Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo
2009-04-01
Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5alpha-reductase activity.
Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein
Gupta, Gagan Deep; Kumar, Vinay
2012-01-01
Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937
Measles virus fusion machinery activated by sialic acid binding globular domain.
Talekar, Aparna; Moscona, Anne; Porotto, Matteo
2013-12-01
Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.
Fang, Changming; Filipp, Fabian V; Smith, Jeffrey W
2012-04-01
Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA.
Fang, Changming; Filipp, Fabian V.; Smith, Jeffrey W.
2012-01-01
Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA. PMID:22223860
N-3 polyunsaturated fatty acid regulation of hepatic gene transcription
Jump, Donald B.
2009-01-01
Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks. PMID:18460914
Catalá, A; Avanzati, B
1983-11-01
Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.
Cox, Freek; Kwaks, Ted; Brandenburg, Boerries; Koldijk, Martin H; Klaren, Vincent; Smal, Bastiaan; Korse, Hans J W M; Geelen, Eric; Tettero, Lisanne; Zuijdgeest, David; Stoop, Esther J M; Saeland, Eirikur; Vogels, Ronald; Friesen, Robert H E; Koudstaal, Wouter; Goudsmit, Jaap
2016-01-01
Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc-FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies.
Lipchock, James M; Hendrickson, Heidi P; Douglas, Bonnie B; Bird, Kelly E; Ginther, Patrick S; Rivalta, Ivan; Ten, Nicholas S; Batista, Victor S; Loria, J Patrick
2017-01-10
Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of the insulin and leptin signaling pathways and is an active target for the design of inhibitors for the treatment of type II diabetes and obesity. Recently, cichoric acid (CHA) and chlorogenic acid (CGA) were predicted by docking methods to be allosteric inhibitors that bind distal to the active site. However, using a combination of steady-state inhibition kinetics, solution nuclear magnetic resonance experiments, and molecular dynamics simulations, we show that CHA is a competitive inhibitor that binds in the active site of PTP1B. CGA, while a noncompetitive inhibitor, binds in the second aryl phosphate binding site, rather than the predicted benzfuran binding pocket. The molecular dynamics simulations of the apo enzyme and cysteine-phosphoryl intermediate states with and without bound CGA suggest CGA binding inhibits PTP1B by altering hydrogen bonding patterns at the active site. This study provides a mechanistic understanding of the allosteric inhibition of PTP1B.
Seamon, Kyle J; Bumpus, Namandjé N; Stivers, James T
2016-11-08
Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.
Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin
2015-01-01
Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047
Tan, Nguan-Soon; Shaw, Natacha S.; Vinckenbosch, Nicolas; Liu, Peng; Yasmin, Rubina; Desvergne, Béatrice; Wahli, Walter; Noy, Noa
2002-01-01
Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARγ and PPARβ, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARγ and PPARβ and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARβ-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions. PMID:12077340
The amino acid motif L/IIxxFE defines a novel actin-binding sequence in PDZ-RhoGEF
Banerjee, Jayashree; Fischer, Christopher C.; Wedegaertner, Philip B.
2009-01-01
PDZ-RhoGEF is a member of the regulator of G protein signaling (RGS) domain-containing RhoGEFs (RGS-RhoGEFs) that link activated heterotrimeric G protein α subunits of the G12 family to activation of the small GTPase RhoA. Unique among the RGS-RhoGEFs, PDZ-RhoGEF contains a short sequence that localizes the protein to the actin cytoskeleton. In this report, we demonstrate that the actin-binding domain, located between amino acids 561–585, directly binds to F-actin in vitro. Extensive mutagenesis identifies isoleucine 568, isoleucine 569, phenylalanine 572, and glutamic acid 573 as necessary for binding to actin and for co-localization with the actin cytoskeleton in cells. These results define a novel actin-binding sequence in PDZ-RhoGEF with a critical amino acid motif of IIxxFE. Moreover, sequence analysis identifies a similar actin-binding motif in the N-terminus of the RhoGEF frabin, and, as with PDZ-RhoGEF, mutagenesis and actin interaction experiments demonstrate a motif of LIxxFE, consisting of the key amino acids leucine 23, isoleucine 24, phenylalanine 27, and glutamic acid 28. Taken together, results with PDZ-RhoGEF and frabin identify a novel actin binding sequence. Lastly, inducible dimerization of the actin-binding region of PDZ-RhoGEF revealed a dimerization-dependent actin bundling activity in vitro. PDZ-RhoGEF exists in cells as a dimer, raising the possibility that PDZ-RhoGEF could influence actin structure independent of its ability to activate RhoA. PMID:19618964
Strotmeier, Jasmin; Gu, Shenyan; Jutzi, Stephan; Mahrhold, Stefan; Zhou, Jie; Pich, Andreas; Eichner, Timo; Bigalke, Hans; Rummel, Andreas; Jin, Rongsheng; Binz, Thomas
2011-07-01
The seven botulinum neurotoxins (BoNT) cause muscle paralysis by selectively cleaving core components of the vesicular fusion machinery. Their extraordinary activity primarily relies on highly specific entry into neurons. Data on BoNT/A, B, E, F and G suggest that entry follows a dual receptor interaction with complex gangliosides via an established ganglioside binding region and a synaptic vesicle protein. Here, we report high resolution crystal structures of the BoNT/C cell binding fragment alone and in complex with sialic acid. The WY-motif characteristic of the established ganglioside binding region was located on an exposed loop. Sialic acid was co-ordinated at a novel position neighbouring the binding pocket for synaptotagmin in BoNT/B and G and the sialic acid binding site in BoNT/D and TeNT respectively. Employing synaptosomes and immobilized gangliosides binding studies with BoNT/C mutants showed that the ganglioside binding WY-loop, the newly identified sialic acid-co-ordinating pocket and the area corresponding to the established ganglioside binding region of other BoNTs are involved in ganglioside interaction. Phrenic nerve hemidiaphragm activity tests employing ganglioside deficient mice furthermore evidenced that the biological activity of BoNT/C depends on ganglioside interaction with at least two binding sites. These data suggest a unique cell binding and entry mechanism for BoNT/C among clostridial neurotoxins. © 2011 Blackwell Publishing Ltd.
Helledie, T; Antonius, M; Sorensen, R V; Hertzel, A V; Bernlohr, D A; Kølvraa, S; Kristiansen, K; Mandrup, S
2000-11-01
Peroxisome proliferator-activated receptors (PPARs) are activated by a variety of fatty acids, eicosanoids, and hypolipidemic and insulin-sensitizing drugs. Many of these compounds bind avidly to members of a family of small lipid-binding proteins, the fatty acid-binding proteins (FABPs). Fatty acids are activated to CoA esters, which bind with high affinity to the acyl-CoA-binding protein (ACBP). Thus, the availability of known and potential PPAR ligands may be regulated by lipid-binding proteins. In this report we show by transient transfection of CV-1 cells that coexpression of ACBP and adipocyte lipid-binding protein (ALBP) exerts a ligand- and PPAR subtype-specific attenuation of PPAR-mediated trans-activation, suggesting that lipid-binding proteins, when expressed at high levels, may function as negative regulators of PPAR activation by certain ligands. Expression of ACBP, ALBP, and keratinocyte lipid-binding protein (KLBP) is induced during adipocyte differentiation, a process during which PPARgamma plays a prominent role. We present evidence that endogenous ACBP, ALBP, and KLBP not only localize to the cytoplasm but also exhibit a prominent nuclear localization in 3T3-L1 adipocytes. In addition, forced expression of ACBP, ALBP, and KLBP in CV-1 cells resulted in a substantial accumulation of all three proteins in the nucleus. These results suggest that lipid-binding proteins, contrary to the general assumption, may exert their action in the nucleus as well as in the cytoplasm.
Wu, Simin; Zhang, Yunyue; Ren, Fazheng; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Zhang, Hao
2018-04-15
In this study, 71 phenolic acids and their derivatives were used to investigate the structure-affinity relationship of β-lactoglobulin binding, and the effect of this interaction on antioxidant activity. Based on a fluorescence quenching method, an improved mathematical model was adopted to calculate the binding constants, with a correction for the inner-filter effect. Hydroxylation at the 3-position increased the affinity of the phenolic acids for β-lactoglobulin, while hydroxylation at the 2- or 4-positions had a negative effect. Complete methylation of all hydroxy groups, except at the 3-position, enhanced the binding affinity. Replacing the hydroxy groups with methyl groups at the 2-position also had a positive effect. Hydrogen bonding was one of the binding forces for the interaction. The antioxidant activity of phenolic acid-β-lactoglobulin complexes was higher than that of phenolic acids alone. These findings provide an understanding of the structure-activity relationship of the interaction between β-lactoglobulin and phenolic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Camoni, Lorenzo; Di Lucente, Cristina; Pallucca, Roberta; Visconti, Sabina; Aducci, Patrizia
2012-08-01
Phosphatidic acid is a phospholipid second messenger implicated in various cellular processes in eukaryotes. In plants, production of phosphatidic acid is triggered in response to a number of biotic and abiotic stresses. Here, we show that phosphatidic acid binds to 14-3-3 proteins, a family of regulatory proteins which bind client proteins in a phosphorylation-dependent manner. Binding of phosphatidic acid involves the same 14-3-3 region engaged in protein target binding. Consequently, micromolar phosphatidic acid concentrations significantly hamper the interaction of 14-3-3 proteins with the plasma membrane H(+)-ATPase, a well characterized plant 14-3-3 target, thus inhibiting the phosphohydrolitic enzyme activity. Moreover, the proton pump is inhibited when endogenous PA production is triggered by phospholipase D and the G protein agonist mastoparan-7. Hence, our data propose a possible mechanism involving PA that regulates 14-3-3-mediated cellular processes in response to stress. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
2010-05-22
member B8 Blue 1370939_at Acsl1 acyl-CoA synthetase long-chain family member 1 Yellow 1372006_at --- --- Blue 1372101_at Ppap2b phosphatidic acid ...Stress L-ascorbic Acid Binding Cation Binding Identical Protein Binding Protein Dimerization Activity Dioxygenase Activity Oxidoreductase...Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts, and proteins. Nucleic Acid Research. 35: D61-65. Ryter SW
Islam, Md Nurul; Islam, Md Shahidul; Hoque, Md Ashraful; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru
2014-12-01
Histone deacetylase (HDAC) inhibitors are a class of potential therapeutics for the treatment of cancer. Bicyclic tetrapeptides equipped with methoxymethyl ketone and boronic acid as zinc-binding group were designed and synthesized. The inhibitory activities of these compounds were evaluated against HDAC enzymes. The cell-free and cell-based assay data showed that both potency and selectivity changed with the change in zinc-binding group. Boronic acid-based compound showed poor activity whereas methoxymethyl ketone-based compound displayed impressive activity in both cell-free and cell-based conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Seong, Ki Moon; Park, Hweon; Kim, Seong Jung; Ha, Hyo Nam; Lee, Jae Yung; Kim, Joon
2007-06-01
A yeast transcriptional activator, Gcn4p, induces the expression of genes that are involved in amino acid and purine biosynthetic pathways under amino acid starvation. Gcn4p has an acidic activation domain in the central region and a bZIP domain in the C-terminus that is divided into the DNA-binding motif and dimerization leucine zipper motif. In order to identify amino acids in the DNA-binding motif of Gcn4p which are involved in transcriptional activation, we constructed mutant libraries in the DNA-binding motif through an innovative application of random mutagenesis. Mutant library made by oligonucleotides which were mutated randomly using the Poisson distribution showed that the actual mutation frequency was in good agreement with expected values. This method could save the time and effort to create a mutant library with a predictable mutation frequency. Based on the studies using the mutant libraries constructed by the new method, the specific residues of the DNA-binding domain in Gcn4p appear to be involved in the transcriptional activities on a conserved binding site.
Ruiz-Torres, M P; Perez-Rivero, G; Diez-Marques, M L; Griera, M; Ortega, R; Rodriguez-Puyol, M; Rodríguez-Puyol, D
2007-01-01
While arginine-glycine-aspartic acid-based peptidomimetics have been employed for the treatment of cardiovascular disorders and cancer, their use in other contexts remains to be explored. Arginine-glycine-aspartic acid-serine induces Transforming growth factor-beta1 transcription in human mesangial cells, but the molecular mechanisms involved have not been studied extensively. We explored whether this effect could be due to Activator protein-1 activation and studied the potential pathways involved. Addition of arginine-glycine-aspartic acid-serine promoted Activator protein-1 binding to its cognate sequence within the Transforming growth factor-beta1 promoter as well as c-jun and c-fos protein abundance. Moreover, this effect was suppressed by curcumin, a c-Jun N terminal kinase inhibitor, and was absent when the Activator protein-1 cis-regulatory element was deleted. Activator protein-1 binding was dependent on the activity of integrin linked kinase, as transfection with a dominant negative mutant suppressed both Activator protein-1 binding and c-jun and c-fos protein increment. Integrin linked kinase was, in turn, dependent on Phosphoinositol-3 kinase activity. Arginine-glycine-aspartic acid-serine stimulated Phosphoinositol-3 kinase activity, and Transforming growth factor-beta1 promoter activation was abrogated by the use of Phosphoinositol-3 kinase specific inhibitors. In summary, we propose that arginine-glycine-aspartic acid-serine activates Integrin linked kinase via the Phosphoinositol-3 kinase pathway and this leads to activation of c-jun and c-fos and increased Activator protein-1 binding and Transforming growth factor-beta1 promoter activity. These data may contribute to understand the molecular mechanisms involved in the cellular actions of arginine-glycine-aspartic acid-related peptides and enhance their relevance as these products evolve into clinical therapeutic use.
Corbett, M D; Corbett, B R; Hannothiaux, M H; Quintana, S J
1989-01-01
Following stimulation with phorbol myristate acetate, human granulocytes were found to incorporate acetaminophen, p-phenetidine, p-aminophenol, and p-chloroaniline into cellular DNA and RNA. Phenacetin was not incorporated into nucleic acid or metabolized by such activated granulocytes. None of the substrates gave nucleic acid binding if the granulocyte cultures were not induced to undergo the respiratory burst. Additional studies on the binding of acetaminophen to DNA and RNA were made by use of both ring-14C-labeled and carbonyl-14C-labeled forms of this substrate. The finding that equivalent amounts of these two labeled acetaminophen substrates were bound to cellular DNA demonstrated that the intact acetaminophen molecule was incorporated into DNA. On the other hand, the finding that excess ring-14C-labeled acetaminophen was incorporated into cellular RNA implies partial hydrolysis of the acetaminophen substrate prior to RNA binding. Evidence was presented which strongly indicates that the nucleic acid binding of the substrates was covalent in nature. The inability of the respiratory burst to result in the binding of phenacetin to nucleic acid suggests that arylamides are not normally activated or metabolized by activated granulocytes. Acetaminophen is an exception to the recalcitrance of arylamides to such bioactivation processes because it also possesses the phenolic functional group, which, like the arylamine group, is oxidized by certain reactive oxygen species. Myeloperoxidase appears to be much more important in the binding of acetaminophen to DNA than it is in the DNA binding of arylamines in general. The role of the respiratory burst in causing the bioactivation of certain arylamines, which are not normally genotoxic via the more usual microsomal activation pathways, was extended to include certain amide substrates such as acetaminophen.
Conidi, Andrea; van den Berghe, Veronique; Leslie, Kris; Stryjewska, Agata; Xue, Hua; Chen, Ye-Guang; Seuntjens, Eve; Huylebroeck, Danny
2013-01-01
The zinc finger transcription factor Smad-interacting protein-1 (Sip1; Zeb2, Zfhx1b) plays an important role during vertebrate embryogenesis in various tissues and differentiating cell types, and during tumorigenesis. Previous biochemical analysis suggests that interactions with several partner proteins, including TGFβ family receptor-activated Smads, regulate the activities of Sip1 in the nucleus both as a DNA-binding transcriptional repressor and activator. Using a peptide aptamer approach we mapped in Sip1 its Smad-binding domain (SBD), initially defined as a segment of 51 amino acids, to a shorter stretch of 14 amino acids within this SBD. Modelling suggests that this short SBD stretch is part of an extended α-helix that may fit the binding to a hydrophobic corridor within the MH2 domain of activated Smads. Four amino acids (two polar Q residues and two non-polar V residues) that form the tandem repeat (QxVx)2 in this 14-residue stretch were found to be crucial for binding to both TGFβ/Nodal/Activin-Smads and BMP-Smads. A full-length Sip1 with collective mutation of these Q and V residues (to A) no longer binds to Smads, while it retains its binding activity to its cognate bipartite target DNA sequence. This missense mutant Sip1(AxAx)2 provides a new molecular tool to identify SBD (in)dependent target genes in Sip1-controlled TGFβ and/or BMP (de)regulated cellular, developmental and pathological processes. PMID:24146916
Zinc binding in HDAC inhibitors: a DFT study.
Wang, Difei; Helquist, Paul; Wiest, Olaf
2007-07-06
Histone deacetylases (HDACs) are attractive targets for the treatment of cancers and a variety of other diseases. Most currently studied HDAC inhibitors contain hydroxamic acids, which are potentially problematic in the development of practical drugs. DFT calculations of the binding modes and free energies of binding for a variety of other functionalities in a model active site of HDAC are described. The protonation state of hydroxamic acids in the active site and the origin of the high affinity are discussed. These results emphasize the importance of a carefully chosen pKa for zinc binding and provide guidance for the design of novel, non-hydroxamic acid HDAC inhibitors.
Zhang, Yunyue; Wu, Simin; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Ren, Fazheng; Zhang, Hao
2018-02-01
In this study, 111 phenolic acids and their derivatives were chosen to investigate their structure-affinity relationships when binding to human serum albumin (HSA), and effects on their antioxidant activity. A comprehensive mathematical model was employed to calculate the binding constants, using a fluorescence quenching method, and this was corrected for the inner-filter effect to improve accuracy. We found that a hydroxy group at the 2-position of the benzene ring exerted a positive effect on the affinities, while a 4-hydroxy substituent had a negative influence. Both methylation of the hydroxy groups and replacing the hydroxy groups with methyl groups at the 3- and 4-positions of the benzene ring enhanced the binding affinities. Hydrophobic force and hydrogen bonding were binding forces for the phenolic acids, and their methyl esters, respectively. The antioxidant activity of the HSA-phenolic acid interaction compounds was higher than that of the phenolic acids alone. Copyright © 2017. Published by Elsevier Ltd.
The Aged Microenvironment Influences Prostate Carcinogenesis
2008-12-01
binding protein-like +36 nucleic acid binding Serpinb5 serine (or cysteine) peptidase inhibitor, clade +9 serine-type endopeptidase inhibitor activity...synthase ( phosphatidate +1.9 phosphatidate cytidylyltransferase activity Car1 carbonic anhydrase 1 +1.9 carbonate dehydratase activity;zinc ion...activity Wdr45l Wdr45 like +1.7 acid phosphatase activity;molecular_function unknown Perp PERP, TP53 apoptosis effector +1.7 structural constituent of
Oh, Hyun-Woo; Yun, Chan-Seok; Jeon, Jun Hyoung; Kim, Ji-Ae; Park, Doo-Sang; Ryu, Hyung Won; Oh, Sei-Ryang; Song, Hyuk-Hwan; Shin, Yunhee; Jung, Chan Sik; Shin, Sang Woon
2017-07-01
Diterpene resin acids (DRAs) are important components of oleoresin and greatly contribute to the defense strategies of conifers against herbivorous insects. In the present study, we determined that DRAs function as insect juvenile hormone (JH) antagonists that interfere with the juvenile hormone-mediated binding of the JH receptor Methoprene-tolerant (Met) and steroid receptor coactivator (SRC). Using a yeast two-hybrid system transformed with Met and SRC from the Indian meal moth Plodia interpunctella, we tested the interfering activity of 3704 plant extracts against JH III-mediated Met-SRC binding. Plant extracts from conifers, especially members of the Pinaceae, exhibited strong interfering activity, and four active interfering DRAs (7α-dehydroabietic acid, 7-oxodehydroabietic acid, dehydroabietic acid, and sandaracopimaric acid) were isolated from roots of the Japanese pine Pinus densiflora. The four isolated DRAs, along with abietic acid, disrupted the juvenile hormone-mediated binding of P. interpunctella Met and SRC, although only 7-oxodehydroabietic acid disrupted larval development. These results demonstrate that DRAs may play a defensive role against herbivorous insects via insect endocrine-disrupting activity.
