miodragović, Ðenana U.; Quentzel, Jeremy A.; Kurutz, Josh W.; Stern, Charlotte L.; Ahn, Richard W.; Kandela, Irawati; Mazar, Andrew; O’Halloran, Thomas V.

    2014-01-01

    The first molecular adducts of platinum and arsenic based anticancer drugs - arsenoplatins - show unanticipated structure, substitution chemistry, and cellular cytotoxicity. The PtII-AsIII bonds in these complexes are stable in aqueous solution and strongly influence the lability of the trans ligand. PMID:24038962

  9. Derivatization of DNAs with Selenium at 6-Position of Guanine for Function and Crystal Structure Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salon, J.; Jiang, J; Sheng, J

    2008-01-01

    To investigate nucleic acid base pairing and stacking via atom-specific mutagenesis and crystallography, we have synthesized for the first time the 6-Se-deoxyguanosine phosphoramidite and incorporated it into DNAs via solid-phase synthesis with a coupling yield over 97%. We found that the UV absorption of the Se-DNAs red-shifts over 100 nm to 360 nm ({Epsilon} = 2.3 x 10{sup 4} M{sup -1} cm{sup -1}), the Se-DNAs are yellow colored, and this Se modification is relatively stable in water and at elevated temperature. Moreover, we successfully crystallized a ternary complex of the Se-G-DNA, RNA and RNase H. The crystal structure determination andmore » analysis reveal that the overall structures of the native and Se-modified nucleic acid duplexes are very similar, the selenium atom participates in a Se-mediated hydrogen bond (Se H-N), and the {sup Se}G and C form a base pair similar to the natural G-C pair though the Se-modification causes the base-pair to shift (approximately 0.3 {angstrom}). Our biophysical and structural studies provide new insights into the nucleic acid flexibility, duplex recognition and stability. Furthermore, this novel selenium modification of nucleic acids can be used to investigate chemogenetics and structure of nucleic acids and their protein complexes.« less

  10. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: synthesis, spectral characterization, antimicrobial and nuclease studies.

    PubMed

    Subbaraj, P; Ramu, A; Raman, N; Dharmaraja, J

    2014-01-03

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA=Schiff base and B=2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, (1)H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, (1)H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism.

    PubMed

    Gregg, Katie J; Suits, Michael D L; Deng, Lehua; Vocadlo, David J; Boraston, Alisdair B

    2015-10-16

    O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the -1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Direct Spectroscopic Study of Reconstituted Transcription Complexes Reveals That Intrinsic Termination Is Driven Primarily by Thermodynamic Destabilization of the Nucleic Acid Framework*S

    PubMed Central

    Datta, Kausiki; von Hippel, Peter H.

    2008-01-01

    Changes in near UV circular dichroism (CD) and fluorescence spectra of site-specifically placed pairs of 2-aminopurine residues have been used to probe the roles of the RNA hairpin and the RNA-DNA hybrid in controlling intrinsic termination of transcription. Functional transcription complexes were assembled directly by mixing preformed nucleic acid scaffolds of defined sequence with T7 RNA polymerase (RNAP). Scaffolds containing RNA hairpins immediately upstream of a GC-rich hybrid formed complexes of reduced stability, whereas the same hairpins adjacent to a hybrid of rU-dA base pairs triggered complex dissociation and transcript release. 2-Aminopurine probes at the upstream ends of the hairpin stems show that the hairpins open on RNAP binding and that stem re-formation begins after one or two RNA bases on the downstream side of the stem have emerged from the RNAP exit tunnel. Hairpins directly adjacent to the RNA-DNA hybrid weaken RNAP binding, decrease elongation efficiency, and disrupt the upstream end of the hybrid as well as interfere with the movement of the template base at the RNAP active site. Probing the edges of the DNA transcription bubble demonstrates that termination hairpins prevent translocation of the RNAP, suggesting that they transiently “lock” the polymerase to the nucleic acid scaffold and, thus, hold the RNA-DNA hybrid “in frame.” At intrinsic terminators the weak rU-dA hybrid and the adjacent termination hairpin combine to destabilize the elongation complex sufficiently to permit significant transcript release, whereas hairpin-dependent pausing provides time for the process to go to completion. PMID:18070878

  13. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1997-10-14

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  14. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  15. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  16. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal

    PubMed Central

    2017-01-01

    Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6′-dihydroxybipyridine (6,6′-dhbp)) for both their proton-responsive features and for metal–ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N-heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-pyOR)Cl]OTf complexes where R = tBu (1), H (2), or Me (3). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ir) or methoxy (5Ir); 4Ir was reported previously, but 5Ir is new. The analogous ruthenium complexes were also tested using [(η6-cymene)Ru(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ru) or methoxy (5Ru); 4Ru and 5Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1, 2, 3, 5Ir, and for two [Ag(NHC-pyOR)2]OTf complexes 6 (R = tBu) and 7 (R = Me). The aqueous catalytic studies of both CO2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1–5. In general, NHC-pyOR complexes 1–3 were modest precatalysts for both reactions. NHC complexes 1–3 all underwent transformations under basic CO2 hydrogenation conditions, and for 3, we trapped a product of its transformation, 3SP, which we characterized crystallographically. For CO2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy (4Ir) is 5–8 times more active than x = methoxy (5Ir). Notably, ruthenium complex 4Ru showed 95% of the activity of 4Ir. For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4Ir ≫ 4Ru and 4Ir ≈ 5Ir. Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6′-dhbp are deprotonated and alkali metals can bind and help to activate CO2. Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO2 hydrogenation and formic acid dehydrogenation. PMID:29540958

  17. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal.

    PubMed

    Siek, Sopheavy; Burks, Dalton B; Gerlach, Deidra L; Liang, Guangchao; Tesh, Jamie M; Thompson, Courtney R; Qu, Fengrui; Shankwitz, Jennifer E; Vasquez, Robert M; Chambers, Nicole; Szulczewski, Gregory J; Grotjahn, Douglas B; Webster, Charles Edwin; Papish, Elizabeth T

    2017-03-27

    Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO 2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6'-dihydroxybipyridine (6,6'-dhbp)) for both their proton-responsive features and for metal-ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N -heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-py OR )Cl]OTf complexes where R = t Bu ( 1 ), H ( 2 ), or Me ( 3 ). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ir ) or methoxy ( 5 Ir ); 4 Ir was reported previously, but 5 Ir is new. The analogous ruthenium complexes were also tested using [(η 6 -cymene)Ru(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ru ) or methoxy ( 5 Ru ); 4 Ru and 5 Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1 , 2 , 3 , 5 Ir , and for two [Ag(NHC-py OR ) 2 ]OTf complexes 6 (R = t Bu) and 7 (R = Me). The aqueous catalytic studies of both CO 2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1 - 5 . In general, NHC-py OR complexes 1 - 3 were modest precatalysts for both reactions. NHC complexes 1 - 3 all underwent transformations under basic CO 2 hydrogenation conditions, and for 3 , we trapped a product of its transformation, 3 SP , which we characterized crystallographically. For CO 2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy ( 4 Ir ) is 5-8 times more active than x = methoxy ( 5 Ir ). Notably, ruthenium complex 4 Ru showed 95% of the activity of 4 Ir . For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4 Ir ≫ 4 Ru and 4 Ir ≈ 5 Ir . Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6'-dhbp are deprotonated and alkali metals can bind and help to activate CO 2 . Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO 2 hydrogenation and formic acid dehydrogenation.

  18. Effect of aluminum, zinc, copper, and lead on the acid-base properties of water extracts from soils

    NASA Astrophysics Data System (ADS)

    Motuzova, G. V.; Makarychev, I. P.; Petrov, M. I.

    2013-01-01

    The potentiometric titration of water extracts from the upper horizons of taiga-zone soils by salt solutions of heavy metals (Pb, Cu, and Zn) showed that their addition is an additional source of the extract acidity because of the involvement of the metal ions in complexation with water-soluble organic substances (WSOSs). At the addition of 0.01 M water solutions of Al(NO3)3 to water extracts from soils, Al3+ ions are also involved in complexes with WSOSs, which is accompanied by stronger acidification of the extracts from the upper horizon of soddy soils (with a near-neutral reaction) than from the litter of bog-podzolic soil (with a strongly acid reaction). The effect of the Al3+ hydrolysis on the acidity of the extracts is insignificantly low in both cases. A quantitative relationship was revealed between the release of protons and the ratio of free Cu2+ ions to those complexed with WSOSs at the titration of water extracts from soils by a solution of copper salt.

  19. Spectroscopic Study of the Binding of Netropsin and Hoechst 33258 to Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Vardevanyan, P. O.; Parsadanyan, M. A.; Antonyan, A. P.; Sahakyan, V. G.

    2018-05-01

    The interaction of groove binding compounds — peptide antibiotic (polyamide) netropsin and fluorescent dye (bisbenzimidazole) Hoechst 33258 — with the double-stranded DNA and synthetic double-stranded polynucleotide poly(rA)-poly(rU) has been studied by spectrophotometry. Absorption spectra of these ligand complexes with nucleic acids have been obtained. Spectral changes at the complexation of individual ligands with the mentioned nucleic acids reveal the similarity of binding of each of these ligands with both DNA and RNA. Based on the spectroscopic measurements, the binding parameters of netropsin and Hoechst 33258 binding to DNA and poly(rA)-poly(rU) - K and n, as well as the thermodynamic parameters ΔS, ΔG, and ΔH have been determined. It was found that the binding of Hoechst 33258 to both nucleic acids is accompanied by a positive change in enthalpy, while in the case of netropsin the change in enthalpy is negative. Moreover, the contribution of entropy to the formation of the complexes is more pronounced in the case of Hoechst 33258.

  20. Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water.

    PubMed

    Prabhu, Subbaiah Muthu; Meenakshi, Sankaran

    2015-04-20

    The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods

    PubMed Central

    Hu, Marian Y; Hwang, Pung-Pung; Tseng, Yung-Che

    2015-01-01

    Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4+) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems. PMID:26716070

  2. Electrolyte and Acid-Base Disturbances in End-Stage Liver Disease: A Physiopathological Approach.

    PubMed

    Jiménez, José Víctor; Carrillo-Pérez, Diego Luis; Rosado-Canto, Rodrigo; García-Juárez, Ignacio; Torre, Aldo; Kershenobich, David; Carrillo-Maravilla, Eduardo

    2017-08-01

    Electrolyte and acid-base disturbances are frequent in patients with end-stage liver disease; the underlying physiopathological mechanisms are often complex and represent a diagnostic and therapeutic challenge to the physician. Usually, these disorders do not develop in compensated cirrhotic patients, but with the onset of the classic complications of cirrhosis such as ascites, renal failure, spontaneous bacterial peritonitis and variceal bleeding, multiple electrolyte, and acid-base disturbances emerge. Hyponatremia parallels ascites formation and is a well-known trigger of hepatic encephalopathy; its management in this particular population poses a risky challenge due to the high susceptibility of cirrhotic patients to osmotic demyelination. Hypokalemia is common in the setting of cirrhosis: multiple potassium wasting mechanisms both inherent to the disease and resulting from its management make these patients particularly susceptible to potassium depletion even in the setting of normokalemia. Acid-base disturbances range from classical respiratory alkalosis to high anion gap metabolic acidosis, almost comprising the full acid-base spectrum. Because most electrolyte and acid-base disturbances are managed in terms of their underlying trigger factors, a systematic physiopathological approach to their diagnosis and treatment is required.

  3. The luminescent properties of polyethylene films with admixtures of luminophores based on europium compounds

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.; Karasev, V. E.

    2008-11-01

    Polyethylene films activated with europium(III) complexes with carboxylic acids and Eu(L)3 · nD · xH2O + ANT compositions, where L is the trifluoroacetic, toluyl, or cinnamic acid anion and ANT is anthranilic acid, were prepared. The intensity of luminescence of the polymeric compositions depended on the content of luminophores (molar ratio between europium compounds and anthranilic acid). An analysis of the excitation spectra showed that, in polymer—Eu(L)3 · nPhen · xH2O + ANT compositions, there was effective energy transfer from phenanthroline to anthranilic acid levels.

  4. Spectroscopic study on variations in illite surface properties after acid-base titration.

    PubMed

    Liu, Wen-xin; Coveney, R M; Tang, Hong-xiao

    2003-07-01

    FT-IR, Raman microscopy, XRD, 29Si and 27Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid-base potentiometric titration. The characteristic XRD lines indicated the presence of surface Al-Si complexes, preferable to Al(OH)3 precipitates. In the microscopic Raman spectra, the vibration peaks of Si-O and Al-O bonds diminished as a result of treatment with acid, then increased after hydroxide back titration. The varied ratio of signal intensity between (IV)Al and (VI)Al species in 27Al MAS NMR spectra, together with the stable BET surface area after acidimetric titration, suggested that edge faces and basal planes in the layer structure of illite participated in dissolution of structural components. The combined spectroscopic evidence demonstrated that the reactions between illite surfaces and acid-leaching silicic acid and aluminum ions should be considered in the model description of surface acid-base properties of the aqueous illite.

  5. Carbon Nanotube Formic Acid Sensors Using a Nickel Bis( ortho-diiminosemiquinonate) Selector.

    PubMed

    Lin, Sibo; Swager, Timothy M

    2018-03-23

    Formic acid is corrosive, and a sensitive and selective sensor could be useful in industrial, medical, and environmental settings. We present a chemiresistor for detection of formic acid composed of single-walled carbon nanotubes (CNTs) and nickel bis( ortho-diiminosemiquinonate) (1), a planar metal complex that can act as a ditopic hydrogen-bonding selector. Formic acid is detected in concentrations as low as 83 ppb. The resistance of the material decreases on exposure to formic acid, but slightly increases on exposure to acetic acid. We propose that 1 assists in partial protonation of the CNT by formic acid, but the response toward acetic acid is dominated by inter-CNT swelling. This technology establishes CNT-based chemiresistive discrimination between formic and acetic acid vapors.

  6. A stimuli-responsive fluorescence platform for simultaneous determination of D-isoascorbic acid and Tartaric acid based on Maillard reaction product

    NASA Astrophysics Data System (ADS)

    Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong

    2018-05-01

    An activatable fluorescence monitoring platform based on a novel Maillard reaction product from D-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of D-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO4, resulting from a new complex (GLA-KMnO4) formation between GLA and KMnO4. Upon addition of D-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for D-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for D-isoascorbic acid or tartaric acid, because the detection limits were 5.9 μM and 21.5 μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of D-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results.

  7. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets.

    PubMed

    Shin, John J; Aftab, Qurratulain; Austin, Pamela; McQueen, Jennifer A; Poon, Tak; Li, Shu Chen; Young, Barry P; Roskelley, Calvin D; Loewen, Christopher J R

    2016-09-01

    A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C-COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial respiratory chain complexes required for their proliferation. © 2016. Published by The Company of Biologists Ltd.

  8. In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands

    NASA Astrophysics Data System (ADS)

    Ay, Burak; Karaca, Serkan; Yildiz, Emel; Lopez, Valerie; Nanao, Max H.; Zubieta, Jon

    2016-01-01

    Four novel metal-organic frameworks,[Cu2Cl2(pyrz)]n (1) and (H2pip)n[Ln2(pydc)4(H2O)2]n (Ln=Ce (2), Pr (3) and Eu (4), H2pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H2pydc=2,6-pyridinedicarboxylic acid, H2pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln-O-Ln chains. All the complexes show high thermal stability. The complexes 1-3 exhibit luminescence emission bands at 584, 598 and 614 nm at room temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.

  9. Protic NNN and NCN Pincer-Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid.

    PubMed

    Nakahara, Yoshiko; Toda, Tatsuro; Matsunami, Asuka; Kayaki, Yoshihito; Kuwata, Shigeki

    2018-01-04

    NNN and NCN pincer-type ruthenium(II) complexes featuring two protic pyrazol-3-yl arms with a trifluoromethyl (CF 3 ) group at the 5-position were synthesized and structurally characterized to evaluate the impact of the substitution on the properties and catalysis. The increased Brønsted acidity by the highly electron-withdrawing CF 3 pendants was demonstrated by protonation-deprotonation experiments. By contrast, the IR spectra of the carbonyl derivatives as well as the cyclic voltammogram indicated that the electron density of the ruthenium atom is negligibly influenced by the CF 3 group. Catalysis of these complexes in the decomposition of formic acid to dihydrogen and carbon dioxide was also examined. The NNN pincer-type complex 1 a with the CF 3 group exhibited a higher catalytic activity than the tBu-substituted analogue 1 b. In addition, the bis(CF 3 -pyrazolato) ammine derivative 4 catalyzed the reaction even in the absence of base additives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    PubMed

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  11. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  12. Enhancement of efficiency of chitosan-based complexes for gene transfection with poly(γ-glutamic acid) by augmenting their cellular uptake and intracellular unpackage.

    PubMed

    Liao, Zi-Xian; Peng, Shu-Fen; Chiu, Ya-Ling; Hsiao, Chun-Wen; Liu, Hung-Yi; Lim, Woon-Hui; Lu, Hsiang-Ming; Sung, Hsing-Wen

    2014-11-10

    As a cationic polysaccharide, chitosan (CS) has been identified for its potential use as a non-viral vector for exogenous gene transfection. However, owing to their electrostatic interactions, CS complexes may cause difficulties in gene release upon their arrival at the site of action, thus limiting their transfection efficiency. In this work, an attempt is made to facilitate the release of a gene by incorporating a negatively-charged poly(γ-glutamic acid) (γPGA) into CS complexes in order to diminish their attractive interactions. The mechanisms of exploiting γPGA to enhance the transfection efficiency of CS complexes are elucidated. The feasibility of using this CS/γPGA-based system for DNA or siRNA transfer is explored as well. Additionally, potential of the CS/γPGA formulation to deliver disulfide bond-conjugated dual PEGylated siRNAs for multiple gene silencing is also examined. Moreover, the genetic use of pKillerRed-mem, delivered using complexes of CS and γPGA, to express a membrane-targeted KillerRed as an intrinsically generated photosensitizer for photodynamic therapy is described. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation

    NASA Astrophysics Data System (ADS)

    Horvath, Viktor; Epstein, Irving R.

    2018-04-01

    Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.

  14. Glycine and metformin as new counter ions for mono and dinuclear vanadium(V)-dipicolinic acid complexes based on the insulin-enhancing anions: Synthesis, spectroscopic characterization and crystal structure

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Rezvani, Ali Reza; Ghasemi, Khaled; Graiff, Claudia

    2018-02-01

    Complexes [VO(dipic) (H2O)2]·2H2O (1), [H2Met][V2O4(dipic)2] (2) and [HGly][VO2(dipic)] (3), where H2dipic = 2,6-pyridinedicarboxylic acid, Met = Metformin (N,N-dimethylbiguanide) and Gly = glycine, were synthesized. The three complexes were characterized by elemental analysis, FTIR, 1H and 13C NMR, and UV-Vis spectroscopy. Solid-state structures of (2) and (3) were determined by single-crystal X-ray diffraction analysis. The coordination geometry around the vanadium atoms in 2 is octahedral, while the coordination geometry in 3 is between trigonal bipyramidal and squared pyramidal. In the binuclear complex 2 and mononuclear complex 3, metformin and glycine are diprotonated and monoprotonated respectively, and act as a counter ion. The redox behavior of the complexes was also investigated by cyclic voltammetry.

  15. Organoboron compounds as Lewis acid receptors of fluoride ions in polymeric membranes.

    PubMed

    Jańczyk, Martyna; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Wróblewski, Wojciech

    2012-07-06

    Newly synthesized organoboron compounds - 4-octyloxyphenylboronic acid (OPBA) and pinacol ester of 2,4,6-trifluorophenylboronic acid (PE-PBA) - were applied as Lewis acid receptors of fluoride anions. Despite enhanced selectivity, the polymer membrane electrodes containing the lipophilic receptor OPBA exhibited non-Nernstian slopes of the responses toward fluoride ions in acidic conditions. Such behavior was explained by the lability of the B-O bond in the boronic acids, and the OH(-)/F(-) exchange at higher fluoride content in the sample solution. In consequence, the stoichiometry of the OPBA-fluoride complexes in the membrane could vary during the calibration, changing the equilibrium concentration of the primary anion in membrane and providing super-Nernstian responses. The proposed mechanism was supported by (19)F NMR studies, which indicated that the fluoride complexation proceeds more effectively in acidic solution leading mainly to PhBF(3)(-) species. Finally, the performances of the membranes based on the phenylboronic acid pinacol ester, with a more stable B-O bond, were tested. As it was expected, Nernstian fluoride responses were recorded for such membranes with worsened fluoride selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Nucleic acid detection using BRET-beacons based on bioluminescent protein-DNA hybrids.

    PubMed

    Engelen, Wouter; van de Wiel, Kayleigh M; Meijer, Lenny H H; Saha, Bedabrata; Merkx, Maarten

    2017-03-02

    Bioluminescent molecular beacons have been developed using a modular design approach that relies on BRET between the bright luciferase NanoLuc and a Cy3 acceptor. While classical molecular beacons are hampered by background fluorescence and scattering, these BRET-beacons allow detection of low pM concentrations of nucleic acids directly in complex media.

  17. Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction.

    PubMed

    Adam, Mohamed Shaker S; Elsawy, Hany

    2018-05-04

    New series of oxo-vanadium N-salicyledieneamino acid Schiff base complexes are synthesized and characterized. They are synthesized from the reaction of sodium salicylaldehyde-5-sulfonate, some amino acids, alanine (VOHL1), leucine (VOHL2) or glycine (VOHL3) in an aqueous media, and leucine (VOHLpy1) or tryptophan (VOHLpy2) in pyridine with vanadyl acetylacetonate. The complexes are characterized by EA, TGA, IR, UV-Visible and mass spectra, conductivity and magnetic measurements. The biological activity of the VO-complexes shows that VOHL1, VOHL2 and VOHL3 exhibit anti-proliferative effect and may be used as anticancer drugs. VO-complexes manifest high toxicity, except VOHL2 is less toxic, and could be applied for the human being. VOHL1, VOHL2 and VOHL3 display remarkable SOD like potential and act as high inhibiting reagents. VOHLpy1 and VOHLpy2 show low inhibiting potentials. VO-complexes have good anti-oxidant effect, in which VOHL3 affords the best antioxidant activity. The interaction between VO-complexes and DNA is studied spectrophotometrically and by gel electrophoresis. Binding constants and spectrophotometric parameters indicate a strong interaction between VO-complexes and DNA. VO-complexes have respectable anti-bacterial and antifungal activities, where VOHL3 shows the maximum potential. DFT calculations of VOHL1 and VOHL3 were discussed in the light of their biological activity, which are convenient with the obtained results. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Mechanistic investigation of the formation of H2 from HCOOH with a dinuclear Ru model complex for formate hydrogen lyase.

    PubMed

    Tokunaga, Taisuke; Yatabe, Takeshi; Matsumoto, Takahiro; Ando, Tatsuya; Yoon, Ki-Seok; Ogo, Seiji

    2017-01-01

    We report the mechanistic investigation of catalytic H 2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.

  19. Intracellular delivery of universal proteins using a lysine headgroup containing cationic liposomes: deciphering the uptake mechanism.

    PubMed

    Sarker, Satya Ranjan; Hokama, Ryosuke; Takeoka, Shinji

    2014-01-06

    An amino acid-based cationic lipid having a TFA counterion (trifluoroacetic acid counterion) in the lysine headgroup was used to deliver functional proteins into human cervical cancer cells, HeLa, in the presence of serum. Proteins used in the study were fluorescein isothiocyanate (FITC) labeled bovine serum albumin, mouse anti-F actin antibody [NH3], and goat anti mouse IgG conjugated with FITC. The formation of liposome/protein complexes was confirmed using native polyacrylamide gel electrophoresis. Furthermore, the complexes were characterized in terms of their size and zeta potential at different pH values and found to be responsive to changes in pH. The highest delivery efficiency of the liposome/albumin complexes was 99% at 37 °C. The liposomes effectively delivered albumin and antibodies as confirmed by confocal laser scanning microscopy (CLSM). Inhibition studies showed that the cellular uptake mechanism of the complexes was via caveolae-mediated endocytosis, and the proteins were subsequently released from either the early endosomes or the caveosomes as suggested by CLSM. Thus, lysine-based cationic liposomes can be a useful tool for intracellular protein delivery.

  20. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2006-07-04

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  1. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2002-01-01

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  3. Simple and Rapid Determination of Ferulic Acid Levels in Food and Cosmetic Samples Using Paper-Based Platforms

    PubMed Central

    Tee-ngam, Prinjaporn; Nunant, Namthip; Rattanarat, Poomrat; Siangproh, Weena; Chailapakul, Orawon

    2013-01-01

    Ferulic acid is an important phenolic antioxidant found in or added to diet supplements, beverages, and cosmetic creams. Two designs of paper-based platforms for the fast, simple and inexpensive evaluation of ferulic acid contents in food and pharmaceutical cosmetics were evaluated. The first, a paper-based electrochemical device, was developed for ferulic acid detection in uncomplicated matrix samples and was created by the photolithographic method. The second, a paper-based colorimetric device was preceded by thin layer chromatography (TLC) for the separation and detection of ferulic acid in complex samples using a silica plate stationary phase and an 85:15:1 (v/v/v) chloroform: methanol: formic acid mobile phase. After separation, ferulic acid containing section of the TLC plate was attached onto the patterned paper containing the colorimetric reagent and eluted with ethanol. The resulting color change was photographed and quantitatively converted to intensity. Under the optimal conditions, the limit of detection of ferulic acid was found to be 1 ppm and 7 ppm (S/N = 3) for first and second designs, respectively, with good agreement with the standard HPLC-UV detection method. Therefore, these methods can be used for the simple, rapid, inexpensive and sensitive quantification of ferulic acid in a variety of samples. PMID:24077320

  4. A simple ratiometric fluorescent sensor for fructose based on complexation of 10-hydroxybenzo[h]quinoline with boronic acid

    NASA Astrophysics Data System (ADS)

    Li, Huihui; Yang, Cailing; Zhu, Xinyue; Zhang, Haixia

    2017-06-01

    A simple ratiometric fluorescent sensor for fructose was presented. It consisted of 10-hydroxybenzo[h]quinoline (HBQ) which showed emission at 572 nm and 3-pyridylboronic acid (PDBA) whose complex with HBQ gave emission at 500 nm. The reaction of fructose with PDBA inhibited the complexation of HBQ with PDBA, resulting in the change of dual-emission intensity ratio. The sensor well quantified fructose in the range of 0.015-2.5 mM with detection limit of 0.005 mM. Besides, this sensor exhibited excellent selectivity and was successfully applied to fructose detection in food. This work provides a simple ratiometric sensing platform for sensitive and selective detection of fructose.

  5. Trithiocyanurate complexes of iron, manganese and nickel and their anticholinesterase activity.

    PubMed

    Kopel, Pavel; Dolezal, Karel; Langer, Vratislav; Jun, Daniel; Adam, Vojtech; Kuca, Kamil; Kizek, Rene

    2014-04-08

    The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

  6. Structure of β- N-dimethylamino-4-dodecyloxypropiophenone complexes with di- and polycarboxylic acids

    NASA Astrophysics Data System (ADS)

    Lebedeva, Tamara L.; Shandryuk, George A.; Sycheva, Tatyana I.; Bezborodov, Vladimir S.; Talroze, Raissa V.; Platé, Nicolai A.

    1995-07-01

    The type of bonds responsible for the complexation of di- and polyacids with the tertiary amine β- N-dimethylamino-4-dodecyloxypropiophenone is studied by means of FTIR spectroscopy. The complexes are shown to be stable due to strong H-bonding with partial charge transfer. The characteristic composition for complexes of polyacrylic, polymethacrylic and malonic acids is calculated as 2:1 (number of carboxylic groups per number of amine molecules) whereas glutaric acid forms complexes of different composition including 1:1. The characteristic composition results from the structure of the initial acid. The structures of both the characteristic complex and "excess" acid are also discussed.

