Environmental and Chemical Aging of Fatty-Acid-Based Vinyl Ester Composites
2011-04-01
Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites by Steven E. Boyd and John J. La Scala ARL-TR-5523 April...2011 Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites Steven E. Boyd and John J. La Scala Weapons and Materials...COVERED (From - To) October 2009–September 2010 4. TITLE AND SUBTITLE Environmental and Chemical Aging of Fatty- Acid -Based Vinyl Ester Composites
The Acid-Base Properties and Chemical Composition of the Surface of the InSb-ZnTe System
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.; Shubenkova, E. G.; Timoshenko, O. T.; Filatova, T. N.
2008-04-01
The acid-base properties and chemical composition of the surface of solid solutions and binary components of the InSb-ZnTe system were studied by the hydrolytic adsorption, nonaqueous conductometric titration, mechanochemistry, IR spectroscopy, and mass spectrometry methods. The strength, nature, and concentration of acid centers were determined. Changes in the concentration of acid centers caused by surface exposure to CO and changes in the composition of the system were also studied. The mechanism of acid-base interactions was established. The chemical composition of the surface of system components exposed to air included adsorbed H2O molecules, OH- groups, hydrocarbon and oxocarbon compounds, and the products of surface atom oxidation. After thermal treatment in a vacuum, the composition of the surface approached the stoichiometric composition.
NASA Astrophysics Data System (ADS)
Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.
2016-01-01
The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.
Environmentally Friendly Bio-Based Vinyl Ester Resins for Military Composite Structures
2008-12-01
composites, fatty acid , vinyl ester 9. Distribution $tatement (requr’iedl lsmanuscript subjectto export control? E ruo I yes Circfe appropriate l tter and...resins is to replace some or all of the styrene with fatty acid -based monomers. These fatty acid vinyl ester resins allow for the formulation of high...validation studies have been performed, showing that the fatty acid -based resins have sufficient, modulus, strength, glass transition temperature, and
3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid.
Sionkowska, Alina; Kaczmarek, Beata; Lewandowska, Katarzyna; Grabska, Sylwia; Pokrywczyńska, Marta; Kloskowski, Tomasz; Drewa, Tomasz
2016-08-01
3D porous composites based on blends of chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Mechanical properties, swelling behavior and thermal stability of the blends were studied. Moreover, SEM images were taken and the structure of the blends was studied. Biological properties of the materials obtained were investigated by analyzing of proliferation rate of fibroblast cells incubated with biomaterial extract using MTT assay (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide). The results showed that the properties of 3D composites based on the blends of chitosan and collagen were altered after the addition 1%, 2% and 5% of hyaluronic acid. Mechanical properties and thermal stability of chitosan/collagen blends were improved in the presence of hyaluronic acid in the composite. New 3D materials based on the blends of chitosan, collagen and hyaluronic acid were non-toxic and did not significantly affect cell morphology. Copyright © 2016 Elsevier B.V. All rights reserved.
Ranković, Slavica; Popović, Tamara; Martačić, Jasmina Debeljak; Petrović, Snježana; Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Glibetić, Maria
2017-05-19
Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Gender related variations in FA composition of rat liver PL were observed, and results have shown that those initial differences could be significantly modulated by the type of diet. Furthermore, the modulatory effects of milk- and fish-based diets on liver phospholipids FA profiles appeared to be sex-specific.
Sionkowska, Alina; Kaczmarek, Beata
2017-09-01
3D porous composites based on the blend of chitosan, collagen and hyaluronic acid with the addition of nano-hydroxyapatite were prepared. SEM images for the composites were made and the structure was assessed. Mechanical properties were studied using a Zwick&Roell Testing Mashine. In addition, the porosity and density of composites were measured. The concentration of calcium ions released from the material was detected by the complexometric titration method. The results showed that in 3D porous sponge based on the blend of chitosan, collagen and hyaluronic acid, inorganic particles of nanohydroxyapatite can be incorporated, as well as that the properties of 3D composites depend on the material composition. Mechanical parameters and thermal stability of ternary biopolymeric blends were improved by the addition of hydroxyapatite. Moreover, the porosity of ternary materials was higher than in materials based on pure chitosan or collagen. All composites were characterized by a porous structure with interconnected pores. Calcium ions can be released from the composite during its degradation in water. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bio(nano)composites comprising agricultural-based polymers blended with biodegradable plant-based fillers and clays were produced to develop novel hydrophobic, yet biodegradable materials that have properties comparable to those of petroleum-based plastics. Poly (lactic acid) (PLA), wheat vital glut...
Preparation and analysis of multilayer composites based on polyelectrolyte complexes
NASA Astrophysics Data System (ADS)
Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.; Baklagina, Yu. G.; Romanov, D. P.; Kononova, S. V.; Volod'ko, A. V.; Ermak, I. M.; Klechkovskaya, V. V.; Skorik, Yu. A.
2016-11-01
A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan-hyaluronic acid, chitosan-alginic acid, and chitosan-carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.
Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun
2016-03-15
Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of a peracetic acid-based immersion on indirect composite resin.
Samuel, Susana Maria Werner; Fracaro, Gisele Baggio; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Campregher, Ulisses Bastos
2011-06-01
The aim of this study was to evaluate the influence of immersion in a 0.2% peracetic acid-based disinfectant on the three-point flexural strength, water sorption and water solubility of an indirect composite resin. Specimens were produced according to ISO 4049:2000 specifications and were divided in two groups: Control group, with no disinfection and Disinfected group, with three 10 min immersions in the peracetic acid intercalated with 10 min immersions in sterile distilled water. All evaluations were conducted in compliance with ISO specifications. Three-point flexural strength, water sorption and solubility of indirect composite resin before and after immersion showed no statistical significant differences (p > 0.05) and met ISO standard requirements. Immersion in peracetic acid solution showed no influence in indirect composite resin tested properties.
Amino acid usage is asymmetrically biased in AT- and GC-rich microbial genomes.
Bohlin, Jon; Brynildsrud, Ola; Vesth, Tammi; Skjerve, Eystein; Ussery, David W
2013-01-01
Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study.
Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes
Bohlin, Jon; Brynildsrud, Ola; Vesth, Tammi; Skjerve, Eystein; Ussery, David W.
2013-01-01
Introduction Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. Results We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. Conclusion Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study. PMID:23922837
Analysis of 2H-Evaporator Acid Cleaning Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Diprete, D.; Edwards, T.
The 2H-Evaporator acid cleaning solution samples were analyzed by SRNL to determine a composition for the scale present in the evaporator before recent acid cleaning. Composite samples were formed from the solution samples from the two acid cleaning cycles. The solution composition was converted to a weight percent scale solids basis under an assumed chemical composition. The scale composition produced from the acid cleaning solution samples indicates a concentration of 6.85 wt% uranium. An upper bound, onesided 95% confidence interval on the weight percent uranium value may be given as 6.9 wt% + 1.645 × 0.596 wt% = 7.9 wt%.more » The comparison of the composition from the current acid cleaning solutions with the composition of recent scale samples along with the thermodynamic modeling results provides reasonable assurance that the sample results provide a good representation of the overall scale composition in the evaporator prior to acid cleaning. The small amount of scale solids dissolved in the 1.5 M nitric acid during the evaporator cleaning process likely produced only a small amount of precipitation based on modeling results and the visual appearance of the samples.« less
NASA Astrophysics Data System (ADS)
Atma, Y.
2017-03-01
Research on fish bone gelatin has been increased in the last decade. The quality of gelatin depends on its physicochemical properties. Fish bone gelatin from warm-water fishes has a superior amino acid composition than cold-water fishes. The composition of amino acid can determine the strength and stability of gelatin. Thus, it is important to analyze the composition of amino acid as well as proximate composition for potential gelatin material. The warm water fish species used in this study were Grass carp, Pangasius catfish, Catfish, Lizard fish, Tiger-toothed croaker, Pink perch, Red snapper, Brown spotted grouper, and King weakfish. There werre five dominant amino acid in fish bone gelatin including glycine (21.2-36.7%), proline (8.7-11.7%), hydroxyproline (5.3-9.6%), alanine (8.48-12.9%), and glutamic acid (7.23-10.15%). Different warm-water species has some differences in amino acid composition. The proximate composition showed that fishbone gelatin from Pangasius catfish has the highest protein content. The water composition of all fishbone gelatin was well suited to the standard. Meanwhile, based on ash content, only gelatin from gelatin Pangasius catfish met the standard for food industries.
Novel amine-based presursor compounds and composite membranes thereof
Lee, Eric K. L.; Tuttle, Mark E.
1989-01-01
Novel amine-based precursor compounds comprising the condensation products of dialkylenetriamine and alpha, beta-unsaturated acid halides are disclosed, as well as composite membranes containing such compounds, the membranes being useful in RO-type processes for desalination and the removal of low molecular weight organic compounds such as phenols and carboxylic acids.
NASA Astrophysics Data System (ADS)
Kalinovskaya, I. V.; Zadorozhnaya, A. N.; Karasev, V. E.
2008-11-01
Polyethylene films activated with europium(III) complexes with carboxylic acids and Eu(L)3 · nD · xH2O + ANT compositions, where L is the trifluoroacetic, toluyl, or cinnamic acid anion and ANT is anthranilic acid, were prepared. The intensity of luminescence of the polymeric compositions depended on the content of luminophores (molar ratio between europium compounds and anthranilic acid). An analysis of the excitation spectra showed that, in polymer—Eu(L)3 · nPhen · xH2O + ANT compositions, there was effective energy transfer from phenanthroline to anthranilic acid levels.
Zou, Xiaoqiang; Huang, Jianhua; Jin, Qingzhe; Guo, Zheng; Liu, Yuanfa; Cheong, Lingzhi; Xu, Xuebing; Wang, Xingguo
2013-07-24
The lipid compositions of commercial milks from cow, buffalo, donkey, sheep, and camel were compared with that of human milk fat (HMF) based on total and sn-2 fatty acid, triacylglycerol (TAG), phospholipid, and phospholipid fatty acid compositions and melting and crystallization profiles, and their degrees of similarity were digitized and differentiated by an evaluation model. The results showed that these milk fats had high degrees of similarity to HMF in total fatty acid composition. However, the degrees of similarity in other chemical aspects were low, indicating that these milk fats did not meet the requirements of human milk fat substitutes (HMFSs). However, an economically feasible solution to make these milks useful as raw materials for infant formula production could be to modify these fats, and a possible method is blending of polyunsaturated fatty acids (PUFA) and 1,3-dioleoyl-2-palmitoylglycerol (OPO) enriched fats and minor lipids based on the corresponding chemical compositions of HMF.
Microbiological destruction of composite polymeric materials in soils
NASA Astrophysics Data System (ADS)
Legonkova, O. A.; Selitskaya, O. V.
2009-01-01
Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.
Vlasova, T F; Miroshnikova, E B; Poliakov, V V; Murugova, T P
1982-01-01
The amino acid composition of the quadriceps muscle of rats flown onboard the biosatellite Cosmos-936 and exposed to the ground-based synchronous control experiment was studied. The weightless rats showed changes in the amino acid concentration in the quadriceps muscle. The centrifuged flight and synchronous rats displayed an accumulation of free amino acids in the above muscle.
Determination of the structure of lecithins.
Blank, M L; Nutter, L J; Privett, O S
1966-03-01
A method is described for the determination of the classes of lecithins in terms of unsaturated and saturated fatty acids based on a total fatty acid composition, the composition of the fatty acids in the beta-position, and the amount of disaturated class determined via mercuric acetate adduct formation. The accuracy of the method was determined on lecithins of known composition and the method was applied to lecithins isolated from milk serum and egg lipids, safflower and soybean oils.
NASA Technical Reports Server (NTRS)
Conklin, Lindsey
2017-01-01
Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.
Protic ionic liquids based on the dimeric and oligomeric anions: [(AcO)xH(x-1)]-.
Johansson, K M; Izgorodina, E I; Forsyth, M; MacFarlane, D R; Seddon, K R
2008-05-28
We describe a fluidity and conductivity study as a function of composition in N-methylpyrrolidine-acetic acid mixtures. The simple 1 : 1 acid-base mixture appears to form an ionic liquid, but its degree of ionicity is quite low and such liquids are better thought of as poorly dissociated mixtures of acid and base. The composition consisting of 3 moles acetic acid and 1 mole N-methylpyrrolidine is shown to form the highest ionicity mixture in this binary due to the presence of oligomeric anionic species [(AcO)(x)H(x-1)](-) stabilised by hydrogen bonds. These oligomeric species, being weaker bases than the acetate anion, shift the proton transfer equilibrium towards formation of ionic species, thus generating a higher degree of ionicity than is present at the 1 : 1 composition. A Walden plot analysis, thermogravimetric behaviour and proton NMR data, as well as ab initio calculations of the oligomeric species, all support this conclusion.
Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey
2008-12-01
Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.
Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming
2013-01-01
A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated.
Orue, Ander; Eceiza, Arantxa; Peña-Rodriguez, Cristina; Arbelaiz, Aitor
2016-01-01
The main aim of this work was to study the effect of sisal fiber surface treatments on water uptake behavior of composites based on untreated and treated fibers. For this purpose, sisal fibers were treated with different chemical treatments. All surface treatments delayed the water absorption of fibers only for a short time of period. No significant differences were observed in water uptake profiles of composites based on fibers with different surface treatments. After water uptake period, tensile strength and Young modulus values of sisal fiber/poly(lactic acid) (PLA) composites were decreased. On the other hand, composites based on NaOH + silane treated fibers showed the lowest diffusion coefficient values, suggesting that this treatment seemed to be the most effective treatment to reduce water diffusion rate into the composites. Finally, Young modulus values of composites, before water uptake period, were predicted using different micromechanical models and were compared with experimental data. PMID:28773524
Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.
Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta
2017-11-01
The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.
NASA Astrophysics Data System (ADS)
Hsiang, Hsing-I.; Fan, Liang-Fang; Hung, Jia-Jing
2018-02-01
The phosphoric acid addition effect on phosphate insulation coating microstructure was investigated in this study. The relationships between the phosphate insulation coating microstructure and temperature resistance, corrosion resistance and magnetic properties of iron-based soft magnetic composites (SMCs) were studied by using SEM, TEM/EDS and FTIR. It was observed that an iron phosphate/carbonyl iron core/shell structure is formed with carbonyl iron powder after phosphatizing treatment. The iron phosphate phase was identified as amorphous and its thickness increased from 30 nm to 60 nm as the phosphoric acid concentration was increased from 1 wt% to 2 wt%. When the phosphoric acid concentration was further increased to 5 wt%, the excess iron phosphate precipitates between the soft magnetic composite particles. The temperature and corrosion resistance and resistivity of the iron-based SMCs can be effectively improved using carbonyl iron powders after phosphatizing. The initial permeability of the iron-based SMCs decreased with increasing phosphoric acid concentration due to thicker insulation layer formation. However, the imaginary permeability below the domain wall displacement resonance frequency decreased with increasing phosphoric acid concentration. The DC-bias superposition characteristic can also be improved by increasing the phosphoric acid concentration. Iron-based SMCs with superior temperature and corrosion resistance, initial permeability, magnetic loss and DC-bias superposition characteristics can be obtained by controlling the phosphoric acid concentration during phosphatizing to adjust the iron phosphate precipitate thickness on the iron powder surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok
New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less
Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; ...
2016-11-03
New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less
NASA Astrophysics Data System (ADS)
Praseptiangga, Danar; Giovani, Sarah; Manuhara, Godras Jati; Muhammad, Dimas Rahadian Aji
2017-09-01
Novel composite films based on semi-refined iota-carrageenan (SRIC) incorporating palmitic acid (PA) were prepared by an emulsification method. Palmitic acid (PA) as hydrophobic material was incorporated into semi-refined iota-carrageenan edible films in order to improve water vapor barrier properties. Composite SRIC-based films with varying concentrations of PA (10%, 20%, and 30% w/w) were obtained by a solvent casting method. Their mechanical and barrier properties were investigated. Results showed that the incorporation of PA in films caused a significant increase (p < 0.05) in thickness as the concentration of PA increased (from 10% to 30% w/w). The mechanical properties of semi-refined iota-carrageenan were also affected by PA incorporation; increasing the concentration of PA (from 10% to 30% w/w) in films improved the tensile strength (TS). Interestingly, the TS value increased to a peak at 20% w/w PA. However, the TS value showed a decrease when PA were added at 30% w/w. Elongation-at-break (EAB) were significantly (p < 0.05) decreased when the concentration of PA in films increased (from 10% to 30% w/w). Furthermore, the incorporation of PA also affected the water vapor barrier properties of the films. Water vapor transmission rate (WVTR) of the composite semi-refined iota-carrageenan-based edible film decreased significantly (p < 0.05) as the concentration of palmitic acid increased (from 10% to 30% w/w). Composite SRIC-based edible film incorporating 30% w/w of PA presented better water vapor barrier properties as compared to other films with 10% and 20% w/w PA incorporation. Thus, formulation containing 30% w/w palmitic acid promoted films with a highly beneficial to improve water vapor barrier properties and it has the potential for food packaging applications.
Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.
Feng, Yanbin; Zhang, Yunxiu; Wang, Yayue; Liu, Jiao; Liu, Yinghui; Cao, Xupeng; Xue, Song
2018-04-01
Medium-chain fatty acids have attracted significant attention as sources of biofuels in recent years. Acyl-ACP thioesterase, which is considered as the key enzyme to determine the carbon chain length, catalyzes the termination of de novo fatty acid synthesis. Although recombinant medium-chain acyl-ACP thioesterase (TE) affects the fatty acid profile in heterologous cells, tailoring of the fatty acid composition merely by engineering a specific TE is still intractable. In this study, the activity of a C8-C10-specific thioesterase FatB2 from Cuphea hookeriana on C10-ACP was quantified twice as high as that on C8-ACP based on a synthetic C8-C16 acyl-ACP pool in vitro. Whereas in vivo, it was demonstrated that ChFatB2 preferred to accumulate C8 fatty acids with 84.9% composition in the ChFatB2-engineered E. coli strain. To achieve C10 fatty acid production, ChFatB2 was rationally tuned based on structural investigation and enzymatic analysis. An I198E mutant was identified to redistribute the C8-ACP flow, resulting in C10 fatty acid being produced as the principal component at 57.6% of total fatty acids in vivo. It was demonstrated that the activity of TE relative to β-ketoacyl-ACP synthases (KAS) directly determined the fatty acid composition. Our results provide a prospective strategy in tailoring fatty acid synthesis by tuning of TE activities based on TE-ACP interaction.
Palazhy, Sabitha; Kamath, Prakash; Rajesh, P C; Vaidyanathan, Kannan; Nair, Shiv K; Vasudevan, D M
2012-12-01
Coconut oil, which is rich in medium-chain saturated fatty acids, is the principal cooking medium of the people of Kerala, India. Replacement of saturated fat with polyunsaturated fat is effective in reducing serum cholesterol levels. However, the effect of substituting coconut oil with sunflower oil on the fatty acid composition of plaque has not been thoroughly investigated. We therefore evaluated and compared the fatty acid composition of plasma and plaque among subjects consuming coconut oil or sunflower oil as the cooking medium. Endarterectomy samples and plasma samples were obtained from subjects who underwent coronary artery bypass grafts (n = 71). The subjects were grouped based on the type of oil they were using as their cooking medium (coconut oil or sunflower oil). The fatty acid composition in the plaques and the plasma was determined by HPLC and the data were analyzed statistically. Sunflower oil consumers had elevated concentrations of linoleic acid (p = 0.001) in plasma, while coconut oil users had higher myristic acid levels (p = 0.011) in plasma. Medium-chain fatty acids did not differ significantly between the two groups in the plasma. Medium-chain fatty acids were detected in the plaques in both groups of subjects. In contrast to previous reports, long-chain saturated fatty acids dominated the lipid content of plaque in this population, and the fatty acid composition of plaque was not significantly different between the two groups. No correlation between fatty acids of plasma and plaque was observed in either group. A change in cooking medium, although it altered the plasma fatty acid composition, was not reflected in the plaque composition.
Evaluation of cotton byproducts as fillers for poly(lactic acid) and low density polyethylene
USDA-ARS?s Scientific Manuscript database
Polymeric composites based on cotton burr and cottonseed bull have been prepared by melt blending and extrusion. For poly(lactic acid) (PLA) and low-density polyethylene (LDPE), addition of the fillers only slightly changed the composite’s thermal properties and significantly decreased the composite...
Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming
2013-01-01
A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated. PMID:23712069
van den Bruinhorst, Adriaan; Spyriouni, Theodora; Hill, Jörg-Rüdiger; Kroon, Maaike C
2018-01-11
The liquid range and applicability of deep eutectic solvents (DESs) are determined by their physicochemical properties. In this work, the physicochemical properties of glycolic acid:proline and malic acid:proline were evaluated experimentally and with MD simulations at five different ratios. Both DESs exhibited esterification upon preparation, which affected the viscosity in particular. In order to minimize oligomer formation and water release, three different experimental preparation methods were explored, but none could prevent esterification. The experimental and calculated densities of the DESs were found to be in good agreement. The measured and modeled glass transition temperature showed similar trends with composition, as did the experimental viscosity and the calculated diffusivities. The MD simulations provided additional insight at the atomistic level, showing that at acid-rich compositions, the acid-acid hydrogen bonding (HB) interactions prevail. Malic acid-based DESs show stronger acid-acid HB interactions than glycolic acid-based ones, possibly explaining its extreme viscosity. Upon the addition of proline, the interspecies interactions become predominant, confirming the formation of the widely assumed HB network between the DESs constituents in the liquid phase.
Tejerina, D; García-Torres, S; de Vaca, M Cabeza; Vázquez, F M; Cava, R
2012-02-01
This investigation was designed to evaluate the effects of variations in antioxidant and fatty acids composition of acorns and grass from two Montanera (free-range system and feeding based on acorns and grass) seasons (2006/07 and 2007/08) on the antioxidant composition and fatty acids profile of m. Longissimus dorsi (LD) and m. Serratus ventralis (SV) from Iberian pigs reared under these Montanera seasons. Acorn and grass composition was affected by Montanera season and consequently, LD and SV muscles showed different contents of α-tocopherol, total phenols, hydrophilic and lipophilic antioxidant activity and fatty acid profile, according with the composition of acorns and grass ingested. Results suggest a lack of uniformity in meat quality between different seasons. This could be due to the variable nature of extensive pig production as reflected in the variability in the composition of the diet (acorns and grass). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.
2016-01-01
Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.
Amino Acid compositions of 27 food fishes and their importance in clinical nutrition.
Mohanty, Bimal; Mahanty, Arabinda; Ganguly, Satabdi; Sankar, T V; Chakraborty, Kajal; Rangasamy, Anandan; Paul, Baidyanath; Sarma, Debajit; Mathew, Suseela; Asha, Kurukkan Kunnath; Behera, Bijay; Aftabuddin, Md; Debnath, Dipesh; Vijayagopal, P; Sridhar, N; Akhtar, M S; Sahi, Neetu; Mitra, Tandrima; Banerjee, Sudeshna; Paria, Prasenjit; Das, Debajeet; Das, Pushpita; Vijayan, K K; Laxmanan, P T; Sharma, A P
2014-01-01
Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs.
Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition
Mahanty, Arabinda; Sankar, T. V.; Chakraborty, Kajal; Rangasamy, Anandan; Paul, Baidyanath; Sarma, Debajit; Mathew, Suseela; Asha, Kurukkan Kunnath; Behera, Bijay; Aftabuddin, Md.; Debnath, Dipesh; Vijayagopal, P.; Sridhar, N.; Akhtar, M. S.; Sahi, Neetu; Mitra, Tandrima; Banerjee, Sudeshna; Das, Debajeet; Das, Pushpita; Vijayan, K. K.; Laxmanan, P. T.; Sharma, A. P.
2014-01-01
Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs. PMID:25379285
Adhvaryu, Atanu; Erhan, Sevim Z; Perez, Joseph M
2004-10-20
Vegetable oils have significant potential as a base fluid and a substitute for mineral oil in grease formulation. Preparation of soybean oil-based lithium greases using a variety of fatty acids in the soap structure is discussed in this paper. Soy greases with lithium-fatty acid soap having C12-C18 chain lengths and different metal to fatty acid ratios were synthesized. Grease hardness was determined using a standard test method, and their oxidative stabilities were measured using pressurized differential scanning calorimetry. Results indicate that lithium soap composition, fatty acid types, and base oil content significantly affect grease hardness and oxidative stability. Lithium soaps prepared with short-chain fatty acids resulted in softer grease. Oxidative stability and other performance properties will deteriorate if oil is released from the grease matrix due to overloading of soap with base oil. Performance characteristics are largely dependent on the hardness and oxidative stability of grease used as industrial and automotive lubricant. Therefore, this paper discusses the preparation methods, optimization of soap components, and antioxidant additive for making soy-based grease. Copyright 2004 American Chemical Society
Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen
2016-12-01
The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C 18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tan, Huaping; Chu, Constance R.; Payne, Karin; Marra, Kacey G.
2009-01-01
Injectable, biodegradable scaffolds are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural polysaccharides are ideal scaffolds as they resemble the extracellular matrices of tissues comprised of various glycosaminoglycans (GAG). Here, we report a new class of biocompatible and biodegradable composite hydrogels derived from water-soluble chitosan and oxidized hyaluronic acid upon mixing, without the addition of a chemical crosslinking agent. The gelation is attributed to the Schiff-base reaction between amino and aldehyde groups of polysaccharide derivatives. In the current work, N-succinyl-chitosan (S-CS) and aldehyde hyaluronic acid (A-HA) were synthesized for preparation of the composite hydrogels. The polysaccharide derivatives and composite hydrogels were characterized by FTIR spectroscopy. The effect of the ratio of S-CS and A-HA on the gelation time, microstructure, surface morphology, equilibrium swelling, compressive modulus, and in vitro degradation of composite hydrogels was examined. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes within the composite hydrogel matrix in vitro. The results demonstrated that the composite hydrogel supported cell survival and the cells retained chondrocytic morphology. These characteristics provide a potential opportunity to use the injectable, composite hydrogels in tissue engineering applications. PMID:19167750
Composition of single-step media used for human embryo culture.
Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin
2017-04-01
To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; ...
2018-03-04
Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.
Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less
NASA Astrophysics Data System (ADS)
Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; Cao, Pengfei; Saito, Tomonori; Wood, David L.; Li, Jianlin
2018-04-01
Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this study, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.
Methods and compositions for efficient nucleic acid sequencing
Drmanac, Radoje
2006-07-04
Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.
Methods and compositions for efficient nucleic acid sequencing
Drmanac, Radoje
2002-01-01
Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.
A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.
Alves, Susana P; Santos-Silva, José; Cabrita, Ana R J; Fonseca, António J M; Bessa, Rui J B
2013-01-01
Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18:1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18:2n-6 and 18:3n-3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18:0 might be produced during biohydrogenation of the 18:3n-3.
Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin
2015-02-22
In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.
Establishment of an evaluation model for human milk fat substitutes.
Wang, Yong-Hua; Mai, Qing-Yun; Qin, Xiao-Li; Yang, Bo; Wang, Zi-Lian; Chen, Hai-Tian
2010-01-13
Fatty acid composition and distribution of human milk fat (HMF), from mothers over different lactating periods in Guangzhou, China, were analyzed. The universal characteristics were consistent with previously reported results although the fatty acid content was within a different range and dependent on the local population (low saturated fatty acid and high oleic acid for Guangdong mothers' milk fat). Based on the composition of the total and sn-2 fatty acids of mature milk fat, an efficient evaluation model was innovatively established by adopting the "deducting score" principle. The model showed good agreement between the scores and the degree of similarity by assessing 15 samples from different sources including four samples of HMF, eight samples of human milk fat substitutes (HMFSs) and infant formulas, and three samples of fats and oils. This study would allow for the devolvement of individual human milk fat substitutes with different and specific fatty acid compositions for local infants.
Lubrication from mixture of boric acid with oils and greases
Erdemir, Ali
1995-01-01
Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.
Cucuruz, Andrei Tiberiu; Andronescu, Ecaterina; Ficai, Anton; Ilie, Andreia; Iordache, Florin
2016-08-30
The use of methacrylic acid (MAA) in medicine was poorly investigated in the past but can be of great importance because the incorporation of hydroxyapatite (HA) can lead to new composite materials with good properties due to the strong electrostatic interactions between carboxylate groups of polymer and Ca(2+) ions from HA. The scope of this study was to determine the potential of using composite materials based on poly(methacrylic acid) (PMAA) and hydroxyapatite in dentistry. Two routes of synthesis were taken into account: i) HA was synthesised in situ and ii) commercial HA was used. Fourier transform infrared spectroscopy and X-ray diffraction were used for compositional assessments. Scanning electron microscopy was performed to determine the morphology and differential thermal analysis (DTA) coupled with thermogravimetric analysis (TG) was used to study the thermal behaviour and to observe quantitative changes. In-vitro tests were also performed in order to evaluate the biocompatibility of both PMAA/HA composites by monitoring the development potential of human endothelial cells using MTT assay and fluorescent microscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Silvestri, L. G.; Hill, L. R.
1965-01-01
Silvestri, L. G. (Università Statale, Milan, Italy), and L. R. Hill. Agreement between deoxyribonucleic acid base composition and taxometric classification of gram-positive cocci. J. Bacteriol. 90:136–140. 1965.—It had been previously proposed, from taxometric analyses, that gram-positive, catalase-positive cocci be divided into two subgroups. Thirteen strains, representative of both subgroups, were examined for deoxyribonucleic acid (DNA) base composition, determined from melting temperatures. Per cent GC (guanine + cytosine/total bases) values fell into two groups: 30.8 to 36.5% GC and 69 to 75% GC. Strains with low per cent GC values belonged to the Staphylococcus aureus–S. saprophyticus–S. lactis taxometric subgroups, and those with high per cent GC values belonged to the S. roseus–S. afermentans subgroup. The hypothetical nature of any classification is emphasized, and, in the present work, the hypothesis derived from taxometric analyses of division into two subgroups is confirmed by the study of DNA base ratios. The two subgroups correspond, respectively, to the genera Staphylococcus and Micrococcus. PMID:16562008
Proximate composition and mineral content of two edible species of Cnidoscolus (tree spinach).
Kuti, J O; Kuti, H O
1999-01-01
Proximate composition and mineral content of raw and cooked leaves of two edible tree spinach species (Cnidoscolus chayamansa and C. aconitifolius), known locally as 'chaya', were determined and compared with that of a traditional green vegetable, spinach (Spinicia oleraceae). Results of the study indicated that the edible leafy parts of the two chaya species contained significantly (p<0.05) greater amounts of crude protein, crude fiber, Ca, K, Fe, ascorbic acid and beta-carotene than the spinach leaf. However, no significant (p>0.05) differences were found in nutritional composition and mineral content between the chaya species, except minor differences in the relative composition of fatty acids, protein and amino acids. Cooking of chaya leaves slightly reduced nutritional composition of both chaya species. Cooking is essential prior to consumption to inactivate the toxic hydrocyanic glycosides present in chaya leaves. Based on the results of this study, the edible chaya leaves may be good dietary sources of minerals (Ca, K and Fe) and vitamins (ascorbic acid and beta-carotene).
NASA Astrophysics Data System (ADS)
Abdolmaleki, Amir; Mallakpour, Shadpour; Borandeh, Sedigheh
2013-12-01
Amino acid functionalized multi-walled carbon nanotubes (f-MWCNTs)/poly(amide-ester-imide) (PAEI) composites were fabricated by solution mixing method. Proper functionalization and mixing strategy of MWCNTs provides the best opportunity for better distribution and bonding of nanoparticles to the polymer matrix. MWCNTs have been chemically modified with L-phenylalanine to improve their compatibility with L-phenylalanine based PAEI. Field emission scanning electron microscopy micrographs of composite revealed that f-MWCNTs made a good interaction with polymer chains by wrapping the polymer around them, and transmission electron microscopy results confirmed well dispersion with nano size of f-MWCNTs in the polymer matrix. In addition, thermal analysis showed good enhancement in thermal properties of composites compared to pure polymer. Thermal stability of the composites containing f-MWCNTs was enhanced due to their good dispersion and improved interfacial interaction between the amino acid based PAEI matrix and f-MWCNTs.
Nanoengineered Carbon-Based Materials For Reactive Adsorption of Toxic Industrial Compounds
2015-01-13
in phenolic, sulfonic, thioethers and pyrrolic groups. 29. Addition of small amount of sulfanilic acid (grafting with acid) to silica-carbons...thioethers and pyrrolic groups. 29. Addition of small amount of sulfanilic acid (grafting with acid) to silica-carbons composites increases NO2
Lubrication from mixture of boric acid with oils and greases
Erdemir, A.
1995-07-11
Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.
Thermoformed protein based composites in presence of organic acids
USDA-ARS?s Scientific Manuscript database
World industrialization has generated substantial quantities of petroleum-based plastics over many years, which are non biodegradable. There is a growing demand for the use of renewable agricultural sources to develop eco-friendly biobased composites. Agriculture-sourced proteins and starches are b...
Liquid—liquid interface-mediated Au—ZnO composite membrane using ‘thiol-ene’ click chemistry
NASA Astrophysics Data System (ADS)
Ali, Mohammed; Ghosh, Sujit Kumar
2015-07-01
A nanoparticle-decorated composite membrane has been devised at the water/CCl4 interface based on the self-assembly of ligand-stabilized gold and zinc oxide nanoparticles, exploiting the ‘thiol-ene’ click chemistry between the thiol groups of 11-mercaptoundecanoic acid-stabilized ZnO nanoparticles and the ene functionality of cinnamic acid attached to gold nanoparticles. The interfacial assembly of ultrasmall particles leads to a multilayer film that exhibits charge-dependent permeability of amino acid molecules across the membrane.
Nicholson, J W; Gjorgievska, E; Bajraktarova, B; McKenzie, M A
2003-06-01
The interaction of three polyacid-modified composite resins (compomers) with various acidic storage solutions, and also water, over periods of time up to 6 months has been studied and compared with those of a glass-ionomer and a composite resin. This interaction has been shown to vary in a complex way with length of storage and nature of the acid, and citric acid was found to be the most aggressive storage medium for glass-ionomer cement, and also for the compomers. The pure composite resin, by contrast, was relatively unaffected by all of the acid solutions examined. In all acids, the compomers showed a distinct buffering effect, i.e. they increased the pH towards neutral, as did the glass-ionomer. The extent of this also varied with duration of storage and nature of the acid. The biaxial flexure strength was determined and found to be essentially unaffected by the complex chemical interactions with acidic storage solutions. Values obtained for the compomers were lower than those of the composite resin, but above those of the glass-ionomer. Fourier-transform infrared (FT-IR) spectroscopy was employed to study the changes in the compomers following storage in the aqueous media, but bands were broad and no detailed assignments could be made. There were changes in the region of the spectra associated with metal carboxylates however, and this indicates that the secondary acid-base reaction had occurred following water uptake.
[Analysis of constituents of ester-type gum bases used as natural food additives].
Tada, Atsuko; Masuda, Aino; Sugimoto, Naoki; Yamagata, Kazuo; Yamazaki, Takeshi; Tanamoto, Kenichi
2007-12-01
The differences in the constituents of ten ester-type gum bases used as natural food additives in Japan (urushi wax, carnauba wax, candelilla wax, rice bran wax, shellac wax, jojoba wax, bees wax, Japan wax, montan wax, and lanolin) were investigated. Several kinds of gum bases showed characteristic TLC patterns of lipids. In addition, compositions of fatty acid and alcohol moieties of esters in the gum bases were analyzed by GC/MS after methanolysis and hydrolysis, respectively. The results indicated that the varieties of fatty acids and alcohols and their compositions were characteristic for each gum base. These results will be useful for identification and discrimination of the ester-type gum bases.
Alves, Susana P.; Santos-Silva, José; Cabrita, Ana R. J.; Fonseca, António J. M.; Bessa, Rui J. B.
2013-01-01
Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18∶1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18∶2n−6 and 18∶3n−3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18∶0 might be produced during biohydrogenation of the 18∶3n−3. PMID:23484024
Terahertz absorption in graphite nanoplatelets/polylactic acid composites
NASA Astrophysics Data System (ADS)
Bychanok, D.; Angelova, P.; Paddubskaya, A.; Meisak, D.; Shashkova, L.; Demidenko, M.; Plyushch, A.; Ivanov, E.; Krastev, R.; Kotsilkova, R.; Ogrin, F. Y.; Kuzhir, P.
2018-04-01
The electromagnetic properties of composite materials based on poly(lactic) acid (PLA) filled with graphite nanoplatelets (GNP) were investigated in the microwave (26–37 GHz) and terahertz (0.2–1 THz) frequency ranges. The maximum of the imaginary part of the dielectric permittivity was observed close to 0.6 THz for composites with 1.5 and 3 wt.% of GNP. The experimental data of complex dielectric permittivity of GNP/PLA composites was modelled using the Maxwell-Garnett theory. The effects of fine dispersion, agglomeration, and percolation in GNP-based composites on its electromagnetic constitutive parameters, presence, and position of THz absorption peak are discussed on the basis of the modeling results and experimental data. The unique combination of conductive and geometrical parameters of GNP embedded into the PLA matrix below the percolation threshold allow us to obtain the THz-absorptive material, which may be effectively used as a 3D-printing filament.
Isolation and biochemical characterization of underwater adhesives from diatoms.
Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T
2014-01-01
Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.
Improving protein complex classification accuracy using amino acid composition profile.
Huang, Chien-Hung; Chou, Szu-Yu; Ng, Ka-Lok
2013-09-01
Protein complex prediction approaches are based on the assumptions that complexes have dense protein-protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biomimetic nanoclay scaffolds for bone tissue engineering
NASA Astrophysics Data System (ADS)
Ambre, Avinash Harishchandra
Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was used for preparing composites (films and scaffolds) containing in situ HAPclay. Composite films showed significantly improved nanomechanical properties. Human MSCs formed mineralized ECM on films in absence of osteogenic supplements and were able to infiltrate the scaffolds. Atomic force microscopy imaging of mineralized ECM formed on composite films showed similarities in dimensions, arrangement of collagen and apatite with their natural bone counterparts. This work indicates the potential of in situ HAPclay to impart polymeric scaffolds with osteoinductive, osteoconductive abilities and improve their mechanical properties besides emphasizing nanoclays as cell-instructive materials.
2012-01-01
Background Members of the phylum Proteobacteria are most prominent among bacteria causing plant diseases that result in a diminution of the quantity and quality of food produced by agriculture. To ameliorate these losses, there is a need to identify infections in early stages. Recent developments in next generation nucleic acid sequencing and mass spectrometry open the door to screening plants by the sequences of their macromolecules. Such an approach requires the ability to recognize the organismal origin of unknown DNA or peptide fragments. There are many ways to approach this problem but none have emerged as the best protocol. Here we attempt a systematic way to determine organismal origins of peptides by using a machine learning algorithm. The algorithm that we implement is a Support Vector Machine (SVM). Result The amino acid compositions of proteobacterial proteins were found to be different from those of plant proteins. We developed an SVM model based on amino acid and dipeptide compositions to distinguish between a proteobacterial protein and a plant protein. The amino acid composition (AAC) based SVM model had an accuracy of 92.44% with 0.85 Matthews correlation coefficient (MCC) while the dipeptide composition (DC) based SVM model had a maximum accuracy of 94.67% and 0.89 MCC. We also developed SVM models based on a hybrid approach (AAC and DC), which gave a maximum accuracy 94.86% and a 0.90 MCC. The models were tested on unseen or untrained datasets to assess their validity. Conclusion The results indicate that the SVM based on the AAC and DC hybrid approach can be used to distinguish proteobacterial from plant protein sequences. PMID:23046503
Methods and compositions for chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
2003-07-22
Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.
Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A
2017-08-10
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.
Ebadi, M R; Sedghi, M; Golian, A; Ahmadi, H
2011-10-01
Accurate knowledge of true digestible amino acid (TDAA) contents of feedstuffs is necessary to accurately formulate poultry diets for profitable production. Several experimental approaches that are highly expensive and time consuming have been used to determine available amino acids. Prediction of the nutritive value of a feed ingredient from its chemical composition via regression methodology has been attempted for many years. The artificial neural network (ANN) model is a powerful method that may describe the relationship between digestible amino acid contents and chemical composition. Therefore, multiple linear regressions (MLR) and ANN models were developed for predicting the TDAA contents of sorghum grain based on chemical composition. A precision-fed assay trial using cecectomized roosters was performed to determine the TDAA contents in 48 sorghum samples from 12 sorghum varieties differing in chemical composition. The input variables for both MLR and ANN models were CP, ash, crude fiber, ether extract, and total phenols whereas the output variable was each individual TDAA for every sample. The results of this study revealed that it is possible to satisfactorily estimate the TDAA of sorghum grain through its chemical composition. The chemical composition of sorghum grain seems to highly influence the TDAA contents when considering components such as CP, crude fiber, ether extract, ash and total phenols. It is also possible to estimate the TDAA contents through multiple regression equations with reasonable accuracy depending on composition. However, a more satisfactory prediction may be achieved via ANN for all amino acids. The R(2) values for the ANN model corresponding to testing and training parameters showed a higher accuracy of prediction than equations established by the MLR method. In addition, the current data confirmed that chemical composition, often considered in total amino acid prediction, could be also a useful predictor of true digestible values of selected amino acids for poultry.
Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Kürten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Tröstl, Jasmin; Jokinen, Tuija; Sipilä, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tomé, António; Virtanen, Annele; Viisanen, Yrjö; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs
2014-12-02
We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.
The acid-base resistant zone in three dentin bonding systems.
Inoue, Go; Nikaido, Toru; Foxton, Richard M; Tagami, Junji
2009-11-01
An acid-base resistant zone has been found to exist after acid-base challenge adjacent to the hybrid layer using SEM. The aim of this study was to examine the acid-base resistant zone using three different bonding systems. Dentin disks were applied with three different bonding systems, and then a resin composite was light-cured to make dentin disk sandwiches. After acid-base challenge, the polished surfaces were observed using SEM. For both one- and two-step self-etching primer systems, an acid-base resistant zone was clearly observed adjacent to the hybrid layer - but with differing appearances. For the wet bonding system, the presence of an acid-base resistant zone was unclear. This was because the self-etching primer systems etched the dentin surface mildly, such that the remaining mineral phase of dentin and the bonding agent yielded clear acid-base resistant zones. In conclusion, the acid-base resistant zone was clearly observed when self-etching primer systems were used, but not so for the wet bonding system.
Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils
Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio
2016-01-01
In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323
Study of morphology, chemical, and amino acid composition of red deer meat.
Okuskhanova, Eleonora; Assenova, Bahytkul; Rebezov, Maksim; Amirkhanov, Kumarbek; Yessimbekov, Zhanibek; Smolnikova, Farida; Nurgazezova, Almagul; Nurymkhan, Gulnur; Stuart, Marilyne
2017-06-01
The aim of this study was to evaluate red deer (maral) meat quality based on chemical composition, pH, water-binding capacity (WBC), and amino acid content. Maral meat surface morphology measurements were obtained by scanning electron microscopy. Active acidity (pH) was determined by potentiometry. Samples were analyzed for WBC by exudation of moisture to a filter paper by the application of pressure. Chemical composition (moisture, protein, fat, and ash fractions) was obtained by drying at 150°C and by extraction, using ethylic ether, and ashing at 500-600°C. The amino acid composition was obtained by liquid chromatography. Maral meat, with a pH of 5.85 and an average moisture content of 76.82%, was found to be low in fat (2.26%). Its protein content was 18.71% while its ash content was 2.21%. The amino acid composition showed that lysine (9.85 g/100 g), threonine (5.38 g/100 g), and valine (5.84 g/100 g) predominated in maral meat, while phenylalanine (4.08 g/100 g), methionine (3.29 g/100 g), and tryptophan (0.94 g/100 g) were relatively low in maral meat compared to other meats. The average WBC was found to be 65.82% and WBC was found to inversely correlate with moisture content. Low-fat content, high mineral content, and balanced amino-acid composition qualify maral meat as a worthy dietary and functional food.
Study of morphology, chemical, and amino acid composition of red deer meat
Okuskhanova, Eleonora; Assenova, Bahytkul; Rebezov, Maksim; Amirkhanov, Kumarbek; Yessimbekov, Zhanibek; Smolnikova, Farida; Nurgazezova, Almagul; Nurymkhan, Gulnur; Stuart, Marilyne
2017-01-01
Aim: The aim of this study was to evaluate red deer (maral) meat quality based on chemical composition, pH, water-binding capacity (WBC), and amino acid content. Materials and Methods: Maral meat surface morphology measurements were obtained by scanning electron microscopy. Active acidity (pH) was determined by potentiometry. Samples were analyzed for WBC by exudation of moisture to a filter paper by the application of pressure. Chemical composition (moisture, protein, fat, and ash fractions) was obtained by drying at 150°C and by extraction, using ethylic ether, and ashing at 500-600°C. The amino acid composition was obtained by liquid chromatography. Results: Maral meat, with a pH of 5.85 and an average moisture content of 76.82%, was found to be low in fat (2.26%). Its protein content was 18.71% while its ash content was 2.21%. The amino acid composition showed that lysine (9.85 g/100 g), threonine (5.38 g/100 g), and valine (5.84 g/100 g) predominated in maral meat, while phenylalanine (4.08 g/100 g), methionine (3.29 g/100 g), and tryptophan (0.94 g/100 g) were relatively low in maral meat compared to other meats. The average WBC was found to be 65.82% and WBC was found to inversely correlate with moisture content. Conclusion: Low-fat content, high mineral content, and balanced amino-acid composition qualify maral meat as a worthy dietary and functional food. PMID:28717313
Methods for chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
1995-01-01
Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...
2017-07-14
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
Demonstration of Military Composites with Low Hazardous Air Pollutant Content
2006-11-01
reducing styrene emissions from vinyl ester (VE) resins is to replace some or all of the styrene with fatty acid -based monomers. Fatty acid ...composite production, and painting applications. These trapping devices need to absorb most of the VOC/HAP emissions and then efficiently remove the...device to trap a significant portion of the emissions is cost prohibitive. Secondly, although these devices remove the VOCs/HAPs from the
Hui Pan; Chung-Yun Hse; Todd F. Shupe
2009-01-01
Wood liquefaction using an organic solvent and an acid catalyst has long been studied as a novel technique to utilize biomass as an alternative to petroleum-based products. Oxalic acid is a weaker organic acid than a mineral acid and wood liquefaction with oxalic acid as a catalyst will result in a higher amount of wood residue than that with a mineral acid....
Novel PLA-Based Conductive Polymer Composites for Biomedical Applications
NASA Astrophysics Data System (ADS)
Shah, Aziurah Mohd; Kadir, Mohammed Rafiq Abdul; Razak, Saiful Izwan Abd
2017-12-01
In this study, the electrical conductivity of polylactic acid (PLA)-based composites has been improved using polyaniline (PANI) with two different solvents: dodecylbenzene sulfonic acid and citric acid. The effects of various factors including PLA quantity, solvent concentration, type of solvent and thickness on the resistivity were investigated using the design of experiments. The experimental plan was based on irregular fraction design to develop the regression models. The results revealed that the proposed mathematical models were sufficient and could describe the performance of resistivity of PLA within the limits of a factor. The findings also indicated that thickness had the most significant effect on the resistivity of PLA, while the effect of the type of solvent was of least significance. Moreover, it was illustrated that, by incorporating two different solvents into PANI, the resistivity could be changed for further applications.
NASA Astrophysics Data System (ADS)
Han, Tao; Wang, Jiteng; Hu, Shuixin; Li, Xinyu; Jiang, Yudong; Wang, Chunlin
2015-07-01
This study was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid composition of the swimming crab, Portunus trituberculatus. Four isonitrogenous and isoenergetic experimental diets were formulated to contain four separate lipid sources, including fish, soybean, rapeseed, and linseed oils (FO, SO, RO, and LO, respectively). With three replicates of 18 crabs each for each diet, crabs (initial body weight, 17.00±0.09 g) were fed twice daily for 8 weeks. There were no significant differences among these groups in terms of weight gain, specific growth rate, and hepatosomatic index. However, the RO groups' survival rate was significantly lower than FO groups. The feed conversion and protein efficiency ratios of RO groups were poorer than other groups. The proximate compositions of whole body and hepatopancreas were significantly affected by these dietary treatments. Tissue fatty acid composition mainly reflected dietary fatty acid compositions. Crabs fed FO diets exhibited significantly higher arachidonic, eicosapentaenoic, and docosahexaenoic acid contents in muscle and hepatopancreas compared with VO crabs. Linoleic, oleic, and linolenic acids in muscle and hepatopancreas were the highest in the SO, RO, and LO groups, respectively. The present study suggested that SO and LO could substitute for FO in fishmeal-based diets for swimming crabs, without affecting growth performance and survival.
Nikseresht, Ahmad; Daniyali, Asra; Ali-Mohammadi, Mahdi; Afzalinia, Ahmad; Mirzaie, Abbas
2017-07-01
In this work, esterification of oleic acid by various alcohols is achieved with high yields under ultrasonic irradiation. This reaction performed with a novel heterogeneous catalyst that fabricated by heteropoly acid and Fe(III)-based MOF, namely MIL-53 (Fe). Syntheses of MIL-53 and encapsulation process carry out by ultrasound irradiation at ambient temperature and atmospheric pressure. The prepared composite was characterized by various techniques such as XRD, FT-IR, SEM, BET and ICP that demonstrate excellent catalytic activities, while being highly convenient to synthesize. The obtained results revealed that ultrasound irradiation could be used for the appropriate and rapid biodiesel production. Copyright © 2017 Elsevier B.V. All rights reserved.
Ren, Ji-Yun; Wang, Xiao-Li; Li, Xiao-Li; Wang, Ming-Lin; Zhao, Ru-Song; Lin, Jin-Ming
2018-02-01
Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted great interest because of their large surface area and high chemical and thermal stability. However, to the best of our knowledge, no work has reported the use of magnetic COFs as adsorbents for magnetic solid-phase extraction (MSPE) to enrich and determine environmental pollutants. This work aims to investigate the feasibility of using covalent triazine-based framework (CTF)/Fe 2 O 3 composites as MSPE adsorbents to enrich and analyze perfluorinated compounds (PFCs) at trace levels in water samples. Under the optimal conditions, the method developed exhibited low limits of detection (0.62-1.39 ng·L -1 ), a wide linear range (5-4000 ng L -1 ), good repeatability (1.12-9.71%), and good reproducibility (2.45-7.74%). The new method was successfully used to determine PFCs in actual environmental water samples. MSPE based on CTF/Fe 2 O 3 composites exhibits potential for analysis of PFCs at trace levels in environmental water samples. Graphical abstract Magnetic covalent triazine-based frameworks (CTFs) were used as magnetic solid-phase extraction adsorbents for the sensitive determination of perfluorinated compounds in environmental water samples. PFBA perfluorobutyric acid, PFBS perfluorobutane sulfonate, PFDA perfluorodecanoic acid, PFDoA perfluorododecanoic acid, PFHpA perfluoroheptanoic acid, PFHxA perfluorohexanoic acid, PFHxS perfluorohexane sulfonate, PFNA perfluorononanoic acid, PFOA perfluorooctanoic acid, PFPeA perfluoropentanoic acid, PFUdA Perfluoroundecanoic acid.
Wang, Jiasheng; Hui, Ni
2018-06-16
A non-fouling electrochemical immunosensor is described for determination of the tumor biomarker carcinoembryonic antigen (CEA). It is based on the use of composite wires made by chemical grafting of hyaluronic acid onto polyaniline nanowires. The modified nanowires possess excellent antifouling property both in single protein solutions and in dilute serum samples. The current of immunoelectrode exhibits a linear response in the 0.01 pg mL -1 to 10,000 pg mL -1 CEA concentration range and 0.0075 pg mL -1 detection limit. This work demonstrates that coating an electrode with hyaluronic acid can largely reduce unspecific adsorption of proteins on the electrode surface. Graphical abstract Schematic of a nonfouling electrochemical immunosensor for the carcinoembryonic antigen. It is based on novel composite wires made through the chemical grafting of easily available hyaluronic acid (HA) onto polyaniline (PANI) nanowires. The HA/PANI demonstrated excellent antifouling property both in single protein solutions and human serum samples.