Abraham, R T; Benson, L M; Jardine, I
1983-10-01
Previous studies have shown that 6-thiopurine is metabolically activated by hepatic cytochrome P-450 to an intermediate capable of binding to proteins by a mixed disulfide linkage. The identity of the active metabolite was postulated to be purine-6-sulfenic acid. In the present report, we describe the synthesis of the sulfenic acid derivatives of 6-thiopurine and two structurally similar compounds, 9-methyl-6-thiopurine and 4-mercapto-1H-pyrazolo[3,4-d]-pyrimidine. The unusual pH-dependent stability profiles of these compounds in buffered aqueous media are presented and explained on the basis of a disproportionation mechanism of sulfenic acid decomposition. Studies with radiolabeled purine-6-sulfenic acid demonstrate that this species binds directly to hepatic microsomal protein. These results support the proposed involvement of purine-6-sulfenic acid in the metabolic activation and tissue binding of 6-thiopurine.
Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K
2011-02-11
Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.
Malo, Antje; Krüger, Burkhard; Göke, Burkhard; Kubisch, Constanze H
2013-01-01
Endoplasmic reticulum (ER) stress leads to misfolded proteins inside the ER and initiates unfolded protein response (UPR). Unfolded protein response components are involved in pancreatic function and activated during pancreatitis. However, the exact role of ER stress in the exocrine pancreas is unclear. The present study examined the effects of 4-phenylbutyric acid (4-PBA), an ER chaperone, on acini and UPR components. Rat acini were stimulated with cholecystokinin (10 pmol/L to 10 nmol/L) with or without preincubation of 4-PBA. The UPR components were analyzed, including chaperone-binding protein, protein kinaselike ER kinase, X-box-binding protein 1, c-Jun NH(2)-terminal kinase, CCAAT/enhancer-binding protein homologous protein, caspase 3, and apoptosis. Effects of 4-PBA were measured on secretion, calcium, and trypsin activation. 4-Phenylbutyric acid led to an increase of secretion, whereas trypsin activation with supraphysiological cholecystokinin was significantly reduced. 4-Phenylbutyric acid prevented chaperone-binding protein up-regulation, diminished protein kinaselike ER kinase, and c-Jun NH2-terminal kinase phosphorylation, prohibited X-box-binding protein 1 splicing and CCAAT/enhancer-binding protein homologous protein expression, caspase 3 activation, and apoptosis caused by supraphysiological cholecystokinin. By incubation with 4-PBA, beneficial in urea cycle deficiency, it was possible to enhance enzyme secretion to suppress trypsin activation, UPR activation, and proapoptotic pathways. The data hint new perspectives for the use of chemical chaperones in pancreatic diseases.
Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction
NASA Astrophysics Data System (ADS)
Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim
2017-09-01
Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.
The purpose of this work was to evaluate the binding of PFAAs to PPAR receptors and determine the potential for activation or antagonism of the pathway during embryonic development. Activation of mouse and human PPAR isoforms by perfluorooctanoic acid (PFOA) and perfluorooctanes...
Maruyama, Hiroko; Kawakami, Fumitaka; Lwin, Thet-Thet; Imai, Motoki; Shamsa, Fazel
2018-01-01
In this study, we examined the inhibitory effects of ferulic acid and caffeic acid on melanin production using a murine B16 melanoma cell line. The mechanisms by which the two acids inhibit melanin production were investigated by evaluating their effects on the activity of tyrosinase, which is involved is the first step of melanin biosynthesis. Ferulic acid showed no toxicity against the melanoma cells at any dose, whereas caffeic acid exerted cellular toxicity at concentrations higher than 0.35 mM. Both ferulic and caffeic acids effectively inhibited melanin production in the B16 melanoma cells. Ferulic acid reduced tyrosinase activity by directly binding to the enzyme, whereas no binding was observed between caffeic acid and tyrosinase. Both ferulic acid and caffeic acid inhibited casein kinase 2 (CK2)-induced phosphorylation of tyrosinase in a dose-dependent manner in vitro. Ferulic acid was found to be a more effective inhibitor of melanin production than caffeic acid; this difference in the inhibitory efficacy between the two substances could be attributable to the difference in their tyrosine-binding activity. Our analysis revealed that both substances also inhibited the CK2-mediated phosphorylation of tyrosinase.
Does alpha 1-acid glycoprotein act as a non-functional receptor for alpha 1-adrenergic antagonists?
Qin, M; Oie, S
1994-11-01
The ability of a variety of alpha 1-acid glycoproteins (AAG) to affect the intrinsic activity of the alpha 1-adrenergic antagonist prazosin was studied in rabbit aortic strip preparations. From these studies, the activity of AAG appears to be linked to their ability to bind the antagonist. However, a capability to bind prazosin was not the only requirement for this effect. The removal of sialic acid and partial removal of the galactose and mannose residues by periodate oxidation of human AAG all but eliminated the ability of AAG to affect the intrinsic pharmacologic activity of prazosin, although the binding of prazosin was not significantly affected. The presence of bovine AAG, a protein that has a low ability to bind prazosin, reduced the effect of human AAG on prazosin activity. Based upon these results, we propose that AAG is able to bind in the vicinity of the alpha 1-adrenoceptors, therefore extending the binding region for antagonists in such a way as to decrease the ability of the antagonist to interact with the receptor. The carbohydrate side-chains are important for the binding of AAG in the region of the adrenoceptor.
Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor
Kuban-Jankowska, Alicja; Sahu, Kamlesh K.; Gorska, Magdalena; Tuszynski, Jack A.; Wozniak, Michal
2016-01-01
Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581
Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor.
Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Tuszynski, Jack A; Wozniak, Michal
2016-01-19
Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding.
Asai, Saori; Kusada, Mio; Watanabe, Suzuyo; Kawashima, Takuji; Nakamura, Tadashi; Shimada, Masaya; Goto, Tsuyoshi; Nagaoka, Satoshi
2014-01-01
Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats. PMID:25144734
Mutation analysis and molecular modeling for the investigation of ligand-binding modes of GPR84.
Nikaido, Yoshiaki; Koyama, Yuuta; Yoshikawa, Yasushi; Furuya, Toshio; Takeda, Shigeki
2015-05-01
GPR84 is a G protein-coupled receptor for medium-chain fatty acids. Capric acid and 3,3'-diindolylmethane are specific agonists for GPR84. We built a homology model of a GPR84-capric acid complex to investigate the ligand-binding mode using the crystal structure of human active-state β2-adrenergic receptor. We performed site-directed mutagenesis to subject ligand-binding sites to our model using GPR84-Giα fusion proteins and a [(35)S]GTPγS-binding assay. We compared the activity of the wild type and mutated forms of GPR84 by [(35)S]GTPγS binding to capric acid and diindolylmethane. The mutations L100D `Ballesteros-Weinstein numbering: 3.32), F101Y (3.33) and N104Q (3.36) in the transmembrane helix III and N357D (7.39) in the transmembrane helix VII resulted in reduced capric acid activity but maintained the diindolylmethane responses. Y186F (5.46) and Y186H (5.46) mutations had no characteristic effect on capric acid but with diindolylmethane they significantly affected the G protein activation efficiency. The L100D (3.32) mutant responded to decylamine, a fatty amine, instead of a natural agonist, the fatty acid capric acid, suggesting that we have identified a mutated G protein-coupled receptor-artificial ligand pairing. Our molecular model provides an explanation for these results and interactions between GPR84 and capric acid. Further, from the results of a double stimulation assay, we concluded that diindolylmethane was a positive allosteric modulator for GPR84. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Shirke, Abhijit N.; Basore, Danielle; Holton, Samantha; Su, An; Baugh, Evan; Butterfoss, Glenn L.; Makhatadze, George
2016-01-01
Cutinases are esterases of industrial importance for applications in recycling and surface modification of polyesters. The cutinase from Thielavia terrestris (TtC) is distinct in terms of its ability to retain its stability and activity in acidic pH. Stability and activity in acidic pHs are desirable for esterases as the pH of the reaction tends to go down with the generation of acid. The pH stability and activity are governed by the charged state of the residues involved in catalysis or in substrate binding. In this study, we performed the detailed structural and biochemical characterization of TtC coupled with surface charge analysis to understand its acidic tolerance. The stability of TtC in acidic pH was rationalized by evaluating the contribution of charge interactions to the Gibbs free energy of unfolding at varying pHs. The activity of TtC was found to be limited by substrate binding affinity, which is a function of the surface charge. Additionally, the presence of glycosylation affects the biochemical characteristics of TtC owing to steric interactions with residues involved in substrate binding. PMID:26758295
Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.
2011-01-01
Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062
Velkov, Tony
2013-01-01
Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD) of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed. PMID:23476633
Brzovic, Peter S; Heikaus, Clemens C; Kisselev, Leonid; Vernon, Robert; Herbig, Eric; Pacheco, Derek; Warfield, Linda; Littlefield, Peter; Baker, David; Klevit, Rachel E; Hahn, Steven
2011-12-23
The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maji, Krishnendu; Haldar, Debasish
2017-10-01
We report a new synthetic aromatic ε-amino acid containing a triazole moiety with antimicrobial potential against Gram-positive, Gram-negative and pathogenic bacteria including Vibrio cholerae. Structure-property relationship studies revealed that all the functional groups are essential to enhance the antimicrobial activity. The 1-(2-aminophenyl)-1H-1,2,3-triazole-4-carboxylic acid was synthesized by click chemistry. From X-ray crystallography, the amino acid adopts a kink-like structure where the phenyl and triazole rings are perpendicular to each other and the amine and acid groups maintain an angle of 60°. The agar diffusion test shows that the amino acid has significant antibacterial activity. The liquid culture test exhibits that the minimum inhibitory concentration (MIC) value for Bacillus subtilis and Vibrio cholerae is 59.5 µg ml-1. FE-SEM experiments were performed to study the morphological changes of bacterial shape after treatment with compound 1. The antimicrobial activity of the amino acid was further studied by DNA binding and degradation study, protein binding, dye-binding assay and morphological analysis. Moreover, the amino acid does not have any harmful effect on eukaryotes.
Armstrong, Eric H; Goswami, Devrishi; Griffin, Patrick R; Noy, Noa; Ortlund, Eric A
2014-05-23
Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain "activating" fatty acids induce the protein's cytoplasmic to nuclear translocation, stimulating PPARβ/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5's translocation by permitting allosteric communication between the ligand-sensing β2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Consonni, Sarah V; Gloerich, Martijn; Spanjaard, Emma; Bos, Johannes L
2012-03-06
Epac1 is a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap. Upon cAMP binding, Epac1 undergoes a conformational change that results in its release from autoinhibition. In addition, cAMP induces the translocation of Epac1 from the cytosol to the plasma membrane. This relocalization of Epac1 is required for efficient activation of plasma membrane-located Rap and for cAMP-induced cell adhesion. This translocation requires the Dishevelled, Egl-10, Pleckstrin (DEP) domain, but the molecular entity that serves as the plasma membrane anchor and the possible mechanism of regulated binding remains elusive. Here we show that Epac1 binds directly to phosphatidic acid. Similar to the cAMP-induced Epac1 translocation, this binding is regulated by cAMP and requires the DEP domain. Furthermore, depletion of phosphatidic acid by inhibition of phospholipase D1 prevents cAMP-induced translocation of Epac1 as well as the subsequent activation of Rap at the plasma membrane. Finally, mutation of a single basic residue within a polybasic stretch of the DEP domain, which abolishes translocation, also prevents binding to phosphatidic acid. From these results we conclude that cAMP induces a conformational change in Epac1 that enables DEP domain-mediated binding to phosphatidic acid, resulting in the tethering of Epac1 at the plasma membrane and subsequent activation of Rap.
Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan
2016-03-24
Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the -2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the -1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes.
Ueda, H; Saitoh, T; Kojima, K; Ogawa, H
1999-09-01
An N-acetylglucosamine (GlcNAc)/N-acetylneuraminic acid-specific lectin from the fruiting body of Psathyrella velutina (PVL) is a useful probe for the detection and fractionation of specific carbohydrates. In this study, PVL was found to exhibit multispecificity to acidic polysaccharides and sulfatides. Purified PVL and a counterpart lectin to PVL in the mycelium interact with heparin neoproteoglycans, as detected by both membrane analysis and solid phase assay. The pH-dependencies of the binding to heparin and GlcNAc5-6 differ. The heparin binding of PVL is inhibited best by pectin, polygalacturonic acid, and highly sulfated polysaccharides, but not by GlcNAc, colominic acid, or other glycosaminoglycans. Sandwich affinity chromatography indicated that PVL can simultaneously interact with heparin- and GlcNAc-containing macromolecules. Extensive biotinylation was found to suppress the binding activity to heparin while the GlcNAc binding activity is retained. On the other hand, biotinyl PVL binds to sulfatide and the binding is not inhibited by GlcNAc, N-acetylneuraminic acid, or heparin. These results indicate that PVL is a multi-ligand adhesive lectin that can interact with various glycoconjugates. This multispecificity needs to be recognized when using PVL as a sugar-specific probe to avoid misleading information about the nature of glycoforms.
Armstrong, Eric H.; Goswami, Devrishi; Griffin, Patrick R.; Noy, Noa; Ortlund, Eric A.
2014-01-01
Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain “activating” fatty acids induce the protein's cytoplasmic to nuclear translocation, stimulating PPARβ/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5's translocation by permitting allosteric communication between the ligand-sensing β2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling. PMID:24692551
Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands.
Salter, Jason D; Smith, Harold C
2018-05-23
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Lerner, D R; Raikhel, N V
1992-06-05
Chitin-binding proteins are present in a wide range of plant species, including both monocots and dicots, even though these plants contain no chitin. To investigate the relationship between in vitro antifungal and insecticidal activities of chitin-binding proteins and their unknown endogenous functions, the stinging nettle lectin (Urtica dioica agglutinin, UDA) cDNA was cloned using a synthetic gene as the probe. The nettle lectin cDNA clone contained an open reading frame encoding 374 amino acids. Analysis of the deduced amino acid sequence revealed a 21-amino acid putative signal sequence and the 86 amino acids encoding the two chitin-binding domains of nettle lectin. These domains were fused to a 19-amino acid "spacer" domain and a 244-amino acid carboxyl extension with partial identity to a chitinase catalytic domain. The authenticity of the cDNA clone was confirmed by deduced amino acid sequence identity with sequence data obtained from tryptic digests, RNA gel blot, and polymerase chain reaction analyses. RNA gel blot analysis also showed the nettle lectin message was present primarily in rhizomes and inflorescence (with immature seeds) but not in leaves or stems. Chitinase enzymatic activity was found when the chitinase-like domain alone or the chitinase-like domain with the chitin-binding domains were expressed in Escherichia coli. This is the first example of a chitin-binding protein with both a duplication of the 43-amino acid chitin-binding domain and a fusion of the chitin-binding domains to a structurally unrelated domain, the chitinase domain.
Hanessian, Stephen; Vinci, Valerio; Auzzas, Luciana; Marzi, Mauro; Giannini, Giuseppe
2006-09-15
Analogues of suberoylanilide hydroxamic acid (SAHA) were prepared by replacing the Zn-binding group with squaric acid, N-hydroxyurea, and 4-hydroxymethyl oxazoline units, also varying the length of the aliphatic chain. No inhibitory activity on HDAC was observed below 1.0 microM and no cytotoxic activity on different tumor cell lines was seen below 20.0 microM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine
2010-11-03
Three cocrystal X-ray structures of the {alpha}-ketoheterocycle inhibitors 3-5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-binding pocket and membrane access channel responsible for fatty acid amide substrate and inhibitor acyl chain binding, (2) the atypical active site catalytic residues and surrounding oxyanion hole that covalently binds the core of the {alpha}-ketoheterocycle inhibitors captured as deprotonated hemiketals mimickingmore » the tetrahedral intermediate of the enzyme-catalyzed reaction, and (3) the cytosolic port and its uniquely important imbedded ordered water molecules and a newly identified anion binding site. The detailed analysis of their key active site interactions and their implications on the interpretation of the available structure-activity relationships are discussed providing important insights for future design.« less
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...
2015-09-18
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding
2015-01-01
Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form. PMID:26617961
Tognolini, Massimiliano; Incerti, Matteo; Mohamed, Iftiin Hassan; Giorgio, Carmine; Russo, Simonetta; Bruni, Renato; Lelli, Barbara; Bracci, Luisa; Noberini, Roberta; Pasquale, Elena B.; Barocelli, Elisabetta; Vicini, Paola; Mor, Marco
2012-01-01
The Eph–ephrin system, including the EphA2 receptor and the ephrin-A1 ligand, plays a critical role in tumor and vascular functions during carcinogenesis. We previously identified (3α,5β)-3-hydroxycholan-24-oic acid (lithocholic acid) as an Eph-ephrin antagonist able to inhibit EphA2 receptor activation and therefore potentially useful as a novel EphA2 receptor targeting agent. Here, we explore the structure-activity relationships of a focused set of lithocholic acid derivatives, based on molecular modelling investigation and displacement binding assays. Our exploration shows that while the 3-α-hydroxyl group of lithocholic acid has a negligible role in the recognition of the EphA2 receptor, its carboxylate group is critical for disrupting the binding of ephrin-A1 to the EphA2. As a result of our investigation, we identified (5β)-cholan-24-oic acid (cholanic acid) as a novel compound that competitively inhibits EphA2-ephrin-A1 interaction with higher potency than lithocholic acid. Surface plasmon resonance analysis indicates that cholanic acid binds specifically and reversibly to the ligand-binding domain of EphA2, with a steady-state dissociation constant (KD) in the low micromolar range. Furthermore, cholanic acid blocks the phosphorylation of EphA2 and cell retraction and rounding in PC3 prostate cancer cells, two effects that depend on EphA2 activation by the ephrin-A1 ligand. These findings suggest that cholanic acid can be used as a template structure to design effective EphA2 antagonists, with potential impact in the elucidation of the role played by this receptor in pathological conditions. PMID:22529030
Transcriptional switches in the control of macronutrient metabolism.
Wise, Alan
2008-06-01
This review shows how some transcription factors respond to alterations in macronutrients. Carbohydrates induce enzymes for their metabolism and fatty acid synthesis. Fatty acids reduce carbohydrate processing, induce enzymes for their metabolism, and increase both gluconeogenesis and storage of fat. Fat stores help control carbohydrate uptake by other cells. The following main transcription factors are discussed: carbohydrate response element-binding protein; sterol regulatory element-binding protein-1c, cyclic AMP response element-binding protein, peroxisome proliferator-activated receptor-alpha, and peroxisome proliferator-activated receptor-gamma.
Application of GPCR Structures for Modelling of Free Fatty Acid Receptors.
Tikhonova, Irina G
2017-01-01
Five G protein-coupled receptors (GPCRs) have been identified to be activated by free fatty acids (FFA). Among them, FFA1 (GPR40) and FFA4 (GPR120) bind long-chain fatty acids, FFA2 (GPR43) and FFA3 (GPR41) bind short-chain fatty acids and GPR84 binds medium-chain fatty acids. Free fatty acid receptors have now emerged as potential targets for the treatment of diabetes, obesity and immune diseases. The recent progress in crystallography of GPCRs has now enabled the elucidation of the structure of FFA1 and provided reliable templates for homology modelling of other FFA receptors. Analysis of the crystal structure and improved homology models, along with mutagenesis data and structure activity, highlighted an unusual arginine charge-pairing interaction in FFA1-3 for receptor modulation, distinct structural features for ligand binding to FFA1 and FFA4 and an arginine of the second extracellular loop as a possible anchoring point for FFA at GPR84. Structural data will be helpful for searching novel small-molecule modulators at the FFA receptors.
Enhancement of gamma-aminobutyric acid receptor binding by protopine-type alkaloids.
Kardos, J; Blaskó, G; Simonyi, M
1986-06-01
Protopine, cryptopine and allocryptopine were demonstrated to enhance 3H-gamma-aminobutyric acid (3H-GABA) binding to rat brain synaptic membrane receptors. The above finding might be indicative of benzodiazepine-like activity of these alkaloids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lianying; College of Life Science, Dezhou University, Dezhou 253023; Ren, Xiao-Min
2014-09-15
Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group.more » For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.« less
Kyriakis, Efthimios; Stravodimos, George A; Kantsadi, Anastassia L; Chatzileontiadou, Demetra S M; Skamnaki, Vassiliki T; Leonidas, Demetres D
2015-07-08
We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 μM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans
Colpitts, Che C.