  7. Long-Term n-Caproic Acid Production from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction.

    PubMed

    Ge, Shijian; Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2015-07-07

    Multifunctional reactor microbiomes can elongate short-chain carboxylic acids (SCCAs) to medium-chain carboxylic acids (MCCAs), such as n-caproic acid. However, it is unclear whether this microbiome biotechnology platform is stable enough during long operating periods to consistently produce MCCAs. During a period of 550 days, we improved the operating conditions of an anaerobic bioreactor for the conversion of complex yeast-fermentation beer from the corn kernel-to-ethanol industry into primarily n-caproic acid. We incorporated and improved in-line, membrane liquid-liquid extraction to prevent inhibition due to undissociated MCCAs at a pH of 5.5 and circumvented the addition of methanogenic inhibitors. The microbiome accomplished several functions, including hydrolysis and acidogenesis of complex organic compounds and sugars into SCCAs, subsequent chain elongation with undistilled ethanol in beer, and hydrogenotrophic methanogenesis. The methane yield was 2.40 ± 0.52% based on COD and was limited by the availability of carbon dioxide. We achieved an average n-caproate production rate of 3.38 ± 0.42 g L(-1) d(-1) (7.52 ± 0.94 g COD L(-1) d(-1)) with an n-caproate yield of 70.3 ± 8.81% and an n-caproate/ethanol ratio of 1.19 ± 0.15 based on COD for a period of ∼55 days. The maximum production rate was achieved by increasing the organic loading rates in tandem with elevating the capacity of the extraction system and a change in the complex feedstock batch.

  8. [Role of the medium acidity in the complexes formation of pyropheophorbide a with albumin and lipoproteins].

    PubMed

    Golovina, G V; Ol'shevskaia, V A; Kalinina, V N; Shtil', A A; Kuz'min, V A

    2011-01-01

    The spectral characteristics of the photosensitizer pyropheophorbide a (PPP) complexes with its carriers, that is, serum albumin and low density lipoproteins, were investigated in aqueous solutions at pH 7.4 and 5.0. The acidic pH had no effect on the quantitative parameters of PPP binding to lipoproteins but reduces its affinity for albumin. Differential role of acidification in the binding of PPP to biomacromolecules should be considered in the design of PPP-based drugs given that pH is frequently lowered in the sites of the disease.

  9. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.

    PubMed

    Ge, Hongyu; Jing, Yuanyuan; Yang, Xinzheng

    2016-12-05

    A series of cobalt complexes with acylmethylpyridinol and aliphatic PNP pincer ligands are proposed based on the active site structure of [Fe]-hydrogenase. Density functional theory calculations indicate that the total free energy barriers of the hydrogenation of CO 2 and dehydrogenation of formic acid catalyzed by these Co complexes are as low as 23.1 kcal/mol in water. The acylmethylpyridinol ligand plays a significant role in the cleavage of H 2 by forming a strong Co-H δ- ···H δ+ -O dihydrogen bond in a fashion of frustrated Lewis pairs.

  10. Computational Approaches to Nucleic Acid Origami.

    PubMed

    Jabbari, Hosna; Aminpour, Maral; Montemagno, Carlo

    2015-10-12

    Recent advances in experimental DNA origami have dramatically expanded the horizon of DNA nanotechnology. Complex 3D suprastructures have been designed and developed using DNA origami with applications in biomaterial science, nanomedicine, nanorobotics, and molecular computation. Ribonucleic acid (RNA) origami has recently been realized as a new approach. Similar to DNA, RNA molecules can be designed to form complex 3D structures through complementary base pairings. RNA origami structures are, however, more compact and more thermodynamically stable due to RNA's non-canonical base pairing and tertiary interactions. With all these advantages, the development of RNA origami lags behind DNA origami by a large gap. Furthermore, although computational methods have proven to be effective in designing DNA and RNA origami structures and in their evaluation, advances in computational nucleic acid origami is even more limited. In this paper, we review major milestones in experimental and computational DNA and RNA origami and present current challenges in these fields. We believe collaboration between experimental nanotechnologists and computer scientists are critical for advancing these new research paradigms.

  11. Quantitative detection of pathogens in centrifugal microfluidic disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    A system and methods for detection of a nucleic acid including forming a plurality of nucleic acid detection complexes are described, each of the complexes including a nucleic acid analyte, a detection agent and a functionalized probe. The method further including binding the nucleic acid detection complexes to a plurality of functionalized particles in a fluid sample and separating the functionalized particles having the nucleic acid detection complexes bound thereto from the fluid sample using a density media. The nucleic acid analyte is detected by detecting the detection agent.

  12. Cu+ association to some Ph-X (X = OH, NH2, CHO, COOH, CF3) phenyl derivatives.: A comparison with Li+ complexes

    NASA Astrophysics Data System (ADS)

    Corral, Ines; Mo, Otilia; Yanez, Manuel

    2006-09-01

    The complexes of Cu+ with phenol, aniline, benzaldehyde, benzoic acid, and trifluromethyl-benzene were investigated through the use of MP2 and density functional theory (DFT) methods. Both harmonic vibrational frequencies and optimized geometries were obtained at the B3LYP/6-311G(d,p) and MP2(full)/6-311G(d,p) levels of theory. Final energies were obtained through single point B3LYP/6-311+G(3df,2p)//B3LYP/6-311G(d,p) calculations. The interactions of Cu+ with these aromatic compounds have a non-negligible covalent character, which clearly differentiate Cu+-complexes from the corresponding Li+-complexes. These dissimilarities are reflected in the geometries, binding energies and infrared spectra of the most stable adducts. For Li+ only conventional [pi]-complexes should be expected when interacting with aniline, while Cu+ attaches preferentially to the para carbon atom. For phenol, besides the conventional [pi]-complexes, a 12% of oxygen attached species are expected to be found upon Li+ association. Conversely, no oxygen attached species should be formed in reactions of phenol with Cu+. For benzoic acid and benzaldehyde, Li+ aligns with the dipole moment of the base, interacting exclusively with the carbonyl oxygen in the plane of the molecule. This is also the case in Cu+-benzoic acid complex, while in the Cu+-benzaldehyde complex the metal ion also interacts with the aromatic [pi]-system. Cu+ binding enthalpies (BEs) are systematically larger (about 1.3 times) than Li+ BEs. The covalent character of Cu+ interactions is associated with electron donations from bonding ([pi]) orbitals or lone-pairs of the base toward the 4s empty orbital of the metal and with back-donations from the occupied d orbitals of the metal toward antibonding ([pi]*) empty orbitals of the base. This non-negligible covalent character is also reflected in a rough correlation between the calculated Cu+ BEs and the available experimental proton affinities that does not exist for Li+ BEs.

  13. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties.

    PubMed

    Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng

    2015-03-01

    Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Nucleic acid-based electrochemical nanobiosensors.

    PubMed

    Abi, Alireza; Mohammadpour, Zahra; Zuo, Xiaolei; Safavi, Afsaneh

    2018-04-15

    The detection of biomarkers using sensitive and selective analytical devices is critically important for the early stage diagnosis and treatment of diseases. The synergy between the high specificity of nucleic acid recognition units and the great sensitivity of electrochemical signal transductions has already shown promise for the development of efficient biosensing platforms. Yet nucleic-acid based electrochemical biosensors often rely on target amplification strategies (e.g., polymerase chain reactions) to detect analytes at clinically relevant concentration ranges. The complexity and time-consuming nature of these amplification methods impede moving nucleic acid-based electrochemical biosensors from laboratory-based to point-of-care test settings. Fortunately, advancements in nanotechnology have provided growing evidence that the recruitment of nanoscaled materials and structures can enhance the biosensing performance (particularly in terms of sensitivity and response time) to the level suitable for use in point-of-care diagnostic tools. This Review highlights the significant progress in the field of nucleic acid-based electrochemical nanobiosensing with the focus on the works published during the last five years. Copyright © 2017. Published by Elsevier B.V.

  15. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-01

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  16. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples.

    PubMed

    Kalb, Suzanne R; Schieltz, David M; Becher, François; Astot, Crister; Fredriksson, Sten-Åke; Barr, John R

    2015-11-25

    Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin's activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.

  17. Foam and gel methods for the decontamination of metallic surfaces

    DOEpatents

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  18. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, H.W.; Clarke, J.T.; Spence, M.W.

    1982-12-01

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; deltamore » 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue.« less

  19. Copper and manganese complexes based on 1,4-naphthalene dicarboxylic acid ligand and its derivative: Syntheses, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xing, Yubo; Liu, Yuqi; Xue, Xiaofei; Wang, Xinying; Li, Wei

    2018-02-01

    Three new metal-organic coordination polymers, {[Mn2(1,4-NDC)2 (C2H5OH) (DMF) (H2O)]·CH3OH}n(1), {[Mn(III)(1,4-NDC)(C2H5O)][Mn(II)(1,4-NDC)(DMF)(H2O)]}n(2) and {[Cu2(C13H9O4)4(H2O)2]}n(3) based on1,4-H2NDC and its derivative were hydrothermally synthesized (1,4-H2NDC = 1,4-naphthalene-dicarboxylic acid, C13H10O4 = 4-methyl formate-1-naphthalenecarboxylic acid), and characterized by techniques of single crystal X-ray diffraction, infrared spectra (IR), elemental analysis, powder X-ray diffraction(PXRD) and variable-temperature magnetic susceptibility measurements. X-ray crystal structure analyses reveal that complexes 1 and 2 show a same 3,5-connected fsc 3D topology network with the Schlȁfli symbol of {4·6·8}{4·66·83}. But, the valence of some Mn atom in complex 2 take place transition from the +II oxidation state to the +III oxidation state, which may be the effect of the different solvent ratio. In complex 3, the Cu⋯Cu distance of 2.620(13) Å is significantly shorter than the sum of the van der Waals radii of Cu (1.40 Å), resulting in a strong ferromagnetic interaction between the Cu(II) centers. Furthermore, the temperature-dependent magnetic susceptibility measurements exhibit overall antiferromagnetic interactions between manganese ions for complexes 1 and 2, and a strong ferromagnetic interaction between the Cu(II) centers for complex 3.

  20. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  1. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  2. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  3. Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay.

    PubMed

    Pazos, M; Gouveia, S; Sanroman, M A; Cameselle, C

    2008-07-01

    Metal reactivity, speciation and solubility have an important influence in its transportation through a porous matrix by electrokinetics and, therefore, they dramatically affect the removal efficiency. This work deals with the effect of solubility and transport competition among several metals (Mn, Fe, Cu and Zn) during their transport through polluted clay. The unenhancement electrokinetic treatment results in a limited removal of the tested metals because they were retained into the kaolinite sample by the penetration of the alkaline front. Metals showed a removal degree in accordance with the solubility of the corresponding hydroxide and its formation pH. In 7 days of treatment, the removal results were: 75.6% of Mn; 68.5% of Zn, 40.6% of Cu and 14.8% of Fe. In order to avoid the negative effects of the basic front generated at the cathode, two different techniques were proposed and tested: the addition of citric acid as complexing agent to the polluted kaolinite sample and the use of citric acid to control de pH on the cathode chamber. Both techniques are based on the capability of citric acid to act as a complexing and neutralizing agent. Almost complete removal of Mn, Cu and Zn was achieved when citric acid was used (as neutralizing or complexing agent). But Fe only reached 33% of removal because it formed a negatively charged complex with citrate that retarded its transportation to the cathode.

  4. Nature-Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation.

    PubMed

    Zhou, Cailong; Chen, Zhaodan; Yang, Hao; Hou, Kun; Zeng, Xinjuan; Zheng, Yanfen; Cheng, Jiang

    2017-03-15

    Phytic acid, which is a naturally occurring component that is widely found in many plants, can strongly bond toxic mineral elements in the human body, because of its six phosphate groups. Some of the metal ions present the property of bonding with phytic acid to form insoluble coordination complexes aggregations, even at room temperature. Herein, a superhydrophobic cotton fabric was prepared using a novel and facile nature-inspired strategy that introduced phytic acid metal complex aggregations to generate rough hierarchical structures on a fabric surface, followed by PDMS modification. This superhydrophobic surface can be constructed not only on cotton fabric, but also on filter paper, polyethylene terephthalate (PET) fabric, and sponge. Ag I , Fe III , Ce III , Zr IV , and Sn IV are very commendatory ions in our study. Taking phytic acid-Fe III -based superhydrophobic fabric as an example, it showed excellent resistance to ultraviolet (UV) irradiation, high temperature, and organic solvent immersion, and it has good resistance to mechanical wear and abrasion. The superhydrophobic/superoleophilic fabric was successfully used to separate oil/water mixtures with separation efficiencies as high as 99.5%. We envision that these superantiwetting fabrics, modified with phytic acid-metal complexes and PDMS, are environmentally friendly, low cost, sustainable, and easy to scale up, and thereby exhibit great potentials in practical applications.

  5. Validation of a spectrophotometric assay method for bisoprolol using picric acid.

    PubMed

    Panainte, Alina-Diana; Bibire, Nela; Tântaru, Gladiola; Apostu, M; Vieriu, Mădălina

    2013-01-01

    Bisoprolol is a drug belonging to beta blockers drugs used primarily for the treatment of cardiovascular diseases. A spectrophotometric method for quantitative determination of bisoprolol was developed based on the formation of a complex combination between bisoprolol and picric acid. The complex combination of bisoprolol and picric acid has a maximum absorbance peak at 420 nm. Optimum working conditions were established and the method was validated. The method presented a good linearity in the concentration range 5-120 microg/ml (regression coefficient r2 = 0.9992). The RSD for the precision of the method was 1.74 and for the intermediate precision 1.43, and recovery values ranged between 98.25-101.48%. The proposed and validated spectrophotometric method for the determination of bisoprolol is simple and cost effective.

  6. Principal component analysis of binding energies for single-point mutants of hT2R16 bound to an agonist correlate with experimental mutant cell response.

    PubMed

    Chen, Derek E; Willick, Darryl L; Ruckel, Joseph B; Floriano, Wely B

    2015-01-01

    Directed evolution is a technique that enables the identification of mutants of a particular protein that carry a desired property by successive rounds of random mutagenesis, screening, and selection. This technique has many applications, including the development of G protein-coupled receptor-based biosensors and designer drugs for personalized medicine. Although effective, directed evolution is not without challenges and can greatly benefit from the development of computational techniques to predict the functional outcome of single-point amino acid substitutions. In this article, we describe a molecular dynamics-based approach to predict the effects of single amino acid substitutions on agonist binding (salicin) to a human bitter taste receptor (hT2R16). An experimentally determined functional map of single-point amino acid substitutions was used to validate the whole-protein molecular dynamics-based predictive functions. Molecular docking was used to construct a wild-type agonist-receptor complex, providing a starting structure for single-point substitution simulations. The effects of each single amino acid substitution in the functional response of the receptor to its agonist were estimated using three binding energy schemes with increasing inclusion of solvation effects. We show that molecular docking combined with molecular mechanics simulations of single-point mutants of the agonist-receptor complex accurately predicts the functional outcome of single amino acid substitutions in a human bitter taste receptor.

  7. The complete microspeciation of ovothiol A disulfide: a hexabasic symmetric biomolecule.

    PubMed

    Mirzahosseini, Arash; Orgován, Gábor; Tóth, Gergő; Hosztafi, Sándor; Noszál, Béla

    2015-03-25

    The site-specific acid-base properties of ovothiol A disulfide (OvSSOv), the smallest hexabasic multifunctional biomolecule with complex interdependent moieties, were studied with (1)H NMR-pH and potentiometric titrations. The unprecedented complexity of the protonation microequilibria could be overcome by taking into account the mirror-image molecular symmetry, synthesizing and studying auxiliary model compounds and developing a custom-tailored evaluation method. The amino, imidazole, and carboxylate moieties are quantified in terms of 192 microscopic protonation constants and 64 microspecies, 96 and 36 of which are chemically different ones, respectively. Nine pairwise interactivity parameters also characterize the OvSSOv-proton system at the level of molecular subunits. These data allow understanding and influencing the co-dependent acid-base and redox properties of the highly complex OvSH-OvSSOv and related thiol-disulfide systems, which provide protection against oxidative stress. This work is the first complete microspeciation of a hexabasic molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Complexity in pH-Dependent Ribozyme Kinetics: Dark pKa Shifts and Wavy Rate-pH Profiles.

    PubMed

    Frankel, Erica A; Bevilacqua, Philip C

    2018-02-06

    Charged bases occur in RNA enzymes, or ribozymes, where they play key roles in catalysis. Cationic bases donate protons and perform electrostatic catalysis, while anionic bases accept protons. We previously published simulations of rate-pH profiles for ribozymes in terms of species plots for the general acid and general base that have been useful for understanding how ribozymes respond to pH. In that study, we did not consider interaction between the general acid and general base or interaction with other species on the RNA. Since that report, diverse small ribozyme classes have been discovered, many of which have charged nucleobases or metal ions in the active site that can either directly interact and participate in catalysis or indirectly interact as "influencers". Herein, we simulate experimental rate-pH profiles in terms of species plots in which reverse protonated charged nucleobases interact. These analyses uncover two surprising features of pH-dependent enzyme kinetics. (1) Cooperativity between the general acid and general base enhances population of the functional forms of a ribozyme and manifests itself as hidden or "dark" pK a shifts, real pK a shifts that accelerate the reaction but are not readily observed by standard experimental approaches, and (2) influencers favorably shift the pK a s of proton-transferring nucleobases and manifest themselves as "wavy" rate-pH profiles. We identify parallels with the protein enzyme literature, including reverse protonation and wavelike behavior, while pointing out that RNA is more prone to reverse protonation. The complexities uncovered, which arise from simple pairwise interactions, should aid deconvolution of complex rate-pH profiles for RNA and protein enzymes and suggest veiled catalytic devices for promoting catalysis that can be tested by experiment and calculation.

  9. Absorption spectroscopic studies of Np(IV) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, D. T.

    2004-01-01

    The complexation of neptunium (IV) with selected inorganic and organic ligands was studied as part of an investigation to establish key subsurface interactions between neptunium and biological systems. The prevalence of reducing environments in most subsurface migation scenarios, which are in many cases induced by biological activity, has increased the role and importance of Np(IV) as a key subsurface neptunium oxidation state. The biodegradation of larger organics that often coexist with actinides in the subsurface leads to the formation of many organic acids as transient products that, by complexation, play a key role in defining the fate and speciation ofmore » neptunium in biologically active systems. These often compete with inorganic complexes e.g. hydrolysis and phosphate. Herein we report the results of a series of complexation studies based on new band formation of the characteristic 960 nm band for Np(IV). Formation constants for Np(IV) complexes with phosphate, hydrolysis, succinate, acetohydroxamic acid, and acetate were determined. These results show the 960 nm absorption band to be very amenable to these types of complexation studies.« less

  10. Critical considerations for developing nucleic acid macromolecule based drug products.

    PubMed

    Muralidhara, Bilikallahalli K; Baid, Rinku; Bishop, Steve M; Huang, Min; Wang, Wei; Nema, Sandeep

    2016-03-01

    Protein expression therapy using nucleic acid macromolecules (NAMs) as a new paradigm in medicine has recently gained immense therapeutic potential. With the advancement of nonviral delivery it has been possible to target NAMs against cancer, immunodeficiency and infectious diseases. Owing to the complex and fragile structure of NAMs, however, development of a suitable, stable formulation for a reasonable product shelf-life and efficacious delivery is indeed challenging to achieve. This review provides a synopsis of challenges in the formulation and stability of DNA/m-RNA based medicines and probable mitigation strategies including a brief summary of delivery options to the target cells. Nucleic acid based drugs at various stages of ongoing clinical trials are compiled. Copyright © 2016. Published by Elsevier Ltd.

  11. The fluorimetric microdetermination of glyoxylic acid in blood, urine and bacterial extracts

    PubMed Central

    Zarembski, P. M.; Hodgkinson, A.

    1965-01-01

    1. A spectrophotofluorimetric method for the determination of glyoxylic acid in biological materials is described. 2. The method is based on the reaction between glyoxylic acid and resorcinol in acid solution, a fluorescent complex being obtained on the subsequent addition of alkali. 3. The reaction was found to be sensitive and highly specific, the minimum detectable amount of glyoxylic acid being 1·35×10−8 mole. 4. The urinary excretion of glyoxylic acid by ten normal adults ranged from 1·4 to 4·7mg./24hr. Small but measurable amounts of glyoxylic acid were found in cell-free extracts of Pseudomonas oxalaticus OX1 grown on oxalic acid as a source of carbon. No glyoxylic acid was detected in human serum. PMID:14343135

  12. Biochemical and physiological bases for the use of carbon and nitrogen isotopes in environmental and ecological studies

    NASA Astrophysics Data System (ADS)

    Ohkouchi, Naohiko; Ogawa, Nanako O.; Chikaraishi, Yoshito; Tanaka, Hiroyuki; Wada, Eitaro

    2015-12-01

    We review the biochemical and physiological bases of the use of carbon and nitrogen isotopic compositions as an approach for environmental and ecological studies. Biochemical processes commonly observed in the biosphere, including the decarboxylation and deamination of amino acids, are the key factors in this isotopic approach. The principles drawn from the isotopic distributions disentangle the complex dynamics of the biosphere and allow the interactions between the geosphere and biosphere to be analyzed in detail. We also summarize two recently examined topics with new datasets: the isotopic compositions of individual biosynthetic products (chlorophylls and amino acids) and those of animal organs for further pursuing the basis of the methodology. As a tool for investigating complex systems, compound-specific isotopic analysis compensates the intrinsic disadvantages of bulk isotopic signatures. Chlorophylls provide information about the particular processes of various photoautotrophs, whereas amino acids provide a precise measure of the trophic positions of heterotrophs. The isotopic distributions of carbon and nitrogen in a single organism as well as in the whole biosphere are strongly regulated, so that their major components such as amino acids are coordinated appropriately rather than controlled separately.

  13. Three stages in the evolution of the genetic code

    NASA Technical Reports Server (NTRS)

    Baumann, U.; Oro, J.

    1993-01-01

    A diversification of the genetic code based on the number of codons available for the proteinous amino acids is established. Three groups of amino acids during evolution of the code are distinguished. On the basis of their chemical complexity those amino acids emerging later in a translation process are derived. Codon number and chemical complexity indicate that His, Phe, Tyr, Cys and either Lys or Asn were introduced in the second stage, whereas the number of codons alone gives evidence that Trp and Met were introduced in the third stage. The amino acids of stage 1 use purine-rich codons, while all the amino acids introduced in the second stage, in contrast, use pyrimidines in the third position of their codons. A low abundance of pyrimidines during early translation is derived. This assumption is supported by experiments on non-enzymatic replication and interactions of hairpin loops with a complementary strand. A back extrapolation concludes a high purine content of the first nucleic acids, which gradually decreased during their evolution. Amino acids independently available from prebiotic synthesis were thus correlated to purine-rich codons. Implications on the prebiotic replication are discussed also in the light of recent codon usage data.

  14. Hard and soft acids and bases: atoms and atomic ions.

    PubMed

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  15. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on the Fe(III)-motnomrillonite surface. Our study demonstrate the importance of iron-enriched minerals for the abiotic formation of humic materials and for the transformation of aromatic (phenolic) pollutants.

  16. Labeled nucleotide phosphate (NP) probes

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2009-02-03

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  17. Production of high specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1994-01-01

    A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  18. High specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1996-01-01

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  19. High specific activity silicon-32

    DOEpatents

    Phillips, D.R.; Brzezinski, M.A.

    1996-06-11

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  20. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  1. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  2. Pt(ii) coordination complexes as visible light photocatalysts for the oxidation of sulfides using batch and flow processes.

    PubMed

    Casado-Sánchez, Antonio; Gómez-Ballesteros, Rocío; Tato, Francisco; Soriano, Francisco J; Pascual-Coca, Gustavo; Cabrera, Silvia; Alemán, José

    2016-07-12

    A new catalytic system for the photooxidation of sulfides based on Pt(ii) complexes is presented. The catalyst is capable of oxidizing a large number of sulfides containing aryl, alkyl, allyl, benzyl, as well as more complex structures such as heterocycles and methionine amino acid, with complete chemoselectivity. In addition, the first sulfur oxidation in a continuous flow process has been developed.

  3. Dissolution mechanism of aluminum hydroxides in acid media

    NASA Astrophysics Data System (ADS)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  4. Rates of nickel(II) capture from complexes with NTA, EDDA, and related tetradentate chelating agents by the hexadentate chelating agents EDTA and CDTA: Evidence of a "semijunctive" ligand exchange pathway

    NASA Astrophysics Data System (ADS)

    Boland, Nathan E.; Stone, Alan T.

    2017-09-01

    Many siderophores and metallophores produced by soil organisms, as well as anthropogenic chelating agent soil amendments, rely upon amine and carboxylate Lewis base groups for metal ion binding. UV-visible spectra of metal ion-chelating agent complexes are often similar and, as a consequence, whole-sample absorbance measurements are an unreliable means of monitoring the progress of exchange reactions. In the present work, we employ capillary electrophoresis to physically separate Ni(II)-tetradentate chelating agent complexes (NiL) from Ni(II)-hexadentate chelating agent complexes (NiY) prior to UV detection, such that progress of the reaction NiL + Y → NiY + L can be conveniently monitored. Rates of ligand exchange for Ni(II) are lower than for other +II transition metal ions. Ni(II) speciation in environmental media is often under kinetic rather than equilibrium control. Nitrilotriacetic acid (NTA), with three carboxylate groups all tethered to a central amine Lewis base group, ethylenediamine-N,N‧-diacetic acid (EDDA), with carboxylate-amine-amine-carboxylate groups arranged linearly, plus four structurally related compounds, are used as tetradentate chelating agents. Ethylenediaminetetraacetic acid (EDTA) and the structurally more rigid analog trans-cyclohexaneethylenediaminetetraacetic acid (CDTA) are used as hexadentate chelating agents. Effects of pH and reactant concentration are explored. Ni(II) capture by EDTA was consistently more than an order of magnitude faster than capture by CDTA, and too fast to quantify using our capillary electrophoresis-based technique. Using NiNTA as a reactant, Ni(II) capture by CDTA is independent of CDTA concentration and greatly enhanced by a proton-catalyzed pathway at low pH. Using NiEDDA as reactant, Ni(II) capture by CDTA is first order with respect to CDTA concentration, and the contribution from the proton-catalyzed pathway diminished by CDTA protonation. While the convention is to assign either a disjunctive pathway or adjunctive pathway to multidentate ligand exchange reactions, our results indicate that a third "semijunctive" pathway is necessary to account for slow reactions progressing through Lsbnd Nisbnd Y ternary complexes. Ligand exchange pathways with NTA-type chelating agents are assigned a disjunctive pathway, while pathways with EDDA-type chelating agents are assigned a semijunctive pathway. Based upon operative mechanism(s), magnitudes of exchange rates and effects of ambient geochemical conditions can be predicted.

  5. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  6. Inorganic anion-dependent assembly of zero-, one-, two- and three-dimensional Cu(II)/Ag(I) complexes under the guidance of the HSAB theory: Synthesis, structure, and magnetic property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yaru; Xing, Zhiyan; Zhang, Xiao

    To systematically explore the influence of inorganic anions on building coordination complexes, five novel complexes based on 1-(benzotriazole-1-methyl)−2-propylimidazole (bpmi), [Cu(bpmi){sub 2}(Ac){sub 2}]·H{sub 2}O (1), [Cu(bpmi){sub 2}(H{sub 2}O){sub 2}]·2NO{sub 3}·2H{sub 2}O (2), [Cu(bpmi)(N{sub 3}){sub 2}] (3), [Ag(bpmi)(NO{sub 3})] (4) and [Cu{sub 3}(bpmi){sub 2}(SCN){sub 4}(DMF)] (5) (Ac{sup −}=CH{sub 3}COO{sup −}, DMF=N,N-Dimethylformamide) are synthesized through rationally introducing Cu(II) salts and Ag(I) salt with different inorganic anions. X-ray single-crystal analyses reveal that these complexes show interesting structural features from mononuclear (1), one-dimensional (2 and 3), two-dimensional (4) to three-dimensional (5) under the influence of inorganic anions with different basicities. The structural variation can bemore » explained by the hard-soft-acid-base (HSAB) theory. Magnetic susceptibility measurement indicates that complex 3 exhibits an antiferromagnetic coupling between adjacent Cu(II) ions. - Graphical abstract: Five new Cu(II)/Ag(I) complexes show interesting structural features from mononuclear, one-dimension, two-dimension to three-dimension under the influence of inorganic anions. The structural variation can be explained by the HSAB theory. - Highlights: • Five inorganic anion-dependent complexes are synthesized. • Structural variation can be explained by the hard-soft-acid-base (HSAB) theory. • The magnetic property of complex has been studied.« less

  7. Lead(II) coordination polymers based on rigid-flexible 3,5-bis-oxyacetate-benzoic acid: Structural transition driven by temperature control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong-Qiang, E-mail: chenjzxy@126.com; Tian, Yuan

    2017-03-15

    Three Pb(II) complexes ([Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]·H{sub 2}O){sub n} (1), ([Pb{sub 4}(BOABA){sub 2}(µ{sub 4}-O)(H{sub 2}O){sub 2}]·H{sub 2}O){sub n} (2), and [Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]{sub n} (3) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid) were obtained under the same reaction systems with different temperatures. Complexes 1 and 2 are two dimensional (2D) networks based on Pb-BOABA chains and Pb{sub 4}(µ{sub 4}-O)(COO){sub 6} SBUs, respectively. Complex 3 presents an interesting three dimensional (3D) framework, was obtained by increasing the reaction temperature. Structural transition of the crystallization products is largely dependent on the reaction temperature. Moreover, the fluorescence properties of complexes 1–3 have been investigated. - Graphicalmore » abstract: Three Pb(II) coordination polymers were obtained under the same reaction systems with different temperatures. Both of complexes 1 and 2 are 2D network. 3 presents a 3D framework based on Pb–O–C rods SBUs. The 2D to 3D structures transition between three complexes was achieved successfully by temperature control. - Highlights: • Three Pb(II) complexes were obtained under the same reaction systems with different temperatures. • Structural transition of the crystallization products is largely dependent on the reaction temperature. • The luminescence properties studies reveal that three complexes exhibit yellow fluorescence emission behavior, which might be good candidates for obtaining photoluminescent materials.« less

  8. Cocrystal solubility product analysis - Dual concentration-pH mass action model not dependent on explicit solubility equations.