Hasan, Zubair; Cho, Dong-Wan; Nam, In-Hyun; Chon, Chul-Min; Song, Hocheol
2016-01-01
Zirconia-carbon (ZC) composites were prepared via calcination of Zr-based metal organic frameworks, UiO-66 and amino-functionalized UiO-66, under N2 atmosphere. The prepared composites were characterized using a series of instrumental analyses. The surface area of the ZC composites increased with the increase of calcination temperature, with the formation of a graphite oxide phase observed at 900 °C. The composites were used for adsorptive removal of a dye (crystal violet, CV) and a pharmaceutical and personal care product (salicylic acid, SA). The increase of the calcination temperature resulted in enhanced adsorption capability of the composites toward CV. The composite calcined at 900 °C exhibited a maximum uptake of 243 mg·g−1, which was much greater than that by a commercial activated carbon. The composite was also effective in SA adsorption (102 mg·g−1), and N-functionalization of the composite further enhanced its adsorption capability (109 mg·g−1). CV adsorption was weakly influenced by solution pH, but was more dependent on the surface area and pore volume of the ZC composite. Meanwhile, SA adsorption showed strong pH dependence, which implies an active role of electrostatic interactions in the adsorption process. Base-base repulsion and hydrogen bonding are also suggested to influence the adsorption of CV and SA, especially for the N-functionalized composite. PMID:28773387
Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V
2013-04-03
An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.
Catelan, Anderson; Giorgi, Maria Cecília Caldas; Soares, Giulliana Panfiglio; Lima, Debora Alves Nunes Leite; Marchi, Giselle Maria; Aguiar, Flávio Henrique Baggio
2014-11-01
To evaluate quantitatively the marginal microleakage of restorations carried out with self-etching adhesives with or without prior phosphoric enamel acid etching of silorane or methacrylate resin-based composite restorations subjected to thermal cycling. Forty cavities were prepared at the proximal surface of bovine incisors and randomly divided according to the etching of the enamel and restorative system used. The groups were restored with methacrylate [Adper SE Plus adhesive (3M ESPE) + Filtek Z250 (3M ESPE)] or silorane [Filtek LS adhesive (3M ESPE) + Filtek LS composite (3M ESPE)] restorative systems, light-cured using a LED unit (Bluephase 16i, Vivadent). After restorative procedure and thermocycling (1000 cycles), the specimens were immersed in methylene blue for 2 h. The specimens were triturated and the powder was used for analysis in an absorbance spectrophotometer. Data were statistically analyzed by 2-way ANOVA (alpha = 0.05). No statistical difference between the restorative materials tested with or without previous acid etching of enamel in Class II marginal microleakage was observed (p > 0.05). The use of acid etching prior to self-etching adhesives did not interfere on the microleakage of methacrylate- or silorane-based restorations.
Methods for chromosome-specific staining
Gray, J.W.; Pinkel, D.
1995-09-05
Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogeneous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include ways for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes. 3 figs.
Choi, Suk-Ho
2016-01-01
Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.
Renewable unsaturated polyesters from muconic acid
Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; ...
2016-09-27
cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a monomer suitable for direct use in commercial composites.« less
Renewable unsaturated polyesters from muconic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.
cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a monomer suitable for direct use in commercial composites.« less
Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue
2017-11-01
Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.
Caprioli, Giovanni; Fiorini, Dennis; Maggi, Filippo; Nicoletti, Marcello; Ricciutelli, Massimo; Toniolo, Chiara; Prosper, Biapa; Vittori, Sauro; Sagratini, Gianni
2016-06-01
Analysis of the complex composition of cocoa beans provides fundamental information for evaluating the quality and nutritional aspects of cocoa-based food products, nutraceuticals and supplements. Cameroon, the world's fourth largest producer of cocoa, has been defined as "Africa in miniature" because of the variety it habitats. In order to evaluate the nutritional characteristics of cocoa beans from five different regions of Cameroon, we studied their polyphenolic content, volatile compounds and fatty acids composition. The High Performance Thin Layer Chromatography (HPTLC) analysis showed that the Mbalmayo sample had the highest content of theobromine (11.6 mg/g) and caffeic acid (2.1 mg/g), while the Sanchou sample had the highest level of (-)-epicatechin (142.9 mg/g). Concerning fatty acids, the lowest level of stearic acid was found in the Mbalmayo sample while the Bertoua sample showed the highest content of oleic acid. Thus, we confirmed that geographical origin influences the quality and nutritional characteristics of cocoa from these regions of Cameroon.
Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.
Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru
2015-01-21
Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.
Cito, Annarita; Longo, Santi; Mazza, Giuseppe; Dreassi, Elena; Francardi, Valeria
2017-09-01
We investigated the chemical composition of the weevil Rhynchophorus ferrugineus larvae, traditionally used as human food in Asia and known worldwide as one of the most significant pest for palm trees. Total fat content and fatty acid composition were analyzed using standard methodologies in (1) weevil larvae reared on apple fruit slices and wild specimens collected from attacked (2) Phoenix canariensis and (3) Syagrus romanzoffiana palm trees. Total fat content was extremely high in all the specimens (ranged between 57.62 and 60.03% based on dry weight). Despite sharing the same prevalent fatty acids (myristic acid, palmitic acid, stearic acid, palmitoleic acid, oleic acid, α-linoleic acid, and α-linolenic acid), fatty acid composition of the wild weevil larvae significantly differed from that of the specimens raised on apple fruit, due to the presence of other minor compounds. In general, a good balance between unsaturated fatty acids (∼53.68% of total fatty acids) and saturated fatty acids (∼43.41% of total fatty acids) and a low cholesterol content (74.61-152.32 mg/kg based on dry matter) were detected in all the specimens. Conversely, the weevil larvae did not represent a good source of α-tocopherol (14.17-26.22 mg/kg based on dry matter). The ability of the protein extracts obtained from the weevil larvae to inhibit in vitro the angiotensin-converting enzyme, the main enzyme involved in blood pressure regulation, was also investigated. To simulate gastrointestinal digestion process, protein extracts were hydrolyzed by the gastrointestinal enzymes. A significantly lower IC 50 (0.588-0.623 mg/ml) was measured in all the protein extracts after enzymatic hydrolysis versus the corresponding crude protein extracts (3.270-3.752 mg/ml). Given that the weevil larvae are able to provide interesting benefits for human health, this study supports their use as human food not just in the native countries where they are traditionally consumed and farmed but also throughout the world.
Marques, João P; Gener, Isabelle; Ayrault, Philippe; Lopes, José M; Ribeiro, F Ramôa; Guisnet, Michel
2004-10-21
A simple method based on the characterization (composition, Bronsted and Lewis acidities) of acid treated HBEA zeolites was developed for estimating the concentrations of framework, extraframework and defect Al species.
BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.
SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M
1963-06-01
Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.
Xi, Xiu-Jie; Zhu, Yun-Guo; Tong, Ying-Peng; Yang, Xiao-Ling; Tang, Nan-Nan; Ma, Shu-Min; Li, Shan; Cheng, Zhou
2016-01-01
Job’s tears (Coix lachryma-jobi L.) is an important crop used as food and herbal medicine in Asian countries. A drug made of Job’s tears seed oil has been clinically applied to treat multiple cancers. In this study, the genetic diversity of Job’s tears accessions and the fatty acid composition, triglyceride composition, and anti-proliferative effect of Job’s tears seed oil were analyzed using morphological characteristics and ISSR markers, GC-MS, HPLC-ELSD, and the MTT method. ISSR analysis demonstrated low genetic diversity of Job’s tears at the species level (h = 0.21, I = 0.33) and the accession level (h = 0.07, I = 0.10), and strong genetic differentiation (GST = 0.6702) among all accessions. It also clustered the 11 accessions into three cultivated clades corresponding with geographical locations and two evidently divergent wild clades. The grouping patterns based on morphological characteristics and chemical profiles were in accordance with those clustered by ISSR analysis. Significant differences in morphological characteristics, fatty acid composition, triglyceride composition, and inhibition rates of seed oil were detected among different accessions, which showed a highly significant positive correlation with genetic variation. These results suggest that the seed morphological characteristics, fatty acid composition, and triglyceride composition may be mainly attributed to genetic factors. The proportion of palmitic acid and linoleic acid to oleic acid displayed a highly significant positive correlation with the inhibition rates of Job’s tears seed oil for T24 cells, and thus can be an important indicator for quality control for Job’s tears. PMID:27070310
NASA Astrophysics Data System (ADS)
Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin
2009-01-01
In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical attack of an aggressive medium.
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.; Kasatova, I. Yu.
2011-07-01
The acid-base properties of the surface of solid solutions and binary components of the CdTe-ZnS system are studied by hydrolytic adsorption, nonaqueous conductometric titration, mechanochemistry, IR spectroscopy, and Raman scattering spectroscopy. The strength, nature, and concentration of acid centers on the original surface and that exposed to CO are determined. The changes in acid-base properties in dependence on the composition of the system under investigation in the series of CdB6, ZnB6 analogs are studied.
Separation and partial characterization of guinea-pig caseins.
Craig, R K; McIlreavy, D; Hall, R L
1978-01-01
1. Guinea-pig caseins A, B and C were purified free of each other by a combination of ion-exchange chromatography and gel filtration. 2. Determination of the amino acid composition showed all three caseins to contain a high proportion of proline and glutamic acid, but no cysteine. This apart, the amino acid composition of the three caseins was markedly different, though calculated divergence values suggest that some homology may exist between caseins A and B. Molecular-weight estimates based on amino acid composition were in good agreement with those based on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. N-Terminal analysis showed lysine, methionine and lysine to be the N-terminal residues of caseins A, B and C respectively. 4. Two-dimensional separation of tryptic digests revealed a distinctive pattern for each casein. 5. All caseins were shown to be phosphoproteins. The casein C preparation also contained significant amounts of sialic acid, neutral and amino sugars. 6. The results suggest that each casein represents a separate gene product, and that the low-molecular-weight proteins are not the result of a post-translational cleavage of the largest. All were distinctly different from the whey protein alpha-lactalbumin. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:697741
Composition of commercial media used for human embryo culture.
Morbeck, Dean E; Krisher, Rebecca L; Herrick, Jason R; Baumann, Nikola A; Matern, Dietrich; Moyer, Thomas
2014-09-01
To determine the composition of commercially available culture media and test whether differences in composition are biologically relevant in a murine model. Experimental laboratory study. University-based laboratory. Cryopreserved hybrid mouse one-cell embryos were used in experiments. Amino acid, organic acid, ions, and metal content were determined for two different lots of media from Cook, In Vitro Care, Origio, Sage, Vitrolife, Irvine CSC, and Global. To determine whether differences in the composition of these media are biologically relevant, mouse one-cell embryos were thawed and cultured for 120 hours in each culture media at 5% and 20% oxygen in the presence or absence of protein in an EmbryoScope time-lapse incubator. The compositions of seven culture media were analyzed for concentrations of 39 individual amino acids, organic acids, ions, and elements. Blastocyst rates and cell cycle timings were calculated at 96 hours of culture, and the experiments were repeated in triplicate. Of the 39 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium were present in variable concentrations, likely reflecting differences in the interpretation of animal studies. Essential trace elements, such as copper and zinc, were not detected. Mouse embryos failed to develop in one culture medium and were differentially affected by oxygen in two other media. Culture media composition varies widely, with differences in pyruvate, lactate, and amino acids especially notable. Blastocyst development was culture media dependent and showed an interaction with oxygen concentration and presence of protein. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Garsetti, Marcella; Balentine, Douglas A.; Zock, Peter L.; Blom, Wendy A.M.; Wanders, Anne J.
2016-01-01
Abstract Worldwide, the fat composition of spreads and margarines (“spreads”) has significantly changed over the past decades. Data on fat composition of US spreads are limited and outdated. This paper compares the fat composition of spreads sold in 2013 to that sold in 2002 in the USA. The fat composition of 37 spreads representing >80% of the US market sales volume was determined by standard analytical methods. Sales volume weighted averages were calculated. In 2013, a 14 g serving of spread contained on average 7.1 g fat and 0.2 g trans-fatty acids and provided 22% and 15% of the daily amounts recommended for male adults in North America of omega-3 α-linolenic acid and omega-6 linoleic acid, respectively. Our analysis of the ingredient list on the food label showed that 86% of spreads did not contain partially hydrogenated vegetable oils (PHVO) in 2013. From 2002 to 2013, based on a 14 g serving, total fat and trans-fatty acid content of spreads decreased on average by 2.2 g and 1.5 g, respectively. In the same period, the overall fat composition improved as reflected by a decrease of solid fat (from 39% to 30% of total-fatty acids), and an increase of unsaturated fat (from 61% to 70% of total-fatty acids). The majority of US spreads no longer contains PHVO and can contribute to meeting dietary recommendations by providing unsaturated fat. PMID:27046021
Piemjai, Morakot; Miyasaka, Kumiko; Iwasaki, Yasuhiko; Nakabayashi, Nobuo
2002-12-01
Demineralized dentin beneath set cement may adversely affect microleakage under fixed restorations. Microleakage of direct composite inlays cemented with acid-base cements and a methyl methacrylate resin cement were evaluated to determine their effect on the integrity of the underlying hybridized dentin. Sixty Class V box preparations (3 mm x 3 mm x 1.5 mm) were precisely prepared in previously frozen bovine teeth with one margin in enamel and another margin in dentin. Direct composite inlays (EPIC-TMPT) for each preparation were divided into 4 groups of 15 specimens each and cemented with 3 acid-base cements (control group): Elite, Ketac-Cem, Hy-Bond Carbo-Cem, and 1 adhesive resin cement: C&B Metabond. All specimens were stored in distilled water for 24 hours at 37 degrees C before immersion in 0.5% basic fuchsin for 24 hours. The dye penetration was measured on the sectioned specimens at the tooth-cement interface of enamel and cementum margins and recorded with graded criteria under light microscopy (Olympus Vanox-T) at original magnification x 50, 100, and 200. A Kruskal-Wallis and the Mann-Whitney test at P<.05 were used to analyze leakage score. All cementum margins of the 3 acid-base cements tested demonstrated significantly higher leakage scores than cementum margins for inlays cemented with the resin cement tested(P<.01). No leakage along the tooth-cement interface was found for inlays retained with the adhesive resin cement. Within the limitations of this study, the 3 acid-base cements tested exhibited greater microleakage at the cementum margins than did the adhesive resin cement that was tested.
Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.
Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J
2016-08-01
In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.
NASA Astrophysics Data System (ADS)
Yin, Yongheng; Li, Zhen; Yang, Xin; Cao, Li; Wang, Chongbin; Zhang, Bei; Wu, Hong; Jiang, Zhongyi
2016-11-01
Design and fabrication of efficient proton transport channels within solid electrolytes is crucial and challenging to new energy-relevant devices such as proton exchange membrane fuel cells (PEMFCs). In this study, the phosphoric acid (H3PO4) molecules are impregnated into SNW-1-type covalent organic frameworks (COFs) via vacuum assisted method. High loading of H3PO4 in SNW-1 and low guest leaching rate are achieved due to the similar diameter between H3PO4 and micropores in SNW-1. Then the COF-based composite membranes are fabricated for the first time with impregnated COFs (H3PO4@SNW-1) and Nafion matrix. For the composite membranes, the acid-base pairs formed between H3PO4@SNW-1 networks and Nafion optimize the interfacial interactions and hydrophilic domains. The acidic -PO3H2 groups in pores of H3PO4@SNW-1 provide abundant proton transfer sites. As a result, the continuous proton transfer channels with low energy barrier are created. At the filler content of 15 wt%, the composite membrane exhibits a superior proton conductivity of 0.0604 S cm-1 at 51% relative humidity and 80 °C. At the same time, the maximum power density of single fuel cell is 60.3% higher than that of the recast Nafion membrane.
Caire-Juvera, Graciela; Vázquez-Ortiz, Francisco A; Grijalva-Haro, Maria I
2013-01-01
A better knowledge of the amino acid composition of foods commonly consumed in different regions is essential to calculate their scores and, therefore, to predict their protein quality. This paper presents the amino acid composition, amino acid score and in vitro protein digestibility of fifteen foods that are commonly consumed in Northwest Mexico. The foods were prepared by the traditional methods and were analyzed by reverse-phase HPLC. The chemical score for each food was determined using the recommendations for children of 1-2 years of age, and the digestibility was evaluated using a multienzyme technique. Lysine was the limiting amino acid in cereal-based products (scores 15 to 54), and methionine and cysteine were limiting in legume products (scores 41 to 47), boiled beef (score = 75) and hamburger (score = 82). The method of preparation had an effect on the content of certain amino acids, some of them increased and others decreased their content. Meat products and regional cheese provided a high amino acid score (scores 67 to 91) and digestibility (80.7 to 87.8%). Bologna, a processed meat product, had a lower digestibility (75.4%). Data on the amino acid composition of foods commonly consumed in Mexico can be used to provide valuable information on food analysis and protein quality, and to contribute to nutrition and health research and health programs. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Surface Resistance of Jute Fibre/Polylactic Acid Biocomposite to Wet Heat
NASA Astrophysics Data System (ADS)
Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa
2016-04-01
Jute fibre/polylactic acid (PLA) composite is of special interest because both resin and reinforcement come from renewable resources. Thus, it could be a more eco-friendly alternative to glass fibre composite [1] and to conventional wood-based panels made with phenol-formaldehyde resin which present many drawbacks for the workers and the environment [2]. Yet the water affinity of the natural fibres, the susceptibility of PLA towards hydrolysis and the low glass transition of the PLA raise a question about the surface resistance of such composites to wet heat in service condition for a furniture application [3]. In this work, the surface resistance of PLA/jute composite alone and with two different varnishes are investigated in regard to an interior application following the standard test method in accordance to BS EN 18721:2009: "Furniture: assessment of surface resistance to wet heat". It is compared to two common wood based panels, plywood and hardboard. After test, the composite material surface is found to be more affected than plywood and hardboard, but it becomes resistant to wet heat when a layer of biosourced varnish or petrol-based polyurethane varnish are applied on the surface.
Yun, Jung-Mi; Surh, Jeonghee
2012-01-01
This study was designed to investigate whether the fatty acid composition could make a significant contribution to the oxidation stability of vegetable oils marketed in Korea. Ten kinds, 97 items of vegetable oils that were produced in either an industrialized or a traditional way were collected and analyzed for their fatty acid compositions and lipid oxidation products, in the absence or presence of oxidative stress. Peroxidability index (PI) calculations based on the fatty acid composition ranged from 7.10 to 111.87 with the lowest value found in olive oils and the highest in perilla oils. In the absence of induced oxidative stress, malondialdehyde (MDA), the secondary lipid oxidation product, was generated more in the oils with higher PI (r=0.890), while the tendency was not observed when the oils were subjected to an oxidation-accelerating system. In the presence of the oxidative stress, the perilla oils produced in an industrialized manner generated appreciably higher amounts of MDA than those produced in a traditional way, although both types of oils presented similar PIs. The results implicate that the fatty acid compositions could be a predictor for the oxidation stability of the vegetable oils at the early stage of oil oxidation, but not for those at a later stage of oxidation. PMID:24471078
Non-aqueous liquid compositions comprising ion exchange polymers
Kim, Yu Seung; Lee, Kwan-Soo; Rockward, Tommy Q. T.
2013-03-12
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Non-aqueous liquid compositions comprising ion exchange polymers
Kim, Yu Seung [Los Alamos, NM; Lee, Kwan-Soo [Blacksburg, VA; Rockward, Tommy Q. T. [Rio Rancho, NM
2011-07-19
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Hietavala, E-M; Stout, J R; Hulmi, J J; Suominen, H; Pitkänen, H; Puurtinen, R; Selänne, H; Kainulainen, H; Mero, A A
2015-03-01
Diets rich in animal protein and cereal grains and deficient in vegetables and fruits may cause low-grade metabolic acidosis, which may impact exercise and health. We hypothesized that (1) a normal-protein diet with high amount of vegetables and fruits (HV) induces more alkaline acid-base balance compared with a high-protein diet with no vegetables and fruits (HP) and (2) diet composition has a greater impact on acid-base balance in the elderly (ELD). In all, 12-15 (adolescents (ADO)), 25-35 (young adults (YAD)) and 60-75 (ELD)-year-old male and female subjects (n=88) followed a 7-day HV and a 7-day HP in a randomized order and at the end performed incremental cycle ergometer tests. We investigated the effect of diet composition and age on capillary (c-pH) and urine pH (u-pH), strong ion difference (SID), partial pressure of carbon dioxide (pCO2) and total concentration of weak acids (Atot). Linear regression analysis was used to examine the contribution of SID, pCO2 and Atot to c-pH. In YAD and ELD, c-pH (P⩽0.038) and u-pH (P<0.001) were higher at rest after HV compared with HP. During cycling, c-pH was higher (P⩽0.034) after HV compared with HP at submaximal workloads in YAD and at 75% of VO2max (maximal oxygen consumption) in ELD. The contribution of SID, pCO2 and Atot to c-pH varied widely. Gender effects or changes in acid-base balance of ADO were not detected. A high intake of vegetables and fruits increases blood and u-pH in YAD and ELD. ELD compared with younger persons may be more sensitive for the diet-induced acid-base changes.
Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.
Chou, Kuo-Chen
2005-01-01
With protein sequences entering into databanks at an explosive pace, the early determination of the family or subfamily class for a newly found enzyme molecule becomes important because this is directly related to the detailed information about which specific target it acts on, as well as to its catalytic process and biological function. Unfortunately, it is both time-consuming and costly to do so by experiments alone. In a previous study, the covariant-discriminant algorithm was introduced to identify the 16 subfamily classes of oxidoreductases. Although the results were quite encouraging, the entire prediction process was based on the amino acid composition alone without including any sequence-order information. Therefore, it is worthy of further investigation. To incorporate the sequence-order effects into the predictor, the 'amphiphilic pseudo amino acid composition' is introduced to represent the statistical sample of a protein. The novel representation contains 20 + 2lambda discrete numbers: the first 20 numbers are the components of the conventional amino acid composition; the next 2lambda numbers are a set of correlation factors that reflect different hydrophobicity and hydrophilicity distribution patterns along a protein chain. Based on such a concept and formulation scheme, a new predictor is developed. It is shown by the self-consistency test, jackknife test and independent dataset tests that the success rates obtained by the new predictor are all significantly higher than those by the previous predictors. The significant enhancement in success rates also implies that the distribution of hydrophobicity and hydrophilicity of the amino acid residues along a protein chain plays a very important role to its structure and function.
Rinchard, Jacques; Kimmel, David G.
2017-01-01
The variability in zooplankton fatty acid composition may be an indicator of larval fish habitat quality as fatty acids are linked to fish larval growth and survival. We sampled an anadromous fish nursery, the Chowan River, during spring of 2013 in order to determine how the seston fatty acid composition varied in comparison with the zooplankton community composition and fatty acid composition during the period of anadromous larval fish residency. The seston fatty acid profiles showed no distinct pattern in relation to sampling time or location. The mesozooplankton community composition varied spatially and the fatty acid profiles were typical of freshwater species in April. The Chowan River experienced a saltwater intrusion event during May, which resulted in brackish water species dominating the zooplankton community and the fatty acid profile showed an increase in polyunsaturated fatty acids (PUFA), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The saltwater intrusion event was followed by an influx of freshwater due to high precipitation levels in June. The zooplankton community composition once again became dominated by freshwater species and the fatty acid profiles shifted to reflect this change; however, EPA levels remained high, particularly in the lower river. We found correlations between the seston, microzooplankton and mesozooplankton fatty acid compositions. Salinity was the main factor correlated to the observed pattern in species composition, and fatty acid changes in the mesozooplankton. These data suggest that anadromous fish nursery habitat likely experiences considerable spatial variability in fatty acid profiles of zooplankton prey and that are correlated to seston community composition and hydrodynamic changes. Our results also suggest that sufficient prey density as well as a diverse fatty acid composition is present in the Chowan River to support larval fish production. PMID:28828262
Hodson, Mark E; Benning, Liane G; Demarchi, Bea; Penkman, Kirsty E H; Rodriguez-Blanco, Juan D; Schofield, Paul F; Versteegh, Emma A A
Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis. The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg -1 (n = 3; ± std dev) per individual amino acid); the CaCO 3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22-35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν 2 : ν 4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. ACC present in earthworm CaCO 3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components. Graphical abstractSynchrotron-based μ-FTIR mapping was used to determine the spatial distribution of amorphous calcium carbonate in earthworm-produced CaCO 3 granules.
Gambetta, Joanna M; Cozzolino, Daniel; Bastian, Susan E P; Jeffery, David W
2017-01-31
The relationship between berry chemical composition, region of origin and quality grade was investigated for Chardonnay grapes sourced from vineyards located in seven South Australian Geographical Indications (GI). Measurements of basic chemical parameters, amino acids, elements, and free and bound volatiles were conducted for grapes collected during 2015 and 2016. Multiple factor analysis (MFA) was used to determine the sets of data that best discriminated each GI and quality grade. Important components for the discrimination of grapes based on GI were 2-phenylethanol, benzyl alcohol and C6 compounds, as well as Cu, Zn, and Mg, titratable acidity (TA), total soluble solids (TSS), and pH. Discriminant analysis (DA) based on MFA results correctly classified 100% of the samples into GI in 2015 and 2016. Classification according to grade was achieved based on the results for elements such as Cu, Na, Fe, volatiles including C6 and aryl alcohols, hydrolytically-released volatiles such as (Z)-linalool oxide and vitispirane, pH, TSS, alanine and proline. Correct classification through DA according to grade was 100% for both vintages. Significant correlations were observed between climate, GI, grade, and berry composition. Climate influenced the synthesis of free and bound volatiles as well as amino acids, sugars, and acids, as a result of higher temperatures and precipitation.
Moloney, A P; Mooney, M T; Kerry, J P; Stanton, C; O'Kiely, P
2013-11-01
The effect of type of silage offered to beef heifers during the finishing period on aspects of beef quality was determined. In two experiments, a diet based on grass silage (GS) was compared with a diet based on maize silage (MS) or whole-crop wheat silage (WCW). Compared to the GS-based diet, increasing the amount of MS linearly increased fat whiteness while the increase in fat whiteness due to WCW was dependent on the stage of crop maturity at harvesting. There was no effect of diet on muscle colour or on muscle pH measured at 48h post-mortem, drip loss, taste panel traits after 14days ageing or shear force values at 2, 7 or 14days ageing. The alternative silages decreased the n-3 polyunsaturated fatty acid proportion and increased the linoleic:linolenic acid ratio in intramuscular lipid. It is concluded that type of silage affects fat colour and fatty acid composition of muscle but not the other muscle characteristics examined. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.
Our objective was to investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to localmore » structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significantly, for the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified.« less
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...
2014-07-28
Our objective was to investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to localmore » structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significantly, for the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified.« less
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; Vaudin, Mark D.; Skrtic, Drago; Antonucci, Joseph M.; Hoffman, Kathleen M.; Giuseppetti, Anthony A.; Ilavsky, Jan
2014-01-01
Objective To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP) -to-apatite transition in ACP based dental composite materials. Methods Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. Results We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significance For the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified. PMID:25082155
Bjerve, K S
1984-01-01
The specificity of the L-serine base-exchange enzyme towards the fatty acid composition of the phospholipid substrate was investigated with a rat liver microsomal fraction. The relative rates of L-serine incorporation into saturated-hexaenoic, saturated-pentaenoic, saturated-tetraenoic, saturated-trienoic, dienoic-dienoic, monoenoic-dienoic, saturated-dienoic and saturated-monoenoic + saturated-saturated phosphatidylserine molecular species were 42, 5, 23, 4, 5, 4, 5 and 11% respectively. This is similar to, but not identical with, the relative mass abundance of these molecular species in total liver cell phosphatidylserines. The results indicate that the substrate-specificity of the L-serine base-exchange enzyme can at least in part explain the observed fatty acid composition of rat liver phosphatidylserines. PMID:6430274
Method and composition for testing for the presence of an alkali metal
Guon, Jerold
1981-01-01
A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.
Advances and prospects on biomolecules functionalized carbon nanotubes.
Cui, Daxiang
2007-01-01
In recent years, functionalization of carbon nanotubes (CNTs) with biomolecules such as nucleotide acids, proteins, and polymers as well as cells have emerged as a new exciting field. Theoretical and experimental studies of structure and function of bio-inspired CNT composites have made great advances. The importance of nucleic acids, proteins, and polymers to the fundamental developments in CNT-based bio-nano-composites or devices has been recognized. In particular, biomechanics, biochemistry, thermodynamics, electronic, optical, and magnetic properties of the bio-inspired CNT composites have become a new interdisciplinary frontier in life science and nanomaterial science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing CNT-based bio-nanotechnology.
Strategies for characterizing compositions of industrial pulp and paper sludge
NASA Astrophysics Data System (ADS)
Aslanzadeh, Solmaz; Kemal, Rahmat A.; Pribowo, Amadeus Y.
2018-01-01
The large quantities of waste sludge produced by the pulp and paper industry present significant environmental challenges. In order to minimize the amounts of waste, the pulp sludge should be utilized for productive applications. In order to find feasible solutions, the sludge need to be characterized. In this study, the potential of using acid pretreatment and ashing method to determine the chemical compositions of the sludge is investigated. This study shows that acid pretreatment could be used to dissolve and determine the composition of CaCO3 in the pulp sludge. CaCO3 removal also facilitates the measurement of fiber and ash (clay) contents by using the ashing method. The optimum acid concentration used to completely dissolve CaCO3 was determined using a titration method. Using this method, the measurement of the chemical composition of the sludge sample revealed that it consisted primarily of CaCO3 (55% w/w), clay (25%, w/w), and fibers (18%, w/w). Based on these chemical compositions, potential utilization for the sludge could be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir
Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersivemore » X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.« less
Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines.
Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes
2017-08-10
Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rorrer, Nicholas A.; Vardon, Derek R.; Dorgan, John R.
Nearly all polymer resins used to manufacture critically important fiber reinforced polymer (FRP) composites are petroleum sourced. In particular, unsaturated polyesters (UPEs) are widely used as matrix materials and are often based on maleic anhydride, a four-carbon, unsaturated diacid. Typically, maleic anhydride is added as a reactant in a conventional step-growth polymerization to incorporate unsaturation throughout the backbone of the UPE, which is then dissolved in a reactive diluent (styrene is widely used) infused into a fiber mat and cross-linked. Despite widespread historical use, styrene has come under scrutiny due to environmental and health concerns; in addition, many conceivable UPEsmore » are not soluble in styrene. In this study, we demonstrate that renewably-sourced monomers offer the ability to overcome these issues and improve overall composite performance. The properties of poly(butylene succinate)-based UPEs incorporating maleic anhydride are used as a baseline for comparison against UPEs derived from fumaric acid, cis, cis-muconate, and trans, trans-muconate, all of which can be obtained biologically. The resulting biobased UPEs are combined with styrene, methacrylic acid, or a mixture of methacrylic acid and cinnaminic acid, infused into woven fiberglass and cross-linked with the addition of a free-radical initiator and heat. This process produces a series of partially or fully bio-derived composites. Overall, the muconate-containing UPE systems exhibit a more favorable property suite than the maleic anhydride and fumaric acid counterparts. In all cases at the same olefinic monomer loading, the trans, trans-muconate polymers exhibit the highest shear modulus, storage modulus, and glass transition temperature indicating stronger and more thermally resistant materials. They also exhibit the lowest loss modulus indicating a greater adhesion to the glass fibers. The use of a mixture of methacrylic and cinnaminic acid as the reactive diluent results in a FRP composite with properties that can be matched to reinforced composites prepared with styrene. Significantly, at one-third the monomer loading (corresponding to two-thirds the number of double bonds), trans, trans-muconate produces approximately the same storage modulus and glass transition temperature as maleic anhydride, while exhibiting a superior loss modulus. Altogether, this work demonstrates the novel synthesis of performance-differentiated FRP composites using renewably-sourced monomers.« less
Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites
Rorrer, Nicholas A.; Vardon, Derek R.; Dorgan, John R.; ...
2017-03-14
Nearly all polymer resins used to manufacture critically important fiber reinforced polymer (FRP) composites are petroleum sourced. In particular, unsaturated polyesters (UPEs) are widely used as matrix materials and are often based on maleic anhydride, a four-carbon, unsaturated diacid. Typically, maleic anhydride is added as a reactant in a conventional step-growth polymerization to incorporate unsaturation throughout the backbone of the UPE, which is then dissolved in a reactive diluent (styrene is widely used) infused into a fiber mat and cross-linked. Despite widespread historical use, styrene has come under scrutiny due to environmental and health concerns; in addition, many conceivable UPEsmore » are not soluble in styrene. In this study, we demonstrate that renewably-sourced monomers offer the ability to overcome these issues and improve overall composite performance. The properties of poly(butylene succinate)-based UPEs incorporating maleic anhydride are used as a baseline for comparison against UPEs derived from fumaric acid, cis, cis-muconate, and trans, trans-muconate, all of which can be obtained biologically. The resulting biobased UPEs are combined with styrene, methacrylic acid, or a mixture of methacrylic acid and cinnaminic acid, infused into woven fiberglass and cross-linked with the addition of a free-radical initiator and heat. This process produces a series of partially or fully bio-derived composites. Overall, the muconate-containing UPE systems exhibit a more favorable property suite than the maleic anhydride and fumaric acid counterparts. In all cases at the same olefinic monomer loading, the trans, trans-muconate polymers exhibit the highest shear modulus, storage modulus, and glass transition temperature indicating stronger and more thermally resistant materials. They also exhibit the lowest loss modulus indicating a greater adhesion to the glass fibers. The use of a mixture of methacrylic and cinnaminic acid as the reactive diluent results in a FRP composite with properties that can be matched to reinforced composites prepared with styrene. Significantly, at one-third the monomer loading (corresponding to two-thirds the number of double bonds), trans, trans-muconate produces approximately the same storage modulus and glass transition temperature as maleic anhydride, while exhibiting a superior loss modulus. Altogether, this work demonstrates the novel synthesis of performance-differentiated FRP composites using renewably-sourced monomers.« less
USDA-ARS?s Scientific Manuscript database
Current recommendations for protein levels in infant formula ensure that growth matches or exceeds growth of breast-fed infants, but may provide a surplus of amino acids (AA). Recent studies in infants using AA-based formulas support specific adjustment of the essential AA (EAA) composition allowing...
Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira
2014-03-01
In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.
Intumescent composition, foamed product prepared therewith and process for making same
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Parker, J. A. (Inventor)
1974-01-01
An intumescent composition and the foamed product prepared by heating the composition are provided. The composition comprises the reaction product of para-benzoquinone dioxime and a concentrated mineral acid such as sulfuric acid, phosphoric acid, and polyphosphoric acid. The composition is useful as an intumescent agent either by itself or when combined with other materials. A fire-resistant and heat-insulating composition is provided by heating the intumescent composition above its intumescent temperature.
Porous silicon-cyclodextrin based polymer composites for drug delivery applications.
Hernandez-Montelongo, J; Naveas, N; Degoutin, S; Tabary, N; Chai, F; Spampinato, V; Ceccone, G; Rossi, F; Torres-Costa, V; Manso-Silvan, M; Martel, B
2014-09-22
One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Tong-Liang; Ding, Yong-Sheng; Chou, Kuo-Chen
2008-01-07
Compared with the conventional amino acid (AA) composition, the pseudo-amino acid (PseAA) composition as originally introduced for protein subcellular location prediction can incorporate much more information of a protein sequence, so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, based on the concept of PseAA composition, the approximate entropy and hydrophobicity pattern of a protein sequence are used to characterize the PseAA components. Also, the immune genetic algorithm (IGA) is applied to search the optimal weight factors in generating the PseAA composition. Thus, for a given protein sequence sample, a 27-D (dimensional) PseAA composition is generated as its descriptor. The fuzzy K nearest neighbors (FKNN) classifier is adopted as the prediction engine. The results thus obtained in predicting protein structural classification are quite encouraging, indicating that the current approach may also be used to improve the prediction quality of other protein attributes, or at least can play a complimentary role to the existing methods in the relevant areas. Our algorithm is written in Matlab that is available by contacting the corresponding author.
Nutritional Evaluation of Australian Microalgae as Potential Human Health Supplements
Kent, Megan; Welladsen, Heather M.; Mangott, Arnold; Li, Yan
2015-01-01
This study investigated the biochemical suitability of Australian native microalgal species Scenedesmus sp., Nannochloropsis sp., Dunaliella sp., and a chlorophytic polyculture as nutritional supplements for human health. The four microalgal cultures were harvested during exponential growth, lyophilized, and analysed for proximate composition (moisture, ash, lipid, carbohydrates, and protein), pigments, and amino acid and fatty acid profiles. The resulting nutritional value, based on biochemical composition, was compared to commercial Spirulina and Chlorella products. The Australian native microalgae exhibited similar, and in several cases superior, organic nutritional properties relative to the assessed commercial products, with biochemical profiles rich in high-quality protein, nutritious polyunsaturated fats (such as α-linolenic acid, arachidonic acid, and eicosapentaenoic acid), and antioxidant pigments. These findings indicate that the microalgae assessed have great potential as multi-nutrient human health supplements. PMID:25723496
Gershman, Susan N.; Mitchell, Christopher; Sakaluk, Scott K.; Hunt, John
2012-01-01
Nuptial food gifts function to enhance male fertilization success, but their consumption is not always beneficial to females. In decorated crickets, the spermatophore transferred at mating includes a gelatinous mass, the spermatophylax, which is consumed by females after mating. However, females often discard spermatophylaxes shortly after mating, whereupon they terminate sperm transfer. We hypothesized that females discard gifts based on their assessment of the gift itself, and specifically the composition of free amino acids. We tested this hypothesis by comparing spermatophylaxes discarded by females after mating with those that were destined to be fully consumed, and employed multivariate selection analysis to quantify the strength and form of multivariate sexual selection operating on the free amino acid composition of gifts. The analysis yielded a saddle-shaped fitness surface with two local peaks. Different amino acid profiles appear to elicit continued feeding on the spermatophylax either because they offer the same level of gustatory appeal, or because they differentially affect both the gustatory appeal and texture of the spermatophylax. We conclude that the gustatory response of females to males' nuptial food gifts represents an important avenue of post-copulatory mate choice, imposing significant sexual selection on the free amino acid composition of the spermatophylax. PMID:22357263
Xu, Chen; Yu, Yingjia; Ling, Li; Wang, Yang; Zhang, Jundong; Li, Yan; Duan, Gengli
2017-01-01
A rapid, effective extraction technique has been established for measuring the gallic acid in rat plasma by using sandwich-structured graphene/mesoporous silica composites with C 8 -modified interior pore-walls as adsorbent. The unique characteristics of the graphene-silica composites excluded large molecules, like proteins, from the mesopore channels as a result of size exclusion effect, leading to a direct extraction of drug molecules from protein-rich biological samples such as plasma without any other pretreatment procedure. Followed by elution and centrifugation, the gallic acid-absorbed composites were rapidly isolated before LC-MS/MS. Serving as a reliable tool for analysis of Traditional Chinese Medicine: Changtai Granule, the newly developed method was fully validated and successfully applied in the pharmacokinetic study of gallic acid in rat plasma. Extraction recovery, matrix effect and stability were satisfactory in rat plasma. According to the results of pharmacokinetic studies, Changtai Granule exhibited greater adsorption, distribution and clearance properties of gallic acid in the treatment of ulcerative colitis. Hence, this study may offer a valuable alternative to simplify and speed up sample preparation, and be useful for clinical studies of related preparations.
2013-01-01
Background Guanine-cytosine (GC) composition is an important feature of genomes. Likewise, amino acid composition is a distinct, but less valued, feature of proteomes. A major concern is that it is not clear what valuable information can be acquired from amino acid composition data. To address this concern, in-depth analyses of the amino acid composition of the complete proteomes from 63 archaea, 270 bacteria, and 128 eukaryotes were performed. Results Principal component analysis of the amino acid matrices showed that the main contributors to proteomic architecture were genomic GC variation, phylogeny, and environmental influences. GC pressure drove positive selection on Ala, Arg, Gly, Pro, Trp, and Val, and adverse selection on Asn, Lys, Ile, Phe, and Tyr. The physico-chemical framework of the complete proteomes withstood GC pressure by frequency complementation of GC-dependent amino acid pairs with similar physico-chemical properties. Gln, His, Ser, and Val were responsible for phylogeny and their constituted components could differentiate archaea, bacteria, and eukaryotes. Environmental niche was also a significant factor in determining proteomic architecture, especially for archaea for which the main amino acids were Cys, Leu, and Thr. In archaea, hyperthermophiles, acidophiles, mesophiles, psychrophiles, and halophiles gathered successively along the environment-based principal component. Concordance between proteomic architecture and the genetic code was also related closely to genomic GC content, phylogeny, and lifestyles. Conclusions Large-scale analyses of the complete proteomes of a wide range of organisms suggested that amino acid composition retained the trace of GC variation, phylogeny, and environmental influences during evolution. The findings from this study will help in the development of a global understanding of proteome evolution, and even biological evolution. PMID:24088322
Processing and characterization of bio-based composites
NASA Astrophysics Data System (ADS)
Lu, Hong
Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.
Prediction of protein-protein interactions based on PseAA composition and hybrid feature selection.
Liu, Liang; Cai, Yudong; Lu, Wencong; Feng, Kaiyan; Peng, Chunrong; Niu, Bing
2009-03-06
Based on pseudo amino acid (PseAA) composition and a novel hybrid feature selection frame, this paper presents a computational system to predict the PPIs (protein-protein interactions) using 8796 protein pairs. These pairs are coded by PseAA composition, resulting in 114 features. A hybrid feature selection system, mRMR-KNNs-wrapper, is applied to obtain an optimized feature set by excluding poor-performed and/or redundant features, resulting in 103 remaining features. Using the optimized 103-feature subset, a prediction model is trained and tested in the k-nearest neighbors (KNNs) learning system. This prediction model achieves an overall accurate prediction rate of 76.18%, evaluated by 10-fold cross-validation test, which is 1.46% higher than using the initial 114 features and is 6.51% higher than the 20 features, coded by amino acid compositions. The PPIs predictor, developed for this research, is available for public use at http://chemdata.shu.edu.cn/ppi.
BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA
Sigal, Nicole; Senez, Jacques C.; Le Gall, Jean; Sebald, Madeleine
1963-01-01
Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315–1318. 1963—The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c3 and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin (“nigrificans” and “orientis”) are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively. PMID:14047223
Non-aqueous liquid compositions comprising ion exchange polymers reference to related application
Kim,; Yu Seung, Lee [Los Alamos, NM; Kwan-Soo, Rockward [Los Alamos, NM; T, Tommy Q [Rio Rancho, NM
2012-08-07
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Wood, Chris M; Munger, R Stephen; Thompson, Jill; Shuttleworth, Trevor J
2007-05-14
In order to address the possible role of blood acid-base status in controlling the rectal gland, dogfish were fitted with indwelling arterial catheters for blood sampling and rectal gland catheters for secretion collection. In intact, unanaesthetized animals, isosmotic volume loading with 500 mmol L-1 NaCl at a rate of 15 mL kg-1 h-1 produced a brisk, stable rectal gland secretion flow of about 4 mL kg-1 h-1. Secretion composition (500 mmol L-1 Na+ and Cl-; 5 mmol L-1 K+; <1 mmol L-1 Ca2+, Mg2+, SO(4)2-, or phosphate) was almost identical to that of the infusate with a pH of about 7.2, HCO3- mmol L-1<1 mmol L-1 and a PCO2 (1 Torr) close to PaCO2. Experimental treatments superimposed on the infusion caused the expected disturbances in systemic acid-base status: respiratory acidosis by exposure to high environmental PCO2, metabolic acidosis by infusion of HCl, and metabolic alkalosis by infusion of NaHCO3. Secretion flow decreased markedly with acidosis and increased with alkalosis, in a linear relationship with extracellular pH. Secretion composition did not change, apart from alterations in its acid-base status, and made negligible contribution to overall acid-base balance. An adaptive control of rectal gland secretion by systemic acid-base status is postulated-stimulation by the "alkaline tide" accompanying the volume load of feeding and inhibition by the metabolic acidosis accompanying the volume contraction of exercise.
High-resolution food webs based on nitrogen isotopic composition of amino acids
Chikaraishi, Yoshito; Steffan, Shawn A; Ogawa, Nanako O; Ishikawa, Naoto F; Sasaki, Yoko; Tsuchiya, Masashi; Ohkouchi, Naohiko
2014-01-01
Food webs are known to have myriad trophic links between resource and consumer species. While herbivores have well-understood trophic tendencies, the difficulties associated with characterizing the trophic positions of higher-order consumers have remained a major problem in food web ecology. To better understand trophic linkages in food webs, analysis of the stable nitrogen isotopic composition of amino acids has been introduced as a potential means of providing accurate trophic position estimates. In the present study, we employ this method to estimate the trophic positions of 200 free-roaming organisms, representing 39 species in coastal marine (a stony shore) and 38 species in terrestrial (a fruit farm) environments. Based on the trophic positions from the isotopic composition of amino acids, we are able to resolve the trophic structure of these complex food webs. Our approach reveals a high degree of trophic omnivory (i.e., noninteger trophic positions) among carnivorous species such as marine fish and terrestrial hornets.This information not only clarifies the trophic tendencies of species within their respective communities, but also suggests that trophic omnivory may be common in these webs. PMID:25360278
NASA Astrophysics Data System (ADS)
Tanaka, Manabu; Takeda, Yasushi; Wakiya, Takeru; Wakamoto, Yuta; Harigaya, Kaori; Ito, Tatsunori; Tarao, Takashi; Kawakami, Hiroyoshi
2017-02-01
High-performance polymer electrolyte membranes (PEMs) with excellent proton conductivity, gas barrier property, and membrane stability are desired for future fuel cells. Here we report the development of PEMs based on our proposed new concept "Nanofiber Framework (NfF)." The NfF composite membranes composed of phytic acid-doped polybenzimidazole nanofibers (PBINf) and Nafion matrix show higher proton conductivity than the recast-Nafion membrane without nanofibers. A series of analyses reveal the formation of three-dimensional network nanostructures to conduct protons and water effectively through acid-condensed layers at the interface of PBINf and Nafion matrix. In addition, the NfF composite membrane achieves high gas barrier property and distinguished membrane stability. The fuel cell performance by the NfF composite membrane, which enables ultra-thin membranes with their thickness less than 5 μm, is superior to that by the recast-Nafion membrane, especially at low relative humidity. Such NfF-based high-performance PEM will be accomplished not only by the Nafion matrix used in this study but also by other polymer electrolyte matrices for future PEFCs.
Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia
2011-08-01
The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.
Akaza, Narifumi; Akamatsu, Hirohiko; Numata, Shigeki; Matsusue, Miyuki; Mashima, Yasuo; Miyawaki, Masaaki; Yamada, Shunji; Yagami, Akiko; Nakata, Satoru; Matsunaga, Kayoko
2014-12-01
To clarify the influence of the fatty acid composition of sebum in acne vulgaris, we investigated the amounts and fatty acid compositions of triglycerides (TG) and free fatty acids (FFA), and the amounts of cutaneous superficial Propionibacterium acnes in acne patients and healthy subjects. The foreheads of 18 female patients, 10 male patients, 10 healthy females and 10 healthy males were studied in a Japanese population. There were significant differences in the amounts of sebum, TG and cutaneous superficial P. acnes, as well as the fatty acid compositions of TG and FFA between acne patients and healthy subjects in females. Their fatty acid compositions were correlated with the amount of TG with or without acne. It was clarified that the fatty acid compositions of TG and FFA depended on the amount of TG, and there were no differences in the fatty acid composition in the presence and absence of acne. © 2014 Japanese Dermatological Association.
Intumescent composition, foamed product prepared therewith, and process for making same
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Parker, J. A. (Inventor)
1973-01-01
An intumescent composition and the foamed product prepared by heating are discussed wherein the composition comprises the reaction product of para-benzoquinone dioxime and a concentrated mineral acid such as sulfuric acid, phosphoric acid, and polyphosphoric acid. The composition is useful as an intumescent agent either by itself or when combined with other materials. A fire-resistant and heat-insulating composition is provided by heating the intumescent composition above its intumescent temperature.
Chen, Wanping; Xie, Ting; Shao, Yanchun; Chen, Fusheng
2012-04-10
Filamentous fungi are widely exploited in food industry due to their abilities to secrete large amounts of enzymes and metabolites. The recent availability of fungal genome sequences has provided an opportunity to explore the genomic characteristics of these food-related filamentous fungi. In this paper, we selected 12 representative filamentous fungi in the areas of food processing and safety, which were Aspergillus clavatus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. oryzae, A. terreus, Monascus ruber, Neurospora crassa, Penicillium chrysogenum, Rhizopus oryzae and Trichoderma reesei, and did the comparative studies of their genomic characteristics of tRNA gene distribution, codon usage pattern and amino acid composition. The results showed that the copy numbers greatly differed among isoaccepting tRNA genes and the distribution seemed to be related with translation process. The results also revealed that genome compositional variation probably constrained the base choice at the third codon, and affected the overall amino acid composition but seemed to have little effect on the integrated physicochemical characteristics of overall amino acids. The further analysis suggested that the wobble pairing and base modification were the important mechanisms in codon-anticodon interaction. In the scope of authors' knowledge, it is the first report about the genomic characteristics analysis of food-related filamentous fungi, which would be informative for the analysis of filamentous fungal genome evolution and their practical application in food industry. Copyright © 2012 Elsevier B.V. All rights reserved.
Ghaffarzadegan, Tannaz; Marungruang, Nittaya; Fåk, Frida; Nyman, Margareta
2016-01-01
Bile acids (BAs) act as signaling molecules in various physiological processes, and are related to colonic microbiota composition as well as to different types of dietary fat and fiber. This study investigated whether guar gum and pectin—two fibers with distinct functional characteristics—affect BA profiles, microbiota composition, and gut metabolites in rats. Low- (LM) or high-methoxylated (HM) pectin, and low-, medium-, or high-molecular-weight (MW) guar gum were administered to rats that were fed either low- or high-fat diets. Cecal BAs, short-chain fatty acids (SCFA) and microbiota composition, and plasma lipopolysaccharide-binding protein (LBP) levels were analyzed, by using novel methodologies based on gas chromatography (BAs and SCFAs) and 16S rRNA gene sequencing on the Illumina MiSeq platform. Strong correlations were observed between cecal BA and SCFA levels, microbiota composition, and portal plasma LBP levels in rats on a high-fat diet. Notably, guar gum consumption with medium-MW increased the cecal amounts of cholic-, chenodeoxycholic-, and ursodeoxycholic acids as well as α-, β-, and ω-muricholic acids to a greater extent than other types of guar gum or the fiber-free control diet. In contrast, the amounts of cecal deoxycholic- and hyodeoxycholic acid were reduced with all types of guar gum independent of chain length. Differences in BA composition between pectin groups were less obvious, but cecal levels of α- and ω-muricholic acids were higher in rats fed LM as compared to HM pectin or the control diet. The inflammatory marker LBP was downregulated in rats fed medium-MW guar gum and HM pectin; these two fibers decreased the cecal abundance of Oscillospira and an unclassified genus in Ruminococcaceae, and increased that of an unclassified family in RF32. These results indicate that the molecular properties of guar gum and pectin are important for their ability to modulate cecal BA formation, gut microbiota composition, and high-fat diet induced inflammation. PMID:27315087
Yan, Xiaoting; Tong, Zongrui; Chen, Yu; Mo, Yanghe; Feng, Huaiyu; Li, Peng; Qu, Xiaosai; Jin, Shaohua
2017-01-01
Carboxymethyl chitosan (CMCS) microparticles are a potential candidate for hemostatic wound dressing. However, its low swelling property limits its hemostatic performance. Poly(γ-glutamic acid) (PGA) is a natural polymer with excellent hydrophilicity. In the current study, a novel CMCS/PGA composite microparticles with a dual-network structure was prepared by the emulsification/internal gelation method. The structure and thermal stability of the composite were determined by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The effects of preparation conditions on the swelling behavior of the composite were investigated. The results indicate that the swelling property of CMCS/PGA composite microparticles is pH sensitive. Levofloxacin (LFX) was immobilized in the composite microparticles as a model drug to evaluate the drug delivery performance of the composite. The release kinetics of LFX from the composite microparticles with different structures was determined. The results suggest that the CMCS/PGA composite microparticles are an excellent candidate carrier for drug delivery. PMID:28452963
Utilizing biotechnology in producing fats and oils with various nutritional properties.