2014-01-01
ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID:24789779
Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward
2010-01-12
The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site,more » thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.« less
Blum, Faith C; Hu, Heidi Q; Servetas, Stephanie L; Benoit, Stéphane L; Maier, Robert J; Maroney, Michael J; Merrell, D Scott
2017-01-01
The nickel-containing enzymes of Helicobacter pylori, urease and hydrogenase, are essential for efficient colonization in the human stomach. The insertion of nickel into urease and hydrogenase is mediated by the accessory protein HypA. HypA contains an N-terminal nickel-binding site and a dynamic structural zinc-binding site. The coordination of nickel and zinc within HypA is known to be critical for urease maturation and activity. Herein, we test the hydrogenase activity of a panel of H. pylori mutant strains containing point mutations within the nickel- and zinc-binding sites. We found that the residues that are important for hydrogenase activity are those that were similarly vital for urease activity. Thus, the zinc and metal coordination sites of HypA play similar roles in urease and hydrogenase maturation. In other pathogenic bacteria, deletion of hydrogenase leads to a loss in acid resistance. Thus, the acid resistance of two strains of H. pylori containing a hydrogenase deletion was also tested. These mutant strains demonstrated wild-type levels of acid resistance, suggesting that in H. pylori, hydrogenase does not play a role in acid resistance.
Servetas, Stephanie L.; Benoit, Stéphane L.; Maier, Robert J.; Maroney, Michael J.
2017-01-01
The nickel-containing enzymes of Helicobacter pylori, urease and hydrogenase, are essential for efficient colonization in the human stomach. The insertion of nickel into urease and hydrogenase is mediated by the accessory protein HypA. HypA contains an N-terminal nickel-binding site and a dynamic structural zinc-binding site. The coordination of nickel and zinc within HypA is known to be critical for urease maturation and activity. Herein, we test the hydrogenase activity of a panel of H. pylori mutant strains containing point mutations within the nickel- and zinc-binding sites. We found that the residues that are important for hydrogenase activity are those that were similarly vital for urease activity. Thus, the zinc and metal coordination sites of HypA play similar roles in urease and hydrogenase maturation. In other pathogenic bacteria, deletion of hydrogenase leads to a loss in acid resistance. Thus, the acid resistance of two strains of H. pylori containing a hydrogenase deletion was also tested. These mutant strains demonstrated wild-type levels of acid resistance, suggesting that in H. pylori, hydrogenase does not play a role in acid resistance. PMID:28809946
Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1.
Ekhlasi-Hundrieser, Mahnaz; Calvete, Juan J; Von Rad, Bettina; Hettel, Christiane; Nimtz, Manfred; Töpfer-Petersen, Edda
2008-05-01
The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.
Aminoglycosylation Can Enhance the G-Quadruplex Binding Activity of Epigallocatechin
Bai, Li-Ping; Ho, Hing-Man; Ma, Dik-Lung; Yang, Hui; Fu, Wai-Chung; Jiang, Zhi-Hong
2013-01-01
With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18) of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC) (14) as well as natural epigallocatechin (EGC, 6). The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures. PMID:23335983
Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B
2008-02-15
Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.
Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Petrescu, Anca D; Landrock, Kerstin K; Landrock, Danilo; Kier, Ann B; Schroeder, Friedhelm
2013-01-01
While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor- α (PPAR α ) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPAR α transcription of the fatty acid β -oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPAR α in the context of high glucose at levels similar to those in uncontrolled diabetes.
Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Petrescu, Anca D.; Landrock, Kerstin K.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm
2013-01-01
While TOFA (acetyl CoA carboxylase inhibitor) and C75 (fatty acid synthase inhibitor) prevent lipid accumulation by inhibiting fatty acid synthesis, the mechanism of action is not simply accounted for by inhibition of the enzymes alone. Liver fatty acid binding protein (L-FABP), a mediator of long chain fatty acid signaling to peroxisome proliferator-activated receptor-α (PPARα) in the nucleus, was found to bind TOFA and its activated CoA thioester, TOFyl-CoA, with high affinity while binding C75 and C75-CoA with lower affinity. Binding of TOFA and C75-CoA significantly altered L-FABP secondary structure. High (20 mM) but not physiological (6 mM) glucose conferred on both TOFA and C75 the ability to induce PPARα transcription of the fatty acid β-oxidative enzymes CPT1A, CPT2, and ACOX1 in cultured primary hepatocytes from wild-type (WT) mice. However, L-FABP gene ablation abolished the effects of TOFA and C75 in the context of high glucose. These effects were not associated with an increased cellular level of unesterified fatty acids but rather by increased intracellular glucose. These findings suggested that L-FABP may function as an intracellular fatty acid synthesis inhibitor binding protein facilitating TOFA and C75-mediated induction of PPARα in the context of high glucose at levels similar to those in uncontrolled diabetes. PMID:23533380
Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan
2017-12-21
Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.
Fatty Acids Change the Conformation of Uncoupling Protein 1 (UCP1)*
Divakaruni, Ajit S.; Humphrey, Dickon M.; Brand, Martin D.
2012-01-01
UCP1 catalyzes proton leak across the mitochondrial inner membrane to disengage substrate oxidation from ATP production. It is well established that UCP1 is activated by fatty acids and inhibited by purine nucleotides, but precisely how this regulation occurs remains unsettled. Although fatty acids can competitively overcome nucleotide inhibition in functional assays, fatty acids have little effect on purine nucleotide binding. Here, we present the first demonstration that fatty acids induce a conformational change in UCP1. Palmitate dramatically changed the binding kinetics of 2′/3′-O-(N-methylanthraniloyl)-GDP, a fluorescently labeled nucleotide analog, for UCP1. Furthermore, palmitate accelerated the rate of enzymatic proteolysis of UCP1. The altered kinetics of both processes indicate that fatty acids change the conformation of UCP1, reconciling the apparent discrepancy between existing functional and ligand binding data. Our results provide a framework for how fatty acids and nucleotides compete to regulate the activity of UCP1. PMID:22952235
Involvement of Sp1 in butyric acid-induced HIV-1 gene expression.
Imai, Kenichi; Okamoto, Takashi; Ochiai, Kuniyasu
2015-01-01
The ability of human immunodeficiency virus-1(HIV-1) to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs), could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP) was required for butyric acid-induced HIV-1 activation. These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria. © 2015 S. Karger AG, Basel.
Nucleic acid-binding polymers as anti-inflammatory agents
Lee, Jaewoo; Sohn, Jang Wook; Zhang, Ying; Leong, Kam W.; Pisetsky, David; Sullenger, Bruce A.
2011-01-01
Dead and dying cells release nucleic acids. These extracellular RNAs and DNAs can be taken up by inflammatory cells and activate multiple nucleic acid-sensing toll-like receptors (TLR3, 7, 8, and 9). The inappropriate activation of these TLRs can engender a variety of inflammatory and autoimmune diseases. The redundancy of the TLR family encouraged us to seek materials that can neutralize the proinflammatory effects of any nucleic acid regardless of its sequence, structure or chemistry. Herein we demonstrate that certain nucleic acid-binding polymers can inhibit activation of all nucleic acid-sensing TLRs irrespective of whether they recognize ssRNA, dsRNA or hypomethylated DNA. Furthermore, systemic administration of such polymers can prevent fatal liver injury engendered by proinflammatory nucleic acids in an acute toxic shock model in mice. Therefore these polymers represent a novel class of anti-inflammatory agent that can act as molecular scavengers to neutralize the proinflammatory effects of various nucleic acids. PMID:21844380
NASA Astrophysics Data System (ADS)
van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter
2010-02-01
Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.
Prokop, Jeremy W.; Santos, Robson A. S.; Milsted, Amy
2013-01-01
The renin-angiotensin system is involved in multiple conditions ranging from cardiovascular disorders to cancer. Components of the pathway, including ACE, renin and angiotensin receptors are targets for disease treatment. This study addresses three receptors of the pathway: AT1, AT2, and MAS and how the receptors are similar and differ in activation by angiotensin peptides. Combining biochemical and amino acid variation data with multiple species sequence alignments, structural models, and docking site predictions allows for visualization of how angiotensin peptides may bind and activate the receptors; allowing identification of conserved and variant mechanisms in the receptors. MAS differs from AT1 favoring Ang-(1–7) and not Ang II binding, while AT2 recently has been suggested to preferentially bind Ang III. A new model of Ang peptide binding to AT1 and AT2 is proposed that correlates data from site directed mutagenesis and photolabled experiments that were previously considered conflicting. Ang II binds AT1 and AT2 through a conserved initial binding mode involving amino acids 111 (consensus 325) of AT1 (Asn) interacting with Tyr (4) of Ang II and 199 and 256 (consensus 512 and 621, a Lys and His respectively) interacting with Phe (8) of Ang II. In MAS these sites are not conserved, leading to differential binding and activation by Ang-(1–7). In both AT1 and AT2, the Ang II peptide may internalize through Phe (8) of Ang II propagating through the receptors’ conserved aromatic amino acids to the final photolabled positioning relative to either AT1 (amino acid 294, Asn, consensus 725) or AT2 (138, Leu, consensus 336). Understanding receptor activation provides valuable information for drug design and identification of other receptors that can potentially bind Ang peptides. PMID:23755216
Bellio, Pierangelo; Di Pietro, Letizia; Mancini, Alisia; Piovano, Marisa; Nicoletti, Marcello; Brisdelli, Fabrizia; Tondi, Donatella; Cendron, Laura; Franceschini, Nicola; Amicosante, Gianfranco; Perilli, Mariagrazia; Celenza, Giuseppe
2017-06-15
RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although recent studies directed towards RecA inactivation via ATP binding inhibition described a variety of micromolar affinity ligands, inhibitors of the DNA binding site are still unknown. Twenty-seven secondary metabolites classified as anthraquinones, depsides, depsidones, dibenzofurans, diphenyl-butenolides, paraconic acids, pseudo-depsidones, triterpenes and xanthones, were investigated for their ability to inhibit RecA from Escherichia coli. They were isolated in various Chilean regions from 14 families and 19 genera of lichens. The ATP hydrolytic activity of RecA was quantified detecting the generation of free phosphate in solution. The percentage of inhibition was calculated fixing at 100µM the concentration of the compounds. Deeper investigations were reserved to those compounds showing an inhibition higher than 80%. To clarify the mechanism of inhibition, the semi-log plot of the percentage of inhibition vs. ATP and vs. ssDNA, was evaluated. Only nine compounds showed a percentage of RecA inhibition higher than 80% (divaricatic, perlatolic, alpha-collatolic, lobaric, lichesterinic, protolichesterinic, epiphorellic acids, sphaerophorin and tumidulin). The half-inhibitory concentrations (IC 50 ) calculated for these compounds were ranging from 14.2µM for protolichesterinic acid to 42.6µM for sphaerophorin. Investigations on the mechanism of inhibition showed that all compounds behaved as uncompetitive inhibitors for ATP binding site, with the exception of epiphorellic acid which clearly acted as non-competitive inhibitor of the ATP site. Further investigations demonstrated that epiphorellic acid competitively binds the ssDNA binding site. Kinetic data were confirmed by molecular modelling binding predictions which shows that epiphorellic acid is expected to bind the ssDNA site into the L2 loop of RecA protein. In this paper the first RecA ssDNA binding site ligand is described. Our study sets epiphorellic acid as a promising hit for the development of more effective RecA inhibitors. In our drug discovery approach, natural products in general and lichen in particular, represent a successful source of active ligands and structural diversity. Copyright © 2017 Elsevier GmbH. All rights reserved.
Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter
1999-03-30
Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.
Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter
1998-01-06
Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.
Basu, S; Mandal, C; Allen, A K
1988-01-01
A unique sialic acid-binding lectin, achatininH (ATNH) was purified in single step from the haemolymph of the snail Achatina fulica by affinity chromatography on sheep submaxillary-gland mucin coupled to Sepharose 4B. The homogeneity was checked by alkaline gel electrophoresis, immunodiffusion and immunoelectrophoresis. Amino acid analysis showed that the lectin has a fairly high content of acidic amino acid residues (22% of the total). About 1.3% of the residues are half-cystine. The glycoprotein contains 21% carbohydrate. The unusually high content of xylose (6%) and fucose (2.7%) in this snail lectin is quite interesting. The protein was subjected to various chemical modifications in order to detect the amino acid residues and carbohydrate residues present in its binding sites. Modification of tyrosine and arginine residues did not affect the binding activity of ATNH; however, modification of tryptophan and histidine residues led to a complete loss of its biological activity. A marked decrease in the fluorescence emission was found as the tryptophan residues of ATNH were modified. The c.d. data showed the presence of an identical type of conformation in the native and modified agglutinin. The modification of lysine and carboxy residues partially diminished the biological activity. The activity was completely lost after a beta-elimination reaction, indicating that the sugars are O-glycosidically linked to the glycoprotein's protein moiety. This result confirms that the carbohydrate moiety also plays an important role in the agglutination property of this lectin. Images Fig. 3. PMID:3140796
Tell, G; Perrone, L; Fabbro, D; Pellizzari, L; Pucillo, C; De Felice, M; Acquaviva, R; Formisano, S; Damante, G
1998-01-01
The thyroid transcription factor 1 (TTF-1) is a tissue-specific transcription factor involved in the development of thyroid and lung. TTF-1 contains two transcriptional activation domains (N and C domain). The primary amino acid sequence of the N domain does not show any typical characteristic of known transcriptional activation domains. In aqueous solution the N domain exists in a random-coil conformation. The increase of the milieu hydrophobicity, by the addition of trifluoroethanol, induces a considerable gain of alpha-helical structure. Acidic transcriptional activation domains are largely unstructured in solution, but, under hydrophobic conditions, folding into alpha-helices or beta-strands can be induced. Therefore our data indicate that the inducibility of alpha-helix by hydrophobic conditions is a property not restricted to acidic domains. Co-transfections experiments indicate that the acidic domain of herpes simplex virus protein VP16 (VP16) and the TTF-1 N domain are interchangeable and that a chimaeric protein, which combines VP16 linked to the DNA-binding domain of TTF-1, undergoes the same regulatory constraints that operate for the wild-type TTF-1. In addition, we demonstrate that the TTF-1 N domain possesses two typical properties of acidic activation domains: TBP (TATA-binding protein) binding and ability to activate transcription in yeast. Accordingly, the TTF-1 N domain is able to squelch the activity of the p65 acidic domain. Altogether, these structural and functional data suggest that a non-acidic transcriptional activation domain (TTF-1 N domain) activates transcription by using molecular mechanisms similar to those used by acidic domains. TTF-1 N domain and acidic domains define a family of proteins whose common property is to activate transcription through the use of mechanisms largely conserved during evolutionary development. PMID:9425125
Binding of cholesterol and bile acid to hemicelluloses from rice bran.
Hu, Guohua; Yu, Wenjian
2013-06-01
The objective of this study was to investigate the possibility of using hemicellulose from rice bran to scavenge cholesterol and bile acid in vitro study. This paper demonstrates that rice bran hemicellulose A (RBHA), rice bran hemicellulose B (RBHB) and rice bran hemicellulose C (RBHC) have the potential for binding cholesterol and bile acid. The quantity of cholesterol and bile acid bound varies from one rice bran fibre to another. As it can be inferred from the results of the study, RBHB was characterized by the highest capacity for cholesterol binding, followed by RBHC and RBHA. Binding of cholesterol and bile acid to rice bran insoluble dietary fibre (RBDF) and cellulose from rice bran was found to be poor. Lignin from rice bran was the least active fraction for binding cholesterol and bile acid. This confirms that the RBHB preparation from defatted rice bran has great potential in food applications, especially in the development of functional foods.
Identification of AOSC-binding proteins in neurons
NASA Astrophysics Data System (ADS)
Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu
2008-11-01
Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.
Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.
Grange, T; de Sa, C M; Oddos, J; Pictet, R
1987-01-01
We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805
Zhang, Xue; Wang, Ying; Ge, Hui-Ya; Gu, Yi-Jun; Cao, Fan-Fan; Yang, Chun-Xin; Uzan, Georges; Peng, Bin; Zhang, Deng-Hai
2018-04-18
Elevated plasma statured fatty acids (FFAs) cause TLR4/MD2 activation-dependent inflammation and insulin tolerance, which account for the occurrence and development of obesity. It has been confirmed that statured palmitic acid (PA) (the most abundant FFA) could bind MD2 to cause cellular inflammation. The natural compound celastrol could improve obesity, which is suggested via inhibiting inflammation, yet the detailed mechanism for celastrol is still unclear. As celastrol is reported to directly target MD2, we thought disrupting the binding between FFAs and MD2 might be one of the ways for celastrol to inhibit FFAs-caused inflammation and insulin resistance. In this study, we found evidence to support our hypothesis: celastrol could reverse PA-caused TLR4/MD2 activation-dependent insulin resistance, as determined by glucose-lowering ability, cellular glucose uptake, insulin action-related proteins and TLR4/MD2/NF-κB activation. Bioinformatics and cellular experiments showed that both celastrol and PA could bind MD2, and that celastrol could expel PA from cells. Finally, celastrol could reverse high fat diet caused hyperglycemia and obesity, and liver NF-kB activations. Taking together, we proved that celastrol could reverses PA-caused TLR4-MD2 activation-dependent insulin resistance via disrupting PA binding to MD2. © 2018 Wiley Periodicals, Inc.
Lee, Joungmin; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Park, Hyunjoon; Byun, Sung June; Kwon, Myung-Hee
2017-11-01
The antigen-binding properties of single chain Fv antibodies (scFvs) can vary depending on the position and type of fusion tag used, as well as the host cells used for expression. The issue is even more complicated with a catalytic scFv antibody that binds and hydrolyses a specific antigen. Herein, we investigated the antigen-binding and -hydrolysing activities of the catalytic anti-nucleic acid antibody 3D8 scFv expressed in Escherichia coli or HEK293f cells with or without additional amino acid residues at the N- and C-termini. DNA-binding activity was retained in all recombinant forms. However, the DNA-hydrolysing activity varied drastically between forms. The DNA-hydrolysing activity of E. coli-derived 3D8 scFvs was not affected by the presence of a C-terminal human influenza haemagglutinin (HA) or His tag. By contrast, the activity of HEK293f-derived 3D8 scFvs was completely lost when additional residues were included at the N-terminus and/or when a His tag was incorporated at the C-terminus, whereas a HA tag at the C-terminus did not diminish activity. Thus, we demonstrate that the antigen-binding and catalytic activities of a catalytic antibody can be separately affected by the presence of additional residues at the N- and C-termini, and by the host cell type. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.
1998-01-06
Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.
Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.
1999-03-30
Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.
Regulation of amino acid transport in Escherichia coli by transcription termination factor rho.
Quay, S C; Oxender, D L
1977-06-01
Amino acid transport rates and amino acid binding proteins were examined in a strain containing the rho-120 mutation (formerly SuA), which has been shown to lower the rho-dependent, ribonucleic acid-activated adenosine triphosphatase activity to 9% of the rho activity in the isogenic wild-type strain. Tryptophan and proline transport, which occur by membrane-bound systems, were not altered. On the other hand, arginine, histidine, leucine, isoleucine, and valine transport were variably increased by a factor of 1.4 to 5.0. Kinetics of leucine transport showed that the LIV (leucine, isoleucine, and valine)-I (binding protein-associated) transport system is increased 8.5-fold, whereas the LIV-II (membrane-bound) system is increased 1.5-fold in the rho mutant under leucine-limited growth conditions. The leucine binding protein is increased fourfold under the same growth conditions. The difference in leucine transport in these strains was greatest during leucine-limited growth; growth on complex media repressed both strains to the same transport activity. We propose that rho-dependent transcriptional termination is important for leucine-specific repression of branched-chain amino acid transport, although rho-independent regulation, presumably by a corepressor-aporepressor-type mechanism, must also occur.
Tauroursodeoxycholic acid binds to the G-protein site on light activated rhodopsin.
Lobysheva, E; Taylor, C M; Marshall, G R; Kisselev, O G
2018-05-01
The heterotrimeric G-protein binding site on G-protein coupled receptors remains relatively unexplored regarding its potential as a new target of therapeutic intervention or as a secondary site of action by the existing drugs. Tauroursodeoxycholic acid bears structural resemblance to several compounds that were previously identified to specifically bind to the light-activated form of the visual receptor rhodopsin and to inhibit its activation of transducin. We show that TUDCA stabilizes the active form of rhodopsin, metarhodopsin II, and does not display the detergent-like effects of common amphiphilic compounds that share the cholesterol scaffold structure, such as deoxycholic acid. Computer docking of TUDCA to the model of light-activated rhodopsin revealed that it interacts using similar mode of binding to the C-terminal domain of transducin alpha subunit. The ring regions of TUDCA made hydrophobic contacts with loop 3 region of rhodopsin, while the tail of TUDCA is exposed to solvent. The results show that TUDCA interacts specifically with rhodopsin, which may contribute to its wide-ranging effects on retina physiology and as a potential therapeutic compound for retina degenerative diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Noor, Sina Ibne; Dietz, Steffen; Heidtmann, Hella; Boone, Christopher D.; McKenna, Robert; Deitmer, Joachim W.; Becker, Holger M.