    PubMed

    Avdeef, Alex

    2017-12-15

    A novel general computational approach is described to address many aspects of cocrystal (CC) solubility product (K sp ) determination of drug substances. The CC analysis program, pDISOL-X, was developed and validated with published model systems of various acid-base combinations of active pharmaceutical ingredients (APIs) and coformers: (i) carbamazepine cocrystal systems with 4-aminobenzoic acid, cinnamic acid, saccharin, and salicylic acid, (ii) for indomethacin with saccharin, (iii) for nevirapine with maleic acid, saccharin, and salicylic acid, and (iv) for gabapentin with 3-hydroxybenzoic acid. In all systems but gabapentin, the coformer is much more soluble than the API. The model systems selected are those with available published dual concentration-pH data, one set for the API and one set for the coformer, generally measured at eutectic points (thermodynamically-stable three phases: solution, cocrystal, and crystalline API or coformer). The carbamazepine-cinnamic acid CC showed a substantial elevation in the API equilibrium concentration above pH5, consistent with the formation of a complex between carbamazepine and cinnamate anion. The analysis of the gabapentin:3-hydroxybenzoic acid 1:1 CC system indicated four zones of solid suspensions: coformer (pH<3.25), coformer and cocrystal eutectic (pH3.25-4.44), cocrystal (pH4.44-5.62), and API (pH>5.62). The general approach allows for testing of many possible equilibrium models, including those comprising drug-coformer complexation. The program calculates the ionic strength at each pH. From this, the equilibrium constants are adjusted for activity effects, based on the Stokes-Robinson hydration theory. The complete speciation analysis of the CC systems may provide useful insights into pH-sensitive dissolution effects that could potentially influence bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. New insights into the coordination chemistry of Schiff bases derived from amino acids: Planar [Ni4] complexes with tyrosine side-chains

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Hołyńska, Małgorzata

    2017-08-01

    Structure and properties of a rare metal complex of the chiral Schiff base ligand derived from ortho-vanillin and L-tyrosine are presented. This study is a continuation of research on ligands containing biologically compatible moieties. The ligand is also fully characterized in form of a sodium salt, in particular in solution, for the first time. The metal complex contains a unique bowl-shaped [Ni4] core. Its structure is investigated both in solution (ESI-MS, NMR) and in solid state (X-ray diffraction studies). Under certain conditions the complex can be isolated as crystalline DMF solvate which is studied in solid state.

  10. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M. K.; Sharma, S. R.; Choudhary, M.

    2018-03-01

    [Ni(L)2] 1 and [Cu(L)2] 2 [HL = 2-((E)-(2-methoxyphenylimino)methyl)-4,6-dichlorophenol] Schiff base complexes have been successfully synthesized and were characterized by FT-IR, UV-Vis, fluorescence spectroscopy and thermogravimetric analysis. The crystal structures of the two complexes were determined through X-ray crystallography. Its inhibitory activity against Helicobacter pylori urease was evaluated in vitro and showed strong inhibitory activity against H. pylori urease compared with acetohydroxamic acid (IC50 = 42.12 μmolL-1), which is a positive reference. A docking analysis using the AutoDock 4.0 program could explain the inhibitory activity of the complex against urease.

  11. Amperometric, Bipotentiometric, and Coulometric Titration.

    ERIC Educational Resources Information Center

    Stock, John T.

    1980-01-01

    Discusses recent review articles in various kinds of titration. Also discusses new research in apparatus and methodology, acid-base reactions, precipitation and complexing reactions, oxidation-reduction reactions, and nomenclature. Cites 338 references. (CS)

  12. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.

    PubMed

    Laurenczy, Gábor

    2011-01-01

    Carbon dioxide and the carbonates, the available natural C1 sources, can be easily hydrogenated into formic acid and formates in water; the rate of this reduction strongly depends on the pH of the solution. This reaction is catalysed by ruthenium(II) pre-catalyst complexes with a large variety of water-soluble phosphine ligands; high conversions and turnover numbers have been realised. Although ruthenium(II) is predominant in these reactions, the iron(II) - tris[(2-diphenylphosphino)-ethyl]phosphine (PP3) complex is also active, showing a new perspective to use abundant and inexpensive iron-based compounds in the CO2 reduction. In the catalytic hydrogenation cycles the in situ formed metal hydride complexes play a key role, their structures with several other intermediates have been proven by multinuclear NMR spectroscopy. In the other hand safe and convenient hydrogen storage and supply is the fundamental question for the further development of the hydrogen economy; and carbon dioxide has been recognised to be a viable H2 vector. Formic acid--containing 4.4 weight % of H2, that is 53 g hydrogen per litre--is suitable for H2 storage; we have shown that in aqueous solutions it can be selectively decomposed into CO-free (CO < 10 ppm) CO2 and H2. The reaction takes place under mild experimental conditions and it is able to generate high pressure H2 (up to 600 bar). The cleavage of HCOOH is catalysed by several hydrophilic Ru(II) phosphine complexes (meta-trisulfonated triphenylphosphine, mTPPTS, being the most efficient one), either in homogeneous systems or as immobilised catalysts. We have also shown that the iron(II)--hydrido tris[(2-diphenylphosphino)ethyl]phosphine complex catalyses with an exceptionally high rate and efficiency (turnover frequency, TOF = 9425 h(-1)mol(-1); turnover number, TON = 92400) the formic acid cleavage, in environmentally friendly propylene carbonate solution, opening the way to use cheap, non-noble metal based catalysts for this reaction, too.

  13. The effects of structural variations of thiophene-containing Ru(II) complexes on the acid-base and DNA binding properties.

    PubMed

    Yuan, Cui-Li; Zhang, An-Guo; Zheng, Ze-Bo; Wang, Ke-Zhi

    2013-03-01

    A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)₂(Hbptip)](PF₆)₂ {bpy = 2,2'-bipyridine, Hbptip = 2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, ¹H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid-base properties of the complex were studied by UV-visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK(a1) = 1.31 ± 0.09 and pK(a2) = 5.71 ± 0.11 with the pK(a2) associated deprotonation/protonation process occurring over 3 pK(a) units more acidic than thiophenyl-free parent complex of [Ru(bpy)₂(Hpip)]²⁺ {Hpip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)₂(Hbptip)]²⁺ in Tris-HCl buffer (pH 7.1 and 50 mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV-visible and emission spectroscopy techniques of UV-visible and luminescence titrations, steady-state emission quenching by [Fe(CN)₆]⁴⁻, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)₂(Hip)]²⁺, [Ru(bpy)₂(Htip)]²⁺, and [Ru(bpy)₂(Haptip)]²⁺ {Hip = 1H-imidazo[4,5-f][1,10]phenanthroline, Htip = 2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip = 2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.

  14. Structure-sensitive film materials based on polyvinyl alcohol compositions with polyacids

    NASA Astrophysics Data System (ADS)

    Lazareva, Tatjana G.; Iljushenko, Irina A.

    1995-05-01

    The influence of polyacidic additives (silicotungstic acid -- STA, carboxymethylcellulose -- Na-CMC, polymethacrylic acid -- PMA, polyacrylic acid -- PAA) on the molecular mobility of film composition based on polyvinyl alcohol (PVA) in the temperature range 20 - 200 degree(s)C has been evaluated. It has been concluded that interpolymer complexes are formed due to hydrogen bonding of the PVA and polyacidic additive molecules, which results in the change of the PVA stereoregularity. The formation of the complexes depends on the type and concentration of the polyacidic additive, the process of (alpha) -relaxation and, in a certain concentration range of the additive, increases the molecular mobility of the kinetic segments surrounding the complex. The influence of short-term UV-irradiation on the structure and properties of such materials has been investigated. A possibility of the reversible change of molecular mobility and stereoregularity of the examined compositions as a result of short-term UV-irradiation has been established. Introduction of polyacids into the PVA structure gives rise to the electrosensitivity, i.e., the ability to change structure under the action of an electric field. In this case the distinguishing feature is the relation between the molecular mobility and electrosensitivity in the range of parameters where the (alpha) - relaxation occurs.

  15. Weak interactions and cooperativity effects on disiloxane: a look at the building block of silicones

    NASA Astrophysics Data System (ADS)

    Martín-Fernández, Carlos; Montero-Campillo, M. Merced; Alkorta, Ibon; Elguero, José

    2018-06-01

    The behaviour of disiloxane 1 towards a set of Lewis acids (LA) and Lewis bases (LB) forming complexes through its oxygen and silicon atoms, respectively, was studied at the MP2/aug‧-cc-pVTZ level of theory, exploring a wide variety of non-covalent interactions. Disiloxane is a moderate electron acceptor and a good electron donor, exhibiting in the latter case binding energies up to almost -100 kJ/mol with BeCl2. Cooperativity effects were also analysed by looking at ternary 1:LA:LB complexes. Shorter intermolecular distances than in the corresponding binary complexes and a negative contribution of the three-body term to the binding energy indicate that the non-covalent interactions allowed by disiloxane through its acid and basic centres cooperate between them to reinforce both donor-acceptor pairs. These effects are particularly strong in complexes involving beryllium and triel bonds, but are also relevant for complexes containing hydrogen bonds.

  16. A Systems Model for Ursodeoxycholic Acid Metabolism in Healthy and Patients With Primary Biliary Cirrhosis

    PubMed Central

    Dobbins, RL; O'Connor‐Semmes, RL; Young, MA

    2016-01-01

    A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. PMID:27537780

  17. [Humus composition of black soil and its organo-mineral complexes under different fertility level].

    PubMed

    Zhao, Lanpo; Wang, Jie; Liu, Jingshuan; Liu, Shuxia; Wang, Yanling; Wang, Hongbin; Zhang, Zhidan

    2005-01-01

    Determinations by Kumada method showed that with the improvement of black soil fertility, the free and combined humus contents in soil and its different size organo-mineral complexes increased, but the humification degree of free humus decreased, which was more obvious in silt and fine sand size complexes. The organic carbon content in complexes, humus extraction rate, free humus content, and humification degree of free humic acid decreased with the increasing particle size of complexes. All free humic acids in fertile soil were Rp type, while in unfertile soil, they were Rp and B type. With the increasing particle size of complexes, the type of free humic acids changed in the sequence A type (clay)-->B type (silt)-->Rp type (fine sand). Combined form humic acid mainly belonged to A type, no matter what particle size the complex was. The improvement of soil fertility could make the humification degree of free humus in soil and its complexes decrease, and furthermore, result in type change. In black soil, the type change of free humic acid mainly occurred in silt size complex, and that of combined form humic acid mainly occurred in fine sand size complex.

  18. A stimuli-responsive fluorescence platform for simultaneous determination of d-isoascorbic acid and Tartaric acid based on Maillard reaction product.

    PubMed

    Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong

    2018-05-05

    An activatable fluorescence monitoring platform based on a novel Maillard reaction product from d-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of d-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO 4 , resulting from a new complex (GLA-KMnO 4 ) formation between GLA and KMnO 4 . Upon addition of d-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for d-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for d-isoascorbic acid or tartaric acid, because the detection limits were 5.9μM and 21.5μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of d-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Evaluation of a computer-based approach to teaching acid/base physiology.

    PubMed

    Rawson, Richard E; Quinlan, Kathleen M

    2002-12-01

    Because acid/base physiology is a difficult subject for most medical and veterinary students, the first author designed a software program, Acid/Base Primer, that would help students with this topic. The Acid/Base Primer was designed and evaluated within a conceptual framework of basic educational principles. Seventy-five first-year veterinary students (of 81; 93% response rate) participated in this study. Students took both a pre- and posttest of content understanding. After completing the Acid/Base Primer in pairs, each student filled out a survey evaluating the features of the program and describing his/her use and experience of it. Four pairs of students participated in interviews that elaborated on the surveys. Scores improved from 53 +/- 2% on the pretest to 74 +/- 1% on an immediate posttest. On surveys and in interviews, students reported that the program helped them construct their own understanding of acid/base physiology and prompted discussions in pairs of students when individual understandings differed. The case-based format provided anchors and a high degree of relevance. Repetition of concepts helped students develop a more complex network of understanding. Questions in the program served to scaffold the learning process by providing direction, accentuating the relevant features of the cases, and provoking discussion. Guidelines for software development were generated on the basis of the findings and relevant educational literature.

  20. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1997-01-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided.

  1. Facile regio- and stereoselective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes: selective hydrogenation of alkynes with formic acid.

    PubMed

    Shen, Ruwei; Chen, Tieqiao; Zhao, Yalei; Qiu, Renhua; Zhou, Yongbo; Yin, Shuangfeng; Wang, Xiangbo; Goto, Midori; Han, Li-Biao

    2011-10-26

    A facile, highly stereo- and regioselective hydrometalation of alkynes generating alkenylmetal complex is disclosed for the first time from a reaction of alkyne, carboxylic acid, and a zerovalent group 10 transition metal complex M(PEt(3))(4) (M = Ni, Pd, Pt). A mechanistic study showed that the hydrometalation does not proceed via the reaction of alkyne with a hydridometal generated by the protonation of a carboxylic acid with Pt(PEt(3))(4), but proceeds via a reaction of an alkyne coordinate metal complex with the acid. This finding clarifies the long proposed reaction mechanism that operates via the generation of an alkenylpalladium intermediate and subsequent transformation of this complex in a variety of reactions catalyzed by a combination of Brϕnsted acid and Pd(0) complex. This finding also leads to the disclosure of an unprecedented reduction of alkynes with formic acid that can selectively produce cis-, trans-alkenes and alkanes by slightly tuning the conditions.

  2. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1997-04-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided. 7 figs.

  3. Trimethylaluminum and borane complexes of primary amines.

    PubMed

    Németh, Balázs; Guégan, Jean-Paul; Veszprémi, Tamás; Guillemin, Jean-Claude

    2013-01-07

    Trimethylaluminum (TMA) complexes of methyl-, n-propyl-, cyclopropyl-, allyl-, and propargylamine were synthesized and their experimental properties and theoretical characteristics were compared with the respective amine-borane analogues. The amine ligand of an amine-TMA Lewis acid-base complex can be easily changed by another amine through a 2:1 amine-TMA intermediate in pentane at room temperature. The exchange of the same ligands in the case of amine-boranes requires remarkably more time in line with the calculated relative energy of the respective transition state. The (1)H and (13)C NMR experiments examining the addition of one or more equivalent of amine to the respective Lewis acid-base complex conclude in the fast exchange of the amine ligand in the NMR time scale only in the cases of amine-TMA complexes, which could also be caused by similar 2:1 complexes. However, in gas phase, only 1:1 amine-TMA complexes are present as evidenced by ultraviolet photoelectron spectroscopy (UPS). The observed UP spectra, which are the first recorded photoelectron spectra of primary amine-TMA compounds, indicate that the stabilization effect of the lone electron pair of nitrogen atom in amines during the borane complexation is stronger than that of the TMA complexation. In line with this observation, the destabilization of the σ(Al-C) orbitals is lower than that of σ(B-H) orbitals during the formation of amine-TMA and amine-borane complexes, respectively. As showed by theoretical calculations, the CH(4) elimination of the studied amine-TMA complexes is exothermic, indicating the possibility of using these compounds in metal organic chemical vapor deposition techniques (MOCVD). On the other hand, our experimental conditions avoid this methane elimination and constitutes the first procedure employing distillation to isolate primary amine-TMA complexes.

  4. Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet.

    PubMed

    Rebolé, A; Ortiz, L T; Rodríguez, M L; Alzueta, C; Treviño, J; Velasco, S

    2010-02-01

    A study was undertaken to examine the effects of inulin, alone or in combination with enzyme complex (primarily xylanase and beta-glucanase), on growth performance, ileal and cecal microflora, cecal short-chain fatty acids, and d-lactic acid and jejunal histomorphology of broiler chickens fed a wheat- and barley-based diet from 7 to 35 d of age. A total of 240 seven-day-old male Cobb broilers were allocated to 1 of 6 treatments, with 8 replicate pens per treatment and 5 birds per pen. The experiment consisted of a 3x2 factorial arrangement of the treatments with 3 concentrations of inulin (0, 10, or 20 g/kg of diet) and 2 concentrations of enzyme complex (0 or 100 mg/kg of diet). At the end of the experiment, 8 birds per treatment (one from each pen) were randomly chosen and slaughtered. Birds fed inulin-containing diets exhibited significantly (P=0.043) improved final BW gain. Dietary inulin had a positive and significant (P<0.002 to 0.009) effect on bifidobacteria and lactobacilli counts in both ileal and cecal contents and, to an extent, also altered the fermentation patterns in the ceca, increasing the concentration of n-butyric and d-lactic acids and the n-butyric acid:acetic acid ratio. Inulin inclusion had no effect on villus height and crypt depth or microvillus length, width, and density in the jejunum. Enzyme supplementation of the control diet and inulin-containing diets had no effect on many of the variables studied and only resulted in a decrease in crypt depth and an increase in villus height:crypt depth ratio in the jejunum.

  5. Competitive/co-operative interactions in acid base sandwich: role of cation vs. substituents.

    PubMed

    Kalpana, Ayyavoo; Akilandeswari, Lakshminarayanan

    2017-11-15

    The cation-π interaction can be envisaged as a lewis acid base interaction, and it is in line with Pearson's acid base concept. The critical examination of interactions between the π-acids (alkali metal cations - Li + , Na + and alkaline earth metal cations Mg 2+ , Ca 2+ ) on one face and tripodal Cr(CO) 3 moiety on the other π face of substituted arenes demonstrates the role of cation and substitutents in manipulating the interactions between them. The interaction of the two π acids on both faces of arene is not expectedly additive, rather it shows either depreciation of interaction energy revealing the competition of acids toward the base or enhancement of interaction energy denoting a cooperative effect. Among the metal cations under study, Mg 2+ shows a cooperative gesture. Although the substituents play a meek role, they unfailingly exert their electronic effects and are amply documented by excellent correlation of various parameters with the Hammett constant σ m . The elusive switching of λ max from the UV to IR region on binding Mg 2+ with substituted arene-Cr(CO) 3 complex is a characteristic clue that TDDFT can help design the ionic sensors for Mg 2+ cations.

  6. Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety

    NASA Astrophysics Data System (ADS)

    Wcisło, Anna; Cirocka, Anna; Zarzeczańska, Dorota; Niedziałkowski, Paweł; Nakonieczna, Sandra; Ossowski, Tadeusz

    2015-02-01

    A series of novel polyether derivatives of 9,10-anthraquinone (AQ) was synthesized and characterized by means of UV-Vis spectroscopy, acid-base titration and complexometric titration. The results were compared with 1-NEt2AQ and 1-NHEtAQ - model compounds of alkylaminoanthraquinones. Acetonitrile and methanol were used as solvents for determination of spectroscopic and acid-base properties. Complexometric titrations were carried out exclusively in acetonitrile. Spectral characteristic of these compounds strongly depends on pH. Addition of acid causes the decrease of absorption intensity and in some cases also a shift of the visible range band. The weakest base is the compound (2), and the strongest - compound (1), both in methanol and acetonitrile solution. The introduction of an additional substituent in the position 8 of the anthraquinone compound increases its basicity. The presence of metal ions causes changes in intensity of absorption (decrease for compounds (2) and (3) and increase with bathochromic shift for (1) and (4)). For the determination of the coordination properties aluminum (III) ions were chosen. The highest complex stability constant with Al (III) ions is observed for compound (1), and the weakest for compound (3). The elongation of the polyether chain decreases the stability of the complex formed.

  7. Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety.

    PubMed

    Wcisło, Anna; Cirocka, Anna; Zarzeczańska, Dorota; Niedziałkowski, Paweł; Nakonieczna, Sandra; Ossowski, Tadeusz

    2015-02-25

    A series of novel polyether derivatives of 9,10-anthraquinone (AQ) was synthesized and characterized by means of UV-Vis spectroscopy, acid-base titration and complexometric titration. The results were compared with 1-NEt2AQ and 1-NHEtAQ--model compounds of alkylaminoanthraquinones. Acetonitrile and methanol were used as solvents for determination of spectroscopic and acid-base properties. Complexometric titrations were carried out exclusively in acetonitrile. Spectral characteristic of these compounds strongly depends on pH. Addition of acid causes the decrease of absorption intensity and in some cases also a shift of the visible range band. The weakest base is the compound (2), and the strongest--compound (1), both in methanol and acetonitrile solution. The introduction of an additional substituent in the position 8 of the anthraquinone compound increases its basicity. The presence of metal ions causes changes in intensity of absorption (decrease for compounds (2) and (3) and increase with bathochromic shift for (1) and (4)). For the determination of the coordination properties aluminum (III) ions were chosen. The highest complex stability constant with Al (III) ions is observed for compound (1), and the weakest for compound (3). The elongation of the polyether chain decreases the stability of the complex formed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Transgenic Petunia with the Iron(III)-Phytosiderophore Transporter Gene Acquires Tolerance to Iron Deficiency in Alkaline Environments

    PubMed Central

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2′-deoxymugineic acid complex, free 2′-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2′-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse plant species that are found in areas with alkaline conditions. PMID:25781941

  9. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    PubMed

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse plant species that are found in areas with alkaline conditions.

  10. Starch-lipid complexes: Interesting material and applications from amylose-fatty acid salt inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Aqueous slurries of high amylose starch can be steam jet cooked and blended with aqueous solutions of fatty acid salts to generate materials that contain inclusion complexes between amylose and the fatty acid salt. These complexes are simply prepared on large scale using commercially available steam...

  11. Preparation, spectroscopic and antibacterial studies on charge-transfer complexes of 2-hydroxypyridine with picric acid and 7,7‧,8,8‧-tetracyano-p-quinodimethane

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.; Amin, Alaa S.

    2015-06-01

    The reactions of electron acceptors such as picric acid (HPA) and 7,7‧,8,8‧-tetracyano-p-quinodimethane (TCNQ) with 2-hydroxypyridine (HPyO) have been investigated in EtOH at room temperature. Based on elemental analysis and IR spectra of the solid CT-complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge transfer complexes [(H2PyO)(PA)] and [(PyO)(HTCNQ)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding in [(H2PyO)(PA)] complex. Another charge transfer interaction was observed in [(PyO)(HTCNQ)] complex. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes and the kinetics of thermal decomposition of the complexes have been studied. The CT complexes were screened for their antibacterial activities against selected bacterial strains.

  12. Preparation, spectroscopic and antibacterial studies on charge-transfer complexes of 2-hydroxypyridine with picric acid and 7,7',8,8'-tetracyano-p-quinodimethane.

    PubMed

    Gaballa, Akmal S; Amin, Alaa S

    2015-06-15

    The reactions of electron acceptors such as picric acid (HPA) and 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) with 2-hydroxypyridine (HPyO) have been investigated in EtOH at room temperature. Based on elemental analysis and IR spectra of the solid CT-complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge transfer complexes [(H2PyO)(PA)] and [(PyO)(HTCNQ)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding in [(H2PyO)(PA)] complex. Another charge transfer interaction was observed in [(PyO)(HTCNQ)] complex. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes and the kinetics of thermal decomposition of the complexes have been studied. The CT complexes were screened for their antibacterial activities against selected bacterial strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Enhancing the peroxidase-like activity of ficin via heme binding and colorimetric detection for uric acid.

    PubMed

    Pan, Yadi; Yang, Yufang; Pang, Yanjiao; Shi, Ying; Long, Yijuan; Zheng, Huzhi

    2018-08-01

    Ficin, a classical sulfhydryl protease, was found to possess intrinsic peroxidase-like activity. In this paper, we have put forward a novel strategy to improving the peroxidase-like activity of ficin through binding heme. Heme-ficin complexes were successfully obtained by simple one-step syntheticism. The results demonstrated that the catalytic activity and efficiency of heme-ficin complexes were about 1.7 times and 3 times higher than those of native ficin, respectively. Taking advantages of the high peroxidase-like activity, the heme-ficin complexes were used for colorimetric determination of uric acid with a low detection limit of 0.25 μM. Based on the excellent selectivity and sensitivity, we detected the concentration of uric acid in human serum successfully. On the basis of these findings, the heme-ficin complexes are promising for wide applications in various fields. Thus we not only optimized the peroxidase-like activity of the ficin, but also established a new strategy for development of artificial enzyme mimics by mimicking the architecture of the active site in horseradish peroxidase. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Ab initio and DFT study of hydrogen bond interactions between ascorbic acid and dimethylsulfoxide based on FT-IR and FT-Raman spectra

    NASA Astrophysics Data System (ADS)

    Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.

    2013-06-01

    The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.

  15. Locating the binding sites of folic acid with milk α- and β-caseins.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2012-01-12

    We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.

  16. Electrolyte and acid-base abnormalities associated with purging behaviors.

    PubMed

    Mehler, Philip S; Walsh, Kristine

    2016-03-01

    Eating disorders that are associated with purging behaviors are complicated by frequent blood electrolyte and acid-base abnormalities. Herein, we review the major electrolyte and acid-base abnormalities and their treatment methods. The body of rigorous, eating disorder-specific literature on this topical area is not robust enough to perform a systematic review as defined by PRISMA guidelines. Therefore, a qualitative review of mostly medical literature was conducted. Hypokalemia, hyponatremia, and sodium chloride-responsive metabolic alkalosis are the most common serum changes that occur as a result of purging behaviors. They vary depending on the mode and frequency of purging behaviors. They can all potentially cause dangerous medical complications and are in need of definitive medical treatment. Eating disorders that are associated with purging behaviors are associated with a number of electrolyte and acid-base changes which are complex in their origin, documented to be medically dangerous and this definitive treatment is necessary to help achieve a successful treatment outcome, and in need of definitive treatment as described herein. © 2016 Wiley Periodicals, Inc.

  17. Nucleic acid analysis using terminal-phosphate-labeled nucleotides

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-04-22

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  18. Determination of hydroxide and carbonate contents of alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.

    1975-01-01

    A method to prevent zinc interference with the titration of OH- and CO3-2 ions in alkaline electrolytes with standard acid is presented. The Ba-EDTA complex was tested and shown to prevent zinc interference with acid-base titrations without introducing other types of interference. Theoretical considerations indicate that this method can be used to prevent interference by other metals.

  19. Study of nucleic acid-gold nanorod interactions and detecting nucleic acid hybridization using gold nanorod solutions in the presence of sodium citrate.

    PubMed

    Kanjanawarut, Roejarek; Su, Xiaodi

    2010-09-01

    In this study, the authors report that sodium citrate can aggregate hexadecyl-trimethyl-ammonium ion(+)-coated gold nanorods (AuNRs), and nucleic acids of different charge and structure properties, i.e., single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), single-stranded peptide nucleic acid (PNA), and PNA-DNA complex, can bind to the AuNRs and therefore retard the sodium citrate-induced aggregation to different extents. The discovery that hybridized dsDNA (and the PNA-DNA complex) has a more pronounced protection effect than ssDNA (and PNA) allows the authors to develop a homogeneous phase AuNRs-based UV-visible (UV-vis) spectral assay for detecting specific sequences of oligonucleotides (20 mer) with a single-base-mismatch selectivity and a limit of detection of 5 nM. This assay involves no tedious bioconjugation and on-particle hybridization. The simple "set and test" format allows for a highly efficient hybridization in a homogeneous phase and a rapid display of the results in less than a minute. By measuring the degree of reduction in AuNR aggregation in the presence of different nucleic acid samples, one can assess how different nucleic acids interact with the AuNRs to complement the knowledge of spherical gold nanoparticles. Besides UV-vis characterization, transmission electron microscopy and zeta potential measurements were conduced to provide visual evidence of the particle aggregation and to support the discussion of the assay principle.