Flickinger, Brent D
2007-01-01
The role of dietary fat in health and wellness continues to evolve. In today's environment, trans fatty acids and obesity are issues that are impacted by dietary fat. In response to new information in these areas, changes in the amount and composition of edible fats and oils have occurred and are occurring. These compositional changes include variation in fatty acid composition and innovation in fat structure. Soybean, canola, and sunflower are examples of oilseeds with varied fatty acid composition, including mid-oleic, high-oleic, and low-linolenic traits. These trait-enhanced oils are aimed to displace partially hydrogenated vegetable oils primarily in frying applications. Examples of oils with innovation in fat structure include enzyme interesterified (EIE) fats and oils and diacylglycerol oil. EIE fats are a commercial edible fat innovation, where a lipase is used to modify the fat structure of a blend of hard fat and liquid oil. EIE fats are aimed to displace partially hydrogenated vegetable oils in baking and spread applications. Diacylglycerol and medium-chain triglyceride (MCT)-based oils are commercial edible oil innovations. Diacylglycerol and MCT-based oils are aimed for individuals looking to store less of these fats as body fat when they are used in place of traditional cooking and salad oils.
Preliminary study on biomarkers for the fungal resistance in Vitis vinifera leaves.
Batovska, Daniela Ilieva; Todorova, Iva Todorova; Nedelcheva, Daniela Valentinova; Parushev, Stoyan Parushev; Atanassov, Atanas Ivanov; Hvarleva, Tzvetanka Dimitrova; Djakova, Galina Jordanova; Bankova, Vassya Stefanova; Popov, Simeon Simeonov
2008-05-26
We examined the leaf chemical composition of six seedlings obtained by self-pollination of the Bulgarian wine-making variety Storgozia as well as the cultivar Bouquet, which is the susceptible parent of Storgozia. The chemical composition was investigated in the framework of a program for identification of metabolites associated with disease resistance in grape-vine. Acetone, dichloromethane and butanol extracts, as well as volatiles obtained from fresh material were analyzed by GC/MS. Based on the correlations of the GC/MS data and estimated resistance of the leaves towards the etiological agents of powdery mildew, downy mildew and botrytis as biomarkers for the fungal resistance, we proposed 16 individual metabolites--alpha- and gamma-tocopherol, squalene, alpha-amyrine, stigmasta-3,5-diene-7-one, hexahydrofarnesyl acetone, glycolic acid, 3-hydroxybutanoic acid, 3-hydroxycaproic acid, malic acid, tartaric acid, erythronic acid, arabinoic acid, monoethyl phosphate, undecyl laurate and isopropyl myristate. The obtained correlations were confirmed by cluster analysis.
Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N
2014-03-01
DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea.
Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N.
2014-01-01
DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea. PMID:24371267
NASA Astrophysics Data System (ADS)
Masters, Patricia M.
1987-12-01
Preferential preservation of noncollagenous proteins (NCP) in diagenetically altered bone will affect amino acid compositions, inflate D/L aspartic acid ratios, and increase C/N ratios. Human skeletal remains representing both well preserved (collagenous) and diagenetically altered (noncollagenous) bones were selected from several southern California coastal archaeological sites that date from 8400 to 4100 years B.P. Amino acid compositions of the poorly preserved samples resembled NCP, which are probably retained by adsorption to the hydroxyapatite mineral phase of bone whereas collagen is degraded and lost to the environment over time. Since the racemization rate of aspartic acid in NCP is an order of magnitude faster than in collagen, the conservation of NCP in diagenetically altered bone can explain the high D/L aspartic acid ratios, and the erroneous Upper Pleistocene racemization ages calculated from these ratios, for several California Indian burials. Amino acid compositional analyses also indicated a non-amino acid source of nitrogen in the poorly preserved samples, which may account for their lower C/N ratios despite the acidic amino acid profiles typical of NCP. Preservation of NCP rather than collagen also precludes the extraction of a gelatin residue for radiocarbon dating and stable isotope analyses, but remnant NCP can yield apparently accurate radiocarbon dates. As collagen and phosphoprotein purified from a sample of modern human dentin have the same δ 13C and δ 15N values, remnant NCP may also be useful for paleodiet reconstructions based on stable carbon and nitrogen isotope compositions. Dentin collagen appears to be more resistant to diagenetic changes than does bone collagen. Consequently, dentin promises to be a more reliable material than bone for chronometric and stable isotope measurements.
Penjumras, Patpen; Abdul Rahman, Russly; Talib, Rosnita A.; Abdan, Khalina
2015-01-01
Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R 2) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m2, respectively. PMID:26167523
Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation
USDA-ARS?s Scientific Manuscript database
Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...
Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.
Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E
2010-01-01
Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.
Szep, Susanne; Langner, Nicole; Bayer, Silja; Börnichen, Diana; Schulz, Christoph; Gerhardt, Thomas; Schriever, Anette; Becker, Joachim; Heidemann, Detlef
2003-02-01
There are no data available on whether or to what extent hydrofluoric acid affects the marginal integrity of dentin-bonded composite restorations when it is used instead of phosphoric acid in the total-etch technique. This in vitro study examined the etching effects of phosphoric acid versus a combination of phosphoric and hydrofluoric acid by evaluation of microleakage in a composite restoration bonded with different dentin adhesive systems. Extracted teeth (n = 90) containing 2 class II preparations, mesial occlusal (MO) and distal occlusal (DO) standarized (cervical margins in dentin) were perfused with Ringer solution and etched in 1 of 2 ways: with phosphoric acid only or with phosphoric combined with hydrofluoric acid. Different dentin bonding agents were then applied (Etch & Prime 3.0, Optibond Solo, Prime & Bond NT, Scotchbond 1, Syntac Single Component, or Syntac Sprint; (n = 15 for each etching material)). The preparations were restored with a hybrid composite (Herculite XRV) and submitted to 5000 thermocycles (5 degrees C to 55 degrees C) to simulate the in vivo situation. Microleakage was assessed with 2% methylene blue diffusion for 24 hours. Dye penetration was calculated as a percentage of the total length of the gingival margins of the preparation with light microscopy at original magnification x 32. The results were analyzed with the Kruskal-Wallis multiple comparison z-value assay (alpha = .05). Differences in dye penetration were significant, both as a function of the dentin adhesive and the conditioning mode applied. In the specimen groups conditioned with phosphoric acid, Optibond Solo (54% +/- 44%) and Syntac Sprint (74% +/- 39%) demonstrated the lowest penetration values. Higher values were obtained for Prime & Bond NT (81% +/- 34%), Scotchbond 1 (83% +/- 31%), Etch & Prime 3.0 (85% +/- 33%), and Syntac Single Component (95% +/- 16%), with no significant differences (alpha=.05) between specimen groups. The best results were obtained for Syntac Sprint (24% +/- 26% dye penetration) after conditioning with a mixture of phosphoric and hydrofluoric acid. The least favorable result was obtained for Optibond Solo (65% +/- 31%). It was significantly different from Prime & Bond NT (76% +/- 37%), Scotchbond 1 (85% +/- 29%), and Etch & Prime 3.0 (88% +/- 24%). Syntac Single Component (75% +/- 32%) was significantly different from Syntac Sprint. Syntac Single Component and Syntac Sprint exhibited significantly better results when conditioned with a combination of phosphoric acid and hydrofluoric acid than with phosphoric acid only. Within the limitations of this in vitro study, total-etching water-based (Syntac Single Component) and acetone-based (Syntac Sprint) bonding agents with a combination of phosphoric acid and hydrofluoric acid led to significant reductions (alpha=.05) in dye penetration compared to phosphoric acid conditioning only. Ethanol-based dentin bonding agents (Etch & Prime 3.0, Optibond Solo, and Scotchbond 1) were not significantly influenced by the type of conditioner used.
Vasiurenko, Z P; Siniak, K M
1977-04-01
The gasochromatic method was applied to the study of the cellular fatty acids composition in diphtheria and nonpathogenic corynebacteria (diphtheroids and psendo diptheria bacillus). Marked differences in the content of unsaturated fatty acids were revealed in them. Thus, palmito leic acid served the preponderant unsaturated fatty acid in Corynebacteria diphtheriae, and unsaturated fatty acids with 18 carbon atoms (octadeconoic and linoleic)--in nonpathogenic corynebacteria. The mentioned changes permit use this sign as differential. When grown on Loeffler's medium all the corynebacteria under study had a similar fatty acid composition characterized by the prevalence of unsaturated fatty acids with 18 carbon atoms. On the basis of studying the fatty acid spectrum of the nutrient media used it is supposed that one of the factors determining the revealed dependence of the corynebacterial fatty acid composition on the culture medium was the fatty acid composition of the latter.
All Biomass and UV Protective Composite Composed of Compatibilized Lignin and Poly (Lactic-acid)
NASA Astrophysics Data System (ADS)
Kim, Youngjun; Suhr, Jonghwan; Seo, Hee-Won; Sun, Hanna; Kim, Sanghoon; Park, In-Kyung; Kim, Soo-Hyun; Lee, Youngkwan; Kim, Kwang-Jin; Nam, Jae-Do
2017-03-01
Utilization of carbon-neutral biomass became increasingly important due to a desperate need for carbon reduction in the issue of global warming in light of replacing petroleum-based materials. We used lignin, which was an abundant, low cost, and non-food based biomass, for the development of all biomass-based films and composites through reactive compatibilization with poly (lactic-acid) (PLA). Using a facile and practical route, the hydrophilic hydroxyl groups of lignin were acetylated to impose the compatibility with PLA. The solubility parameter of the pristine lignin at 26.3 (J/cm3)0.5 was altered to 20.9 (J/cm3)0.5 by acetylation allowing the good compatibility with PLA at 20.2 (J/cm3)0.5. The improved compatibility of lignin and PLA provided substantially decreased lignin domain size in composites (12.7 μm), which subsequently gave transparent and UV-protection films (visual transmittance at 76% and UV protection factor over 40). The tensile strength and elongation of the developed composite films were increased by 22% and 76%, respectively, and the biobased carbon content was confirmed as 96 ± 3%. The developed PLA/lignin composites provided 100% all-biomass contents and balanced optical and mechanical properties that could broaden its eco-friendly applications in various industries.
Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review
Nurul Fazita, M.R.; Jayaraman, Krishnan; Bhattacharyya, Debes; Mohamad Haafiz, M.K.; Saurabh, Chaturbhuj K.; Hussin, M. Hazwan; H.P.S., Abdul Khalil
2016-01-01
Petroleum based thermoplastics are widely used in a range of applications, particularly in packaging. However, their usage has resulted in soaring pollutant emissions. Thus, researchers have been driven to seek environmentally friendly alternative packaging materials which are recyclable as well as biodegradable. Due to the excellent mechanical properties of natural fibres, they have been extensively used to reinforce biopolymers to produce biodegradable composites. A detailed understanding of the properties of such composite materials is vital for assessing their applicability to various products. The present review discusses several functional properties related to packaging applications in order to explore the potential of bamboo fibre fabric-poly (lactic) acid composites for packaging applications. Physical properties, heat deflection temperature, impact resistance, recyclability and biodegradability are important functional properties of packaging materials. In this review, we will also comprehensively discuss the chronological events and applications of natural fibre biopolymer composites. PMID:28773558
Influence of Binder in Iron Matrix Composites
NASA Astrophysics Data System (ADS)
Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.
2010-03-01
The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100° C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.
NASA Astrophysics Data System (ADS)
Liu, Xiaojing; Liang, Miao; Liu, Mingyue; Su, Rongxin; Wang, Mengfan; Qi, Wei; He, Zhimin
2016-10-01
In this study, a facile one-step synthesis of a novel nanocomposite catalytic film was developed based on silver nanoparticles (AgNPs) immobilized in tannic acid-modified eggshell membrane (Tan-ESM). Tannic acid, as a typical plant polyphenol from oak wood, was first grafted onto ESM fibers to serve as both the reductant and the stabilizer during the synthesis of AgNPs. The morphology, constitution, and thermal stability of the resulting AgNPs@Tan-ESM composites were fully characterized to explain the excellent catalytic efficiency of AgNPs@Tan-ESM composites. These composite catalysts were applied to the degradation of azo dyes which exhibited the high catalytic activity toward Congo red and methyl orange according to the kinetic curves. More importantly, they can be easily recovered and reused for many times because of their good stability.
Marotta, Mario; Ferrer-Martnez, Andreu; Parnau, Josep; Turini, Marco; Macé, Katherine; Gómez Foix, Anna M
2004-08-01
Intramuscular triacylglyceride (TAG) is considered an independent marker of insulin resistance in humans. Here, we examined the effect of high-fat diets, based on distinct fatty acid compositions (saturated, monounsaturated or n-6 polyunsaturated), on TAG levels and fatty acid transporter protein (FATP-1) expression in 2 rat muscles that differ in their fiber type, soleus, and gastrocnemius; the relationship to whole body glucose intolerance was also studied. Compared with carbohydrate-fed rats, the groups subjected to any one of the high-fat diets consistently exhibited enhanced body weight gain and adiposity, elevated plasma free fatty acids and TAG in the fed condition, hyperinsulinemia, and glucose intolerance. TAG content was consistently higher in soleus than in gastrocnemius, but was only significantly elevated by the n-6 polyunsaturated-based diet. FATP-1 levels in soleus were double those in gastrocnemius muscle in carbohydrate-fed animals. High-fat diets caused an elevation in FATP-1 protein content in soleus, but a reduction in gastrocnemius. In conclusion, the hyperinsulinemic hyperlipidemic condition upregulates FATP-1 expression in soleus and downregulates that of gastrocnemius. Hypercaloric saturated, monounsaturated, or n-6 polyunsaturated lipid diets cause equivalent whole body insulin resistance in rats, but only an n-6 polyunsaturated acid-based diet triggers intramuscular TAG accumulation. Copyright 2004 Elsevier Inc.
NASA Astrophysics Data System (ADS)
Djikaev, Yuri S.; Ruckenstein, Eli
2017-04-01
Using the formalism of classical thermodynamics in the framework of the classical nucleation theory, we derive an expression for the reversible work W* of formation of a binary crystal nucleus in a liquid binary solution of non-stoichiometric composition (incongruent crystallization). Applied to the crystallization of aqueous nitric acid droplets, the new expression more adequately takes account of the effects of nitric acid vapor compared to the conventional expression of MacKenzie, Kulmala, Laaksonen, and Vesala (MKLV) [J. Geophys. Res.: Atmos. 102, 19729 (1997)]. The predictions of both MKLV and modified expressions for the average liquid-solid interfacial tension σls of nitric acid dihydrate (NAD) crystals are compared by using existing experimental data on the incongruent crystallization of aqueous nitric acid droplets of composition relevant to polar stratospheric clouds (PSCs). The predictions for σls based on the MKLV expression are higher by about 5% compared to predictions based on our modified expression. This results in similar differences between the predictions of both expressions for the solid-vapor interfacial tension σsv of NAD crystal nuclei. The latter can be obtained by using the method based on the analysis of experimental data on crystal nucleation rates in aqueous nitric acid droplets; it exploits the dominance of the surface-stimulated mode of crystal nucleation in small droplets and its negligibility in large ones. Applying that method to existing experimental data, our expression for the free energy of formation provides an estimate for σsv of NAD in the range ≈92 dyn/cm to ≈100 dyn/cm, while the MKLV expression predicts it in the range ≈95 dyn/cm to ≈105 dyn/cm. The predictions of both expressions for W* become identical for the case of congruent crystallization; this was also demonstrated by applying our method for determining σsv to the nucleation of nitric acid trihydrate crystals in PSC droplets of stoichiometric composition.
USDA-ARS?s Scientific Manuscript database
The peels of different pomegranate cultivars (Molla Nepes, Parfianka, Purple Heart, Wonderful and Vkunsyi) were compared in terms of phenolic composition and total phenolics. Analyses were performed on two silica hydride-based stationary phases: phenyl and undecenoic acid columns. Quantitation was ...
Baishya, Prasanta; Maji, Tarun Kumar
2018-08-01
Activated carbon (AC) prepared from Jatropha curcas and graphene oxide (GO) were employed in the preparation of natural polymer based wood starch composites (WSC) through the solution blending technique using water as a solvent. In this study, methyl methacrylate (MMA) was grafted onto the starch polymer and this MMA grafted starch (MMA-g-starch) was cross-linked with the cheap soft wood flour using the citric acid as cross-linker and water as a solvent in the whole process. The prepared GO and AC were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA) and Raman study. The interaction of GO and AC, with MMA-g-starch, citric acid and wood were studied by FTIR, XRD and SEM analysis. The GO and AC treated composites exhibited outstanding mechanical properties, thermal stability and fire resistance properties. The tensile strength of the composites increased by 178% and 200% with addition of 2 phr AC and GO respectively compared to untreated composites. A significant enhancement in water resistance properties of GO and AC treated composites was also attained. The study showed that the properties of the composites containing AC prepared from the seeds of Jatropha curcas was quite comparable with the composites reinforced with GO. Copyright © 2018 Elsevier B.V. All rights reserved.
Formation of Organic Tracers for Isoprene SOA under Acidic Conditions
The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC-MS methods. In addition to the known is...
Merchak, Noelle; Silvestre, Virginie; Loquet, Denis; Rizk, Toufic; Akoka, Serge; Bejjani, Joseph
2017-01-01
Triacylglycerols, which are quasi-universal components of food matrices, consist of complex mixtures of molecules. Their site-specific 13 C content, their fatty acid profile, and their position on the glycerol moiety may significantly vary with the geographical, botanical, or animal origin of the sample. Such variables are valuable tracers for food authentication issues. The main objective of this work was to develop a new method based on a rapid and precise 13 C-NMR spectroscopy (using a polarization transfer technique) coupled with multivariate linear regression analyses in order to quantify the whole set of individual fatty acids within triacylglycerols. In this respect, olive oil samples were analyzed by means of both adiabatic 13 C-INEPT sequence and gas chromatography (GC). For each fatty acid within the studied matrix and for squalene as well, a multivariate prediction model was constructed using the deconvoluted peak areas of 13 C-INEPT spectra as predictors, and the data obtained by GC as response variables. This 13 C-NMR-based strategy, tested on olive oil, could serve as an alternative to the gas chromatographic quantification of individual fatty acids in other matrices, while providing additional compositional and isotopic information. Graphical abstract A strategy based on the multivariate linear regression of variables obtained by a rapid 13 C-NMR technique was developed for the quantification of individual fatty acids within triacylglycerol matrices. The conceived strategy was tested on olive oil.
Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing
2017-02-10
Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM + Cl - ) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Griffith, James F; Yeung, David K W; Ahuja, Anil T; Choy, Carol W Y; Mei, Wong Yin; Lam, Sherlock S L; Lam, T P; Chen, Zhen-Yu; Leung, Ping C
2009-06-01
Osteoporosis is associated with an increase in marrow fat. Fats, particularly polyunsaturated fats, either in co-cultures or diet, have been shown to significantly influence bone remodeling. Whether the increase in marrow fat seen in osteoporosis is also associated with a change in fatty acid composition is not known. This study was undertaken to investigate the fatty acid composition in subjects of varying bone mineral density (BMD). Samples of marrow fat and subcutaneous fat from 126 subjects (98 females, 34 males, mean age 69.7+/-10.5 years) undergoing orthopedic surgery were analyzed for fatty acid composition by gas chromatography. These results were correlated with BMD assessed by DXA. A total of 22 fatty acids were identified in marrow and subcutaneous fat. Significant differences in fatty acid composition existed between marrow and subcutaneous fat as well as between marrow fat samples obtained from the proximal femur and proximal tibia. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subject groups of varying BMD (normal, low bone mass, and osteoporosis). In conclusion, there exists a wide range of individual fatty acids in marrow fat. Marrow fatty acid composition differs from that of subcutaneous fat and varies between predominantly erythropoetic and fatty marrow sites. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subjects of varying BMD.
Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack
NASA Astrophysics Data System (ADS)
Kovalcikova, M.; Estokova, A.; Luptakova, A.
2015-11-01
The deterioration of cement-based materials used for the civil infrastructure has led to the realization that cement-based materials, such as concrete, must be improved in terms of their properties and durability. Leaching of calcium ions increases the porosity of cement- based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing corrosion of concrete. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to deterioration by aggressive chemicals. The paper is focused on the investigation of the influence of biogenic acid attack on the cement composites affected by bacteria Acidithiobacillus thiooxidans. The concrete specimens with 65 wt. % addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were studied. The experiments proceeded during 150 days under model laboratory conditions. The pH values and chemical composition of leachates were measured after each 30- day cycle. The calcium and silicon contents in leachates were evaluated using X - ray fluorescence method (XRF). Summarizing the results, the 65% wt. addition of antimicrobial activated granulated blast furnace slag was not confirmed to be more resistant.
Porcine intestinal microbiota is shaped by diet composition based on rye or triticale.
Burbach, K; Strang, E J P; Mosenthin, R; Camarinha-Silva, A; Seifert, J
2017-12-01
The present study aimed to compare the microbiota composition from pigs fed different cereal grain types, either rye or triticale, as sole energy source. Ileal digesta and faeces were sampled from eight pigs of each experiment. Illumina amplicon sequencing of the 16S rRNA gene was used to analyse the microbiota. Concentrations of short-chain fatty acids and ammonia were determined from faecal samples. The grain type revealed significant alterations in the overall microbiota structure. The rye-based diet was associated with an increased abundance of Lactobacillus in ileal digesta and Streptococcus in faeces and significantly higher concentrations of faecal short-chain fatty acids and ammonia compared to triticale. However, triticale significantly promoted the abundance of Streptococcus in ileal digesta and Clostridium sensu stricto in faeces. Diets based on rye or triticale affect varying intestinal microbiota, both of taxonomical and metabolic structure, with rye indicating an enhanced saccharolytic potential and triticale a more cellulolytic potential. Nutrient composition of rye and triticale are attractive for porcine nutrition. Both cereal grains show varying stimuli on the microbiota composition and microbial products of the ileum and faeces. © 2017 The Society for Applied Microbiology.
Singh, Swati; Kaushal, Ankur; Khare, Shashi; Kumar, Pradeep; Kumar, Ashok
2014-07-21
The first gold-mercaptopropionic acid-polyethylenimine composite based electrochemical DNA biosensor was fabricated for the early detection of Streptococcus pyogenes infection in humans causing rheumatic heart disease (heart valve damage). No biosensor is available for the detection of rheumatic heart disease (RHD). Therefore, the mga gene based sensor was developed by the covalent immobilization of a 5'-carboxyl modified single stranded DNA probe onto the gold composite electrode. The immobilized probe was hybridized with the genomic DNA (G-DNA) of S. pyogenes from throat swabs and the electrochemical response was measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance (EI). Covalent immobilization of the probe onto the gold composite and its hybridization with G-DNA was characterized by FTIR and SEM. The sensitivity of the sensor was 110.25 μA cm(-2) ng(-1) with DPV and the lower limit of detection was 10 pg per 6 μL. The sensor was validated with patient throat swab samples and results were compared with available methods. The sensor is highly specific to S. pyogenes and can prevent damage to heart valves by the early detection of the infection in only 30 min.
Methods of decontaminating surfaces and related compositions
Demmer, Ricky L.; Crosby, Daniel; Norton, Christopher J.
2016-11-22
A composition of matter includes water, at least one acid, at least one surfactant, at least one fluoride salt, and ammonium nitrate. A method of decontaminating a surface includes exposing a surface to such a composition and removing the composition from the surface. Other compositions of matter include water, a fatty alcohol ether sulfate, nitrilotriacetic acid, at least one of hydrochloric acid and nitric acid, sodium fluoride, potassium fluoride, ammonium nitrate, and gelatin.
Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.
Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae
2002-08-01
In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.
Carvajal, A M; Huircan, P; Dezamour, J M; Subiabre, I; Kerr, B; Morales, R; Ungerfeld, E M
2016-05-09
Milk fat composition is important to consumer health. During the last decade, some fatty acids (FA) have received attention because of their functional and beneficial effects on human health. The milk FA profile is affected by both diet and genetics. Differences in milk fat composition are based on biochemical pathways, and candidate genes have been proposed to explain FA profile variation. Here, the association between DGAT1 K232A, SCD1 A293V, and LEPR T945M markers with milk fat composition in southern Chile was evaluated. We selected five herds of Holstein-Friesian, Jersey, Frisón Negro, Montbeliarde, and Overo Colorado cows (pasture-grazed) that received strategic supplementation with concentrates and conserved forages. We genotyped the SNPs and calculated allele frequencies and Hardy-Weinberg equilibrium. Milk fat composition was determined for individual milk samples over a year, and associations between genotypes and milk composition were studied. The most frequent variants for DGAT1, SCD1, and LEPR polymorphisms were GC/GC, C, and C, respectively. The DGAT1 GC/GC allele was associated with lower milk fat and protein content, lower saturated fatty acid levels, and higher polyunsaturated FA (PUFA), n-3 and n-6 FA, and a linolenic acid to cholesterolemic FA ratios, which implied a healthier FA profile. The SCD1 CC genotype was associated with a low cholesterolemic FA content, a high ratio of linolenic acid to cholesterolemic FA, and lower conjugated-linolenic acid and PUFA content. These results suggest the possible modulation of milk fat profiles, using specific genotypes, to improve the nutritional quality of dairy products.
Bremner, P D; Blacklock, C J; Paganga, G; Mullen, W; Rice-Evans, C A; Crozier, A
2000-06-01
After minimal sample preparation, two different HPLC methodologies, one based on a single gradient reversed-phase HPLC step, the other on multiple HPLC runs each optimised for specific components, were used to investigate the composition of flavonoids and phenolic acids in apple and tomato juices. The principal components in apple juice were identified as chlorogenic acid, phloridzin, caffeic acid and p-coumaric acid. Tomato juice was found to contain chlorogenic acid, caffeic acid, p-coumaric acid, naringenin and rutin. The quantitative estimates of the levels of these compounds, obtained with the two HPLC procedures, were very similar, demonstrating that either method can be used to analyse accurately the phenolic components of apple and tomato juices. Chlorogenic acid in tomato juice was the only component not fully resolved in the single run study and the multiple run analysis prior to enzyme treatment. The single run system of analysis is recommended for the initial investigation of plant phenolics and the multiple run approach for analyses where chromatographic resolution requires improvement.
Orgambide, G G; Huang, Z H; Gage, D A; Dazzo, F B
1993-11-01
The phospholipid and associated fatty acid compositions of the bacterial symbiont of clover, Rhizobium leguminosarum biovar trifolii wild-type ANU843, was analyzed by two-dimensional silica thin-layer chromatography, fast atom bombardment-mass spectrometry, flame-ionization detection gas-liquid chromatography and combined gas-liquid chromatography/mass spectrometry. The phospholipid composition included phosphatidylethanolamine (15%), N-methylphosphatidylethanolamine (47%), N,N-dimethylphosphatidylethanolamine (9%), phosphatidylglycerol (19%), cardiolipin (5%) and phosphatidylcholine (2%). Fatty acid composition included predominantly cis-11-octadecenoic acid, lower levels of cis-9-hexadecenoic acid, hexadecanoic acid, 11-methyl-11-octadecenoic acid, octadecanoic acid, 11,12-methyleneoctadecanoic acid, eicosanoic acid and traces of branched, and di- and triunsaturated fatty acids. The influence of expression of the "nodulation" genes encoding symbiotic functions on the composition of these membrane lipids was examined in wild-type cells grown with or without the flavone inducer, 4',7-dihydroxyflavone and in mutated cells lacking the entire symbiotic plasmid where these genes reside, or containing single transposon insertions in selected nodulation genes. No significant changes in phospholipid or associated fatty acid compositions were detected by the above methods of analysis.
Protein location prediction using atomic composition and global features of the amino acid sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherian, Betsy Sheena, E-mail: betsy.skb@gmail.com; Nair, Achuthsankar S.
2010-01-22
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectivelymore » used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.« less
Complexity in Acid–Base Titrations: Multimer Formation Between Phosphoric Acids and Imines
Malm, Christian; Kim, Heejae; Wagner, Manfred
2017-01-01
Abstract Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid–base aggregates challenging. Here, we track such acid–base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid–base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid‐base association constant is only around six times larger than that for the acid binding to an acid‐base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. PMID:28597513
New catalysts and adsorbents on the basis of the InSb-CdTe semiconducting system
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.
2007-04-01
The acid-base properties of solid solutions and binary components of the InSb-CdTe system were studied by IR spectroscopy, pH isoelectric point measurements, and conductometric titration; adsorption properties with respect to CO, O2, NO2, NH3, CO + O2, and NO2 + NH3, by piezoquartz microweighing; and catalytic properties in the oxidation of carbon(II) oxide and reduction of nitrogen(IV) oxide with ammonia, by the pulsed and circulation flow methods. The nature, strength, and concentration of acid centers were determined. Changes in the concentration of acid centers under the action of gases (NO2 and NH3), gamma irradiation, and composition variations were estimated. The experimental dependences, thermodynamic and kinetic adsorption characteristics, the electrophysical, acid-base, and other physicochemical characteristics of the adsorbents, and adsorption characteristic-composition phase diagrams were analyzed taking into account the electronic nature of adsorbate molecules to determine the mechanism and characteristics of adsorption processes depending on the conditions of adsorption and the composition of the system. The results of adsorption studies were used to preliminarily determine the temperature regions of the occurrence and the mechanism of the reactions studied. A shock mechanism was suggested. Separate components (predominantly, solid solutions) of the InSb-CdTe system showed high catalytic activity at comparatively low temperatures. Along with behavior common to the system and its binary compounds (InSb and CdTe), solid solutions exhibited features characteristic of multi-component systems. These were the presence of extrema in the pHiso-composition, adsorption characteristic-composition, and catalytic activity-composition diagrams. The use of these diagrams allowed us to discover system components most active with respect to the gases and reactions studied and create high-sensitivity and selective sensors and high-activity and selective catalysts on the basis of these components.
NASA Astrophysics Data System (ADS)
Jiang, Haihong
2005-11-01
The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.
Scaling Relations for Acidity and Reactivity of Zeolites
2017-01-01
Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH3CN), ammonia (NH3), trimethylamine (N(CH3)3), and pyridine (C5H5N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH3CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH3CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH3 adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology. PMID:29142616
Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi
2017-01-01
Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Films based on neutralized chitosan citrate as innovative composition for cosmetic application.
Libio, Illen C; Demori, Renan; Ferrão, Marco F; Lionzo, Maria I Z; da Silveira, Nádya P
2016-10-01
In this work, citrate and acetate buffers, were investigated as neutralizers to chitosan salts in order to provide biocompatible and stable films. To choose the appropriate film composition for this study, neutralized chitosan citrate and acetate films, with and without the plasticizer glycerol, were prepared and characterized by thickness, moisture content, degree of swelling, total soluble matter in acid medium, simultaneous thermal analysis and differential scanning calorimetry. Chitosan films neutralized in citrate buffer showed greater physical integrity resulted from greater thicknesses, lower moisture absorbance, lower tendency to solubility in the acid medium, and better swelling capacities. According to thermal analyses, these films had higher interaction with water which is considered an important feature for cosmetic application. Since the composition prepared in citrate buffer without glycerol was considered to present better physical integrity, it was applied to investigate hyaluronic acid release in a skin model. Skins treated with those films, with or without hyaluronic acid, show stratum corneum desquamation and hydration within 10min. The results suggest that the neutralized chitosan citrate film prepared without glycerol promotes a cosmetic effect for skin exfoliation in the presence or absence of hyaluronic acid. Copyright © 2016 Elsevier B.V. All rights reserved.
Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin H K
2015-03-01
Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.
Cheng, Lei; Zhang, Ke; Weir, Michael D; Melo, Mary Anne S; Zhou, Xuedong; Xu, Hockin HK
2015-01-01
Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining NAg/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry. PMID:25723095
Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka
2016-10-01
A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates. Copyright © 2016 Elsevier B.V. All rights reserved.
Selective etchant for oxide sacrificial material in semiconductor device fabrication
Clews, Peggy J.; Mani, Seethambal S.
2005-05-17
An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.
High-Speed Photorefractive Response Capability in Triphenylamine Polymer-Based Composites
NASA Astrophysics Data System (ADS)
Tsujimura, Sho; Kinashi, Kenji; Sakai, Wataru; Tsutsumi, Naoto
2012-06-01
We present here the poly(4-diphenylamino)styrene (PDAS)-based photorefractive composites with a high-speed response time. PDAS was synthesized as a photoconductive polymer and photorefractive polymeric composite (PPC) films by using triphenylamine (TPA) (or ethylcarbazole, ECZ), 4-homopiperidino-2-fluorobenzylidene malononitrile (FDCST), and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were investigated. The photorefractive quantities of the PDAS-based PPCs were determined by a degenerate four-wave mixing (DFWM) technique. Additionally, the holographic images were recorded through an appropriate PDAS-based PPC. Those holographic images clearly reconstruct the original motion with high-speed quality. The present approach provides a promising candidate for the future application of dynamic holographic displays.
Liu, Juncheng; Wang, Lin; Tang, Jingchun; Ma, Jianli
2016-04-01
Naphthenic acids (NAs) are a major contributor to the toxicity in oil sands process-affected water (OSPW), which is produced by hot water extraction of bitumen. NAs are extremely difficult to be degraded due to its complex ring and side chain structure. Photocatalysis is recognized as a promising technology in the removal of refractory organic pollutants. In this work, TiO2-graphene (P25-GR) composites were synthesized by means of solvothermal method. The results showed that P25-GR composite exhibited better photocatalytic activity than pure P25. The removal efficiency of naphthenic acids in acid solution was higher than that in neutral and alkaline solutions. It was the first report ever known on the photodegradation of NAs based on graphene, and this process achieved a higher removal rate than other photocatalysis degradation of NAs in a shorter reaction time. LC/MS analysis showed that macromolecular NAs (carbon number 17-22, z value -2) were easy to be degraded than the micromolecular ones (carbon number 11-16, z value -2). Furthermore, the reactive oxygen species that play the main role in the photocatalysis system were studied. It was found that holes and ·OH were the main reactive species in the UV/P25-GR photocatalysis system. Given the high removal efficiency of refractory organic pollutants and the short degradation time, photodegradation based on composite catalysts has a broad and practical prospect. The study on the photodegradation of commercially sourced NAs may provide a guidance for the degradation of OSPW NAs by this method. Copyright © 2016 Elsevier Ltd. All rights reserved.
XPS and XANES studies of biomimetic composites based on B-type nano-hydroxyapatite
NASA Astrophysics Data System (ADS)
Goloshchapov, D. L.; Gushchin, M. S.; Kashkarov, V. M.; Seredin, P. V.; Ippolitov, Y. A.; Khmelevsky, N. O.; Aksenenko, A. Yu.
2018-06-01
The paper presents an investigation of the local atomic structure of nanocrystalline carbonate-substituted hydroxyapatite (CHAP) contained in biomimetic composites - analogues of intact human tooth tissues. Using the XPS technique, the presence of impurity Mg and F atoms and structurally bound carbon in CHAP, at the concentrations typical of apatite enamel and dentine was determined. The XANES method was used to study the changes occurring in P L2,3 spectra of biocomposites with CHAP, depending on the percentage of the amino acid matrix. The appearance of maxima in the spectra of XANES P L2,3 near 135.7 eV for the samples with the composition of amino acid complex/hydroxyapatite - 5/95, 25/75 and the splitting of a broad peak of 146.9 eV in the spectrum of a biocomposite with a composition of 40/60 indicates at the interaction of molecular complex of amino acids with atomic environment of phosphorus. This fact can be used in the fundamental medicine for synthesizing of new biomaterials in dentistry.
Preparation and characterization of composites based on poly(lactic acid) and CaCO{sub 3} nanofiller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Janaína Fernandes; Silva, Ana Lúcia N. da, E-mail: janamoreno.quim@gmail.com, E-mail: ananazareth@ima.ufrj.br; Silva, Antonio Henrique Monteiro da Fonseca T. da, E-mail: antoniohmfts@id.uff.br
In recent years, extensive studies have been conducted on the study of the poly(lactic acid) (PLA) properties, because of its being a typical biobased and biodegradable polymer, with good mechanical properties. However, its toughness and gas barrier properties are not satisfactory and can be improved by the addition of nanofillers, such as calcium carbonate (n-CaCO{sub 3}). The present work PLA composites with nano-sized precipitated calcium carbonate (n-NPCC) were prepared by melt extrusion. Thermal, mechanical and flow properties of the composites were evaluated by using a factorial design.The results showed that the addition of the nanofiller in the PLA matrix didn’tmore » improve thethermal and mechanical properties of the matrix significantly. This behavior is probably due to the presence of the stearic acid that is coating on the n-NPCC particles, resulting in a weak polymer-particle interaction. Beyond this, it was also observed a decrease in MFI of the composites when nanofiller was added and at a higher screw speed.« less
Siebenhandl, Susanne; Grausgruber, Heinrich; Pellegrini, Nicoletta; Del Rio, Daniele; Fogliano, Vincenzo; Pernice, Rita; Berghofer, Emmerich
2007-10-17
Two pigmented wheat genotypes (blue and purple) and two black barley genotypes were fractionated in bran and flour fractions, examined, and compared for their free radical scavenging properties against 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (Trolox equivalent antioxidant capacity, TEAC), ferric reducing antioxidant power (FRAP), total phenolic content (TPC), phenolic acid composition, carotenoid composition, and total anthocyanin content. The results showed that fractionation has a significant influence on the antioxidant properties, TPC, anthocyanin and carotenoid contents, and phenolic acid composition. Bran fractions had the greatest antioxidant activities (1.9-2.3 mmol TEAC/100 g) in all four grain genotypes and were 3-5-fold higher than the respective flour fractions (0.4-0.7 mmol TEAC/100 g). Ferulic acid was the predominant phenolic acid in wheat genotypes (bran fractions) while p-coumaric acid was the predominant phenolic acid in the bran fractions of barley genotypes. High-performance liquid chromatography analysis detected the presence of lutein and zeaxanthin in all fractions with different distribution patterns within the genotypes. The highest contents of anthocyanins were found in the middlings of black barley genotypes or in the shorts of blue and purple wheat. These data suggest the possibility to improve the antioxidant release from cereal-based food through selection of postharvest treatments.
Prieto, N; López-Campos, O; Aalhus, J L; Dugan, M E R; Juárez, M; Uttaro, B
2014-10-01
This study tested the ability of near infrared reflectance spectroscopy (NIRS) to predict meat chemical composition, quality traits and fatty acid (FA) composition from 63 steers fed sunflower or flaxseed in combination with high forage diets. NIRS calibrations, tested by cross-validation, were successful for predicting crude protein, moisture and fat content with coefficients of determination (R(2)) (RMSECV, g·100g(-1) wet matter) of 0.85 (0.48), 0.90 (0.60) and 0.86 (1.08), respectively, but were not reliable for meat quality attributes. This technology accurately predicted saturated, monounsaturated and branched FA and conjugated linoleic acid content (R(2): 0.83-0.97; RMSECV: 0.04-1.15mg·g(-1) tissue) and might be suitable for screening purposes in meat based on the content of FAs beneficial to human health such as rumenic and vaccenic acids. Further research applying NIRS to estimate meat quality attributes will require the use on-line of a fibre-optic probe on intact samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
JPRS Report, Science & Technology, USSR: Life Sciences.
1990-10-24
genesis was used to produce two mutant rhodopsins with amino acid substitutions in the C-terminal domain. The substitution of Cys-316->Ser does not...proteins, and also as a system for large scale synthesis of protein for practical use with a continuous supply of energy sources and amino acids into the...better than traditional neuroleptic analgesic in analysis of central peripheral hemodynamics, oxygen-transport, gas composition, and acid -base
Namvari, Mina; Biswas, Chandra S; Wang, Qiao; Liang, Wenlang; Stadler, Florian J
2017-10-15
Here, we demonstrate a novel reversible addition-fragmentation chain transfer agent (RAFT-CTA)-modified reduced graphene oxide nanosheets (CTA-rGONSs) by crosslinking rGONSs with a RAFT-CTA via esterification reaction. These nano CTA-rGONSs were used to polymerize a hydrophobic amino acid-based methacrylamide (N-acryloyl-l-phenylalanine methyl ester) monomer with different monomer/initiator ratios. Thermogravimetric analysis showed that the polymer-graphene composites were thermally more stable than GO itself. M n of the polymers increased with increasing monomer/initiator ratio, while the polydispersity index decreased, indicating controlled polymerization. The composites were stable in DMF even after two months. Copyright © 2017 Elsevier Inc. All rights reserved.
Contribution of Fermentation Yeast to Final Amino Acid Profile in DDGS
USDA-ARS?s Scientific Manuscript database
One major factor affecting DDGS quality and market values is amino acid (AA) composition. DDGS proteins come from corn and yeast. Yet, the effect of fermentation yeast on DDGS protein quantity and quality (AA profile) has not been well documented. Based on literature review, there are at least 4 met...
Evolution of Protein Lipograms: A Bioinformatics Problem
ERIC Educational Resources Information Center
White, Harold B., III; Dhurjati, Prasad
2006-01-01
A protein lacking one of the 20 common amino acids is a protein lipogram. This open-ended problem-based learning assignment deals with the evolution of proteins with biased amino acid composition. It has students query protein and metabolic databases to test the hypothesis that natural selection has reduced the frequency of each amino acid…
Effect of nutrient-based fertilisers of olive trees on olive oil quality.
Tekaya, Meriem; Mechri, Beligh; Bchir, Amani; Attia, Faouzi; Cheheb, Hechmi; Daassa, Mohamed; Hammami, Mohamed
2013-06-01
This work was conducted to determine the effects of two nutrient-based fertilisers on the general physicochemical characteristics (including free fatty acid content, peroxide value and UV spectrophotometric characteristics), fatty acid profile, total phenols, o-diphenols and phytosterol composition of olive oil. Foliar applications were carried out in two successive years and included four treatments: TC (control, without foliar nutrition), T1 (rich in nitrogen, applied at the start of vegetation, 10 days later and 20 days later), T2 (rich in boron, magnesium, sulfur and manganese, applied at the beginning of flowering and 10 days later) and T3 (T1+T2). At the end of the experiment (after 2 years), oils were extracted and analysed. No effect was found on either general physicochemical characteristics or fatty acid composition. Foliar fertilisation caused a significant decrease in both polyphenol and o-diphenol contents. Total sterol content was unaffected by foliar fertilisation. However, the phytosterol composition of the oil, particularly its β-sitosterol level, was markedly improved after foliar nutrient application. Principal component analysis of the phytosterol composition showed discrimination between the control oil and the oils from T1, T2 and T3 treatments. The results of this study extend the current knowledge of such cross-talk between plant nutrition and quality of oil. © 2012 Society of Chemical Industry.
Drought and heat stress effects on soybean fatty acid composition and oil stability
USDA-ARS?s Scientific Manuscript database
Previous studies have shown that oil concentration and fatty acid profile (composition) change with genotype, environment (mainly heat and drought), and geographical location. The changes in fatty acid composition under these conditions affect fatty acid stability, creating a challenge to oil proces...
Catalytic Synthesis of n-Butyl Oleate by Cerium Complex Doped Y/SBA-15 Composite Molecular Sieve
NASA Astrophysics Data System (ADS)
Shi, Chunwei; Bian, Xue; Wu, Yongfu; Cong, Yufeng; Pei, Mingyuan
2018-01-01
Cerium ion was successfully incorporated into Y/SBA-15 micro-mesoporous molecular sieves via the hydrothermal synthesis method to give a series of composite materials. The prepared materials were thoroughly characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and differential thermo gravimetric analysis (TG-DTG). The results showed that the prepared composite materials retained the highly ordered mesoporous two-dimensional hexagonal structure of SBA-15 and the octagonal structure of Y. The catalyst Ce-Y/SBA-15 was prepared and characterized, then the esterification of n-butanol and oleic acid was studied with bismuth phosphotungstate as a catalyst. Using this model reaction, the effects of Ce-HY/SBA-15, molar ratio of alcohol to oleic acid, amount of catalysts, reaction time and reaction temperature were investigated. The experimental results show that the optimal reaction conditions were: 1.8:1 molar ratio of alcohol to acid, 5 % catalyst amount (based on weight of oleic acid), 4 h reaction time and reflux conditions. Under these conditions, the yield of esterification was 90.6 %. The results suggest that the addition of Ce can effectively improve the catalytic properties of composite molecular sieves.
Changes in the fatty acid composition in bitter Lupinus species depend on the debittering process.
Curti, Carolina A; Curti, Ramiro N; Bonini, Norberto; Ramón, Adriana N
2018-10-15
The evaluation of changes in the fatty acid composition in Lupinus species after the debittering process is crucial to determine their nutritional implications. The aim of this study was to evaluate changes in the fatty acid composition in Lupinus albus and L. mutabilis after the debittering process. Lupinus species showed different fatty acid compositions which changed depending on the debittering process applied. The debittering process changed the monounsaturated and polyunsaturated fatty acids in L. albus, whereas in L. mutabilis it changed the w-6/w-3 ratio. However, the total saturated fatty acid content remained stable in both species after the debittering process. The changes in L. albus were associated with the fatty acid desaturation and a conversion into unsaturated fatty acids, whereas in L. mutabilis with the lipid peroxidation by decreasing the linoleic acid content. Nutritional implications of these changes in the fatty acid composition are discussed. Copyright © 2018. Published by Elsevier Ltd.
Givens, D I; Kliem, K E; Humphries, D J; Shingfield, K J; Morgan, R
2009-07-01
Inclusion of rapeseed feeds in dairy cow diets has the potential to reduce milk fat saturated fatty acid (SFA) and increase cis-monounsaturated fatty acid (cis-MUFA) content, but effectiveness may depend on the form in which the rapeseed is presented. Four mid-lactation Holstein dairy cows were allocated to four maize silage-based dietary treatments according to a 4 × 4 Latin Square design, with 28-day experimental periods. Treatments consisted of a control diet (C) containing 49 g/kg dry matter (DM) of calcium salts of palm oil distillate (CPO), or 49 g/kg DM of oil supplied as whole rapeseeds (WR), rapeseeds milled with wheat (MR) or rapeseed oil (RO). Replacing CPO with rapeseed feeds had no effect (P > 0.05) on milk fat and protein content, while milk yields were higher (P < 0.05) for RO and MR compared with WR (37.1, 38.1 and 34.3 kg/day, respectively). Substituting CPO with RO or MR reduced (P < 0.05) milk fat total SFA content (69.6, 55.6, 71.7 and 61.5 g/100 g fatty acids for C, RO, WR and MR, respectively) and enhanced (P < 0.05) milk cis-9 18:1 MUFA concentrations (corresponding values 18.6, 24.3, 17.0 and 23.0 g/100 g fatty acids) compared with C and WR. Treatments RO and MR also increased (P < 0.05) milk trans-MUFA content (4.4, 6.8, 10.5 g/100 g fatty acids, C, MR and RO, respectively). A lack of significant changes in milk fat composition when replacing CPO with WR suggests limited bioavailability of fatty acids in intact rapeseeds. In conclusion, replacing a commercial palm oil-based fat supplement in the diet with milled rapeseeds or rapeseed oil represented an effective strategy to alter milk fatty acid composition with the potential to improve human health. Inclusion of processed rapeseeds offered a good compromise for reducing milk SFA and increasing cis-MUFA, whilst minimising milk trans-MUFA and negative effects on animal performance.
Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali
2016-10-20
An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhu, Bo; Niu, Hong; Zhang, Wengang; Wang, Zezhao; Liang, Yonghu; Guan, Long; Guo, Peng; Chen, Yan; Zhang, Lupei; Guo, Yong; Ni, Heming; Gao, Xue; Gao, Huijiang; Xu, Lingyang; Li, Junya
2017-06-14
Fatty acid composition of muscle is an important trait contributing to meat quality. Recently, genome-wide association study (GWAS) has been extensively used to explore the molecular mechanism underlying important traits in cattle. In this study, we performed GWAS using high density SNP array to analyze the association between SNPs and fatty acids and evaluated the accuracy of genomic prediction for fatty acids in Chinese Simmental cattle. Using the BayesB method, we identified 35 and 7 regions in Chinese Simmental cattle that displayed significant associations with individual fatty acids and fatty acid groups, respectively. We further obtained several candidate genes which may be involved in fatty acid biosynthesis including elongation of very long chain fatty acids protein 5 (ELOVL5), fatty acid synthase (FASN), caspase 2 (CASP2) and thyroglobulin (TG). Specifically, we obtained strong evidence of association signals for one SNP located at 51.3 Mb for FASN using Genome-wide Rapid Association Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approaches. Also, region-based association test identified multiple SNPs within FASN and ELOVL5 for C14:0. In addition, our result revealed that the effectiveness of genomic prediction for fatty acid composition using BayesB was slightly superior over GBLUP in Chinese Simmental cattle. We identified several significantly associated regions and loci which can be considered as potential candidate markers for genomics-assisted breeding programs. Using multiple methods, our results revealed that FASN and ELOVL5 are associated with fatty acids with strong evidence. Our finding also suggested that it is feasible to perform genomic selection for fatty acids in Chinese Simmental cattle.
Ströhle, Alexander; Waldmann, Annika; Koschizke, Jochen; Leitzmann, Claus; Hahn, Andreas
2011-01-01
Dietary composition has been shown to affect acid-base homeostasis and bone health in humans. We investigated the potential renal acid load (PRAL) and the estimated diet-dependent net acid load (net endogenous acid production, NEAP) in adult vegans and evaluated the relationships between NEAP, food groups and intake of bone health-related nutrients. The German Vegan Study (GVS) is a cross-sectional study. Data from healthy men (n = 67) and women (n = 87), aged 21-75 years, who fulfilled the study criteria (vegan diet for ≥1 year prior to study start; age ≥18 years, and no pregnancy/childbirth during the last 12 months) were included in the analysis. NEAP values were calculated from diet composition using two models: one based on the protein/potassium quotient and another taking into account an anthropometry-based loss of urinary organic anions. Mean daily intakes of phosphorus, potassium, sodium, magnesium and vitamin C were above, and vitamin D and calcium below Dietary Reference Intake (DRI). Regardless of the model used, the diet in the GVS was characterized by a nearly neutral NEAP. A strong correlation was observed between the NEAP values of the two models (r(s) = 0.873, p < 0.001). Only the consumption of fruits decreased constantly across the increasing quartiles of NEAP. It can be hypothesized that vegan diets do not affect acid-base homeostasis. With respect to bone health, the significance of this finding needs further investigation. Copyright © 2011 S. Karger AG, Basel.
Amino and fatty acid dynamics of octopus (Octopus vulgaris) early life stages under ocean warming.
Lopes, Vanessa M; Faleiro, Filipa; Baptista, Miguel; Pimentel, Marta S; Paula, José R; Couto, Ana; Bandarra, Narcisa; Anacleto, Patrícia; Marques, António; Rosa, Rui
2016-01-01
The oceans are becoming warmer, and the higher temperatures are expected to have a major impact on marine life at different levels of biological organization, especially at the most vulnerable early life stages. Thus, we hypothesize that the future warmer scenarios (here +3 °C) will affect the biochemical composition (amino acid - AA, and fatty acid-FA) of octopod (Octopus vulgaris) embryos and recently-hatched pelagic paralarvae. The main essential amino acids found in octopus embryos were arginine, leucine and lysine; while aspartic and glutamic acids, and taurine were the main non-essential amino acids. Palmitic, eicosapentaenoic and docosahexaenoic acids were the main FAs found in octopus tissues. Relevant ontogenetic changes were observed, namely a steep decrease in the content of many AAs, and a selective retention of FAs, thus evidencing the protein-based metabolism of these cephalopods. Temperature per si did not elicit significant changes in the overall FA composition, but was responsible for a significant decrease in the content of several AAs, indicating increased embryonic consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
High-oleate yeast oil without polyunsaturated fatty acids.