2015-01-01
Proton-coupled monocarboxylate transporters (MCTs) mediate the exchange of high energy metabolites like lactate between different cells and tissues. We have reported previously that carbonic anhydrase II augments transport activity of MCT1 and MCT4 by a noncatalytic mechanism, while leaving transport activity of MCT2 unaltered. In the present study, we combined electrophysiological measurements in Xenopus oocytes and pulldown experiments to analyze the direct interaction between carbonic anhydrase II (CAII) and MCT1, MCT2, and MCT4, respectively. Transport activity of MCT2-WT, which lacks a putative CAII-binding site, is not augmented by CAII. However, introduction of a CAII-binding site into the C terminus of MCT2 resulted in CAII-mediated facilitation of MCT2 transport activity. Interestingly, introduction of three glutamic acid residues alone was not sufficient to establish a direct interaction between MCT2 and CAII, but the cluster had to be arranged in a fashion that allowed access to the binding moiety in CAII. We further demonstrate that functional interaction between MCT4 and CAII requires direct binding of the enzyme to the acidic cluster 431EEE in the C terminus of MCT4 in a similar fashion as previously shown for binding of CAII to the cluster 489EEE in the C terminus of MCT1. In CAII, binding to MCT1 and MCT4 is mediated by a histidine residue at position 64. Taken together, our results suggest that facilitation of MCT transport activity by CAII requires direct binding between histidine 64 in CAII and a cluster of glutamic acid residues in the C terminus of the transporter that has to be positioned in surroundings that allow access to CAII. PMID:25561737
Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm
2014-05-01
The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands. © 2014 FEBS.
Retinoid Pathway and Cancer Therapeutics
Bushue, Nathan; Wan, Yu-Jui Yvonne
2010-01-01
The retinoids are a class of compounds that are structurally related to vitamin A. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids exert their effects through a variety of binding proteins including cellular retinol binding protein (CRBP), retinol-binding proteins (RBP), cellular retinoic acid-binding protein (CRABP), and nuclear receptors i.e. retinoic acid receptor (RAR) and retinoid × receptor (RXR). Because of the pleiotropic effects of retinoids, understanding the function of these binding proteins and nuclear receptors assists us in developing compounds that have specific effects. This review summarizes our current understanding of how retinoids are processed and act with the emphasis on the application of retinoids in cancer treatment and prevention. PMID:20654663
Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis.
Schurr, Benjamin C; Hahne, Hannes; Kuster, Bernhard; Behr, Jürgen; Vogel, Rudi F
2015-04-01
The main bittering component in beer, hop iso-α-acids, have been characterised as weak acids, which act as ionophores impairing microbial cells' function under acidic conditions as present in beer. Besides medium pH, divalent cations play a central role regarding the efficacy of the antimicrobial effect. The iso-α-acids' non-bitter derivatives humulinic acids can be found in isomerised hop extracts and can be generated during hop storage. Therefore, they have been under investigation concerning their influence on beer sensory properties. This study sketches the molecular mechanism behind iso-α-acids' antimicrobial activity in Lactobacillus (L.) brevis regarding their ionophore activity versus the dependence of the inhibitory potential on manganese binding, and suggests humulinic acids as novel tasteless food preservatives. We designed and synthesised chemically modified iso-α-acids to enhance the basic understanding of the molecular mechanism of antimicrobial iso-α-acids. It could be observed that a manganese-binding dependent transmembrane redox reaction (oxidative stress) plays a crucial role in inhibition. Privation of an acidic hydroxyl group neither erased ionophore activity, nor did it entirely abolish antimicrobial activity. Humulinic acids proved to be highly inhibitory, even outperforming iso-α-acids. Copyright © 2014 Elsevier Ltd. All rights reserved.
Polevoda, Bogdan; Joseph, Rebecca; Friedman, Alan E.; Bennett, Ryan P.; Greiner, Rebecca; De Zoysa, Thareendra; Stewart, Ryan A.; Smith, Harold C.
2017-01-01
APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. Bulk RNA and substrate ssDNA bind to the same three A3G tryptic peptides (amino acids 181–194, 314–320, and 345–374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C terminus of A3G to its N terminus. We show here that the A3G tyrosines 181 and 315 directly cross-linked ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an Escherichia coli DNA mutator reporter, whereas Y181A and Y182A mutants retained ∼50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Tyr-315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Tyr-315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity. PMID:28381554
Zhang, Yuxun; Bharathi, Sivakama S.; Rardin, Matthew J.; Uppala, Radha; Verdin, Eric; Gibson, Bradford W.; Goetzman, Eric S.
2015-01-01
SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane. PMID:25811481
Batra, Jyotica; Szabó, András; Caulfield, Thomas R; Soares, Alexei S; Sahin-Tóth, Miklós; Radisky, Evette S
2013-04-05
Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5' subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2' positions of CTRC, although acidic P2' residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels.
Gastric acid secretion: activation and inhibition.
Sachs, G.; Prinz, C.; Loo, D.; Bamberg, K.; Besancon, M.; Shin, J. M.
1994-01-01
Peripheral regulation of gastric acid secretion is initiated by the release of gastrin from the G cell. Gastrin then stimulates the cholecystokinin-B receptor on the enterochromaffin-like cell beginning a calcium signaling cascade. An exocytotic release of histamine follows with concomitant activation of a C1- current. The released histamine begins the H2-receptor mediated sequence of events in the parietal cell, which results in activation of the gastric H+/K+ - ATPase. This enzyme is the final common pathway of acid secretion. The H+/K+ - ATPase is composed of two subunits: the larger alpha-subunit couples ion transport to hydrolysis of ATP, the smaller beta-subunit is required for appropriate assembly of the holoenzyme. Both the membrane and extracytoplasmic domain contain the ion transport pathway, and therefore, this region is the target for the antisecretory drugs of the post-H2 era. The 100 kDa alpha-subunit has probably 10 membrane spanning segments with, therefore, five extracytoplasmic loops. The 35 kDA beta-subunit has a single membrane spanning segment, and most of this protein is extracytoplasmic with the six or seven N glycosylation consensus sequences occupied. Omeprazole is an acid-accumulated, acid-activated, prodrug that binds covalently to two cysteine residues at positions 813 (or 822) and 892, accessible from the acidic face of the pump. Lansoprazole binds to cys321, 813 (or 822) and 892; pantoprazole binds to cys813 and 822. The common binding site for these drugs (cys813 or 822) is responsible for the inhibition of acid transport. Covalent inhibition of the acid pump improves control of acid secretion, but since the effective half life of the inhibition in man is about 48 hr, full inhibition of acid secretion, perhaps necessary for eradication of Helicobacter pylori in combination with a single antibiotic, will require prolongation of the effect of this class of drug. PMID:7502535
Dilley, David R.; Wang, Zhenyong; Kadirjan-Kalbach, Deena K.; Ververidis, Fillipos; Beaudry, Randolph; Padmanabhan, Kallaithe
2013-01-01
1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO) catalyses the final step in ethylene biosynthesis converting ACC to ethylene, cyanide, CO2, dehydroascorbate and water with inputs of Fe(II), ascorbate, bicarbonate (as activators) and oxygen. Cyanide activates ACCO. A ‘nest’ comprising several positively charged amino acid residues from the C-terminal α-helix 11 along with Lys158 and Arg299 are proposed as binding sites for ascorbate and bicarbonate to coordinately activate the ACCO reaction. The binding sites for ACC, bicarbonate and ascorbic acid for Malus domestica ACCO1 include Arg175, Arg244, Ser246, Lys158, Lys292, Arg299 and Phe300. Glutamate 297, Phe300 and Glu301 in α-helix 11 are also important for the ACCO reaction. Our proposed reaction pathway incorporates cyanide as an ACCO/Fe(II) ligand after reaction turnover. The cyanide ligand is likely displaced upon binding of ACC and ascorbate to provide a binding site for oxygen. We propose that ACCO may be involved in the ethylene signal transduction pathway not directly linked to the ACCO reaction. ACC oxidase has significant homology with Lycopersicon esculentum cysteine protease LeCp, which functions as a protease and as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase (Acs2) gene expression. ACC oxidase may play a similar role in signal transduction after post-translational processing. ACC oxidase becomes inactivated by fragmentation and apparently has intrinsic protease and transpeptidase activity. ACC oxidase contains several amino acid sequence motifs for putative protein–protein interactions, phosphokinases and cysteine protease. ACC oxidase is subject to autophosphorylaton in vitro and promotes phosphorylation of some apple fruit proteins in a ripening-dependent manner. PMID:24244837
Zhang, Huan; Pan, Yue; Wu, Yao; Tian, Xiu-Qi; Wang, Fang-Fang; Wang, Li
2017-01-01
As well as their importance to nutrition, fatty acids (FA) represent a unique group of quorum sensing chemicals that modulate the behavior of bacterial population in virulence. However, the way in which full-length, membrane-bound receptors biochemically detect FA remains unclear. Here, we provide genetic, enzymological and biophysical evidences to demonstrate that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, a medium-chain FA diffusible signal factor (DSF) binds directly to the N-terminal, 22 amino acid-length sensor region of a receptor histidine kinase (HK), RpfC. The binding event remarkably activates RpfC autokinase activity by causing an allosteric change associated with the dimerization and histidine phosphotransfer (DHp) and catalytic ATP-binding (CA) domains. Six residues were found essential for sensing DSF, especially those located in the region adjoining to the inner membrane of cells. Disrupting direct DSF-RpfC interaction caused deficiency in bacterial virulence and biofilm development. In addition, two amino acids within the juxtamembrane domain of RpfC, Leu172 and Ala178, are involved in the autoinhibition of the RpfC kinase activity. Replacements of them caused constitutive activation of RpfC-mediated signaling regardless of DSF stimulation. Therefore, our results revealed a biochemical mechanism whereby FA activates bacterial HK in an allosteric manner, which will assist in future studies on the specificity of FA-HK recognition during bacterial virulence regulation and cell-cell communication. PMID:28369120
Lawrence, Paul J.; Rogolsky, Marvin; Hanh, Vo Thi
1971-01-01
The chemistry of the binding of 14C-benzylpenicillin to sporulating cultures of Bacillus megaterium and B. subtilis is similar to that in a 4-hr vegetative culture of Staphylococcus aureus. Unlabeled penicillins prevent the binding of 14C-benzylpenicillin, but benzylpenicilloic acid and benzylpenilloic acid do not. Bound antibiotic can be removed from cells with neutral hydroxylamine at 25 C. Sporulating cultures display two intervals of enhanced binding, whereas binding to stationaryphase S. aureus cells remains constant. The first period of increased binding activity occurs during formation of the spore septum or cell wall primordium development, and the second coincides with cortex biosynthesis. PMID:4942758
Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors.
Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki
2015-10-01
Retinoid X receptors (RXRs) are ligand-controlled transcription factors which heterodimerize with other nuclear receptors to regulate gene transcriptions associated with crucial biological events. 9-cis retinoic acid (9cRA), which transactivates RXRs, is believed to be an endogenous RXR ligand. All-trans retinoic acid (ATRA) is a natural ligand for retinoic acid receptors (RARs), which heterodimerize with RXRs. Although the concentration of 9cRA in tissues is very low, ATRA is relatively abundant and some reports show that ATRA activates RXRs. We computationally studied the possibility of ATRA binding to RXRs using two different docking methods with our developed programs to assess the binding affinities of naturally occurring retinoids. The simulations showed good correlations to the reported binding affinities of these molecules for RXRs and RARs.
Polypeptides having xylanase activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spodsberg, Nikolaj; Shaghasi, Tarana
The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.
Polypeptides having endoglucanase activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spodsberg, Nikolaj; Shagasi, Tarana
The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.
Polypeptides having endoglucanase activity and polynucleotides encoding same
Spodsberg, Nikolaj; Shagasi, Tarana
2015-06-30
The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.
Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stringer, Mary Ann; McBrayer, Brett
2016-11-29
The present invention relates to isolated polypeptides having cellobiohydrolase activity, catalytic domains, and cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains, and cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, or cellulose binding domains.
Ishige, K; Endo, H; Saito, H; Ito, Y
2001-01-19
To characterize seizure-associated increases in cerebral cortical and thalamic cyclic AMP responsive element (CRE)- and activator protein 1 (AP-1) DNA-binding activities in lethargic (lh/lh) mice, a genetic model of absence seizures, we examined the effects of ethosuximide and CGP 46381 on these DNA-binding activities. Repeated administration (twice a day for 5 days) of ethosuximide (200 mg/kg) or CGP 46381 (60 mg/kg) attenuated both seizure behavior and the increased DNA-binding activities, and was more effective than a single administration of these drugs. These treatments did not affect either normal behavior or basal DNA-binding activities in non-epileptic control (+/+) mice. Gel supershift assays revealed that the increased CRE-binding activity was attributable to activation of the binding activity of CREB, and that the c-Fos-c-Jun complex was a component of the increased AP-1 DNA-binding activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.
2007-12-21
In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferasemore » I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.« less
Krajewska, Barbara; Zaborska, Wiesława
2007-10-01
In view of the complexity of the role of the active site flap cysteine in the urease catalysis, in this work we studied how the presence of typical active-site binding inhibitors of urease, phenylphosphorodiamidate (PPD), acetohydroxamic acid (AHA), boric acid and fluoride, affects the reactivity of enzyme thiol groups, the active site flap thiol in particular. For that the inhibitor-urease complexes were prepared with excess inhibitors and had their thiol groups titrated with DTNB. The effects observed were analyzed in terms of the structures of the inhibitor-urease complexes reported in the literature. We found that the effectiveness in preventing the active site cysteine from the modification by disulfides, varied among the inhibitors studied, even though they all bind to the active site. The variations were accounted for by different extents of geometrical distortion in the active site that the inhibitors introduced upon binding, leaving the flap either open in AHA-, boric acid- and fluoride-inhibited urease, like in the native enzyme or closed in PPD-inhibited urease. Among the inhibitors, only PPD was found to be able to thoroughly protect the flap cysteines from the further reaction with disulfides, this apparently resulting from the closed conformation of the flap. Accordingly, in practical terms PPD may be regarded as the most suitable inhibitor for active-site protection experiments in inhibition studies of urease.
Mechanism of cinnamic acid-induced trypsin inhibition: A multi-technique approach
NASA Astrophysics Data System (ADS)
Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing
2013-12-01
In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol-1 and 50.70 J mol-1 K-1, respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues.
Sun, Yu-Qi; Dai, Chun-Mei; Zheng, Yan; Shi, Shu-Dan; Hu, Hai-Yang; Chen, Da-Wei
2017-11-01
Glycyrrhetinic acid (GA) is a natural active component from licorice, which is broadly used in traditional Chinese medicine. Lots of glycyrrhetinic acid receptors (GA-R) are proved to locate on the surface of liver cells. Many reports about the hepatocellular carcinoma (HCC) treatment were dependent on GA modified carriers. However, the reality of GA-R in HCC cells was not clear. In this paper, 18β-glycyrrhetinic acid (18β-GA) was labeled with fluorescence (FITC) by chemical synthesis. Together with the binding effect of fluorescence labeled glycyrrhetinic acid (FITC-GA), the competitive action of 18β-GA with GA-R was investigated in HCC cells. The results showed that in HepG2 cells, 18β-GA and FITC-GA presented similar cytotoxicity. The specific binding saturation of GA showed the dissociation constant (K d ) was 7.457±2.122pmol/L and the maximum binding counts (B max ) was 2.385±0.175pmol/2.5×10 6 cells, respectively. FITC-GA bound to cytomembrane specifically and 18β-GA competed to bind the sites significantly in HepG2 cells. Therefore, there is binding effect between fluorescence labeled GA and GA-R. The GA-R on HCC cells is confirmed as expected, which provides a useful reference of active target modified by GA and a novel approach for receptors and ligands study. Copyright © 2017 Elsevier Inc. All rights reserved.
Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Guixiang; Etherton, Terry D.; Department of Dairy and Animal Science, Pennsylvania State University, University Park, PA
2005-10-28
The effects of linoleic acid (LA), {alpha}-linolenic acid (ALA), and docosahexaenoic acid (DHA) were compared to that of palmitic acid (PA), on inflammatory responses in human monocytic THP-1 cells. When cells were pre-incubated with fatty acids for 2-h and then stimulated with lipopolysaccharide for 24-h in the presence of fatty acids, secretion of interleukin (IL)-6, IL-1{beta}, and tumor necrosis factor-{alpha} (TNF{alpha}) was significantly decreased after treatment with LA, ALA, and DHA versus PA (P < 0.01 for all); ALA and DHA elicited more favorable effects. These effects were comparable to those for 15-deoxy-{delta}{sup 12,14}-prostaglandin J2 (15d-PGJ2) and were dose-dependent. Inmore » addition, LA, ALA, and DHA decreased IL-6, IL-1{beta}, and TNF{alpha} gene expression (P < 0.05 for all) and nuclear factor (NF)-{kappa}B DNA-binding activity, whereas peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) DNA-binding activity was increased. The results indicate that the anti-inflammatory effects of polyunsaturated fatty acids may be, in part, due to the inhibition of NF-{kappa}B activation via activation of PPAR{gamma}.« less
Satitsuksanoa, P; Kennedy, M; Gilis, D; Le Mignon, M; Suratannon, N; Soh, W T; Wongpiyabovorn, J; Chatchatee, P; Vangveravong, M; Rerkpattanapipat, T; Sangasapaviliya, A; Piboonpocanun, S; Nony, E; Ruxrungtham, K; Jacquet, A
2016-10-01
The house dust mite (HDM) allergen Der p 13 could be a lipid-binding protein able to activate key innate signaling pathways in the initiation of the allergic response. We investigated the IgE reactivity of recombinant Der p 13 (rDer p 13), its lipid-binding activities, and its capacity to stimulate airway epithelium cells. Purified rDer p 13 was characterized by mass spectrometry, circular dichroism, fluorescence-based lipid-binding assays, and in silico structural prediction. IgE-binding activity and allergenic potential of Der p 13 were examined by ELISA, basophil degranulation assays, and in vitro airway epithelial cell activation assays. Protein modeling and biophysical analysis indicated that Der p 13 adopts a β-barrel structure with a predominately apolar pocket representing a potential binding site for hydrophobic ligands. Fluorescent lipid-binding assays confirmed that the protein is highly selective for ligands and that it binds a fatty acid with a dissociation constant typical of lipid transporter proteins. The low IgE-binding frequency (7%, n = 224) in Thai HDM-allergic patients as well as the limited propensity to activate basophil degranulation classifies Der p 13 as a minor HDM allergen. Nevertheless, the protein with its presumptively associated lipid(s) triggered the production of IL-8 and GM-CSF in respiratory epithelial cells through a TLR2-, MyD88-, NF-kB-, and MAPK-dependent signaling pathway. Although a minor allergen, Der p 13 may, through its lipid-binding capacity, play a role in the initiation of the HDM-allergic response through TLR2 activation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Autodisplay of an avidin with biotin-binding activity on the surface of Escherichia coli.
Pardavé-Alejandre, H D; Alvarado-Yaah, J E; Pompa-Mera, E N; Muñoz-Medina, J E; Sárquiz-Martínez, B; Santacruz-Tinoco, C E; Manning-Cela, R G; Ortíz-Navarrete, V; López-Macías, C; González-Bonilla, C R
2018-03-01
To display a recombinant avidin fused to the autotransporter ShdA to bind biotinylated molecules on the surface of Escherichia coli. Two chimeric protein constructs containing avidin fused to the autotransporter ShdA were expressed on the surface of Escherichia coli DH5α. One fusion protein contained 476 amino acids of the ShdA α and β domains, whereas the second consisted of a 314 amino acid from α and truncated β domains. Protein production was verified by SDS-PAGE using an antibody to the molecular FLAG-tag. The surface display of the avidin-shdA fusion protein was confirmed by confocal microscopy and flow cytometry analysis, and the biotin-binding activity was evaluated by fluorescence microscopy and flow cytometry using biotin-4-fluorescein and biotinylated-ovalbumin (OVA). Expression of a recombinant avidin with biotin-binding activity on the surface of E. coli was achieved using the autotransporter ShdA. This system is an alternative to bind biotinylated molecules to E. coli.
[Separation of osteoclasts by lectin affinity chromatography].
Itokazu, M; Tan, A; Tanaka, S
1991-09-01
Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.