  20. Probing the Active Center of Benzaldehyde Lyase with Substitutions and the Pseudosubstrate Analogue Benzoylphosphonic Acid Methyl Ester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit

    2008-07-28

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg{sup 2+} as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used tomore » probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 {angstrom} (Protein Data Bank entry 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.« less

  1. Probing the active center of benzaldehyde lyase with substitutions and the pseudo-substrate analog benzoylphosphonic acid methyl ester

    PubMed Central

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2009-01-01

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg2+ as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these type of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analog of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 Å (PDB ID: 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase. PMID:18570438

  2. [Smartphone application for blood gas interpretation].

    PubMed

    Obiols, Julien; Bardo, Pascale; Garnier, Jean-Pierre; Brouard, Benoît

    2013-01-01

    Ninety four per cent of health professionals use their smartphone for business purposes and more than 50% has medical applications. The «Blood Gas» application was created to be part of this dynamic and participate to e-health development in France. The «Blood Gas» application facilitates interpretation of the results of blood gas analysis using an algorithm developed with reference to a medical bibliography. It can detect some complex or intricate acid-base disorders in evaluating the effectiveness of the secondary response. The application also studied the respiratory status of the patient by calculating the PaO2/FiO2 ratio and the alveol-arterial gradient. It also indicates the presence of a shunt effect. Finally, a specific module to calculate the SID (strong ion difference) depending on the model of Stewart can detect complex acid-base disorders.

  3. Proof of concept of a "greener" protein purification/enrichment method based on carboxylate-terminated carbosilane dendrimer-protein interactions.

    PubMed

    González-García, Estefanía; Maly, Marek; de la Mata, Francisco Javier; Gómez, Rafael; Marina, María Luisa; García, María Concepción

    2016-11-01

    Protein sample preparation is a critical and an unsustainable step since it involves the use of tedious methods that usually require high amount of solvents. The development of new materials offers additional opportunities in protein sample preparation. This work explores, for the first time, the potential application of carboxylate-terminated carbosilane dendrimers to the purification/enrichment of proteins. Studies on dendrimer binding to proteins, based on protein fluorescence intensity and emission wavelengths measurements, demonstrated the interaction between carboxylate-terminated carbosilane dendrimers and proteins at all tested pH levels. Interactions were greatly affected by the protein itself, pH, and dendrimer concentration and generation. Especially interesting was the interaction at acidic pH since it resulted in a significant protein precipitation. Dendrimer-protein interactions were modeled observing stable complexes for all proteins. Carboxylate-terminated carbosilane dendrimers at acidic pH were successfully used in the purification/enrichment of proteins extracted from a complex sample. Graphical Abstract Images showing the growing turbidity of solutions containing a mixture of proteins (lysozyme, myoglobin, and BSA) at different protein:dendrimer ratios (1:0, 1:1, 1:8, and 1:20) at acidic pH and SDS-PAGE profiles of the corresponsing supernatants. Comparison of SDS-PAGE profiles for the pellets obtained during the purification of proteins present in a complex sample using a conventional "no-clean" method based on acetone precipitation and the proposed "greener" method using carboxylate-terminated carbosilane dendrimer at a 1:20 protein:dendrimer ratio.

  4. The fundamental flaw of the HSAB principle is revealed by a complete speciation analysis of the [PtCl(6-n)Br(n)](2-) (n = 0-6) system.

    PubMed

    Gerber, W J; van Wyk, P-H; van Niekerk, D M E; Koch, K R

    2015-02-28

    Bjerrum's model of step-wise ligand exchange is extended to compute a complete speciation diagram for the [PtCl6-nBrn](2-) (n = 0-6) system including all 17 equilibrium constants concerning the Pt(IV) chlorido-bromido exchange reaction network (HERN). In contrast to what the hard soft acid base (HSAB) principle "predicts", the thermodynamic driving force for the replacement of chloride by bromide in an aqueous matrix, for each individual ligand exchange reaction present in the Pt(IV) HERN, is due to the difference in halide hydration energy and not bonding interactions present in the acid-base complex. A generalized thermodynamic test calculation was developed to illustrate that the HSAB classified class (b) metal cations Ag(+), Au(+), Au(3+), Rh(3+), Cd(2+), Pt(2+), Pt(4+), Fe(3+), Cd(2+), Sn(2+) and Zn(2+) all form thermodynamically stable halido complexes in the order F(-) ≫ Cl(-) > Br(-) > I(-) irrespective of the sample matrix. The bonding interactions in the acid-base complex, e.g. ionic-covalent σ-bonding, Π-bonding and electron correlation effects, play no actual role in the classification of these metal cations using the HSAB principle. Instead, it turns out that the hydration/solvation energy of halides is the reason why metal cations are categorized into two classes using the HSAB principle which highlights the fundamental flaw of the HSAB principle.

  5. Interaction of formic acid with nitrogen: stabilization of the higher-energy conformer.

    PubMed

    Marushkevich, Kseniya; Räsänen, Markku; Khriachtchev, Leonid

    2010-10-07

    Conformational change is an important concept in chemistry and physics. In the present work, we study conformations of formic acid (HCOOH, FA) and report the preparation and identification of the complex of the higher-energy conformer cis-FA with N(2) in an argon matrix. The cis-FA···N(2) complex was synthesized by combining annealing and vibrational excitation of the ground-state trans-FA in a FA/N(2)/Ar matrix. The assignment is based on IR spectroscopic measurements and ab initio calculations. The cis-FA···N(2) complex decay in an argon matrix is much slower compared with the cis-FA monomer. In agreement with the experimental observations, the calculations predict a substantial increase in the stabilization barrier for the cis-FA···N(2) complex compared with the uncomplexed cis-FA monomer. A number of solvation effects in an argon matrix are computationally estimated and discussed. The present results on the cis-FA···N(2) complex show that intermolecular interaction can stabilize intrinsically unstable conformers, as previously found for some other cis-FA complexes.

  6. Co(II) and Ni(II) complexes based on anthraquinone-1,4,5,8-tetracarboxylic acid (H4AQTC): canted antiferromagnetism and slow magnetization relaxation in {[Co2(AQTC)(H2O)6]·6H2O}.

    PubMed

    Yan, Wei-Hong; Bao, Song-Song; Huang, Jian; Ren, Min; Sheng, Xiao-Li; Cai, Zhong-Sheng; Lu, Chang-Sheng; Meng, Qing-Jin; Zheng, Li-Min

    2013-06-21

    Three coordination polymers {[Co2(AQTC)(H2O)6]·6H2O}n (1), {[M2(AQTC)(bpym)(H2O)6]·6H2O}n (M = Co(2), Ni(3)) have been synthesized and structurally characterized, where H4AQTC is anthraquinone-1,4,5,8-tetracarboxylic acid and bpym is 2,2'-bipyrimidine. Complex 1 features a 3-D structure, where layers of Co2(AQTC) are cross-linked by Co-H2O chains. Complexes 2 and 3 are isostructural and display 1-D chain structures. The chains are connected through hydrogen-bonding interactions to form 3-D supramolecular structures. Magnetic properties of these complexes are investigated. Compound 1 shows canted antiferromagnetism and slow relaxation below 4.0 K. For complexes 2 and 3, dominant antiferromagnetic interactions are observed. The luminescent properties of the three complexes are investigated as well.

  7. Complex formation equilibria of binary and ternary complexes involving 3,3-bis(1-methylimidazol-2yl)propionic acid and bio-relevant ligands as 1-aminocyclopropane carboxylic acid with reference to plant hormone

    NASA Astrophysics Data System (ADS)

    Shoukry, Mohamed M.; Hassan, Safaa S.

    2014-01-01

    The formation equilibria for the binary complexes of Cu(II) with 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl)propionic acid (BIMP) were investigated. ACC and BIMP form the complexes 1 1 0, 1 2 0 and 1 1 -1. The ternary complexes of Cu(II) with BIMP and biorelevant ligands as some selected amino acids, peptides and DNA constituents are formed in a stepwise mechanism. The stability constants of the complexes formed were determined and their distribution diagrams were evaluated. The kinetics of hydrolysis of glycine methyl ester in presence of [Cu(BIMP)]+ was investigated by pH-stat technique and the mechanism was discussed.

  8. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  9. Structure, recognition and adaptive binding in RNA aptamer complexes.

    PubMed

    Patel, D J; Suri, A K; Jiang, F; Jiang, L; Fan, P; Kumar, R A; Nonin, S

    1997-10-10

    Novel features of RNA structure, recognition and discrimination have been recently elucidated through the solution structural characterization of RNA aptamers that bind cofactors, aminoglycoside antibiotics, amino acids and peptides with high affinity and specificity. This review presents the solution structures of RNA aptamer complexes with adenosine monophosphate, flavin mononucleotide, arginine/citrulline and tobramycin together with an example of hydrogen exchange measurements of the base-pair kinetics for the AMP-RNA aptamer complex. A comparative analysis of the structures of these RNA aptamer complexes yields the principles, patterns and diversity associated with RNA architecture, molecular recognition and adaptive binding associated with complex formation.

  10. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Naderi, Reza; Ramezanzadeh, B.

    2017-02-01

    This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV-vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn2+ and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  11. Novel metal(II) coordination polymers based on N,N'-bis-(4-pyridyl)phthalamide as supercapacitor electrode materials in an aqueous electrolyte.

    PubMed

    Gong, Yun; Li, Jian; Jiang, Peng-Gang; Li, Qing-Fang; Lin, Jian-Hua

    2013-02-07

    Based on the redox-active L (N,N'-bis-(4-pyridyl)phthalamide) ligand, two porous MOFs formulated as Zn(6)(BPC)(6)(L)(3)·9DMF (H(2)BPC = 4,4'-biphenyldicarboxylic acid) (1) and Cd(2)(TDC)(2)(L)(2)·4H(2)O (H(2)TDC = 2,5-thiophenedicarboxylic acid) (2) were synthesized and structurally characterized by single-crystal X-ray diffractions. Complex 1 features a uninodal 5-connected 3-fold interpenetrated 3D framework with {4(6).6(4)}-bnn hexagonal BN topology. Complex 2 displays a uninodal 6-connected 2-fold interpenetrated 3D framework with {4(12).6(3)}-pcu topology. When complexes 1 and 2 are used as supercapacitor electrode materials, they can provide a large voltage window as high as 2.6 V in an aqueous electrolyte, and their specific capacitances are much more than the value for the bare carbon glassy electrode. It is observed that the more the current density, the less the specific capacitance for the two kinds of supercapacitor electrode materials. The two complexes show different thermal stabilities, UV absorption and photoluminescence properties.

  12. The central role of chloride in the metabolic acid-base changes in canine parvoviral enteritis.

    PubMed

    Burchell, Richard K; Schoeman, Johan P; Leisewitz, Andrew L

    2014-04-01

    The acid-base disturbances in canine parvoviral (CPV) enteritis are not well described. In addition, the mechanisms causing these perturbations have not been fully elucidated. The purpose of the present study was to assess acid-base changes in puppies suffering from CPV enteritis, using a modified strong ion model (SIM). The hypothesis of the study was that severe acid-base disturbances would be present and that the SIM would provide insights into pathological mechanisms, which have not been fully appreciated by the Henderson-Hasselbalch model. The study analysed retrospective data, obtained from 42 puppies with confirmed CPV enteritis and 10 healthy control dogs. The CPV-enteritis group had been allocated a clinical score, to allow classification of the data according to clinical severity. The effects of changes in free water, chloride, l-lactate, albumin and phosphate were calculated, using a modification of the base excess algorithm. When the data were summated for each patient, and correlated to each individual component, the most important contributor to the metabolic acid-base changes, according to the SIM, was chloride (P<0.001). Severely-affected animals tended to demonstrate hypochloraemic alkalosis, whereas mildly-affected puppies had a hyperchloraemic acidosis (P=0.007). In conclusion, the acid-base disturbances in CPV enteritis are multifactorial and complex, with the SIM providing information in terms of the origin of these changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Method of detecting genetic translocations identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas

    2001-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  14. Chromosome-specific staining to detect genetic rearrangements

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas; Westbrook, Carol

    2013-04-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  15. Method of detecting genetic deletions identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  16. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation.

    PubMed

    Lee, Hye-Young; Jeong, Young-Il; Choi, Ki-Choon

    2011-01-01

    p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. The authors suggest that these microparticles are ideal candidates for a vehicle for decreasing side effects of hair dye.

  17. THE SOLVENT EXTRACTION OF NITROSYLRUTHENIUM BY TRILAURYLAMINE IN NITRATE SYSTEM. Summary Report for the Period, July 1, 1960 to March 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skavdahl, R.E.; Mason, E.A.

    1962-06-01

    An investigation of the solvent extraction characteristics of the nitro and nitrato complexes of nitrosylruthenium in nitric acid- sodium nitrate aqueous media was conducted. As the organic extractant phase, a solution of trilaurylamine (TLA) in toluene was utilized. In addition to the usual process parameter variation tyne of experiment, a rapid dilution type of experiment was used extensively to determine qualitative and semiquantitative results regarding the degree of extractability and concentration of the more extractable species of the nitrato complexes of nitrosylruthenium. It was found that the acids of the tetra-nitrato and pentanitrato complexes were the more extractable species formore » that set of complexes and that the acid of the penta-nitrato complex was the more extractable of the two. It was observed that for freshly prepared solutions, the dinitro complex of nitrosylruthenium was much more extractable than the gross nitrato complexes solutions. Nitro complexes in general, and the dinitro complex in particular, may be the controlling agent in ruthenium decontamination of spent nuclear fuel processed by solvent extraction methods. The experimental results from both sets of complexes could be more meaningfully correlated on the basis of unbound nitric acid concentration in the organic phase than on the basis of nitric acid concentration in the aqueous phase. The extraction of nitric acid by TLA from nitric acid-sodium nitrate aqueous solutions was investigated and the results correlated on the basis of activity of the undissociated nitric acid in the aqueous phase. (auth)« less

  18. Beta-oxidation as channeled reaction linked to citric acid cycle: evidence from measurements of mitochondrial pyruvate oxidation during fatty acid degradation.

    PubMed

    Förster, M E; Staib, W

    1992-07-01

    1. The kinetics of mitochondrial mammalian pyruvate dehydrogenase multienzyme complex (PDHC) is studied by the formation of CO2 using tracer amounts of [1-14C]pyruvate. It is found that the Hill plot results in a (pseudo-)cooperativity with a transition of n-1----3 at a pyruvate concentration about Ks. 2. Addition of L-carnitine, octanoate, palmitoyl-CoA or palmitate + L-carnitine + fatty acid-binding protein results in a Hill coefficient of n = 2 following the kinetics of pyruvate oxidation. 3. Addition of fatty acid-binding protein to an assay system oxidizing palmitate in presence of L-carnitine alters the pattern of the kinetics in the Hill plot so that an apparently lower level of L-carnitine is necessary for the reaction course of beta-degradation. 4. It is concluded that beta-degradation is a coordinated, multienzyme-complex based mechanism tightly linked to citric acid cycle and it is proposed that L-carnitine is actively involved into the reaction and not only functioning as carrier-molecule for transmembrane transport.

  19. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    PubMed

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  20. Selective Detection of Carbohydrates and Their Peptide Conjugates by ESI-MS Using Synthetic Quaternary Ammonium Salt Derivatives of Phenylboronic Acids

    NASA Astrophysics Data System (ADS)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  1. Structural and pH Dependence of Excited State PCET Reactions Involving Reductive Quenching of the MLCT Excited State of [Ru II(bpy) 2(bpz)] 2+ by Hydroquinones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedeva, Natalia V.; Schmidt, Robert D.; Concepcion, Javier J.

    2011-01-01

    The proton-coupled electron transfer (PCET) reaction between the bpz-based photoexcited ³MLCT state of [Ru II(bpy) 2(bpz)] 2+ (bpy = 2,2'-bipyridine, bpz = 2,2'-bipyrazine) and a series of substituted hydroquinones (H₂Q) has been studied by transient absorption (TA) and time-resolved electron paramagnetic resonance (TREPR) spectroscopy at X-band. When the reaction is carried out in a CH₃CN/H₂O mixed solvent system with unsubstituted hydroquinone, the neutral semiquinone radical (4a) and its conjugate base, the semiquinone radical anion (4b), are both observed. Variation of the acid strength in the solvent mixture allows the acid/base dependence of the PCET reaction to be investigated. In solutionsmore » with very low acid concentrations, TREPR spectra exclusively derived from radical anion 4b are observed, while at very high acid concentrations, the spectrum is assigned to the protonated structure 4a. At intermediate acid concentrations, either a superposition of spectra is observed (slow exchange between 4a and 4b) or substantial broadening in the TREPR spectrum is observed (fast exchange between 4a and 4b). Variation of substituents on the H₂Q ring substantially alter this acid/base dependence and provide a means to investigate electronic effects on both the ET and PT components of the PCET process. The TA results suggest a change in mechanism from PCET to direct ET quenching in strongly basic solutions and with electron withdrawing groups on the H₂Q ring system. Changing the ligand on the Ru complex also alters the acid/base dependence of the TREPR spectra through a series of complex equilibria between protonated and deprotonated hydroquinone radicals and anions. The relative intensities of the signals from radical 4a versus 4b can be rationalized quantitatively in terms of these equilibria and the relevant pK{sub a} values. An observed equilibrium deuterium isotope effect supports the conclusion that the post-PCET HQ •/Q •- equilibrium is the most important in determining the 4a/4b ratio at early delay times.« less

  2. Autonomous replication of nucleic acids by polymerization/nicking enzyme/DNAzyme cascades for the amplified detection of DNA and the aptamer-cocaine complex.

    PubMed

    Wang, Fuan; Freage, Lina; Orbach, Ron; Willner, Itamar

    2013-09-03

    The progressive development of amplified DNA sensors and aptasensors using replication/nicking enzymes/DNAzyme machineries is described. The sensing platforms are based on the tailoring of a DNA template on which the recognition of the target DNA or the formation of the aptamer-substrate complex trigger on the autonomous isothermal replication/nicking processes and the displacement of a Mg(2+)-dependent DNAzyme that catalyzes the generation of a fluorophore-labeled nucleic acid acting as readout signal for the analyses. Three different DNA sensing configurations are described, where in the ultimate configuration the target sequence is incorporated into a nucleic acid blocker structure associated with the sensing template. The target-triggered isothermal autonomous replication/nicking process on the modified template results in the formation of the Mg(2+)-dependent DNAzyme tethered to a free strand consisting of the target sequence. This activates additional template units for the nucleic acid self-replication process, resulting in the ultrasensitive detection of the target DNA (detection limit 1 aM). Similarly, amplified aptamer-based sensing platforms for cocaine are developed along these concepts. The modification of the cocaine-detection template by the addition of a nucleic acid sequence that enables the autonomous secondary coupled activation of a polymerization/nicking machinery and DNAzyme generation path leads to an improved analysis of cocaine (detection limit 10 nM).

  3. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.

    PubMed

    Várnai, Csilla; Burkoff, Nikolas S; Wild, David L

    2017-01-01

    Evolutionary information stored in multiple sequence alignments (MSAs) has been used to identify the interaction interface of protein complexes, by measuring either co-conservation or co-mutation of amino acid residues across the interface. Recently, maximum entropy related correlated mutation measures (CMMs) such as direct information, decoupling direct from indirect interactions, have been developed to identify residue pairs interacting across the protein complex interface. These studies have focussed on carefully selected protein complexes with large, good-quality MSAs. In this work, we study protein complexes with a more typical MSA consisting of fewer than 400 sequences, using a set of 79 intramolecular protein complexes. Using a maximum entropy based CMM at the residue level, we develop an interface level CMM score to be used in re-ranking docking decoys. We demonstrate that our interface level CMM score compares favourably to the complementarity trace score, an evolutionary information-based score measuring co-conservation, when combined with the number of interface residues, a knowledge-based potential and the variability score of individual amino acid sites. We also demonstrate, that, since co-mutation and co-complementarity in the MSA contain orthogonal information, the best prediction performance using evolutionary information can be achieved by combining the co-mutation information of the CMM with co-conservation information of a complementarity trace score, predicting a near-native structure as the top prediction for 41% of the dataset. The method presented is not restricted to small MSAs, and will likely improve interface prediction also for complexes with large and good-quality MSAs.

  4. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    NASA Astrophysics Data System (ADS)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  5. Potential mesogens based on pyridine derivatives: The geometric structure, conformational properties and characteristics of intermolecular hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Fedorov, Mikhail S.; Giricheva, Nina I.; Shpilevaya, Kseniya E.; Lapykina, Elena A.; Syrbu, Svetlana A.

    2017-03-01

    Conformational properties of the main part (excluding sbnd OC3H7 radicals) of the p-n-propyloxybenzoic (A1) and p-n-propyloxycinnamic (A2) acids molecules (relating to mesomorphic compounds) as well as p-n-propyloxybenzoic acid pyridine ester (B1) and p-n-propyloxyphenylazopyridine (B2) molecules (relating to non-mesomorphic compounds) were studied by DFT(B3LYP)/cc-pVTZ method. It was shown that the main parts of A1 and A2 acids are rigid. The barrier to internal rotation of pyridine fragment in the B1 and B2 molecules depends on the nature of the bridging group. It was determined that all studied A1⋯B1, A2⋯B1 and A2⋯B2 complexes are characterized by a strong hydrogen bond. The binding energy of complexes (≈14 kcal/mol, with BSSE corrections, DFT(B97D)/6-311++G**) exceeds the energy per hydrogen bond in the corresponding acid dimers (≈10 kcal/mol). The structural non-rigidity of A⋯B complexes is mainly caused by possibility of sbnd OC3H7 radicals internal rotation and A and B molecules rotation about the (H)O⋯N line. The characteristics of intermolecular hydrogen bonds were determined by NBO-analysis. The obtained results indicate that examined complexes correspond to the basic requirements to mesogen molecular forms. The thermodynamic functions of the gas-phase complexation reactions (idealized model of the complexes formation in the condensed state) were calculated. Preliminary studies of mesogen-non-mesogen A1⋯B2 system by differential scanning calorimetry and polarizing optical microscopy, showed that it has mesomorphic properties.

  6. Conformational Behaviour of Azasugars Based on Mannuronic Acid.

    PubMed

    van Rijssel, Erwin R; Janssen, Antonius P A; Males, Alexandra; Davies, Gideon J; van der Marel, Gijsbert A; Overkleeft, Herman S; Codée, Jeroen D C

    2017-07-04

    A set of mannuronic-acid-based iminosugars, consisting of the C-5-carboxylic acid, methyl ester and amide analogues of 1deoxymannorjirimicin (DMJ), was synthesised and their pH-dependent conformational behaviour was studied. Under acidic conditions the methyl ester and the carboxylic acid adopted an "inverted" 1 C 4 chair conformation as opposed to the "normal" 4 C 1 chair at basic pH. This conformational change is explained in terms of the stereoelectronic effects of the ring substituents and it parallels the behaviour of the mannuronic acid ester oxocarbenium ion. Because of this solution-phase behaviour, the mannuronic acid ester azasugar was examined as an inhibitor for a Caulobacter GH47 mannosidase that hydrolyses its substrates by way of a reaction itinerary that proceeds through a 3 H 4 transition state. No binding was observed for the mannuronic acid ester azasugar, but sub-atomic resolution data were obtained for the DMJ⋅CkGH47 complex, showing two conformations- 3 S 1 and 1 C 4 -for the DMJ inhibitor. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples

    PubMed Central

    Kalb, Suzanne R.; Schieltz, David M.; Becher, François; Astot, Crister; Fredriksson, Sten-Åke; Barr, John R.

    2015-01-01

    Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin’s activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices. PMID:26610568

  8. Regulation of Fatty Acid Oxidation in Mouse Cumulus-Oocyte Complexes during Maturation and Modulation by PPAR Agonists

    PubMed Central

    Dunning, Kylie R.; Anastasi, Marie R.; Zhang, Voueleng J.; Russell, Darryl L.; Robker, Rebecca L.

    2014-01-01

    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of 3H2O from [3H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid oxidation during in vitro maturation and resulted in poor embryo development points to the developmental importance of fatty acid oxidation and the need for it to be optimized during in vitro maturation to improve this reproductive technology. PMID:24505284

  9. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized bymore » interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.« less

  10. Alpha-lipoic acid supplementation protects enzymes from damage by nitrosative and oxidative stress.

    PubMed

    Hiller, Sylvia; DeKroon, Robert; Hamlett, Eric D; Xu, Longquan; Osorio, Cristina; Robinette, Jennifer; Winnik, Witold; Simington, Stephen; Maeda, Nobuyo; Alzate, Oscar; Yi, Xianwen

    2016-01-01

    S-nitrosylation of mitochondrial enzymes involved in energy transfer under nitrosative stress may result in ATP deficiency. We investigated whether α-lipoic acid, a powerful antioxidant, could alleviate nitrosative stress by regulating S-nitrosylation, which could result in retaining the mitochondrial enzyme activity. In this study, we have identified the S-nitrosylated forms of subunit 1 of dihydrolipoyllysine succinyltransferase (complex III), and subunit 2 of the α-ketoglutarate dehydrogenase complex by implementing a fluorescence-based differential quantitative proteomics method. We found that the activities of these two mitochondrial enzymes were partially but reversibly inhibited by S-nitrosylation in cultured endothelial cells, and that their activities were partially restored by supplementation of α-lipoic acid. We show that protein S-nitrosylation affects the activity of mitochondrial enzymes that are central to energy supply, and that α-lipoic acid protects mitochondrial enzymes by altering S-nitrosylation levels. Inhibiting protein S-nitrosylation with α-lipoic acid seems to be a protective mechanism against nitrosative stress. Identification and characterization of these new protein targets should contribute to expanding the therapeutic power of α-lipoic acid and to a better understanding of the underlying antioxidant mechanisms.

  11. Loss of Pink1 modulates synaptic mitochondrial bioenergetics in the rat striatum prior to motor symptoms: concomitant complex I respiratory defects and increased complex II-mediated respiration.

    PubMed

    Stauch, Kelly L; Villeneuve, Lance M; Purnell, Phillip R; Ottemann, Brendan M; Emanuel, Katy; Fox, Howard S

    2016-12-01

    Mutations in PTEN-induced putative kinase 1 (Pink1), a mitochondrial serine/threonine kinase, cause a recessive inherited form of Parkinson's disease (PD). Pink1 deletion in rats results in a progressive PD-like phenotype, characterized by significant motor deficits starting at 4 months of age. Despite the evidence of mitochondrial dysfunction, the pathogenic mechanism underlying disease due to Pink1-deficiency remains obscure. Striatal synaptic mitochondria from 3-month-old Pink1-deficient rats were characterized using bioenergetic and mass spectroscopy (MS)-based proteomic analyses. Striatal synaptic mitochondria from Pink1-deficient rats exhibit decreased complex I-driven respiration and increased complex II-mediated respiration compared with wild-type rats. MS-based proteomics revealed 69 of the 811 quantified mitochondrial proteins were differentially expressed between Pink1-deficient rats and controls. Down-regulation of several electron carrier proteins, which shuttle electrons to reduce ubiquinone at complex III, in the Pink1-knockouts suggests disruption of the linkage between fatty acid, amino acid, and choline metabolism and the mitochondrial respiratory system. These results suggest that complex II activity is increased to compensate for loss of electron transfer mechanisms due to reduced complex I activity and loss of electron carriers within striatal nerve terminals early during disease progression. This may contribute to the pathogenesis of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Insights into the structure-function relationship of brown plant hopper resistance protein, Bph14 of rice plant: a computational structural biology approach.