Tsakraklides, Vasiliki; Kamineni, Annapurna; Consiglio, Andrew L; MacEwen, Kyle; Friedlander, Jonathan; Blitzblau, Hannah G; Hamilton, Maureen A; Crabtree, Donald V; Su, Austin; Afshar, Jonathan; Sullivan, John E; LaTouf, W Greg; South, Colin R; Greenhagen, Emily H; Shaw, A Joe; Brevnova, Elena E
2018-01-01
Oleate-enriched triacylglycerides are well-suited for lubricant applications that require high oxidative stability. Fatty acid carbon chain length and degree of desaturation are key determinants of triacylglyceride properties and the ability to manipulate fatty acid composition in living organisms is critical to developing a source of bio-based oil tailored to meet specific application requirements. We sought to engineer the oleaginous yeast Yarrowia lipolytica for production of high-oleate triacylglyceride oil. We studied the effect of deletions and overexpressions in the fatty acid and triacylglyceride synthesis pathways to identify modifications that increase oleate levels. Oleic acid accumulation in triacylglycerides was promoted by exchanging the native ∆9 fatty acid desaturase and glycerol-3-phosphate acyltransferase with heterologous enzymes, as well as deletion of the Δ12 fatty acid desaturase and expression of a fatty acid elongase. By combining these engineering steps, we eliminated polyunsaturated fatty acids and created a Y. lipolytica strain that accumulates triglycerides with > 90% oleate content. High-oleate content and lack of polyunsaturates distinguish this triacylglyceride oil from plant and algal derived oils. Its composition renders the oil suitable for applications that require high oxidative stability and further demonstrates the potential of Y. lipolytica as a producer of tailored lipid profiles.
Gregory B. Lawrence; Todd C. McDonnell; Timothy J. Sullivan; Martin Dovciak; Scott W. Bailey; Michael R. Antidormi; Michael R. Zarfos
2017-01-01
Sugar maple, an abundant and highly valued tree species in eastern North America, has experienced decline from soil calcium (Ca) depletion by acidic deposition, while beech, which often coexists with sugar maple, has been afflicted with beech bark disease (BBD) over the same period. To investigate how variations in soil base saturation combine with effects of BBD in...
Lawrence, Gregory B.; McDonnell, Todd C.; Sullivan, Timothy J.; Dovciak, Martin; Bailey, Scott W.; Antidormi, Michael; Zarfos, Michael R.
2018-01-01
Sugar maple, an abundant and highly valued tree species in eastern North America, has experienced decline from soil calcium (Ca) depletion by acidic deposition, while beech, which often coexists with sugar maple, has been afflicted with beech bark disease (BBD) over the same period. To investigate how variations in soil base saturation combine with effects of BBD in influencing stand composition and structure, measurements of soils, canopy, subcanopy, and seedlings were taken in 21 watersheds in the Adirondack region of NY (USA), where sugar maple and beech were the predominant canopy species and base saturation of the upper B horizon ranged from 4.4 to 67%. The base saturation value corresponding to the threshold for Al mobilization (16.8%) helped to define the species composition of canopy trees and seedlings. Canopy vigor and diameter at breast height (DBH) were positively correlated (P < 0.05) with base saturation for sugar maple, but unrelated for beech. However, beech occupied lower canopy positions than sugar maple, and as base saturation increased, the average canopy position of beech decreased relative to sugar maple (P < 0.10). In low-base saturation soils, soil-Ca depletion and BBD may have created opportunities for gap-exploiting species such as red maple and black cherry, whereas in high-base saturation soils, sugar maple dominated the canopy. Where soils were beginning to recover from acidic deposition effects, sugar maple DBH and basal area increased progressively from 2000 to 2015, whereas for beech, average DBH did not change and basal area did not increase after 2010.
NASA Astrophysics Data System (ADS)
Zeng, Duan; Mai, Kangsen; Ai, Qinghui; Milley, Joyce E.; Lall, Santosh P.
2010-12-01
This study was conducted to compare lipid and fatty acid composition of cod, haddock and halibut. Three groups of cod (276 g ± 61 g), haddock (538 g ± 83 g) and halibut (3704 g ± 221 g) were maintained with commercial feeds mainly based on fish meal and marine fish oil for 12 weeks prior to sampling. The fatty acid compositions of muscle and liver were determined by GC/FID after derivatization of extracted lipids into fatty acid methyl esters (FAME). Lipids were also fractionated into neutral and polar lipids using Waters silica Sep-Pak?. The phospholipid fraction was further separated by high-performance thin-layer chromatography (HPTLC) and the FAME profile was obtained. Results of the present study showed that cod and haddock were lean fish and their total muscle lipid contents were 0.8% and 0.7%, respectively, with phospholipid constituting 83.6% and 87.5% of the total muscle lipid, respectively. Halibut was a medium-fat fish and its muscle lipid content was 8%, with 84% of the total muscle lipid being neutral lipid. Total liver lipid contents of cod, haddock and halibut were 36.9%, 67.2% and 30.7%, respectively, of which the neutral lipids accounted for the major fraction (88.1%-97.1%). Polyunsaturated fatty acids were the most abundant in cod and haddock muscle neutral lipid. Monounsaturated fatty acid level was the highest in halibut muscle neutral lipid. Fatty acid compositions of phospholipid were relatively constant. In summary, the liver of cod and haddock as lean fish was the main lipid reserve organ, and structural phospholipid is the major lipid form in flesh. However, as a medium-fat fish, halibut stored lipid in both their liver and muscle.
NASA Astrophysics Data System (ADS)
Huzil, J. Torin; Sivaloganathan, Siv; Kohandel, Mohammad; Foldvari, Marianna
2011-11-01
The advancement of dermal and transdermal drug delivery requires the development of delivery systems that are suitable for large protein and nucleic acid-based therapeutic agents. However, a complete mechanistic understanding of the physical barrier properties associated with the epidermis, specifically the membrane structures within the stratum corneum, has yet to be developed. Here, we describe the assembly and computational modeling of stratum corneum lipid bilayers constructed from varying ratios of their constituent lipids (ceramide, free fatty acids and cholesterol) to determine if there is a difference in the physical properties of stratum corneum compositions.
MLACP: machine-learning-based prediction of anticancer peptides
Manavalan, Balachandran; Basith, Shaherin; Shin, Tae Hwan; Choi, Sun; Kim, Myeong Ok; Lee, Gwang
2017-01-01
Cancer is the second leading cause of death globally, and use of therapeutic peptides to target and kill cancer cells has received considerable attention in recent years. Identification of anticancer peptides (ACPs) through wet-lab experimentation is expensive and often time consuming; therefore, development of an efficient computational method is essential to identify potential ACP candidates prior to in vitro experimentation. In this study, we developed support vector machine- and random forest-based machine-learning methods for the prediction of ACPs using the features calculated from the amino acid sequence, including amino acid composition, dipeptide composition, atomic composition, and physicochemical properties. We trained our methods using the Tyagi-B dataset and determined the machine parameters by 10-fold cross-validation. Furthermore, we evaluated the performance of our methods on two benchmarking datasets, with our results showing that the random forest-based method outperformed the existing methods with an average accuracy and Matthews correlation coefficient value of 88.7% and 0.78, respectively. To assist the scientific community, we also developed a publicly accessible web server at www.thegleelab.org/MLACP.html. PMID:29100375
Tsuda, Kentaro; Nagano, Hideaki; Ando, Akinori; Shima, Jun; Ogawa, Jun
2017-06-01
Psychrotolerant endospore-forming Sporosarcina species have been predominantly isolated from minced fish meat (surimi), which is stored under refrigeration after heat treatment. To develop a better method for preserving surimi-based food products, we studied the growth and fatty acid compositions of the isolated strain S92h as well as Sporosarcina koreensis and Sporosarcina aquimarina at cold and moderate temperatures. The growth rates of strain S92h and S. koreensis were the fastest and slowest at cold temperatures, respectively, although these strains grew at a similar rate at moderate temperatures. In all three strains, the proportions of anteiso-C 15:0 and unsaturated fatty acids (UFAs) were significantly higher at cold temperatures than at moderate temperatures. Furthermore, supplementation with valine, leucine, and isoleucine resulted in proportional increases in iso-C 16:0 , iso-C 15:0 , and anteiso-C 15:0 , respectively, among the fatty acid compositions of these strains. The proportions of the UFAs were also altered by the supplementation. At cold temperatures, the growth rates of strain S92h and S. koreensis, but not of S. aquimarina, were affected by supplementation with leucine. Supplementation with isoleucine enhanced the growth of S. koreensis at cold temperatures but not that of the other strains. Valine did not affect the growth of any strain. These results indicate that anteiso-C 15:0 and UFAs both play important roles in the cold tolerance of the genus Sporosarcina and that these bacteria modulate their fatty acid compositions in response to the growth environment.
Iqbal, Hafiz M N; Kyazze, Godfrey; Locke, Ian Charles; Tron, Thierry; Keshavarz, Tajalli
2015-11-01
A series of bio-composites including poly3-hydroxybutyrate [P(3HB)] grafted ethyl cellulose (EC) stated as P(3HB)-EC were successfully synthesised. Furthermore, natural phenols e.g., p-4-hydroxybenzoic acid (HBA) and ferulic acid (FA) were grafted onto the newly developed P(3HB)-EC-based bio-composites under laccase-assisted environment without the use of additional initiators or crosslinking agents. The phenol grafted bio-composites were critically evaluated for their antibacterial and biocompatibility features as well as their degradability in soil. In particular, the results of the antibacterial evaluation for the newly developed bio-composites indicated that 20HBA-g-P(3HB)-EC and 15FA-g-P(3HB)-EC bio-composites exerted strong bactericidal and bacteriostatic activity against Gram(-)E. coli NTCT 10418 as compared to the Gram(+)B. subtilis NCTC 3610. This study shows further that at various phenolic concentrations the newly synthesised bio-composites remained cytocompatible with human keratinocyte-like HaCaT skin cells, as 100% cell viability was recorded, in vitro. As for the degradation, an increase in the degradation rate was recorded during the soil burial analyses over a period of 42 days. These findings suggest that the reported bio-composites have great potential for use in wound healing; covering the affected skin area which may favour tissue repair over shorter periods. Copyright © 2015 Elsevier B.V. All rights reserved.
Luong, Emilie; Shayegan, Amir
2018-01-01
Aim The aim of this study was to make a comparison between microleakage of conventionally restored class V cavities using acid etchant and the ones conditioned by erbium-doped yttrium aluminum garnet (Er:YAG) laser, and also to assess and compare the effectiveness of enamel surface treatments of occlusal pits and fissures by acid etching and conditioned by Er:YAG laser-etch. Materials and methods Seventy-two extracted third molars were used in this study. The samples were divided into two major groups: class V cavities and pit and fissure sealants. Each subgroup was divided into conventional acid etching, Er:YAG laser conditioning and conventional acid etching, and combination with Er:YAG laser conditioning (n=12). The teeth were placed in 2% methylene blue dye solution, were sectioned, and were evaluated according to the dye penetration criteria. Two samples per subgroup were chosen for scanning electron microscopic (SEM) analysis. Results There was a significant difference between occlusal and cervical margin groups. Laser conventional composite cementum group showed more microleakage values compared to other groups. There was no significant difference between occlusal margin groups. However, there was a significant difference between cervical margin groups in terms of microleakage. In sealant groups, there was a significant difference between laser and conventional with/without laser treatment groups in terms of microleakage. Conclusion Based on the results reported in this study, it can be concluded that the application of the Er:YAG laser beneath the resin composite, the resin-modified glass ionomers (GIs), and the fissure sealant placement may be an alternative enamel and dentin etching method to acid etching. PMID:29881311
Proximate composition, amino acid and fatty acid composition of fish maws.
Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang
2016-01-01
Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.
Galloway, Aaron W. E.; Winder, Monika
2015-01-01
Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms, cryptophytes and dinoflagellates as key sources of LCEFA. Moreover, the analyses indicate that future shifts towards cyanobacteria-dominated communities will result in lower LCEFA content in aquatic ecosystems. PMID:26076015
Nielsen, Lene Nørby; Roager, Henrik M; Casas, Mònica Escolà; Frandsen, Henrik L; Gosewinkel, Ulrich; Bester, Kai; Licht, Tine Rask; Hendriksen, Niels Bohse; Bahl, Martin Iain
2018-02-01
Recently, concerns have been raised that residues of glyphosate-based herbicides may interfere with the homeostasis of the intestinal bacterial community and thereby affect the health of humans or animals. The biochemical pathway for aromatic amino acid synthesis (Shikimate pathway), which is specifically inhibited by glyphosate, is shared by plants and numerous bacterial species. Several in vitro studies have shown that various groups of intestinal bacteria may be differently affected by glyphosate. Here, we present results from an animal exposure trial combining deep 16S rRNA gene sequencing of the bacterial community with liquid chromatography mass spectrometry (LC-MS) based metabolic profiling of aromatic amino acids and their downstream metabolites. We found that glyphosate as well as the commercial formulation Glyfonova ® 450 PLUS administered at up to fifty times the established European Acceptable Daily Intake (ADI = 0.5 mg/kg body weight) had very limited effects on bacterial community composition in Sprague Dawley rats during a two-week exposure trial. The effect of glyphosate on prototrophic bacterial growth was highly dependent on the availability of aromatic amino acids, suggesting that the observed limited effect on bacterial composition was due to the presence of sufficient amounts of aromatic amino acids in the intestinal environment. A strong correlation was observed between intestinal concentrations of glyphosate and intestinal pH, which may partly be explained by an observed reduction in acetic acid produced by the gut bacteria. We conclude that sufficient intestinal levels of aromatic amino acids provided by the diet alleviates the need for bacterial synthesis of aromatic amino acids and thus prevents an antimicrobial effect of glyphosate in vivo. It is however possible that the situation is different in cases of human malnutrition or in production animals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein
Boshtam, Maryam; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila
2013-01-01
Introduction. Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health. PMID:24167374
Serum paraoxonase 1 activity is associated with fatty acid composition of high density lipoprotein.
Boshtam, Maryam; Razavi, Amirnader Emami; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila
2013-01-01
Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω 6 fatty acids of HDL. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.
New biocomposites based on bioplastic flax fibers and biodegradable polymers.
Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan
2012-01-01
A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
NASA Astrophysics Data System (ADS)
Mert, Ramazan; Bulut, Sait; Konuk, Muhsin
2015-01-01
In the present study, the effects of season on fatty acid composition, total lipids, and ω3/ω6 ratios of northern pike muscle lipids in Kizilirmak River (Kirikkale, Turkey) were investigated. A total of 35 different fatty acids were determined in gas chromatography. Among these, palmitic, oleic, and palmitoleic acids had the highest proportion. The main polyunsaturated fatty acids (PUFAs) were found to be docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid. There were more PUFAs than monounsaturated fatty acids (MUFA) in all seasons. Similarly, the percentages of ω3 fatty acids were higher than those of total ω6 fatty acids in the fatty acid composition. ω3/ω6 ratios were calculated as 1.53, 1.32, 1.97, and 1.71 in spring, summer, autumn and winter, respectively. Overall, we found that the fatty acid composition and ω3/ω6 fatty acid ratio in the muscle of northern pike were significantly influenced by season.
López-López, A; López-Sabater, M C; Campoy-Folgoso, C; Rivero-Urgell, M; Castellote-Bargalló, A I
2002-12-01
To investigate differences in fatty acid and sn-2 fatty acid composition in colostrum, transitional and mature human milk, and in term infant formulas. Departament de Nutrició i Bromatologia, University of Barcelona, Spain and University Hospital of Granada, Spain. One-hundred and twenty mothers and 11 available types of infant formulas for term infants. We analysed the fatty acid composition of colostrum (n=40), transitional milk (n=40), mature milk (n=40) and 11 infant formulas. We also analysed the fatty acid composition at sn-2 position in colostrum (n=12), transitional milk (n=12), mature milk (n=12), and the 11 infant formulas. Human milk in Spain had low saturated fatty acids, high monounsaturated fatty acids and high linolenic acid. Infant formulas and mature human milk had similar fatty acid composition. In mature milk, palmitic acid was preferentially esterified at the sn-2 position (86.25%), and oleic and linoleic acids were predominantly esterified at the sn-1,3 positions (12.22 and 22.27%, respectively, in the sn-2 position). In infant formulas, palmitic acid was preferentially esterified at the sn-1,3 positions and oleic and linoleic acids had higher percentages at the sn-2 position than they do in human milk. Fatty acid composition of human milk in Spain seems to reflect the Mediterranean dietary habits of mothers. Infant formulas resemble the fatty acid profile of human milk, but the distribution of fatty acids at the sn-2 position is markedly different.
New Polylactic Acid Composites Reinforced with Artichoke Fibers
Botta, Luigi; Fiore, Vincenzo; Scalici, Tommaso; Valenza, Antonino; Scaffaro, Roberto
2015-01-01
In this work, artichoke fibers were used for the first time to prepare poly(lactic acid) (PLA)-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w) were prepared by the film-stacking method: the first one (UNID) reinforced with unidirectional long artichoke fibers, the second one (RANDOM) reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM). Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%). Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.
NASA Astrophysics Data System (ADS)
Sam, S. M.; Udosen, I. R.; Mensah, S. I.
2012-07-01
The proximate, minerals, vitamins and anti-nutrients composition of Solanum verbascifolium Linn were determined. The proximate composition showed that moisture content was (85.5%), protein was (32.55%), lipid was (2.90%), ash was (7.20%), fibre was (4.80%), carbohydrate was (52.55%) and caloric value was (366.50%) respectively. This was found to be rich in protein and considerably high amount of carbohydrate. The anti-nutrient composition analysis revealed the presence of hydrocyanide (1.39mg/100g), Oxalate (114.40mg/100g), all of which are below toxic level except for oxalic acid. For mineral and vitamin compositions, potassium was significantly (P>0.05) higher than iron, sodium, calcium and phosphorus while vitamin A retinol was (371.72mg/100g) and vitamin C ascorbic acid (39.99mg/100g). Based on these findings the plant is recommended for consumption and for further investigation as a potential raw material for pharmaceutical industry.
Dreassi, Elena; Cito, Annarita; Zanfini, Assunta; Materozzi, Lara; Botta, Maurizio; Francardi, Valeria
2017-03-01
Fat is the second most abundant component of the nutrient composition of the mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) that represents also an interesting source of PUFA, especially n-6 and n-3 fatty acids, involved in prevention of cardiovascular diseases. This study investigated the possibility of modifying the fat content and the FA composition of yellow mealworms through feeding and how this would be influenced by developmental stages, pupal sex, and generation with the future aim of applying this coleopteran as a diet supplement for human health. Growth rate and cumulative mortality percentage on the different feeding substrates were also evaluated to select the optimal conditions for a mass-raising of this insect species. Despite the different fat content in the six different breeding substrates used, T. molitor larvae and pupae contained a constant fat percentage (>34% in larvae and >30% in pupae). A similar total fat content was found comparing larvae and male and female pupae of the second generation to those of the first generation. On the contrary, FA composition differed both in larvae and pupae reared on the different feeding substrates. However, the exemplars reared on the diets based on 100% bread and 100% oat flour showed SFA, PUFA percentages, and an n-6/n-3 ratio more suitable for human consumption; the diet based on beer yeast, wheat flour, and oat flour resulted in a contemporary diet that most satisfied the balance between a fat composition of high quality and favorable growth conditions.
Fatty acid composition of spermatozoa is associated with BMI and with semen quality.
Andersen, J M; Rønning, P O; Herning, H; Bekken, S D; Haugen, T B; Witczak, O
2016-09-01
High body mass index (BMI) is negatively associated with semen quality. In addition, the composition of fatty acids of spermatozoa has been shown to be important for their function. The aim of the study was to examine the association between BMI and the composition of spermatozoa fatty acids in men spanning a broad BMI range. We also analysed the relation between fatty acid composition of spermatozoa and semen characteristics, and the relationship between serum fatty acids and spermatozoa fatty acids. One hundred forty-four men with unknown fertility status were recruited from the general population, from couples with identified female infertility and from morbid obesity centres. Standard semen analysis (WHO) and sperm DNA integrity (DFI) analysis were performed. Fatty acid compositions were assessed by gas chromatography. When adjusted for possible confounders, BMI was negatively associated with levels of sperm docosahexaenoic acid (DHA) (p < 0.001) and palmitic acid (p < 0.001). The amount of sperm DHA correlated positively with total sperm count (r = 0.482), sperm concentration (r = 0.469), sperm vitality (r = 0.354), progressive sperm motility (r = 0.431) and normal sperm morphology (r = 0.265). A negative association was seen between DHA levels and DNA fragmentation index (r = -0.247). Levels of spermatozoa palmitic acid correlated positively with total sperm count (r = 0.227), while levels of linoleic acid correlated negatively (r = -0.254). When adjusted for possible confounders, only the levels of arachidonic acid showed positive correlation between spermatozoa and serum phospholipids (r = 0.262). Changes in the fatty acid composition of spermatozoa could be one of the mechanisms underlying the negative association between BMI and semen quality. The relationship between fatty acids of spermatozoa and serum phospholipids was minor, which indicates that BMI affects fatty acid composition of spermatozoa through regulation of fatty acid metabolism in the testis. The role of dietary intake of fatty acids on the spermatozoa fatty acid composition remains to be elucidated. © 2016 American Society of Andrology and European Academy of Andrology.
Conducting Carbon Dot-Polypyrrole Nanocomposite for Sensitive Detection of Picric acid.
Pal, Ayan; Sk, Md Palashuddin; Chattopadhyay, Arun
2016-03-09
We report the conducting nature of carbon dots (Cdots) synthesized from citric acid and ethylene diamine. Chemically synthesized conducting nanocomposite consisting of Cdots and polypyrrole (PPy) is further reported, which showed higher electrical conductiviy in comparison to the components i.e., Cdots or PPy. The conductive film of the composite material was used for highly sensitive and selective detection of picric acid in water as well as in soil. To the best of our knowledge, this is the first report on the conductivity based sensing application of Cdot nanocomposite contrary to the traditional fluorescence based sensing approaches.
Surface roughness of composite resins subjected to hydrochloric acid.
Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez
2015-01-01
The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.
Mohammadi, Narmin; Bahari, Mahmoud; Kimyai, Soodabeh; Rahbani Nobar, Behnam
2015-01-01
Objectives: Composite repair is a minimally invasive and conservative approach. This study aimed to evaluate the effect of an additional hydrophobic resin layer on the repair shear bond strength of a silorane-based composite repaired with silorane or methacrylate-based composite. Materials and Methods: Sixty bar-shaped composite blocks were fabricated and stored in saline for 72 hours. The surface of the samples were roughened by diamond burs and etched with phosphoric acid; then, they were randomly divided into three groups according to the repairing process: Group 1: Silorane composite-silorane bonding agent-silorane composite; group 2: Silorane composite-silorane bonding agent-hydrophobic resin-silorane composite, and group 3: Silorane composite-silorane bonding agent-hydrophobic resin methacrylate-based composite. Repairing composite blocks measured 2.5×2.5×5mm. After repairing, the samples were stored in saline for 24 hours and thermocycled for 1500 cycles. The repair bond strength was measured at a strain rate of 1mm/min. Twenty additional cylindrical composite blocks (diameter: 2.5mm, height: 6mm) were also fabricated for measuring the cohesive strength of silorane-based composite. The data were analyzed using One-way ANOVA and the post hoc Tukey’s test (α=0.05). Results: Cohesive bond strength of silorane composite was significantly higher than the repair bond strengths in other groups (P<0.001). The repair bond strength of group 3 was significantly higher than that of group 1 (P=0.001). Conclusion: Application of an additional hydrophobic resin layer for repair of silorane-based composite with a methacrylate-based composite enhanced the repair shear bond strength. PMID:27559348
Kawaguchi, Fuki; Kigoshi, Hiroto; Nakajima, Ayaka; Matsumoto, Yuta; Uemoto, Yoshinobu; Fukushima, Moriyuki; Yoshida, Emi; Iwamoto, Eiji; Akiyama, Takayuki; Kohama, Namiko; Kobayashi, Eiji; Honda, Takeshi; Oyama, Kenji; Mannen, Hideyuki; Sasazaki, Shinji
2018-05-17
Fatty acid composition is an important indicator of beef quality. The objective of this study was to search the potential candidate region for fatty acid composition. We performed pool-based genome-wide association studies (GWAS) for oleic acid percentage (C18:1) in a Japanese Black cattle population from the Hyogo prefecture. GWAS analysis revealed two novel candidate regions on BTA9 and BTA14. The most significant single nucleotide polymorphisms (SNPs) in each region were genotyped in a population (n = 899) to verify their effect on C18:1. Statistical analysis revealed that both SNPs were significantly associated with C18:1 (p = .0080 and .0003), validating the quantitative trait loci (QTLs) detected in GWAS. We subsequently selected VNN1 and LYPLA1 genes as candidate genes from each region on BTA9 and BTA14, respectively. We sequenced full-length coding sequence (CDS) of these genes in eight individuals and identified a nonsynonymous SNP T66M on VNN1 gene as a putative candidate polymorphism. The polymorphism was also significantly associated with C18:1, but the p value (p = .0162) was higher than the most significant SNP on BTA9, suggesting that it would not be responsible for the QTL. Although further investigation will be needed to determine the responsible gene and polymorphism, our findings would contribute to development of selective markers for fatty acid composition in the Japanese Black cattle of Hyogo. © 2018 Japanese Society of Animal Science.
Lima, Adriano; Bento, Albino; Baraldi, Ilton; Malheiro, Ricardo
2016-12-01
Grapevine leaves are an abundant sub-product of vineyards which is devalued in many regions. The objective of this work is to study the antioxidant activity and phytochemical composition of ten grapevine leaf varieties (four red varieties: Tinta Amarela, Tinta Roriz, Touriga Franca, and Touriga Nacional; and six white varieties: Côdega do Larinho, Fernão Pires, Gouveio, Malvasia Fina, Rabigato, and Viosinho) to select varieties to be used as food ingredients. White grapevine leaves revealed higher antioxidant potential. Malvasia Fina reported better antioxidant properties contrasting with Touriga Franca. Phenolic content varied between 112 and 150mgGAEg(-1) of extract (gallic acid equivalents), hydroxycinnamic acid derivatives and flavonols varied between 76 and 108mgCAEg(-1) of extract (caffeic acid equivalents) and 39 and 54mgQEg(-1) of extract (quercetin equivalents). Malvasia Fina is a good candidate for culinary treatment due to its antioxidant properties and composition in bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jaraula, Caroline M B; Kenig, Fabien; Doran, Peter T; Priscu, John C; Welch, Kathleen A
2009-04-15
A helicopter crashed in January 2003 on the 5 m-thick perennial ice cover of Lake Fryxell, spilling synthetic turbine oil Aeroshell 500. Molecular compositions of the oils were analyzed by gas chromatography-mass spectrometry and compared to the composition of contaminants in ice, meltwater, and sediments collected a year after the accident. Aeroshell 500 is based on C20-C33 Pentaerythritol triesters (PET) with C5-C10 fatty acids susbstituents and contain a number of antioxidant additives, such as tricresyl phosphates. Biodegradation of this oil in the ice cover occurs when sediments are present PETs with short fatty acids substituents are preferentially degraded, whereas long chain fatty acids seem to hinder esters from hydrolysis by esterase derived from the microbial assemblage. It remains to be seen if the microbial ecosystem can degrade tricresyl phosphates. These more recalcitrant PET species and tricresyl phosphates are likely to persist and comprise the contaminants that may eventually cross the ice cover to reach the pristine lake water.
Wang, Jian; Zhou, Pin; Obata, Akiko; Jones, Julian R.; Kasuga, Toshihiro
2015-01-01
In previous works, we reported the fabrication of cotton-wool-like composites consisting of siloxane-doped vaterite and poly(l-lactic acid) (SiVPCs). Various irregularly shaped bone voids can be filled with the composite, which effectively supplies calcium and silicate ions, enhancing the bone formation by stimulating the cells. The composites, however, were brittle and showed an initial burst release of ions. In the present work, to improve the mechanical flexibility and ion release, the composite fiber was coated with a soft, thin layer consisting of poly(d,l-lactic-co-glycolic acid) (PLGA). A coaxial electrospinning technique was used to prepare a cotton-wool-like material comprising “core-shell”-type fibers with a diameter of ~12 µm. The fibers, which consisted of SiVPC coated with a ~2-µm-thick PLGA layer, were mechanically flexible; even under a uniaxial compressive load of 1.5 kPa, the cotton-wool-like material did not exhibit fracture of the fibers and, after removing the load, showed a ~60% recovery. In Tris buffer solution, the initial burst release of calcium and silicate ions from the “core-shell”-type fibers was effectively controlled, and the ions were slowly released after one day. Thus, the mechanical flexibility and ion-release behavior of the composites were drastically improved by the thin PLGA coating. PMID:28793691
Dinh, Van Vuong; Suh, Yun-Suhk; Yang, Han-Kwang; Lim, Yong Taik
2016-12-01
We report a programed drug delivery system that can tailor the release of anesthetic bupivacaine in a spatiotemporally controlled manner. The drug delivery system was developed through the combination of a collagen-based injectable hydrogel and 2 types of poly(lactic-co-glycolic acid) (PLGA) particles. As a rapid-release platform (90% release after 24 h), bupivacaine hydrochloride was incorporated into collagen/poly(γ-glutamic acid) hydrogel, which exhibited gel formation at body temperature. PLGA microparticles (diameter 1-3 μm) containing bupivacaine base showed a very slow release of bupivacaine (95% after 240 h), whereas PLGA nanoparticles (124 ± 30 nm) containing bupivacaine base demonstrated an intermediate release rate (95% after 160 h). By changing the relative composition ratio between the 3 components in these injectable composite hydrogels, the release of bupivacaine could be easily controlled from very rapid (within 1 day) to very delayed (up to 9 days). The experimental results on the release data (cumulative release, time point release, average release rate) were coincident with the release profile generated by computer simulation. These injectable composite hydrogels with systematically tunable mixing ratios are expected to serve as a promising technology for the on-demand release of bupivacaine in pain management. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Weiqiang; Niu, Kaihui; Wu, Longchao
2016-05-01
A commercial composite anticorrosive pigment based on aluminum dihydrogen tripolyphosphate was studied after exposure to gamma irradiation (Co60, 0, 20, 50, 100 and 150 kGy) using FTIR, XRD, TGA and acid-base titration technologies. Although the FTIR spectra showed that the effect of the irradiation on functional groups in the pigments was not obvious, the decrease in the crystal lattice parameters of the irradiated pigments was observed in the XRD spectra compared to the non-irradiated sample. But the extent of the lattice parameter decrease monotonically with the increase of absorbed dose from 20 to 150 kGy, which was attributed to the decomposition of water and the simultaneous occurrence of lattice damage when the pigments were exposed to gamma rays. Of particular significance was the displayed basicity of the aqueous solutions of the irradiated pigments compared to the acidity of the solution of the non-irradiated pigment, which was attributed to the decomposition of P-OH groups (combined water).
Peng, Huafeng; Ning, Xiaoyu; Wei, Gang; Wang, Shaopeng; Dai, Guoliang; Ju, Anqi
2018-09-01
Novel intelligent cellulose/4-vinyl-phenylboronic acid (VPBA) composite bio-hydrogels with glucose and pH-responsiveness were successfully prepared via electron beam irradiation technology at room temperature. The composites were characterized by Fourier transform infrared spectrum (FT-IR) and X-ray photoelectron spectroscopy (XPS). The electron beam irradiation results in the appearance of carbonyl in the polymerization of 4-ethenyl-phenylboronic acid, grafting and cross linking reaction in composites, and a novel composite hydrogel was formed between the poly-4-ethenyl-phenylboronic acid and cellulose matrix. By means of the incorporation of phenylboronic acid groups, the composite hydrogels with pH and glucose responsive properties was produced, and glucose responsive properties were investigated by the self-regulation of insulin release of composite hydrogel through a serial glucose solution with different concentrations, which is having great potential applications in many fields. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Yu; Yan, Xiaoting; Zhao, Jian; Feng, Huaiyu; Li, Puwang; Tong, Zongrui; Yang, Ziming; Li, Sidong; Yang, Jueying; Jin, Shaohua
2018-07-01
In the current study, a novel semi-dissolution/acidification/sol-gel transition (SD-A-SGT) method was explored for the preparation of polyelectrolyte complexing (PEC) composite hydrogels with natural polymers only. A chitosan (CS) powder was uniformly dispersed in a solution of poly(glutamic acid) (PGA) and alginate (SA) to form a semi-dissolved slurry mixture that was then exposed to an gaseous acidic atmosphere. CS was gradually dissolved and interacted with PGA and SA to form a CS/PGA/SA PEC composite hydrogel with a homogeneous structure. The SD-A-SGT procedure was able to overcome the shortcomings of direct mixing method via the PEC interaction. The effects of the hydrogel composition on its structure and properties were investigated by FTIR, XRD, rheology study, XPS, SEM, and swelling kinetics. The drug delivery performance of the CS/PGA/SA hydrogel was explored using piroxicam (PXC) as a model drug. PXC was in situ embedded in the hydrogel by the SD-A-SGT method. The hydrogel exhibited pH responsive drug release behaviors that were affected by the hydrogel composition. In all, the SD-A-SGT method for preparing PEC composite hydrogels has a great application potential in constructing the CS based hydrogels as medical materials. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fatty acid composition in native bees: Associations with thermal and feeding ecology.
Giri, Susma; Rule, Daniel C; Dillon, Michael E
2018-04-01
Fatty acid (FA) composition of lipids plays a crucial role in the functioning of lipid-containing structures in organisms and may be affected by the temperature an organism experiences, as well as its diet. We compared FA composition among four bee genera: Andrena, Bombus, Megachile, and Osmia which differ in their thermal ecology and diet. Fatty acid methyl esters (FAME) were prepared by direct transesterification with KOH and analyzed using gas-liquid chromatography with a flame ionization detector. Sixteen total FAs ranging in chain length from eight to 22 carbon atoms were identified. Linear discriminant analysis separated the bees based on their FA composition. Andrena was characterized by relatively high concentrations of polyunsaturated FAs, Bombus by high monounsaturated FAs and Megachilids (Megachile and Osmia) by relatively high amounts of saturated FAs. These differences in FA composition may in part be explained by variation in the diets of these bees. Because tongue (proboscis) length may be used as a proxy for the types of flowers bees may visit for nectar and pollen, we compared FA composition among Bombus that differed in proboscis length (but have similar thermal ecology). A clear separation in FA composition within Bombus with varying proboscis lengths was found using linear discriminant analysis. Further, comparing the relationship between each genus by cluster analysis revealed aggregations by genus that were not completely separated, suggesting potential overlap in dietary acquisition of FAs. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad
2017-01-01
Polyurethane modified epoxy based on glycerol monooleate (PME-GMO) was synthesized. GMO as polyol for synthesis of PME-GMO was synthesized via Fisher Esterification between oleic acid from palm oil and glycerol by using sulfuric acid as catalyst with time variation i.e. 3, 4, 5 and 6 hours at 160°C. Characterizations of GMO were carried out by analysis of acid number, hydroxyl value and FTIR. The data show that the conversion of oleic acid to ester compound is directly proportional with the increasing of reaction time but the enhancement is not significant after 3 hours. Furthermore, GMO product was used as polyol for modification of epoxy with polyurethane. Modification of epoxy with polyurethane was performed by reacted epoxy, tolonate and GMO simultaneously in one step. In this research, the reaction condition was varied i.e. time reaction (0.5; 1; 1.5; 2; 2.5 hours), composition of polyurethane used (10%, 20% toward epoxy) and rasio of tolonate and GMO (NCO/OH ratio) as component of polyurethane (1.5 and 2.5). Characterization of polyurethane modified epoxy based on glycerol (PME-GMO) was conducted by viscosity and FTIR analysis. The viscosity of PME-GMO increased with increasing of reaction time, polyurethane composition and NCO/OH ratio.
Chen, Di-Ming; Tian, Jia-Yue; Wang, Zhuo-Wei; Liu, Chun-Sen; Chen, Min; Du, Miao
2017-09-26
A cage-based anionic Na(i)-organic framework with a unique Na 9 cluster-based secondary building unit and a cage-in-cage structure was constructed. The selective separation of dyes with different charges and sizes was investigated. Furthermore, the Rh6G@MOF composite could be applied as a recyclable fluorescent sensor for detecting picric acid (PA) with high sensitivity and selectivity.
Martysiak-Żurowska, Dorota; Zóralska, Kinga; Zagierski, Maciej; Szlagtys-Sidorkiewicz, Agnieszka
2011-01-01
Breastfeeding is the optimal way of feeding infants and young children. For the human infant, very important ingredients of milk are fatty acids (FA), including long-chain polyunsaturated fatty acids LC-PUFA, which are necessary for the development of human nervous system. The aim of this study was to determine the content and composition of FA in the fat of human milk in the course of lactation, taking into account the composition of FA in mothers' diet. Milk samples were obtained from 80 puerperal women hospitalized in the Obstetrics Department in Gdansk, on the 2nd, 14th, 30th and 90th day of lactation. The mothers were questionnaired about the health state and diet. Based on food frequency questionnaires the content of individual groups of FA in the daily food portions were estimated. The composition and content of FA were determined by HR-GC technique. In the studied human milk fat about 60 different FA were found. Main FA detected were: oleic, palmitic, linoleic, stearic, myristic and lauric acids. PUFA accounted on average for 13.2% of total FAs. The mean levels of trans FA in the human milk fat was 2.45% of total FAs. Percentage of each group of FA in the diet of the studied population of women averaged to 43.67, 41.74 and 14.59%, for saturated, monounsaturated and polyunsaturated FA, respectively. 1. Studies have shown that the biggest differences in fatty acid content in the human milk were observed between 2 and 14 day of lactation. 2. A positive correlation and statistically significant eff ect was observed between the composition of particular groups of FAs in human milk and the breastfeeding women's diet.
Determining efficacy of monitoring devices on ceramic bond to resin composite
Osorio, Estrella; Aguilera, Fátima S.; Osorio, Raquel; García-Godoy, Franklin; Cabrerizo-Vilchez, Miguel A.; Toledano, Manuel
2012-01-01
Objectives: This paper aims to assess the effectiveness of 3D nanoroughness and 2D microroughness evaluations, by their correlation with contact angle measurements and shear bond strength test, in order to evaluate the effect of two different acids conditioning on the bonding efficacy of a leucite-based glass-ceramic to a composite resin. Study Design: Ceramic (IPS Empress) blocks were treated as follows: 1) no treatment, 2) 37% phosphoric acid (H3PO4), 15 s, 3) 9% hydrofluoric acid (HF), 5 min. Micro- and nano-roughness were assessed with a profilometer and by means of an atomic force microscopy (AFM). Water contact angle (CA) measurements were determined to assess wettability of the ceramic surfaces with the asixymetric drop shape analysis contact diameter technique. Shear bond strength (SBS) was tested to a resin composite (Z100) with three different adhesive systems (Scotchbond Multipurpose Plus, Clearfil New Bond, ProBOND). Scanning electron microscopy (SEM) images were performed. Results: Nanoroughness values assessed in 50x50 μm areas were higher for the HF group, these differences were not detected by profilometric analysis. HF treatment created the nano- roughest surfaces and the smallest CA (p<0.05), producing the highest SBS to the composite resin with all tested adhesive systems (p<0.05). No differences existed between the SBS produced by the adhesive systems evaluated with any of the surface treatments tested. Conclusions: Nano-roughness obtained in a 50x50 µm scan size areas was the most reliable data to evaluate the topographical changes produced by the different acid treatments on ceramic surfaces. Key words:Dental ceramic, acid etching, bonding efficacy, resin composite, adhesive systems, contact angle, roughness. PMID:22549693
NASA Astrophysics Data System (ADS)
Goode, A.; Fields, D.; Martinez-Martinez, J.
2016-02-01
Emiliania huxleyi is a coccolithophore that forms some of the largest phytoplankton blooms in the ocean. E. huxleyi abundance, distribution, and composition of essential fatty acids make them a key component in marine food webs. E. huxleyi-specific viruses have been shown to control the bloom duration and change the lipid composition of E. huxleyi cells. Alteration of essential fatty acids at the base of the food web may have downstream effects on trophic interactions. Oxyrrhis marina has been studied extensively, and is used as a micrograzer model organism. We investigated differential physiological responses of O. marina to a diet ( 100:1 prey:predator ratio) of virallyinfected versus uninfected E. huxleyi cells over a maximum 7-day period. Our results showed higher O. marina grazing rates on uninfected cells (p<0.05). However, O. marina had faster growth rates (p<0.05) and a smaller relative increase in saturated fatty acids and decrease in monounsaturated fatty acids (p<0.05) when fed infected E. huxleyi cells. This suggests a higher nutritional value of infected cells and/or better assimilation by O. marina of infected cells' carbon. In the marine environment this would translate into larger carbon transport to higher trophic levels when blooms become infected.
Lv, Qing; Nair, Lakshmi; Laurencin, Cato T
2009-12-01
Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.
Tetraethyl orthosilicate-based glass composition and method
Wicks, George G.; Livingston, Ronald R.; Baylor, Lewis C.; Whitaker, Michael J.; O'Rourke, Patrick E.
1997-01-01
A tetraethyl orthosilicate-based, sol-gel glass composition with additives selected for various applications. The composition is made by mixing ethanol, water, and tetraethyl orthosilicate, adjusting the pH into the acid range, and aging the mixture at room temperature. The additives, such as an optical indicator, filler, or catalyst, are then added to the mixture to form the composition which can be applied to a substrate before curing. If the additive is an indicator, the light-absorbing characteristics of which vary upon contact with a particular analyte, the indicator can be applied to a lens, optical fiber, reagant strip, or flow cell for use in chemical analysis. Alternatively, an additive such as alumina particles is blended into the mixture to form a filler composition for patching cracks in metal, glass, or ceramic piping.
Zhu, Jinchun; Zhu, Huijun; Njuguna, James; Abhyankar, Hrushikesh
2013-01-01
This work describes flax fibre reinforced polymeric composites with recent developments. The properties of flax fibres, as well as advanced fibre treatments such as mercerization, silane treatment, acylation, peroxide treatment and coatings for the enhancement of flax/matrix incompatibility are presented. The characteristic properties and characterizations of flax composites on various polymers including polypropylene (PP) and polylactic acid, epoxy, bio-epoxy and bio-phenolic resin are discussed. A brief overview is also given on the recent nanotechnology applied in flax composites. PMID:28788383
21 CFR 357.210 - Cholecystokinetic active ingredients.
Code of Federal Regulations, 2010 CFR
2010-04-01
... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2 [54...
21 CFR 357.210 - Cholecystokinetic active ingredients.
Code of Federal Regulations, 2011 CFR
2011-04-01
... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2 [54...
Bromberg, Lev; Hatton, T Alan
2011-12-01
Porous materials based on chromium(III) terephthalate metal organic frameworks (MIL-101) and their composites with phosphotungstic acid (PTA) were studied as heterogeneous acid catalysts in aldehyde-alcohol reactions exemplified by acetaldehyde-phenol (A-P) condensation and dimethylacetal formation from benzaldehyde and methanol (B-M reaction). The MIL-101 was synthesized solvothermically in water, and the MIL101/PTA composite materials were obtained by either impregnation of the already prepared MIL-101 porous matrix with phosphotungstic acid solution or by solvothermic treatment of aqueous mixtures of Cr(NO(3))(3), and terephthalic and phosphotungstic acids. The MIL101/PTA materials appeared to be effective catalysts for both A-P and B-M reactions occurring at room temperature, with half-lives ranging from 0.5 h (A-P) to 1.5-2 h (B-M) and turnover numbers over 600 for A-P and over 2900 for the B-M reaction, respectively. A synergistic effect of the strong acidic moieties (PTA) addition to mildly acidic Brønsted and Lewis acid cites of the MIL-101 was observed with the MIL101/PTA composites. The ability of the PTA and MIL101/PTA materials to strongly absorb and condense acetaldehyde vapors was discovered, with the MIL101/PTA absorbing over 10-fold its dry weight of acetaldehyde condensate at room temperature. The acetaldehyde was converted rapidly to crotonaldehyde and higher-molecular-weight compounds while in contact with MIL-101 and MIL101/PTA materials. The stability of the MIL-101 and MIL101/PTA catalysts was assessed within four cycles of the 1-day alcohol-aldehyde reactions in terms of the overall catalyst recovery, PTA or Cr content, and reaction rate constants in each cycle. The loss of the catalyst over 4 cycles was approximately 10 wt % for all tested catalysts due to the incomplete recovery and minute dissolution of the components. The reaction rates in all cycles remained unchanged and the catalyst losses stopped after the third cycle. The developed MIL101/PTA composites appear to be feasible for industrial catalytic applications. © 2011 American Chemical Society
1986-05-14
PA IA 50 mg lipoic acid 50 mP --- TABLE 2. Estimated maximum cell concentrations based upon the elemental composition of the growth medium. In medium...Added amount per liter Tartaric acid 0.37 g Succinic acid 0.37 g Sodium acetate 0.05 g Sodium nitrate 0.17 g Monopotassium phosphate 0.69 g Sodium...Distilled water I liter ) Alternatively, 0.03 g ascorbic acid *±) Stock solution of 2.7 g/L FeC13 and 1.9 g/L Quinic acid ***) Mineral medium (pH 6.5 w/KOH
[Inhibition of Linseed Oil Autooxidation by Essential Oils and Extracts from Spice Plants].
Misharina, T A; Alinkina, E S; Terenina, M B; Krikunova, N I; Kiseleva, V I; Medvedeva, I B; Semenova, M G
2015-01-01
Clove bud essential oil, extracts from ginger, pimento and black pepper, or ascorbyl palmytate were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids in linseed oil. Different methods were used to estimate antioxidant efficiency. These methods are based on the following parameters: peroxide values; peroxide concentration; content of degradation products of unsaturated fatty acid peroxides, which acted with thiobarbituric acid; diene conjugate content; the content of volatile compounds that formed as products of unsaturated fatty acid peroxide degradation; and the composition of methyl esters of fatty acids in samples of oxidized linseed oil.
The role played by different TiO2 features on the photocatalytic degradation of paracetamol
NASA Astrophysics Data System (ADS)
Rimoldi, Luca; Meroni, Daniela; Falletta, Ermelinda; Ferretti, Anna Maria; Gervasini, Antonella; Cappelletti, Giuseppe; Ardizzone, Silvia
2017-12-01
Photocatalytic reactions promoted by TiO2 can be affected by a large number of oxide features (e.g. surface area, morphology and phase composition). In this context, the role played by the surface characteristics (e.g. surface acidity, wettability, etc.) has been often disregarded. In this work, pristine and Ta-doped TiO2 nanomaterials with different phase composition (pure anatase and anatase/brookite mixture) were synthesized by sol-gel and characterized under the structural and morphological point of view. A careful characterization of the acid properties of the materials has been performed by liquid-solid acid-base titration by means of 2-phenylethylamine (PEA) adsorption to determine the acid site density and average acid strength. Photocatalytic tests were performed in the degradation of paracetamol (acetaminophen) under UV irradiation and results were discussed in the light of the detailed scenarios describing the different oxides. The surface acidity of the samples, was recognized as one of the key parameters controlling the photocatalytic activity. A possible molecule degradation route is proposed on the ground of GC-MS and ESI-MS analyses.
Price, Edwin R; Sirsat, Sarah K G; Sirsat, Tushar S; Venables, Barney J; Dzialowski, Edward M
2018-05-31
Docosahexaenoic acid (DHA) is an important and abundant fatty acid moiety in vertebrate brains. We measured brain phospholipid composition during development in red-winged blackbirds ( Agelaius phoeniceus ), an altricial species that breeds in aquatic habitats. We also manipulated diet by feeding nestlings fish oil or sunflower oil. Finally, we assessed selective uptake of yolk by comparing the yolk fatty acid composition of freshly laid eggs and day-old hatchlings. Relative to other altricial species, blackbirds achieved high DHA in brain phospholipids (20% of phospholipid fatty acids in day-old hatchlings). This was not a result of selective uptake from the yolk, but rather a consequence of a high proportion of DHA in the yolk (2.5% of total lipids) at laying. Our dietary study confirmed that nestling brains are sensitive to fatty acid supply. Red-winged blackbirds may be able to advance cognitive development relative to other altricial species due to their aquatic maternal diet. © 2018. Published by The Company of Biologists Ltd.
Belury, Martha A; Cole, Rachel M; Bailey, Brittney E; Ke, Jia-Yu; Andridge, Rebecca R; Kiecolt-Glaser, Janice K
2016-05-01
Supplementation with linoleic acid (LA; 18:2Ω6)-rich oils increases lean mass and decreases trunk adipose mass in people. Erythrocyte fatty acids reflect the dietary pattern of fatty acid intake and endogenous metabolism of fatty acids. The aim of this study is to determine the relationship of erythrocyte LA, with aspects of body composition, insulin resistance, and inflammation. Additionally, we tested for relationships of oleic acid (OA) and the sum of long chain omega-three fatty acids (LC-Ω3-SUM), on the same outcomes. Men and women (N = 139) were evaluated for body composition, insulin resistance, and serum inflammatory markers, IL-6, and c-reactive protein (CRP) and erythrocyte fatty acid composition after an overnight fast. LA was positively related to appendicular lean mass/body mass index and inversely related to trunk adipose mass. Additionally, LA was inversely related to insulin resistance and IL-6. While there was an inverse relationship between OA or LC-Ω3-SUM with markers of inflammation, there were no relationships between OA or LC-Ω3-SUM with body composition or HOMA-IR. Higher erythrocyte LA was associated with improved body composition, insulin resistance, and inflammation. Erythrocyte OA or LC-Ω3-SUM was unrelated to body composition and insulin resistance. There is much controversy about whether all unsaturated fats have the same benefits for metabolic syndrome and weight gain. We sought to test the strength of the relationships between three unsaturated fatty acid in erythrocytes with measurements of body composition, metabolism, and inflammation in healthy adults. Linoleic acid, but not oleic acid or the sum of long-chain omega 3 fatty acids (w3), was associated with increased appendicular lean mass and decreased trunk adipose mass and insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge.
Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime
2017-02-01
OBJECTIVE To examine bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge. ANIMALS 18 dogs with gallbladder mucocele (GBM group), 8 dogs with immobile biliary sludge (i-BS group), 17 dogs with mobile biliary sludge (m-BS group), and 14 healthy dogs (control group). PROCEDURES Samples of gallbladder contents were obtained by use of percutaneous ultrasound-guided cholecystocentesis or during cholecystectomy or necropsy. Concentrations of 15 bile acids were determined by use of highperformance liquid chromatography, and a bile acid compositional ratio was calculated for each group. RESULTS Concentrations of most bile acids in the GBM group were significantly lower than those in the control and m-BS groups. Compositional ratio of taurodeoxycholic acid, which is 1 of 3 major bile acids in dogs, was significantly lower in the GBM and i-BS groups, compared with ratios for the control and m-BS groups. The compositional ratio of taurocholic acid was significantly higher and that of taurochenodeoxycholic acid significantly lower in the i-BS group than in the control group. CONCLUSIONS AND CLINICAL RELEVANCE In this study, concentrations and fractions of bile acids in gallbladder contents were significantly different in dogs with gallbladder mucocele or immobile biliary sludge, compared with results for healthy control dogs. Studies are needed to determine whether changes in bile acid composition are primary or secondary events of gallbladder abnormalities.
Relative Amino Acid Composition Signatures of Organisms and Environments
Moura, Alexandra; Savageau, Michael A.; Alves, Rui
2013-01-01
Background Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. Methodologies/Principal Findings To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. Conclusions Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms. PMID:24204807
Relative amino acid composition signatures of organisms and environments.
Moura, Alexandra; Savageau, Michael A; Alves, Rui
2013-01-01
Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms.
Sweat Facilitated Amino Acid Losses in Male Athletes during Exercise at 32-34°C.