Lacal, J C; Anderson, P S; Aaronson, S A
1986-01-01
Deletions of small sequences from the viral Harvey ras gene have been generated, and resulting ras p21 mutants have been expressed in Escherichia coli. Purification of each deleted protein allowed the in vitro characterization of GTP-binding, GTPase and autokinase activity of the proteins. Microinjection of the highly purified proteins into quiescent NIH/3T3 cells, as well as transfection experiments utilizing a long terminal repeat (LTR)-containing vector, were utilized to analyze the biological activity of the deleted proteins. Two small regions located at 6-23 and 152-165 residues are shown to be absolutely required for in vitro and in vivo activities of the ras product. By contrast, the variable region comprising amino acids 165-184 was shown not to be necessary for either in vitro or in vivo activities. Thus, we demonstrate that: (i) amino acid sequences at positions 5-23 and 152-165 of ras p21 protein are probably directly involved in the GTP-binding activity; (ii) GTP-binding is required for the transforming activity of ras p21 and by extension for the normal function of the proto-oncogene product; and (iii) the variable region at the C-terminal end of the ras p21 molecule from amino acids 165 to 184 is not required for transformation. Images Fig.2. Fig.4. PMID:3011420
Kitchen, J L; Li, Z; Crooke, E
1999-05-11
The initiation of Escherichia coli chromosomal replication by DnaA protein is strongly influenced by the tight binding of the nucleotides ATP and ADP. Anionic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA protein to replicatively active ATP-DnaA protein in vitro, and thus likely play a key role in regulating DnaA activity. Previous studies have revealed that, during this reactivation, a specific region of DnaA protein inserts into the hydrophobic portion of the lipid bilayer in an acidic phospholipid-dependent manner. To elucidate the requirement for acidic phospholipids in the reactivation process, the contribution of electrostatic forces in the interaction of DnaA and lipid was examined. DnaA-lipid binding required anionic phospholipids, and DnaA-lipid binding as well as lipid-mediated release of DnaA-bound nucleotide were inhibited by increased ionic strength, suggesting the involvement of electrostatic interactions in these processes. As the vesicular content of acidic phospholipids was increased, both nucleotide release and DnaA-lipid binding increased in a linear, parallel manner. Given that DnaA-membrane binding, the insertion of DnaA into the membrane, and the consequent nucleotide release all require anionic phospholipids, the acidic headgroup may be necessary to recruit DnaA protein to the membrane for insertion and subsequent reactivation for replication.
Kanai, Akio; Oida, Hanako; Matsuura, Nana; Doi, Hirofumi
2003-01-01
We systematically screened a genomic DNA library to identify proteins of the hyperthermophilic archaeon Pyrococcus furiosus using an expression cloning method. One gene product, which we named FAU-1 (P. furiosus AU-binding), demonstrated the strongest binding activity of all the genomic library-derived proteins tested against an AU-rich RNA sequence. The protein was purified to near homogeneity as a 54 kDa single polypeptide, and the gene locus corresponding to this FAU-1 activity was also sequenced. The FAU-1 gene encoded a 472-amino-acid protein that was characterized by highly charged domains consisting of both acidic and basic amino acids. The N-terminal half of the gene had a degree of similarity (25%) with RNase E from Escherichia coli. Five rounds of RNA-binding-site selection and footprinting analysis showed that the FAU-1 protein binds specifically to the AU-rich sequence in a loop region of a possible RNA ligand. Moreover, we demonstrated that the FAU-1 protein acts as an oligomer, and mainly as a trimer. These results showed that the FAU-1 protein is a novel heat-stable protein with an RNA loop-binding characteristic. PMID:12614195
Structural insight into the TFIIE–TFIIH interaction: TFIIE and p53 share the binding region on TFIIH
Okuda, Masahiko; Tanaka, Aki; Satoh, Manami; Mizuta, Shoko; Takazawa, Manabu; Ohkuma, Yoshiaki; Nishimura, Yoshifumi
2008-01-01
RNA polymerase II and general transcription factors (GTFs) assemble on a promoter to form a transcription preinitiation complex (PIC). Among the GTFs, TFIIE recruits TFIIH to complete the PIC formation and regulates enzymatic activities of TFIIH. However, the mode of binding between TFIIE and TFIIH is poorly understood. Here, we demonstrate the specific binding of the C-terminal acidic domain (AC-D) of the human TFIIEα subunit to the pleckstrin homology domain (PH-D) of the human TFIIH p62 subunit and describe the solution structures of the free and PH-D-bound forms of AC-D. Although the flexible N-terminal acidic tail from AC-D wraps around PH-D, the core domain of AC-D also interacts with PH-D. AC-D employs an entirely novel binding mode, which differs from the amphipathic helix method used by many transcriptional activators. So the binding surface between PH-D and AC-D is much broader than the specific binding surface between PH-D and the p53 acidic fragments. From our in vitro studies, we demonstrate that this interaction could be a switch to replace p53 with TFIIE on TFIIH in transcription. PMID:18354501
Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family*
Broussard, Tyler C.; Miller, Darcie J.; Jackson, Pamela; Nourse, Amanda; White, Stephen W.; Rock, Charles O.
2016-01-01
Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272
Lin, Chun-Yu; Chiu, Chun-Ching; Cheng, Ju; Lin, Chia-Yun; Shi, Ya-Fang; Tsai, Chun-Chou; Tzang, Bor-Show; Hsu, Tsai-Ching
2018-01-01
Mounting evidence suggests a connection between human parvovirus B19 (B19) and autoimmune diseases, and especially an association between the B19-VP1 unique region (VP1u) and anti-phospholipid syndrome (APS). However, little is known about the antigenicity of B19-VP1u in the induction of APS-like syndrome. To elucidate the antigenicity of B19-VP1u in the induction of APS, N-terminal truncated B19-VP1u (tVP1u) proteins were prepared to immunize Balb/c mice to generate antibodies against B19-tVP1u proteins. The secreted phospholipase A2 (sPLA2) activities and binding specificity of mice anti-B19-tVP1u antibodies with cardiolipin (CL) and beta-2-glycoprotein I (β2GPI) were evaluated by performing immunoblot, ELISA and absorption experiments. A mice model of passively induced APS was adopted. Although sPLA2 activities were identified in all B19-tVP1u proteins, only amino acid residues 61-227 B19-tVP1u exhibited a higher sPLA2 activity. Autoantibodies against CL and β2GPI exhibited binding activities with all B19-tVP1u proteins. IgG that was purified from mice that had been immunized with amino acid residues 21-227 to 121-227 B19-tVP1u proteins exhibited significantly higher binding activity with CL. IgG that was purified from mice that had been immunized with amino acid residues 21-227, 31-227, 82-227 and 91-227 B19-tVP1u proteins exhibited significantly higher binding activity with β2GPI. Accordingly, significantly higher binding inhibition of CL was detected in the presence of amino acid residues 61-227 and 101-227 B19-tVP1u. Significantly higher binding inhibition of β2GPI was detected in the presence of amino acid residues 21-227, 31-227, 82-227 and 91-227 B19-tVP1u. The mice that received amino acid residues 31-227 or 61-227 anti-tB19-VP1u IgG revealed significant thrombocytopenia and those that received amino acid residues 21-227, 31-227, 61-227, 71-227, 82-227, 91-227, 101-227 or 114-227 anti-tB19-VP1u IgG exhibited significantly prolonged aPTT. These findings provide further information concerning the role of B19-VP1u antigenicity in APS-like autoimmunity.
The linker region of AraC protein.
Eustance, R J; Schleif, R F
1996-01-01
AraC protein, a transcriptional regulator of the L-arabinose operon in Escherichia coli, is dimeric. Each monomer consists of a domain for DNA binding plus transcription activation and a domain for dimerization plus arabinose binding. These are connected to one another by a linker region of at least 5 amino acids. Here we have addressed the question of whether any of the amino acids in the linker region play active, specific, and crucial structural roles or whether these amino acids merely serve as passive spacers between the functional domains. We found that all but one of the linker amino acids can be changed to other amino acids individually and in small groups without substantially affecting the ability of AraC protein to activate transcription when arabinose is present. When, however, the entire linker region is replaced with linker sequences from other proteins, the functioning of AraC is impaired. PMID:8955380
Choi, Yun-Seok; Lee, Yun-Ju; Lee, Seo-Yeon; Shi, Lei; Ha, Jung-Hye; Cheong, Hae-Kap; Cheong, Chaejoon; Cohen, Robert E.; Ryu, Kyoung-Seok
2015-01-01
The ubiquitin E2 enzymes, Ube2g1 and Ube2r1, are able to synthesize Lys-48-linked polyubiquitins without an E3 ligase but how that is accomplished has been unclear. Although both E2s contain essential acidic loops, only Ube2r1 requires an additional C-terminal extension (184–196) for efficient Lys-48-ubiquitylation activity. The presence of Tyr-102 and Tyr-104 in the Ube2g1 acidic loop enhanced both ubiquitin binding and Lys-48-ubiquitylation and distinguished Ube2g1 from the otherwise similar truncated Ube2r11–183 (Ube2r1C). Replacement of Gln-105–Ser-106–Gly-107 in the acidic loop of Ube2r1C (Ube2r1CYGY) by the corresponding residues from Ube2g1 (Tyr-102–Gly-103–Tyr-104) increased Lys-48-ubiquitylation activity and ubiquitin binding. Two E2∼UB thioester mimics (oxyester and disulfide) were prepared to characterize the ubiquitin binding activity of the acidic loop. The oxyester but not the disulfide derivative was found to be a functional equivalent of the E2∼UB thioester. The ubiquitin moiety of the Ube2r1CC93S-[15N]UBK48R oxyester displayed two-state conformational exchange, whereas the Ube2r1CC93S/YGY-[15N]UBK48R oxyester showed predominantly one state. Together with NMR studies that compared UBK48R oxyesters of the wild-type and the acidic loop mutant (Y102G/Y104G) forms of Ube2g1, in vitro ubiquitylation assays with various mutation forms of the E2s revealed how the intramolecular interaction between the acidic loop and the attached donor ubiquitin regulates Lys-48-ubiquitylation activity. PMID:25471371
Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.
2016-01-01
Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423
Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J
2016-02-01
Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
Panjarian, Shoghag; Iacob, Roxana E.; Chen, Shugui; Wales, Thomas E.; Engen, John R.; Smithgall, Thomas E.
2013-01-01
Multidomain kinases such as c-Src and c-Abl are regulated by complex allosteric interactions involving their noncatalytic SH3 and SH2 domains. Here we show that enhancing natural allosteric control of kinase activity by SH3/linker engagement has long-range suppressive effects on the kinase activity of the c-Abl core. Surprisingly, enhanced SH3/linker interaction also dramatically sensitized the Bcr-Abl tyrosine kinase associated with chronic myelogenous leukemia to small molecule inhibitors that target either the active site or the myristic acid binding pocket in the kinase domain C-lobe. Dynamics analyses using hydrogen exchange mass spectrometry revealed a remarkable allosteric network linking the SH3 domain, the myristic acid binding pocket, and the active site of the c-Abl core, providing a structural basis for the biological observations. These results suggest a rational strategy for enhanced drug targeting of Bcr-Abl and other multidomain kinase systems that use multiple small molecules to exploit natural mechanisms of kinase control. PMID:23303187
Zhu, Jun; Gianni, Maurizio; Kopf, Eliezer; Honoré, Nicole; Chelbi-Alix, Mounira; Koken, Marcel; Quignon, Frédérique; Rochette-Egly, Cécile; de Thé, Hugues
1999-01-01
Analyzing the pathways by which retinoic acid (RA) induces promyelocytic leukemia/retinoic acid receptor α (PML/RARα) catabolism in acute promyelocytic leukemia (APL), we found that, in addition to caspase-mediated PML/RARα cleavage, RA triggers degradation of both PML/RARα and RARα. Similarly, in non-APL cells, RA directly targeted RARα and RARα fusions to the proteasome degradation pathway. Activation of either RARα or RXRα by specific agonists induced degradation of both proteins. Conversely, a mutation in RARα that abolishes heterodimer formation and DNA binding, blocked both RARα and RXRα degradation. Mutations in the RARα DNA-binding domain or AF-2 transcriptional activation region also impaired RARα catabolism. Hence, our results link transcriptional activation to receptor catabolism and suggest that transcriptional up-regulation of nuclear receptors by their ligands may be a feedback mechanism allowing sustained target-gene activation. PMID:10611294
Estrogenic Activities of Fatty Acids and a Sterol Isolated from Royal Jelly
Isohama, Yoichiro; Maruyama, Hiroe; Yamada, Yayoi; Narita, Yukio; Ohta, Shozo; Araki, Yoko; Miyata, Takeshi; Mishima, Satoshi
2008-01-01
We have previously reported that royal jelly (RJ) from honeybees (Apis mellifera) has weak estrogenic activity mediated by interaction with estrogen receptors that leads to changes in gene expression and cell proliferation. In this study, we isolated four compounds from RJ that exhibit estrogenic activity as evaluated by a ligand-binding assay for the estrogen receptor (ER) β. These compounds were identified as 10-hydroxy-trans-2-decenoic acid, 10-hydroxydecanoic acid, trans-2-decenoic acid and 24-methylenecholesterol. All these compounds inhibited binding of 17β-estradiol to ERβ, although more weakly than diethylstilbestrol or phytoestrogens. However, these compounds had little or no effect on the binding of 17β-estradiol to ERα. Expression assays suggested that these compounds activated ER, as evidenced by enhanced transcription of a reporter gene containing an estrogen-responsive element. Treatment of MCF-7 cells with these compounds enhanced their proliferation, but concomitant treatment with tamoxifen blocked this effect. Exposure of immature rats to these compounds by subcutaneous injection induced mild hypertrophy of the luminal epithelium of the uterus, but was not associated with an increase in uterine weight. These findings provide evidence that these compounds contribute to the estrogenic effect of RJ. PMID:18830443
Batra, Jyotica; Szabó, András; Caulfield, Thomas R.; Soares, Alexei S.; Sahin-Tóth, Miklós; Radisky, Evette S.
2013-01-01
Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5′ subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2′ positions of CTRC, although acidic P2′ residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels. PMID:23430245
Folkers, G E; van der Saag, P T
1995-11-01
Transcription regulation by DNA-bound activators is thought to be mediated by a direct interaction between these proteins and TATA-binding protein (TBP), TFIIB, or TBP-associated factors, although occasionally cofactors or adapters are required. For ligand-induced activation by the retinoic acid receptor-retinoid X receptor (RAR-RXR) heterodimer, the RAR beta 2 promoter is dependent on the presence of E1A or E1A-like activity, since this promoter is activated by retinoic acid only in cells expressing such proteins. The mechanism underlying this E1A requirement is largely unknown. We now show that direct interaction between RAR and E1A is a requirement for retinoic acid-induced RAR beta 2 activation. The activity of the hormone-dependent activation function 2 (AF-2) of RAR beta is upregulated by E1A, and an interaction between this region and E1A was observed, but not with AF-1 or AF-2 of RXR alpha. This interaction is dependent on conserved region III (CRIII), the 13S mRNA-specific region of E1A. Deletion analysis within this region indicated that the complete CRIII is needed for activation. The putative zinc finger region is crucial, probably as a consequence of interaction with TBP. Furthermore, the region surrounding amino acid 178, partially overlapping with the TBP binding region, is involved in both binding to and activation by AF-2. We propose that E1A functions as a cofactor by interacting with both TBP and RAR, thereby stabilizing the preinitiation complex.
Mechanism of cinnamic acid-induced trypsin inhibition: a multi-technique approach.
Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing
2013-12-01
In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol(-1) and 50.70 J mol(-1) K(-1), respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues. Copyright © 2013 Elsevier B.V. All rights reserved.
Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young
2016-08-15
Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Aung, Khin Moh Moh; Lim, Michelle Gek Liang; Hong, Shuzhen; Cheung, Edwin; Su, Xiaodi
Forkhead box protein 1 (FoxA1) is a member of the forkhead family of winged-helix transcription factors. It plays crucial roles in the development and differentiation of multiple organs and in the regulation of estrogen-stimulated genes. In this study, in order to determine the regions of FoxA1 necessary for efficient Deoxyribonucleic Acid (DNA) binding, we cloned, expressed and purified a series of FoxA1 constructs that contain either the DNA Binding Domain (DBD), the Transcription Activation Domain (TAD), or both. We determined the DNA binding behavior of these constructs using traditional electrophoretic mobility shift assay (EMSA) and a recently developed gold nanoparticles (AuNPs)-based fast screening method. We conclude that just the DBD region alone is not sufficient for protein-DNA binding activity. Amino acids flanking the upstream of the DBD region are required for maximal DNA binding activity. Through this study, we have also further validated the AuNPs assay for its generality and expanded the existing protocol for comparing the DNA binding behavior of multiple proteins of different charge properties and molecular weights.
Hughes, Maria L. R.; Liu, Bonan; Halls, Michelle L.; Wagstaff, Kylie M.; Patil, Rahul; Velkov, Tony; Jans, David A.; Bunnett, Nigel W.; Scanlon, Martin J.; Porter, Christopher J. H.
2015-01-01
Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. PMID:25847235
Hughes, Maria L R; Liu, Bonan; Halls, Michelle L; Wagstaff, Kylie M; Patil, Rahul; Velkov, Tony; Jans, David A; Bunnett, Nigel W; Scanlon, Martin J; Porter, Christopher J H
2015-05-29
Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Szilágyi, Bence; Skok, Žiga; Rácz, Anita; Frlan, Rok; Ferenczy, György G; Ilaš, Janez; Keserű, György M
2018-06-01
d-Amino acid oxidase (DAAO) inhibitors are typically small polar compounds with often suboptimal pharmacokinetic properties. Features of the native binding site limit the operational freedom of further medicinal chemistry efforts. We therefore initiated a structure based virtual screening campaign based on the X-ray structures of DAAO complexes where larger ligands shifted the loop (lid opening) covering the native binding site. The virtual screening of our in-house collection followed by the in vitro test of the best ranked compounds led to the identification of a new scaffold with micromolar IC 50 . Subsequent SAR explorations enabled us to identify submicromolar inhibitors. Docking studies supported by in vitro activity measurements suggest that compounds bind to the active site with a salt-bridge characteristic to DAAO inhibitor binding. In addition, displacement of and interaction with the loop covering the active site contributes significantly to the activity of the most potent compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholas, R.A.; Suzuki, H.; Hirota, Y.
This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed thatmore » the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.« less
Cleverdon, Elizabeth R; Davis, Tasha R; Hougland, James L
2018-04-21
Ghrelin is a small peptide hormone that undergoes a unique posttranslational modification, serine octanoylation, to play its physiological roles in processes including hunger signaling and glucose metabolism. Ghrelin O-acyltransferase (GOAT) catalyzes this posttranslational modification, which is essential for ghrelin to bind and activate its cognate GHS-R1a receptor. Inhibition of GOAT offers a potential avenue for modulating ghrelin signaling for therapeutic effect. Defining the molecular characteristics of ghrelin that lead to binding and recognition by GOAT will facilitate the development and optimization of GOAT inhibitors. We show that small peptide mimics of ghrelin substituted with 2,3-diaminopropanoic acid in place of the serine at the site of octanoylation act as submicromolar inhibitors of GOAT. Using these chemically modified analogs of desacyl ghrelin, we define key functional groups within the N-terminal sequence of ghrelin essential for binding to GOAT and determine GOAT's tolerance to backbone methylations and altered amino acid stereochemistry within ghrelin. Our study provides a structure-activity analysis of ghrelin binding to GOAT that expands upon activity-based investigations of ghrelin recognition and establishes a new class of potent substrate-mimetic GOAT inhibitors for further investigation and therapeutic interventions targeting ghrelin signaling. Copyright © 2018 Elsevier Inc. All rights reserved.