    PubMed

    Gupta, Manoj Kumar; Vadde, Ramakrishna; Donde, Ravindra; Gouda, Gayatri; Kumar, Jitendra; Nayak, Subhashree; Jena, Mayabini; Behera, Lambodar

    2018-05-02

    Brown plant hopper (BPH) is one of the major destructive insect pests of rice, causing severe yield loss. Thirty-two BPH resistance genes have been identified in cultivated and wild species of rice Although, molecular mechanism of rice plant resistance against BPH studied through map-based cloning, due to non-existence of NMR/crystal structures of Bph14 protein, recognition of leucine-rich repeat (LRR) domain and its interaction with different ligands are poorly understood. Thus, in the present study, in silico approach was adopted to predict three-dimensional structure of LRR domain of Bph14 using comparative modelling approach followed by interaction study with jasmonic and salicylic acids. LRR domain along with LRR-jasmonic and salicylic acid complexes were subjected to dynamic simulation using GROMACS, individually, for energy minimisation and refinement of the structure. Final binding energy of jasmonic and salicylic acid with LRR domain was calculated using MM/PBSA. Free-energy landscape analysis revealed that overall stability of LRR domain of Bph14 is not much affected after forming complex with jasmonic and salicylic acid. MM/PBSA analysis revealed that binding affinities of LRR domain towards salicylic acid is higher as compared to jasmonic acid. Interaction study of LRR domain with salicylic acid and jasmonic acid reveals that THR987 of LRR form hydrogen bond with both complexes. Thus, THR987 plays active role in the Bph14 and phytochemical interaction for inducing resistance in rice plant against BPH. In future, Bph14 gene and phytochemicals could be used in BPH management and development of novel resistant varieties for increasing rice yield.

  13. Thiophene-based covalent organic frameworks

    PubMed Central

    Bertrand, Guillaume H. V.; Michaelis, Vladimir K.; Ong, Ta-Chung; Griffin, Robert G.; Dincă, Mircea

    2013-01-01

    We report the synthesis and characterization of covalent organic frameworks (COFs) incorporating thiophene-based building blocks. We show that these are amenable to reticular synthesis, and that bent ditopic monomers, such as 2,5-thiophenediboronic acid, are defect-prone building blocks that are susceptible to synthetic variations during COF synthesis. The synthesis and characterization of an unusual charge transfer complex between thieno[3,2-b]thiophene-2,5-diboronic acid and tetracyanoquinodimethane enabled by the unique COF architecture is also presented. Together, these results delineate important synthetic advances toward the implementation of COFs in electronic devices. PMID:23479656

  14. Hydride-Meisenheimer Complex Formation and Protonation as Key Reactions of 2,4,6-Trinitrophenol Biodegradation by Rhodococcus erythropolis

    PubMed Central

    Rieger, Paul-Gerhard; Sinnwell, Volker; Preuß, Andrea; Francke, Wittko; Knackmuss, Hans-Joachim

    1999-01-01

    Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic ς-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1. PMID:9973345

  15. The behavior and importance of lactic acid complexation in Talspeak extraction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis S.; Nilsson, Mikael; Nash, Kenneth L.

    2008-07-01

    Advanced partitioning of spent nuclear fuel in the UREX +la process relies on the TALSPEAK process for separation of fission-product lanthanides from trivalent actinides. The classic TALSPEAK utilizes an aqueous medium of both lactic acid and diethylenetriaminepentaacetic acid and the extraction reagent di(2-ethylhexyl)phosphoric acid in an aromatic diluent. In this study, the specific role of lactic acid and the complexes involved in the extraction of the trivalent actinides and lanthanides have been investigated using {sup 14}C-labeled lactic acid. Our results show that lactic acid partitions between the phases in a complex fashion. (authors)

  16. Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery.

    PubMed

    Colombani, Thibault; Peuziat, Pauline; Dallet, Laurence; Haudebourg, Thomas; Mével, Mathieu; Berchel, Mathieu; Lambert, Olivier; Habrant, Damien; Pitard, Bruno

    2017-03-10

    Protein expression and RNA interference require efficient delivery of DNA or mRNA and small double stranded RNA into cells, respectively. Although cationic lipids are the most commonly used synthetic delivery vectors, a clear need still exists for a better delivery of various types of nucleic acids molecules to improve their biological activity. To optimize the transfection efficiency, a molecular approach consisting in modifying the chemical structure of a given cationic lipid is usually performed, but an alternative strategy could rely on modulating the supramolecular assembly of lipidic lamellar phases sandwiching the nucleic acids molecules. To validate this new concept, we synthesized on one hand two paromomycin-based cationic lipids, with either an amide or a phosphoramide linker, and on the other hand two imidazole-based neutral lipids, having as well either an amide or a phosphoramide function as linker. Combinations of cationic and helper lipids containing the same amide or phosphoramide linkers led to the formation of homogeneous lamellar phases, while hybrid lamellar phases were obtained when the linkers on the cationic and helper lipids were different. Cryo-transmission electron microscopy and fluorescence experiments showed that liposomes/nucleic acids complexes resulting from the association of nucleic acids with hybrid lamellar phases led to complexes that were more stable in the extracellular compartment compared to those obtained with homogeneous systems. In addition, we observed that the most active supramolecular assemblies for the delivery of DNA, mRNA and siRNA were obtained when the cationic and helper lipids possess linkers of different natures. The results clearly show that this supramolecular strategy modulating the property of the lipidic lamellar phase constitutes a new approach for increasing the delivery of various types of nucleic acid molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Matrix-assisted laser desorption/ionization-mass spectrometry of hydrophobic proteins in mixtures using formic acid, perfluorooctanoic acid, and sorbitol.

    PubMed

    Loo, Rachel R Ogorzalek; Loo, Joseph A

    2007-02-01

    Three MALDI-MS sample/matrix preparation approaches were evaluated for their ability to enhance hydrophobic protein detection from complex mixtures: (1) formic acid-based formulations, (2) perfluorooctanoic acid (PFOA) surfactant addition, and (3) sorbitol addition. While MALDI-MS of Escherichia coli cells desorbed from a standard sinapinic acid matrix displayed 94 (M + H)+ ions, 119 were observed from a formic acid-based matrix with no more than 10 common to both. Formic acid matrix revealed many lipoproteins and an 8282 m/z ion proposed to be the abundant, water-insoluble ATPase proteolipid. Among the formic acid-based cocktails examined, the slowest rate of serine/threonine formylation was found for 50% H2O/33% 2-propanol/17% formic acid. Faster formylation was observed from cocktails containing more formic acid and from mixtures including CH3CN. Sinapinic, ferulic, DHB, 4-hydroxybenzylidene malononitrile, and 2-mercaptobenzothiazole matrixes performed well in formic acid formulations. Dramatic differences in mixture spectra were also observed from PFOA/sinapinic acid, at detergent concentrations exceeding the critical micelle concentration, although these matrix cocktails proved difficult to crystallize. E. coli ions observed from these matrix conditions are listed in Tables S-1 and S-3 (Supporting Information). Similar complementarity was observed for M. acetivorans whole-cell mixtures. Including sorbitol in the sinapinic acid matrix was found to promote homogeneous crystallization and to enhance medium and higher m/z ion detection from dilute E. coli cellular mixtures.

  18. C9/12 Ribbon-Like Structures in Hybrid Peptides Alternating α- and Thiazole-Based γ-Amino Acids.

    PubMed

    Bonnel, Clément; Legrand, Baptiste; Simon, Matthieu; Martinez, Jean; Bantignies, Jean-Louis; Kang, Young Kee; Wenger, Emmanuel; Hoh, Francois; Masurier, Nicolas; Maillard, Ludovic T

    2017-12-11

    According to their restricted conformational freedom, heterocyclic γ-amino acids are usually considered to be related to Z-vinylogous γ-amino acids. In this context, oligomers alternating α-amino acids and thiazole-based γ-amino acids (ATCs) were expected to fold into a canonical 12-helical shape as described for α/γ-hybrid peptides composed of cis-α/β-unsaturated γ-amino acids. However, through a combination of X-ray crystallography, NMR spectroscopy, FTIR experiments, and DFT calculations, it was determined that the folding behavior of ATC-containing hybrid peptides is much more complex. The homochiral α/(S)-ATC sequences were unable to adopt a stable conformation, whereas the heterochiral α/(R)-ATC peptides displayed novel ribbon structures stabilized by unusual C 9/12 -bifurcated hydrogen bonds. These ribbon structures could be considered as a succession of pre-organized γ/α dipeptides and may provide the basis for designing original α-helix mimics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Eight supramolecular assemblies constructed from bis(benzimidazole) and organic acids through strong classical hydrogen bonding and weak noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Daqi

    2014-05-01

    Eight crystalline organic acid-base adducts derived from alkane bridged bis(N-benzimidazole) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-sulfosalicylic acid and oxalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the eight compounds five are organic salts (1, 4, 6, 7 and 8) and the other three (2, 3, and 5) are cocrystals. In all of the adducts except 1 and 8, the ratio of the acid and the base is 2:1. All eight supramolecular assemblies involve extensive intermolecular classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure. The results presented herein indicate that the strength and directionality of the classical N+-H⋯O-, O-H⋯O, and O-H⋯N hydrogen bonds (ionic or neutral) and other nonbonding associations between acids and ditopic benzimidazoles are sufficient to bring about the formation of cocrystals or organic salts.

  20. Enhancement of the release of azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl-beta-cyclodextrin.

    PubMed

    Manosroi, Jiradej; Apriyani, Maria Goretti; Foe, Kuncoro; Manosroi, Aranya

    2005-04-11

    The aim of this study was to investigate the release rates of azelaic acid and azelaic acid-hydroxypropyl-beta-cyclodextrin (HPbetaCD) inclusion complex through three types of synthetic membranes, namely cellophane, silicone and elastomer membranes. Solid inclusion complexes of azelaic acid-HPbetaCD at the molar ratio of 1:1 were prepared by coevaporation and freeze-drying methods, subsequently characterized by differential scanning calorimetry, X-ray diffractometry and dissolution studies. Solid inclusion complex obtained by coevaporation method which exhibited the inclusion of azelaic acid in the HPbetaCD cavity and gave the highest dissolution rate of azelaic acid was selected for the release study. Release studies of azelaic acid and this complex through the synthetic membranes were conducted using vertical Franz diffusion cells at 30 degrees C for 6 days. The release rates of azelaic acid through the synthetic membranes were enhanced by the formation of inclusion complex with HPbetaCD at the molar ratio of 1:1, with the increasing fluxes of about 41, 81 and 28 times of the uncomplexed system in cellophane, silicone and elastomer membranes, respectively. The result from this study can be applied for the development of azelaic acid for topical use.

  1. In Praise of Thiosulfate.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1990-01-01

    The use of the thiosulfate ion in teaching the concepts of gas formation, precipitate formation, complex formation, acid-base interaction, redox interaction, time evolution of chemical processes, catalysis, and stoichiometry is discussed. Several demonstrations and activities are detailed. (CW)

  2. Visual pigments. 11. Spectroscopy and photophysics of retinoic acids and all-trans-methyl retinoate. [Photophysical properties at 77/sup 0/K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, T.; Chihara, K.; Becker, R.S.

    1980-04-09

    The photophysics of hydrogen-bonded complexes of retinoic acid and its 9-cis and 13-cis isomers and the photophysics of the dimers of these isomers of retinoic acid were studied. The investigation indicated that complexes of retinoic acid and molecules that form hydrogen bonds with the carbonyl oxygen of retinoic acid (type I complexes) have both higher radiative and nonradiative rate constants than do hydrogen-bonded complexes of retinoic acid and molecules that form hydrogen bonds only with the hydroxyl oxygen of retinoic acid (type II complexes). For all-trans-retinoic acid in 3-methylpentane at 77 K, the type I complexes have radiative rate constantsmore » approximately equal to or greater than 2 x 10/sup 8/ s/sup -1/ and nonradiative rate constants greater than 3 x 10/sup 8/ s/sup -1/. Both the radiative and nonradiative rate constants of the type II complexes of all-trans-retinoic acid at 77 K in 3-methylpentane are less than 1 x 10/sup 8/ s/sup -1/. The dimer of retinoic acid (K(association) = 1 x 10/sup 4/ M/sup -1/ at room temperature for the all-trans isomer) behaves like a type I complex, and its excited-state properties are better understood in terms of hydrogen bonding than in terms of an exciton model. The photophysical properties and triplet-triplet absorption spectrum of methyl retinoate were measured. The study concluded with an examination of some of the implications of this work for the role of hydrogen bonding in the dimers and monomers of retinal and retinol.« less

  3. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  4. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Mi, Xiuna; Wang, Suna; Lu, Jing; Li, Yunwu; Li, Dacheng; Dou, Jianmin

    2018-05-01

    Two new coordination polymers (CPs), namely, {[Zn(L)(bpp)]·DMF}n (1) and {[Zn(L)(bpe)]·DMF}n (2) (L = 2,2'-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoic acid, bpp= 1,3-bis(4-pyridyl)propane, bpe = 1,2-Bis(4-pyridyl)ethylene, DMF = N,N-Dimethylformamide), have been solvothermally synthesized and fully characterized. Complex 1 displays a 2D→2D three-fold"false" interpenetrating structure while complex 2 possesses a novel 3-D 4-connected structure with fascinating self-penetrating moieties. The luminescence studies reveal that these complexes exhibited excellent selectivity for Fe3+ and Cr2O72- ions in DMF. The sensing mechanism was investigated through PXRD, XPS , EDS mapping measurements, and discussed in details.

  5. C-PCM based calculation of energy profiles for proton transfer in phosphorus-containing acid- N, N-dimethylformamide complexes

    NASA Astrophysics Data System (ADS)

    Fedorova, I. V.; Khatuntseva, E. A.; Krest'yaninov, M. A.; Safonova, L. P.

    2016-02-01

    Proton transfer along the hydrogen bond in complexes of DMF with H3PO4, H3PO3, CH3H2PO3, and their dimers has been investigated by the B3LYP/6-31++G** method in combination with the C-PCM model. When the Oacid···ODMF distance ( R) in the scanning procedure is not fixed, the energy profile in all cases has a single well. When this distance is fixed, there can be a proton transfer in all of the complexes in the gas phase at R > 2.6 Å; if solvation is taken into account, proton transfer can take place at R > 2.4 Å ( R > 2.5 Å for DMF complexes with CH3H2PO3 and its dimer). The height of the energy barrier to proton transfer increases with increasing R. Proton transfer is energetically most favorable in the DMF-phosphoric acid complexes. The structural and energetic characteristics of the hydrogen-bonded complexes calculated on the basis of the solvation model are compared with the same parameters for the complexes in the gas phase.

  6. trans-Methylpyridine cyclen versus cross-bridged trans-methylpyridine cyclen. Synthesis, acid-base and metal complexation studies (metal = Co2+, Cu2+, and Zn2+).

    PubMed

    Bernier, Nicolas; Costa, Judite; Delgado, Rita; Félix, Vítor; Royal, Guy; Tripier, Raphaël

    2011-05-07

    The synthesis of the cross-bridged cyclen CRpy(2) {4,10-bis((pyridin-2-yl)methyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane}, a constrained analogue of the previously described trans-methylpyridine cyclen Cpy(2) is reported. The additional ethylene bridge confers to CRpy(2) proton-sponge type behaviour which was explored by NMR and potentiometric studies. Transition metal complexes have been synthesized (by complexation of both ligands with Co(2+), Cu(2+) and Zn(2+)) and characterized in solution and in the solid state. The single crystal X-ray structures of [CoCpy(2)](2+), [CuCpy(2)](2+) and [ZnCpy(2)](2+) complexes were determined. Stability constants of the complexes, including those of the cross-bridged derivative, were determined using potentiometric titration data and the kinetic inertness of the [CuCRpy(2)](2+) complex in an acidic medium (half-life values) was evaluated by spectrophotometry. The pre-organized structure of the cross-bridged ligand imposes an additional strain for the complexation leading to complexes with smaller thermodynamic stability in comparison with the related non-bridged ligand. The electrochemical study involving cyclic voltammetry underlines the importance of the ethylene cross-bridge on the redox properties of the transition metal complexes.

  7. Addition of Grape Seed Extract Renders Phosphoric Acid a Collagen-stabilizing Etchant.

    PubMed

    Liu, Y; Dusevich, V; Wang, Y

    2014-08-01

    Previous studies found that grape seed extract (GSE), which is rich in proanthocyanidins, could protect demineralized dentin collagen from collagenolytic activities following clinically relevant treatment. Because of proanthocyanidin's adverse interference to resin polymerization, it was believed that GSE should be applied and then rinsed off in a separate step, which in effect increases the complexity of the bonding procedure. The present study aimed to investigate the feasibility of combining GSE treatment with phosphoric acid etching to address the issue. It is also the first attempt to formulate collagen-cross-linking dental etchants. Based on Fourier-transformed infrared spectroscopy and digestion assay, it was established that in the presence of 20% to 5% phosphoric acid, 30 sec of GSE treatment rendered demineralized dentin collagen inert to bacterial collagenase digestion. Based on this positive result, the simultaneous dentin etching and collagen protecting of GSE-containing phosphoric acid was evaluated on the premise of a 30-second etching time. According to micro-Raman spectroscopy, the formulation containing 20% phosphoric acid was found to lead to overetching. Based on scanning and transmission electronic microscopy, this same formulation exhibited unsynchronized phosphoric acid and GSE penetration. Therefore, addition of GSE did render phosphoric acid a collagen-stabilizing etchant, but the preferable phosphoric acid concentration should be <20%. © International & American Associations for Dental Research.

  8. Identification of a copper(I) intermediate in the conversion of 1-aminocyclopropane carboxylic acid (ACC) into ethylene by Cu(II)-ACC complexes and hydrogen peroxide.

    PubMed

    Ghattas, Wadih; Giorgi, Michel; Mekmouche, Yasmina; Tanaka, Tsunehiro; Rockenbauer, Antal; Réglier, Marius; Hitomi, Yutaka; Simaan, A Jalila

    2008-06-02

    Several Cu(II) complexes with ACC (=1-aminocyclopropane carboxylic acid) or AIB (=aminoisobutyric acid) were prepared using 2,2'-bipyridine, 1,10-phenanthroline, and 2-picolylamine ligands: [Cu(2,2'-bipyridine)(ACC)(H2O)](ClO4) (1a), [Cu(1,10-phenanthroline)(ACC)](ClO4) (2a), [Cu(2-picolylamine)(ACC)](ClO4) (3a), and [Cu(2,2'-bipyridine)(AIB)(H2O)](ClO4) (1b). All of the complexes were characterized by X-ray diffraction analysis. The Cu(II)-ACC complexes are able to convert the bound ACC moiety into ethylene in the presence of hydrogen peroxide, in an "ACC-oxidase-like" activity. A few equivalents of base are necessary to deprotonate H2O2 for optimum activity. The presence of dioxygen lowers the yield of ACC conversion into ethylene by the copper(II) complexes. During the course of the reaction of Cu(II)-ACC complexes with H2O2, brown species (EPR silent and lambda max approximately 435 nm) were detected and characterized as being the Cu(I)-ACC complexes that are obtained upon reduction of the corresponding Cu(II) complexes by the deprotonated form of hydrogen peroxide. The geometry of the Cu(I) species was optimized by DFT calculations that reveal a change from square-planar to tetrahedral geometry upon reduction of the copper ion, in accordance with the observed nonreversibility of the redox process. In situ prepared Cu(I)-ACC complexes were also reacted with hydrogen peroxide, and a high level of ethylene formation was obtained. We propose Cu(I)-OOH as a possible active species for the conversion of ACC into ethylene, the structure of which was examined by DFT calculation.

  9. Stereochemical control over Mn(II)-Thio versus Mn(II)-Oxy coordination in adenosine 5 prime -O-(1-thiodiphosphate) complexes at the active site of creatine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smithers, G.W.; Sammons, R.D.; Goodhart, P.J.

    1989-02-21

    The stereochemical configurations of the Mn(II) complexes with the resolved epimers of adenosine 5{prime}-O-(1-thiodiphosphate) (ADP{alpha}S), bound at the active site of creatine kinase, have been determined in order to assess the relative strengths of enzymic stereoselectivity versus Lewis acid/base preferences in metal-ligand binding. Electron paramagnetic resonance (EPR) data have been obtained for Mn(II) in anion-stabilized, dead-end (transition-state analogue) complexes, in ternary enzyme-Mn{sup II}ADP{alpha}S complexes, and in the central complexes of the equilibrium mixture. The modes of coordination of Mn(II) at P{sub alpha} in the nitrate-stabilized, dead-end complexes with each epimer of ADP{alpha}S were ascertained by EPR measurements with (R{sub p})-({alpha}-{supmore » 17}O)ADP{alpha}S and (S{sub p})-({alpha}-{sup 17}O)ADP{alpha}S. A reduction in the magnitude of the {sup 55}Mn hyperfine coupling constant in the spectrum for the complex containing (S{sub p})-ADP{alpha}S is indicative of Mn(II)-thio coordination at P{sub alpha}. The results indicate that a strict discrimination for a unique configuration of the metal-nucleotide substrate is expressed upon binding of all of the substrates to form the active complex (or an analogue thereof). This enzymic stereoselectivity provides sufficient binding energy to overcome an intrinsic preference for the hard Lewis acid Mn(II) to coordinate to the hard Lewis base oxygen.« less

  10. Existence of both blue-shifting hydrogen bond and Lewis acid-base interaction in the complexes of carbonyls and thiocarbonyls with carbon dioxide.

    PubMed

    Nguyen, Tien Trung; Nguyen, Phi Hung; Tran, Thanh Hue; Minh, Tho Nguyen

    2011-08-21

    In this study, 16 gas phase complexes of the pairs of XCHZ and CO(2) (X = F, Cl, Br; Z = O, S) have been identified. Interaction energies calculated at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level including both BSSE and ZPE corrections range from -5.6 to -10.5 kJ mol(-1) for XCHOCO(2) and from -5.7 to -9.1 kJ mol(-1) for XCHS···CO(2). Substitution of one H atom by one halogen in formaldehyde and thioformaldehyde reduces the interaction energy of XCHZ···CO(2), while a CH(3) substitution increases the interaction energy of both CH(3)CHO···CO(2) and CH(3)CHS···CO(2). NBO and AIM analyses also point out that the strength of Lewis acid-base interactions decreases going from >C1=S3···C6 to >C1=O3C6 and to >C1-X4···C6. This result suggests the higher capacity of solubility of thiocarbonyl compounds in scCO(2), providing an enormous potential application for designing CO(2)-philic materials based on the >C=S functional group in competition with >C=O. The Lewis acid-base interaction of the types >C=S···C, >C-Cl···C and >C-Br···C is demonstrated for the first time. The contribution of the hydrogen bonding interaction to the total interaction energy is larger for XCHS···CO(2) than for XCHO···CO(2). Upon complexation, a contraction of the C1-H2 bond length and a blue shift of its stretching frequency have been observed, as compared to the isolated monomer, indicating the existence of a blue-shifting hydrogen bond in all complexes examined. Calculated results also lend further support for the viewpoint that when acting as proton donor, a C-H bond having a weaker polarization will induce a stronger distance contraction and frequency blue shift upon complexation, and vice versa.

  11. Dicationic Surfactants with Glycine Counter Ions for Oligonucleotide Transportation.

    PubMed

    Pietralik, Zuzanna; Skrzypczak, Andrzej; Kozak, Maciej

    2016-08-04

    Gemini surfactants are good candidates to bind, protect, and deliver nucleic acids. Herein, the concept of amino acids (namely glycine) as counter ions of gemini surfactants for gene therapy application was explored. This study was conducted on DNA and RNA oligomers and two quaternary bis-imidazolium salts, having 2,5-dioxahexane and 2,8-dioxanonane spacer groups. The toxicity level of surfactants was assessed by an MTT assay, and their ability to bind nucleic acids was tested through electrophoresis. The nucleic acid conformation was established based on circular dichroism and infrared spectroscopic analyses. The structures of the formed complexes were characterized by small-angle scattering of synchrotron radiation. Both studied surfactants appear to be suitable for gene therapy; however, although they vary by only three methylene groups in the spacer, they differ in binding ability and toxicity. The tested oligonucleotides maintained their native conformations upon surfactant addition and the studied lipoplexes formed a variety of structures. In systems based on a 2,5-dioxahexane spacer, a hexagonal phase was observed for DNA-surfactant complexes and a micellar phase was dominant with RNA. For the surfactant with a 2,8-dioxanonane spacer group, the primitive cubic phase prevailed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Lewis base activation of Lewis acids: catalytic, enantioselective addition of silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Beutner, Gregory L; Wynn, Thomas; Eastgate, Martin D

    2005-03-23

    The concept of Lewis base activation of Lewis acids has been reduced to practice for catalysis of the aldol reaction of silyl ketene acetals and silyl dienol ethers with aldehydes. The weakly acidic species, silicon tetrachloride (SiCl4), can be activated by binding of a strongly Lewis basic chiral phosphoramide, leading to in situ formation of a chiral Lewis acid. This species has proven to be a competent catalyst for the aldol addition of acetate-, propanoate-, and isobutyrate-derived silyl ketene acetals to conjugated and nonconjugated aldehydes. Furthermore, vinylogous aldol reactions of silyl dienol ethers are also demonstrated. The high levels of regio-, anti diastereo-, and enantioselectivity observed in these reactions can be rationalized through consideration of an open transition structure where steric interactions between the silyl cation complex and the approaching nucleophile are dominant.

  13. A non-covalent peptide-based carrier for in vivo delivery of DNA mimics.

    PubMed

    Morris, May C; Gros, Edwige; Aldrian-Herrada, Gudrun; Choob, Michael; Archdeacon, John; Heitz, Frederic; Divita, Gilles

    2007-01-01

    The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficient delivery into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. We demonstrate that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA blocks tumour growth in vivo upon intratumoral and intravenous injection. Moreover, we show that PEGylation of Pep-3 significantly improves complex stability in vivo and consequently the efficiency of antisense cyclin B1 administered intravenously. Given the biological characteristics of these vectors, we believe that peptide-based delivery technologies hold a true promise for therapeutic applications of DNA mimics.

  14. A non-covalent peptide-based carrier for in vivo delivery of DNA mimics

    PubMed Central

    Morris, May C.; Gros, Edwige; Aldrian-Herrada, Gudrun; Choob, Michael; Archdeacon, John; Heitz, Frederic; Divita, Gilles

    2007-01-01

    The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficient delivery into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. We demonstrate that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA blocks tumour growth in vivo upon intratumoral and intravenous injection. Moreover, we show that PEGylation of Pep-3 significantly improves complex stability in vivo and consequently the efficiency of antisense cyclin B1 administered intravenously. Given the biological characteristics of these vectors, we believe that peptide-based delivery technologies hold a true promise for therapeutic applications of DNA mimics. PMID:17341467

  15. Exploring hydride-π interactions and their tuning by σ-hole bonds: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Asadollahi, Soheila; Mousavian, Parisasadat

    2018-01-01

    In the present work, ab initio calculations are performed to investigate the geometry, interaction energy and bonding properties of binary complexes formed between metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CH3) and a series of π-acidic heteroaromatic rings. In all the resulting complexes, the heteroaromatic ring acts as a Lewis acid (electron acceptor), while the H atom of the HMX molecule acts as a Lewis base (electron donor). The nature of this interaction, called 'hydride-π' interaction, is explored in terms of molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. The results show that the interaction energies of these hydride-π interactions are between -1.24 and -2.72 kcal/mol. Furthermore, mutual influence between the hydride-π and halogen- or pnicogen-bonding interactions is studied in complexes in which these interactions coexist. For a given π-acidic ring, the formation of the pnicogen-bonding induces a larger enhancing effect on the strength of hydride-π bond than the halogen-bonding.

  16. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base.

    PubMed

    Kawashima, Aki; Shu, Shuangjie; Takeda, Ryosuke; Kawamura, Akie; Sato, Tatsunori; Moriwaki, Hiroki; Wang, Jiang; Izawa, Kunisuke; Aceña, José Luis; Soloshonok, Vadim A; Liu, Hong

    2016-04-01

    Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is in extremely high demand due to the pharmaceutical importance of this tailor-made, sterically constrained α-amino acid. Here we report the development of an advanced procedure for preparation of the target amino acid via two-step SN2 and SN2' alkylation of novel axially chiral nucleophilic glycine equivalent. Excellent yields and diastereoselectivity coupled with reliable and easy scalability render this method of immediate use for practical synthesis of (1R,2S)-vinyl-ACCA.

  18. 21 CFR 172.315 - Nicotinamide-ascorbic acid complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed conditions: (a) The additive is the product of...

  19. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Microscale Synthesis, Reactions, and (Super 1)H NMR Spectroscopic Investigations of Square Planar Macrocyclic, Tetramido-N Co(III) Complexes Relevant to Green Chemistry

    ERIC Educational Resources Information Center

    Watson, Tanya T.; Uffelman, Erich S.; Lee, Daniel W., III; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen, R.