Dunstan, R Hugh; Sparkes, Diane L; Dascombe, Benjamin J; Macdonald, Margaret M; Evans, Craig A; Stevens, Christopher J; Crompton, Marcus J; Gottfries, Johan; Franks, Jesse; Murphy, Grace; Wood, Ryan; Roberts, Timothy K
2016-01-01
Sweat contains amino acids and electrolytes derived from plasma and athletes can lose 1-2L of sweat per hour during exercise. Sweat may also contain contributions of amino acids as well as urea, sodium and potassium from the natural moisturizing factors (NMF) produced in the stratum corneum. In preliminary experiments, one participant was tested on three separate occasions to compare sweat composition with surface water washings from the same area of skin to assess contributions from NMF. Two participants performed a 40 minute self-paced cycle session with sweat collected from cleansed skin at regular intervals to assess the contributions to the sweat load from NMF over the period of exercise. The main study investigated sweat amino acid composition collected from nineteen male athletes following standardised endurance exercise regimes at 32-34°C and 20-30% RH. Plasma was also collected from ten of the athletes to compare sweat and plasma composition of amino acids. The amino acid profiles of the skin washings were similar to the sweat, suggesting that the NMF could contribute certain amino acids into sweat. Since the sweat collected from athletes contained some amino acid contributions from the skin, this fluid was subsequently referred to as "faux" sweat. Samples taken over 40 minutes of exercise showed that these contributions diminished over time and were minimal at 35 minutes. In the main study, the faux sweat samples collected from the athletes with minimal NMF contributions, were characterised by relatively high levels of serine, histidine, ornithine, glycine and alanine compared with the corresponding levels measured in the plasma. Aspartic acid was detected in faux sweat but not in the plasma. Glutamine and proline were lower in the faux sweat than plasma in all the athletes. Three phenotypic groups of athletes were defined based on faux sweat volumes and composition profiles of amino acids with varying relative abundances of histidine, serine, glycine and ornithine. It was concluded that for some individuals, faux sweat resulting from exercise at 32-34°C and 20-30% RH posed a potentially significant source of amino acid loss.
Sweat Facilitated Amino Acid Losses in Male Athletes during Exercise at 32-34°C
Dunstan, R. Hugh; Sparkes, Diane L.; Dascombe, Benjamin J.; Macdonald, Margaret M.; Evans, Craig A.; Stevens, Christopher J.; Crompton, Marcus J.; Gottfries, Johan; Franks, Jesse; Murphy, Grace; Wood, Ryan; Roberts, Timothy K.
2016-01-01
Sweat contains amino acids and electrolytes derived from plasma and athletes can lose 1-2L of sweat per hour during exercise. Sweat may also contain contributions of amino acids as well as urea, sodium and potassium from the natural moisturizing factors (NMF) produced in the stratum corneum. In preliminary experiments, one participant was tested on three separate occasions to compare sweat composition with surface water washings from the same area of skin to assess contributions from NMF. Two participants performed a 40 minute self-paced cycle session with sweat collected from cleansed skin at regular intervals to assess the contributions to the sweat load from NMF over the period of exercise. The main study investigated sweat amino acid composition collected from nineteen male athletes following standardised endurance exercise regimes at 32–34°C and 20–30% RH. Plasma was also collected from ten of the athletes to compare sweat and plasma composition of amino acids. The amino acid profiles of the skin washings were similar to the sweat, suggesting that the NMF could contribute certain amino acids into sweat. Since the sweat collected from athletes contained some amino acid contributions from the skin, this fluid was subsequently referred to as “faux” sweat. Samples taken over 40 minutes of exercise showed that these contributions diminished over time and were minimal at 35 minutes. In the main study, the faux sweat samples collected from the athletes with minimal NMF contributions, were characterised by relatively high levels of serine, histidine, ornithine, glycine and alanine compared with the corresponding levels measured in the plasma. Aspartic acid was detected in faux sweat but not in the plasma. Glutamine and proline were lower in the faux sweat than plasma in all the athletes. Three phenotypic groups of athletes were defined based on faux sweat volumes and composition profiles of amino acids with varying relative abundances of histidine, serine, glycine and ornithine. It was concluded that for some individuals, faux sweat resulting from exercise at 32–34°C and 20–30% RH posed a potentially significant source of amino acid loss. PMID:27936120
Structure and Properties of Melt-spun Bio-based Polyamide/Eu(TTA)3Phen Composite fibers
NASA Astrophysics Data System (ADS)
Li, Yunye; Lou, Pengfei; Jia, Qingxiu
2018-02-01
In this paper, the bio-based polyamide (PA ) was melt polymerized from four bio-based monomers. Composites of the bio-based PA and europium complex Eu(TTA)3Phen were prepared through solution mixing using N, N-Dimethylformamide (DMF) and formic acid as the mixed solvent, and then composite fibers were obtained by melt spinning method. The structure and properties of the melt-spun composite fibers were characterized by FTIR and SEM. The results indicated that the Eu(TTA)3Phen complex, with the average diameter below 300 nm, was homogeneously dispersed in the PA matrix. FTIR spectra indicated that the coordination bond between carbonyl of BDIS and Eu(TTA)3Phen complex formed, which was also confirmed by the mechanical properties. The initial modulus and breaking strength of these fibers can arrived at 2.5GPa and 0.3GPa, respectively.
Development of new sealed bipolar lead-acid battery
NASA Technical Reports Server (NTRS)
Attia, Alan I.; Rowlette, J. J.
1987-01-01
New light weight composite bipolar plates which can withstand the corrosive environment of the lead acid battery have made possible the construction of a sealed bipolar lead acid battery that promises to achieve very high specific power levels and substantially higher energy densities than conventional lead acid batteries. Performance projections based on preliminary experimental results show that the peak specific power of the battery can be as high as 90 kW/kg, and that a specific power of 5 kW/kg can be sustained over several thousand pulses.
The development of a new sealed bipolar lead-acid battery
NASA Technical Reports Server (NTRS)
Attia, A. I.; Rowlette, J. J.
1988-01-01
New light weight composite bipolar plates which can withstand the corrosive environment of the lead acid battery have made possible the construction of a sealed bipolar lead acid battery that promises to achieve very high specific power levels and substantially higher energy densities than conventional lead acid batteries. Performance projections based on preliminary experimental results show that the peak specific power of the battery can be as high as 90 kW/kg, and that a specific power of 5 kW/kg can be sustained over several thousand pulses.
Marhabaie, Mohammad; Leeper, Thomas C; Blackledge, Todd A
2014-01-13
We investigated the natural variation in silk composition and mechanical performance of the orb-weaving spider Argiope trifasciata at multiple spatial and temporal scales in order to assess how protein composition contributes to the remarkable material properties of spider dragline silk. Major ampullate silk in orb-weaving spiders consists predominantly of two proteins (MaSp1 and MaSp2) with divergent amino acid compositions and functionally different microstructures. Adjusting the expression of these two proteins therefore provides spiders with a simple mechanism to alter the material properties of their silk. We first assessed the reliability and precision of the Waters AccQ-Tag amino acid composition analysis kit for determining the amino acid composition of small quantities of spider silk. We then tested how protein composition varied within single draglines, across draglines spun by the same spider on different days, and finally between spiders. Then, we correlated chemical composition with the material properties of dragline silk. Overall, we found that the chemical composition of major ampullate silk was in general homogeneous among individuals of the same population. Variation in chemical composition was not detectable within silk spun by a single spider on a single day. However, we found that variation within a single spider's silk across different days could, in rare instances, be greater than variation among individual spiders. Most of the variation in silk composition in our investigation resulted from a small number of outliers (three out of sixteen individuals) with a recent history of stress, suggesting stress affects silk production process in orb web spiders. Based on reported sequences for MaSp genes, we developed a gene expression model showing the covariation of the most abundant amino acids in major ampullate silk. Our gene expression model supports that dragline silk composition was mostly determined by the relative abundance of MaSp1 and MaSp2. Finally, we showed that silk composition (especially proline content) strongly correlated with some measures of mechanical performance, particularly how much fibers shrunk during supercontraction as well as their breaking strains. Our findings suggest that spiders are able to change the relative expression rates of different MaSp genes to produce silk fibers with different chemical compositions, and hence, different material properties.
Halogenated solvent remediation
Sorenson, Kent S.
2004-08-31
Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.
Gut microbiota composition modifies fecal metabolic profiles in mice.
Zhao, Ying; Wu, Junfang; Li, Jia V; Zhou, Ning-Yi; Tang, Huiru; Wang, Yulan
2013-06-07
The gut microbiome is known to be extensively involved in human health and disease. In order to reveal the metabolic relationship between host and microbiome, we monitored recovery of the gut microbiota composition and fecal profiles of mice after gentamicin and/or ceftriaxone treatments. This was performed by employing (1)H nuclear magnetic resonance (NMR)-based metabonomics and denaturing gradient gel electrophoresis (DGGE) fingerprint of gut microbiota. The common features of fecal metabolites postantibiotic treatment include decreased levels of short chain fatty acids (SCFAs), amino acids and primary bile acids and increased oligosaccharides, d-pinitol, choline and secondary bile acids (deoxycholic acid). This suggests suppressed bacterial fermentation, protein degradation and enhanced gut microbial modification of bile acids. Barnesiella, Prevotella, and Alistipes levels were shown to decrease as a result of the antibiotic treatment, whereas levels of Bacteroides, Enterococcus and Erysipelotrichaceae incertae sedis, and Mycoplasma increased after gentamicin and ceftriaxone treatment. In addition, there was a strong correlation between fecal profiles and levels of Bacteroides, Barnesiella, Alistipes and Prevotella. The integration of metabonomics and gut microbiota profiling provides important information on the changes of gut microbiota and their impact on fecal profiles during the recovery after antibiotic treatment. The correlation between gut microbiota and fecal metabolites provides important information on the function of bacteria, which in turn could be important in optimizing therapeutic strategies, and developing potential microbiota-based disease preventions and therapeutic interventions.
Proximate composition and nutritional evaluation of the adductor muscle of pen shell.
Wu, Shengjun; Wu, Yuping
2017-07-01
The proximate composition of pen shell adductor muscle (PSAM) was determined, and its nutrition value was evaluated. Proximate composition analysis indicated that PSAM contained 91.07% (w/w) protein, 5.77% (w/w) ash, and 2.46% (w/w) fat. Calcium was the predominant mineral followed by zinc and then iron. The amino acid profile was in accordance with the recommended pattern of FAO/WHO except for histidine. At the same time, the first limiting amino acid was histidine. Fatty acid composition showed that docosahexaenoic acid was the major fatty acid, followed by palmitic, stearic, and arachidonic acids. Results indicated that PSAM was rich in nutrition and may be developed as a functional food.
Composition bias and the origin of ORFan genes
Yomtovian, Inbal; Teerakulkittipong, Nuttinee; Lee, Byungkook; Moult, John; Unger, Ron
2010-01-01
Motivation: Intriguingly, sequence analysis of genomes reveals that a large number of genes are unique to each organism. The origin of these genes, termed ORFans, is not known. Here, we explore the origin of ORFan genes by defining a simple measure called ‘composition bias’, based on the deviation of the amino acid composition of a given sequence from the average composition of all proteins of a given genome. Results: For a set of 47 prokaryotic genomes, we show that the amino acid composition bias of real proteins, random ‘proteins’ (created by using the nucleotide frequencies of each genome) and ‘proteins’ translated from intergenic regions are distinct. For ORFans, we observed a correlation between their composition bias and their relative evolutionary age. Recent ORFan proteins have compositions more similar to those of random ‘proteins’, while the compositions of more ancient ORFan proteins are more similar to those of the set of all proteins of the organism. This observation is consistent with an evolutionary scenario wherein ORFan genes emerged and underwent a large number of random mutations and selection, eventually adapting to the composition preference of their organism over time. Contact: ron@biocoml.ls.biu.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20231229
DNA Asymmetric Strand Bias Affects the Amino Acid Composition of Mitochondrial Proteins
Min, Xiang Jia; Hickey, Donal A.
2007-01-01
Abstract Variations in GC content between genomes have been extensively documented. Genomes with comparable GC contents can, however, still differ in the apportionment of the G and C nucleotides between the two DNA strands. This asymmetric strand bias is known as GC skew. Here, we have investigated the impact of differences in nucleotide skew on the amino acid composition of the encoded proteins. We compared orthologous genes between animal mitochondrial genomes that show large differences in GC and AT skews. Specifically, we compared the mitochondrial genomes of mammals, which are characterized by a negative GC skew and a positive AT skew, to those of flatworms, which show the opposite skews for both GC and AT base pairs. We found that the mammalian proteins are highly enriched in amino acids encoded by CA-rich codons (as predicted by their negative GC and positive AT skews), whereas their flatworm orthologs were enriched in amino acids encoded by GT-rich codons (also as predicted from their skews). We found that these differences in mitochondrial strand asymmetry (measured as GC and AT skews) can have very large, predictable effects on the composition of the encoded proteins. PMID:17974594
Kaewprapan, Kulwadee; Phattanarudee, Siriwan
2012-01-01
Poly(lactic acid)/montmorillonite nanocomposites were prepared by using non-toxic catalysts, i.e., phthalic acid and succinimide, via in situ polycondensation in presence of silicate. Concentrations of catalysts and clay were varied in a range of 0-3% wt and 0-0.5% wt, respectively. The reaction condition was controlled at 180 degrees C for 24 hr under a reduced pressure. Viscosity average molecular weight of the synthesized polymers and nanocomposites were characterized and compared using an Ubbelohde viscometer. Pattern of silicate distribution in the composites was investigated by X-ray diffraction to correlate with thermal properties evaluated by differential scanning calorimetry and thermogravimetric analysis. The results showed that the addition of catalysts at 2% wt gave the highest product yield (55-60%). The presence of silicate affected on molecular weight reduction, and the diffracted patterns suggested an intercalated structure. With a small amount of added filler, a significant improvement in thermal property and crystallinity of the resultant composites was obtained compared to those of the catalyzed polymers, in which the composites with succinimide exhibited overall better thermal stability and higher crystallinity than the ones prepared with phthalic acid.
El Adib, Saifeddine; Aissi, Oumayma; Charrouf, Zoubida; Ben Jeddi, Fayçal; Messaoud, Chokri
2015-09-01
Argania spinosa includes two varieties, var. apiculata and var. mutica. These argan varieties were introduced into Tunisia in ancient times and are actually cultivated in some botanic gardens. Little is known about the chemical differentiation among these argan varieties. Hence, the aim of this study was to determine the fatty-acid composition, the total phenolic and flavonoid contents, and the antioxidant and α-amylase-inhibitory activities of leaf, seed, and pulp extracts of both argan varieties harvested during the months of January to April. The fatty-acid distribution was found to depend on the argan variety, the plant organ, and the harvest time. Significant variations in the phenolic contents were observed between the investigated varieties as well as between leaves, pulps, and seeds of each variety. As expected, phenolic compounds were found to be contributors to the antioxidant and α-amylase-inhibitory activities of both argan varieties. The chemical differentiation observed among the two argan varieties, based mainly on the fatty-acid composition, might have some chemotaxonomic value. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Effect of γ irradiation on the fatty acid composition of soybean and soybean oil.
Minami, Ikuko; Nakamura, Yoshimasa; Todoriki, Setsuko; Murata, Yoshiyuki
2012-01-01
Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.
Structure-sensitive film materials based on polyvinyl alcohol compositions with polyacids
NASA Astrophysics Data System (ADS)
Lazareva, Tatjana G.; Iljushenko, Irina A.
1995-05-01
The influence of polyacidic additives (silicotungstic acid -- STA, carboxymethylcellulose -- Na-CMC, polymethacrylic acid -- PMA, polyacrylic acid -- PAA) on the molecular mobility of film composition based on polyvinyl alcohol (PVA) in the temperature range 20 - 200 degree(s)C has been evaluated. It has been concluded that interpolymer complexes are formed due to hydrogen bonding of the PVA and polyacidic additive molecules, which results in the change of the PVA stereoregularity. The formation of the complexes depends on the type and concentration of the polyacidic additive, the process of (alpha) -relaxation and, in a certain concentration range of the additive, increases the molecular mobility of the kinetic segments surrounding the complex. The influence of short-term UV-irradiation on the structure and properties of such materials has been investigated. A possibility of the reversible change of molecular mobility and stereoregularity of the examined compositions as a result of short-term UV-irradiation has been established. Introduction of polyacids into the PVA structure gives rise to the electrosensitivity, i.e., the ability to change structure under the action of an electric field. In this case the distinguishing feature is the relation between the molecular mobility and electrosensitivity in the range of parameters where the (alpha) - relaxation occurs.
Lerch, Thomas Z; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André
2011-10-01
Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [(13)C]2,4-D, [(13)C]glucose, or mixtures of both substrates alternatively labeled with (13)C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the (13)C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments.
Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E
2015-09-14
Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products.
2013-01-01
Background Plastids are an important component of plant cells, being the site of manufacture and storage of chemical compounds used by the cell, and contain pigments such as those used in photosynthesis, starch synthesis/storage, cell color etc. They are essential organelles of the plant cell, also present in algae. Recent advances in genomic technology and sequencing efforts is generating a huge amount of DNA sequence data every day. The predicted proteome of these genomes needs annotation at a faster pace. In view of this, one such annotation need is to develop an automated system that can distinguish between plastid and non-plastid proteins accurately, and further classify plastid-types based on their functionality. We compared the amino acid compositions of plastid proteins with those of non-plastid ones and found significant differences, which were used as a basis to develop various feature-based prediction models using similarity-search and machine learning. Results In this study, we developed separate Support Vector Machine (SVM) trained classifiers for characterizing the plastids in two steps: first distinguishing the plastid vs. non-plastid proteins, and then classifying the identified plastids into their various types based on their function (chloroplast, chromoplast, etioplast, and amyloplast). Five diverse protein features: amino acid composition, dipeptide composition, the pseudo amino acid composition, Nterminal-Center-Cterminal composition and the protein physicochemical properties are used to develop SVM models. Overall, the dipeptide composition-based module shows the best performance with an accuracy of 86.80% and Matthews Correlation Coefficient (MCC) of 0.74 in phase-I and 78.60% with a MCC of 0.44 in phase-II. On independent test data, this model also performs better with an overall accuracy of 76.58% and 74.97% in phase-I and phase-II, respectively. The similarity-based PSI-BLAST module shows very low performance with about 50% prediction accuracy for distinguishing plastid vs. non-plastids and only 20% in classifying various plastid-types, indicating the need and importance of machine learning algorithms. Conclusion The current work is a first attempt to develop a methodology for classifying various plastid-type proteins. The prediction modules have also been made available as a web tool, PLpred available at http://bioinfo.okstate.edu/PLpred/ for real time identification/characterization. We believe this tool will be very useful in the functional annotation of various genomes. PMID:24266945
NASA Astrophysics Data System (ADS)
Fernandez-Jover, Damian; Martinez-Rubio, Laura; Sanchez-Jerez, Pablo; Bayle-Sempere, Just T.; Lopez Jimenez, Jose Angel; Martínez Lopez, Francisco Javier; Bjørn, Pål-Arne; Uglem, Ingebrigt; Dempster, Tim
2011-03-01
Aquaculture of carnivorous fish species in sea-cages typically uses artificial feeds, with a proportion of these feeds lost to the surrounding environment. This lost resource may provide a trophic subsidy to wild fish in the vicinity of fish farms, yet the physiological consequences of the consumption of waste feed by wild fish remain unclear. In two regions in Norway with intensive aquaculture, we tested whether wild saithe ( Pollachius virens) and Atlantic cod ( Gadus morhua) associated with fish farms (F assoc), where waste feed is readily available, had modified diets, condition and fatty acid (FA) compositions in their muscle and liver tissues compared to fish unassociated (UA) with farms. Stomach content analyses revealed that both cod and saithe consumed waste feed in the vicinity of farms (6-96% of their diet was composed of food pellets). This translated into elevated body and liver condition compared to fish caught distant from farms for cod at both locations and elevated body condition for saithe at one of the locations. As a consequence of a modified diet, we detected significantly increased concentrations of terrestrial-derived fatty acids (FAs) such as linoleic (18:2ω6) and oleic (18:1ω9) acids and decreased concentrations of DHA (22:6ω3) in the muscle and/or liver of F assoc cod and saithe when compared with UA fish. In addition, the ω3:ω6 ratio clearly differed between F assoc and UA fish. Linear discriminant analysis (LDA) correctly classified 97% of fish into F assoc or UA origin for both cod and saithe based on the FA composition of liver tissues, and 89% of cod and 86% of saithe into F assoc or UA origin based on the FA composition of muscle. Thus, LDA appears a useful tool for detecting the influence of fish farms on the FA composition of wild fish. Ready availability of waste feed with high protein and fat content provides a clear trophic subsidy to wild fish in coastal waters, yet whether the accompanying side-effect of altered fatty acid compositions affects physiological performance or reproductive potential requires further research.
Kawai, Y; Moribayashi, A
1982-01-01
The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica. Images PMID:6284719
Kawai, Y; Moribayashi, A
1982-08-01
The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.
Amino acid composition and antioxidant capacity of Spanish honeys.
Pérez, Rosa Ana; Iglesias, María Teresa; Pueyo, Encarnación; Gonzalez, Montserrat; de Lorenzo, Cristina
2007-01-24
The amino acid composition of 53 honey samples from Spain, consisting of 39 floral, 5 honeydew, and 9 blend honeys, has been determined. Physicochemical characteristics, polyphenolic content, amino acid composition, and estimation of the radical scavenging capacity against the stable free radical DPPH of the honey samples were analyzed. The resulting data have been statistically evaluated. The results showed that pH, acidity, net absorbance, electrical conductivity, and total polyphenolic contents of the honeys showed a strong correlation with the radical scavenging capacity. The correlation between the radical scavenging capacity of honey and amino acid contents was high with 18 of the 20 amino acids detected, with correlation values higher than those obtained for polyphenolic content. These results suggest that the amino acid composition of honey is an indicator of the sample's scavenging capacity.
Bao, Weichen; Mi, Zhihui; Xu, Haiyan; Zheng, Yi; Kwok, Lai Yu; Zhang, Heping; Zhang, Wenyi
2016-01-01
The present study applied the PacBio single molecule, real-time sequencing technology (SMRT) in evaluating the quality of silage production. Specifically, we produced four types of Medicago sativa silages by using four different lactic acid bacteria-based additives (AD-I, AD-II, AD-III and AD-IV). We monitored the changes in pH, organic acids (including butyric acid, the ratio of acetic acid/lactic acid, γ-aminobutyric acid, 4-hyroxy benzoic acid and phenyl lactic acid), mycotoxins, and bacterial microbiota during silage fermentation. Our results showed that the use of the additives was beneficial to the silage fermentation by enhancing a general pH and mycotoxin reduction, while increasing the organic acids content. By SMRT analysis of the microbial composition in eight silage samples, we found that the bacterial species number and relative abundances shifted apparently after fermentation. Such changes were specific to the LAB species in the additives. Particularly, Bacillus megaterium was the initial dominant species in the raw materials; and after the fermentation process, Pediococcus acidilactici and Lactobacillus plantarum became the most prevalent species, both of which were intrinsically present in the LAB additives. Our data have demonstrated that the SMRT sequencing platform is applicable in assessing the quality of silage. PMID:27340760
Bao, Weichen; Mi, Zhihui; Xu, Haiyan; Zheng, Yi; Kwok, Lai Yu; Zhang, Heping; Zhang, Wenyi
2016-06-24
The present study applied the PacBio single molecule, real-time sequencing technology (SMRT) in evaluating the quality of silage production. Specifically, we produced four types of Medicago sativa silages by using four different lactic acid bacteria-based additives (AD-I, AD-II, AD-III and AD-IV). We monitored the changes in pH, organic acids (including butyric acid, the ratio of acetic acid/lactic acid, γ-aminobutyric acid, 4-hyroxy benzoic acid and phenyl lactic acid), mycotoxins, and bacterial microbiota during silage fermentation. Our results showed that the use of the additives was beneficial to the silage fermentation by enhancing a general pH and mycotoxin reduction, while increasing the organic acids content. By SMRT analysis of the microbial composition in eight silage samples, we found that the bacterial species number and relative abundances shifted apparently after fermentation. Such changes were specific to the LAB species in the additives. Particularly, Bacillus megaterium was the initial dominant species in the raw materials; and after the fermentation process, Pediococcus acidilactici and Lactobacillus plantarum became the most prevalent species, both of which were intrinsically present in the LAB additives. Our data have demonstrated that the SMRT sequencing platform is applicable in assessing the quality of silage.
Clore, J N; Harris, P A; Li, J; Azzam, A; Gill, R; Zuelzer, W; Rizzo, W B; Blackard, W G
2000-02-01
The fatty acid composition of skeletal muscle cell membrane phospholipids (PLs) is known to influence insulin responsiveness in man. We have recently shown that the fatty acid composition of phosphatidylcholine (PC), and not phosphatidylethanolamine (PE), from skeletal muscle membranes is of particular importance in this relationship. Efforts to alter the PL fatty acid composition in animal models have demonstrated induction of insulin resistance. However, it has been more difficult to determine if changes in insulin sensitivity are associated with changes in the skeletal muscle membrane fatty acid composition of PL in man. Using nicotinic acid (NA), an agent known to induce insulin resistance in man, 9 normal subjects were studied before and after treatment for 1 month. Skeletal muscle membrane fatty acid composition of PC and PE from biopsies of vastus lateralis was correlated with insulin responsiveness using a 3-step hyperinsulinemic-euglycemic clamp. Treatment with NA was associated with a 25% increase in the half-maximal insulin concentration ([ED50] 52.0 +/- 7.5 to 64.6 +/- 9.0 microU/mL, P < .05), consistent with decreased peripheral insulin sensitivity. Significant changes in the fatty acid composition of PC, but not PE, were also observed after NA administration. An increase in the percentage of 16:0 (21% +/- 0.3% to 21.7% +/- 0.4%, P < .05) and decreases in 18:0 (6.2% +/- 0.5% to 5.1% +/- 0.4%, P = .01), long-chain n-3 fatty acids (1.7% +/- 0.2% to 1.4% +/- 0.1%, P < .01), and total polyunsaturated fatty acids ([PUFAs] 8.7% +/- 0.8% to 8.0% +/- 0.8%, P < .05) are consistent with a decrease in fatty acid length and unsaturation in PC following NA administration. The change in ED50 was significantly correlated with the change in PUFAs (r = -.65, P < .05). These studies suggest that the induction of insulin resistance with NA is associated with changes in the fatty acid composition of PC in man.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zibo; Gabbai, Francois P.; Conti, Peter S.
A composition useful as a PET and/or fluorescence imaging probe a compound a compound of Formula I, including salts, hydrates and solvates thereof: ##STR00001## wherein R.sub.1-R.sub.7 may be independently selected from hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, X is selected from the group consisting of C and N; and A is selected of hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, alkyl, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, including phenyl and aminophenyl, and heteroaryl.
Advanced composite materials based on polyhydroxybutyrate and polylactic acid
NASA Astrophysics Data System (ADS)
Tubaeva, P. M.; Olkhov, A. A.; Podzorova, M. V.; Popov, A. A.
2017-12-01
In this paper, we consider the main characteristics of polyhydroxybutyrate (PHB) and polylactic acid (PLA) as well as the prospects and possibility of the medical use of PHB-PLA compositions as these polymers are most relevant to such application. The study establishes the main thermophysical parameters of PHB and PLA. It is found that PHB and PLA are hydrophobic enough. The study by the electron paramagnetic resonance method reveals a small amount of the radical infiltrated in PLA and PHB, which indicates the chain rigidity of both polymeric structures. Mechanical properties of PLA and PHB are characterized by high strength and low elasticity.
The Effect of Different Soft Drinks on the Shear Bond Strength of Orthodontic Brackets
Omid Khoda, M.; Heravi, F.; Shafaee, H.; Mollahassani, H.
2012-01-01
Objective: It is proved that acidic soft drinks that are commonly used, have an adverse effect on dental structures, and may deteriorate oral heath of our patients and orthodontic appliances. The aim of this study was to compare the effect of yoghurt drink with other soft drinks on the shear bond strength of orthodontic brackets. Materials and Methods: Seventy-five first premolar teeth extracted for orthodontic purposes were selected and standard twin metal brackets were bonded on the center of buccal surface with No-Mix composite. The teeth were thermocycled for 625 cycles and randomly divided into five groups of artificial saliva, carbonated yoghurt drink with lactic acid base, non-carbonated yoghurt drink with lactic acid base, 7 up with citric acid base and Pepsi with phosphoric acid base. In all groups, the teeth were immersed in liquid for five-minute sessions three times with equal intervening intervals for 3 months. SBS was measured by a universal testing machine with a speed of 0.5mm/min. Data was analyzed statistically by one-way ANOVA. Results: The results showed that mean values for the shear bond strength of carbonated yoghurt drinks, non-carbonated yoghurt drinks, 7up and Pepsi groups were 12.98(±2.95), 13.26(±4.00), 16.11(±4.89), 14.73(±5.10), respectively. There was no statistically significant difference among the groups (P-value= 0.238) Conclusion: Soft drinks used in this study did not decrease the bond strength of the brackets bonded with this specific type of composite. PMID:23066479
The effect of different soft drinks on the shear bond strength of orthodontic brackets.
Omid Khoda, M; Heravi, F; Shafaee, H; Mollahassani, H
2012-01-01
It is proved that acidic soft drinks that are commonly used, have an adverse effect on dental structures, and may deteriorate oral heath of our patients and orthodontic appliances. The aim of this study was to compare the effect of yoghurt drink with other soft drinks on the shear bond strength of orthodontic brackets. Seventy-five first premolar teeth extracted for orthodontic purposes were selected and standard twin metal brackets were bonded on the center of buccal surface with No-Mix composite. The teeth were thermocycled for 625 cycles and randomly divided into five groups of artificial saliva, carbonated yoghurt drink with lactic acid base, non-carbonated yoghurt drink with lactic acid base, 7 up with citric acid base and Pepsi with phosphoric acid base. In all groups, the teeth were immersed in liquid for five-minute sessions three times with equal intervening intervals for 3 months. SBS was measured by a universal testing machine with a speed of 0.5mm/min. Data was analyzed statistically by one-way ANOVA. The results showed that mean values for the shear bond strength of carbonated yoghurt drinks, non-carbonated yoghurt drinks, 7up and Pepsi groups were 12.98(±2.95), 13.26(±4.00), 16.11(±4.89), 14.73(±5.10), respectively. There was no statistically significant difference among the groups (P-value= 0.238) Soft drinks used in this study did not decrease the bond strength of the brackets bonded with this specific type of composite.
Nishizawa, M; Nishizawa, K
2000-10-01
The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the 'between gene' GC content heterogeneity, which is linked to 'isochores', is a principal factor associated with the bias in substitution patterns in human, 'within gene' heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed.
Nishizawa, Manami; Nishizawa, Kazuhisa
2000-01-01
The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the ‘between gene’ GC content heterogeneity, which is linked to ‘isochores’, is a principal factor associated with the bias in substitution patterns in human, ‘within gene’ heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed. PMID:11000273
Comparative fatty acid composition of four Sargassum species (Fucales, Phaeophyta)
NASA Astrophysics Data System (ADS)
Wu, Xiang-Chun; Lu, Bao-Ren; Tseng, C. K.
1995-12-01
Fatty acid composition of four Sargassum species from Qingdao and Shidao, Shandong Province was investigated. 16:0 (palmitic acid) was the major saturated fatty acid. C18 and C20 were the main polyunsaturated fatty acids (PUFAs). Arachidonic acid and eicosapentaenoic acid predominated among polyenoic acids in all the algal species examined, except for Sargassum sp. which had low concentration of eicosapentaenoic acid.
Amino acid composition of some Mexican foods.
Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor
2005-06-01
Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.
Honeyfield, Dale C.; Maloney, Kelly O.
2015-01-01
Fatty acids are integral components of periphyton and differ among algal taxa. We examined seasonal patterns in periphyton fatty acids in six minimally disturbed headwater streams in Pennsylvania’s Appalachian Mountains, USA. Environmental data and periphyton were collected across four seasons for fatty acid and algal taxa content. Non-metric multidimensional scaling ordination suggested significant seasonal differences in fatty acids; an ordination on algal composition revealed similar seasonal patterns, but with slightly weaker separation of summer and fall. Summer and fall fatty acid profiles were driven by temperature, overstory cover, and conductivity and winter profiles by measures of stream size. Ordination on algal composition suggested that summer and fall communities were driven by overstory and temperature, whereas winter communities were driven by velocity. The physiologically important fatty acid 18:3ω6 was highest in summer and fall. Winter samples had the highest 20:3ω3. Six saturated fatty acids differed among the seasons. Periphyton fatty acids profiles appeared to reflect benthic algal species composition. This suggests that periphyton fatty acid composition can be useful in characterizing basal food resources and stream water quality.
USDA-ARS?s Scientific Manuscript database
A microsatellite-based genome scan of a Wagyu x Limousin F2 cross population previously demonstrated QTL affecting longissimus muscle area (LMA) and fatty acid composition were present in regions near the centromere of BTA 2. In this study we used 70 SNP markers to examine the centromeric 20 megabas...
Liqing Wei; Nicole M. Stark; Ronald C. Sabo; Laurent Matuana
2016-01-01
There is growing interest in developing bio-based materials for packaging. Bio-derived materials such as cellulose nanocrystals (CNCs) and poly(lactic acid) (PLA) can be used to develop sustainable packaging applications. Incorporating CNCs into PLA can increase the crystallinity and barrier properties of PLA. The challenge lies in both increasing the flexibility of...
Li, S; Vestergren, A Schiller; Wall, H; Trattner, S; Pickova, J; Ivarsson, E
2017-08-01
This study investigated the dietary effect of steam-pelleted rapeseed (RS) diets with different inclusion levels on the fatty acid composition of chicken meat and the expression of lipid metabolism-related genes in the liver. Experimental diets included 6 different wheat-soybean meal based diets either in nonpelleted or steam-pelleted form supplemented with 80, 160, and 240 g RS/kg feed and one nonpelleted wheat-soybean meal based diet without RS supplementation as the control. These diets were fed to newly hatched broiler chickens (Ross 308) for 34 days. Compared to the control diet, steam-pelleted diets containing 160 or 240 g/kg RS significantly increased the content of omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) in the breast and drumstick, while their meat yields were not affected. Moreover, the mRNA levels of fatty acid desaturase 1 (FADS1) and acyl-coenzyme A oxidase 1 (ACOX1) in their livers increased. Therefore, steam-pelleted diets with 160 or 240 g/kg RS can be used to increase the n-3 LC-PUFA content in chicken meat without compromising meat yield. © 2017 Poultry Science Association Inc.
NASA Astrophysics Data System (ADS)
Ohkouchi, Naohiko; Ogawa, Nanako O.; Chikaraishi, Yoshito; Tanaka, Hiroyuki; Wada, Eitaro
2015-12-01
We review the biochemical and physiological bases of the use of carbon and nitrogen isotopic compositions as an approach for environmental and ecological studies. Biochemical processes commonly observed in the biosphere, including the decarboxylation and deamination of amino acids, are the key factors in this isotopic approach. The principles drawn from the isotopic distributions disentangle the complex dynamics of the biosphere and allow the interactions between the geosphere and biosphere to be analyzed in detail. We also summarize two recently examined topics with new datasets: the isotopic compositions of individual biosynthetic products (chlorophylls and amino acids) and those of animal organs for further pursuing the basis of the methodology. As a tool for investigating complex systems, compound-specific isotopic analysis compensates the intrinsic disadvantages of bulk isotopic signatures. Chlorophylls provide information about the particular processes of various photoautotrophs, whereas amino acids provide a precise measure of the trophic positions of heterotrophs. The isotopic distributions of carbon and nitrogen in a single organism as well as in the whole biosphere are strongly regulated, so that their major components such as amino acids are coordinated appropriately rather than controlled separately.
NASA Astrophysics Data System (ADS)
Kraiskii, A. V.; Postnikov, V. A.; Suitanov, T. T.; Khamidulin, A. V.
2010-02-01
The properties of holographic sensors of two types are studied. The sensors are based on a three-dimensional polymer-network matrix of copolymers of acrylamide, acrylic acid (which are sensitive to the medium acidity and bivalent metal ions) and aminophenylboronic acid (sensitive to glucose). It is found that a change in the ionic composition of a solution results in changes in the distance between layers and in the diffraction efficiency of holograms. Variations in the shape of spectral lines, which are attributed to the inhomogeneity of a sensitive layer, and nonmonotonic changes in the emulsion thickness and diffraction efficiency were observed during transient processes. The composition of the components of a hydrogel medium is selected for systems which can be used as a base for glucose sensors with the mean holographic response in the region of physiological glucose concentration in model solutions achieving 40 nm/(mmol L-1). It is shown that the developed holographic sensors can be used for the visual and instrumental determination of the medium acidity, alcohol content, ionic strength, bivalent metal salts and the quality of water, in particular, for drinking.
Novel ammonia sensor based on polyaniline/polylactic acid composite films
NASA Astrophysics Data System (ADS)
Sotirov, S.; Bodurov, I.; Marudova, M.
2017-01-01
We propose a new type of ammonia sensor based on composite film between polyaniline (emeraldine base) dissolved in dimethylformamide, and poly(DL-lactic) acid dissolved in chloroform. The two solutions were mixed in weight ratio of the components 1:1 and cast on Al2O3 substrate, on which silver electrodes were deposited previously. The active layer structure and morphology were examined by atomic force microscopy. The sensor resistance at constant humidity and different ammonia concentrations was measured. It was found that an increase in the ammonia concentration leads to resistance increase. This result is explained in the terms of ionic interactions between the polyaniline and the ammonia, which change the permittivity of the sensor active media. A response between 2% and 590% was shown depending on the ammonia concentration. The sensor is reversible and possesses response time of typically 100 s. Based on the changes of the sensor resistance, ammonia concentration from 10 ppm to 1000 ppm could be detected.
Josiane, Semassa Adjobignon; Bienvenu, Anihouvi Victor; Wilfried, Padonou Segla; Adolphe, Adjanohoun; Djima, Aly; Joachin, Gbenou; Lamine, Baba-Moussa
2017-01-01
A wide range of maize varieties is used in Benin but information on the nutritional characteristics of these varieties are not well known. This study aims to assess the nutritional composition of maize varieties in use in the southern region of Benin with the purpose of providing consumers accurate information for better choice. Moisture, ash, protein, fiber and fat contents were determined according to Association of Official Analytical Chemists and American Association of Cereal Chemists methods. Sugar and organic acids were assessed using High Performance Liquid Chromatography methods and amino acids profile was established according to Rosen method using glutamic acid. The maize varieties were classified into 5 clusters according to their macro nutrients composition and 4 clusters based on their sugar and organic acids contents. Varieties of group 5 were very rich in protein (14.34 g/100 g), while the highest fat content (7.22 g/100 g) was observed for group 2 varieties. The highest carbohydrate contents obtained were 80.64 g/100 g, 80.11 g/100 g and 79.15 g/100 g for groups 1, 4 and 5 varieties respectively. Moreover the dendrogram gave four homogeneous clusters according to sugars and organic acids composition. Varieties of groups 2, 3 and 4 had almost the same fructose contents ranging between 0.04 and 0.06%; varieties of group 1 contained the highest contents of raffinose, sucrose and glucose; those of group 2 were very rich in propionate and fructose. It is concluded that some of maize varieties investigated contained high level of protein. Furthermore glutamic acid was the predominant amino acid while the least amino acid was methionine. Those varieties, owing to their protein and amino acids contents could have many benefits by providing vital constituents to the body.
Ebrahimi, Mahdi; Daeman, Nor Hafizah; Chong, Chou Min; Karami, Ali; Kumar, Vikas; Hoseinifar, Seyed Hossein; Romano, Nicholas
2017-08-01
Dietary organic acids are increasingly being investigated as a potential means of improving growth and nutrient utilization in aquatic animals. A 9-week study was performed to compare equal amounts (2%) of different organic acids (sodium butyrate, acetate, propionate, or formate) on the growth, muscle proximate composition, fatty acid composition, cholesterol and lipid peroxidation, differential cell counts, plasma biochemistry, intestinal short-chain fatty acid (SCFA) level, and liver histopathology to red hybrid tilapia (Oreochromis sp.) (initial mean weight of 2.87 g). A second experiment was performed to determine their effects on lipid peroxidation and trimethylamine (TMA) when added at 1% to tilapia meat and left out for 24 h. The results of the first experiment showed no treatment effect to growth, feeding efficiencies, or muscle fatty acid composition, but all dietary organic acids significantly decreased intestinal SCFA. Dietary butyrate and propionate significantly decreased muscle lipid peroxidation compared to the control group, but the dietary formate treatment had the lowest lipid peroxidation compared to all treatments. Muscle crude protein and lipid in tilapia fed the formate diet were significantly lower and higher, respectively, and showed evidence of stress based on the differential cell counts, significantly higher plasma glucose and liver glycogen, as well as inflammatory responses in the liver. Although a potential benefit of dietary organic acids was a reduction to lipid peroxidation, this could be accomplished post-harvest by direct additions to the meat. In addition, inclusions of butyrate and propionate to tilapia meat significantly decreased TMA, which might be a more cost-effective option to improve the shelf life of tilapia products.
Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers
Haug, Anna; Eich-Greatorex, Susanne; Bernhoft, Aksel; Wold, Jens P; Hetland, Harald; Christophersen, Olav A; Sogn, Trine
2007-01-01
Background Human health may be improved if dietary intakes of selenium and omega-3 fatty acids are increased. Consumption of broiler meat is increasing, and the meat content of selenium and omega-3 fatty acids are affected by the composition of broiler feed. A two-way analyses of variance was used to study the effect of feed containing omega-3 rich plant oils and selenium enriched yeast on broiler meat composition, antioxidation- and sensory parameters. Four different wheat-based dietary treatments supplemented with 5% rapeseed oil or 4% rapeseed oil plus 1% linseed oil, and either 0.50 mg selenium or 0.84 mg selenium (organic form) per kg diet was fed to newly hatched broilers for 22 days. Results The different dietary treatments gave distinct different concentrations of selenium and fatty acids in thigh muscle; one percent linseed oil in the diet increased the concentration of the omega-3 fatty acids 18:3, 20:5 and 22:5, and 0.84 mg selenium per kg diet gave muscle selenium concentration at the same level as is in fish muscle (0.39 mg/kg muscle). The high selenium intake also resulted in increased concentration of the long-chain omega-3 fatty acids EPA (20:5), DPA (22:5) and DHA (22:6), thus it may be speculated if high dietary selenium might have a role in increasing the concentration of EPA, DPA and DHA in tissues after intake of plant oils contning omega-3 fatty acids. Conclusion Moderate modifications of broiler feed may give a healthier broiler meat, having increased content of selenium and omega-3 fatty acids. High intakes of selenium (organic form) may increase the concentration of very long-chain omega-3 fatty acids in muscle. PMID:17967172
NASA Astrophysics Data System (ADS)
Gao, Fei; Xu, Qiang; Yang, Hongsheng
2011-03-01
Seasonal Variation in proximate, amino acid and fatty acid composition of the body wall of sea cucumber Apostichopus japonicus was evaluated. The proximate composition, except for ash content, changed significantly among seasons ( P<0.05). Alanine, glycine, glutamic acid and asparagic acid were the most abundant amino acids. Total amino acid and essential amino acid Contents both varied clearly with seasons ( P<0.05). 16:0 and 16:ln7 were the primary saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) respectively for all months. EPA (20:5n-3), AA (20:4n-6) and DHA (22:6n-3) were the major polyunsaturated fatty acids (PUFA). The proportions of SFA and PUFA yielded significant seasonal variations ( P<0.001), but MUFA did not changed significantly. The results indicated that the biochemical compositions of the body wall in A. japonicus were significantly influenced by seasons and that the body wall tissue is an excellent source of protein, MUFA and n-3 PUFA for humans.
Compositional and phase relations among rare earth element minerals
NASA Technical Reports Server (NTRS)
Burt, D. M.
1990-01-01
This paper discusses the compositional and phase relationships among minerals in which rare earth elements (REE) occur as essential constituents (e.g., bastnaesite, monazite, xenotime, aeschynite, allanite). Particular consideration is given to the vector representation of complex coupled substitutions in selected REE-bearing minerals and to the REE partitioning between minerals as related to the acid-base tendencies and mineral stabilities. It is shown that the treatment of coupled substitutions as vector quantities facilitates graphical representation of mineral composition spaces.
Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts
NASA Astrophysics Data System (ADS)
Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.
2012-11-01
The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.
Liu, Songling; Ren, Fazheng; Jiang, Jingli; Zhao, Liang
2016-07-28
The acid response of Bifidobacterium longum subsp. longum BBMN68 has been studied in our previous study. The fab gene, which is supposed to be involved in membrane fatty acid biosynthesis, was demonstrated to be induced in acid response. In order to investigate the relationship between acid response and cell membrane fatty acid composition, the acid adaptation of BBMN68 was assessed and the membrane fatty acid composition at different adaptation conditions was identified. Indeed, the fatty acid composition was influenced by acid adaptation. Our results showed that the effective acid adaptations were accompanied with decrease in the unsaturated to saturated fatty acids ratio (UFA/SFA) and increase in cyclopropane fatty acid (CFA) content, which corresponded to previous studies. Moreover, both effective and non-effective acid adaptation conditions resulted in decrease in the C18:1 cis-9/C18:1 trans-9 ratio, indicating that the C18:1 cis-9/C18:1 trans-9 ratio is associated with acid tolerance response but not with acid adaptation response. Taken together, this study indicated that the UFA/SFA and CFA content of BBMN68 were involved in acid adaptation and the C18:1 cis-9/C18:1 trans-9 ratio was involved in acid tolerance response.
Lu, Helen H; Cooper, James A; Manuel, Sharron; Freeman, Joseph W; Attawia, Mohammed A; Ko, Frank K; Laurencin, Cato T
2005-08-01
The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee, and limitations in existing reconstruction grafts have prompted an interest in tissue engineered solutions. Previously, we reported on a tissue-engineered ACL scaffold fabricated using a novel, three-dimensional braiding technology. A critical factor in determining cellular response to such a graft is material selection. The objective of this in vitro study was to optimize the braided scaffold, focusing on material composition and the identification of an appropriate polymer. The selection criteria are based on cellular response, construct degradation, and the associated mechanical properties. Three compositions of poly-alpha-hydroxyester fibers, namely polyglycolic acid (PGA), poly-L-lactic acid (PLLA), and polylactic-co-glycolic acid 82:18 (PLAGA) were examined. The effects of polymer composition on scaffold mechanical properties and degradation were evaluated in physiologically relevant solutions. Prior to culturing with primary rabbit ACL cells, scaffolds were pre-coated with fibronectin (Fn, PGA-Fn, PLAGA-Fn, PLLA-Fn), an important protein which is upregulated during ligament healing. Cell attachment and growth were examined as a function of time and polymer composition. While PGA scaffolds measured the highest tensile strength followed by PLLA and PLAGA, its rapid degradation in vitro resulted in matrix disruption and cell death over time. PLLA-based scaffolds maintained their structural integrity and exhibited superior mechanical properties over time. The response of ACL cells was found to be dependent on polymer composition, with the highest cell number measured on PLLA-Fn scaffolds. Surface modification of polymer scaffolds with Fn improved cell attachment efficiency and effected the long-term matrix production by ACL cells on PLLA and PLAGA scaffolds. Therefore based on the overall cellular response and its temporal mechanical and degradation properties in vitro, the PLLA braided scaffold pre-coated with Fn was found to be the most suitable substrate for ACL tissue engineering.
Elliott, Brian
2010-09-14
Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.
Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.
A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.
Tetraethyl orthosilicate-based glass composition and method
Wicks, G.G.; Livingston, R.R.; Baylor, L.C.; Whitaker, M.J.; O`Rourke, P.E.
1997-06-10
A tetraethyl orthosilicate-based, sol-gel glass composition with additives selected for various applications is described. The composition is made by mixing ethanol, water, and tetraethyl orthosilicate, adjusting the pH into the acid range, and aging the mixture at room temperature. The additives, such as an optical indicator, filler, or catalyst, are then added to the mixture to form the composition which can be applied to a substrate before curing. If the additive is an indicator, the light-absorbing characteristics of which vary upon contact with a particular analyte, the indicator can be applied to a lens, optical fiber, reagent strip, or flow cell for use in chemical analysis. Alternatively, an additive such as alumina particles is blended into the mixture to form a filler composition for patching cracks in metal, glass, or ceramic piping. 12 figs.
Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.
Nogueira, C A; Margarido, F
2012-01-01
At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency.
Adansonian Analysis and Deoxyribonucleic Acid Base Composition of Serratia marcescens
Colwell, R. R.; Mandel, M.
1965-01-01
Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of Serratia marcescens. J. Bacteriol. 89:454–461. 1965.—A total of 33 strains of Serratia marcescens were subjected to Adansonian analysis for which more than 200 coded features for each of the organisms were included. In addition, the base composition [expressed as moles per cent guanine + cytosine (G + C)] of the deoxyribonucleic acid (DNA) prepared from each of the strains was determined. Except for four strains which were intermediate between Serratia and the Hafnia and Aerobacter group C of Edwards and Ewing, the S. marcescens species group proved to be extremely homogeneous, and the different strains showed high affinities for each other (mean similarity, ¯S = 77%). The G + C ratio of the DNA from the Serratia strains ranged from 56.2 to 58.4% G + C. Many species names have been listed for the genus, but only a single clustering of the strains was obtained at the species level, for which the species name S. marcescens was retained. S. kiliensis, S. indica, S. plymuthica, and S. marinorubra could not be distinguished from S. marcescens; it was concluded, therefore, that there is only a single species in the genus. The variety designation kiliensis does not appear to be valid, since no subspecies clustering of strains with negative Voges-Proskauer reactions could be detected. The characteristics of the species are listed, and a description of S. marcescens is presented. PMID:14255714
An amino acid composition criterion for membrane active antimicrobials
NASA Astrophysics Data System (ADS)
Schmidt, Nathan; Lai, Ghee Hwee; Mishra, Abhijit; Bong, Dennis; McCray, Paul, Jr.; Selsted, Michael; Ouellette, Andre; Wong, Gerard
2011-03-01
Membrane active antimicrobials (AMPs) are short amphipathic peptides with broad spectrum anti microbial activity. While it is believed that their hydrophobic and cationic moieties are responsible for membrane-based mechanisms of action, membrane disruption by AMPs is manifested in a diversity of outcomes, such as pore formation, blebbing, and budding. This complication, along with others, have made a detailed, molecular understanding of AMPs difficult. We use synchrotron small angle xray scattering to investigate the interaction of model bacterial and eukaryotic cell membranes with archetypes from beta-sheet AMPs (e.g. defensins) and alpha-helical AMPs (e.g. magainins). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane rearrangement and phase behavior induced by these different peptides we will discuss the importance of amino acid composition on AMP design.
Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio
2013-01-01
When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L−1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L−1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large rearrangements in its lipid profile. PMID:24023914
Novel products from starch based feedstocks
USDA-ARS?s Scientific Manuscript database
There has been progress in the utilization of starch as a partial replacement for petroleum based plastics, but it remains a poor direct substitute for plastics, and a moderate one for composites. Our research focuses on using polymers produced from direct fermentation such as poly(lactic acid) or m...
NASA Astrophysics Data System (ADS)
Lin, Che-Tseng; Huang, Tzu-Yang; Huang, Jau-Jiun; Wu, Nae-Lih; Leung, Man-kit
2016-10-01
Multifunctional co-poly(amic acid) (PAmA) containing pyrene and carboxylic acid side-chains is developed as a binder for the recycled kerf-loss Si-Ni-SiC composite anode. The capacity retention performance of the lithium-ion battery can be apparently enhanced. In a long-cycle test of 300 lithiation/delithiation cycles, 79% of capacity retention is achieved. In considering that the recycled kerf-loss Si sample contains 38 wt% inactive micro-sized SiC abrasive particles, the achieved capacity of 648 mAh g-1 is reasonably high in comparison to other reported values. Small anode thickness expansion of 43% is found in a 100 cycle test, reflecting that the use of the PAmA binder can create strong interconnection among the silicon particles, conductive carbons and copper electrode.