Ivanov, I; Schwarz, K; Holzhütter, H G; Myagkova, G; Kühn, H
1998-01-01
During oxygenation by 15-lipoxygenases, polyenoic fatty acids are bound at the active site in such a way that the omega-terminus of the fatty acids penetrates into the substrate binding pocket. In contrast, for arachidonic acid 5-lipoxygenation, an inverse head to tail orientation has been suggested. However, an inverse orientation may be hindered by the large energy barrier associated with burying the charged carboxylate group in the hydrophobic environment of the substrate binding cleft. We studied the oxygenation kinetics of omega-modified fatty acids by 15-lipoxygenases and found that omega-hydroxylation strongly impaired substrate affinity (higher Km), but only moderately altered Vmax. In contrast, omega-carboxylation completely prevented the lipoxygenase reaction; however, methylation of the additional carboxylate group restored the activity. Arg403 of the human 15-lipoxygenase has been implicated in fatty acid binding by forming a salt bridge with the carboxylate group, and thus mutation of this amino acid to an uncharged residue was supposed to favour an inverse substrate orientation. The prepared Arg403-->Leu mutant of the rabbit 15-lipoxygenase was found to be a less effective catalyst of linoleic acid oxygenation. However, the oxygenation rate of omega-hydroxyarachidonic acid was similar when the wild-type and mutant enzyme were compared, and the patterns of oxygenation products were identical for both enzyme species. These data suggest that introduction of a polar, or even charged residue, at the omega-terminus of substrate fatty acids in connection with mutation of Arg403 may not alter substrate alignment at the active site of 15-lipoxygenases. PMID:9820810
B 36N 36 fullerene-like nanocages: A novel material for drug delivery
NASA Astrophysics Data System (ADS)
Ganji, M. D.; Yazdani, H.; Mirnejad, A.
2010-07-01
We study interaction between B 36N 36 fullerene-like nanocage and glycine amino acid from the first- principles. Binding energy is calculated and glycine binding to the pure C 60 fullerene is compared. We also analyze the electronic structure and charge Mulliken population for the energetically most favorable complexes. Our results indicate that glycine can form stable bindings with B 36N 36 nanocage via their carbonyl oxygen (O) active site while, the C 60 fullerene might be unable to form stable bindings to glycine amino acid via their active sites, which is consistence with recent experimental and theoretical investigations. Thus, we arrive at the prediction that the B 36N 36 nanocage can be implemented as a novel material for drug delivery applications.
Zhang, Xin; Zhao, Haitao; Wang, Jianhui
2010-08-01
Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.
Substrate binding ability of chemically inactivated pectinase for the substrate pectic acid.
Chiba, Y; Kobayashi, M
1995-07-01
Pectinase (polygalacturonase) was purified from a commercial pectinase preparation from a mold. Substrate binding of pectinase was measured by centrifugal affinity chromatography using an immobilized substrate, pectic acid. Desorption of pectinase from the affinity matrix with the substrate pectin and pectic acid gave Kd values of 5.3 and 8.5 mg/ml, respectively. Chemical modification of pectinase by 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide (EDC) and diethyl pyrocarbonate (DEP) caused a loss of most of the enzyme activity, but the substrate binding ability was not impaired. Thus, the pectinase preparation was digested with lysyl endopeptidase and the resulting peptides were treated with pectic acid-affinity gel. Three peptide fragments, which were recovered from the affinity column and sequenced, were identical to sequences in the second pectinase gene from Aspergillus niger. The first peptide contained 17 amino acids, Asp101-Ser117, and the second and third peptides corresponded to 18 amino acids of Asn152-Asp169. These results indicate that the inactivated pectinase retained substrate binding ability and would function as an acidic polysaccharide recognizing protein.
PREDICTING RETINOID RECEPTOR BINDING AFFINITY: COREPA-M APPLICATION
Retinoic acid and associated vitamin A derivatives comprise a class of endogenous hormones that activate different retinoic acid receptors RARs). Transcriptional events subsequent to this activation are key to controlling several aspects of vertebrate development. As such, identi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroemberg, N.K.; Karlsson, K.A.
1990-07-05
Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) were radiolabeled externally (125I) or metabolically (35S) and analyzed for their ability to bind glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells. Two binding properties were found and characterized in detail. (i) Both bacteria showed binding to lactosylceramide (LacCer) in a fashion similar to bacteria characterized earlier. The activity of free LacCer was dependent on the ceramide structure; species with 2-hydroxy fatty acid and/or a trihydroxy base were positive, while species with nonhydroxy fatty acid and a dihydroxy base were negative binders. Several glycolipids with internal lactose weremore » active but only gangliotriaosylceramide and gangliotetraosylceramide were as active as free LacCer. The binding to these three species was half-maximal at about 200 ng of glycolipid and was not blocked by preincubation of bacteria with free lactose or lactose-bovine serum albumin. (ii) A. naeslundii, unlike A. viscosus, showed a superimposed binding concluded to be to terminal or internal GalNAc beta and equivalent to a lactose-inhibitable specificity previously analyzed by other workers. Terminal Gal beta was not recognized in several glycolipids, although free Gal and lactose were active as soluble inhibitors. The binding was half-maximal at about 10 ng of glycolipid. A glycolipid mixture prepared from a scraping of human buccal epithelium contained an active glycolipid with sites for both binding specificities.« less
Kuban-Jankowska, Alicja; Gorska, Magdalena; Tuszynski, Jack A; Ossowski, Tadeusz; Wozniak, Michal
2015-01-01
YopH is a bacterial protein tyrosine phosphatase, which is essential for the viability and pathogenic virulence of the plague-causing Yersinia sp. bacteria. Inactivation of YopH activity would lead to the loss of bacterial pathogenicity. We have studied the inhibitory properties of aurintricarboxylic acid (ATA) against YopH phosphatase and found that at nanomolar concentrations ATA reversibly decreases the activity of YopH. Computational docking studies indicated that in all binding poses ATA binds in the YopH active site. Molecular dynamics simulations showed that in the predicted binding pose, ATA binds to the essential Cys403 and Arg409 residues in the active site and has a stronger binding affinity than the natural substrate (pTyr). The cyclic voltammetry experiments suggest that ATA reacts remarkably strongly with molecular oxygen. Additionally, the electrochemical reduction of ATA in the presence of a negative potential from −2.0 to 2.5 V generates a current signal, which is observed for hydrogen peroxide. Here we showed that ATA indicates a unique mechanism of YopH inactivation due to a redox process. We proposed that the potent inhibitory properties of ATA are a result of its strong binding in the YopH active site and in situ generation of hydrogen peroxide near catalytic cysteine residue. PMID:26286963
Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.
Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila
2017-04-15
In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Mi Hee; Kang, Dong Woo; Jung, Yunjin
2013-12-06
Highlights: •We found CAFÉ, a natural product that suppresses expression and activity of PLD1. •CAPE decreased PLD1 expression by inhibiting NFκB transactivation. •CAPE rapidly inhibited PLD activity via its binding to a Cys837 of PLD1. •PLD1 downregulation by CAPE inhibited invasion and proliferation of glioma cells. -- Abstract: Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition ofmore » binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.« less
Galka, Marek M.; Rajagopalan, Nandhakishore; Buhrow, Leann M.; Nelson, Ken M.; Switala, Jacek; Cutler, Adrian J.; Palmer, David R. J.; Loewen, Peter C.; Abrams, Suzanne R.; Loewen, Michele C.
2015-01-01
Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050
Galka, Marek M; Rajagopalan, Nandhakishore; Buhrow, Leann M; Nelson, Ken M; Switala, Jacek; Cutler, Adrian J; Palmer, David R J; Loewen, Peter C; Abrams, Suzanne R; Loewen, Michele C
2015-01-01
Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation.
Kondo, Ayano; Yamamoto, Shogo; Nakaki, Ryo; Shimamura, Teppei; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Yoshida, Tetsuo; Aburatani, Hiroyuki; Osawa, Tsuyoshi
2017-02-28
Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Jiang, Zhigang; Chang, Jitao; Wang, Fang; Yu, Li
2015-02-01
Clostridium perfringens epsilon toxin (Etx) is an extremely potent toxin, causing fatal enterotoxaemia in many animals. Several amino acids in domains I and II have been proposed to be critical for Etx to interact with MDCK cells. However, the critical amino acids in domain III remain undefined. Therefore, we assessed the effects of aromatic amino acids in domain III on Etx activity in this study. All of the results indicated that Y71 was critical for the cytotoxic activity of Etx towards MDCK cells, and this activity was dependent on the existence of an aromatic ring residue in position 71. Additionally, mutations in Y71 did not affect the binding of Etx to MDCK cells, indicating that Y71 is not a receptor binding site for Etx. In summary, we identified an amino acid in domain III that is important for the cytotoxic activity of Etx, thereby providing information on the structure-function relationship of Etx.
Muniyan, Rajiniraja; Gurunathan, Jayaraman
2016-12-01
The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.
The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites
Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke
2010-01-01
The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilies, Monica; Di Costanzo, Luigi; Dowling, Daniel P.
Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of {alpha},{alpha}-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase Imore » and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional {alpha}-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.« less
Iron Release from Soybean Seed Ferritin Induced by Cinnamic Acid Derivatives.
Sha, Xuejiao; Chen, Hai; Zhang, Jingsheng; Zhao, Guanghua
2018-05-04
Plant ferritin represents a novel class of iron supplement, which widely co-exists with phenolic acids in a plant diet. However, there are few reports on the effect of these phenolic acids on function of ferritin. In this study, we demonstrated that cinnamic acid derivatives, as widely occurring phenolic acids, can induce iron release from holo soybean seed ferritin (SSF) in a structure-dependent manner. The ability of the iron release from SSF by five cinnamic acids follows the sequence of Cinnamic acid > Chlorogenic acid > Ferulic acid > p -Coumaric acid > Trans -Cinnamic acid. Fluorescence titration in conjunction with dialysis results showed that all of these five compounds have a similar, weak ability to bind with protein, suggesting that their protein-binding ability is not related to their iron release activity. In contrast, both Fe 2+ -chelating activity and reducibility of these cinnamic acid derivatives are in good agreement with their ability to induce iron release from ferritin. These studies indicate that cinnamic acid and its derivatives could have a negative effect on iron stability of holo soybean seed ferritin in diet, and the Fe 2+ -chelating activity and reducibility of cinnamic acid and its derivatives have strong relations to the iron release of soybean seed ferritin.
Mol, Clifford D.; Brooun, Alexei; Dougan, Douglas R.; Hilgers, Mark T.; Tari, Leslie W.; Wijnands, Robert A.; Knuth, Mark W.; McRee, Duncan E.; Swanson, Ronald V.
2003-01-01
UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg2+ and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn2+ have been determined to 1.85- and 1.7-Å resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the γ-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates. PMID:12837790
Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V
2003-07-01
UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.
Potential Functional Byproducts from Guava Purée Processing.
Lim, Si Yi; Tham, Paik Yean; Lim, Hilary Yi Ler; Heng, Wooi Shin; Chang, Ying Ping
2018-05-10
The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study. To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them. © 2018 Institute of Food Technologists®.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poor, Catherine B.; Chen, Peng R.; Duguid, Erica
2010-01-20
SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys{sup 13}, to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys{sup 13} sulfenic acid modification is stabilized through two hydrogen bonds withmore » surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys{sup 13} sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.« less
Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G
2016-02-23
In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.
NASA Astrophysics Data System (ADS)
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A.; Jiménez, M. Consuelo
2018-06-01
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α1-acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222.
Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; McPhaul, M J
1994-01-01
We have investigated the basis of androgen resistance in seven unrelated individuals with complete testicular feminization or Reifenstein syndrome caused by single amino acid substitutions in the hormone-binding domain of the androgen receptor. Monolayer-binding assays of cultured genital skin fibroblasts demonstrated absent ligand binding, qualitative abnormalities of androgen binding, or a decreased amount of qualitatively normal receptor. The consequences of these mutations were examined by introducing the mutations by site-directed mutagenesis into the androgen receptor cDNA sequence and expressing the mutant cDNAs in mammalian cells. The effects of the amino acid substitutions on the binding of different androgens and on the capacity of the ligand-bound receptors to activate a reporter gene were investigated. Substantial differences were found in the responses of the mutant androgen receptors to incubation with testosterone, 5 alpha-dihydrotestosterone, and mibolerone. In several instances, increased doses of hormone or increased frequency of hormone addition to the incubation medium resulted in normal or near normal activation of a reporter gene by cells expressing the mutant androgen receptors. These studies suggest that the stability of the hormone receptor complex is a major determinant of receptor function in vivo. Images PMID:7929841
Fusaric acid induces a notochord malformation in zebrafish via copper chelation.
Yin, Emily S; Rakhmankulova, Malika; Kucera, Kaury; de Sena Filho, Jose Guedes; Portero, Carolina E; Narváez-Trujillo, Alexandra; Holley, Scott A; Strobel, Scott A
2015-08-01
Over a thousand extracts were tested for phenotypic effects in developing zebrafish embryos to identify bioactive molecules produced by endophytic fungi. One extract isolated from Fusarium sp., a widely distributed fungal genus found in soil and often associated with plants, induced an undulated notochord in developing zebrafish embryos. The active compound was isolated and identified as fusaric acid. Previous literature has shown this phenotype to be associated with copper chelation from the active site of lysyl oxidase, but the ability of fusaric acid to bind copper ions has not been well described. Isothermal titration calorimetry revealed that fusaric acid is a modest copper chelator with a binding constant of 4.4 × 10(5) M(-1). These results shed light on the toxicity of fusaric acid and the potential teratogenic effects of consuming plants infected with Fusarium sp.
Factor VII and protein C are phosphatidic acid-binding proteins.
Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H
2013-08-20
Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.
Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2
Vogel, Simon M.; Bauer, Matthias R.; Joerger, Andreas C.; Wilcken, Rainer; Brandt, Tobias; Veprintsev, Dmitry B.; Rutherford, Trevor J.; Fersht, Alan R.; Boeckler, Frank M.
2012-01-01
The proteins MDM2 and MDM4 are key negative regulators of the tumor suppressor protein p53, which are frequently upregulated in cancer cells. They inhibit the transactivation activity of p53 by binding separately or in concert to its transactivation domain. MDM2 is also a ubiquitin ligase that leads to the degradation of p53. Accordingly, MDM2 and MDM4 are important targets for drugs to inhibit their binding to p53. We found from in silico screening and confirmed by experiment that lithocholic acid (LCA) binds to the p53 binding sites of both MDM2 and MDM4 with a fivefold preference for MDM4. LCA is an endogenous steroidal bile acid, variously reported to have both carcinogenic and apoptotic activities. The comparison of LCA effects on apoptosis in HCT116 p53+/+ vs. p53-/- cells shows a predominantly p53-mediated induction of caspase-3/7. The dissociation constants are in the μM region, but only modest inhibition of binding of MDM2 and MDM4 is required to negate their upregulation because they have to compete with transcriptional coactivator p300 for binding to p53. Binding was weakened by structural changes in LCA, and so it may be a natural ligand of MDM2 and MDM4, raising the possibility that MDM proteins may be sensors for specific steroids. PMID:23035244
Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84.
Mahmud, Zobaer Al; Jenkins, Laura; Ulven, Trond; Labéguère, Frédéric; Gosmini, Romain; De Vos, Steve; Hudson, Brian D; Tikhonova, Irina G; Milligan, Graeme
2017-12-20
Medium chain fatty acids can activate the pro-inflammatory receptor GPR84 but so also can molecules related to 3,3'-diindolylmethane. 3,3'-Diindolylmethane and decanoic acid acted as strong positive allosteric modulators of the function of each other and analysis showed the affinity of 3,3'-diindolylmethane to be at least 100 fold higher. Methyl decanoate was not an agonist at GPR84. This implies a key role in binding for the carboxylic acid of the fatty acid. Via homology modelling we predicted and confirmed an integral role of arginine 172 , located in the 2nd extracellular loop, in the action of decanoic acid but not of 3,3'-diindolylmethane. Exemplars from a patented series of GPR84 antagonists were able to block agonist actions of both decanoic acid and 3,3'-diindolylmethane at GPR84. However, although a radiolabelled form of a related antagonist, [ 3 H]G9543, was able to bind with high affinity to GPR84, this was not competed for by increasing concentrations of either decanoic acid or 3,3'-diindolylmethane and was not affected adversely by mutation of arginine 172 . These studies identify three separable ligand binding sites within GPR84 and suggest that if medium chain fatty acids are true endogenous regulators then co-binding with a positive allosteric modulator would greatly enhance their function in physiological settings.
Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding
Flanagan, Colleen A.; Manilall, Ashmeetha
2017-01-01
Gonadotropin-releasing hormone (GnRH) regulates reproduction. The human GnRH receptor lacks a cytoplasmic carboxy-terminal tail but has amino acid sequence motifs characteristic of rhodopsin-like, class A, G protein-coupled receptors (GPCRs). This review will consider how recent descriptions of X-ray crystallographic structures of GPCRs in inactive and active conformations may contribute to understanding GnRH receptor structure, mechanism of activation and ligand binding. The structures confirmed that ligands bind to variable extracellular surfaces, whereas the seven membrane-spanning α-helices convey the activation signal to the cytoplasmic receptor surface, which binds and activates heterotrimeric G proteins. Forty non-covalent interactions that bridge topologically equivalent residues in different transmembrane (TM) helices are conserved in class A GPCR structures, regardless of activation state. Conformation-independent interhelical contacts account for a conserved receptor protein structure and their importance in the GnRH receptor structure is supported by decreased expression of receptors with mutations of residues in the network. Many of the GnRH receptor mutations associated with congenital hypogonadotropic hypogonadism, including the Glu2.53(90) Lys mutation, involve amino acids that constitute the conserved network. Half of the ~250 intramolecular interactions in GPCRs differ between inactive and active structures. Conformation-specific interhelical contacts depend on amino acids changing partners during activation. Conserved inactive conformation-specific contacts prevent receptor activation by stabilizing proximity of TM helices 3 and 6 and a closed G protein-binding site. Mutations of GnRH receptor residues involved in these interactions, such as Arg3.50(139) of the DRY/S motif or Tyr7.53(323) of the N/DPxxY motif, increase or decrease receptor expression and efficiency of receptor coupling to G protein signaling, consistent with the native residues stabilizing the inactive GnRH receptor structure. Active conformation-specific interhelical contacts stabilize an open G protein-binding site. Progress in defining the GnRH-binding site has recently slowed, with evidence that Tyr6.58(290) contacts Tyr5 of GnRH, whereas other residues affect recognition of Trp3 and Gly10NH2. The surprisingly consistent observations that GnRH receptor mutations that disrupt GnRH binding have less effect on “conformationally constrained” GnRH peptides may now be explained by crystal structures of agonist-bound peptide receptors. Analysis of GPCR structures provides insight into GnRH receptor function. PMID:29123501
Studies on the binding of fulvic acid with transferrin by spectroscopic analysis
NASA Astrophysics Data System (ADS)
Zhang, Xiu-feng; Yang, Guang; Dong, Yu; Zhao, Yan-qin; Sun, Xiao-ran; Chen, Lei; Chen, Hong-bo
2015-02-01
Transferrin has shown potential in the delivery of anticancer drugs into primarily proliferating cancer cells that over-express transferrin receptors. Fulvic acid has a wide range of biological and pharmacological activities which caused widespread concerns, the interaction of fulvic acid with human serum transferrin (Tf) has great significance for gaining a deeper insight about anticancer activities of fulvic acid. In this study, the mechanism of interaction between fulvic acid and Tf, has been investigated by using fluorescence quenching, thermodynamics, synchronous fluorescence and circular dichroism (CD) under physiological condition. Our results have shown that fulvic acid binds to Tf and form a new complex, and the calculated apparent association constants are 5.04 × 108 M-1, 5.48 × 107 M-1, 7.38 × 106 M-1 from the fluorescence quenching at 288 K, 298 K, and 310 K. The thermodynamic parameters indicate that hydrogen bonding and weak van der Waals are involved in the interaction between fulvic acid and Tf. The binding of fulvic acid to Tf causes the α-helix structure content of the protein to reduce, and resulting that peptide chains of Tf become more stretched. Our results have indicated a mechanism of the interaction between fulvic acid and Tf, which may provide information for possible design of methods to deliver drug molecules via transferrin to target tissues and cells effectively.
Studies on chemical modification of cold agglutinin from the snail Achatina fulica.
Sarkar, M; Mitra, D; Sen, A K
1987-01-01
The cold agglutinin isolated from the albumin gland of the snail Achatina fulica was modified with various chemical reagents in order to detect the amino acids and/or carbohydrate residues present in its carbohydrate-binding sites. Treatment with reagents considered specific for modification of lysine, arginine and tryptophan residues of the cold agglutinin did not affect the carbohydrate-binding activity of the agglutinin. Modification of tyrosine residues showed some change. However, modification with carbodiimide followed by alpha-aminobutyric acid methyl ester causes almost complete loss of its binding activity, indicating the involvement of aspartic acid and glutamic acid in its carbohydrate-binding activity. The carbohydrate residues of the cold agglutinin were removed by beta-elimination reaction, indicating that the sugars are O-glycosidically linked to protein part of the molecule. Removal of galactose residues from the cold agglutinin by the action of beta-galactosidase indicated that the galactose molecules are beta-linked. These carbohydrate-modified glycoproteins showed a marked change in agglutination property, i.e. they agglutinated rabbit erythrocytes at both 10 degrees C and 25 degrees C, indicating that the galactose residues of the glycoprotein play an important role in the cold-agglutination property of the glycoprotein. The c.d. data showed the presence of an almost identical type of random-coil conformation in the native cold agglutinin at 10 degrees C and in the carbohydrate-modified glycoprotein at 10 degrees C and 25 degrees C. This particular random-coil conformation is essential for carbohydrate-binding property of the agglutinin. Images Fig. 1. PMID:3118867
Functional and structural analysis of the sialic acid-binding domain of rotaviruses.