    2004-01-01

    The microscale preparation, characterization, and reactivity of a square planar Co(III) complex that has grown out of a program to introduce experiments of relevance to green chemistry into the undergraduate curriculum is presented. The given experiments illustrate the remarkable redox and aqueous acid-base stability that make the macrocycles very…

  1. Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes: A Mechanistic Investigation using High-Pressure NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getty, April D.; Tai, Chih-Cheng; Linehan, John C.

    2009-08-26

    The previously reported complex, cis-(PMe3)4RuCl(OAc) (1) acts as a catalyst for CO2 hydrogenation into formic acid in the presence of a base and an alcohol co-catalyst. NMR spectroscopy has revealed that 1 exists in solution in equilibrium with fac-(PMe3)3RuCl(h2-OAc) (2), [(PMe3)4Ru(h2-OAc)]Cl (3a), and free PMe3. Complex 2 has been isolated and characterized by elemental analysis, NMR spectroscopy, and X-ray crystallography. 2 has been tested as a CO2 hydrogenation catalyst, however, it performed poorly under the conditions of catalysis used for 1. Complex 3a can be prepared by adding certain alcohols, such as MeOH, EtOH, or o-C6H5OH, to a solution ofmore » 1 in CDCl3. The chloride ion of 3a has been exchanged for the non-coordinating anions BPh4 or B(ArF )4 (B(ArF)4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) to produce [(PMe3)4Ru(h2-OAc)]BPh4 (3b) and [(PMe3)4Ru(h2-OAc)]B(ArF)4 (3c). Both of these complexes have been isolated and characterized by elemental analysis, NMR spectroscopy, and in the case of 3b, X-ray crystallography. Complexes 3b and 3c perform just as well as 1 for CO2 hydrogenation to formic acid in the presence of an alcohol co-catalyst; however, 3b,c perform equally well without the added alcohol. High-pressure NMR has been used to investigate the mechanism of CO2 hydrogenation via 3a,b in the presence of base. Two of the intermediates involved have been identified as cis-(PMe3)4RuH2 (5) and cis-(PMe3)4Ru(H)O2CH (6), and the role of the base includes not only trapping of the formic acid product, but also initiation of the catalysis by aiding the conversion of 3b,c to 5.« less

  2. Preparation of a polar monolithic stir bar based on methacrylic acid and divinylbenzene for the sorptive extraction of polar pharmaceuticals from complex water samples.

    PubMed

    Bratkowska, D; Fontanals, N; Cormack, P A G; Borrull, F; Marcé, R M

    2012-02-17

    A monolithic, hydrophilic stir bar coating based upon a copolymer of methacrylic acid and divinylbenzene [poly(MAA-co-DVB)] was synthesised and evaluated as a new polymeric phase for the stir bar sorptive extraction (SBSE) of polar compounds from complex environmental water samples. The experimental conditions for the extraction and liquid desorption in SBSE were optimised. Liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) was used for the determination of a group of polar pharmaceuticals in environmental water matrices. The extraction performance of the poly(MAA-co-DVB) stir bar was compared to the extraction performance of a commercially available polydimethylsiloxane stir bar; it was found that the former gave rise to significantly higher extraction efficiency of polar analytes (% recovery values near to 100% for most of the studied analytes) than the commercial product. The developed method was applied to determine the studied analytes at low ng L⁻¹ in different complex environmental water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Structure dependent selective efficacy of pyridine and pyrrole based Cu(II) Schiff base complexes towards in vitro cytotoxicity, apoptosis and DNA-bases binding in ground and excited state.

    PubMed

    Koley Seth, Banabithi; Saha, Arpita; Haldar, Srijan; Chakraborty, Partha Pratim; Saha, Partha; Basu, Samita

    2016-09-01

    This work highlights a systematic and comparative study of the structure-dependent influence of a series of biologically active Cu(II) Schiff base complexes (CSCs) on their in vitro cytotoxicity, apoptosis and binding with polymeric DNA-bases in ground and photo-excited states. The structure-activity relationship of the closely resembled CSCs towards in vitro cytotoxicity and apoptosis against cervical cancerous HeLa and normal human diploid WI-38 cell lines has been investigated by MTT assay and FACS techniques respectively. The steady-state and time-resolved spectroscopic studies have also been carried out to explore the selective binding affinities of the potential complexes towards different polymeric nucleic acid bases (poly d(A), poly d(T), poly d(G), poly d(C), Poly d(G)-Poly d(C)), which enlighten the knowledge regarding their ability in controlling the structure and medium dependent interactions in 'ground' and 'excited' states. The pyridine containing water soluble complexes (CuL(1) and CuL(3)) are much more cytotoxic than the corresponding pyrrole counterparts (CuL(2) and CuL(4)). Moreover the acidic hydrogens in CuL(1) increase its cytotoxicity much more than methyl substitution as in CuL(3). The results of MTT assay and double staining FACS experiments indicate selective inhibition of cell growth (cell viability 39% (HeLa) versus 85% (WI-38)) and occurrence of apoptosis rather than necrosis. The ground state binding of CuL(1) with polymeric DNA bases, especially with guanine rich DNA (Kb=6.41±0.122×10(5)), that enhances its cytotoxic activity, is further confirmed from its binding isotherms. On the other hand the pyrrole substituted CuL(4) complex exhibits the structure and medium dependent selective electron-transfer in triplet state as observed in laser flash photolysis studies followed by magnetic field (MF) effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  5. A Closed-tube Loop-Mediated Isothermal Amplification Assay for the Visual Endpoint Detection of Brucella spp. and Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Trangoni, Marcos D; Gioffré, Andrea K; Cravero, Silvio L

    2017-01-01

    LAMP (loop-mediated isothermal amplification) is an isothermal nucleic acid amplification technique that is characterized by its efficiency, rapidity, high yield of final product, robustness, sensitivity, and specificity, with the blueprint that it can be implemented in laboratories of low technological complexity. Despite the conceptual complexity underlying the mechanistic basis for the nucleic acid amplification, the technique is simple to use and the amplification and detection can be carried out in just one step. In this chapter, we present a protocol based on LAMP for the rapid identification of isolates of Brucella spp. and Mycobacterium avium subsp. paratuberculosis, two major bacterial pathogens in veterinary medicine.

  6. Oxidation of benzoin catalyzed by oxovanadium(IV) schiff base complexes

    PubMed Central

    2013-01-01

    Background The oxidative transformation of benzoin to benzil has been accomplished by the use of a wide variety of reagents or catalysts and different reaction procedures. The conventional oxidizing agents yielded mainly benzaldehyde or/and benzoic acid and only a trace amount of benzil. The limits of practical utilization of these reagents involves the use of stoichiometric amounts of corrosive acids or toxic metallic reagents, which in turn produce undesirable waste materials and required high reaction temperatures. In recent years, vanadium complexes have attracted much attention for their potential utility as catalysts for various types of reactions. Results Active and selective catalytic systems of new unsymmetrical oxovanadium(IV) Schiff base complexes for the oxidation of benzoin is reported. The Schiff base ligands are derived between 2-aminoethanol and 2-hydroxy-1-naphthaldehyde (H2L1) or 3-ethoxy salicylaldehyde (H2L3); and 2-aminophenol and 3-ethoxysalicylaldehyde (H2L2) or 2-hydroxy-1-naphthaldehyde (H2L4). The unsymmetrical Schiff bases behave as tridentate dibasic ONO donor ligands. Reaction of these Schiff base ligands with oxovanadyl sulphate afforded the mononuclear oxovanadium(IV) complexes (VIVOLx.H2O), which are characterized by various physico-chemical techniques. The catalytic oxidation activities of these complexes for benzoin were evaluated using H2O2 as an oxidant. The best reaction conditions are obtained by considering the effect of solvent, reaction time and temperature. Under the optimized reaction conditions, VOL4 catalyst showed high conversion (>99%) with excellent selectivity to benzil (~100%) in a shorter reaction time compared to the other catalysts considered. Conclusion Four tridentate ONO type Schiff base ligands were synthesized. Complexation of these ligands with vanadyl(IV) sulphate leads to the formation of new oxovanadium(IV) complexes of type VIVOL.H2O. Elemental analyses and spectral data of the free ligands and their oxovanadium(IV) complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. Oxovanadium complexes were screened for the oxidation of benzoin to benzil using H2O2 as oxidant. The effect of time, solvent and temperature were optimized to obtain maximum yield. The catalytic activity results demonstrate that these catalytic systems are both highly active and selective for the oxidation of benzoin under mild reaction conditions. PMID:23294561

  7. Oxidation of benzoin catalyzed by oxovanadium(IV) schiff base complexes.

    PubMed

    Alsalim, Tahseen A; Hadi, Jabbar S; Ali, Omar N; Abbo, Hanna S; Titinchi, Salam Jj

    2013-01-07

    The oxidative transformation of benzoin to benzil has been accomplished by the use of a wide variety of reagents or catalysts and different reaction procedures. The conventional oxidizing agents yielded mainly benzaldehyde or/and benzoic acid and only a trace amount of benzil. The limits of practical utilization of these reagents involves the use of stoichiometric amounts of corrosive acids or toxic metallic reagents, which in turn produce undesirable waste materials and required high reaction temperatures.In recent years, vanadium complexes have attracted much attention for their potential utility as catalysts for various types of reactions. Active and selective catalytic systems of new unsymmetrical oxovanadium(IV) Schiff base complexes for the oxidation of benzoin is reported. The Schiff base ligands are derived between 2-aminoethanol and 2-hydroxy-1-naphthaldehyde (H2L1) or 3-ethoxy salicylaldehyde (H2L3); and 2-aminophenol and 3-ethoxysalicylaldehyde (H2L2) or 2-hydroxy-1-naphthaldehyde (H2L4). The unsymmetrical Schiff bases behave as tridentate dibasic ONO donor ligands. Reaction of these Schiff base ligands with oxovanadyl sulphate afforded the mononuclear oxovanadium(IV) complexes (VIVOLx.H2O), which are characterized by various physico-chemical techniques.The catalytic oxidation activities of these complexes for benzoin were evaluated using H2O2 as an oxidant. The best reaction conditions are obtained by considering the effect of solvent, reaction time and temperature. Under the optimized reaction conditions, VOL4 catalyst showed high conversion (>99%) with excellent selectivity to benzil (~100%) in a shorter reaction time compared to the other catalysts considered. Four tridentate ONO type Schiff base ligands were synthesized. Complexation of these ligands with vanadyl(IV) sulphate leads to the formation of new oxovanadium(IV) complexes of type VIVOL.H2O.Elemental analyses and spectral data of the free ligands and their oxovanadium(IV) complexes were found to be in good agreement with their structures, indicating high purity of all the compounds.Oxovanadium complexes were screened for the oxidation of benzoin to benzil using H2O2 as oxidant. The effect of time, solvent and temperature were optimized to obtain maximum yield. The catalytic activity results demonstrate that these catalytic systems are both highly active and selective for the oxidation of benzoin under mild reaction conditions.

  8. Solar-thermal complex sample processing for nucleic acid based diagnostics in limited resource settings

    PubMed Central

    Gumus, Abdurrahman; Ahsan, Syed; Dogan, Belgin; Jiang, Li; Snodgrass, Ryan; Gardner, Andrea; Lu, Zhengda; Simpson, Kenneth; Erickson, David

    2016-01-01

    The use of point-of-care (POC) devices in limited resource settings where access to commonly used infrastructure, such as water and electricity, can be restricted represents simultaneously one of the best application fits for POC systems as well as one of the most challenging places to deploy them. Of the many challenges involved in these systems, the preparation and processing of complex samples like stool, vomit, and biopsies are particularly difficult due to the high number and varied nature of mechanical and chemical interferents present in the sample. Previously we have demonstrated the ability to use solar-thermal energy to perform PCR based nucleic acid amplifications. In this work demonstrate how the technique, using similar infrastructure, can also be used to perform solar-thermal based sample processing system for extracting and isolating Vibrio Cholerae nucleic acids from fecal samples. The use of opto-thermal energy enables the use of sunlight to drive thermal lysing reactions in large volumes without the need for external electrical power. Using the system demonstrate the ability to reach a 95°C threshold in less than 5 minutes and maintain a stable sample temperature of +/− 2°C following the ramp up. The system is demonstrated to provide linear results between 104 and 108 CFU/mL when the released nucleic acids were quantified via traditional means. Additionally, we couple the sample processing unit with our previously demonstrated solar-thermal PCR and tablet based detection system to demonstrate very low power sample-in-answer-out detection. PMID:27231636

  9. Decaaquabis(μ3-4-hydroxypyridine-2,6-dicarboxylato)bis(4-hydroxypyridine-2,6-dicarboxylato)tetramanganese(II) 3.34-hydrate: a new three-dimensional open metal-organic framework based on a tetranuclear Mn(II) complex of chelidamic acid and undecameric stitching water clusters.

    PubMed

    Mirzaei, M; Lippolis, V; Eshtiagh-Hosseini, H; Mahjoobizadeh, M

    2012-01-01

    4-Hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid, cdaH(3)) reacts with MnCl(2)·2H(2)O in the presence of 2-amino-4-methylpyrimidine in water to afford the tetranuclear title complex, [Mn(4)(C(8)H(3)NO(5))(4)(H(2)O)(10)]·3.34H(2)O, built through carboxylate bridging. The tetranuclear complex sits on a centre of inversion at (½, ½, ½). In the crystal, discrete undecameric (H(2)O)(10.34) water clusters (involving both coordinated and uncoordinated water molecules, with one site of an uncoordinated water molecule not fully occupied) assemble these tetranuclear Mn(II) complex units via an intricate array of hydrogen bonding into an overall three-dimensional network. The degree of structuring of the (H(2)O)(10.34) supramolecular association of water molecules observed in the present compound, imposed by its environment and vice versa, will be discussed in comparison to that observed for the (H(2)O)(14) supramolecular clusters in the case of the dinuclear complex [Mn(2)(cdaH)(2)(H(2)O)(4)]·4H(2)O [Ghosh et al. (2005). Inorg. Chem. 44, 3856-3862]. © 2012 International Union of Crystallography

  10. DOTA analogues with a phosphinate-iminodiacetate pendant arm: modification of the complex formation rate with a strongly chelating pendant.

    PubMed

    Procházková, Soňa; Kubíček, Vojtěch; Böhmová, Zuzana; Holá, Kateřina; Kotek, Jan; Hermann, Petr

    2017-08-08

    The new ligand H 6 do3aP ida combines the macrocyclic DOTA-like cavity and the open-chain iminodiacetate group connected through a coordinating phosphinate spacer. Its acid-base and coordination properties in solution were studied by potentiometry. Thermodynamic coordination characteristics of both chelating units are similar to those reported for H 4 dota and iminodiacetic acid themselves, respectively, so, macrocyclic and iminodiacetate units behave independently. The formation kinetics of the Ce(iii)-H 6 do3aP ida complex was studied by UV-Vis spectrophotometry. Various out-of-cage intermediates were identified with 1 : 1, 1 : 2 and 2 : 1 ligand-to-metal ratios. The presence of the strongly coordinating iminodiacetate group significantly slows down the metal ion transfer into the macrocyclic cavity and, so, the formation of the in-cage complex is two orders of magnitude slower than that reported for the Ce(iii)-H 4 dota system. The kinetic inertness of the [Ce(do3aP ida )] 3- complex towards acid-assisted dissociation is comparable to that of the [Ce(dota)] - complex. The coordination modes of the ligand are demonstrated in the solid-state structure of [Cu 4 (do3aP ida )(OH)(H 2 O) 4 ]Cl·7.5H 2 O.

  11. Amperometric, Bipotentiometric, and Coulometric Titration.

    ERIC Educational Resources Information Center

    Stock, John T.

    1984-01-01

    Reviews literature on amperometric, bipotentiometric, and coulometric titration methods examining: apparatus and methodology; acid-base reactions; precipitation and complexing reactions (considering methods involving silver, mercury, EDTA or analogous reagents, and other organic compounds); and oxidation-reduction reactions (considering methods…

  12. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts

    PubMed Central

    Eggink, Laura L.; Chen, Min

    2007-01-01

    Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs. PMID:17505910

  13. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    PubMed

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.

  14. A chemical equilibrium model for metal adsorption onto bacterial surfaces

    NASA Astrophysics Data System (ADS)

    Fein, Jeremy B.; Daughney, Christopher J.; Yee, Nathan; Davis, Thomas A.

    1997-08-01

    This study quantifies metal adsorption onto cell wall surfaces of Bacillus subtilis by applying equilibrium thermodynamics to the specific chemical reactions that occur at the water-bacteria interface. We use acid/base titrations to determine deprotonation constants for the important surface functional groups, and we perform metal-bacteria adsorption experiments, using Cd, Cu, Pb, and Al, to yield site-specific stability constants for the important metal-bacteria surface complexes. The acid/base properties of the cell wall of B. subtilis can best be characterized by invoking three distinct types of surface organic acid functional groups, with pK a values of 4.82 ± 0.14, 6.9 ± 0.5, and 9.4 ± 0.6. These functional groups likely correspond to carboxyl, phosphate, and hydroxyl sites, respectively, that are displayed on the cell wall surface. The results of the metal adsorption experiments indicate that both the carboxyl sites and the phosphate sites contribute to metal uptake. The values of the log stability constants for metal-carboxyl surface complexes range from 3.4 for Cd, 4.2 for Pb, 4.3 for Cu, to 5.0 for Al. These results suggest that the stabilities of the metal-surface complexes are high enough for metal-bacterial interactions to affect metal mobilities in many aqueous systems, and this approach enables quantitative assessment of the effects of bacteria on metal mobilities.

  15. Computational studies of molecular charge transfer complexes of heterocyclic 4-methylepyridine-2-azomethine-p-benzene derivatives with picric acid and m-dinitrobenzene.

    PubMed

    Al-Harbi, L M; El-Mossalamy, E H; Obaid, A Y; Al-Jedaani, A H

    2014-01-01

    Charge transfer complexes of substituted aryl Schiff bases as donors with picric acid and m-dinitrobenzene as acceptors were investigated by using computational analysis calculated by Configuration Interaction Singles Hartree-Fock (CIS-HF) at standard 6-31G∗ basis set and Time-Dependent Density-Functional Theory (TD-DFT) levels of theory at standard 6-31G∗∗ basis set, infrared spectra, visible and nuclear magnetic resonance spectra are investigated. The optimized geometries and vibrational frequencies were evaluated. The energy and oscillator strength were calculated by Configuration Interaction Singles Hartree-Fock method (CIS-HF) and the Time-Dependent Density-Functional Theory (TD-DFT) results. Electronic properties, such as HOMO and LUMO energies and band gaps of CTCs set, were studied by the Time-Dependent density functional theory with Becke-Lee-Young-Parr (B3LYP) composite exchange correlation functional and by Configuration Interaction Singles Hartree-Fock method (CIS-HF). The ionization potential Ip and electron affinity EA were calculated by PM3, HF and DFT methods. The columbic force was calculated theoretically by using (CIS-HF and TD-DFT) methods. This study confirms that the theoretical calculation of vibrational frequencies for (aryl Schiff bases--(m-dinitrobenzene and picric acid)) complexes are quite useful for the vibrational assignment and for predicting new vibrational frequencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    NASA Astrophysics Data System (ADS)

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-12-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32- and DCCM/SeO32- complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.

  17. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  18. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  19. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  20. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  1. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  2. Entropy Beacon: A Hairpin-Free DNA Amplification Strategy for Efficient Detection of Nucleic Acids

    PubMed Central

    2015-01-01

    Here, we propose an efficient strategy for enzyme- and hairpin-free nucleic acid detection called an entropy beacon (abbreviated as Ebeacon). Different from previously reported DNA hybridization/displacement-based strategies, Ebeacon is driven forward by increases in the entropy of the system, instead of free energy released from new base-pair formation. Ebeacon shows high sensitivity, with a detection limit of 5 pM target DNA in buffer and 50 pM in cellular homogenate. Ebeacon also benefits from the hairpin-free amplification strategy and zero-background, excellent thermostability from 20 °C to 50 °C, as well as good resistance to complex environments. In particular, based on the huge difference between the breathing rate of a single base pair and two adjacent base pairs, Ebeacon also shows high selectivity toward base mutations, such as substitution, insertion, and deletion and, therefore, is an efficient nucleic acid detection method, comparable to most reported enzyme-free strategies. PMID:26505212

  3. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2002-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nudeic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  4. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2008-09-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  5. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W [San Francisco, CA; Pinkel, Daniel [Lafayette, CA; Kallioniemi, Olli-Pekka [Turku, FI; Kallioniemi, Anne [Tampere, FI; Sakamoto, Masaru [Tokyo, JP

    2009-10-06

    Methods and compositions for staining based upon nucleic acid sequence that employ .[.nudeic.]. .Iadd.nucleic .Iaddend.acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  6. Chromosome-Specific Staining To Detect Genetic Rearrangements Associated With Chromosome 3 And/Or Chromosone 17

    DOEpatents

    Gray; Joe W.; Pinkel; Daniel; Kallioniemi; Olli-Pekka; Kallioniemi; Anne; Sakamoto; Masaru

    2002-02-05

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  7. Charged triblock copolymer self-assembly into charged micelles

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Zhang, Ke; Zhu, Jiahua; Wooley, Karen; Pochan, Darrin; Department of Material Science; Engineering University of Delaware Team; Department of Chemistry Texas A&M University Collaboration

    2011-03-01

    Micelles were formed through the self-assembly of amphiphlic block copolymer poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-PMA-PS). ~Importantly, the polymer is complexed with diamine molecules in pure THF solution prior to water titration solvent processing-a critical aspect in the control of final micelle geometry. The addition of diamine triggers acid-base complexation ~between the carboxylic acid PAA side chains and amines. ~Remarkably uniform spheres were found to form close-packed patterns when forced into dried films and thin, solvated films when an excess of amine was used in the polymer assembly process. Surface properties and structural features of these hexagonal-packed spherical micelles with charged corona have been explored by various characterization methods including Transmission Electron Microscopy (TEM), cryogenic TEM, z-potential analysis and Dynamic Light Scattering. The forming mechanism for this pattern and morphology changes against external stimulate such as salt will be discussed.

  8. A new dual-channel optical signal probe for Cu2+ detection based on morin and boric acid.

    PubMed

    Wang, Peng; Yuan, Bin Fang; Li, Nian Bing; Luo, Hong Qun

    2014-01-01

    In this work we utilized the common analytical reagent morin to develop a new a dual-channel, cost-effective, and sensitive method for determination of Cu(2+). It is found that morin is only weakly fluorescent by itself, but forms highly fluorescent complexes with boric acid. Moreover, the fluorescence of complexes of morin with boric acid is quenched linearly by Cu(2+) in a certain concentration range. Under optimum conditions, the fluorescence quenching efficiency was linearly proportional to the concentration of cupric ions in the range of 0.5-25 μM with high sensitivity, and the detection limit for Cu(2+) was 0.38 μM. The linear range was 1-25 μM determined by spectrophotometry, and the detection limit for cupric ions was 0.8 μM. Furthermore, the mechanism of sensitive fluorescence quenching response of morin to Cu(2+) is discussed.

  9. A full-coordinate model of the polymerase domain of HIV-1 reverse transcriptase and its interaction with a nucleic acid substrate

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Meyer, D. J.; Shibata, M.; Roskwitalski, R.; Ornstein, R. L.; Rein, R.

    1994-01-01

    We present a full-coordinate model of residues 1-319 of the polymerase domain of HIV-I reverse transcriptase. This model was constructed from the x-ray crystallographic structure of Jacobo-Molina et al. (Jacobo-Molina et al., P.N.A.S. USA 90, 6320-6324 (1993)) which is currently available to the degree of C-coordinates. The backbone and side-chain atoms were constructed using the MAXSPROUT suite of programs (L. Holm and C. Sander, J. Mol. Biol. 218, 183-194 (1991)) and refined through molecular modeling. A seven base pair A-form dsDNA was positioned in the nucleic acid binding cleft to represent the template-primer complex. The orientation of the template-primer complex in the nucleic acid binding cleft was guided by the positions of phosphorus atoms in the crystal structure.

  10. A novel differential pulse voltammetric (DPV) method for measuring the antioxidant capacity of polyphenols-reducing cupric neocuproine complex.

    PubMed

    Tufan, Ayşe Nur; Baki, Sefa; Güçlü, Kubilay; Özyürek, Mustafa; Apak, Reşat

    2014-07-23

    A novel differential pulse voltammetric (DPV) method is presented, using a chromogenic oxidizing reagent, cupric neocuproine complex (Cu(Nc)2(2+)), for the assessment of antioxidant capacity of polyphenolic compounds (i.e., flavonoids, simple phenolic acids, and hydroxycinnamic acids), ascorbic acid, and real samples for the first time. The electrochemical behavior of the Cu(Nc)2(2+) complex was studied by cyclic voltammetry at a glassy carbon (GC) electrode. The electroanalytical method was based on the reduction of Cu(Nc)2(2+) to Cu(Nc)2(+) by antioxidants and electrochemical detection of the remaining Cu(II)-Nc (unreacted complex), the difference being correlated to antioxidant capacity of the analytes. The calibration curves of individual compounds comprising polyphenolics and vitamin C were constructed, and their response sensitivities and linear concentration ranges were determined. The reagent on the GC electrode retained its reactivity toward antioxidants, and the measured trolox equivalent antioxidant capacity (TEAC) values of various antioxidants suggested that the reactivity of the Cu(II)-Nc reagent is comparable to that of the solution-based spectrophotometric cupric ion reducing antioxidant capacity (CUPRAC) assay. This electroanalytical method better tolerated sample turbidity and provided higher sensitivity (i.e., lower detection limits) in antioxidant determination than the spectrophotometric assay. The proposed method was successfully applied to the measurement of total antioxidant capacity (TAC) in some herbal tea samples such as green tea, sage, marjoram, and alchemilla. Results demonstrated that the proposed voltammetric method has precision and accuracy comparable to those of the spectrophotometric CUPRAC assay.

  11. The blue man: burn from muriatic acid combined with chlorinated paint in an adult pool construction worker.

    PubMed

    O'Cleireachain, Marc R; Macias, Luis H; Richey, Karen J; Pressman, Melissa A; Shirah, Gina R; Caruso, Daniel M; Foster, Kevin N; Matthews, Marc R

    2014-01-01

    Muriatic acid (hydrochloric acid), a common cleaning and resurfacing agent for concrete pools, can cause significant burn injuries. When coating a pool with chlorinated rubber-based paint, the pool surface is initially cleansed using 31.45% muriatic acid. Here we report a 50-year-old Hispanic male pool worker who, during the process of a pool resurfacing, experienced significant contact exposure to a combination of muriatic acid and blue chlorinated rubber-based paint. Confounding the clinical situation was the inability to efficiently remove the chemical secondary to the rubber-based nature of the paint. Additionally, vigorous attempts were made to remove the rubber paint using a variety of agents, including bacitracin, chlorhexidine soap, GOOP adhesive, and Johnson's baby oil. Resultant injuries were devastating fourth-degree burns requiring an immediate operative excision and amputation. Despite aggressive operative intervention and resuscitation, he continued to have severe metabolic derangements and ultimately succumbed to his injuries. We present our attempts at debridement and the system in place to manage patients with complex chemical burns.

  12. Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

    PubMed Central

    Sakthivel, A.; Rajasekaran, K.

    2007-01-01

    New N2O2 donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and 1H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 µg/ml. PMID:24015086

  13. Crystal structure and ligand affinity of avidin in the complex with 4‧-hydroxyazobenzene-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Strzelczyk, Paweł; Bujacz, Grzegorz

    2016-04-01

    Avidin is a protein found in egg white that binds numerous organic compounds with high affinity, especially biotin and its derivatives. Due to its extraordinary affinity for its ligands, avidin is extensively used in biotechnology. X-ray crystallography and fluorescence-based biophysical techniques were used to show that avidin binds the dye 4‧-hydroxyazobenzene-2-carboxylic acid (HABA) with a lower affinity than biotin. The apparent dissociation constant determined for the avidin complex with HABA by microscale thermophoresis (MST) is 4.12 μM. The crystal structure of avidin-HABA complex was determined at a resolution of 2.2 Å (PDB entry 5chk). The crystals belong to a hexagonal system, in the space group P6422. In that structure, the hydrazone tautomer of HABA is bound at the bottom part of the central calyx near the polar residues. We show interactions of the dye with avidin and compare them with the previously reported avidin-biotin complex.