Qian, Kuangnan; Edwards, Kathleen E; Dechert, Gary J; Jaffe, Stephen B; Green, Larry A; Olmstead, William N
2008-02-01
We report a new method for rapid measurement of total acid number (TAN) and TAN boiling point (BP) distribution for petroleum crude and products. The technology is based on negative ion electrospray ionization mass spectrometry (ESI-MS) for selective ionization of petroleum acid and quantification of acid structures and molecular weight distributions. A chip-based nanoelectrospray system enables microscale (<200 mg) and higher throughput (20 samples/h) measurement. Naphthenic acid structures were assigned based on nominal masses of a set of predefined acid structures. Stearic acid is used as an internal standard to calibrate ESI-MS response factors for quantification purposes. With the use of structure-property correlations, boiling point distributions of TAN values can be calculated from the composition. The rapid measurement of TAN BP distributions by ESI is demonstrated for a series of high-TAN crudes and distillation cuts. TAN values determined by the technique agree well with those by the titration method. The distributed properties compare favorably with those measured by distillation and measurement of TAN of corresponding cuts.
Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity.
Timmen, H; Patton, S
1988-07-01
Populations of large and small milk fat globules were isolated and analyzed to determine differences in fatty acid composition. Globule samples were obtained by centrifugation from milks of a herd and of individual animals produced under both pasture and barn feeding. Triacylglycerols of total globule lipids were prepared by thin layer chromatography and analyzed for fatty acid composition by gas chromatography. Using content of the acids in large globules as 100%, small globules contained fewer short-chain acids, -5.9%, less stearic acid, -22.7%, and more oleic acids, +4.6%, mean values for five trials. These differences are consistent with alternative use of short-chain acids or oleic acid converted from stearic acid to maintain liquidity at body temperature of milk fat globules and their precursors, intracellular lipid droplets. Stearyl-CoA desaturase (EC 1.14.99.5), which maintains fluidity of cellular endoplasmic reticulum membrane, is suggested to play a key role in regulating globule fat liquidity. Possible origins of differences between individual globules in fatty acid composition of their triacylglycerols are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugama, T.; Petrakis, L.; Webster, R.P.
A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a fluoro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP{sub 0}(OH){sub 2}, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided.
Dating silk by capillary electrophoresis mass spectrometry.
Moini, Mehdi; Klauenberg, Kathryn; Ballard, Mary
2011-10-01
A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids.
Watanabe, Tomoko; Kawai, Ryoko
2018-01-01
The latest version of the Standard Tables of Food Composition in Japan-2015- comprises the main food composition table (Standard Tables of Food Composition in Japan-2015-[Seventh revised Edition)) and three supplementary books. The supplementary books are Standard Tables of Food Composition in Japan - 2015 - (Seventh Revised Edition) - Amino Acids -, Standard Tables of Food Composition in Japan - 2015 - (Seventh Revised Edition) - Fatty Acids - and Standard Tables of Food Composition in Japan - 2015 - (Seventh Revised Edition) - Available Carbohydrates, Polyols and Organic Acids-. We believe understanding these food composition tables can give greater insight into Japan's gastronomic culture and changes in eating habits. We expect them to play important roles as part of the East Asia food composition tables. Copyright © 2017. Published by Elsevier Ltd.
Fan, Linpeng; Cai, Zengxiao; Zhang, Kuihua; Han, Feng; Li, Jingliang; He, Chuanglong; Mo, Xiumei; Wang, Xungai; Wang, Hongsheng
2014-05-01
Silk fibroin (SF) from Bombyx mori has many established excellent properties and has found various applications in the biomedical field. However, some abilities or capacities of SF still need improving to meet the need for using practically. Indeed, diverse SF-based composite biomaterials have been developed. Here we report the feasibility of fabricating pantothenic acid (vitamin B5, VB5)-reinforcing SF nanofibrous matrices for biomedical applications through green electrospinning. Results demonstrated the successful loading of D-pantothenic acid hemicalcium salt (VB5-hs) into resulting composite nanofibers. The introduction of VB5-hs did not alter the smooth ribbon-like morphology and the silk I structure of SF, but significantly decreased the mean width of SF fibers. SF conformation transformed into β-sheet from random coil when composite nanofibrous matrices were exposed to 75% (v/v) ethanol vapor. Furthermore, nanofibers still remained good morphology after being soaked in water environment for five days. Interestingly, as-prepared composite nanofibrous matrices supported a higher level of cell viability, especially in a long culture period and significantly assisted skin cells to survive under oxidative stress compared with pure SF nanofibrous matrices. These findings provide a basis for further extending the application of SF in the biomedical field, especially in the personal skin-care field. Copyright © 2013 Elsevier B.V. All rights reserved.
Kikalishvili, B Iu; Zurabashvili, D Z; Zurabashvili, Z A; Turabelidze, D G; Shanidze, L A
2012-11-01
The aim of the study is individual qualitively and quantitatively identification of fatty acids in Pkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seed oil and prediction of its biological activity. Using high-effective liquid chromatogramphy fatty acids were franctionated. Their relative concentrations are expressed as percentages of the total fatty acid component. Identification of the fatty acids consituents is based on comparison of their retention time with that of known standards. The predominant fatty acids in the oils were palmitic, oleic and stearic acids. The investigation demonstrated that fatty acids composition takes marked part in lipid metabolism of biological necessary components. The most interesting result of the investigation was the detection of unusual for the essentain oil begenic acid.
Jiang, Xiaoying; Wei, Rong; Zhao, Yanjun; Zhang, Tongliang
2008-05-01
The knowledge of subnuclear localization in eukaryotic cells is essential for understanding the life function of nucleus. Developing prediction methods and tools for proteins subnuclear localization become important research fields in protein science for special characteristics in cell nuclear. In this study, a novel approach has been proposed to predict protein subnuclear localization. Sample of protein is represented by Pseudo Amino Acid (PseAA) composition based on approximate entropy (ApEn) concept, which reflects the complexity of time series. A novel ensemble classifier is designed incorporating three AdaBoost classifiers. The base classifier algorithms in three AdaBoost are decision stumps, fuzzy K nearest neighbors classifier, and radial basis-support vector machines, respectively. Different PseAA compositions are used as input data of different AdaBoost classifier in ensemble. Genetic algorithm is used to optimize the dimension and weight factor of PseAA composition. Two datasets often used in published works are used to validate the performance of the proposed approach. The obtained results of Jackknife cross-validation test are higher and more balance than them of other methods on same datasets. The promising results indicate that the proposed approach is effective and practical. It might become a useful tool in protein subnuclear localization. The software in Matlab and supplementary materials are available freely by contacting the corresponding author.
Johnson, Ian; Akari, Khalid; Liu, Huinan
2013-09-20
Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.
NASA Astrophysics Data System (ADS)
Johnson, Ian; Akari, Khalid; Liu, Huinan
2013-09-01
Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.
Naito, Yuichi I; Chikaraishi, Yoshito; Drucker, Dorothée G; Ohkouchi, Naohiko; Semal, Patrick; Wißing, Christoph; Bocherens, Hervé
2016-04-01
This study provides a refined view on the diet and ecological niche of Neanderthals. The traditional view is that Neanderthals obtained most of their dietary protein from terrestrial animals, especially from large herbivores that roamed the open landscapes. Evidence based on the conventional carbon and nitrogen isotopic composition of bulk collagen has supported this view, although recent findings based on plant remains in the tooth calculus, microwear analyses, and small game and marine animal remains from archaeological sites have raised some questions regarding this assumption. However, the lack of a protein source other than meat in the Neanderthal diet may be due to methodological difficulties in defining the isotopic composition of plants. Based on the nitrogen isotopic composition of glutamic acid and phenylalanine in collagen for Neanderthals from Spy Cave (Belgium), we show that i) there was an inter-individual dietary heterogeneity even within one archaeological site that has not been evident in bulk collagen isotopic compositions, ii) they occupied an ecological niche different from those of hyenas, and iii) they could rely on plants for up to ∼20% of their protein source. These results are consistent with the evidence found of plant consumption by the Spy Neanderthals, suggesting a broader subsistence strategy than previously considered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fombong, Forkwa Tengweh; Van Der Borght, Mik; Vanden Broeck, Jozef
2017-09-16
The longhorn grasshopper, Ruspolia differens (Serville), plays an important role as a food source across Sub-Saharan Africa, where it is consumed as a delicacy in both rural and urban areas. The effect of two drying methods (freeze-drying and oven-drying), employed after blanching, on the proximate, fatty acid and mineral composition of the two most common morphs was determined. Ruspolia differens grasshoppers were harvested in Uganda and Kenya from wild swarms during the rainy periods of November-December 2016. Based on cuticular coloration, we identified three morphs, green, brown and purple, which occurred at a ratio of 65:33:2, respectively. Results indicated that these insects have a high lipid content of 36%, as well as significant protein levels ranging between 33% and 46% dry matter. Oleic acid (44%) and palmitic acid (28%) were the two most abundant fatty acids; while the presence of arachidonic acid (0.6%) and docosahexaenoic acid (0.21%) suggests that Ruspolia differens is also a source of polyunsaturated fatty acids. The observed amino acid profile showed similar trends in all morphs, and all essential amino acids were present. Calcium (896-1035 mg/100 g), potassium (779-816 mg/100 g) and phosphorus (652-685 mg/100 g) were quite high among the minerals. The presence of the trace elements iron (217-220 mg/100 g), zinc (14.2-14.6 mg/100 g), manganese (7.4-8.3 mg/100 g) and copper (1.66 mg/100 g) suggests that inclusion of these grasshoppers in human diets may aid in combatting micronutrient deficiencies. Oven-drying Ruspolia differens delivered the same nutritional quality as freeze-drying. Hence, both drying approaches can be adequately used to formulate insect-based food products without noticeable nutritional changes.
Bourgou, Soumaya; Bettaieb, Iness; Saidani, Moufida; Marzouk, Brahim
2010-12-08
This research evaluated the effect of saline conditions on fruit yield, fatty acids, and essential oils compositions and phenolics content of black cumin (Nigella sativa). This plant is one of the most commonly found aromatics in the Mediterranean kitchen. Increasing NaCl levels to 60 mM decreased significantly the fruits yield by 58% and the total fatty acids amount by 35%. Fatty acids composition analysis indicated that linoleic acid was the major fatty acid (58.09%) followed by oleic (19.21%) and palmitic (14.77%) acids. Salinity enhanced the linoleic acid percentage but did not affect the unsaturation degree of the fatty acids pool and thus the oil quality. The essential oil yield was 0.39% based on the dry weight and increased to 0.53, 0.56, and 0.72% at 20, 40, and 60 mM NaCl. Salinity results on the modification of the essential oil chemotype from p-cymene in controls to γ-terpinene/p-cymene in salt-stressed plants. The amounts of total phenolics were lower in the treated plants. Salinity decreased mainly the amount of the major class, benzoics acids, by 24, 29, and 44% at 20, 40, and 60 mM NaCl. The results suggest that salt treatment may regulate bioactive compounds production in black cumin fruits, influencing their nutritional and industrial values.
Lee, Jong Soo; Cho, Kang Su; Lee, Seung Hwan; Yoon, Young Eun; Kang, Dong Hyuk; Jeong, Won Sik; Jung, Hae Do; Kwon, Jong Kyou
2018-01-01
The aim of this study was to investigate the correlation between stone composition and single-energy noncontrast computed tomography (NCCT) parameters, including stone heterogeneity index (SHI) and mean stone density (MSD), in patients with urinary calculi. We retrospectively reviewed medical records of 255 patients who underwent operations or procedures for urinary stones or had spontaneous stone passage between December 2014 and October 2015. Among these, 214 patients with urinary calculi who underwent NCCT and stone composition analyses were included in the study. Maximal stone length (MSL), mean stone density (MSD), and stone heterogeneity index (SHI) were determined on pretreatment NCCT. The mean MSD (454.68±177.80 HU) and SHI (115.82±96.31 HU) of uric acid stones were lower than those of all other types. Based on post hoc tests, MSD was lower for uric acid stones than for the other types (vs. CaOx: P<0.001; vs. infection stones: P<0.001). SHI was lower for uric acid stones than for the other types (vs. CaOx: P<0.001; vs. infection stones: P<0.001) Receiver operating characteristic curves of uric acid stones for MSD and SHI demonstrated that SHI (cut-off value: 140.4 HU) was superior to MSD (cut-off value: 572.3 HU) in predicting uric acid stones (P<0.001). PMID:29649219
A comprehensive bioinformatic analysis of hepatitis D virus full-length genomes.
Delfino, C M; Cerrudo, C S; Biglione, M; Oubiña, J R; Ghiringhelli, P D; Mathet, V L
2018-02-06
In association with hepatitis B virus (HBV), hepatitis delta virus (HDV) is a subviral agent that may promote severe acute and chronic forms of liver disease. Based on the percentage of nucleotide identity of the genome, HDV was initially classified into three genotypes. However, since 2006, the original classification has been further expanded into eight clades/genotypes. The intergenotype divergence may be as high as 35%-40% over the entire RNA genome, whereas sequence heterogeneity among the isolates of a given genotype is <20%; furthermore, HDV recombinants have been clearly demonstrated. The genetic diversity of HDV is related to the geographic origin of the isolates. This study shows the first comprehensive bioinformatic analysis of the complete available set of HDV sequences, using both nucleotide and protein phylogenies (based on an evolutionary model selection, gamma distribution estimation, tree inference and phylogenetic distance estimation), protein composition analysis and comparison (based on the presence of invariant residues, molecular signatures, amino acid frequencies and mono- and di-amino acid compositional distances), as well as amino acid changes in sequence evolution. Taking into account the congruent and consistent results of both nucleotide and amino acid analyses of GenBank available sequences (recorded as of January, 2017), we propose that the eight hepatitis D virus genotypes may be grouped into three large genogroups fully supported by their shared characteristics. © 2018 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
We investigated the interactions of molasses or corn meal [nonstructural carbohydrate (NSC) sources] with flaxseed meal or a soybean-sunflower meal protein mix [rumen-degradable protein (RDP) sources] on animal production, milk fatty acids profile, and nutrient utilization in organic Jersey cows fed...
Computer-aided design of polymers and composites
NASA Technical Reports Server (NTRS)
Kaelble, D. H.
1985-01-01
This book on computer-aided design of polymers and composites introduces and discusses the subject from the viewpoint of atomic and molecular models. Thus, the origins of stiffness, strength, extensibility, and fracture toughness in composite materials can be analyzed directly in terms of chemical composition and molecular structure. Aspects of polymer composite reliability are considered along with characterization techniques for composite reliability, relations between atomic and molecular properties, computer aided design and manufacture, polymer CAD/CAM models, and composite CAD/CAM models. Attention is given to multiphase structural adhesives, fibrous composite reliability, metal joint reliability, polymer physical states and transitions, chemical quality assurance, processability testing, cure monitoring and management, nondestructive evaluation (NDE), surface NDE, elementary properties, ionic-covalent bonding, molecular analysis, acid-base interactions, the manufacturing science, and peel mechanics.
Kaith, B S; Jindal, R; Jana, A K; Maiti, M
2010-09-01
In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.
Octopus lipid and vitamin E composition: interspecies, interorigin, and nutritional variability.
Torrinha, Alvaro; Cruz, Rebeca; Gomes, Filipa; Mendes, Eulália; Casal, Susana; Morais, Simone
2014-08-20
Octopus vulgaris, Octopus maya, and Eledone cirrhosa from distinct marine environments [Northeast Atlantic (NEA), Northwest Atlantic (NWA), Eastern Central Atlantic, Western Central Atlantic (WCA), Pacific Ocean, and Mediterranean Sea] were characterized regarding their lipid and vitamin E composition. These species are those commercially more relevant worldwide. Significant interspecies and interorigin differences were observed. Unsaturated fatty acids account for more than 65% of total fatty acids, mostly ω-3 PUFA due to docosahexaenoic (18.4-29.3%) and eicosapentanoic acid (11.4-23.9%) contributions. The highest ω-3 PUFA amounts and ω-3/ω-6 ratios were quantified in the heaviest specimens, O. vulgaris from NWA, with high market price, and simultaneously in the lowest graded samples, E. cirrhosa from NEA, of reduced dimensions. Although having the highest cholesterol contents, E. cirrhosa from NEA and O. maya from WCA have also higher protective fatty acid indexes. Chemometric discrimination allowed clustering the selected species and several origins based on lipid and vitamin E profiles.
An overview of the recent developments in polylactide (PLA) research.
Madhavan Nampoothiri, K; Nair, Nimisha Rajendran; John, Rojan Pappy
2010-11-01
The concept of biodegradable plastics is of considerable interest with respect to solid waste accumulation. Greater efforts have been made in developing degradable biological materials without any environmental pollution to replace oil-based traditional plastics. Among numerous kinds of degradable polymers, polylactic acid sometimes called polylactide, an aliphatic polyester and biocompatible thermoplastic, is currently a most promising and popular material with the brightest development prospect and was considered as the 'green' eco friendly material. Biodegradable plastics like polyglycolic acid, polylactic acid, polycaprolactone, polyhydroxybutyrate, etc. are commercially available for controlled drug releases, implantable composites, bone fixation parts, packaging and paper coatings, sustained release systems for pesticides and fertilizers and compost bags etc. This review will provide information on current PLA market, brief account on recent developments in the synthesis of lactic acid (monomer of PLA) through biological route, PLA synthesis, unique material properties of PLA and modification of those by making copolymers and composites, PLA degradation and its wide spectrum applications.
NASA Astrophysics Data System (ADS)
Xie, Jianfei; Qiu, Yiping
2009-07-01
Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.
Noorbakhsh-Soltani, S M; Zerafat, M M; Sabbaghi, S
2018-06-01
Environmental concerns have led to extensive research for replacing polymer-based food packaging with bio-nano-composites. In this study, incorporation of nano-cellulose into gelatin and starch matrices is investigated for this purpose. Chitosan is used to improve mechanical, anti-fungal and waterproof properties. Experiments are designed and analyzed using response surface methodology. Nano-Cellulose is synthesized via acid hydrolysis and incorporated in base matrices through wet processing. Also, tensile strength test, food preservation, transparency in visible and UV and water contact angle are performed on the nano-composite films. DSC/TGA and air permeability tests are also performed on the optimal films. The results show that increasing nano-cellulose composition to 10% leads to increase the tensile strength at break to 8121 MN/m 2 and decrease the elongation at break. Also, increasing chitosan composition from 5% to 30% can enhance food preservation up to 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydrofluoric acid-resistant composite window and method for its fabrication
Ostenak, C.A.; Mackay, H.A.
1985-07-18
A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.
Hydrofluoric acid-resistant composite window and method for its fabrication
Ostenak, Carl A.; Mackay, Harold A.
1987-01-01
A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.
Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.
Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang
2016-05-01
In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.
Noroozisharaf, Alireza; Kaviani, Maryam
2018-05-01
Humic acid is natural biological organic, which has a high effect on plant growth and quality. However, the mechanisms of the promoting effect of humic acid on the volatile composition were rarely reported. In this study, the effects of soil application of humic acid on the chemical composition and nutrients uptake of Thymus vulgaris were investigated. Treatments comprised 0, 50, 75 and 100 g m -2 . Essential oil was extracted by hydrodistillation and analyzed using GC-MS and GC-FID. Essential oil content was enhanced by increase of the humic acid level and its content ranged from 0.8% (control) to 2.0% (75 g m -2 ). Thirty-two volatile compounds were identified and these compounds were considerably affected by humic acid. The highest percentage of thymol (74.15%), carvacrol (6.20%), p -cymene (4.24%), borneol (3.42%), trans -caryophyllene (1.70%) and cis -sabinene hydrate (1.35%) as major compounds were observed in T. vulgaris under 100 g m -2 humic acid. There was a linear relationship ( R 2 = 97%) between humic acid levels and thymol as a major compound. The oils were dominated by oxygenated monoterpenes followed by monoterpene hydrocarbons and sesquiterpene hydrocarbons. Based on the path coefficient analysis, the highest direct effects on essential oil content were observed in monoterpene esters (3.465) and oxygenated sesquiterpenes (3.146). The humic acid application also enhanced the uptake of N, P, K, Mg and Fe in garden thyme. The highest N (2.42%), P (0.75%), K (2.63%), Mg (0.23%) and Fe (1436.58 ppm) were observed in medium supplemented with 100 g m -2 humic acid. In all, the utilization of humic acid could positively change nutrients uptake, essential oil content and its major constituents in T. vulgaris .
Majdoub-Mathlouthi, L; Saïd, B; Say, A; Kraiem, K
2013-03-01
This study was conducted to evaluate concentrate level (CL) and slaughter body weight (SW) effects on growth performances, carcass traits and meat quality of Barbarine lambs. Twenty-four weaned male lambs (23.1 kg), receiving an oat-hay based diet, were allotted into two groups. The LCL group received low concentrate level (300 g) and the HCL group received high concentrate level (600 g). Lambs were slaughtered at two prefixed weights (35 and 42 kg). For each group and each weight, six lambs were slaughtered. Lambs from HCL group had higher ADG, carcass yields, carcass compactness and subcutaneous fat thickness, and lower carcass meat proportion. CL increase did not affect meat pH, meat and fat color, chemical and fatty acid composition. Late slaughtering improved carcass yields and increased carcass adiposity. However, it did not affect carcass meat proportion and shoulder tissue composition. SW had effect on meat color and fatty acid composition. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik
2016-03-01
A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.
Garmasheva, I; Vasyliuk, O; Kovalenko, N; Ostapchuk, A; Oleschenko, L
2015-09-01
The intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains isolated from Ukrainian traditional fermented foods was examined. Seven cellular fatty acids were identified. All Lact. plantarum strains investigated contained C16:0 (from 7·54 to 49·83% of total fatty acids), cC18:1 (3·23-38·67% of total fatty acids) and cycC19:0 acids (9·03-67·68% of total fatty acids) as the major fatty acids. The tC18:1 acid made up 1·47-22·0% of the total fatty acids. The C14:0 and C16:1 acids were present in small amounts (0·22-6·96% and 0·66-7·42% respectively) in most Lact. plantarum strains. Differences in relative contents of some fatty acids between Lact. plantarum strains depending on the source isolation were found. Isolates of dairy origin contained slightly greater levels of the C16:0 and tC18:1 fatty acids and lower levels of the cC18:1 than strains obtained from fermented vegetables. The origin of Lact. plantarum strains affects their fatty acids composition, which in turn, appears to be related to their ability to growth under stress factors. Cellular fatty acids composition is an important chemotaxonomic characteristic of bacterial cells. At the same time cellular fatty acids play a key role in maintaining the viability of micro-organisms in different environmental conditions. In this study, intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains was examined. This work provides novel and important information about a relationship between cellular fatty acids composition of Lact. plantarum strains and source of isolation or stress resistance profile. Our results showed that cellular fatty acids composition is quite diverse among Lact. plantarum strains derived from different sources and may reflect previous cell's history. Our findings should be considered in chemotaxonomic studies of lactic acid bacteria and its ecology. © 2015 The Society for Applied Microbiology.
da Costa, Elisabete; Silva, Joana; Mendonça, Sofia Hoffman; Abreu, Maria Helena; Domingues, Maria Rosário
2016-01-01
In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs’ bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals. PMID:27213410
A simple 2D composite image analysis technique for the crystal growth study of L-ascorbic acid.
Kumar, Krishan; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir
2017-06-01
This work was destined for 2D crystal growth studies of L-ascorbic acid using the composite image analysis technique. Growth experiments on the L-ascorbic acid crystals were carried out by standard (optical) microscopy, laser diffraction analysis, and composite image analysis. For image analysis, the growth of L-ascorbic acid crystals was captured as digital 2D RGB images, which were then processed to composite images. After processing, the crystal boundaries emerged as white lines against the black (cancelled) background. The crystal boundaries were well differentiated by peaks in the intensity graphs generated for the composite images. The lengths of crystal boundaries measured from the intensity graphs of composite images were in good agreement (correlation coefficient "r" = 0.99) with the lengths measured by standard microscopy. On the contrary, the lengths measured by laser diffraction were poorly correlated with both techniques. Therefore, the composite image analysis can replace the standard microscopy technique for the crystal growth studies of L-ascorbic acid. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Johnson, J. J.; Polito, M. J.; Olin, J.
2016-02-01
Determining the relative contributions of primary producers to salt marsh food webs is fundamental to understanding how these systems are structured. Biomarkers such as bulk carbon isotopes (13C/12C) and fatty acids have become popular tracers of trophic dynamics, based on the principle that the composition of biomarkers in consumer tissues is a reflection of the composition of these same biomarkers in a consumer's diet. However, the use of bulk stable isotope and fatty acid analyses to assess carbon flow in food webs is often hampered by confounding factors such as isotopic fractionation and fatty acid modifications that can occur between trophic levels. In contrast, compound-specific stable isotope analysis of amino acids may offer a more precise tracking of carbon flow through complex food webs. This is because the isotopic values of essential amino acids in consumer tissues are assimilated largely unchanged from their primary sources at the base of the food web. The aim of this study was to test the consistency of three different methods (bulk carbon stable isotope, fatty acid and compound-specific stable isotope analyses) while examining the carbon source pool underlying the diet of a common marsh consumer, the seaside sparrow (A. maritimus). This comparison allows us to gain a better idea of the relative merits of these analytical methods and contribute to a clearer model of overall trophic dynamics in a salt marsh food web.
Rodríguez-Alcalá, Luis Miguel; Calvo, María Visitación; Fontecha, Javier
2013-01-01
A gas chromatography procedure using a 30-m capillary column (VF-23ms) has been optimized for quick analysis (run time less than 20 min). The method is suitable for routine analysis of the fatty acid composition of edible fat and oil samples (milk, fish, vegetal and synthetic origin). The results were comparable with those obtained with a 100-m-long CP-Sil 88 column (run times between 60 and more than 100 min) in the analysis of geometric and positional isomers of polyunsaturated fatty acids. The achieved resolution of compounds from 4 to 26 carbon atoms with 0-6 double bonds, as omega-3 and omega-6 fatty acids, major trans-octadecenoic isomers and conjugated linoleic acid isomers, was higher than those reported in other proposed and reference methods for similar samples using short-length columns. The response factors obtained from the fatty acid composition of reference milk fat exhibited high feasibility and the inter-assay (VF23ms versus CP-Sil 88) and intra-assays based on relative standard deviation showed good accuracy, because they were lower than 10%.
Amino Acid Profiles in Term and Preterm Human Milk through Lactation: A Systematic Review
Zhang, Zhiying; Adelman, Alicia S.; Rai, Deshanie; Boettcher, Julia; Lőnnerdal, Bo
2013-01-01
Amino acid profile is a key aspect of human milk (HM) protein quality. We report a systematic review of total amino acid (TAA) and free amino acid (FAA) profiles, in term and preterm HM derived from 13 and 19 countries, respectively. Of the 83 studies that were critically reviewed, 26 studies with 3774 subjects were summarized for TAA profiles, while 22 studies with 4747 subjects were reviewed for FAA. Effects of gestational age, lactation stage, and geographical region were analyzed by Analysis of Variance. Data on total nitrogen (TN) and TAA composition revealed general inter-study consistency, whereas FAA concentrations varied among studies. TN and all TAA declined in the first two months of lactation and then remained relatively unchanged. In contrast, the FAA glutamic acid and glutamine increased, peaked around three to six months, and then declined. Some significant differences were observed for TAA and FAA, based on gestational age and region. Most regional TAA and FAA data were derived from Asia and Europe, while information from Africa was scant. This systematic review represents a useful evaluation of the amino acid composition of human milk, which is valuable for the assessment of protein quality of breast milk substitutes. PMID:24288022
Gauza-Włodarczyk, Marlena; Kubisz, Leszek; Włodarczyk, Dariusz
2017-11-01
The amino acid composition of collagen is a characteristic feature of this protein. Collagen, irrespective of its origin, contains 19 amino acids, including hydroxyproline which does not occur in other proteins. Its atypical amino acid composition is characterized by high content of proline and glycine, as well as the absence of cysteine. This paper shows the comparison of qualitative composition of amino acids of fish skin (FS) collagen, bovine Achilles tendon (BAT) collagen, and bone collagen. Results demonstrate that FS collagen as well as BAT collagen contains no cysteine and significantly different amount of hydroxyproline. In BAT collagen hydroxyproline content is 30% higher than hydroxyproline content of FS collagen. In bone collagen the amount of hydroxyproline is two times more than in FS collagen. Furthermore, it is shown that sensitivity to radiation of individual amino acids varies and depends on the absorbed dose of ionizing radiation. The changes observed in the amino acid composition become very intense for the doses of 500kGy and 1000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.
Fattahi, Amir; Darabi, Masoud; Farzadi, Laya; Salmassi, Ali; Latifi, Zeinab; Mehdizadeh, Amir; Shaaker, Maghsood; Ghasemnejad, Tohid; Roshangar, Leila; Nouri, Mohammad
2018-03-01
Since fatty acid composition of uterus phospholipids is likely to influence embryo implantation, this study was conducted to investigate the effects of dietary omega-3 and -6 fatty acids on implantation rate as well as uterine phospholipid fatty acids composition during mice pre-implantation period. Sixty female mice were randomly distributed into:1) control (standard pellet), 2) omega-3 (standard pellet + 10% w/w of omega-3 fatty acids) and 3) omega-6 (standard pellet + 10% w/w of omega-6 fatty acids). Uterine phospholipid fatty acid composition during the pre-implantation window (days 1-5 of pregnancy) was analyzed using gas-chromatography. The implantation rate on the fifth day of pregnancy was also determined. Our results showed that on days 1, 2 and 3 of pregnancy, the levels of arachidonic acid (ARA) as well as total omega-6 fatty acids were significantly higher and the levels of linolenic acid and total omega-3 fatty acids were statistically lower in the omega-6 group compared to the omega-3 group (p < 0.05). On the fourth day of pregnancy, only the ARA, total omega-6 fatty acids, and poly-unsaturated fatty acids levels were significantly different between the two dietary supplemented groups (p < 0.05). There were positive correlations between the levels of omega-6 fatty acids, especially ARA, with the implantation rate. The present study showed that diets rich in omega-3 and -6 fatty acids could differently modify uterine phospholipid fatty acid composition and uterine levels of phospholipid ARA, and that the total omega-6 fatty acids had a positive association with the implantation rate. Copyright © 2017 Elsevier Inc. All rights reserved.
Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent.
Santra, Santimukul; Jativa, Samuel D; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J Manuel
2012-08-28
Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.
Chen, Minjian; Xu, Bin; Ji, Wenliang; Qiao, Shanlei; Hu, Nan; Hu, Yanhui; Wu, Wei; Qiu, Lianglin; Zhang, Ruyang; Wang, Yubang; Wang, Shoulin; Zhou, Zuomin; Xia, Yankai; Wang, Xinru
2012-01-01
Male reproductive toxicity induced by exposure to bisphenol A (BPA) has been widely reported. The testes have proven to be a major target organ of BPA toxicity, so studying testicular metabolite variation holds promise for the discovery of mechanisms linked to the toxic effects of BPA on reproduction. Male Sprague-Dawley rats were orally administered doses of BPA at the levels of 0, 50 mg/kg/d for 8 weeks. We used an unbiased liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomics approach to discover, identify, and analyze the variation of testicular metabolites. Two n-6 fatty acids, linoleic acid (LA) and arachidonic acid (AA) were identified as potential testicular biomarkers. Decreased levels of LA and increased levels of AA as well as AA/LA ratio were observed in the testes of the exposed group. According to these suggestions, testicular antioxidant enzyme levels were detected. Testicular superoxide dismutase (SOD) declined significantly in the exposed group compared with that in the non-exposed group, and the glutathione peroxidase (GSH-Px) as well as catalase (CAT) also showed a decreasing trend in BPA treated group. BPA caused testicular n-6 fatty acid composition variation and decreased antioxidant enzyme levels. This study emphasizes that metabolomics brings the promise of biomarkers identification for the discovery of mechanisms underlying reproductive toxicity.
NASA Technical Reports Server (NTRS)
Otousa, Joseph E. (Inventor); Thomas, Clark S. (Inventor); Foster, Robert E. (Inventor)
1991-01-01
The present invention is directed to a chemical etching composition for etching metals or metallic alloys. The composition includes a solution of hydrochloric acid, phosphoric acid, ethylene glycol, and an oxidizing agent. The etching composition is particularly useful for etching metal surfaces in preparation for subsequent fluorescent penetrant inspection.
The essential fatty acid requirement of milkfish (Chanos chanos Forsskal).
Borlongan, I G
1992-02-01
The essential fatty acid (EFA) requirement of milkfish was examined by a 12-week feeding trial using defined, purified diets at water temperature of 28-29°C and salinity of 32‰. The test diets contained varying levels of 18:0 (triglyceride form, TG), 18:3(n-3), 18:2(n-6) and (n-3) highly unsaturated fatty acids (n-3 HUFA). Milkfish juveniles were starved for 7 days and were than fed lipid-free diet for 30 days before the initiation of feeding trials. Low growth and feed efficiency together with high mortalities were observed in fish fed the lipid-free diet as well as in the EFA-deficient diet. Supplementation of 2% 18:2(n-6) to the tristearin based diet did not improve growth rate of milkfish as effectively as feeding with (n-3) fatty acids. The highest weight gain was obtained in milkfish fed a combination of 5% 18:0 + 1.0% 18:3(n-3) + 0.5% 20:5(n-3) + 0.5% 22:6(n-3) although the supplementation of 2% 18:3(n-3) alone or combination of 0.5% 20:5(n-3) + 0.5% 22:6(n-3) to the tristearin based diets were also effective for improvement of growth. Thus, (n-3) fatty acids, such as 18:3(n-3) and (n-3)HUFA were nutritionally more important than 18:2(n-6) for milkfish. The fatty acid composition of the polar lipids from whole body of milkfish juveniles fed the various test diets were influenced by the composition of the dietary fatty acids.
Li, Zhan-Chao; Zhou, Xi-Bin; Dai, Zong; Zou, Xiao-Yong
2009-07-01
A prior knowledge of protein structural classes can provide useful information about its overall structure, so it is very important for quick and accurate determination of protein structural class with computation method in protein science. One of the key for computation method is accurate protein sample representation. Here, based on the concept of Chou's pseudo-amino acid composition (AAC, Chou, Proteins: structure, function, and genetics, 43:246-255, 2001), a novel method of feature extraction that combined continuous wavelet transform (CWT) with principal component analysis (PCA) was introduced for the prediction of protein structural classes. Firstly, the digital signal was obtained by mapping each amino acid according to various physicochemical properties. Secondly, CWT was utilized to extract new feature vector based on wavelet power spectrum (WPS), which contains more abundant information of sequence order in frequency domain and time domain, and PCA was then used to reorganize the feature vector to decrease information redundancy and computational complexity. Finally, a pseudo-amino acid composition feature vector was further formed to represent primary sequence by coupling AAC vector with a set of new feature vector of WPS in an orthogonal space by PCA. As a showcase, the rigorous jackknife cross-validation test was performed on the working datasets. The results indicated that prediction quality has been improved, and the current approach of protein representation may serve as a useful complementary vehicle in classifying other attributes of proteins, such as enzyme family class, subcellular localization, membrane protein types and protein secondary structure, etc.
Lerch, Thomas Z.; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André
2011-01-01
Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [13C]2,4-D, [13C]glucose, or mixtures of both substrates alternatively labeled with 13C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the 13C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments. PMID:21856833
Souza, Aloisio H P; Gohara, Aline K; Rotta, Eliza M; Chaves, Marcia A; Silva, Claudia M; Dias, Lucia F; Gomes, Sandra T M; Souza, Nilson E; Matsushita, Makoto
2015-03-30
Hamburger is a meat-based food that is easy to prepare and is widely consumed. It can be enriched using different ingredients, such as chia's by-product, which is rich in omega-3. Chemometrics is a very interesting tool to assess the influence of ingredients in the composition of foods. A complete factorial design 2(2) (two factors in two levels) with duplicate was performed to investigate the influence of the factors (1) concentration of textured soy proteins (TSP) and (2) concentration of chia flour partially defatted (CFPD) as a partial replacement for the bovine meat and porcine fat mix in hamburgers. The results of proximal composition, lipid oxidation, fatty acids sums, ratios, and nutritional indexes were used to propose statistical models. The factors TSP and CFPD were significant, and the increased values contributed to improve the composition in fatty acids, crude protein, and ash. Principal components analysis distinguished the samples with a higher content of chia. In desirability analysis, the highest level of TSP and CFPD was described as the optimal region, and it was not necessary to make another experimental point. The addition of chia's by-product is an alternative to increase the α-linolenic contents and to obtain nutritionally balanced food. © 2014 Society of Chemical Industry.
Youssef, Ahmed M; El-Samahy, Magda Ali; Abdel Rehim, Mona H
2012-08-01
Conducting paper based on natural cellulosic fibers and conductive polymers was prepared using unbleached bagasse and/or rice straw fibers (as cellulosic raw materials) and polyaniline (PANi) as conducting polymer. These composites were synthesized by in situ emulsion polymerization using ammonium persulfate (APS) as oxidant in the presence of dodecylbenzene sulfonic acid (DBSA) as emulsifier. The prepared composites were characterized using Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC), and their morphology was investigated using scanning electron microscope (SEM). Electrical conductivity measurements showed that the conductivity of the paper sheets increases by increasing the ratio of PANi in the composite. Mechanical properties of the paper sheets were also investigated, the results revealed that the values of breaking length, burst factor, and tear factor are decreased with increasing ratio of added PANi, and this effect is more pronounced in bagasse-based composites. The new conductive composites can have potential use as anti-static packaging material or anti-bacterial paper for packaging applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tong, Zongrui; Chen, Yu; Liu, Yang; Tong, Li; Chu, Jiamian; Xiao, Kecen; Zhou, Zhiyu; Dong, Wenbo; Chu, Xingwu
2017-01-01
Alginate (Alg) is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly(γ-glutamic acid) (PGA) is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca2+ and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates. PMID:28398222
Tong, Zongrui; Chen, Yu; Liu, Yang; Tong, Li; Chu, Jiamian; Xiao, Kecen; Zhou, Zhiyu; Dong, Wenbo; Chu, Xingwu
2017-04-11
Alginate (Alg) is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly( γ -glutamic acid) (PGA) is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca 2+ and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates.
Composition for nucleic acid sequencing
Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY
2008-08-26
The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.
Custer, Jenny E; Goddard, Bryan D; Matter, Stephen F; Kaneshiro, Edna S
2014-06-01
The oral cariogenic bacterial pathogen Streptococcus mutans strain UA159 has become an important research organism strain since its genome was sequenced. However, there is a paucity of information on its lipidome using direct analytical biochemical approaches. We here report on comprehensive analyses of the major lipid classes and their fatty acids in cells grown in batch standing cultures. Using 2-D high-performance thin-layer chromatography lipid class composition changes were detected with culture age. More lipid components were detected in the stationary-phase compared to log-phase cells. The major lipids identified included 1,3-bis(sn-3'-phosphatidyl)-sn-glycerol (phosphatidylglycerol), 1,3-diphosphatidylglycerol (cardiolipin), aminoacyl-phosphatidylglycerol, monoglucosyldiacylglycerol, diglucosyldiacylglycerol, diglucosylmonoacylglycerol and, glycerophosphoryldiglucosyldiacylglycerol. Culture age also affected the fatty acid composition of the total polar lipid fraction. Thus, the major lipid classes detected in log-phase and stationary-phase cells were isolated and their fatty acids were analyzed by gas-liquid chromatography to determine the basis for the fatty acid compositional changes in the total polar lipid fraction. The analyses showed that the relative proportions of these acids changed with culture age within individual lipid classes. Hence fatty acid changes in the total polar lipid fraction reflected changes in both lipid class composition and fatty acid compositions within individual lipid classes.
Sipos, László; Ilisz, István; Pataj, Zoltán; Szakonyi, Zsolt; Fülöp, Ferenc; Armstrong, Daniel W; Péter, Antal
2010-10-29
The enantiomers of five monoterpene-based 2-amino carboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2) and teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of pH, the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10-40°C to study the effects of temperature and thermodynamic parameters on separations. Apparent thermodynamic parameters and T(iso) values were calculated from plots of ln k or ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantioseparations were in most cases enthalpy driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2010 Elsevier B.V. All rights reserved.
Wavelet images and Chou's pseudo amino acid composition for protein classification.
Nanni, Loris; Brahnam, Sheryl; Lumini, Alessandra
2012-08-01
The last decade has seen an explosion in the collection of protein data. To actualize the potential offered by this wealth of data, it is important to develop machine systems capable of classifying and extracting features from proteins. Reliable machine systems for protein classification offer many benefits, including the promise of finding novel drugs and vaccines. In developing our system, we analyze and compare several feature extraction methods used in protein classification that are based on the calculation of texture descriptors starting from a wavelet representation of the protein. We then feed these texture-based representations of the protein into an Adaboost ensemble of neural network or a support vector machine classifier. In addition, we perform experiments that combine our feature extraction methods with a standard method that is based on the Chou's pseudo amino acid composition. Using several datasets, we show that our best approach outperforms standard methods. The Matlab code of the proposed protein descriptors is available at http://bias.csr.unibo.it/nanni/wave.rar .
Dante, Mariane de Cássia Lima; Borgheti-Cardoso, Livia Neves; Fantini, Marcia Carvalho de Abreu; Praça, Fabíola Silva Garcia; Medina, Wanessa Silva Garcia; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães
2018-03-01
Celecoxib (CXB) is a widely used anti-inflammatory drug that also acts as a chemopreventive agent against several types of cancer, including skin cancer. As the long-term oral administration of CXB has been associated with severe side effects, the skin delivery of this drug represents a promising alternative for the treatment of skin inflammatory conditions and chemoprevention of skin cancer. We prepared and characterized liquid crystalline systems based on glyceryl monooleate and water containing penetration enhancers which were primarily designed to promote skin delivery of CXB. Analysis of their phase behavior revealed the formation of cubic and hexagonal phases depending on the systems' composition. The systems' structure and composition markedly affected the in vitro CXB release profile. Oleic acid reduced CXB release rate, but association oleic acid/propylene glycol increased the drug release rate. The developed systems significantly reduced inflammation in an aerosil-induced rat paw edema model. The systems' composition and liquid crystalline structure influenced their anti-inflammatory potency. Cubic phase systems containing oleic acid/propylene glycol association reduced edema in a sustained manner, indicating that they modulate CXB release and permeation. Our findings demonstrate that the developed liquid crystalline systems are potential carriers for the skin delivery of CXB. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Impact of Environment on the Biomass Composition of Soybean (Glycine max) seeds.
McClure, Tamara; Cocuron, Jean-Christophe; Osmark, Veronika; McHale, Leah K; Alonso, Ana Paula
2017-08-16
Factors including genetics, fertilization, and climatic conditions, can alter the biomass composition of soybean seeds, consequently impacting their market value and usage. This study specifically determined the content of protein and oil, as well as the composition of proteinogenic amino acids and fatty acids in seeds from 10 diverse soybean cultivars grown in four different sites. The results highlighted that different environments produce a different composition for the 10 cultivars under investigation. Specifically, the levels of oleic and linoleic acids, important contributors to oil stability, were negatively correlated. Although the protein and oil contents were higher in some locations, their "quality" was lower in terms of composition of essential amino acids and oleic acid, respectively. Finally, proteinogenic histidine and glutamate were the main contributors to the separation between Central and Northern growing sites. Taken together, these results can guide future breeding and engineering efforts aiming to develop specialized soybean lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugama, Toshifumi; Petrakis, Leon; Webster, Ronald P.
A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a flouro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP(O)(OH).sub.2, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided
Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils.
Junming, Xu; Jianchun, Jiang; Yanju, Lu; Jie, Chen
2009-10-01
The pyrolysis reactions of soybean oils have been studied. The pyrolytic products were analyzed by GC-MS and FTIR and show the formation of olefins, paraffins, carboxylic acids and aldehydes. Several kinds of catalysts were compared. It was found that the amounts of carboxylic acids and aldehydes were significantly decreased by using base catalysts such as Na(2)CO(3) and K(2)CO(3). The low acid value pyrolytic products showed good cold flow properties and good solubility in diesel oil at low temperature. The results presented in this work have shown that the pyrolysis of soybean oils generates fuels that have chemical composition similar to petroleum based fuels.
The influence of maternal ethnic group and diet on breast milk fatty acid composition.
Su, Lin Lin; S K, Thamarai Chelvi; Lim, Su Lin; Chen, Yuming; Tan, Elizabeth A T; Pai, Namratha Narayan; Gong, Yin Han; Foo, Janie; Rauff, Mary; Chong, Yap Seng
2010-09-01
Breast milk fatty acids play a major role in infant development. However, no data have compared the breast milk composition of different ethnic groups living in the same environment. We aimed to (i) investigate breast milk fatty acid composition of three ethnic groups in Singapore and (ii) determine dietary fatty acid patterns in these groups and any association with breast milk fatty acid composition. This was a prospective study conducted at a tertiary hospital in Singapore. Healthy pregnant women with the intention to breastfeed were recruited. Diet profile was studied using a standard validated 3-day food diary. Breast milk was collected from mothers at 1 to 2 weeks and 6 to 8 weeks postnatally. Agilent gas chromatograph (6870N) equipped with a mass spectrometer (5975) and an automatic liquid sampler (ALS) system with a split mode was used for analysis. Seventy-two breast milk samples were obtained from 52 subjects. Analysis showed that breast milk ETA (Eicosatetraenoic acid) and ETA:EA (Eicosatrienoic acid) ratio were significantly different among the races (P = 0.031 and P = 0.020), with ETA being the highest among Indians and the lowest among Malays. Docosahexaenoic acid was significantly higher among Chinese compared to Indians and Malays. No difference was demonstrated in n3 and n6 levels in the food diet analysis among the 3 ethnic groups. Differences exist in breast milk fatty acid composition in different ethnic groups in the same region, although no difference was demonstrated in the diet analysis. Factors other than maternal diet may play a role in breast milk fatty acid composition.
Distribution and enantiomeric composition of amino acids in the Murchison meteorite
NASA Technical Reports Server (NTRS)
Engel, M. H.; Nagy, B.
1982-01-01
Studies of the amino acid contents and enantiomeric compositions of a single stone from the Murchison meteorite are reported. Water-extracted and 6M HCl-extracted samples from the meteorite interior of meteorite fragments were analyzed by gas chromatography and combined gas chromatography-chemical ionization mass spectrometry. Examination of the D/L ratios of glutamic acid, aspartic acid, proline, leucine and alanine reveals those amino acids extractable by water to be partially racemized, whereas the acid-extracted amino acids were less racemized. The amino acid composition of the stone is similar to those previously reported, including the absence of serine, threonine, tyrosine phenylalanine and methionine and the presence of unusual amino acids including such as isovaline, alpha-aminoisobutyric acid and pseudoleucine. It is concluded that the most likely mechanism accounting for the occurrence of nonracemic amino acid mixtures in the Murchison meteorite is by extraterrestrial stereoselective synthesis or decomposition reactions.
Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee
2017-04-01
This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H 2 SO 4 ) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sharma, Sandeep; Biswal, Badal Kumar; Kumari, Divya; Bindra, Pulkit; Kumar, Satish; Stobdan, Tsering; Shanmugam, Vijayakumar
2018-05-21
According to Food and Agriculture Organization 2015 report, post-harvest agricultural loss accounts for 20-50% annually; on the other hand, reports about preservatives toxicity are also increasing. Hence, preservative release with response to fruit requirement is desired. In this study, acid synthesized in the overripe fruits was envisaged to cleave acid labile hydrazone to release preservative salicylaldehyde from graphene oxide (GO). To maximize loading and to overcome the challenge of GO reduction by hydrazine, two-step activation with ethylenediamine and 4-nitrophenyl chloroformate respectively, are followed. The final composite shows efficient preservative release with the stimuli of the overripe fruit juice and improves the fruit shelf life. The composite shows less toxicity as compared to the free preservative along with the additional scope to reuse. The composite was vacuum-filtered through a 0.4 μm filter paper, to prepare a robust wrapper for the fruit storage.
NASA Astrophysics Data System (ADS)
Li, Huilin; Men, Dandan; Sun, Yiqiang; Zhang, Tao; Hang, Lifeng; Liu, Dilong; Li, Cuncheng; Cai, Weiping; Li, Yue
2017-10-01
Uniform Au nanoparticle (NP)/poly (acrylamide-co-acrylic acid) [P(AAm-co-AA)] hydrogel microbeads were successfully prepared using droplet microfluidics technology. The microbeads exhibited a good stimuli-responsive behavior to pH value. Particularly in the pH value ranging from pH 2-pH 9, the composite microbead sizes gradually increased along with the increase of pH value. The homogeneous Au NPs, which were encapsulated in the P(AAm-co-AA) hydrogel microbeads, could transform the volume changes of hydrogel into optical signals by a tested single microbead with a microspectrometre system. The glucose was translated into gluconic acid by glucose oxidase. Thus, the Au NP/P(AAm-co-AA) hydrogel microbeads were used for detecting glucose based on pH effects on the composite microbeads. For this, the single Au NP/P(AAm-co-AA) hydrogel microbead could act as a good pH- or glucose-visualizing sensor.
A general approach to DNA-programmable atom equivalents.
Zhang, Chuan; Macfarlane, Robert J; Young, Kaylie L; Choi, Chung Hang J; Hao, Liangliang; Auyeung, Evelyn; Liu, Guoliang; Zhou, Xiaozhu; Mirkin, Chad A
2013-08-01
Nanoparticles can be combined with nucleic acids to programme the formation of three-dimensional colloidal crystals where the particles' size, shape, composition and position can be independently controlled. However, the diversity of the types of material that can be used is limited by the lack of a general method for preparing the basic DNA-functionalized building blocks needed to bond nanoparticles of different chemical compositions into lattices in a controllable manner. Here we show that by coating nanoparticles protected with aliphatic ligands with an azide-bearing amphiphilic polymer, followed by the coupling of DNA to the polymer using strain-promoted azide-alkyne cycloaddition (also known as copper-free azide-alkyne click chemistry), nanoparticles bearing a high-density shell of nucleic acids can be created regardless of nanoparticle composition. This method provides a route to a virtually endless class of programmable atom equivalents for DNA-based colloidal crystallization.
Confused ionic liquid ions--a "liquification" and dosage strategy for pharmaceutically active salts.
Bica, Katharina; Rogers, Robin D
2010-02-28
We present a strategy to expand the liquid and compositional ranges of ionic liquids, specifically pharmaceutically active ionic liquids, by simple mixing with a solid acid or base to form oligomeric ions.
Changes in fats and resins of Pinus radiata associated with heartwood formation
Richard W. Hemingway; W.E. Hillis
1971-01-01
In an analysis of Australian grown P. radiata marked changes were found in the relative proportions and compositions of the resin acids, fatty acids, and fatty acid esters associated with heartwood formation. While the proportion of resin acids increased substantially in the heartwood, there was little change in resin acid composition from outer...
Superhard Transparent Coatings
1975-04-01
alcohol has OH groups and polymethacrylic acid has carboxyl COOH groups. These form a clear suspension with the sub- micron hydrophilic particles...PHOSPHORIC ACID /SILICA/PVA 38 SYSTEM 3: ALON/POLYSILICIC ACID /BORACIC ACID 38 SYSTEM 4: ALON/SILICA/CYMEL - MOH HARDNESS VS...60 POLYSILICIC ACID 60 Methods for the Preparation of a Polystllcate/ Alon Suspension 61 Compositions 62 STRETCHED PLEX 63 OPTIMUM COMPOSITIONS
Using Silica Sol as a Nanoglue to Prepare Nanoscale Mesoporous Composite Gel and Aerogels
2000-03-31
solution-phase reactants remain unaltered. Furthermore, the composite constitutes a rigid solid architecture, such that the silica aerogel structure...nm) was immobilized in a silica aerogel structure according to the method of the present invention. The optical properties of 9 these materials...Aerogel Preparation. Acid- and base-catalyzed silica aerogels were prepared by procedures similarto those previously published in Russo et al.J.Non
Dasan, Y K; Bhat, A H; Ahmad, Faiz
2017-02-10
The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gallimore, P. J.; Griffiths, P. T.; Pope, F. D.; Reid, J. P.; Kalberer, M.