Isa, P; López, S; Segovia, L; Arias, C F
1997-01-01
The infectivity of most animal rotaviruses is dependent on the interaction of the virus spike protein VP4 with a sialic acid (SA)-containing cell receptor, and the SA-binding domain of this protein has been mapped between amino acids 93 and 208 of its trypsin cleavage fragment VP8. To identify which residues in this region are essential for the SA-binding activity, we performed alanine mutagenesis of the rotavirus RRV VP8 expressed in bacteria as a fusion polypeptide with glutathione S-transferase. Tyrosines were primarily targeted since tyrosine has been involved in the interaction of other viral hemagglutinins with SA. Of the 15 substitutions carried out, 10 abolished the SA-dependent hemagglutination activity of the protein, as well as its ability to bind to glycophorin A in a solid-phase assay. However, only alanine substitutions for tyrosines 155 and 188 and for serine 190 did not affect the overall conformation of the protein, as judged by their interaction with a panel of conformationally sensitive neutralizing VP8 monoclonal antibodies (MAbs). These findings suggest that these three amino acids play an essential role in the SA-binding activity of the protein, presumably by interacting directly with the SA molecule. The predicted secondary structure of VP8 suggests that it is organized as 11 beta-strands separated by loops; in this model, Tyr-155 maps to loop 7 while Tyr-188 and Ser-190 map to loop 9. The close proximity of these two loops is also supported by previous results from competition experiments with neutralizing MAbs directed at RRV VP8. PMID:9261399
Structural Basis for Activation of Fatty Acid-binding Protein 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillilan,R.; Ayers, S.; Noy, N.
2007-01-01
Fatty acid-binding protein 4 (FABP4) delivers ligands from the cytosol to the nuclear receptor PPAR{gamma} in the nucleus, thereby enhancing the transcriptional activity of the receptor. Notably, FABP4 binds multiple ligands with a similar affinity but its nuclear translocation is activated only by specific compounds. To gain insight into the structural features that underlie the ligand-specificity in activation of the nuclear import of FABP4, we solved the crystal structures of the protein complexed with two compounds that induce its nuclear translocation, and compared these to the apo-protein and to FABP4 structures bound to non-activating ligands. Examination of these structures indicatesmore » that activation coincides with closure of a portal loop phenylalanine side-chain, contraction of the binding pocket, a subtle shift in a helical domain containing the nuclear localization signal of the protein, and a resultant change in oligomeric state that exposes the nuclear localization signal to the solution. Comparisons of backbone displacements induced by activating ligands with a measure of mobility derived from translation, libration, screw (TLS) refinement, and with a composite of slowest normal modes of the apo state suggest that the helical motion associated with the activation of the protein is part of the repertoire of the equilibrium motions of the apo-protein, i.e. that ligand binding does not induce the activated configuration but serves to stabilize it. Nuclear import of FABP4 can thus be understood in terms of the pre-existing equilibrium hypothesis of ligand binding.« less
Isolation and pharmacological characterization of fatty acids from saw palmetto extract.
Abe, Masayuki; Ito, Yoshihiko; Suzuki, Asahi; Onoue, Satomi; Noguchi, Hiroshi; Yamada, Shizuo
2009-04-01
Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary-tract symptoms secondary to benign prostatic hyperplasia. The mechanisms of pharmacological effects of SPE include the inhibition of 5alpha-reductase, anti-androgenic effects, anti-proliferative effects, and anti-inflammatory effects. Previously, we showed that SPE bound actively to alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine calcium channel (1,4-DHP) receptors in the prostate and bladder of rats, whereas its active constituents have not been fully clarified. The present investigation is aimed to identify the main active components contained in hexane and diethyl ether extracts of SPE with the use of column chromatography and preparative HPLC. Based on the binding activity with alpha(1)-adrenergic, muscarinic, and 1,4-DHP receptors, both isolated oleic and lauric acids were deduced to be active components. Authentic samples of oleic and lauric acids also exhibited similar binding activities to these receptors as the fatty acids isolated from SPE, consistent with our findings. In addition, oleic and lauric acids inhibited 5alpha-reductase, possibly leading to therapeutic effects against benign prostatic hyperplasia and related lower urinary-tract symptoms.
Recent insights into the biological functions of liver fatty acid binding protein 1
Wang, GuQi; Bonkovsky, Herbert L.; de Lemos, Andrew; Burczynski, Frank J.
2015-01-01
Over four decades have passed since liver fatty acid binding protein (FABP)1 was first isolated. There are few protein families for which most of the complete tertiary structures, binding properties, and tissue occurrences are described in such detail and yet new functions are being uncovered for this protein. FABP1 is known to be critical for fatty acid uptake and intracellular transport and also has an important role in regulating lipid metabolism and cellular signaling pathways. FABP1 is an important endogenous cytoprotectant, minimizing hepatocyte oxidative damage and interfering with ischemia-reperfusion and other hepatic injuries. The protein may be targeted for metabolic activation through the cross-talk among many transcriptional factors and their activating ligands. Deficiency or malfunction of FABP1 has been reported in several diseases. FABP1 also influences cell proliferation during liver regeneration and may be considered as a prognostic factor for hepatic surgery. FABP1 binds and modulates the action of many molecules such as fatty acids, heme, and other metalloporphyrins. The ability to bind heme is another cytoprotective property and one that deserves closer investigation. The role of FABP1 in substrate availability and in protection from oxidative stress suggests that FABP1 plays a pivotal role during intracellular bacterial/viral infections by reducing inflammation and the adverse effects of starvation (energy deficiency). PMID:26443794
Decarboxylation of bovine prothrombin fragment 1 and prothrombin.
Tuhy, P M; Bloom, J W; Mann, K G
1979-12-25
Bovine prothrombin fragment 1 and prothrombin undergo decarboxylation of their gamma-carboxyglutamic acid residues when the lyophilized proteins are heated in vacuo at 110 degrees C for several hours. The fully decarboxylated fragment 1 product has lost its barium-binding ability as well as the calcium-binding function which causes fluorescence quenching in the presence of 2 mM Ca2+. There is no sign of secondary structure alteration in solution upon analysis by fluorescence emission and circular dichroic spectroscopy. A family of partially decarboxylated fragment 1 species generated by heating for shorter periods shows that the initial decrease in calcium-binding ability occurs almost twice as rapidly as the loss of gamma-carboxyglutamic acid. This is consistent with the idea that differential functions can be ascribed to the 10 gamma-carboxyglutamic acid residues in fragment 1, including both high- and low-affinity metal ion binding sites. Prothrombin itself also undergoes total decarboxylation without any apparent alteration in secondary structure. However, in this case the latent thrombin activity is progressively diminished during the heating process in terms of both clotting activity and hydrolysis of the amide substrate H-D-Phe-Pip-Arg-pNA. The present results indicate that in vitro decarboxylation of gamma-carboxyglutamic acid in dried proteins is useful for analyzing the detailed calcium-binding proteins of vitamin K dependent coagulation factors.
NASA Technical Reports Server (NTRS)
Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.
1998-01-01
The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.
Taniguchi, Yukimasa; Li, Shaoliang; Takizawa, Mamoru; Oonishi, Eriko; Toga, Junko; Yagi, Emiko; Sekiguchi, Kiyotoshi
2017-06-03
Laminins are major cell-adhesive proteins of basement membranes that interact with integrins in a divalent cation-dependent manner. Laminin-511 consists of α5, β1, and γ1 chains, of which three laminin globular domains of the α5 chain (α5/LG1-3) and a Glu residue in the C-terminal tail of chain γ1 (γ1-Glu1607) are required for binding to integrins. However, it remains unsettled whether the Glu residue in the γ1 tail is involved in integrin binding by coordinating the metal ion in the metal ion-dependent adhesion site of β1 integrin (β1-MIDAS), or by stabilizing the conformation of α5/LG1-3. To address this issue, we examined whether α5/LG1-3 contain an acidic residue required for integrin binding that is as critical as the Glu residue in the γ1 tail; to achieve this, we undertook exhaustive alanine substitutions of the 54 acidic residues present in α5/LG1-3 of the E8 fragment of laminin-511 (LM511E8). Most of the alanine mutants possessed α6β1 integrin binding activities comparable with wild-type LM511E8. Alanine substitution for α5-Asp3198 and Asp3219 caused mild reduction in integrin binding activity, and that for α5-Asp3218 caused severe reduction, possibly resulting from conformational perturbation of α5/LG1-3. When α5-Asp3218 was substituted with asparagine, the resulting mutant possessed significant binding activity to α6β1 integrin, indicating that α5-Asp3218 is not directly involved in integrin binding through coordination with the metal ion in β1-MIDAS. Given that substitution of γ1-Glu1607 with glutamine nullified the binding activity to α6β1 integrin, these results, taken together, support the possibility that the critical acidic residue coordinating the metal ion in β1-MIDAS is Glu1607 in the γ1 tail, but no such residue is present in α5/LG1-3. Copyright © 2017 Elsevier Inc. All rights reserved.
Capoferri, Luigi; Leth, Rasmus; ter Haar, Ernst; Mohanty, Arun K; Grootenhuis, Peter D J; Vottero, Eduardo; Commandeur, Jan N M; Vermeulen, Nico P E; Jørgensen, Flemming Steen; Olsen, Lars; Geerke, Daan P
2016-03-01
Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug-like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti-inflammatory drugs (NSAIDs). Interestingly, single active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and binding free-energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate. © 2016 Wiley Periodicals, Inc.
Dong, Liang; Zou, Hechang; Yuan, Chong; Hong, Yu H.; Kuklev, Dmitry V.; Smith, William L.
2016-01-01
Prostaglandin endoperoxide H synthases (PGHSs), also called cyclooxygenases (COXs), convert arachidonic acid (AA) to PGH2. PGHS-1 and PGHS-2 are conformational heterodimers, each composed of an (Eallo) and a catalytic (Ecat) monomer. Previous studies suggested that the binding to Eallo of saturated or monounsaturated fatty acids (FAs) that are not COX substrates differentially regulate PGHS-1 versus PGHS-2. Here, we substantiate and expand this concept to include polyunsaturated FAs known to modulate COX activities. Non-substrate FAs like palmitic acid bind Eallo of PGHSs stimulating human (hu) PGHS-2 but inhibiting huPGHS-1. We find the maximal effects of non-substrate FAs on both huPGHSs occurring at the same physiologically relevant FA/AA ratio of ∼20. This inverse allosteric regulation likely underlies the ability of PGHS-2 to operate at low AA concentrations, when PGHS-1 is effectively latent. Unlike FAs tested previously, we observe that C-22 FAs, including ω-3 fish oil FAs, have higher affinities for Ecat than Eallo subunits of PGHSs. Curiously, C-20 ω-3 eicosapentaenoate preferentially binds Ecat of huPGHS-1 but Eallo of huPGHS-2. PGE2 production decreases 50% when fish oil consumption produces tissue EPA/AA ratios of ≥0.2. However, 50% inhibition of huPGHS-1 itself is only seen with ω-3 FA/AA ratios of ≥5.0. This suggests that fish oil-enriched diets disfavor AA oxygenation by altering the composition of the FA pool in which PGHS-1 functions. The distinctive binding specificities of PGHS subunits permit different combinations of non-esterified FAs, which can be manipulated dietarily, to regulate AA binding to Eallo and/or Ecat thereby controlling COX activities. PMID:26703471
Kerkhoff, Claus; Nacken, Wolfgang; Benedyk, Malgorzata; Dagher, Marie Claire; Sopalla, Claudia; Doussiere, Jacques
2005-03-01
The Ca2+- and arachidonic acid-binding S100A8/A9 protein complex was recently identified by in vitro studies as a novel partner of the phagocyte NADPH oxidase. The present study demonstrated its functional relevance by the impaired oxidase activity in neutrophil-like NB4 cells, after specific blockage of S100A9 expression, and bone marrow polymorphonuclear neutrophils from S100A9-/- mice. The impaired oxidase activation could also be mimicked in a cell-free system by pretreatment of neutrophil cytosol with an S100A9-specific antibody. Further analyses gave insights into the molecular mechanisms by which S100A8/A9 promoted NADPH oxidase activation. In vitro analysis of oxidase activation as well as protein-protein interaction studies revealed that S100A8 is the privileged interaction partner for the NADPH oxidase complex since it bound to p67phox and Rac, whereas S100A9 did interact with neither p67phox nor p47phox. Moreover, S100A8/A9 transferred the cofactor arachidonic acid to NADPH oxidase as shown by the impotence of a mutant S100A8/A9 complex unable to bind arachidonic acid to enhance NADPH oxidase activity. It is concluded that S100A8/A9 plays an important role in phagocyte NADPH oxidase activation.
Spectroscopic characterisation of interaction of ferulic acid with aldehyde dehydrogenase (ALDH).
Kolawole, Ayodele O; Agaba, Ruth J; Oluwole, Matthew O
2017-05-01
Interaction of a pharmacological important phenolic, ferulic acid, with Aldehyde dehydrogenase (ALDH) at the simulative pH condition, was studied using spectroscopic approach. Ferulic acid caused a decrease in the fluorescence intensity formed from ALDH-ferulic acid complex resulting in mixed inhibition of ALDH activity (IC 50 =30.65μM). The intrinsic quenching was dynamic and induced altered conformation of ALDH and made the protein less compact but might not unfold it. ALDH has two binding sites for ferulic acid at saturating concentrations having association constant of 1.35×10 3 Lmol -1 and a dissociation constant of 9.7×10 7 Lmol -1 at 25°C indicating ALDH-ferulic acid complex formation is more favourable than its dissociation. The interaction was not spontaneous and endothermic and suggests the involvement of hydrophobic interactions with a FRET binding distance of 4.49nm. Change in pH near and far from isoelectric points of ferulic acid did not affect the bonding interaction. Using trehalose as viscosogen, the result from Stoke-Einstein hypothesis showed that ferulic acid-ALDH binding and dissociation equilibrium was diffusion controlled. These results clearly suggest the unique binding properties and lipophilicity influence of ferulic acid. Copyright © 2017 Elsevier B.V. All rights reserved.
Duffy, Noah H; Lester, Henry A; Dougherty, Dennis A
2012-10-19
The serotonin type 3 receptor (5-HT(3)R) is a ligand-gated ion channel found in the central and peripheral nervous systems. The 5-HT(3)R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT(3)A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket.
Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.
2012-01-01
The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819
dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ling; Xiong, Yi; Gao, Hongyun
Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less
dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions
Liu, Ling; Xiong, Yi; Gao, Hongyun; ...
2018-04-02
Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less
Evolution of sequence-defined highly functionalized nucleic acid polymers
NASA Astrophysics Data System (ADS)
Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.
2018-03-01
The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.
2014-01-01
The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [3H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities. PMID:24900835
Köse, Meryem; Ritter, Kirsten; Thiemke, Katharina; Gillard, Michel; Kostenis, Evi; Müller, Christa E
2014-04-10
The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [(3)H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities.
USDA-ARS?s Scientific Manuscript database
Aldehyde dehydrogenase 1 (ALDH1) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence ALDH1 activity in part by increasing NADH binding affinity to the enzyme thus reducing activity. By using time-resolved fluorescence spectroscopy, we have resolved t...
Inhibition of telomerase by linear-chain fatty acids: a structural analysis.
Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki
2002-01-01
In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150
NASA Astrophysics Data System (ADS)
Wills, Rebecca H.; Habtemariam, Abraha; Lopez-Clavijo, Andrea F.; Barrow, Mark P.; Sadler, Peter J.; O'Connor, Peter B.
2014-04-01
The binding sites of two ruthenium(II) organometallic complexes of the form [(η6-arene)Ru( N, N)Cl]+, where arene/ N, N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/ o-phenylenediamine ( o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively.
Reddy, G; Nanduri, V B; Basu, A; Modak, M J
1991-08-20
Treatment of murine leukemia virus reverse transcriptase (MuLV RT) with potassium ferrate, an oxidizing agent known to oxidize amino acids involved in phosphate binding domains of proteins, results in the irreversible inactivation of both the DNA polymerase and the RNase H activities. Significant protection from ferrate-mediated inactivation is observed in the presence of template-primer but not in the presence of substrate deoxynucleoside triphosphates. Furthermore, ferrate-treated enzyme loses template-primer binding activity as judged by UV-mediated cross-linking of radiolabeled DNA. Comparative tryptic peptide mapping by reverse-phase HPLC of native and ferrate-oxidized enzyme indicated the presence of two new peptides eluting at 38 and 57 min and a significant loss of a peptide eluting at 74 min. Purification, amino acid composition, and sequencing of these affected peptides revealed that they correspond to amino acid residues 285-295, 630-640, and 586-599, respectively, in the primary amino acid sequence of MuLV RT. These results indicate that the domains constituted by the above peptides are important for the template-primer binding function in MuLV RT. Peptide I is located in the polymerase domain whereas peptides II and III are located in the RNase H domain. Amino acid sequence analysis of peptides I and II suggested Lys-285 and Cys-635 as the probable sites of ferrate action.
Senga, Shogo; Kobayashi, Narumi; Kawaguchi, Koichiro; Ando, Akira; Fujii, Hiroshi
2018-06-12
Fatty acid-binding proteins (FABPs) are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting them to the appropriate compartments in the cell. Epidermal fatty acid-binding protein (FABP5) is an intracellular lipid-binding protein that is abundantly expressed in adipocytes and macrophages. Previous studies have revealed that the FABP5 expression level is closely related to malignancy in various types of cancer. However, its precise functions in the metabolisms of cancer cells remain unclear. Here, we revealed that FABP5 knockdown significantly induced downregulation of the genes expression, such as hormone-sensitive lipase (HSL), monoacylglycerol lipase (MAGL), elongation of long-chain fatty acid member 6 (Elovl6), and acyl-CoA synthetase long-chain family member 1 (ACSL1), which are involved in altered lipid metabolism, lipolysis, and de novo FA synthesis in highly aggressive prostate and breast cancer cells. Moreover, we demonstrated that FABP5 induced inflammation and cytokine production through the nuclear factor-kappa B signaling pathway activated by reactive oxygen species and protein kinase C in PC-3 and MDA-MB-231 cells. Thus, FABP5 might regulate lipid quality and/or quantity to promote aggressiveness such as cell growth, invasiveness, survival, and inflammation in prostate and breast cancer cells. In the present study, we have revealed for the first time that high expression of FABP5 plays a critical role in alterations of lipid metabolism, leading to cancer development and metastasis in highly aggressive prostate and breast cancer cells. Copyright © 2018. Published by Elsevier B.V.
Alvares, K; Carrillo, A; Yuan, P M; Kawano, H; Morimoto, R I; Reddy, J K
1990-01-01
Clofibrate and many of its structural analogues induce proliferation of peroxisomes in the hepatic parenchymal cells of rodents and certain nonrodent species including primates. This induction is tissue specific, occurring mainly in the liver parenchymal cells and to a lesser extent in the kidney cortical epithelium. The induction of peroxisomes is associated with a predictable pleiotropic response, characterized by hepatomegaly, and increased activities and mRNA levels of certain peroxisomal enzymes. Using affinity chromatography, we had previously isolated a protein that binds to clofibric acid. We now show that this protein is homologous with the heat shock protein HSP70 family by analysis of amino acid sequences of isolated peptides from trypsin-treated clofibric acid binding protein and by cross-reactivity with a monoclonal antibody raised against the conserved region of the 70-kDa heat shock proteins. The clofibric acid-Sepharose column could bind HSP70 proteins isolated from various species, which could then be eluted with either clofibric acid or ATP. Conversely, when a rat liver cytosol containing multiple members of the HSP70 family was passed through an ATP-agarose column, and eluted with clofibric acid, only P72 (HSC70) was eluted. These results suggest that clofibric acid, a peroxisome proliferator, preferentially interacts with P72 at or near the ATP binding site. Images PMID:2371272
Choi, Hyong Woo; Manohar, Murli; Manosalva, Patricia; Tian, Miaoying; Moreau, Magali; Klessig, Daniel F.
2016-01-01
Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor. PMID:27007252
Fibronectin tetrapeptide is target for syphilis spirochete cytadherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.D.; Baseman, J.B.; Alderete, J.F.