  14. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  15. Interactions of carbon dioxide with model organic molecules: A comparative theoretical study

    NASA Astrophysics Data System (ADS)

    Trung, Nguyen Tien; Nguyen, Minh Tho

    2013-08-01

    Interaction energies obtained using CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ computations including both ZPE and BSSE corrections range from -2.9 to -14.2 kJ mol-1. While formic acid forms the most stable complex with CO2, formaldehyde yields the least stable complex. Lewis acid-base interaction such as C-N⋯C(CO2), Cdbnd O⋯C(CO2), which overcomes C-H⋯O blue-shifting hydrogen bond, plays a significant role in stabilizing most complexes. However, the strength of (HCOOH, CO2) is mainly determined by O-H⋯O red-shifting hydrogen bond. The C-H⋯O blue-shifting hydrogen bond is revealed upon complexation of CH3OH, HCHO, HCOOH, CH3COCH3 and HCOOCH3 with CO2. Remarkably, existence of weak hydrogen bonded C-H⋯O interaction is not found in the (CH3OCH3, CO2) and (CH3NH2, CO2) pairs.

  16. A novel detection approach based on chromophore-decolorizing with free radical and application to photometric determination of copper with acid chrome dark blue.

    PubMed

    Gao, Hong-Wen; Chen, Fang-Fang; Chen, Ling; Zeng, Teng; Pan, Lu-Ting; Li, Jian-Hua; Luo, Hua-Fei

    2007-03-21

    A novel detection approach named chromophore-decolorizing with free radicals is developed for determination of trace heavy metal. The hydroxyl radicals (HO) generated from Fe(III) and hydrogen peroxide will oxidize the free chromophore into almost colorless products. The copper-acid chrome dark blue (ACDB) complexation was investigated at pH 5.07. In the presence of Fe(III) and hydrogen peroxide, the excess ACDB was decolorized in the Cu-ACDB reaction solution, and the final solution contained only one color compound, the Cu-ACDB complex. After oxidation of free hydroxyl radicals, the complexation becomes sensitive and selective and it has been used for the quantitation of trace amounts of Cu(II) dissolved in natural water. Beer's law is obeyed in the range from 0 to 0.500 microg mL(-1) Cu(II) and the limit of detection is only 6 microg L(-1) Cu(II). Besides, the Cu-ACDB complex formed was characterized.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli; Juranek, Stefan; Li, Haitao

    Here we report on a 3.0 {angstrom} crystal structure of a ternary complex of wild-type Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-nucleotide guide DNA and a 20-nucleotide target RNA containing cleavage-preventing mismatches at the 10-11 step. The seed segment (positions 2 to 8) adopts an A-helical-like Watson-Crick paired duplex, with both ends of the guide strand anchored in the complex. An arginine, inserted between guide-strand bases 10 and 11 in the binary complex, locking it in an inactive conformation, is released on ternary complex formation. The nucleic-acid-binding channel between the PAZ- and PIWI-containing lobes of argonaute widens on formationmore » of a more open ternary complex. The relationship of structure to function was established by determining cleavage activity of ternary complexes containing position-dependent base mismatch, bulge and 2'-O-methyl modifications. Consistent with the geometry of the ternary complex, bulges residing in the seed segments of the target, but not the guide strand, were better accommodated and their complexes were catalytically active.« less

  18. Quantification of acidic compounds in complex biomass-derived streams

    DOE PAGES

    Karp, Eric M.; Nimlos, Claire T.; Deutch, Steve; ...

    2016-05-10

    Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkalinemore » pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here as well excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.« less

  19. Phytochemistry of cimicifugic acids and associated bases in Cimicifuga racemosa root extracts.

    PubMed

    Gödecke, Tanja; Nikolic, Dejan; Lankin, David C; Chen, Shao-Nong; Powell, Sharla L; Dietz, Birgit; Bolton, Judy L; van Breemen, Richard B; Farnsworth, Norman R; Pauli, Guido F

    2009-01-01

    Earlier studies reported serotonergic activity for cimicifugic acids (CA) isolated from Cimicifuga racemosa. The discovery of strongly basic alkaloids, cimipronidines, from the active extract partition and evaluation of previously employed work-up procedures has led to the hypothesis of strong acid/base association in the extract. Re-isolation of the CAs was desired to permit further detailed studies. Based on the acid/base association hypothesis, a new separation scheme of the active partition was required, which separates acids from associated bases. A new 5-HT(7) bioassay guided work-up procedure was developed that concentrates activity into one partition. The latter was subjected to a new two-step centrifugal partitioning chromatography (CPC) method, which applies pH zone refinement gradient (pHZR CPC) to dissociate the acid/base complexes. The resulting CA fraction was subjected to a second CPC step. Fractions and compounds were monitored by (1)H NMR using a structure-based spin-pattern analysis facilitating dereplication of the known acids. Bioassay results were obtained for the pHZR CPC fractions and for purified CAs. A new CA was characterised. While none of the pure CAs was active, the serotonergic activity was concentrated in a single pHZR CPC fraction, which was subsequently shown to contain low levels of the potent 5-HT(7) ligand, N(omega)-methylserotonin. This study shows that CAs are not responsible for serotonergic activity in black cohosh. New phytochemical methodology (pHZR CPC) and a sensitive dereplication method (LC-MS) led to the identification of N(omega)-methylserotonin as serotonergic active principle. Copyright (c) 2009 John Wiley & Sons, Ltd.

  20. Phytochemistry of Cimicifugic Acids and Associated Bases in Cimicifuga racemosa Root Extracts

    PubMed Central

    GÖdecke, Tanja; Nikolic, Dejan; Lankin, David C.; Chen, Shao-Nong; Powell, Sharla L.; Dietz, Birgit; Bolton, Judy L.; Van Breemen, Richard B.; Farnsworth, Norman R.; Pauli, Guido F.

    2009-01-01

    Introduction Earlier studies reported serotonergic activity for cimicifugic acids (CA) isolated from Cimicifuga racemosa. The discovery of strongly basic alkaloids, cimipronidines, from the active extract partition and evaluation of previously employed work-up procedures has led to the hypothesis of strong acid/base association in the extract. Objective Re-isolation of the CAs was desired to permit further detailed studies. Based on the acid/base association hypothesis, a new separation scheme of the active partition was required, which separates acids from associated bases. Methodology A new 5-HT7 bioassay guided work-up procedure was developed that concentrates activity into one partition. The latter was subjected to a new 2-step centrifugal partitioning chromatography (CPC) method, which applies pH zone refinement gradient (pHZR CPC) to dissociate the acid/base complexes. The resulting CA fraction was subjected to a second CPC step. Fractions and compounds were monitored by 1H NMR using a structure based spin-pattern analysis facilitating dereplication of the known acids. Bioassay results were obtained for the pHZR CPC fractions and for purified CAs. Results A new CA was characterized. While none of the pure CAs was active, the serotonergic activity was concentrated in a single pHZR CPC fraction, which was subsequently shown to contain low levels of the potent 5-HT7 ligand, Nω–methylserotonin. Conclusion This study shows that CAs are not responsible for serotonergic activity in black cohosh. New phytochemical methodology (pHZR CPC) and a sensitive dereplication method (LC-MS) led to the identification of Nω–methylserotonin as serotonergic active principle. PMID:19140115

  1. A specific scenario for the origin of life and the genetic code based on peptide/oligonucleotide interdependence.

    PubMed

    Griffith, Robert W

    2009-12-01

    Among various scenarios that attempt to explain how life arose, the RNA world is currently the most widely accepted scientific hypothesis among biologists. However, the RNA world is logistically implausible and doesn't explain how translation arose and DNA became incorporated into living systems. Here I propose an alternative hypothesis for life's origin based on cooperation between simple nucleic acids, peptides and lipids. Organic matter that accumulated on the prebiotic Earth segregated into phases in the ocean based on density and solubility. Synthesis of complex organic monomers and polymerization reactions occurred within a surface hydrophilic layer and at its aqueous and atmospheric interfaces. Replication of nucleic acids and translation of peptides began at the emulsified interface between hydrophobic and aqueous layers. At the core of the protobiont was a family of short nucleic acids bearing arginine's codon and anticodon that added this amino acid to pre-formed peptides. In turn, the survival and replication of nucleic acid was aided by the peptides. The arginine-enriched peptides served to sequester and transfer phosphate bond energy and acted as cohesive agents, aggregating nucleic acids and keeping them at the interface.

  2. Lewis Acidic Ionic Liquids.

    PubMed

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  3. Spatial and spectral characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Marshall, Elizabeth J.; Tanis, Frederick J.

    1989-01-01

    Results from this study demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis was that seasonal and multiyear changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon (DOC) present. DOC is a strong absorbing, nonscattering material which has the greatest impact at short visible wavelengths, including Thematic Mapper band 1. Acid-sensitive lakes have high concentrations of aluminum which have been mobilized by acidic components contained in the runoff. Aluminum complexing with DOC is considered to be the primary mechanism to account for observed increases in lake transparency in acid-sensitive lakes. Thus seasonal changes in the optical transparency of lakes should provide an indication of the stress due to acid deposition and loading.

  4. Driving forces and the influence of the buffer composition on the complexation reaction between ibuprofen and HPCD.

    PubMed

    Perlovich, German L; Skar, Merete; Bauer-Brandl, Annette

    2003-10-01

    Cyclodextrins are often used in order to increase the aqueous solubility of drug substances by complexation. In order to investigate the complexation reaction of ibuprofen and hydroxypropyl-beta-cyclodextrin, titration calorimetry was used as a direct method. The thermodynamic parameters of the complexation process (stability constant, K(11); complexation enthalpy, deltaH(c) degrees ) were obtained in two different buffer systems (citric acid/sodium-phosphate and phosphoric acid) at various pH values. Based on these data the relative contributions of the enthalpic and entropic terms of the Gibbs energy to the complexation process have been analyzed. In both buffers the enthalpic and entropic terms are of different sign and this case corresponds to a 'nonclassical' model of hydrophobic interaction. In citric buffer, the main driving force of complexation is the entropy, which increases from 60 to 67% while the pH of the solution increases from 3.2 to 8.0. However, for the phosphoric buffer the entropic term decreases from 60 to 45%, while the pH-value of the solution increases from 5.0 to 8.2, and the driving force of the complexation process changes from entropy to enthalpy. The experimental data of the present study are compared to results of other authors and discrepancies discussed in detail.

  5. Low-frequency vibrational modes of DL-homocysteic acid and related compounds.

    PubMed

    Yang, Limin; Zhao, Guozhong; Li, Weihong; Liu, Yufeng; Shi, Xiaoxi; Jia, Xinfeng; Zhao, Kui; Lu, Xiangyang; Xu, Yizhuang; Xie, Datao; Wu, Jinguang; Chen, Jia'er

    2009-09-01

    In this paper several polycrystalline molecules with sulfonate groups and some of their metal complexes, including DL-homocysteic acid (DLH) and its Sr- and Cu-complexes, pyridine-3-sulphonic acid and its Co- and Ni-complexes, sulfanilic acid and L-cysteic acid were investigated using THz time-domain methods at room temperature. The results of THz absorption spectra show that the molecules have characteristic bands in the region of 0.2-2.7 THz (6-90 cm(-1)). THz technique can be used to distinguish different molecules with sulfonate groups and to determine the bonding of metal ions and the changes of hydrogen bond networks. In the THz region DLH has three bands: 1.61, 1.93 and 2.02 THz; and 0.85, 1.23 and 1.73 THz for Sr-DLH complex, 1.94 THz for Cu-DLH complex, respectively. The absorption bands of pyridine-3-sulphonic acid are located at 0.81, 1.66 and 2.34 THz; the bands at 0.96, 1.70 and 2.38 THz for its Co-complex, 0.76, 1.26 and 1.87 THz for its Ni-complex. Sulphanilic acid has three bands: 0.97, 1.46 and 2.05 THz; and the absorption bands of l-cysteic acid are at 0.82, 1.62, 1.87 and 2.07 THz, respectively. The THz absorption spectra after complexation are different from the ligands, which indicate the bonding of metal ions and the changes of hydrogen bond networks. M-O and other vibrations appear in the FIR region for those metal-ligand complexes. The bands in the THz region were assigned to the rocking, torsion, rotation, wagging and other modes of different groups in the molecules. Preliminary assignments of the bands were carried out using Gaussian program calculation.

  6. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    PubMed

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization.

    PubMed

    Liu, Kai; Zhang, Han; Xing, Ruirui; Zou, Qianli; Yan, Xuehai

    2017-12-26

    Biomimetic organization provides a promising strategy to develop functional materials and understand biological processes. However, how to mimic complex biological systems using simple biomolecular units remains a great challenge. Herein, we design and fabricate a biomimetic cyanobacteria model based on self-integration of small bioinspired molecules, including amphiphilic amino acid, 3,4-dihydroxyphenylalanine (DOPA), and metalloporphyrin and cobalt oxide nanoparticles (Co 3 O 4 NPs), with the assistance of chemical conjugation and molecular self-assembly. The assembled amino acid fiber can be modified by DOPA to form covalently bound DOPA melanin containing hydroxyl and quinone species via Schiff base reaction. The adhering template can further tune the self-assembly of metalloporphyrin and Co 3 O 4 NPs into J-aggregation and dispersive distribution, respectively, mainly via coordination binding. Metalloporphyrin molecules in the resulting hybrid fibers capture light; quinone species accept the excited electrons, and Co 3 O 4 NPs catalyze water oxidation. Thus, the essential components of the photosystem-II protein complex in cyanobacteria are simplified and engineered into a simple framework, still retaining a similar photosynthetic mechanism. In addition, this architecture leads to efficient coupling of antenna, quinone-type reaction center, and photocatalyst, which increases the flux of light energy from antenna to reaction center for charge separation, resulting in enhanced oxygen evolution rate with excellent sustainability.

  8. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite.

    PubMed

    Anizelli, Pedro R; Baú, João Paulo T; Gomes, Frederico P; da Costa, Antonio Carlos S; Carneiro, Cristine E A; Zaia, Cássia Thaïs B V; Zaia, Dimas A M

    2015-09-01

    There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.

  9. An instrument for automated purification of nucleic acids from contaminated forensic samples

    PubMed Central

    Broemeling, David J; Pel, Joel; Gunn, Dylan C; Mai, Laura; Thompson, Jason D; Poon, Hiron; Marziali, Andre

    2008-01-01

    Forensic crime scene sample analysis, by its nature, often deals with samples in which there are low amounts of nucleic acids, on substrates that often lead to inhibition of subsequent enzymatic reactions such as PCR amplification for STR profiling. Common substrates include denim from blue jeans, which yields indigo dye as a PCR inhibitor, and soil, which yields humic substances as inhibitors. These inhibitors frequently co-extract with nucleic acids in standard column or bead-based preps, leading to frequent failure of STR profiling. We present a novel instrument for DNA purification of forensic samples that is capable of highly effective concentration of nucleic acids from soil particulates, fabric, and other complex samples including solid components. The novel concentration process, known as SCODA, is inherently selective for long charged polymers such as DNA, and therefore is able to effectively reject known contaminants. We present an automated sample preparation instrument based on this process, and preliminary results based on mock forensic samples. PMID:18438455

  10. Synthesis and structural features of U VI and V IV chelate complexes with (hhmmbH)Cl·H 2O [hhmmb = {3-hydroxyl-5-(hydroxymethyl)-2-methylpyridine-4-yl-methylene}benzohydrazide], a new Schiff base ligand derived from vitamin B6

    NASA Astrophysics Data System (ADS)

    Back, Davi Fernando; Ballin, Marco Aurélio; de Oliveira, Gelson Manzoni

    2009-10-01

    The Schiff base ligand {3-hydroxyl-5-(hydroxymethyl)-2-methylpyridine-4-yl-methylene}benzohydrazide hydrochloride monohydrated {(hhmmbH)Cl·H 2O} ( 1) was prepared by reaction of pyridoxine hydrochloride with benzoic acid hydrazide. The reaction of 1 with [VO(acac) 2] and triethylamine yields the neutral vanadium IV complex [VO 2(hhmmb)]·Py ( 2), with a distorted quadratic pyramidal configuration. The Schiff base 1 reacts also with UO 2(NO 3) 2·6H 2O and triethylamine under deprotonation giving the uranium VI cationic complexes [UO 2(hhmmb)(H 2O)Cl] + ( 3) and [UO 2(hhmmb)(CH 3OH)Cl] + ( 4), both showing the classical pentagonal bipyrimidal geometry of UO22+ complexes. The structural features of all compounds are discussed.

  11. Development of a novel europium complex-based luminescent probe for time-gated luminescence imaging of hypochlorous acid in living samples

    NASA Astrophysics Data System (ADS)

    Liu, Xiangli; Guo, Lianying; Song, Bo; Tang, Zhixin; Yuan, Jingli

    2017-03-01

    Luminescent lanthanide complexes are key reagents used in the time-gated luminescence bioassay technique, but functional lanthanide complexes that can act as luminescent probes for specifically responding to analytes are very limited. In this work, we designed and synthesized a novel Eu3+ complex-based luminescence probe for hypochlorous acid (HOCl), NPPTTA-Eu3+, by using terpyridine polyacid-Eu3+, dinitrophenyl, and hydrazine as luminophore, quencher and HOCl-recognizer moieties, respectively. In the absence of HOCl, the probe is non-luminescent due to the strong luminescence quenching of the dinitrophenyl group in the complex. However, upon reaction with HOCl, the dinitrophenyl moiety is rapidly cleaved from the probe, which affords a strongly luminescent Eu3+ complex CPTTA-Eu3+, accompanied by a ˜900-fold luminescence enhancement with a long luminescence lifetime of 1.41 ms. This unique luminescence response of NPPTTA-Eu3+ to HOCl allowed NPPTTA-Eu3+ to be conveniently used as a probe for highly selective and sensitive detection of HOCl under the time-gated luminescence mode. In addition, by loading NPPTTA-Eu3+ into RAW 264.7 macrophage cells and Daphnia magna, the generation of endogenous HOCl in RAW 264.7 cells and the uptake of exogenous HOCl by Daphnia magna were successfully imaged on a true-color time-gated luminescence microscope. The results demonstrated the practical applicability of NPPTTA-Eu3+ as an efficient probe for time-gated luminescence imaging of HOCl in living cells and organisms.

  12. Structures of bacterial polynucleotide kinase in a Michaelis complex with GTP•Mg2+ and 5'-OH oligonucleotide and a product complex with GDP•Mg2+ and 5'-PO4 oligonucleotide reveal a mechanism of general acid-base catalysis and the determinants of phosphoacceptor recognition.

    PubMed

    Das, Ushati; Wang, Li Kai; Smith, Paul; Jacewicz, Agata; Shuman, Stewart

    2014-01-01

    Clostridium thermocellum polynucleotide kinase (CthPnk), the 5' end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from an NTP donor to a 5'-OH polynucleotide acceptor. Here we report the crystal structures of CthPnk-D38N in a Michaelis complex with GTP•Mg(2+) and a 5'-OH oligonucleotide and a product complex with GDP•Mg(2+) and a 5'-PO4 oligonucleotide. The O5' nucleophile is situated 3.0 Å from the GTP γ phosphorus in the Michaelis complex, where it is coordinated by Asn38 and is apical to the bridging β phosphate oxygen of the GDP leaving group. In the product complex, the transferred phosphate has undergone stereochemical inversion and Asn38 coordinates the 5'-bridging phosphate oxygen of the oligonucleotide. The D38N enzyme is poised for catalysis, but cannot execute because it lacks Asp38-hereby implicated as the essential general base catalyst that abstracts a proton from the 5'-OH during the kinase reaction. Asp38 serves as a general acid catalyst during the 'reverse kinase' reaction by donating a proton to the O5' leaving group of the 5'-PO4 strand. The acceptor strand binding mode of CthPnk is distinct from that of bacteriophage T4 Pnk.

  13. Technique development for characterization of metalloorganics in acid-base-neutral fractions of heavy petroleum residues: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, C.D.; Green, J.B.

    1988-01-01

    A novel approach for the characterization of metallorganic compounds in heavy petroleum residues has been developed. Wilmington 1000/sup 0/ F+ and Mayan 925/sup 0/ F+ residues and hydrotreated products were separated into acid-base-neutral (ABN) fractions by a unique nonaqueous ion-exchange technique developed at NIPER. The metal complexes in the feeds, hydrotreated products and ABN fractions were then characterized by determining the total vanadium and nickel and by measuring the vanadium and nickel porphyrin content of each fraction. Molecular weight distribution profiles of the vanadium and nickel compounds in the feed, 400/sup 0/C hydrotreated product and corresponding ABN fractions were obtainedmore » by size exclusion chromatography/inductively coupled plasma. The majority of the metal appeared to be in non-porphyrinic form. The vanadium and nickel complexes were distributed into all of the ABN fractions. In the feed and the whole hydrotreated products the porphyrin levels decreased as hydrotreating temperatures increased. In contrast to previously reported work, porphyrins do not always decrease when hydrotreated. The amount of porphyrins in certain ABN fractions increased after hydrotreating at moderate temperatures. The Mayan V and Ni complexes were more resistant to hydrotreating than the Wilmington metal complexes; in particular, the high molecular weight Mayan metal complexes were more resistant to hydrotreating than the high molecular weight Wilmington metal complexes. 15 refs., 11 figs., 10 tabs.« less

  14. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.

  15. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids

    PubMed Central

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130

  16. β-Lactoglobulin-linoleate complexes: In vitro digestion and the role of protein in fatty acid uptake.

    PubMed

    Le Maux, Solène; Brodkorb, André; Croguennec, Thomas; Hennessy, Alan A; Bouhallab, Saïd; Giblin, Linda

    2013-07-01

    The dairy protein β-lactoglobulin (BLG) is known to bind fatty acids such as the salt of the essential longchain fatty acid linoleic acid (cis,cis-9,12-octadecadienoic acid, n-6, 18:2). The aim of the current study was to investigate how bovine BLG-linoleate complexes, of various stoichiometry, affect the enzymatic digestion of BLG and the intracellular transport of linoleate into enterocyte-like monolayers. Duodenal and gastric digestions of the complexes indicated that BLG was hydrolyzed more rapidly when complexed with linoleate. Digested as well as undigested BLG-linoleate complexes reduced intracellular linoleate transport as compared with free linoleate. To investigate whether enteroendocrine cells perceive linoleate differently when part of a complex, the ability of linoleate to increase production or secretion of the enteroendocrine satiety hormone, cholecystokinin, was measured. Cholecystokinin mRNA levels were different when linoleate was presented to the cells alone or as part of a protein complex. In conclusion, understanding interactions between linoleate and BLG could help to formulate foods with targeted fatty acid bioaccessibility and, therefore, aid in the development of food matrices with optimal bioactive efficacy. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ay, Burak; Karaca, Serkan; Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr

    2016-01-15

    Four novel metal-organic frameworks,[Cu{sub 2}Cl{sub 2}(pyrz)]{sub n} (1) and (H{sub 2}pip){sub n}[Ln{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (Ln=Ce (2), Pr (3) and Eu (4), H{sub 2}pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln–O-Ln chains. All the complexes show high thermal stability. The complexes 1–3 exhibit luminescence emission bands at 584, 598 and 614 nm at roommore » temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four novel metal-organic frameworks have been synthesized under hydrothermal conditions. Thermal and luminescent properties of the compounds have been investigated.« less

  18. Corrosion protective performance of amino trimethylene phosphonic acid-metal complex layers fabricated on the cold-rolled steel substrate via one-step assembly

    NASA Astrophysics Data System (ADS)

    Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi

    2018-06-01

    Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.

  19. Interrelations between the mesomeric and electronegativity effects in para-substituted derivatives of phenol/phenolate and aniline/anilide H-bonded complexes: a DFT-based computational study.

    PubMed

    Szatyłowicz, Halina; Krygowski, Tadeusz M; Jezierska, Aneta; Panek, Jarosław J

    2009-05-14

    We were able to test the Bent-Walsh rule by examining geometric parameters in the vicinity of the ipso-carbon atom of H-bonded complexes of para-substituted phenol/phenolate and aniline/anilide derivatives for the three cases (i) a versus alpha, (ii) alpha versus d(CO) or d(CN), and (iii) a versus d(CO) or d(CN), where alpha is the ring valence angle at the ipso-carbon atom (C1 substituted by OH or O(-) or NH(2) or NH(-)) and a is the arithmetic mean of the two C(ipso)-C(ortho) bond lengths. The data for nonequilibrium H-bonded complexes of unsubstituted phenol/phenolate and aniline/anilide with the respective bases F(-) and CN(-) and acids HF and HCN showed the same dependence of a on d(CX) (X = O, N) as the data for equilibrium complexes of para-Y-substituted phenol/phenolate and aniline/anilide derivatives (Y = NO, NO(2), CHO, COMe, CONH(2), Cl, F, H, Me, OMe, OH) with the same bases and acids. The slope of these dependencies was negative, as expected. In the remaining cases (a versus alpha and alpha versus d(CO) or d(CN)), the slopes for simulated complexes followed the Bent-Walsh rule. Finally, for the equilibrium complexes in which the substituent effect was included, the slopes of the trend lines for the substituted systems were opposite. This is because in the a versus alpha relationships, electonegativity and the resonance effect act in the same direction, whereas for the other two cases, these effects are opposite, and the resonance effect dominates.

  20. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    PubMed

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  1. A new approach to study cadmium complexes with oxalic acid in soil solution.

    PubMed

    Dytrtová, Jana Jaklová; Jakl, Michal; Sestáková, Ivana; Zins, Emilie-Laure; Schröder, Detlef; Navrátil, Tomáš

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH(2)) were observed. In order to verify the possible formation of complexes with OAH(2), aqueous solutions of OAH(2) with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd(n)(X,Y)((2n+1))](-), where n is the number of cadmium atoms, X=Cl(-), and Y=OAH(-). Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Amylose-dicarboxylic acid inclusion complexes: Characterization and comparison to monocarboxylic acid complexes

    USDA-ARS?s Scientific Manuscript database

    One of the main components in starch, amylose is an essentially linear polymer composed of glucose connected through alpha-1,4-bonds. Amylose is well known to form helical inclusion complexes with various types of ligands such as iodine, medium and long chain fatty acids, alcohols, lactones, and fl...

  3. (GTG)5-PCR reference framework for acetic acid bacteria.

    PubMed

    Papalexandratou, Zoi; Cleenwerck, Ilse; De Vos, Paul; De Vuyst, Luc

    2009-11-01

    One hundred and fifty-eight strains of acetic acid bacteria (AAB) were subjected to (GTG)(5)-PCR fingerprinting to construct a reference framework for their rapid classification and identification. Most of them clustered according to their respective taxonomic designation; others had to be reclassified based on polyphasic data. This study shows the usefulness of the method to determine the taxonomic and phylogenetic relationships among AAB and to study the AAB diversity of complex ecosystems.

  4. Hydrated Cations in the General Chemistry Course.

    ERIC Educational Resources Information Center

    Kauffman, George B.; Baxter, John F., Jr.

    1981-01-01

    Presents selected information regarding the descriptive chemistry of the common metal ions and their compounds, including the concepts of process of solution, polar molecules, ionic size and charge, complex ions, coordination number, and the Bronsted-Lowry acid-base theory. (CS)

  5. Topical Application of Tranexamic Acid to Reduce Blood Loss During Complex Combat Related Spine Trauma Surgery

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0177 TITLE: Topical Application of Tranexamic Acid to Reduce Blood Loss During Complex Combat-Related Spine Trauma...COVERED (From - To) 30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTITLE Topical Application of Tranexamic Acid to Reduce Blood Loss During Complex...application will be submitted shortly and successfully. 15. SUBJECT TERMS Spine; Tranexamic Acid ; Perioperative blood loss; Trauma; Antifibrinolytic

  6. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  7. Revisiting caffeate's capabilities as a complexation agent to silver cation in mining processes by means of the dual descriptor--a conceptual DFT approach.

    PubMed

    Martínez-Araya, Jorge Ignacio

    2012-09-01

    Caffeic acid (C(9)H(8)O(4)) and its conjugate base C(9)H(7)O(4) (-) (anionic form-known as caffeate) were analyzed computationally through the use of quantum chemistry to assess their intrinsic global and local reactivity using the tools of conceptual density functional theory. The anionic form was found to be better at coordinating the silver cation than caffeic acid thus suggesting the use of caffeate as a complexation agent. The complexation capability of caffeate was compared with that of some of the most common ligand agents used to coordinate silver cations. Local reactivity descriptors allowed identification of the preferred sites on caffeate for silver cation coordination thus generating a plausible silver complex. All silver complexes were analyzed thermodynamically considering interaction energies in both gas and aqueous phases; the complexation free energy in aqueous phase was also determined. These results suggest that more attention be paid to the caffeate anion and its derivatives because this work has shed new light on the behavior of this anion in the recovery of silver cations that could be exploited in silver mining processes in a environmentally friendly way.