2017-04-01
The chemical composition of organic aerosols profoundly influences their atmospheric properties, but a detailed understanding of heterogeneous and in-particle reactivity is lacking. We present here a combined experimental and modeling study of the ozonolysis of oleic acid particles. An online mass spectrometry (MS) method, Extractive Electrospray Ionization (EESI), is used to follow the composition of the aerosol at a molecular level in real time; relative changes in the concentrations of both reactants and products are determined during aerosol aging. The results show evidence for multiple non-first-order reactions involving stabilized Criegee intermediates, including the formation of secondary ozonides and other oligomers. Offline liquid chromatography MS is used to confirm the online MS assignment of the monomeric and dimeric products. We explain the observed EESI-MS chemical composition changes, and chemical and physical data from previous studies, using a process-based aerosol chemistry simulation, the Pretty Good Aerosol Model (PG-AM). In particular, we extend previous studies of reactant loss by demonstrating success in reproducing the time dependence of product formation and the evolving particle size. This advance requires a comprehensive chemical scheme coupled to the partitioning of semivolatile products; relevant reaction and evaporation parameters have been refined using our new measurements in combination with PG-AM.
PLA composites: From production to properties.
Murariu, Marius; Dubois, Philippe
2016-12-15
Poly(lactic acid) or polylactide (PLA), a biodegradable polyester produced from renewable resources, is used for various applications (biomedical, packaging, textile fibers and technical items). Due to its inherent properties, PLA has a key-position in the market of biopolymers, being one of the most promising candidates for further developments. Unfortunately, PLA suffers from some shortcomings, whereas for the different applications specific end-use properties are required. Therefore, the addition of reinforcing fibers, micro- and/or nanofillers, and selected additives within PLA matrix is considered as a powerful method for obtaining specific end-use characteristics and major improvements of properties. This review highlights recent developments, current results and trends in the field of composites based on PLA. It presents the main advances in PLA properties and reports selected results in relation to the preparation and characterization of the most representative PLA composites. To illustrate the possibility to design the properties of composites, a section is devoted to the production and characterization of innovative PLA-based products filled with thermally-treated calcium sulfate, a by-product from the lactic acid production process. Moreover, are emphasized the last tendencies strongly evidenced in the case of PLA, i.e., the high interest to diversify its uses by moving from biomedical and packaging (biodegradation properties, "disposables") to technical applications ("durables"). Copyright © 2016 Elsevier B.V. All rights reserved.
Varga, D; Müller, T; Specziár, A; Fébel, H; Hancz, Cs; Bázár, Gy; Urbányi, B; Szabó, A
2013-03-01
Fatty acid (FA) composition of the fillet and the intestinal content of dwarf common carp (Cyprinus carpio carpio) living in Lake Hévíz was determined in wintertime collected samples and results were compared to widespread literature data on carp. Fillet FA profile of the thermally adapted (28 °C) Hévíz dwarf carps differed from profiles originated from divergent culture and feeding conditions in the overall level of saturation. Fillet myristic acid proportions largely exceeded all literature data in spite of poor dietary supply. Fillet fatty acid results indicate the effects of thermal adaptation (high saturation level) and the correlative effects of feed components rich in omega-3 fatty acids, with special respect to docosahexaenoic acid. With the application of discriminant factor analysis the Hévíz sample was accurately differentiated from the literature data on carp fillet fatty acid profile, mostly based on C14:0, C18:1 n9, C18:2 n6, C20:1 n9 and C20:4 n6 FAs. In summary, fillet FA profile suggested thermal adaptation, location specificity and the ingestion of algal and bacterial material.
Kelebek, Hasim; Selli, Serkan
2011-08-15
Orange flavour is the results of a natural combination of volatile compounds in a well-balanced system including sugars, acids and phenolic compounds. This paper reports the results of the first determination of aroma, organic acids, sugars, and phenolic components in Dortyol yerli orange juices. A total of 58 volatile components, including esters (nine), terpenes (19), terpenols (13), aldehydes (two), ketones (three), alcohols (four) and acids (eight) were identified and quantified in Dortyol yerli orange juice by GC-FID and GC-MS. Organic acids, sugars and phenolic compositions were also determined by HPLC methods. The major organic acid and sugar found were citric acid and sucrose, respectively. With regard to phenolics, 14 compounds were identified and quantified in the orange juice. Terpenes and terpenols were found as the main types of volatile components in Dortyol yerli orange juice. In terms of aroma contribution to orange juice, 12 compounds were prominent based on the odour activity values (OAVs). The highest OAV values were recorded for ethyl butanoate, nootkatone, linalool and DL-limonene. When we compare the obtained results of cv. Dortyol orange juice with the other orange juice varieties, the composition of Dortyol orange juice was similar to Valencia and Navel orange juices. Copyright © 2011 Society of Chemical Industry.
Value added liquid products from waste biomass pyrolysis using pretreatments.
Das, Oisik; Sarmah, Ajit K
2015-12-15
Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition. Copyright © 2015 Elsevier B.V. All rights reserved.
New particle formation in the free troposphere: from the Alps to the Everest Base Camp.
NASA Astrophysics Data System (ADS)
Bianchi, F.; Junninen, H.; Kontkanen, J.; Marinoni, A.; Bonasoni, P.; Sellegri, K.; Laj, P.; Dommen, J.; Worsnop, D. R.; Baltensperger, U.
2016-12-01
Atmospheric aerosols can affect the climate by absorbing or scattering incoming radiation and also by acting as cloud condensation nuclei (CCN). A recent study estimates that the major fraction of CCN comes from gas to particle conversion (Merikanto et al., 2009). During the last decade, several nucleation studies have been published based on field observations mainly in the planetary boundary layer. Therefore, we have only little information about the free tropospheric case. The aim of these studies is to understand what species contribute to new particle formation at high altitude. In order to characterize NPF processes, advanced instrumentation was deployed at the Swiss station Jungfraujoch (3580 m asl - Bianchi et al., 2016) and at the Himalayan Nepal Climate Observatory Pyramid site, not far from Everest base camp (5079 m asl). Previous studies have already showed that at both of these locations NPF takes place frequently. However, no chemical information of the vapours was retrieved. At the Nepal Observatory, we deployed an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF), a particle size magnifier (PSM) and a neutral cluster and air ion spectrometer (NAIS). The APi-TOF measured the chemical composition of either the positive or negative ions during the nucleation events and when equipped with a chemical ionization source it provided information on the chemical composition of the neutral species. Figure 1 shows the first APi-TOF mass spectrum running in negative mode recorded above 5000 m asl during a nucleation event. The main ions that have been identified so far are all deprotonated acids: sulfuric acid, nitric acid, malonic acid, methanesulfonic acid and iodic acid. Larger ions are formed by different combinations of these acids (i.e. H2SO4°HSO4-, CH3SO3H°HSO4-, etc.). We will present a detailed analysis of the particle evolution during NPF and also the chemical composition of the small clusters measured with these advanced mass spectrometers. We will also show that even at this altitude highly oxidised molecules (HOM) have been detected, confirming the CLOUD laboratory experiments (Kirkby et al., 2016). Bianchi, F., et al. (2016) Science, 6289, 1109-1112.Kirkby, J., et al. (2016) Nature, 10.1038/nature17953. Merikanto, J., et al. (2009) Atmos. Chem. Phys. 9 (21), 8601-8616.
Capacity of milk composition to identify the feeding system used to feed dairy cows.
Vicente, Fernando; Santiago, Carme; Jiménez-Calderón, José D; Martínez-Fernández, Adela
2017-08-01
This Research Paper addresses the hypothesis that is possible to identify the type of feed used for dairy cows by means of the analysis of milk composition and the fatty acid profile of milk fat. Sixteen dairy farms were monitored during 1 year with quarterly visits between summer 2014 and spring 2015. Rations varied throughout the year due to annual dynamic change of forage production, forage rotation, variation of nutrient requirements according to physiological state of the animal, etc. The ingredients of the rations were analysed by cluster identifying five feeding systems based on the main ingredient of the diet: grazing, maize silage, grass silage, dry forage and concentrate. Milk composition could explain up to 91·3% of the total variability among feeding systems, while fatty acid profile could explain only up to 61·2% of total variability. However, when the sum of types of fatty acids and their ratios are taken, up to 93·5% of total variability could be explained. The maize silage system had the greatest milk yield, protein, solid non-fat and urea proportions, as well as the highest proportion of saturated fatty acid and lowest concentration of trans11 18 : 1, cis9 18 : 1 and 18 : 3 n3. Principal component analysis distinguishes the maize silage system from other feeding systems, both from milk composition and milk fatty acid profile. Concentrate system overlapped partially with the grazing, grass silage and dry forage systems. The latter systems had the highest concentrations of cis9 18 : 1, trans11 18 : 1 and 18 : 3, but there was no clear differentiation among them.
NASA Astrophysics Data System (ADS)
Kanerva, M.; Koerselman, J. R.; Revitzer, H.; Johansson, L.-S.; Sarlin, E.; Rautiainen, A.; Brander, T.; Saarela, O.
2014-06-01
Spacecraft include sensitive electronics that must be protected against radiation from the space environment. Hybrid laminates consisting of tungsten layers and carbon- fibre-reinforced epoxy composite are a potential solution for lightweight, efficient, and protective enclosure material. Here, we analysed six different surface treatments for tungsten foils in terms of the resulting surface tension components, composition, and bonding strength with epoxy. A hydrofluoric-nitric-sulfuric-acid method and a diamond-like carbon-based DIARC® coating were found the most potential surface treatments for tungsten foils in this study.
Comparison of Human Milk Fatty Acid Composition of Women From Cambodia and Australia.
Gao, Chang; Liu, Ge; Whitfield, Kyly C; Kroeun, Hou; Green, Timothy J; Gibson, Robert A; Makrides, Maria; Zhou, Shao J
2018-05-01
Human milk is a rich source of omega-3 long-chain polyunsaturated fatty acids, which are postulated to be important for brain development. There is a lack of data on the human milk fatty acid composition of Cambodian women compared with data from Western women. Research Aim: The aim of this study was to determine the human milk fatty acid composition of women living in Cambodia and compare it with that of women living in Australia. Human milk samples from Cambodian ( n = 67) and Australian ( n = 200) mothers were collected at 3 to 4 months postpartum. Fatty acid composition was analyzed using capillary gas chromatography followed by Folch extraction with chloroform/methanol (2:1 v/v), and fat content was measured gravimetrically. Compared with Australian participants, human milk from Cambodian participants contained a significantly lower level of total fat (2.90 vs. 3.45 g/dL, p = .028), lower percentages of linoleic acid (9.30% vs. 10.66%, p < .0001) and α-linolenic acid (0.42% vs. 0.95%, p < .0001), but higher percentages of arachidonic acid (0.68% vs. 0.38%, p < .0001) and docosahexaenoic acid (0.40% vs. 0.23%, p < .0001). Differences in human milk fatty acid composition between Cambodian and Australian participants may be explained by differences in the dietary patterns between the two populations.
NASA Astrophysics Data System (ADS)
Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras
2016-09-01
Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.
NASA Astrophysics Data System (ADS)
Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan
2017-11-01
A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.
Distance measures and optimization spaces in quantitative fatty acid signature analysis
Bromaghin, Jeffrey F.; Rode, Karyn D.; Budge, Suzanne M.; Thiemann, Gregory W.
2015-01-01
Quantitative fatty acid signature analysis has become an important method of diet estimation in ecology, especially marine ecology. Controlled feeding trials to validate the method and estimate the calibration coefficients necessary to account for differential metabolism of individual fatty acids have been conducted with several species from diverse taxa. However, research into potential refinements of the estimation method has been limited. We compared the performance of the original method of estimating diet composition with that of five variants based on different combinations of distance measures and calibration-coefficient transformations between prey and predator fatty acid signature spaces. Fatty acid signatures of pseudopredators were constructed using known diet mixtures of two prey data sets previously used to estimate the diets of polar bears Ursus maritimus and gray seals Halichoerus grypus, and their diets were then estimated using all six variants. In addition, previously published diets of Chukchi Sea polar bears were re-estimated using all six methods. Our findings reveal that the selection of an estimation method can meaningfully influence estimates of diet composition. Among the pseudopredator results, which allowed evaluation of bias and precision, differences in estimator performance were rarely large, and no one estimator was universally preferred, although estimators based on the Aitchison distance measure tended to have modestly superior properties compared to estimators based on the Kullback-Leibler distance measure. However, greater differences were observed among estimated polar bear diets, most likely due to differential estimator sensitivity to assumption violations. Our results, particularly the polar bear example, suggest that additional research into estimator performance and model diagnostics is warranted.
Salgado, J Cristian; Andrews, Barbara A; Ortuzar, Maria Fernanda; Asenjo, Juan A
2008-01-18
The prediction of the partition behaviour of proteins in aqueous two-phase systems (ATPS) using mathematical models based on their amino acid composition was investigated. The predictive models are based on the average surface hydrophobicity (ASH). The ASH was estimated by means of models that use the three-dimensional structure of proteins and by models that use only the amino acid composition of proteins. These models were evaluated for a set of 11 proteins with known experimental partition coefficient in four-phase systems: polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate and dextran and considering three levels of NaCl concentration (0.0% w/w, 0.6% w/w and 8.8% w/w). The results indicate that such prediction is feasible even though the quality of the prediction depends strongly on the ATPS and its operational conditions such as the NaCl concentration. The ATPS 0 model which use the three-dimensional structure obtains similar results to those given by previous models based on variables measured in the laboratory. In addition it maintains the main characteristics of the hydrophobic resolution and intrinsic hydrophobicity reported before. Three mathematical models, ATPS I-III, based only on the amino acid composition were evaluated. The best results were obtained by the ATPS I model which assumes that all of the amino acids are completely exposed. The performance of the ATPS I model follows the behaviour reported previously, i.e. its correlation coefficients improve as the NaCl concentration increases in the system and, therefore, the effect of the protein hydrophobicity prevails over other effects such as charge or size. Its best predictive performance was obtained for the PEG/dextran system at high NaCl concentration. An increase in the predictive capacity of at least 54.4% with respect to the models which use the three-dimensional structure of the protein was obtained for that system. In addition, the ATPS I model exhibits high correlation coefficients in that system being higher than 0.88 on average. The ATPS I model exhibited correlation coefficients higher than 0.67 for the rest of the ATPS at high NaCl concentration. Finally, we tested our best model, the ATPS I model, on the prediction of the partition coefficient of the protein invertase. We found that the predictive capacities of the ATPS I model are better in PEG/dextran systems, where the relative error of the prediction with respect to the experimental value is 15.6%.
Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.
Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene
2015-05-15
Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Surface Geology of Europa: A Window to Subsurface Composition and Habitability
NASA Astrophysics Data System (ADS)
Dalton, J. Brad; Shirley, James H.; Prockter, Louise M.
2010-05-01
Observations from the Galileo Near-Infrared Mapping Spectrometer (NIMS) provide a wealth of spectral information on the surface composition of Europa. Recent advances in the analysis of spacecraft observations, combined with newly available reference spectra of expected chemical compounds [Dalton et al., 2005], now permit investigation of composition for individual geologic units. Some of these units appear to represent low-viscosity cryovolcanic flows, presenting substantial evidence for subsurface origin. Subsequent processing by radiolysis and photolysis (chemistry driven by high-energy particle and ultraviolet radiation) has altered the composition of these deposits since their emplacement. It has been postulated that hydrated sulfate salts from the interior may have been converted to sulfuric acid hydrate by this exogenic processing [Carlson et al., 1999; McCord et al., 2002]. It has also been postulated that much of the observed sulfuric acid hydrate may be derived entirely from water ice and implanted sulfur ions from Jupiter's magnetosphere [Carlson et al., 2005]. Destruction of large molecules by the same radiation [Loeffler et al., 2010] however suggests that there may be an equilibrium between creation and destruction that varies based on sulfur content and radiation flux. Derivation of compositions for multiple exposures of individual surface units reveals a gradient in sulfuric acid abundance that increases from the leading hemisphere to the trailing hemisphere, which receives a higher radiogenic dose. Certain geologically young cryovolcanic flow surface units exhibit comparatively higher proportions of hydrated salts (with correspondingly lower abundance of sulfuric acid hydrate) than is found for older surface units of the same type, or for surface units of different geologic origin. Taken together these lines of evidence suggest that in at least some of these units, we are observing an intermediate stage of the conversion of endogenically-produced sodium and magnesium sulfate salts into sulfuric acid hydrate by exogenically-driven radiolysis. This is the first step in unraveling the relative influence of exogenic and endogenic processes in determining the composition of Europa's surface deposits. The apparent presence of large quantities of brine and sulfate salts in certain deposits [Shirley et al., 2010] suggests that these deposits may reflect the composition of subsurface liquid reservoirs that produced these deposits. We will report on variations in composition of various surface units and inferences of interior chemistry based on our spectral analysis. This information will be useful for planning of future missions that will have the capability to further discriminate between these materials and provide additional constraints on habitability of the subsurface. References: Carlson, R. W., R. E. Johnson, and M. S. Anderson, 1999. Sulfuric Acid on Europa and the Radiolytic Sulfur Cycle. Science 286, 97-99. Carlson, R. W., M. S. Anderson, R. Mehlman, and R.E. Johnson 2005. Distribution of Hydrate on Europa: Further Evidence for sulfuric acid hydrate, Icarus 177, 461-471. Dalton, J. B., O. Prieto-Ballesteros, J. S. Kargel, C. S. Jamieson, J. Jolivet, & R. Quinn 2005. Spectral comparison of heavily hydrated salts with disrupted terrains on Europa, Icarus 177, 472-490. McCord, T.B., G. Teeter, G.B. Hansen, M.T. Sieger, and T.M. Orlando, 2002. Brines exposed to Europa surface conditions. J. Geophys. Res. 107, doi 10.1029/2000JE001453. Loeffler, M.J., R.L. Hudson, and M.H. Moore, 2010. Ion irradiation of sulfuric acid: Implication for its stability on Europa, Proc. LPSC XLI, #1240. Shirley, J.H., J.B. Dalton, L.M. Prockter, and L.W. Kamp, 2010. Signatures of the Radiolytic Sulfur Cycle on Europa: A New Tool for Integrated Compositional and Stratigraphic Investigations, Proc. LPSC XLI, #2395.
ERIC Educational Resources Information Center
Coppoolse, Jiska M. S.; Van Kooten, T. G.; Heris, Hossein K.; Mongeau, Luc; Li, Nicole Y. K.; Thibeault, Susan L.; Pitaro, Jacob; Akinpelu, Olubunm; Daniel, Sam J.
2014-01-01
Purpose: The objective of this study was to investigate local injection with a hierarchically microstructured hyaluronic acid-gelatin (HA-Ge) hydrogel for the treatment of acute vocal fold injury using a rat model. Method: Vocal fold stripping was performed unilaterally in 108 Sprague-Dawley rats. A volume of 25 µl saline (placebo controls),…
Harazono, Akira; Kobayashi, Tetsu; Kawasaki, Nana; Itoh, Satsuki; Tada, Minoru; Hashii, Noritaka; Ishii, Akiko; Arato, Teruyo; Yanagihara, Shigehiro; Yagi, Yuki; Koga, Akiko; Tsuda, Yuriko; Kimura, Mikiko; Sakita, Masashi; Kitamura, Satoshi; Yamaguchi, Hideto; Mimura, Hisashi; Murata, Yoshimi; Hamazume, Yasuki; Sato, Takayuki; Natsuka, Shunji; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Watanabe, Sakie; Yamaguchi, Teruhide
2011-05-01
The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4-7N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix. Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study. Copyright © 2011 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Seasonal variation in the Dutch bovine raw milk composition.
Heck, J M L; van Valenberg, H J F; Dijkstra, J; van Hooijdonk, A C M
2009-10-01
In this study, we determined the detailed composition of and seasonal variation in Dutch dairy milk. Raw milk samples representative of the complete Dutch milk supply were collected weekly from February 2005 until February 2006. Large seasonal variation exists in the concentrations of the main components and milk fatty acid composition. Milk lactose concentration was rather constant throughout the season. Milk true protein content was somewhat more responsive to season, with the lowest content in June (3.21 g/100 g) and the highest content in December (3.38 g/100 g). Milk fat concentration increased from a minimum of 4.10 g/100 g in June to a maximum of 4.57 g/100 g in January. The largest (up to 2-fold) seasonal changes in the fatty acid composition were found for trans fatty acids, including conjugated linoleic acid. Milk protein composition was rather constant throughout the season. Milk unsaturation indices, which were used as an indication of desaturase activity, were lowest in spring and highest in autumn. Compared with a previous investigation of Dutch dairy milk in 1992, the fatty acid composition of Dutch raw milk has changed considerably, in particular with a higher content of saturated fatty acids in 2005 milk.
NASA Astrophysics Data System (ADS)
McCollom, T. M.; Hynek, B. M.
2012-12-01
The Mars Exploration Rover (MER) Opportunity has extensively characterized sulfate-rich, hematite-bearing bedrock exposed at Meridiani Planum, Mars. Based on various measurements, the mineral composition of the bedrocks has been interpreted to include: amorphous silica/glass/phyllosilicates, Mg-, Ca-, and Fe-bearing sulfates including jarosite, minor amounts of igneous phases including plagioclase, pyroxene, olivine, and magnetite, and hematite [1,2]. Chemically, the bedrocks closely resemble the composition of pristine martian basalt with addition of S and O, and minor variations of Mg and Cl with depth [3,4]. Based on these and other observations, the MER team has proposed that the bedrocks represent chemically altered siliciclastic sediments combined with sulfate salts formed by evaporation of sulfate-bearing fluids, modified by transport and multiple stages of infiltrating groundwater [3,5]. Several alternative scenarios have been proposed for the origin of the rocks including large impacts [6], evaporating glacial deposits [7], acid-fog alteration [8], and hydrothermal acid-sulfate alteration of basalt [4]. In order to further evaluate the potential contribution of hydrothermal proceeses to the deposits, we performed numerical geochemical models of acid-sulfate alteration of martian basalt based on constraints provided by recent laboratory experiments. Experimental studies of alteration of basalt conducted in our lab [9] indicate that the initial stages of acid-sulfate alteration of pyroclastic basalt are characterized by rapid decomposition of igneous crystalline phases including plagioclase, pyroxene, and olivine, while the glass (and igneous phases protected within the glass) remain unreactive. Elements released by dissolving minerals are precipitated primarily as amorphous silica and Ca-, Al-, Fe- and Mg-bearing sulfates, while precipitation of phyllosilicates and Fe-oxides/oxyhydroxides (FeOx) is kinetically inhibited. Based on these constraints, models of acid-sulfate alteration of martian pyroclastic basalt predict that the early stages of alteration will produce amorphous silica, anhydrite (or gypsum at lower temperature), Fe-bearing natroalunite, and kieserite as predominant secondary phases, along with relict glass and silicates protected within the glass. Hematite may form with continued heating through partial decomposition of Fe-bearing natroalunite [9], and some of the glass phase may partially devitrify to form minor phyllosilicates such as nontronite and nanophase Fe oxides. The resulting rock would have a chemical and mineralogical composition closely resembling that observed at Meridiani Planum. We conclude that hydrothermal acid-sulfate alteration of pyroclastic basalt provides the most parsimonious explanation for the composition of the sulfate deposits. References: [1] Glotch et al., JGR (2006). [2] Klingelhöfer et al. Science (2004). [3] McLennan et al., EPSL (2005). [4] McCollom & Hynek, Nature (2005). [5] Squyres et al. Science (2006). [6] Knauth et al. Nature (2005). [7] Niles & Michalski, Nat. Geosci. (2009). [8] Berger et al. Am. Mineral. (2009). [9] McCollom et al. JGR-Planets (submitted ms.)
NASA Astrophysics Data System (ADS)
Rafiee, Ezzat; Mirnezami, Fakhrosadat
2017-02-01
By combining phosphotungstic acid (PW) and SO3H- functioned zwitterion, heteropoly anion-based Brønsted acidic ionic liquids (HPA-ILs) were successfully obtained. Scanning electron microscopy and energy dispersive X-ray spectroscopy were provided the morphology and composition of the prepared material. Catalytic performance and reusability of the catalysts were evaluated through an esterification reaction between oleic acid and methanol for production of biodiesel. Relationship between catalytic activities and acidity of the catalysts have been discussed by potentiometric titration. The results showed that HPA-ILs had good activity and reusability. HPA-ILs dissolved in the reaction mixture during the reaction process and could be precipitated and separated from products at lower temperature.
Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim
2015-01-01
Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites. The mode of failure had no meaningful relation to the type of composite and etching factor. Key words:Shear bond strength, adhesive, composite resin, silorane, methacrylate. PMID:26644830
Study of mixed Ca-Zn hydroxyapatite surface modified by lactic acid
NASA Astrophysics Data System (ADS)
Turki, Thouraya; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi
2012-07-01
The new hybrid inorganic-organic composites, Ca(10-x)Znx(PO4)6(OH)2-lactic acid, at different amounts of zinc and lactic acid were prepared by dissolution of the organic compound in an hydroxyapatite suspension. They were characterized by XRD, IR, MAS NMR (13C and 1H) and chemical analysis. The crystallinity was slightly affected by the presence of organic fragments. IR and (13C and 1H) MAS NMR measurements indicate that the carboxylic groups of the acid interact with calcium and zinc ions of hydroxyapatite surface. Chemical analysis displays that zinc promotes the acid grafting. A mechanism of surface modification is proposed based on the obtained results.
Scandia-Stabilized Zirconia Coating for Composites.
1990-04-03
are present as oxides, acids and as in U.S. Pat. No. 4,328,285, describes some of the prior free sulfur . art attempts to coat engine parts with ceramic...base Because vanadium pentoxide (V205 ) is an acidic ox- materials, and Siemers teaches using cerium oxide or ide, it reacts with Na2O (a highly...surfaces exposed to vanadium and compounds decreases with the V2Os/Na2O ratio from sulfur compound corrosion. Na2V 120 31 (most acidic ) to Na3VO4(least
Jiang, Xiaoying; Wei, Rong; Zhang, Tongliang; Gu, Quan
2008-01-01
The function of protein is closely correlated with it subcellular location. Prediction of subcellular location of apoptosis proteins is an important research area in post-genetic era because the knowledge of apoptosis proteins is useful to understand the mechanism of programmed cell death. Compared with the conventional amino acid composition (AAC), the Pseudo Amino Acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, a novel approach is presented to predict apoptosis protein solely from sequence based on the concept of Chou's PseAA composition. The concept of approximate entropy (ApEn), which is a parameter denoting complexity of time series, is used to construct PseAA composition as additional features. Fuzzy K-nearest neighbor (FKNN) classifier is selected as prediction engine. Particle swarm optimization (PSO) algorithm is adopted for optimizing the weight factors which are important in PseAA composition. Two datasets are used to validate the performance of the proposed approach, which incorporate six subcellular location and four subcellular locations, respectively. The results obtained by jackknife test are quite encouraging. It indicates that the ApEn of protein sequence could represent effectively the information of apoptosis proteins subcellular locations. It can at least play a complimentary role to many of the existing methods, and might become potentially useful tool for protein function prediction. The software in Matlab is available freely by contacting the corresponding author.
NASA Astrophysics Data System (ADS)
Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Vijeth, H.; Devendrappa, H.
2018-05-01
Polyaniline and its composites at different wt. % of Copper oxide nano (PCC1 and PCC5) were prepared by in-situ chemical reaction method. The composites were characterized by Fourier Transform Infrared (FT-IR) Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) and the impedance measurement was carried out at different temperature. FTIR and SEM image reveals the presence of copper metal ions uniformly embedded into PANI. The dc electrical conductivity increases with increasing nano concentration in PANI and achieved high conductivity for PCC5. These results are suggesting PCC composite is a prominent candidate for supercapacitor properties and optoelectronics devices applications.
Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries.
Sánchez-Salcedo, Eva M; Sendra, Esther; Carbonell-Barrachina, Ángel A; Martínez, Juan José; Hernández, Francisca
2016-01-01
This research has determined qualitatively and quantitatively the fatty acids composition of white (Morus alba) and black (Morus nigra) fruits grown in Spain, in 2013 and 2014. Four clones of each species were studied. Fourteen fatty acids were identified and quantified in mulberry fruits. The most abundant fatty acids were linoleic (C18:2), palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids in both species. The main fatty acid in all clones was linoleic (C18:2), that ranged from 69.66% (MN2) to 78.02% (MA1) of the total fatty acid content; consequently Spanish mulberry fruits were found to be rich in linoleic acid, which is an essential fatty acid. The fatty acid composition of mulberries highlights the nutritional and health benefits of their consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metal-polymer composites comprising nanostructures and applications thereof
Wang, Hsing-Lin [Los Alamos, NM; Jeon, Sea Ho [Dracut, MA; Mack, Nathan H [Los Alamos, NM
2011-08-02
Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.
Metal-polymer composites comprising nanostructures and applications thereof
Wang, Hsing-Lin [Los Alamos, NM; Jeon, Sea Ho [Dracut, MA; Mack, Nathan H [Los Alamos, NM
2012-04-03
Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.
Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.
Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.
2009-01-01
We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.
Method for estimating protein binding capacity of polymeric systems.
Sharma, Vaibhav; Blackwood, Keith A; Haddow, David; Hook, Lilian; Mason, Chris; Dye, Julian F; García-Gareta, Elena
2015-01-01
Composite biomaterials made from synthetic and protein-based polymers are extensively researched in tissue engineering. To successfully fabricate a protein-polymer composite, it is critical to understand how strongly the protein binds to the synthetic polymer, which occurs through protein adsorption. Currently, there is no cost-effective and simple method for characterizing this interfacial binding. To characterize this interfacial binding, we introduce a simple three-step method that involves: 1) synthetic polymer surface characterisation, 2) a quick, inexpensive and robust novel immuno-based assay that uses protein extraction compounds to characterize protein binding strength followed by 3) an in vitro 2D model of cell culture to confirm the results of the immuno-based assay. Fibrinogen, precursor of fibrin, was adsorbed (test protein) on three different polymeric surfaces: silicone, poly(acrylic acid)-coated silicone and poly(allylamine)-coated silicone. Polystyrene surface was used as a reference. Characterisation of the different surfaces revealed different chemistry and roughness. The novel immuno-based assay showed significantly stronger binding of fibrinogen to both poly(acrylic acid) and poly(allylamine) coated silicone. Finally, cell studies showed that the strength of the interaction between the protein and the polymer had an effect on cell growth. This novel immuno-based assay is a valuable tool in developing composite biomaterials of synthetic and protein-based polymers with the potential to be applied in other fields of research where protein adsorption onto surfaces plays an important role.
Low temperature setting polymer-ceramic composites for bone tissue engineering
NASA Astrophysics Data System (ADS)
Sethuraman, Swaminathan
Tissue engineering is defined as "the application of biological, chemical and engineering principles towards the repair, restoration or regeneration of tissues using scaffolds, cells, factors alone or in combination". The hypothesis of this thesis is that a matrix made of a synthetic biocompatible, biodegradable composite can be designed to mimic the properties of bone, which itself is a composite. The overall goal was to design and develop biodegradable, biocompatible polymer-ceramic composites that will be a practical alternative to current bone repair materials. The first specific aim was to develop and evaluate the osteocompatibility of low temperature self setting calcium deficient apatites for bone tissue engineering. The four different calcium deficient hydroxyapatites evaluated were osteocompatible and expressed the characteristic genes for osteoblast proliferation, maturation, and differentiation. Our next objective was to develop and evaluate the osteocompatibility of biodegradable amino acid ester polyphosphazene in vitro as candidates for forming composites with low temperature apatites. We determined the structure-property relationship, the cellular adhesion, proliferation, and differentiation of primary rat osteoblast cells on two dimensional amino acid ester based polyphosphazene films. Our next goal was to evaluate the amino acid ester based polyphosphazenes in a subcutaneous rat model and our results demonstrated that the polyphosphazenes evaluated in the study were biocompatible. The physio-chemical property characterization, cellular response and gene expression on the composite surfaces were evaluated. The results demonstrated that the precursors formed calcium deficient hydroxyapatite in the presence of biodegradable polyphosphazenes. In addition, cells on the surface of the composites expressed normal phenotype and characteristic genes such as type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein. The in vivo study of these novel bone cements in a 5mm unicortical defect in New Zealand white rabbits showed that the implants were osteoconductive, and osteointegrative. In conclusion, the various studies that have been carried out in this thesis to study the feasibility of a bone cement system have shown that these materials are promising candidates for various orthopaedic applications. Overall I believe that these next generation bone cements are promising bone graft substitutes in the armamentarium to treat bone defects.
[FATTY ACID COMPOSITION ALTEROMONAS-LIKE BACTERIA ISOLATED FROM THE BLACK SEA WATER].
Klochko, V V; Avdeeva, L V
2015-01-01
Alteromonas macleodii strains isolated from the Black sea water were similar in their fatty acids composition with the type strain of this species. Analysis of lipid composition of 10 A. macleodii strains isolated from the deep and surface water layers in different World ocean regions including the Black sea water has shown that the deep and surface isolates of this species formed two groups different in their fatty acids profiles. The Black sea isolates of Pseudoalteromonas haloplanktis, P. citrea, P. flavipulchra conformed to these species type strains in their fatty acids composition. On the basis of the fatty acids spectra similarity of three Pseudoalteromonas species strains with Plipolytica described in 2010 has been established. Presence of three isomers C16:1ψ7, C 16:1ψ9 and C16:1ψ6--components of hexadecenic acid in the Black sea isolates of Shewanella baltica has been shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, R.M.
1989-01-01
Changes in zooplankton fatty acid and hydrocarbon patterns are described in relation to changes in environmental conditions and species composition. The regulation of zooplankton abundance by sea nettle-ctenophore interaction was examined in a small Rhode Island coastal pond. Sea nettles were nettles were able to eliminate ctenophores from the pond and subsequently zooplankton abundance increased. During one increase in zooplankton abundance, it was found that polyunsaturated fatty acids decreased while monounsaturated fatty acids increased. It was concluded that this shift in biochemical pattern was due to food limitation. In addition, zooplankton fatty acids were used in multivariate discriminant analysis tomore » classify whether zooplankton were from coastal or estuarine environments. Zooplankton from coastal environments were characterized by higher monounsaturate fatty acids. Zooplankton hydrocarbon composition was affected by species composition and by pollution inputs. The presence of Calanus finmarchicus was detected by increased levels of pristane.« less
EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI
Marr, Allen G.; Ingraham, John L.
1962-01-01
Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260–1267. 1962.—Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature. PMID:16561982
Laitinen, K; Sallinen, J; Linderborg, K; Isolauri, E
2006-02-01
The major theory implicating diet with allergic diseases is associated with altered food consumption and subsequent changes in fatty acid composition. To investigate fatty acid compositions among infants with atopic and non-atopic eczema and healthy infants and to evaluate the expediency of non-invasive cheek cell phospholipid fatty acid composition as a marker in patients with eczema. Diagnosis of eczema in infants was confirmed clinically and by positive (atopic eczema, n=6) or negative (non-atopic eczema, n=6) skin prick testing in comparison with controls (n=19). The fatty acid compositions of infant cheek cell and serum phospholipids and breast milk total lipids were analysed by gas chromatography. The distinction between atopic and non-atopic eczema was manifested in cheek cell phospholipids as linoleic acid (14.69 (13.67-15.53)% of total fatty acids; the median (interquartile range)), the sum of n-6 fatty acids (19.94 (19.06-20.53)%) and the sum of polyunsaturated fatty acids (22.70 (21.31-23.28)%) were higher in infants with atopic eczema compared with non-atopic eczema (12.69 (10.87-13.93); 17.72 (15.63-18.91) and 19.90 (17.64-21.06), respectively; P<0.05) and controls (12.50 (12.16-13.42); 18.19 (17.43-18.70) and 20.32 (19.32-21.03), respectively; P<0.05). Serum phospholipid gamma-linolenic acid was lower in both atopic and non-atopic eczema compared with controls (P<0.05) and additionally eicosapentaenoic acid was higher in atopic eczema compared with controls (P<0.05). These preliminary results suggest differences in fatty acid compositions between the two types of eczema, calling for further evaluation in a larger setting. The two types of eczema may be regulated by different immunological processes, and fatty acids may have a more profound role in the atopic type.
Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang
2015-02-01
The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these groups and identified the formation mechanism and dynamics of humic substances during composting.
Zhamu, Aruna; Jang, Bor Z.
2014-06-17
A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.
Ebrahimi Chaharom, Mohammad Esmaeel; Pournaghi Azar, Fatemeh; Mohammadi, Narmin; Nasiri, Rezvan
2018-01-01
Background. This study was undertaken to evaluate the repair bond strength of lithium disilicate glass ceramic to a silorane-based composite resin after surface preparation with Nd:YAG and Er,Cr:YSGG lasers. Methods. A total of 102 lithium disilicate glass ceramic samples (IPS e.max Press), measuring 5 mm in diameter and 4 mm in thickness, were randomly assigned to 6 groups (n=17): group 1, no surface preparation (control); group 2, acid etching with 9.5% hydrofluoric acid (HF); group 3, surface preparation with 4.5-W Nd:YAG laser; group 4, surface preparation with 6-W Nd:YAG laser; group 5, surface preparation with 1.5-W Er,Cr:YSGG laser; and group 6, surface preparation with 6-W Er,Cr:YSGG laser. After preparation of surfaces and application of silane, all the samples were repaired with the use of a silorane-based composite resin, followed by storage in distilled water at a temperature of 37°C for 24 hours and thermocycling. Finally, the samples were subjected to a shearing bond strength test; the fracture modes were determined under a stereomi-croscope. Results. There were significant differences between the HF group and the other groups (P=0.000). Two-by-two comparisons of the other groups revealed no significant differences (P>0.05). Conclusion. Use of HF proved the most effective surface preparation technique to increase the repair bond strength between lithium disilicate glass ceramic and silorane-based composite resin; compared to the control group.
Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying
2016-06-01
In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake. Copyright © 2016. Published by Elsevier B.V.
Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew
2014-07-16
Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.
NASA Astrophysics Data System (ADS)
Wang, Xiangyu; Liu, Peng; Ma, Jun; Liu, Huiling
2017-02-01
For the first time, hydrophilized and functionalized polyacrylonitrile (PAN) membrane was synthesized via two-stage process, addition of polyvinyl alcohol and in situ polymerization of acrylic acid (AA), and nano zero-valent iron (NZVI) was incorporated within modified membrane. The as-prepared PAA/PAN-NZVI (PPN) composites possessed superior reactivity for metronidazole (MNZ) with transformation ratio 2.03 and reaction rate 4.77 times higher than that by bare NZVI. Meanwhile, the enhanced stability and recyclability of PPN composites were maintained over repeated cycles. The major advantages of synthetic method lie in the remarkably increased loading and decreased agglomeration of NZVI. Moreover, with hydrophilized and functionalized synthesis processes of membrane, the potential risk of released iron ions was not a concern due to strong chelation of grafted carboxyl groups. Analyses of morphological characteristics (FE-SEM), chemical structure (FTIR), element valence and groups (XPS) of samples confirmed the successful graft of carboxylic acid groups and formation of a uniform iron nanoparticles coating onto PAN matrix. The reaction kinetics of MNZ with PPN composites were well-described by a two-parameter pseudo-first-order decay model with activation energy of 29.5 kJ/mol. The co-solutes except humic acid had a negligible effect on MNZ transformation. Determination of intermediates revealed that nitro reduction, N-denitration and hydroxyethyl cleavage were the main pathways for transformation of MNZ. The findings suggest that the novel composites possess huge potential for antibiotics wastewater treatment.
Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline-TiO₂ composite.
Bairi, Venu Gopal; Bourdo, Shawn E; Sacre, Nicolas; Nair, Dev; Berry, Brian C; Biris, Alexandru S; Viswanathan, Tito
2015-10-16
A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO₂. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO₂ and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO₂ composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.
[The changes in contents and composition of phenolic acids during cell xylem growth in scots pine].
Antonova, G F; Zheliznichenko, T V; Stasova, V V
2011-01-01
The contents and composition of alcohol soluble phenolic acids were studied during cell xylem growth in the course of wood annual increment formation in the stems of Scots pine. The cells of cambium zone, of two stages of expansion growth and the outset of secondary thickening zone (before lignification) were successively gathered from the stem segments of 25-old pine trees in the period of earlywood xylem formation with constant anatomical and histochemical control. The contents of free and bound forms of phenolic acids, isolated by 80% ethanol from tissues, as well as of their ethers and esters were calculated both per dry weight and per cell. The content and relation of the fractions and the composition of phenolic acid have been found to change significantly from cambium zone to the outset of tracheid secondary thickening. The character of the variations depends on a calculation method. According to the calculation per cell the amount of free and bound phenolic acids and in their composition of esters and especially ethers increased at the first step of expansion growth zone, decreased at the second one and rose again in the outset of secondary wall deposition. In dependence on the stage of cell development the pool of bound phenolic acids exceeded of free acid pool in 2-5 times. Sinapic and ferulic acids dominated in the composition of free hydroxycinnamic acids. The content and composition of hydroxycinnamic acids in ethers and esters depended on cell development phase. In cambium p-coumaric and sinapic acids were principal aglycons in ethers, at other stages these were sinapic and caffeic acids. The esters in cambium zone included essentially p-coumaric acid and at the other stages - sinapic and ferulic acids. At the first phase of growth benzoic acid was connected principally by ester bonds. The pool of these esters decreased from the first phase of growth to the outset of cell wall thickening and in proportion to this the level of free benzoic acid rose.
Zhang, Shuaihua; Yang, Qian; Li, Zhi; Wang, Wenjin; Zang, Xiaohuan; Wang, Chun; Wang, Zhi
2018-10-15
A hybrid composite featuring an iron-based metal-organic framework Material of Institute Lavoisier-88(Fe) and graphene oxide (MIL-88(Fe)/GO) was synthesized and used as the solid-phase microextraction (SPME) coating. The SPME fiber was prepared by covalent bonding of the MIL-88(Fe)/GO composite onto the stainless steel substrate. The fiber had a good durability and allowed >100 replicate extractions. The developed method, which combined the MIL-88(Fe)/GO coated fiber based SPME with gas chromatography-flame ionization detection (GC-FID), achieved low limits of detection (0.5-2.0 ng g -1 , S/N = 3) and good linearity (r 2 > 0.994) for the phthalic acid esters (PAEs) from various vegetable oil samples. The repeatability and fiber-to-fiber reproducibility were in the range of 4.0-9.1% and 5.7-11.4%, respectively. The method was successfully applied to the analysis of PAEs from vegetable oil samples with good recoveries (83.1-104.1%) and satisfactory precisions (RSDs < 10.5%), indicating that the MIL-88(Fe)/GO hybrid composite is a good coating material for the SPME of PAEs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert
2007-01-01
A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough. PMID:17675431
Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert
2007-10-01
A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough.
Realini, C E; Bianchi, G; Bentancur, O; Garibotto, G
2017-05-01
Cross-bred lambs (n=72) were fed finishing diets using a factorial arrangement of treatments: BASAL DIET (alfalfa pellets or corn), SUPPLEMENT (none, linseed or aromatic spices), TIME ON FEED (41 or 83days). Carcass and meat quality traits, fatty acid composition, color stability and consumer liking were determined. Feeding alfalfa improved sensory ratings and fatty acid composition of lamb. However, corn or longer alfalfa feeding would be recommended if heavier and fatter carcasses are sought. Consumer liking and fatty acid composition of lamb were improved with addition of spices and linseed, respectively. But additional antioxidant strategies should be considered to delay meat color deterioration during storage if lambs are fed corn-linseed for 83days. Although alfalfa basal diet and linseed supplementation improved fatty acid composition, feeding the basal diets for at least 41days resulted in low n-3 fatty acid concentrations in muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ganie, Arshid Hussain; Yousuf, Peerzada Yasir; Ahad, Amjid; Pandey, Renu; Ahmad, Sayeed; Aref, Ibrahim M; Noor, Jewel Jameeta; Iqbal, Muhammad
2016-11-01
Maize (Zea mays L.) is a multipurpose crop, which is immensely used worldwide for its nutritional as well as medicinal properties. This study evaluates the effect of varying concentrations of nitrogen (N) on accumulation of phenolic acids and antioxidant activity in different maize cultivars, including inbreds, hybrids and a composite, which were grown in natural light under controlled temperature (30°C/20°C D/N) and humidity (80%), with sufficient (4.5mM) and low (0.05mM) nitrogen supply. Seeds of different cultivars were powdered and extracted in a methanol:water (80:20) mixture through reflux at 60-75°C, and the extracts obtained were subjected to high performance thin layer chromatography (HPTLC), using ethyl acetate: acetic acid: formic acid: water (109:16:12:31) solvent system for the separation of phenolic acids. Antioxidant activity of the extracts was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2-scavenging activity assays. At sufficient nitrogen condition, the contents of different phenolic acids were higher in the composite cultivar (8.7 mg g-1 d.wt. in gallic acid to 39.3 mg g-1 d.wt. in cinnamic and salicylic acids) than in inbreds and hybrids. Under low nitrogen condition, the phenolic acids contents declined significantly in inbreds and hybrids, but remained almost unaffected in the composite. The antioxidant activity was also the maximum in the composite, and declined similarly as phenolic acids under low nitrogen supply, showing a significant reduction in inbreds and hybrids only. Therefore, the maize composite has a potential for being used as a nutraceutical in human-health sector.
Khallouki, Farid; Haubner, Roswitha; Ulrich, Cornelia M; Owen, Robert W
2011-11-01
The root bark of Annona cuneata Oliv. is traditionally used in the Democratic Republic of Congo to treat several debilitating conditions, such as hernia, female sterility, sexual asthenia, and parasitic infections. However, little is known about the composition of the secondary plant substances, which may contribute to these traditional medicinal effects. We conducted an ethnobotanical study and then evaluated the composition of the secondary plant substances in extracts of the root bark by using spectroscopic methods. After delipidation, the root bark was lixiviated in methanol, and components in the extract were studied by gas chromatography-mass spectometry, high-performance liquid chromatography (HPLC)-electrospray ionization-MS and nano-electrospray ionization-MS-MS. These methods identified 13 secondary plant substances (almost exclusively phenolic compounds): p-hydroxybenzaldehyde (I), vanillin (II), tyrosol (III), 3,4-dihydroxybenzaldehyde (IV), p-hydroxybenzoic acid (V), vanillyl alcohol (VI), syringaldehyde (VII), 4-hydroxy-3-methoxyphenylethanol (VIII), vanillic acid (IX), 3,4-dihydroxybenzoic acid (X), syringic acid (XI), and ferulic acid (XII), along with the phytosterol squalene (XIII). In the HPLC-based hypoxanthine/xanthine oxidase antioxidant assay system, the methanolic extract exhibited potent antioxidant capacity, with a 50% inhibitory concentration of 72 μL, equivalent to 1.38 mg/mL of raw extract. Thus, a methanol extract of A. cuneata Oliv. contained a range of polyphenolic compounds, which may be partly responsible for its known traditional medicinal effects. More detailed studies on the phytochemistry of this important plant species are therefore warranted.
Bromaghin, Jeffrey F.; Budge, Suzanne M.; Thiemann, Gregory W.; Rode, Karyn D.
2017-01-01
Knowledge of animal diets provides essential insights into their life history and ecology, although diet estimation is challenging and remains an active area of research. Quantitative fatty acid signature analysis (QFASA) has become a popular method of estimating diet composition, especially for marine species. A primary assumption of QFASA is that constants called calibration coefficients, which account for the differential metabolism of individual fatty acids, are known. In practice, however, calibration coefficients are not known, but rather have been estimated in feeding trials with captive animals of a limited number of model species. The impossibility of verifying the accuracy of feeding trial derived calibration coefficients to estimate the diets of wild animals is a foundational problem with QFASA that has generated considerable criticism. We present a new model that allows simultaneous estimation of diet composition and calibration coefficients based only on fatty acid signature samples from wild predators and potential prey. Our model performed almost flawlessly in four tests with constructed examples, estimating both diet proportions and calibration coefficients with essentially no error. We also applied the model to data from Chukchi Sea polar bears, obtaining diet estimates that were more diverse than estimates conditioned on feeding trial calibration coefficients. Our model avoids bias in diet estimates caused by conditioning on inaccurate calibration coefficients, invalidates the primary criticism of QFASA, eliminates the need to conduct feeding trials solely for diet estimation, and consequently expands the utility of fatty acid data to investigate aspects of ecology linked to animal diets.
Analytical method for dissolved-organic carbon fractionation
Leenheer, Jerry A.; Huffman, Edward W. D.
1979-01-01
A standard procedure for analytical-scale dissolved organic carbon fractionation is presented, whereby dissolved organic carbon in water is first fractionated by a nonionic macroreticular resin into acid, base, and neutral hydrophobic organic solute fractions, and next fractionated by ion-exchange resins into acid, base, and neutral hydrophilic solute fractions. The hydrophobic solutes are defined as those sorbed on a nonionic, acrylic-ester macroreticular resin and are differentiated into acid, base, and nautral fractions by sorption/desorption controlled by pH adjustment. The hydrophilic bases are next sorbed on strong-acid ion-exchange resin, followed by sorption of hydrophilic acids on a strong-base ion-exchange resin. Hydrophilic neutrals are not sorbed and remain dissolved in the deionized water at the end of the fractionation procedure. The complete fractionation can be performed on a 200-milliliter filtered water sample, whose dissolved organic carbon content is 5-25 mg/L and whose specific conductance is less than 2,000 μmhos/cm at 25°C. The applications of dissolved organic carbon fractionation analysis range from field studies of changes of organic solute composition with synthetic fossil fuel production, to fundamental studies of the nature of sorption processes.
USDA-ARS?s Scientific Manuscript database
This study investigated the compositional characteristics and shelf-life of Njangsa seed oil (NSO). Oil from Njangsa had a high polyunsaturated fatty acid (PUFA) content of which alpha eleosteric acid (alpha-ESA), an unusual conjugated linoleic acid was the most prevalent (about 52%). Linoleic acid...
Carballeira, N M; Sostre, A; Stefanov, K; Popov, S; Kujumgiev, A; Dimitrova-Konaklieva, S; Tosteson, C G; Tosteson, T R
1997-12-01
The fatty acid composition of a new strain of Vibrio alginolyticus, found in the alga Cladophora coelothrix, was studied. Among 38 different fatty acids, a new fatty acid, 9-methyl-10-hexadecenoic acid and the unusual 11-methyl-12-octadecenoic acid, were identified. Linear alkylbenzene fatty acids, such as 10-phenyldecanoic acid, 12-phenyldodecanoic acid and 14-phenyltetradecanoic acid, were also found in V. alginolyticus. The alga contained 43% saturated fatty acids, and 28% C16-C20 polyunsaturated fatty acids of the n-3 and n-6 families.
Koarashi, Jun; Iida, Takao; Asano, Tomohiro
2005-01-01
To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ((14)C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of (14)C abundances showed that (1) bomb-derived (14)C has penetrated the first 16cm mineral soil at least; (2) Delta(14)C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived (14)C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived (14)C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales.
A comparative study of the fatty acid composition of prochloron lipids
NASA Technical Reports Server (NTRS)
Kenrick, J. R.; Deane, E. M.; Bishop, D. G.
1983-01-01
The chemical analysis of lipids of Prochloron isolated from several hosts is discussed. The object was to determine whether differences in lipid composition could be used to characterize organisms from different sources. Major lipid components are given. An analysis of fatty acid composition of individual lipids slowed a distinctive disstribution of fatty acids. While present results do not justify the use of fatty acid content in the taxonomy of Prochlon, the variations found in the lipids of cells from the same host harvested from different areas, or at different times in the same area, suggest that a study of the effects of temperature and light intensity on lipid composition would be rewarding.
Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods
2010-01-01
As interest in lignocellulosic biomass feedstocks for conversion into transportation fuels grows, the summative compositional analysis of biomass, or plant-derived material, becomes ever more important. The sulfuric acid hydrolysis of biomass has been used to measure lignin and structural carbohydrate content for more than 100 years. Researchers have applied these methods to measure the lignin and structural carbohydrate contents of woody materials, estimate the nutritional value of animal feed, analyze the dietary fiber content of human food, compare potential biofuels feedstocks, and measure the efficiency of biomass-to-biofuels processes. The purpose of this paper is to review the history and lineage of biomass compositional analysis methods based on a sulfuric acid hydrolysis. These methods have become the de facto procedure for biomass compositional analysis. The paper traces changes to the biomass compositional analysis methods through time to the biomass methods currently used at the National Renewable Energy Laboratory (NREL). The current suite of laboratory analytical procedures (LAPs) offered by NREL is described, including an overview of the procedures and methodologies and some common pitfalls. Suggestions are made for continuing improvement to the suite of analyses. PMID:20669951
Anirudhan, Thayyath S; Shainy, F; Christa, J
2017-02-15
Polyacrylic acid-grafted-carboxylic graphene/titanium nanotube (PAA-g-CGR/TNT) composite was synthesized. It was effectively used as adsorbent as well as photocatalyst. The composite was characterized by FTIR, XRD, SEM, TEM, Surface Area Analyzer, XPS and DRS. The photocatalytic activity of PAA-g-CGR/TNT composite was evaluated on the basis of the degradation of pollutants by using sunlight. The band gap of the prepared photocatalyst was found to be 2.6eV. The removal of the antibiotic enrofloxacin (ENR) was achieved by two step mechanism based on adsorption and photodegradation. The maximum adsorption was observed at pH 5.0. The best fitted kinetic model was found to be pseudo-second-order. The maximum adsorption was observed at 30°C. The maximum adsorption capacity was found to be 13.40mg/g. The kinetics of photodegradation of ENR onto PAA-g-CGR/TNT composite follow first-order kinetics and optimum pH was found to be 5.0. The regeneration and reuse of the adsorbent-cum-photocatalyst were also examined upto five cycles. Copyright © 2016 Elsevier B.V. All rights reserved.
The uniqueness of humic substances in each of soil, stream and marine environments
Malcolm, R.L.
1990-01-01
Definitive compositional differences are shown to exist for both fulvic acids and humic acids from soil, stream and marine environments by five different methods (1H and 13C NMR spectroscopy, 14C age and ?? 13C isotopic analyses, amino acid analyses and pyrolysis-mass spectrometry). Definitive differences are also found between fulvic acids and humic acids within each environment. These differences among humic substances from various sources are more readily discerned because the method employed for the isolation of humic substances from all environments excludes most of the non-humic components and results in more purified humic isolates from water and soils. The major compositional aspects of fulvic acids and humic acids which determine the observed characteristic differences in each environment are the amounts and compositions of saccharide, phenolic, methoxyl, aromatic, hydrocarbon, amino acid and nitrogen moieties.
Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M.
2016-01-01
Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle’s historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820
2012-01-01
Background A systematic mapping of the phytochemical composition of different sea buckthorn (Hippophae rhamnoides L.) fruit subspecies is still lacking. No data relating to the fatty acid composition of main lipid fractions from the berries of ssp. carpatica (Romania) have been previously reported. Results The fatty acid composition of the total lipids (oils) and the major lipid fractions (PL, polar lipids; FFA, free fatty acids; TAG, triacylglycerols and SE, sterol esters) of the oils extracted from different parts of six sea buckthorn berry subspecies (ssp. carpatica) cultivated in Romania were investigated using the gas chromatography-mass spectrometry (GC-MS). The dominating fatty acids in pulp/peel and whole berry oils were palmitic (23-40%), oleic (20-53%) and palmitoleic (11-27%). In contrast to the pulp oils, seed oils had higher amount of polyunsaturated fatty acids (PUFAs) (65-72%). The fatty acid compositions of TAGs were very close to the compositions of corresponding seed and pulp oils. The major fatty acids in PLs of berry pulp/peel oils were oleic (20-40%), palmitic (17-27%), palmitoleic (10-22%) and linoleic (10%-20%) acids, whereas in seeds PLs, PUFAs prevailed. Comparing with the other lipid fractions the SEs had the highest contents of saturated fatty acids (SFAs). The fatty acid profiles of the FFA fractions were relatively similar to those of TAGs. Conclusions All parts of the analyzed sea buckthorn berry cultivars (ssp. carpatica) exhibited higher oil content then the other European or Asiatic sea buckthorn subspecies. Moreover, the pulp/peel oils of ssp. carpatica were found to contain high levels of oleic acid and slightly lower amounts of linoleic and α-linolenic acids. The studied cultivars of sea buckthorn from Romania have proven to be potential sources of valuable oils. PMID:22995716
Dulf, Francisc V
2012-09-20
A systematic mapping of the phytochemical composition of different sea buckthorn (Hippophae rhamnoides L.) fruit subspecies is still lacking. No data relating to the fatty acid composition of main lipid fractions from the berries of ssp. carpatica (Romania) have been previously reported. The fatty acid composition of the total lipids (oils) and the major lipid fractions (PL, polar lipids; FFA, free fatty acids; TAG, triacylglycerols and SE, sterol esters) of the oils extracted from different parts of six sea buckthorn berry subspecies (ssp. carpatica) cultivated in Romania were investigated using the gas chromatography-mass spectrometry (GC-MS). The dominating fatty acids in pulp/peel and whole berry oils were palmitic (23-40%), oleic (20-53%) and palmitoleic (11-27%). In contrast to the pulp oils, seed oils had higher amount of polyunsaturated fatty acids (PUFAs) (65-72%). The fatty acid compositions of TAGs were very close to the compositions of corresponding seed and pulp oils. The major fatty acids in PLs of berry pulp/peel oils were oleic (20-40%), palmitic (17-27%), palmitoleic (10-22%) and linoleic (10%-20%) acids, whereas in seeds PLs, PUFAs prevailed. Comparing with the other lipid fractions the SEs had the highest contents of saturated fatty acids (SFAs). The fatty acid profiles of the FFA fractions were relatively similar to those of TAGs. All parts of the analyzed sea buckthorn berry cultivars (ssp. carpatica) exhibited higher oil content then the other European or Asiatic sea buckthorn subspecies. Moreover, the pulp/peel oils of ssp. carpatica were found to contain high levels of oleic acid and slightly lower amounts of linoleic and α-linolenic acids. The studied cultivars of sea buckthorn from Romania have proven to be potential sources of valuable oils.
Liu, Keyuan; Hao, Xiaoyan; Li, Yang; Luo, Guobin; Zhang, Yonggen; Xin, Hangshu
2017-01-01
Objective This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. Methods To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. Results The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05). The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05). The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. Conclusion This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter. PMID:28728386
Liu, Keyuan; Hao, Xiaoyan; Li, Yang; Luo, Guobin; Zhang, Yonggen; Xin, Hangshu
2017-11-01
This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a 3×3 Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05). The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05). The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.
Chatgilialoglu, Alexandros; Rossi, Martina; Alviano, Francesco; Poggi, Paola; Zannini, Chiara; Marchionni, Cosetta; Ricci, Francesca; Tazzari, Pier Luigi; Taglioli, Valentina; Calder, Philip C; Bonsi, Laura
2017-02-07
The study of lipid metabolism in stem cell physiology has recently raised great interest. The role of lipids goes beyond the mere structural involvement in assembling extra- and intra-cellular compartments. Nevertheless, we are still far from understanding the impact of membrane lipidomics in stemness maintenance and differentiation patterns. In the last years, it has been reported how in vitro cell culturing can modify membrane lipidomics. The aim of the present work was to study the membrane fatty acid profile of mesenchymal stromal cells (MSCs) derived from human fetal membranes (hFM-MSCs) and to correlate this to specific biological properties by using chemically defined tailored lipid supplements (Refeed®). Freshly isolated hFM-MSCs were characterized for their membrane fatty acid composition. hFM-MSCs were cultivated in vitro following a classical protocol and their membrane fatty acid profile at different passages was compared to the profile in vivo. A tailored Refeed® lipid supplement was developed with the aim of reducing the differences created by the in vitro cultivation and was tested on cultured hFM-MSCs. Cell morphology, viability, proliferation, angiogenic differentiation, and immunomodulatory properties after in vitro exposure to the tailored Refeed® lipid supplement were investigated. A significant modification of hFM-MSC membrane fatty acid composition occurred during in vitro culture. Using a tailored lipid supplement, the fatty acid composition of cultured cells remained more similar to their in vivo counterparts, being characterized by a higher polyunsaturated and omega-6 fatty acid content. These changes in membrane composition had no effect on cell morphology and viability, but were linked with increased cell proliferation rate, angiogenic differentiation, and immunomodulatory properties. In particular, Refeed®-supplemented hFM-MSCs showed greater ability to express fully functional cell membrane molecules. Culturing hFM-MSCs alters their fatty acid composition. A tailored lipid supplement is able to improve in vitro hFM-MSC functional properties by recreating a membrane environment more similar to the physiological counterpart. This approach should be considered in cell therapy applications in order to maintain a higher cell quality during in vitro passaging and to influence the outcome of cell-based therapeutic approaches when cells are administered to patients.
NASA Astrophysics Data System (ADS)
Ketabchi, Mohammad Reza; Khalid, Mohammad; Thevy Ratnam, Chantara; Walvekar, Rashmi
2016-12-01
Different approaches have been attempted to use biomass as filler for production of biodegradable polymer composites. In this study, cellulose nanoparticles (CNP) extracted from kenaf fibres were used to produce polylactic acid (PLA) based biodegradable nanocomposites. CNP concentration was varied from 1-5 wt. % and blended with PLA using Brabender twin-screw compounder. Effects of CNP loading on the mechanical, thermal and dynamic properties of PLA were investigated. Studies on the morphological properties and influence of CNP loading on the properties of CNP/PLA nanocomposite were also conducted. The results show an adequate compatibility between CNP and PLA matrix. Moreover, addition of 3 wt. % of CNP improved the PLA tensile strength by 25%.
Arriagada, Paulo; Palza, Humberto; Palma, Patricia; Flores, Marcos; Caviedes, Pablo
2018-04-01
Poly(lactic acid) (PLA) is a biodegradable and biocompatible polyester widely used in biomedical applications. Unfortunately, this biomaterial suffers from some shortcomings related with the absence of both bioactivity and antibacterial capacity. In this work, composites of PLA with either graphene oxide (GO) or thermally reduced graphene oxide (TrGO) were prepared by melt mixing to overcome these limitations. PLA composites with both GO and TrGO inhibited the attachment and proliferation of Escherichia coli and Staphylococcus aureus bacteria depending on the kind and amount of filler. Noteworthy, it is shown that by applying an electrical stimulus to the percolated PLA/TrGO, the antibacterial behavior can be dramatically increased. MTT analysis showed that while all the PLA/GO composites were more cytocompatible to osteoblast-like cells (SaOS-2) than pure PLA, only low content of TrGO was able to increase this property. These tendencies were related with changes in the surface properties of the resulting polymer composites, such as polarity and roughness. In this way, the addition of GO and TrGO into a PLA matrix allows the development of multifunctional composites for potential applications in biomedicine. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1051-1060, 2018. © 2017 Wiley Periodicals, Inc.
Marekov, Ilko; Momchilova, Svetlana; Grung, Bjørn; Nikolova-Damyanova, Boryana
2012-12-01
Applying gas chromatography-mass spectrometry of 4,4-dimethyloxazoline fatty acid derivatives, the fatty acid composition of 15 mushroom species belonging to 9 genera and 5 families of order Agaricales growing in Bulgaria is determined. The structure of 31 fatty acids (not all present in each species) is unambiguously elucidated, with linoleic, oleic and palmitic acids being the main components (ranging between 70.9% (Marasmius oreades) and 91.2% (Endoptychum agaricoides)). A group of three hexadecenoic positionally isomeric fatty acids, 6-, 9- and 11-16:1, appeared to be characteristic components of the examined species. By applying chemometrics it was possible to show that the fatty acid composition closely reflects the classification of the species. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kasmin, Hasimah; Lazim, Azwan Mat; Awang, Roila
2015-09-01
Palm oil contains about 45% of saturated palmitic acid and 39% of mono-unsaturated oleic acid. Investigations made in the past to trace the fatty acid composition in palm revealed that ripeness of fresh fruit bunch (FFB) affect oil composition. However, there is no evidence that processing operations affect oil composition, although different stage of processing does affect the quality of oil extracted. An improved method for sterilizing the oil palm fruits by dry heating, followed by oil extraction has been studied. This method eliminates the use of water, thus, increasing the extraction of lipid soluble. The objective of this study is to determine the possibility production of palm oil with different fatty acid composition (FAC) as well as the changes in quality from conventional milling. The unripe and ripe FFB were collected, sterilized and extracted using different method of solvent extraction. Preliminary data have shown that variation in FAC will also alter the physical and chemical properties of the oil extracted.
Properties of polyvinyl alcohol/xylan composite films with citric acid.
Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie
2014-03-15
Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming. Copyright © 2013. Published by Elsevier Ltd.
Impact of dual energy characterization of urinary calculus on management.
Habashy, David; Xia, Ryan; Ridley, William; Chan, Lewis; Ridley, Lloyd
2016-10-01
Dual energy CT (DECT) is a recent technique that is increasingly being used to differentiate between calcium and uric acid urinary tract calculi. The aim of this study is to determine if urinary calculi composition analysis determined by DECT scanning results in a change of patient management. All patients presenting with symptoms of renal colic, who had not previously undergone DECT scanning underwent DECT KUB. DECT data of all patients between September 2013 and July 2015 were reviewed. Urinary calculi composition based on dual energy characterization was cross-matched with patient management and outcome. A total of 585 DECT KUB were performed. 393/585 (67%) DECT scans revealed urinary tract calculi. After excluding those with isolated bladder or small asymptomatic renal stones, 303 patients were found to have symptomatic stone(s) as an explanation for their presentation. Of these 303 patients, there were 273 (90.1%) calcium calculi, 19 (6.3%) uric acid calculi and 11 (3.4%) mixed calculi. Of those with uric acid calculi, 15 were commenced on dissolution therapy. Twelve of those commenced on dissolution therapy had a successful outcome, avoiding need for surgical intervention (lithotripsy or stone retrieval). Three patients failed dissolution therapy and required operative intervention for definitive management of the stone. Predicting urinary tract calculi composition by DECT plays an important role in identifying patients who may be managed with dissolution therapy. Identification of uric acid stone composition altered management in 15 of 303 (5.0%) patients, and was successful in 12, thereby avoiding surgery and its attendant risks. © 2016 The Royal Australian and New Zealand College of Radiologists.
NASA Astrophysics Data System (ADS)
Lebedeva, Tamara L.; Shandryuk, George A.; Sycheva, Tatyana I.; Bezborodov, Vladimir S.; Talroze, Raissa V.; Platé, Nicolai A.
1995-07-01
The type of bonds responsible for the complexation of di- and polyacids with the tertiary amine β- N-dimethylamino-4-dodecyloxypropiophenone is studied by means of FTIR spectroscopy. The complexes are shown to be stable due to strong H-bonding with partial charge transfer. The characteristic composition for complexes of polyacrylic, polymethacrylic and malonic acids is calculated as 2:1 (number of carboxylic groups per number of amine molecules) whereas glutaric acid forms complexes of different composition including 1:1. The characteristic composition results from the structure of the initial acid. The structures of both the characteristic complex and "excess" acid are also discussed.
Cuvelier, C; Clinquart, A; Hocquette, J F; Cabaraux, J F; Dufrasne, I; Istasse, L; Hornick, J L
2006-11-01
Thirty-six young finishing bulls from three breeds (Belgian Blue, Limousin and Aberdeen Angus) were fattened over five months with finishing diets based either on sugar-beet pulp or on cereals. Nutritional quality traits of meat - fat content and fatty acid composition with emphasis on the n-6 and n-3 polyunsaturated fatty acids - along with some organoleptic quality traits were measured. The Belgian Blue bulls had the lowest intramuscular fat content associated with lower saturated and monounsaturated fatty acid contents. The polyunsaturated fatty acid content did not differ to a large extent between the breeds, the Aberdeen Angus bulls showing slightly higher values. Relative to energy intake, the overall contribution of meat to the n-3 fatty acid recommended intake was small, whatever the breed. By contrast, the contribution of meat to daily fat intake was of greater importance, especially for the Aberdeen Angus bulls. The quality traits of meat varied also according to the breed: compared to the Aberdeen Angus, the Belgian Blue bull meat had the stablest colour, the highest drip and the lowest cooking losses. The meat of Limousin bulls had intermediate characteristics for all the parameters.
Xiao, Zhichao; Luo, Yuting; Wang, Guiying; Ge, Changrong; Zhou, Guanghong; Zhang, Wangang; Liao, Guozhou
2018-06-13
Boiled Wuding chicken was produced using whole chicken by washing, boiling 1 h with salt, deep frying and boiling 2 h. The effect of process on the WLOM (water-soluble lower molecule) profiles of products was characterized using proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) and fatty acid composition of products was analyzed using gas chromatography-mass spectrometry (GC-MS). The metabonome was dominated by 49 WLOM and 22 fatty acid compounds were detected. PC1 and PC2 explained a total of 93.4% and 3% of variance, respectively. Compared with control group, the total WLOM and fatty acid content of the chicken breast were significantly decreased in other three processing stages (P<0.05). Comprehensive multivariate data analysis showed significant differences about precursor substance between the different processing including creatine, lactate, creatinine, glucose, taurine, anserine and acetate (P<0.05). These results contribute to a more accurate understanding of precursor substance changes of flavor in chicken meat during processing. Boiled treated chicken had significant effects on fatty acid and WLOM compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Impact of region on the composition of milk fatty acids in China.
Yang, Yongxin; Wang, Jiaqi; Yuan, Tingjie; Bu, Dengpan; Yang, Jinhui; Zhou, Lingyun; Sun, Peng; Zhang, Juanxia
2013-08-30
Milk composition and its fatty acid profile have received much attention with respect to improving human health. However, limited work has been conducted to assess the composition of milk fat in China, which is the third largest producer of milk in the world. In this study the effects of geographical region and seasonal changes (spring and summer) on the fatty acid composition of milk samples collected from six Chinese farms were investigated. Milk fat and protein contents, as well as some individual fatty acids and five fatty acid groups, were found to be unaffected by season, but they did show significant differences by geographical region. Levels of milk cis-9, trans-11 conjugated linoleic acid decreased in summer and increased in spring, increased in north (Hohhot), northeast (Harbin), north centre (Beijing) and northwest (Xi'an) China and decreased in far northwest (Urumqi) and east (Chuzhou) China. Monounsaturated fatty acids increased in east and northwest China and decreased in northeast China, while polyunsaturated fatty acids increased in far northwest and north centre China and decreased in northeast China. This study provides relevent information that contributes to the understanding of parameters affecting variability of milk fatty acid profiles. © 2012 Society of Chemical Industry.
Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses.
Shinde, Suhas; Devaiah, Shivakumar; Kilaru, Aruna
2017-01-01
In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.
Kimoto-Nira, Hiromi; Kobayashi, Miho; Nomura, Masaru; Sasaki, Keisuke; Suzuki, Chise
2009-05-31
Bile resistance is one of the basic characteristics of probiotic bacteria. The aim of this study was to investigate the characteristics of bile resistance in lactococci by studying the relationship between bile resistance and cellular fatty acid composition in lactococcci grown on different media. We determined the bile resistance of 14 strains in lactose-free M17 medium supplemented with either glucose only (GM17) or lactose only (LM17). Gas chromatographic analyses of free lipids extracted from the tested strains were used for determining their fatty acid composition. A correlation analysis of all strains grown in both media revealed significant positive correlations between bile resistance and relative contents of hexadecanoic acid and octadecenoic acid, and negative correlations between bile resistance and relative contents of hexadecenoic acid and C-19 cyclopropane fatty acid. It is also a fact that the fatty acids associated with bile resistance depended on species, strain, and/or growth medium. In L. lactis subsp. cremoris strains grown in GM17 medium, the bile-resistant strains had significantly more octadecenoic acid than the bile-sensitive strains. In LM17 medium, bile-resistant strains had significantly more octadecenoic acid and significantly less C-19 cyclopropane fatty acid than the bile-sensitive strains. In L. lactis subsp. lactis strains, bile resistances of some of the tested strains were altered by growth medium. Some strains were resistant to bile in GM17 medium but sensitive to bile in LM17 medium. Some strains were resistant in both media tested. The strains grown in GM17 medium had significantly more hexadecanoic acid and octadecenoic acid, and significantly less tetradecanoic acid, octadecadienoic acid and C-19 cyclopropane fatty acid than the strains grown in LM17 medium. In conclusion, the fatty acid compositions of the bile-resistant lactococci differed from those of the bile-sensitive ones. More importantly, our data suggest that altering their fatty acid composition (i.e. increased hexadecanoic acid and octadecenoic acid and decreased hexadecenoic acid and C-19 cyclopropane fatty acid) by changing growth conditions may be a useful way to enhance their bile resistance in lactococci.
Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna
2015-01-01
The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.
Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander
2014-02-15
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.
Cosenza, Gianfranco; Macciotta, Nicolò P P; Nudda, Anna; Coletta, Angelo; Ramunno, Luigi; Pauciullo, Alfredo
2017-05-01
The oxytocin receptor, also known as OXTR, is a protein which functions as receptor for the hormone and neurotransmitter oxytocin and the complex oxytocin-oxytocin receptor plays an important role in the uterus during calving. A characterisation of the river buffalo OXTR gene, amino acid sequences and phylogenetic analysis is presented. The DNA regions of the OXTR gene spanning exons 1, 2 and 3 of ten Mediterranean river buffalo DNA samples were analysed and 7 single nucleotide polymorphisms were found. We focused on the g.129C > T SNP detected in exon 3 and responsible for the amino acid replacement CGCArg > TGCCys in position 353. The relative frequency of T allele was of 0·257. An association study between this detected polymorphism and milk fatty acids composition in Italian Mediterranean river buffalo was carried out. The fatty acid composition traits, fatty acid classes and fat percentage of 306 individual milk samples were determined. Associations between OXTR g.129C > T genotype and milk fatty acids composition were tested using a mixed linear model. The OXTR CC genotype was found significantly associated with higher contents of odd branched-chain fatty acids (OBCFA) (P < 0·0006), polyunsaturated FA (PUFA n 3 and n 6) (P < 0·0032 and P < 0·0006, respectively), stearic acid (C18) (P < 0·02) and lower level of palmitic acid (C16) (P < 0·02). The results of this study suggest that the OXTR CC animals might be useful in selection toward the improvement of milk fatty acid composition.
Yin, Hong; Chow, Gan-Moog
2009-11-01
Nickel ferrite nanoparticles with or without oleic acid surface coating were mixed with poly(D,L-lactide) (PLA) by double emulsion method. If the nanoparticles were prepared without oleic acid coating, they adsorbed on the PLA surface. If the nanoparticles were coated with oleic acid, they could be readily encapsulated within the PLA microspheres. A slight depression in glass transition temperature was found in all composites and it could be related to the interfacial energies between nanoparticles and PLA. Optimum mixed composite was achieved by reducing interfacial energy. However, loading capacity was limited in this composite. Increasing the amount of nickel ferrite nanoparticles was not useful to increase loading capacity. Cytotoxicity of the composite decreased significantly when nickel ferrite nanoparticles were effectively encapsulated in PLA microspheres. (c) 2008 Wiley Periodicals, Inc.
Creep Behavior of Poly(lactic acid) Based Biocomposites
Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo
2017-01-01
Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric. PMID:28772755
Creep Behavior of Poly(lactic acid) Based Biocomposites.
Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo
2017-04-08
Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.
Can we define an infant's need from the composition of human milk?
Stam, José; Sauer, Pieter Jj; Boehm, Günther
2013-08-01
Human milk is recommended as the optimal nutrient source for infants and is associated with several short- and long-term benefits for child health. When accepting that human milk is the optimal nutrition for healthy term infants, it should be possible to calculate the nutritional needs of these infants from the intake of human milk. These data can then be used to design the optimal composition of infant formulas. In this review we show that the composition of human milk is rather variable and is dependent on factors such as beginning or end of feeding, duration of lactation, diet and body composition of the mother, maternal genes, and possibly infant factors such as sex. In particular, the composition of fatty acids in human milk is quite variable. It therefore seems questionable to estimate the nutritional needs of an infant exclusively from the intake of human milk. The optimal intake for infants must be based, at least in part, on other information-eg, balance or stable-isotope studies. The present recommendation that the composition of infant formulas should be based on the composition of human milk needs revision.
Chistiakova, T I; Dediukhina, E G; Eroshin, V K
1981-01-01
The effect of growth temperature on the content of nucleic acids, the content and composition of protein, and the pool of free amino acids and lipids was studied under the conditions of chemostat cultivation of yeast strains at constant flow rates and pO2. The pool of free amino acids in all of the strains decreased with an increase in the temperature of growth. Changes in the content and composition of other cellular components depending on temperature were determined by individual characteristics of the strains. A linear relationship between the content of biomass components and the temperature of growth was found only in Candida scottii. The temperature of yeast cultivation may be used as a factor regulating the pool of free intracellular amino acids and the fatty acids composition of lipids.
Larson, James H; Richardson, William B; Knights, Brent C; Bartsch, Lynn A; Bartsch, Michelle R; Nelson, John C; Veldboom, Jason A; Vallazza, Jon M
2013-01-01
Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.
Larson, James H.; Richardson, William B.; Knights, Brent C.; Bartsch, Lynn; Bartsch, Michelle; Nelson, J. C.; Veldboom, Jason A.; Vallazza, Jonathan M.
2013-01-01
Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.
Examining Troughs in the Mass Distribution of All Theoretically Possible Tryptic Peptides
Nefedov, Alexey V.; Mitra, Indranil; Brasier, Allan R.; Sadygov, Rovshan G.
2011-01-01
This work describes the mass distribution of all theoretically possibly tryptic peptides made of 20 amino acids, up to the mass of 3 kDa, with resolution of 0.001 Da. We characterize regions between the peaks of the distribution, including gaps (forbidden zones) and low-populated areas (quiet zones). We show how the gaps shrink over the mass range, and when they completely disappear. We demonstrate that peptide compositions in quiet zones are less diverse than those in the peaks of the distribution, and that by eliminating certain types of unrealistic compositions the gaps in the distribution may be increased. The mass distribution is generated using a parallel implementation of a recursive procedure that enumerates all amino acid compositions. It allows us to enumerate all compositions of tryptic peptides below 3 kDa in 48 minutes using a computer cluster with 12 Intel Xeon X5650 CPUs (72 cores). The results of this work can be used to facilitate protein identification and mass defect labeling in mass spectrometry-based proteomics experiments. PMID:21780838
Wu, Chin-San
2012-09-01
In the present study, the biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted polylactide (PLA-g-AA) and natural products residues (corn starch, CS) were evaluated. Composites containing acrylic acid-grafted PLA (PLA-g-AA/CS) exhibited noticeably superior mechanical properties due to their greater compatibility with CS compared with PLA/CS. The feasibility of using PLA-g-AA/CS as a film bag material to facilitate the controlled release of an encapsulated phosphate-solubilizing bacterium (PSB) Burkholderia cepacia as a fertilizer use promoter was then evaluated. For purposes of comparison and accurate characterization, a PLA film bag was also assessed. The results showed that the bacterium completely degraded both the PLA and the PLA-g-AA/CS composite film bags, resulting in cell release. The PLA-g-AA/CS (20 wt%) film bags were more biodegradable than those made of PLA, and displayed a higher loss of molecular weight and intrinsic viscosity, indicating a strong connection between these characteristics and biodegradability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Saravanan, Vijayakumar; Gautham, Namasivayam
2015-10-01
Proteins embody epitopes that serve as their antigenic determinants. Epitopes occupy a central place in integrative biology, not to mention as targets for novel vaccine, pharmaceutical, and systems diagnostics development. The presence of T-cell and B-cell epitopes has been extensively studied due to their potential in synthetic vaccine design. However, reliable prediction of linear B-cell epitope remains a formidable challenge. Earlier studies have reported discrepancy in amino acid composition between the epitopes and non-epitopes. Hence, this study proposed and developed a novel amino acid composition-based feature descriptor, Dipeptide Deviation from Expected Mean (DDE), to distinguish the linear B-cell epitopes from non-epitopes effectively. In this study, for the first time, only exact linear B-cell epitopes and non-epitopes have been utilized for developing the prediction method, unlike the use of epitope-containing regions in earlier reports. To evaluate the performance of the DDE feature vector, models have been developed with two widely used machine-learning techniques Support Vector Machine and AdaBoost-Random Forest. Five-fold cross-validation performance of the proposed method with error-free dataset and dataset from other studies achieved an overall accuracy between nearly 61% and 73%, with balance between sensitivity and specificity metrics. Performance of the DDE feature vector was better (with accuracy difference of about 2% to 12%), in comparison to other amino acid-derived features on different datasets. This study reflects the efficiency of the DDE feature vector in enhancing the linear B-cell epitope prediction performance, compared to other feature representations. The proposed method is made as a stand-alone tool available freely for researchers, particularly for those interested in vaccine design and novel molecular target development for systems therapeutics and diagnostics: https://github.com/brsaran/LBEEP.
Antioxidant activity of commercial food grade tannins exemplified in a wine model.
Ricci, Arianna; Olejar, Kenneth J; Parpinello, Giuseppina P; Mattioli, Alessia U; Teslić, Nemanja; Kilmartin, Paul A; Versari, Andrea
2016-12-01
Although commercial tannins are widely used in foods and beverages, an improved understanding of the structure and composition of vegetable tannins is needed to promote the exploitation of agri-food by-products and waste and their valorisation in more sustainable industrial applications. This study aims to characterise the phytochemical composition and antioxidant activity of 13 food grade tannins using multiple analytical approaches, including spectrophotometry and HPLC-ECD to determine the amount of targeted polyphenolic compounds. Moreover, the antioxidant activity of tannins was assessed in terms of radical scavenging activity (DPPH• assay), reducing power (FRAP assay), and redox properties (cyclic voltammetry, CV). A statistical univariate and multivariate correlation analysis was performed on 17 parameters including tannin content (range: 0.71-1.62 mM), gallic acid, (+)-catechin, syringic acid and (‒)-epicatechin. The compositional profile of tannins was related to their chemical moiety, antioxidant activity and the botanical origin of the extracts. In particular, the CV signal at 500 mV was highly correlated with DPPH• value due to the catechol ring of flavonoids and trigalloyl moieties of gallic acid-based compounds. Practical examples of tannins application in winemaking are discussed.
Bipolar batteries based on Ebonex ® technology
NASA Astrophysics Data System (ADS)
Loyns, A. C.; Hill, A.; Ellis, K. G.; Partington, T. J.; Hill, J. M.
Continuing work by Atraverda on the production of a composite-laminate form of the Ebonex ® material, that can be cheaply formulated and manufactured to form substrate plates for bipolar lead-acid batteries, is described. Ebonex ® is the registered trade name of a range of titanium suboxide ceramic materials, typically Ti 4O 7 and Ti 5O 9, which combine electrical conductivity with high corrosion and oxidation resistance. Details of the structure of the composite, battery construction techniques and methods for filling and forming of batteries are discussed. In addition, lifetime and performance data obtained by Atraverda from laboratory bipolar lead-acid batteries and cells are presented. Battery production techniques for both conventional monopolar and bipolar batteries are reviewed. The findings indicate that substantial time and cost savings may be realised in the manufacture of bipolar batteries in comparison to conventional designs. This is due to the fewer processing steps required and more efficient formation. The results indicate that the use of Ebonex ® composite material as a bipolar substrate will provide lightweight and durable high-voltage lead-acid batteries suitable for a wide range of applications including advanced automotive, stationary power and portable equipment.
Venkatachalam, Mahesh; Kshirsagar, Harshal H; Seeram, Navindra P; Heber, David; Thompson, Tommy E; Roux, Kenneth H; Sathe, Shridhar K
2007-11-28
On an edible portion basis, pecan moisture, protein, lipid, total soluble sugars, and ash contents ranged from 2.1% to 6.4%, 6.0% to 11.3%, 65.9% to 78.0%, 3.3% to 5.3%, and 1.2% to 1.8%, respectively. With the exception of a high tannin (2.7%) Texas seedling, pecan tannin content was in a narrow range (0.6-1.85%). Unsaturated fatty acids (>90%) dominated pecan lipid composition with oleic (52.52-74.09%) and linoleic (17.69-37.52%) acids as the predominant unsaturated fatty acids. Location significantly influenced pecan biochemical composition. Pecan lipid content was negatively correlated with protein (r = -0.663) and total sugar (r = -0.625). Among the samples tested using SDS-PAGE a common pattern, with minor differences, in subunit polypeptide profiles was revealed. Rabbit polyclonal antibody-based immunoblotting experiments (Western blot) also illustrated the similarity in polypeptide profiles with respect to immunoreactivity. All tested cultivars registered similar immunoreactivity when their protein extracts (each at 1 mg/mL) were assessed using inhibition ELISAs (mean +/- standard deviation = 0.89 +/- 0.20; n = 27) with the USDA "Desirable" cultivar as the reference standard (immunoreactivity designated as 1.0).
NASA Astrophysics Data System (ADS)
Cynthia Jemima Swarnavalli, G.; Dinakaran, S.; Divya, S.
2016-10-01
Nanocomposites consisting of silver and solid lipid nanoparticles (SLN) elicit interest for their synergistic effect based enhanced properties in skin hydration. The nanocomposite preparation aims at combining the antimicrobial activity of silver with skin hydration performance of SLN. The nanocomposites designated Ag/SAN (silver/stearic acid nanoparticles), Ag/PAN (silver/palmitic acid nanoparticles) were prepared by incorporating silver nanoparticles into the dispersion of SLN and sonicating for 10 min followed by heating for 1 h at 50 °C in a thermostat. The occlusive property of the two nanocomposites was evaluated in comparison with the pure SLN by adopting de Vringer-de Ronde in vitro occlusion test. The incorporation of silver nanoparticles has improved occlusion factor by 10 % in the case of both composites at SLN concentration of 0.14 mmol. Characterization studies include XRD, DSC, HRSEM, DLS and zeta potential measurement. High resolution scanning electron microscopy (HRSEM) images divulge that the nanoparticles of composite (Ag/SAN) shows halo effect where the hydrophobic stearic acid is oriented at the core and is surrounded by silver nanoparticles while Ag/PAN shows cashew shaped SLN dispersed in silver nanoparticles matrix.
NASA Astrophysics Data System (ADS)
Smyslov, R. Yu; Ezdakova, K. V.; Kopitsa, G. P.; Khripunov, A. K.; Bugrov, A. N.; Tkachenko, A. A.; Angelov, B.; Pipich, V.; Szekely, N. K.; Baranchikov, A. E.; Latysheva, E.; Chetverikov, Yu O.; Haramus, V.
2017-05-01
Scanning electron microscopy, ultra-small-angle neutron scattering (USANS), small-angle neutron and X-ray scattering (SANS and SAXS), as well as low-temperature nitrogen adsorption, were used in the studies of micro- and mesostructure of polymer matrix prepared from air-dry preliminarily disintegrated cellulose nano-gel film (synthesized by Gluconacetobacter xylinus) and the composites based on this bacterial cellulose. The composites included ZrO2 nanoparticles, Tb3+ in the form of low molecular weight salt and of metal-polymer complex with poly(vinylpyrrolydone)-poly(methacryloyl-o-aminobenzoic acid) copolymer. The combined analysis of the data obtained allowed revealing three levels of fractal organization in mesostructure of G. xylinus cellulose and its composites. It was shown that both the composition and an aggregation state of dopants have a significant impact on the structural characteristics of the organic-inorganic composites. The composites containing Tb3+ ions demonstrate efficient luminescence; its intensity is an order of magnitude higher in the case of the composites with the metal-polymer complex. It was found that there is the optimal content of ZrO2 nanoparticles in composites resulting in increased Tb3+ luminescence.
Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite.
Liang, Kunneng; Weir, Michael D; Xie, Xianju; Wang, Lin; Reynolds, Mark A; Li, Jiyao; Xu, Hockin H K
2016-11-01
The objective of this study was to investigate the effects of poly (amido amine) (PAMAM), composite with nanoparticles of amorphous calcium phosphate (NACP), and the combined PAMAM+NACP nanocomposite treatment, on remineralization of demineralized dentin in a cyclic artificial saliva/lactic acid environment for the first time. Dentin specimens were prepared and demineralized with 37% phosphoric acid for 15s. Four groups were prepared: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP composite, (4) dentin with PAMAM+NACP. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21days. Acid neutralization and calcium (Ca) and phosphate (P) ion concentrations were measured. The remineralized dentin specimens were examined by scanning electron microscopy (SEM) and hardness testing. NACP nanocomposite had mechanical properties similar to commercial control composites (p>0.1). NACP composite had acid-neutralization and Ca and P ion release capability. PAMAM or NACP composite each alone achieved remineralization and increased the hardness of demineralized dentin (p<0.05). PAMAM+NACP nanocomposite achieved the greatest mineral regeneration in demineralized dentin and the greatest hardness increase in demineralized dentin, which approached the hardness of healthy dentin (p>0.1). The superior remineralization efficacy of PAMAM+NACP was demonstrated for the first time. PAMAM+NACP induced remineralization in demineralized dentin in an acid challenge environment, when conventional remineralization methods such as PAMAM did not work well. The novel PAMAM+NACP composite approach is promising for a wide range of dental applications to inhibit caries and protect tooth structures. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
The Corrosion Behavior of Ni3(Si,Nb) Alloys in Boiling 70 wt.% Sulfuric Acid
NASA Astrophysics Data System (ADS)
Hsu, Jen-Hsien; Larson, Christopher M.; Newkirk, Joseph W.; Brow, Richard K.; Zhang, San-Hong
2016-02-01
Corrosion-resistant Ni3(Si,Nb) alloys are promising materials of construction for hydrogen-production systems based on the sulfur-iodine thermochemical cycle. In this work, the corrosion rates of three different Ni3(Si,Nb) alloys were measured in boiling 70 wt.% sulfuric acid and a three-stage corrosion mechanism was identified, based on the composition and morphology of surface scale that developed. The α(Ni) + β(Ni3Si) eutectic constituent of the alloy microstructure was selectively attacked by acid and, when present, is detrimental to corrosion resistance. The G-phase (Ni16Si17Nb6) is more passive than the β-matrix and seems to contribute to a lower steady-state corrosion rate.
Qiao, Shanlei; Hu, Nan; Hu, Yanhui; Wu, Wei; Qiu, Lianglin; Zhang, Ruyang; Wang, Yubang; Wang, Shoulin; Zhou, Zuomin; Xia, Yankai; Wang, Xinru
2012-01-01
Background Male reproductive toxicity induced by exposure to bisphenol A (BPA) has been widely reported. The testes have proven to be a major target organ of BPA toxicity, so studying testicular metabolite variation holds promise for the discovery of mechanisms linked to the toxic effects of BPA on reproduction. Methodology/Principal Findings Male Sprague-Dawley rats were orally administered doses of BPA at the levels of 0, 50 mg/kg/d for 8 weeks. We used an unbiased liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomics approach to discover, identify, and analyze the variation of testicular metabolites. Two n-6 fatty acids, linoleic acid (LA) and arachidonic acid (AA) were identified as potential testicular biomarkers. Decreased levels of LA and increased levels of AA as well as AA/LA ratio were observed in the testes of the exposed group. According to these suggestions, testicular antioxidant enzyme levels were detected. Testicular superoxide dismutase (SOD) declined significantly in the exposed group compared with that in the non-exposed group, and the glutathione peroxidase (GSH-Px) as well as catalase (CAT) also showed a decreasing trend in BPA treated group. Conclusions/Significance BPA caused testicular n-6 fatty acid composition variation and decreased antioxidant enzyme levels. This study emphasizes that metabolomics brings the promise of biomarkers identification for the discovery of mechanisms underlying reproductive toxicity. PMID:23024759
Ben Ayed, Rayda; Ennouri, Karim; Ercişli, Sezai; Ben Hlima, Hajer; Hanana, Mohsen; Smaoui, Slim; Rebai, Ahmed; Moreau, Fabienne
2018-04-10
Virgin olive oil is appreciated for its particular aroma and taste and is recognized worldwide for its nutritional value and health benefits. The olive oil contains a vast range of healthy compounds such as monounsaturated free fatty acids, especially, oleic acid. The SAD.1 polymorphism localized in the Stearoyl-acyl carrier protein desaturase gene (SAD) was genotyped and showed that it is associated with the oleic acid composition of olive oil samples. However, the effect of polymorphisms in fatty acid-related genes on olive oil monounsaturated and saturated fatty acids distribution in the Tunisian olive oil varieties is not understood. Seventeen Tunisian olive-tree varieties were selected for fatty acid content analysis by gas chromatography. The association of SAD.1 genotypes with the fatty acids composition was studied by statistical and Bayesian modeling analyses. Fatty acid content analysis showed interestingly that some Tunisian virgin olive oil varieties could be classified as a functional food and nutraceuticals due to their particular richness in oleic acid. In fact, the TT-SAD.1 genotype was found to be associated with a higher proportion of mono-unsaturated fatty acids (MUFA), mainly oleic acid (C18:1) (r = - 0.79, p < 0.000) as well as lower proportion of palmitic acid (C16:0) (r = 0.51, p = 0.037), making varieties with this genotype (i.e. Zarrazi and Tounsi) producing more monounsaturated oleic acid (C18: 1) than saturated acid. These varieties could be thus used as nutraceuticals and functional food. The SAD.1 association with the oleic acid composition of olive oil was identified among the studied varieties. This correlation fluctuated between studied varieties, which might elucidate variability in lipidic composition among them and therefore reflecting genetic diversity through differences in gene expression and biochemical pathways. SAD locus would represent an excellent marker for identifying interesting amongst virgin olive oil lipidic composition.
Soil amino acid composition across a boreal forest successional sequence
Nancy R. Werdin-Pfisterer; Knut Kielland; Richard D. Boone
2009-01-01
Soil amino acids are important sources of organic nitrogen for plant nutrition, yet few studies have examined which amino acids are most prevalent in the soil. In this study, we examined the composition, concentration, and seasonal patterns of soil amino acids across a primary successional sequence encompassing a natural gradient of plant productivity and soil...
Methods for making nucleotide probes for sequencing and synthesis
Church, George M; Zhang, Kun; Chou, Joseph
2014-07-08
Compositions and methods for making a plurality of probes for analyzing a plurality of nucleic acid samples are provided. Compositions and methods for analyzing a plurality of nucleic acid samples to obtain sequence information in each nucleic acid sample are also provided.
Nielsen, Jakob; Kwon, Tae-Hwan; Christensen, Birgitte Mønster; Frøkiaer, Jørgen; Nielsen, Søren
2008-05-01
Lithium is used commonly to treat bipolar mood disorders. In addition to its primary therapeutic effects in the central nervous system lithium has a number of side effects in the kidney. The side effects include nephrogenic diabetes insipidus with polyuria, mild sodium wasting, and changes in acid/base balance. These functional changes are associated with marked structural changes in collecting duct cell composition and morphology, likely contributing to the functional changes. Over the past few years, investigations of lithium-induced renal changes have provided novel insight into the molecular mechanisms that are responsible for the disturbances in water, sodium, and acid/base metabolism. This includes dysregulation of renal aquaporins, epithelial sodium channel, and acid/base transporters. This review focuses on these issues with the aim to present this in context with clinically relevant features.
Aquatic fulvic acids in microbially based ecosystems: results from two desert lakes in Antarctica
McKnight, Diane M.; Aiken, G.R.; Smith, R.L.
1991-01-01
These lakes receive very limited input of organic material from the surrounding barren desert, but they sustain algal and bacterial populations under permanent ice cover. One lake has an extensive anoxic zone and high salinities; the other is oxic and has low salinities. Despite these differences, fulvic acids from both lakes had similar elemental compositions, carbon distributions, and amino acid contents, indicating that the chemistry of microbially derived fulvic acvids is not strongly influenced by chemical conditions in the water column. Compared to fulvic acids from other natural waters, these fulvic acids have low C:N atomic ratios (19-25) and low contents of aromatic carbons (5-7% of total carbon atoms); they are most similar to marine fulvic acids. -from Authors
NASA Astrophysics Data System (ADS)
Suharty, Neng Sri; Dihardjo, Kuncoro; Handayani, Desi Suci; Firdaus, Maulidan
2016-03-01
Composites rPP/DVB/AA/KF had been reactively synthesized in melt using starting material: recycled polypropylene (rPP), kenaf fiber (KF), multifunctional compound acrylic acid (AA), compatibilizer divinyl benzene (DVB). To improve the inflammability of composites, single flame retardant aluminum tri-hydroxide (ATH) and boric acid (BA) as an additive was added. The inflammability of the composites was tested according to ASTM D635. By using 20% ATH and 5% BA additive in the composites it is effectively inhibiting its time to ignition (TTI). Its burning rate (BR) can be reduced and its heat realease (%HR) decreases. The biodegradability of composites was quantified by its losing weight (LW) of composites after buried for 4 months in the media with rich cellulolytic bacteria. The result shows that the LW of composites in the presence 20% ATH and 5% BA is 6.3%.
Contreras, G A; O'Boyle, N J; Herdt, T H; Sordillo, L M
2010-06-01
The periparturient period is characterized by sudden changes in metabolic and immune cell functions that predispose dairy cows to increased incidence of disease. Metabolic changes include alterations in the energy balance that lead to increased lipomobilization with consequent elevation of plasma nonesterified fatty acids (NEFA) concentrations. The objective of this study was to establish the influence of lipomobilization on fatty acid profiles within plasma lipid fractions and leukocyte phospholipid composition. Blood samples from 10 dairy cows were collected at 14 and 7 d before due date, at calving, and at 7, 14, and 30 d after calving. Total lipids and lipid fractions were extracted from plasma and peripheral blood mononuclear cells. The degree of lipomobilization was characterized by measurement of plasma NEFA concentrations. The fatty acid profile of plasma NEFA, plasma phospholipids, and leukocyte phospholipids differed from the composition of total lipids in plasma, where linoleic acid was the most common fatty acid. Around parturition and during early lactation, the proportion of palmitic acid significantly increased in the plasma NEFA and phospholipid fractions with a concomitant increase in the phospholipid fatty acid profile of leukocytes. In contrast, the phospholipid fraction of long-chain polyunsaturated fatty acids in leukocytes was diminished during the periparturient period, especially during the first 2 wk following parturition. This study showed that the composition of total plasma lipids does not necessarily reflect the NEFA and phospholipid fractions in periparturient dairy cows. These findings are significant because it is the plasma phospholipid fraction that contributes to fatty acid composition of membrane phospholipids. Increased availability of certain saturated fatty acids in the NEFA phospholipid fractions may contribute to altered leukocyte functions during the periparturient period. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A composite sensor array impedentiometric electronic tongue Part II. Discrimination of basic tastes.
Pioggia, G; Di Francesco, F; Marchetti, A; Ferro, M; Leardi, R; Ahluwalia, A
2007-05-15
An impedentiometric electronic tongue based on the combination of a composite sensor array and chemometric techniques aimed at the discrimination of soluble compounds able to elicit different gustative perceptions is presented. A composite array consisting of chemo-sensitive layers based on carbon nanotubes or carbon black dispersed in polymeric matrices and doped polythiophenes was used. The electrical impedance of the sensor array was measured at a frequency of 150 Hz by means of an impedance meter. The experimental set-up was designed in order to allow the automatic selection of a test solution and dipping of the sensor array following a dedicated measurement protocol. Measurements were carried out on 15 different solutions eliciting 5 different tastes (sodium chloride, citric acid, glucose, glutamic acid and sodium dehydrocholate for salty, sour, sweet, umami and bitter, respectively) at 3 concentration levels comprising the human perceptive range. In order to avoid over-fitting, more than 100 repetitions for each sample were carried in a 4-month period. Principal component analysis (PCA) was used to detect and remove outliers. Classification was performed by linear discriminant analysis (LDA). A fairly good degree of discrimination was obtained.
Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater
NASA Astrophysics Data System (ADS)
Jørgensen, L.; Lechtenfeld, O. J.; Benner, R.; Middelboe, M.; Stedmon, C. A.
2014-10-01
Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3-14 mol %). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7-11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural (representing marine semi-labile and refractory DOM) and artificial (representing bacterially produced DOM) seawater samples, suggests that microbes transform bioavailable neutral sugars and amino acids into a common, more persistent form.
Lymphatic fatty acids from rats fed human milk and formula containing coconut oil.
Roche, M E; Clark, R M
1994-06-01
Human milk and infant formula containing coconut/soy oil were infused into the duodenum of rats to determine the incorporation of capric, lauric, myristic and palmitic acids into lymphatic triacylglycerol (TAG). The proportion of capric and lauric acids in the lymphatic TAG reflected the fatty acid composition of the diet. Based on positional analysis, it appears that more than 50% of the capric and lauric acids could have been absorbed from the intestine as sn-2 monoacylglycerols. In the rats fed human milk, 50% of palmitic acid in lymphatic TAG was in the sn-2 position. Because of the nonrandom distribution of palmitic acid in the lymphatic TAG, the nonspecific lipase in human milk, i.e., bile salt-stimulated lipase, did not appear to be a factor in milk lipid digestion.
Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R
2014-05-12
The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.
Synthesis of palm oil fatty acid and trimethylolpropane based ester for biolubricant base stocks
NASA Astrophysics Data System (ADS)
Nor, Nurazira Mohd; Derawi, Darfizzi; Salimon, Jumat
2018-04-01
RBD palm oil become one of the interesting renewable resources in biolubricant application. However, palm oil cannot be used directly as lubricant due to some performance limitations such as thermal and oxidative stability. This drawback can be overcome by chemical modification through esterification with polyhydric alcohol such as trimethylolpropane (TMP). The synthesis of ester was carried out via esterification of palm oil fatty acid (POFA) with TMP in the presence of 2% sulphuric acid as catalyst at 150 °C for 5 hours. Gas Chromatography equipped with a Flame Ionization Detector (GC-FID) was used to determine the percentage composition of POTMP ester. The structure confirmation of POTMP ester was proven by Fourier Transformation Infra-Red (FTIR), proton and carbon Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) spectroscopy analysis. The result showed that POTMP ester has successfully synthesized with 97.7% composition of triesters (TE), proved by GC chromatogram. Presence of ester group also evidenced by 1H NMR at 2.27-2.30 ppm and 13C NMR at 173.52-173.54 ppm. The percentage yield of POTMP ester produced was 82% and exist in liquid form at room temperature.
NASA Astrophysics Data System (ADS)
De, Jyotiraman; Baxi, R. N., Dr.
2017-08-01
Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.
NASA Astrophysics Data System (ADS)
Yang, Guang; Li, Chaolun; Wang, Yanqing
2016-04-01
The information of trophic relationship is important for studying the Southern Ocean ecosystems. In this study, three dominant krill species, Euphausia superba, Thysanoessa macrura and Euphausia crystallorophias, were collected from Prydz Bay, Antarctica, during austral summer of 2009/2010. The composition of fatty acids in these species was studied. E. superba and T. macrura showed a similar fatty acid composition which was dominated by C14:0, C16:0, EPA (eicosapentenoic acid) and DHA (decosahexenoic acid) while E. crystallorophias showed higher contents of C18:1(n-9), C18:1(n-7), DHA and EPA than the former two. Higher fatty acid ratios of C18:1(n-9)/18:1(n-7), PUFA (polyunsaturated fatty acid)/SFA (saturated fatty acid), and 18PUFA/16PUFA indicated that E. crystallorophias should be classified as a typical omnivore with a higher trophic position compared with E. superba and T. macrura.
Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization
NASA Astrophysics Data System (ADS)
Zhang, Bo; Li, Yanfeng; Pan, Xiaobing; Jia, Xin; Wang, Xiaolong
2007-02-01
Novel nano-composites of poly (acrylic acid)-kaolinite were prepared, and intercalation and in situ polymerization were used in this process. The nano-composites were obtained by in situ polymerization of acrylic acid (AA) and sodium acrylate (AANa) intercalated into organo-kaolinite, which was obtained by refining and chemically modifying with solution intercalation step in order to increase the basal plane distance of the original clay. The modification was completed by using dimethyl-sulfoxide (DMSO)/methanol and potassium acetate (KAc)/water systems step by step. The materials were characterized with the help of XRD, FT-IR and TEM; the results confirmed that poly(acrylic acid) (PAA) and poly(sodium acrylate) (PAANa) were intercalated into the interlamellar spaces of kaolinite, the resulting copolymer composites (CC0 : copolymer crude kaolinite composite, CC1 : copolymer DMSO kaolinite composite, CC2 : copolymer KAc kaolinite composite) of CC2 exhibited a lamellar nano-composite with a mixed nano-morphology, and partial exfoliation of the intercalating clay platelets should be the main morphology. Finally, the effect of neutralization degree on the intercalation behavior was also investigated.