  8. Changes in properties of polyacid-modified composite resins (compomers) following storage in acidic solutions.

    PubMed

    Nicholson, J W; Gjorgievska, E; Bajraktarova, B; McKenzie, M A

    2003-06-01

    The interaction of three polyacid-modified composite resins (compomers) with various acidic storage solutions, and also water, over periods of time up to 6 months has been studied and compared with those of a glass-ionomer and a composite resin. This interaction has been shown to vary in a complex way with length of storage and nature of the acid, and citric acid was found to be the most aggressive storage medium for glass-ionomer cement, and also for the compomers. The pure composite resin, by contrast, was relatively unaffected by all of the acid solutions examined. In all acids, the compomers showed a distinct buffering effect, i.e. they increased the pH towards neutral, as did the glass-ionomer. The extent of this also varied with duration of storage and nature of the acid. The biaxial flexure strength was determined and found to be essentially unaffected by the complex chemical interactions with acidic storage solutions. Values obtained for the compomers were lower than those of the composite resin, but above those of the glass-ionomer. Fourier-transform infrared (FT-IR) spectroscopy was employed to study the changes in the compomers following storage in the aqueous media, but bands were broad and no detailed assignments could be made. There were changes in the region of the spectra associated with metal carboxylates however, and this indicates that the secondary acid-base reaction had occurred following water uptake.

  9. Synthesis, physico-chemical properties and complexing abilities of new amphiphilic ligands from D-galacturonic acid.

    PubMed

    Allam, Anas; Behr, Jean-Bernard; Dupont, Laurent; Nardello-Rataj, Véronique; Plantier-Royon, Richard

    2010-04-19

    This paper describes a convenient and efficient synthesis of new complexing surfactants from d-galacturonic acid and n-octanol as renewable raw materials in a two-step sequence. In the first step, simultaneous O-glycosidation-esterification under Fischer conditions was achieved. The anomeric ratio of the products was studied based on the main experimental parameters and the activation mode (thermal or microwave). In the second step, aminolysis of the n-octyl ester was achieved with various functionalized primary amines under standard thermal or microwave activation. The physico-chemical properties of these new amphiphilic ligands were measured and these compounds were found to exhibit interesting surface properties. Complexing abilities of one uronamide ligand functionalized with a pyridine moiety toward Cu(II) ions was investigated in solution by EPR titrations. A solid compound was also synthesized and characterized, its relative structure was deduced from spectroscopic data. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Bis(dipyridophenazine)(2-(2'-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) hexafluorophosphate: a lesson in stubbornness.

    PubMed

    Joshi, Tanmaya; Pierroz, Vanessa; Ferrari, Stefano; Gasser, Gilles

    2014-07-01

    Ruthenium complexes are currently considered to be among the most promising alternatives to platinum anticancer drugs. In this work, thirteen structural analogues and organelle/receptor-targeting peptide bioconjugates of a cytotoxic bis(dppz)-Ru(II) complex [Ru(dppz)2 (CppH)](PF6 )2 (1) were prepared, characterized, and assessed for their cytotoxicity and cellular localization (CppH=2-(2'-pyridyl)pyrimidine-4-carboxylic acid; dppz=dipyrido[3,2-a:2',3'-c]phenazine). It was observed that structural modifications (lipophilicity, charge, and size-based) result in the cytotoxic potency of 1 being compromised. Confocal microscopy studies revealed that unlike 1, the screened complexes/bioconjugates do not have a preferential accumulation in mitochondria. The results of this important structure-activity relationship strongly support our initial hypothesis that accumulation in mitochondria is crucial for 1 to exert its cytotoxic action. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gemini surfactants mediate efficient mitochondrial gene delivery and expression.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S

    2015-03-02

    Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases.

  12. Interaction of copper and fulvic acid at the hematite-water interface

    NASA Astrophysics Data System (ADS)

    Christl, Iso; Kretzschmar, Ruben

    2001-10-01

    The influence of surface-bound fulvic acid on the sorption of Cu(II) to colloidal hematite particles was studied experimentally and the results were compared with model calculations based on the linear additivity assumption. In the first step, proton and Cu binding to colloidal hematite particles and to purified fulvic acid was studied by batch equilibration and ion-selective electrode titration experiments, respectively. The sorption data for these binary systems were modeled with a basic Stern surface complexation model for hematite and the NICA-Donnan model for fulvic acid. In the second step, pH-dependent sorption of Cu and fulvic acid in ternary systems containing Cu, hematite, and fulvic acid in NaNO3 electrolyte solutions was investigated in batch sorption experiments. Sorption of fulvic acid to the hematite decreased with increasing pH (pH 3-10) and decreasing ionic strength (0.01-0.1 M NaNO3), while the presence of 22 μM Cu had a small effect on fulvic acid sorption, only detectable at low ionic strength (0.01 M). Sorption of Cu to the solid phase separated by centrifugation was strongly affected by the presence of fulvic acid. Below pH 6, sorption of Cu to the solid phase increased by up to 40% compared with the pure hematite. Above pH 6, the presence of fulvic acid resulted in a decrease in Cu sorption due to increasing concentrations of dissolved metal-organic complexes. At low ionic strength (0.01 M), the effects of fulvic acid on Cu sorption to the solid phase were more pronounced than at higher ionic strength (0.1 M). Comparison of the experimental data with model calculations shows that Cu sorption in ternary hematite-fulvic acid systems is systematically underestimated by up to 30% using the linear additivity assumption. Therefore, specific interactions between organic matter and trace metal cations at mineral surfaces must be taken into account when applying surface complexation models to soils or sediments which contain oxides and natural organic matter.

  13. Identification of continuous interaction sites in PLA(2)-based protein complexes by peptide arrays.

    PubMed

    Fortes-Dias, Consuelo Latorre; Santos, Roberta Márcia Marques dos; Magro, Angelo José; Fontes, Marcos Roberto de Mattos; Chávez-Olórtegui, Carlos; Granier, Claude

    2009-01-01

    Crotoxin (CA.CB) is a beta-neurotoxin from Crotalus durissus terrificus snake venom that is responsible for main envenomation effects upon biting by this snake. It is a heterodimer of an acidic protein (CA) devoid of any biological activity per se and a basic, enzymatically active, PLA(2) counterpart (CB). Both lethal and enzymatic activities of crotoxin have been shown to be inhibited by CNF, a protein from the blood of C. d. terrificus snakes. CNF replaces CA in the CA.CB complex, forming a stable, non-toxic complex CNF.CB. The molecular sites involved in the tight interfacial protein-protein interactions in these PLA(2)-based complexes have not been clearly determined. To help address this question, we used the peptide arrays approach to map possible interfacial interaction sites in CA.CB and CNF.CB. Amino acid stretches putatively involved in these interactions were firstly identified in the primary structure of CB. Further analysis of the interfacial availability of these stretches in the presumed biologically active structure of CB, suggested two interaction main sites, located at the amino-terminus and beta-wing regions. Peptide segments at the carboxyl-terminus of CB were also suggested to play a secondary role in the binding of both CA and CNF.

  14. In situ synthesis of twelve dialkyltartrate-boric acid complexes and two polyols-boric acid complexes and their applications as chiral ion-pair selectors in nonaqueous capillary electrophoresis.

    PubMed

    Wang, Li-Juan; Yang, Juan; Yang, Geng-Liang; Chen, Xing-Guo

    2012-07-27

    In this paper, twelve dialkyltartrate-boric acid complexes and two polyols-boric acid complexes were in situ synthesized by the reaction of different dialkyltartrates or polyols with boric acid in methanol containing triethylamine. All of the twelve dialkyltartrate-boric acid complexes were found to have relatively good chiral separation performance in nonaqueous capillary electrophoresis (NACE). Their chiral recognition effects in terms of both enantioselectivity (α) and resolution (R(s)) were similar when the number of carbon atoms was below six in the alkyl group of alcohol moiety. The dialkyltartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, also provided similar chiral recognition effects. Furthermore, it was demonstrated for the first time that two methanol insoluble polyols, D-mannitol and D-sorbitol, could react with boric acid to prepare chiral ion-pair selectors using methanol as the solvent medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Chemical synthesis of water-soluble, chiral conducting-polymer complexes

    DOEpatents

    Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng

    2003-01-01

    The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.

  16. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  18. Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules

    NASA Astrophysics Data System (ADS)

    Fionov, Alexander V.

    2002-06-01

    Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.

  19. Systematic design and research on a series of cadmium coordination polymers assembled due to tetracarboxylate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Lei; Mu, Bao; Li, Chang-Xia

    A series of metal-organic frameworks (MOFs) have been prepared by tetracarboxylate ligands and Cd(II) ions under the hydrothermal or solvothermal conditions with the formulas of {[Cd_2(L_1)(H_2O)_4]·H_2O}{sub n} (1), {[(CH_3)_2NH_2]_2[Cd(L_1)]}{sub n} (2), [Cd(L{sub 2}){sub 0.5}(H{sub 2}O)]{sub n} (3), {[(CH_3)_2NH_2]_2 [Cd(L_2)]·2DMF}{sub n} (4), [Cd(L{sub 3}){sub 0.5}(H{sub 2}O)]{sub n} (5), {[Cd(L_3)_0_._5(H_2O)]·CH_3OH}{sub n} (6), {[(CH_3)_2NH_2]_2[Cd_3(L_4)_2]}{sub n} (7) (H{sub 4}L{sub 1}=[1,1′:4′,1″-terphenyl]-2,2″,5,5″-tetracarboxylic acid; H{sub 4}L{sub 2}=[1,1′:4′,1″-terphenyl]-2′,4,4″,5′-tetracarboxylic acid; H{sub 4}L{sub 3}=[1,1′:3′,1″-terphenyl]-2′,3,3″,5′-tetracarboxylic acid; H{sub 4}L{sub 4}=[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid), which are characterized by single-crystal X-ray diffraction, elemental analyses, IR, TGA and PXRD. Complex 1 exhibits a three-dimensional (3D) supramolecular framework based on two-dimensional (2D) coordination networks. Complexes 2 and 4more » possess 3D framework based on the 1D right-handed helix channels. Complexes 3 and 7 are a 3D architecture containing two different channels. Isostructural complexes 5 and 6 display 3D framework. The different synthetic methods and coordination modes of the tetracarboxylates ligands have effect on formation of various MOFs. Moreover, the luminescent properties and N{sub 2} adsorption behaviors have been reported. - Graphical abstract: A series of cadmium(II) high-dimensional coordination polymers constructed from four different kinds of tetracarboxylate ligands have been successfully prepared under hydrothermal or solvothermal conditions. The effect of solvents, the coordination modes of the tetracarboxylates and positions of carboxylate groups on the architectures of complexes 1–7 have been investigated in detail. The luminescent properties of the part of complexes, N{sub 2} adsorption behaviors of complexes 2, 4–7 have also been studied. - Highlights: • Tetracarboxylate ligands based on terphenyl moiety have been used. • Several factors that influenced the architecture have been discussed. • Luminescent properties have been investigated.« less

  20. Diagnostic fragment-ion-based and extension strategy coupled to DFIs intensity analysis for identification of chlorogenic acids isomers in Flos Lonicerae Japonicae by HPLC-ESI-MS(n).

    PubMed

    Zhang, Jia-Yu; Zhang, Qian; Li, Ning; Wang, Zi-Jian; Lu, Jian-Qiu; Qiao, Yan-Jiang

    2013-01-30

    A method of modified diagnostic fragment-ion-based extension strategy (DFIBES) coupled to DFIs (diagnostic fragmentation ions) intensity analysis was successfully established to simultaneously screen and identify the chlorogenic acids (CGAs) in Flos Lonicerae Japonicae (FLJ) by HPLC-ESI-MS(n). DFIs, such as m/z 191 [quinic acid-H](-), m/z 179 [caffeic acid-H](-) and m/z 173 [quinic acid-H-H2O](-) were determined or proposed from the fragmentation patterns analysis of corresponding reference substances for every chemical family of CGAs. A "structure extension" method was then proposed based on the well-demonstrated fragmentation patterns and was successively applied into the rapid screening of CGAs in FLJ. Considering that substitution isomerism is a common phenomenon, a full ESI-MS(n) fragmentation analysis according to the intensity of DFIs has been performed to identify the CGA isomers. Based on the DFIs and intensity analysis, 41 peaks attributed to CGAs including 4 caffeoylquinic acids (CQA), 7 CQA glycosides, 6 dicaffeoylquinic acids (DiCQA), 10 DiCQA glycosides, 1 tricaffeoylquinic acids (TriCQA), 4p-coumaroylquinic acids (pCoQA), 3 feruloylquinic acids (FQA) and 6 caffeoylferuloylquinic acids (CFQA) were identified preliminarily in a 65-min chromatographic run. It was the first time to systematically report the presence of CGAs in FLJ, especially for CQA glycosides, DiCQA glycosides, TriCQA, pCoQA and CFQA. All the results indicated that the method of developed DFIBES coupled to DFIs analysis was feasible, reliable and universal for screening and identifying the constituents with the same carbon skeletons especially the isomeric compounds from the complex extract of TCMs. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Enantiomeric separation of seven β-agonists by NACE-Study of chiral selectivity with diacetone-d-mannitol-boric acid complex.

    PubMed

    Lv, Lili; Wang, Lijuan; Li, Jun; Jiao, Yajun; Gao, Shengnan; Wang, Jiachang; Yan, Hongyuan

    2017-10-25

    A rapid and effective nonaqueous capillary electrophoresis (NACE)-ultraviolet (UV) method was developed for the enantiomeric separation of seven β-agonists. Diacetone-d-mannitol-boric acid complex was used as a new chiral selector. It was in situ synthesized by the reaction of diacetone-d-mannitol and boric acid in methanol medium containing triethylamine. The effects of diacetone-d-mannitol, boric acid, and triethylamine concentrations on the enantioseparation were carefully investigated. Under the optimized conditions, baseline enantioseparation could be obtained for six of the tested β-agonists within 12min. These results were better than that obtained with d-mannitol-boric acid complex in previous work. 11 B nuclear magnetic resonance ( 11 B NMR) was applied to determine the fraction of boron species and confirm the formation of diacetone-d-mannitol-boric acid complex. Validation of the established NACE method was also carried out according to ICH guidelines. Calibration curves showed good linearity with correlation coefficients (r)≥0.9992 over a certain concentration range for each enantiomer of the tested five β-agonists. The relative standard deviations (RSDs) of intra-day precisions and inter-day precisions of migration times were ≤1.4% (n=6), and ≤6.3% (n=10), respectively. That of peak areas were ≤3.7% (n=6), and ≤5.6% (n=10), respectively. The limits of detection (LODs) and the limits of quantitation (LOQs) based on the signal-to-noise ratios of 3 and 10 were found below 1.25μgmL -1 and 5.00μgmL -1 , respectively. The proposed method was successfully applied to the determination of clenbuterol enantiomers in a multi-component pharmaceutical dosage form called "Ambroxol Hydrochloride and Clenbuterol Hydrochloride Oral Solution". Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    PubMed

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-03

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  3. Towards systems metabolic engineering of microorganisms for amino acid production.

    PubMed

    Park, Jin Hwan; Lee, Sang Yup

    2008-10-01

    Microorganisms capable of efficient production of amino acids have traditionally been developed by random mutation and selection method, which might cause unwanted physiological changes in cellular metabolism. Rational genome-wide metabolic engineering based on systems and synthetic biology tools, which is termed 'systems metabolic engineering', is rising as an alternative to overcome these problems. Recently, several amino acid producers have been successfully developed by systems metabolic engineering, where the metabolic engineering procedures were performed within a systems biology framework, and entire metabolic networks, including complex regulatory circuits, were engineered in an integrated manner. Here we review the current status of systems metabolic engineering successfully applied for developing amino acid producing strains and discuss future prospects.

  4. An assessment of the liquid-gas partitioning behavior of major wastewater odorants using two comparative experimental approaches: liquid sample-based vaporization vs. impinger-based dynamic headspace extraction into sorbent tubes.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-01-01

    The gas-liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.

  5. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration.

    PubMed

    Li, Xiukai; Wu, Di; Lu, Ting; Yi, Guangshun; Su, Haibin; Zhang, Yugen

    2014-04-14

    The production of bulk chemicals and fuels from renewable bio-based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most-demanded drop-in chemicals from a bioresource, is used primarily for the large-volume production of nylon-6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio-adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium-complex-catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C-catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one-step process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel metal based anti-tuberculosis agent: synthesis, characterization, catalytic and pharmacological activities of copper complexes.

    PubMed

    Joseph, J; Nagashri, K; Janaki, G Boomadevi

    2012-03-01

    Copper complexes of molecular formulae, [CuL(1)(OAc)], [CuL(2)(H(2)O)], [CuL(3)(H(2)O)], [CuL(4)(H(2)O)], [CuL(5)(H(2)O)] where L(1)-L(5) represents Schiff base ligands [by the condensation of 3-hydroxyflavone with 4-aminoantipyrine (L(1))/o-aminophenol (L(2))/o-aminobenzoic acid (L(3))/o-aminothiazole (L(4))/thiosemicarbazide (L(5))], have been prepared. They were characterized using analytical and spectral techniques. The DNA binding properties of copper complexes were studied using electronic absorption spectra and viscosity measurements. Superoxide dismutase and antioxidant activities of the copper complexes have also been studied. Furthermore, the copper complexes have been found to promote pUC18 DNA cleavage in the presence of oxidant. Anti-tuberculosis activity was also performed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Gels of sodium alginate‒chitosan interpolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Brovko, O. S.; Palamarchuk, I. A.; Val'chuk, N. A.; Chukhchin, D. G.; Bogolitsyn, K. G.; Boitsova, T. A.

    2017-08-01

    Aspects of the formation of gels of interpolyelectrolyte complexes (IPECs) based on sodium alginate (NaAlg) and chitosan are studied. The effect the conditions of synthesis and complex composition have on the morphological structure and functional properties of these complexes is examined. It is established that complexation in this system proceeds according to a mechanism of electrostatic interaction between the oppositely charged carboxylic groups of the L-hyaluronic acid pyranose cycles of NaAlg proximal polymer chains and chitosan's amino groups, along with a multitude of hydrogen bonds and dispersion forces. We show that the mechanism of IPEC formation is strongly influenced by the conformational state of a lyophilizing component that is present in the system in excess. The inner surfaces of cryogels based on NaAlg‒chitosan IPECs is found to be strongly influenced by the degree of conversion between the parental polyelectrolytes. The most developed mesoporous structure is obtained when a denser gel forms in the system.

  8. Spectroscopic and mycological studies of Co(II), Ni(II) and Cu(II) complexes with 4-aminoantipyrine derivative

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-10-01

    Complexes of the type [M(L)X 2], where M = Co(II), Ni(II) and Cu(II), have been synthesized with novel NO-donor Schiff's base ligand, 1,4-diformylpiperazine bis(4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) which is obtained by the acid catalyzed condensation of 1,4-diformylpiperazine with 4-aminoantipyrine. The elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV, NMR, mass and EPR studies of the compounds led to the conclusion that the ligand acts as tetradentate chelate. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Ni(II) and tetragonal geometry for Co(II) and Cu(II) complexes. The mycological studies of the compounds were examined against the several opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The Cu(II) complexes were found to have most fungicidal behavior.

  9. Synthesis and structure elucidation of a copper(II) Schiff-base complex: in vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies.

    PubMed

    Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K

    2014-11-01

    New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine

    PubMed Central

    Bhattarai, Shanta Raj; Muthuswamy, Elayaraja; Wani, Amit; Brichacek, Michal; Castañeda, Antonio L.; Brock, Stephanie L.

    2014-01-01

    Purpose To prepare mesoporous silica-based delivery systems capable of simultaneous delivery of drugs and nucleic acids. Methods The surface of mesoporous silica nanoparticles (MSN) was modified with poly(ethylene glycol) (PEG) and poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) or poly (2-(diethylamino)ethylmethacrylate) (PDEAEMA). The particles were then loaded with a lysosomotropic agent chloroquine (CQ) and complexed with plasmid DNA or siRNA. The ability of the synthesized particles to deliver combinations of CQ and nucleic acids was evaluated using luciferase plasmid DNA and siRNA targeting luciferase and GAPDH. Results The results show a slow partial MSN dissolution to form hollow silica nanoparticles in aqueous solution. The biological studies show that polycation-modified MSN are able to simultaneously deliver CQ with DNA and siRNA. The co-delivery of CQ and the nucleic acids leads to a significantly increased transfection and silencing activity of the complexes compared with MSN not loaded with CQ. Conclusion PEGylated MSN modified with polycations are promising delivery vectors for combination drug/nucleic acid therapies. PMID:20730557

  11. Complex effect of lignocellulosic biomass pretreatment with 1-butyl-3-methylimidazolium chloride ionic liquid on various aspects of ethanol and fumaric acid production by immobilized cells within SSF.

    PubMed

    Dotsenko, Anna S; Dotsenko, Gleb S; Senko, Olga V; Stepanov, Nikolay A; Lyagin, Ilya V; Efremenko, Elena N; Gusakov, Alexander V; Zorov, Ivan N; Rubtsova, Ekaterina A

    2018-02-01

    The pretreatment of softwood and hardwood samples (spruce and hornbeam wood) with 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was undertaken for further simultaneous enzymatic saccharification of renewable non-food lignocellulosic biomass and microbial fermentation of obtained sugars to ethanol and fumaric acid. A multienzyme cocktail based on cellulases and yeast or fungus cells producing ethanol and fumaric acid were the main objects of [Bmim]Cl influence studies. A complex effect of lignocellulosic biomass pretreatment with [Bmim]Cl on various aspects of the process (both action of cellulases and microbial conversion of hydrolysates to target products) was revealed. Positive effects of the pretreatment with [Bmim]Cl included decreasing the lignin content in the biomass, and increasing the effectiveness of enzymatic hydrolysis and microbial transformation of pretreated biomass. Immobilized cells of both yeasts and fungi possessed improved productive characteristics in the biotransformation of biomass pretreated with [Bmim]Cl to ethanol and fumaric acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Pitfalls of Precipitation Reactions.

    ERIC Educational Resources Information Center

    Slade, Peter W.; Rayner-Canham, Geoffrey W.

    1990-01-01

    Described are some of the difficulties presented in these reactions by competing equilibria that are usually ignored. Situations involving acid-base equilibria, solubility product calculations, the use of ammonia as a complexing agent, and semiquantitative comparisons of solubility product values are discussed. (CW)

  13. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1977

    1977-01-01

    Includes methods for determining melting and boiling points, illustrating the Finkelstein reaction, choosing acid-base indicators, growing perfect NaC1 cubes and "whiskers," bromination of alkenes, using vanadium in the laboratory, preparing phenylamine-copper (II) sulfate (VI) complex, simulating first-order chemical kinetics on a programmable…

  14. Experimental and theoretical studies of the products of reaction between Ln(hfa) 3 and Cu(acac) 2 (Ln = La, Y; acac = acetylacetonate, hfa = hexafluoroacetylacetonate)

    NASA Astrophysics Data System (ADS)

    Rogachev, Andrey Yu.; Mironov, Andrey V.; Nemukhin, Alexander V.

    2007-04-01

    The new unusual heterobimetallic complex [La(hfa) 3Cu(acac) 2(H 2O)] ( I) was obtained in the reaction La(hfa) 3·2H 2O with Cu(acac) 2 in CHCl 3. This is the first example of such type of heterobimetallic complexes based on the Cu(acac) 2 species. According to the X-ray single crystal analysis, complex I crystallizes in the monoclinic space group P2 1/c, with a = 12.516(3) Å, b = 17.757(4) Å, c = 17.446(4) Å, β = 93.90(3)° and Z = 4. The structure consists of isolated heterobinuclear molecules with the coordination number of La being 9. The molecules are further assembled into dimers via hydrogen bonds. The theoretical modeling of the structure and the properties of parent monometallic complexes Ln(hfa) 3 (Ln = La, Y) and Cu(acac) 2 is described. The comparative theoretical study of lanthanide complexes indicates relations in formation of a heterobimetallic complex to the Lewis acidity of original monometallic complexes. In particular, the Lewis acidity and charge of the central metal ion in Ln(hfa) 3 are the key parameters accounting for the formation of [Ln(hfa) 3Cu(acac) 2].

  15. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.

    PubMed

    Narayanan, Ganesh; Vernekar, Varadraj N; Kuyinu, Emmanuel L; Laurencin, Cato T

    2016-12-15

    Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Microencapsulation of methylglyoxal and two derivatives

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.; Fox, S. W.

    1981-01-01

    Microcapsules of methylglyoxal, methylglyoxal bis(guanylhydrazone), and methylglyoxal-ascorbic acid condensation complex were prepared and release curves were determined. The effect of various concentrations of hydrochloric acid on the decomposition of the ascorbic acid complex was investigated.

  17. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement. 1. Literature review.

    PubMed

    Duc, Myriam; Gaboriaud, Fabien; Thomas, Fabien

    2005-09-01

    Measuring and modeling the surface charge of clays, and more especially smectites, has become an important issue in the use of bentonites as a waste confinement material aimed at retarding migration of water and solutes. Therefore, many studies of the acid-base properties of montmorillonite have appeared recently in the literature, following older studies principally devoted to cation exchange. It is striking that beyond the consensus about the complex nature of the surface charge of clays, there are many discrepancies, especially concerning the dissociable charge, that prevents intercomparison among the published data. However, a general trend is observed regarding the absence of common intersection point on raw titration curves at different ionic strengths. Analysis of the literature shows that these discrepancies originate from the experimental procedures for the preparation of the clays and for the quantification of their surface charge. The present work is an attempt to understand how these procedures can impact the final results. Three critical operations can be identified as having significant effects on the surface properties of the studied clays. The first one is the preparation of purified clay from the raw material: the use of acid or chelation treatments, and the repeated washings in deionized water result in partial dissolution of the clays. Then storage of the purified clay in dry or wet conditions strongly influences the equilibria in the subsequent experiments respectively by precipitation or enhanced dissolution. The third critical operation is the quantification of the surface charge by potentiometric titration, which requires the use of strong acids and bases. As a consequence, besides dissociation of surface sites, many secondary titrant consuming reactions were described in the literature, such as cation exchange, dissolution, hydrolysis, or precipitation. The cumulated effects make it difficult to derive proper dissociation constants, and to build adequate models. The inadequation of the classical surface complexation models to describe the acid-base behavior of clays is illustrated by the electrokinetic behavior of smectites, which is independent from the pH and the ionic strength. Therefore, there is still a need on one hand for accurate data recorded in controlled conditions, and on the other hand for new models taking into account the complex nature of the charge of clays.

  18. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan

    2015-08-01

    Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.

  19. High-efficiency emitting materials based on phenylquinoline/carbazole-based compounds for organic light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Jin, Sung-Ho

    2009-08-01

    Highly efficient light-emitting materials based on phenylquinoline-carbazole derivative has been synthesized for organic-light emitting diodes (OLEDs). The materials form high quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron donating and electron withdrawing groups on carbazoylphenylquinoline. Non-doped deep-blue OLEDs using Et-CVz-PhQ as the emitter show bright emission (CIE coordinates, x=0.156, y=0.093) with an external quantum efficiency of 2.45 %. Furthermore, the material works as an excellent host material for BCzVBi to get high-performance OLEDs with excellent deep-blue CIE coordinates (x=0.155, y=0.157), high power efficiency (5.98 lm/W), and high external quantum efficiency (5.22 %). Cyclometalated Ir(III) μ-chloride bridged dimers were synthesized by iridium trichloride hydrate with an excess of our developed deep-blue emitter, Et-CVz-PhQ. The Ir(III) complexes were prepared by the dimers with the corresponding ancillary ligands. The chloride bridged diiridium complexes can be easily converted to mononuclear Ir(III) complexes by replacing the two bridging chlorides with bidentate monoanionic ancillary ligands. Among the various types of ancillary ligands, we firstly used picolinic acid N-oxide, including picolinic acid and acetylacetone as an ancillary ligands for Ir(III) complexes. The PhOLEDs also shows reasonably high brightness and good luminance efficiency of 20,000 cd/m2 and 12 cd/A, respectively.

  20. Development and optimization of a naphthoic acid-based ionic liquid as a "non-organic solvent microextraction" for the determination of tetracycline antibiotics in milk and chicken eggs.

    PubMed

    Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong

    2017-01-15

    In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top