1985-11-01
The syphilis bacterium, Treponema pallidum, parasitizes host cells through recognition of fibronectin (Fn) on cell surfaces. The active site of the Fn molecule has been identified as a four-amino acid sequence, arg-gly-asp-ser (RGDS), located on each monomer of the cell-binding domain. The synthetic heptapeptide gly-arg-gly-asp-ser-pro-cys (GRGDSPC), with the active site sequence RGDS, specifically competed with SVI-labeled cell-binding domain acquisition by T. pallidum. Additionally, the same heptapeptide with the RGDS sequence diminished treponemal attachment to HEp-2 and HT1080 cell monolayers. Related heptapeptides altered in one key amino acid within the RGDS sequence failed to inhibit Fn cell-binding domain acquisition or parasitismmore » of host cells by T. pallidum. The data support the view that T. pallidum cytadherence of host cells is through recognition of the RGDS sequence also important for eukaryotic cell-Fn binding.« less
Tomie, Tetsuya; Ishibashi, Jun; Furukawa, Seiichi; Kobayashi, Satoe; Sawahata, Ryoko; Asaoka, Ai; Tagawa, Michito; Yamakawa, Minoru
2003-07-25
A novel antifungal peptide, scarabaecin (4080Da), was isolated from the coconut rhinoceros beetle, Oryctes rhinoceros. Scarabaecin cDNA was cloned by reverse transcriptase-polymerase chain reactions (RT-PCR) using a primer based on the N-terminal amino acid sequence. The amino acid sequence deduced from scarabaecin cDNA showed no significant similarity to those of reported proteins. Chemically synthesized scarabaecin indicated antifungal activity against phytopathogenic fungi such as Pyricularia oryzae, Rhizoctonia solani, and Botrytis cinerea, but not against phytopathogenic bacteria. It showed weak activity against Bauberia bassiana, an insect pathogenic fungus, and Staphylococcus aureus, a pathogenic bacterium. Scarabaecin showed chitin binding property and its K(d) was 1.315 microM. A comparison of putative chitin-binding domains among scarabaecin, invertebrate, and plant chitin-binding proteins suggests that scarabaecin is a new member of chitin-binding antimicrobial proteins.
Probes of the catalytic site of cysteine dioxygenase.
Chai, Sergio C; Bruyere, John R; Maroney, Michael J
2006-06-09
The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.
Kobayashi, H; Stewart, E; Poon, R; Adamczewski, J P; Gannon, J; Hunt, T
1992-01-01
The binding of cyclin A to p34cdc2 and p32cdk2 and the protein kinase activity of the complexes has been measured by cell-free translation of the corresponding mRNA in extracts of frog eggs, followed by immunoprecipitation. A variety of mutant cyclin A molecules have been constructed and tested in this assay. Small deletions and point mutations of highly conserved residues in the 100-residue "cyclin box" abolish binding and activation of both p34cdc2 and p32cdk2. By contrast, large deletions at the N-terminus have no effect on kinase binding and activation, until they remove residues beyond 161, where the first conserved amino acids are found in all known examples of cyclin A. At the C-terminus, removal of 14 or more amino acids abolishes activity. We also demonstrate that deletion of, or point mutations, in the cyclin A homologue of the 10-residue "destruction box," previously described in cyclin B (Glotzer et al., 1991) abolish cyclin proteolysis at the transition from M-phase to interphase. Images PMID:1333843
Kobayashi, H; Stewart, E; Poon, R; Adamczewski, J P; Gannon, J; Hunt, T
1992-11-01
The binding of cyclin A to p34cdc2 and p32cdk2 and the protein kinase activity of the complexes has been measured by cell-free translation of the corresponding mRNA in extracts of frog eggs, followed by immunoprecipitation. A variety of mutant cyclin A molecules have been constructed and tested in this assay. Small deletions and point mutations of highly conserved residues in the 100-residue "cyclin box" abolish binding and activation of both p34cdc2 and p32cdk2. By contrast, large deletions at the N-terminus have no effect on kinase binding and activation, until they remove residues beyond 161, where the first conserved amino acids are found in all known examples of cyclin A. At the C-terminus, removal of 14 or more amino acids abolishes activity. We also demonstrate that deletion of, or point mutations, in the cyclin A homologue of the 10-residue "destruction box," previously described in cyclin B (Glotzer et al., 1991) abolish cyclin proteolysis at the transition from M-phase to interphase.
Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe
2014-01-01
TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701
In silico Analysis for Predicting Fatty Acids of Black Cumin Oil as Inhibitors of P-Glycoprotein.
Ali, Babar; Jamal, Qazi Mohd Sajid; Mir, Showkat R; Shams, Saiba; Al-Wabel, Naser A; Kamal, Mohammad A
2015-10-01
Black cumin oil is obtained from the seeds of Nigella sativa L. which belongs to family Ranunculaceae. The seed oil has been reported to possess antitumor, antioxidant, antibacterial, anti-inflammatory, hypoglycemic, central nervous system depressant, antioxidant, and immunostimulatory activities. These bioactivities have been attributed to the fixed oil, volatile oil, or their components. Seed oil consisted of 15 saturated fatty acids (17%) and 17 unsaturated fatty acids (82.9%). Long chain fatty acids and medium chain fatty acids have been reported to increase oral bioavailability of peptides, antibiotics, and other important therapeutic agents. In earlier studies, permeation enhancement and bioenhancement of drugs has been done with black cumin oil. In order to recognize the mechanism of binding of fatty acids to P-glycoprotein (P-gp), linoleic acid, oleic acid, margaric acid, cis-11, 14-eicosadienoic acid, and stearic acid were selected for in silico studies, which were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. Template search with BLAST and HHblits has been performed against the SWISS-MODEL template library. The target sequence was searched with BLAST against the primary amino acid sequence of P-gp from Rattus norvegicus. The amount of energy needed by linoleic acid, oleic acid, eicosadienoic acid, margaric acid, and stearic acid to bind with P-gp were found to be - 10.60, -10.48, -9.95, -11.92, and - 10.37 kcal/mol, respectively. The obtained data support that all the selected fatty acids have contributed to inhibit P-gp activity thereby enhances the bioavailability of drugs. This study plays a significant role in finding hot spots in P-gp and may offer the further scope of designing potent and specific inhibitors of P-gp. Generation of 3D structure of fatty acid compounds from Black cumin oil and 3D homology modeling of Rat P glycoprotein as a receptor.Rat P-gp structure quality shows 88.5% residues in favored region obtained by Ramchandran plot analysis.Docking analysis revealed that Some amino acids common for all compounds like Ser221, Pro222, Ile224, Gly225, Ser228, Ala229, Lys233, Tyr302, Tyr309, Ile337, Leu338 and Thr341 in the P-gp and ligands binding patterns.Eicosadeinoic acid has highest binding affinity with P-gp as the amount of energy needed to bind with P-gp was lowest (-11.92 kcal/mol). Abbreviations used: P-gp: P-glycoprotein.
Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity.
Adams, Peter; Kandiah, Eaazhisai; Effantin, Grégory; Steven, Alasdair C; Ehrenfeld, Ellie
2009-08-14
The poliovirus protein 2C plays an essential role in viral RNA replication, although its precise biochemical activities or structural requirements have not been elucidated. The protein has several distinctive properties, including ATPase activity and membrane and RNA binding, that are conserved among orthologs of many positive-strand RNA viruses. Sequence alignments have placed these proteins in the SF3 helicase family, a subset of the AAA+ ATPase superfamily. A feature common to AAA+ proteins is the formation of oligomeric rings that are essential for their catalytic functions. Here we show that a recombinant protein, MBP-2C, in which maltose-binding protein was fused to 2C, formed soluble oligomers and that ATPase activity was restricted to oligomer-containing fractions from gel-filtration chromatography. The active fraction was visualized by negative-staining electron microscopy as ring-like particles composed of 5-8 protomers. This conclusion was confirmed by mass measurements obtained by scanning transmission electron microscopy. Mutation of amino acid residues in the 2C nucleotide-binding domain demonstrated that loss of the ability to bind or hydrolyze ATP did not affect oligomerization. Co-expression of active MBP-2C and inactive mutant proteins generated mixed oligomers that exhibited little ATPase activity, suggesting that incorporation of inactive subunits eliminates the function of the entire particle. Finally, deletion of the N-terminal 38 amino acids blocked oligomerization of the fusion protein and eliminated ATPase activity, despite retention of an unaltered nucleotide-binding domain.
Poliovirus 2C Protein Forms Homo-oligomeric Structures Required for ATPase Activity*
Adams, Peter; Kandiah, Eaazhisai; Effantin, Grégory; Steven, Alasdair C.; Ehrenfeld, Ellie
2009-01-01
The poliovirus protein 2C plays an essential role in viral RNA replication, although its precise biochemical activities or structural requirements have not been elucidated. The protein has several distinctive properties, including ATPase activity and membrane and RNA binding, that are conserved among orthologs of many positive-strand RNA viruses. Sequence alignments have placed these proteins in the SF3 helicase family, a subset of the AAA+ ATPase superfamily. A feature common to AAA+ proteins is the formation of oligomeric rings that are essential for their catalytic functions. Here we show that a recombinant protein, MBP-2C, in which maltose-binding protein was fused to 2C, formed soluble oligomers and that ATPase activity was restricted to oligomer-containing fractions from gel-filtration chromatography. The active fraction was visualized by negative-staining electron microscopy as ring-like particles composed of 5–8 protomers. This conclusion was confirmed by mass measurements obtained by scanning transmission electron microscopy. Mutation of amino acid residues in the 2C nucleotide-binding domain demonstrated that loss of the ability to bind or hydrolyze ATP did not affect oligomerization. Co-expression of active MBP-2C and inactive mutant proteins generated mixed oligomers that exhibited little ATPase activity, suggesting that incorporation of inactive subunits eliminates the function of the entire particle. Finally, deletion of the N-terminal 38 amino acids blocked oligomerization of the fusion protein and eliminated ATPase activity, despite retention of an unaltered nucleotide-binding domain. PMID:19520852
Hicks, Matt N; Gunasekara, Sanjiva; Serate, Jose; Park, Jin; Mosharaf, Pegah; Zhou, Yue; Lee, Jin-Won; Youn, Hwan
2017-10-01
The Escherichia coli cAMP receptor protein (CRP) utilizes the helix-turn-helix motif for DNA binding. The CRP's recognition helix, termed F-helix, includes a stretch of six amino acids (Arg180, Glu181, Thr182, Val183, Gly184, and Arg185) for direct DNA contacts. Arg180, Glu181 and Arg185 are known as important residues for DNA binding and specificity, but little has been studied for the other residues. Here we show that Gly184 is another F-helix residue critical for the transcriptional activation function of CRP. First, glycine was repeatedly selected at CRP position 184 for its unique ability to provide wild type-level transcriptional activation activity. To dissect the glycine requirement, wild type CRP and mutants G184A, G184F, G184S, and G184Y were purified and their in vitro DNA-binding activity was measured. G184A and G184F displayed reduced DNA binding, which may explain their low transcriptional activation activity. However, G184S and G184Y displayed apparently normal DNA affinity. Therefore, an additional factor is needed to account for the diminished transcriptional activation function in G184S and G184Y, and the best explanation is perturbations in their interaction with RNA polymerase. The fact that glycine is the smallest amino acid could not fully warrant its suitability, as shown in this study. We hypothesize that Gly184 fulfills the dual functions of DNA binding and RNA polymerase interaction by conferring conformational flexibility to the F-helix.
2008-09-01
intracellular portion of the EGFR and stimulates PLD2 activity. PLD2 catalyzes the hydrolysis of phosphatidylcholine (PC) to phosphatidic acid (PA) and...ARF4 can bind with EGFR and activate PLD2. The phosphatidic acid (PA) produced by PLD2 can recruit Sos, which can then colocalize and activate
Tymecka, Dagmara; Lipiński, Piotr F J; Fedorczyk, Bartłomiej; Puszko, Anna; Wileńska, Beata; Perret, Gerard Y; Misicka, Aleksandra
2017-08-01
Neuropilin-1 is considered as one of the key receptors responsible for signaling pathways involved in pathological angiogenesis necessary for tumor progression, therefore targeting of VEGF 165 binding to NRP-1 could be a relevant strategy for antiangiogenic treatment. It was shown before that the VEGF 165 /NRP-1 interaction can be inhibited by short tetrapeptides with K/RXXR sequence. Here, we present a structure-activity relationship study of the systematic optimization of amino acid residues in positions 1-3 in the above tetrapeptides. All the 13 synthesized analogs possessed C-terminal arginine that is a necessary element for interaction with NRP-1. The obtained results of the inhibitory activity and modeling by molecular dynamics indicate that simultaneous interactions of the basic amino acid residues in position 1 and 4 (Arg) with Neuropilin-1 are crucial and their cooperation strongly affects the inhibitory activity. In addition, the binding strength is modulated by the flexibility of the peptide backbone (in the central part of the peptide), and the nature of the side chain of the amino acids at the second or third position. A dramatic decrease in the activity to the receptor is observed in flexible derivatives that are missing proline residues. The results described in this paper should prove useful for future studies aimed at establishing the best pharmacophore for inhibitors of VEGF 165 binding to NRP-1. Copyright © 2017 Elsevier Inc. All rights reserved.
Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina
2015-01-01
The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the “lipolysome.” Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome. PMID:25953897
Roy Choudhury, Swarup; Pandey, Sona
2017-05-01
Modulation of the active versus inactive forms of the Gα protein is critical for the signaling processes mediated by the heterotrimeric G-protein complex. We have recently established that in Arabidopsis, the regulator of G-protein signaling (RGS1) protein and a lipid-hydrolyzing enzyme, phospholipase Dα1 (PLDα1), both act as GTPase-activity accelerating proteins (GAPs) for the Gα protein to attenuate its activity. RGS1 and PLDα1 interact with each other, and RGS1 inhibits the activity of PLDα1 during regulation of a subset of responses. In this study, we present evidence that this regulation is bidirectional. Phosphatidic acid (PA), a second messenger typically derived from the lipid-hydrolyzing activity of PLDα1, is a molecular target of RGS1. PA binds and inhibits the GAP activity of RGS1. A conserved lysine residue in RGS1 (Lys 259 ) is directly involved in RGS1-PA binding. Introduction of this RGS1 protein variant in the rgs1 mutant background makes plants hypersensitive to a subset of abscisic acid-mediated responses. Our data point to the existence of negative feedback loops between these two regulatory proteins that precisely modulate the level of active Gα, consequently generating a highly controlled signal-response output. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Acton, David
2017-01-01
Activation of N-methyl-d-aspartate receptors (NMDARs) requires the binding of a coagonist, either d-serine or glycine, in addition to glutamate. Changes in occupancy of the coagonist binding site are proposed to modulate neural networks including those controlling swimming in frog tadpoles. Here, we characterize regulation of the NMDAR coagonist binding site in mammalian spinal locomotor networks. Blockade of NMDARs by d(−)-2-amino-5-phosphonopentanoic acid (d-APV) or 5,7-dichlorokynurenic acid reduced the frequency and amplitude of pharmacologically induced locomotor-related activity recorded from the ventral roots of spinal-cord preparations from neonatal mice. Furthermore, d-APV abolished synchronous activity induced by blockade of inhibitory transmission. These results demonstrate an important role for NMDARs in murine locomotor networks. Bath-applied d-serine enhanced the frequency of locomotor-related but not disinhibited bursting, indicating that coagonist binding sites are saturated during the latter but not the former mode of activity. Depletion of endogenous d-serine by d-amino acid oxidase or the serine-racemase inhibitor erythro-β-hydroxy-l-aspartic acid (HOAsp) increased the frequency of locomotor-related activity, whereas application of l-serine to enhance endogenous d-serine synthesis reduced burst frequency, suggesting a requirement for d-serine at a subset of synapses onto inhibitory interneurons. Consistent with this, HOAsp was ineffective during disinhibited activity. Bath-applied glycine (1–100 µM) failed to alter locomotor-related activity, whereas ALX 5407, a selective inhibitor of glycine transporter-1 (GlyT1), enhanced burst frequency, supporting a role for GlyT1 in NMDAR regulation. Together these findings indicate activity-dependent and synapse-specific regulation of the coagonist binding site within spinal locomotor networks, illustrating the importance of NMDAR regulation in shaping motor output. NEW & NOTEWORTHY We provide evidence that NMDARs within murine spinal locomotor networks determine the frequency and amplitude of ongoing locomotor-related activity in vitro and that NMDARs are regulated by d-serine and glycine in a synapse-specific and activity-dependent manner. In addition, glycine transporter-1 is shown to be an important regulator of NMDARs during locomotor-related activity. These results show how excitatory transmission can be tuned to diversify the output repertoire of spinal locomotor networks in mammals. PMID:28202572
Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B
2008-10-17
Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the regulation of CNBP biochemical activities during neural crest development.
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A; Jiménez, M Consuelo
2018-06-15
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α 1 -acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222. Copyright © 2018 Elsevier B.V. All rights reserved.
2011-01-01
3,5-Dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogues were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structure–activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design. PMID:22611477
Da, Chenxiao; Telang, Nakul; Barelli, Peter; Jia, Xin; Gupton, John T; Mooberry, Susan L; Kellogg, Glen E
2012-01-12
3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogs were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structural-activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design.
Albury, Mary S; Elliott, Catherine; Moore, Anthony L
2010-12-01
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in all plants, some fungi, green algae, bacteria and pathogenic protozoa. The lack of AOX in the mammalian host renders this protein an important potential therapeutic target in the treatment of pathogenic protozoan infections. Bioinformatic searches revealed that, within a putative ubiquinol-binding crevice in AOX, Gln242, Asn247, Tyr253, Ser256, His261 and Arg262 were highly conserved. To confirm that these amino-acid residues are important for ubiquinol-binding and hence activity substitution mutations were generated and characterised. Assessment of AOX activity in isolated Schizosaccharomyces pombe mitochondria revealed that mutation of either Gln242, Ser256, His261 and Arg262 resulted in >90% inhibition of antimycin A-insensitive respiration suggesting that hydroxyl, guanidino, imidazole groups, polar and charged residues in addition to the size of the amino-acid chain are important for ubiquinone-binding. Substitution of Asn247 with glutamine or Tyr253 with phenylalanine had little effect upon the respiratory rate indicating that these residues are not critical for AOX activity. However replacement of Tyr253 by alanine resulted in a 72% loss of activity suggesting that the benzoquinone group and not hydroxyl group is important for quinol binding. These results provide important new insights into the ubiquinol-binding site of the alternative oxidase, the identity of which maybe important for future rational drug design. Copyright © 2010 Elsevier B.V. All rights reserved.
Vogeler, Susanne; Galloway, Tamara S.; Isupov, Michail
2017-01-01
Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor’s functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor’s ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a disruptive effect through a pathway excluding nuclear receptors or an indirect interaction. Our findings provide valuable information on potential mechanisms of molluscan nuclear receptors and the effects of environmental pollution on aquatic invertebrates. PMID:28426724
POWELL, SHARLA L.; GÖDECKE, TANJA; NIKOLIC, DEJAN; CHEN, SHAO-NONG; AHN, SOYOUN; DIETZ, BIRGIT; FARNSWORTH, NORMAN R.; VAN BREEMEN, RICHARD B.; LANKIN, DAVID; PAULI, GUIDO F.; BOLTON, JUDY L.
2013-01-01
Cimicifuga racemosa(L.) Nutt. (syn. Actaea racemosa L., black cohosh) is used to relieve menopausal hot flashes, although clinical studies have provided conflicting data, and the active constituent(s) and mechanism(s) of action remain unknown. Since serotonergic receptors and transporters are involved with thermoregulation, black cohosh and its phytoconstituents were evaluated for serotonergic activity using 5-HT7 receptor binding, cAMP induction, and serotonin selective reuptake inhibitor (SSRI) assays. Crude extracts displayed 5-HT7 receptor binding activity and induced cAMP production. Fractionation of the methanol extract lead to isolation of phenolic acids and identification of Nω-methylserotonin by LC/MS-MS. Cimicifuga triterpenoids and phenolic acids bound weakly to the 5-HT7 receptor with no cAMP or SSRI activity. In contrast, Nω-methylserotonin showed 5-HT7 receptor binding (IC50 23 pM), induced cAMP (EC50 22 nM), and blocked serotonin reuptake (IC50 490 nM). These data suggest Nω-methylserotonin may be responsible for the serotonergic activity of black cohosh. PMID:19049296
The molecular mechanism for interaction of ceruloplasmin and myeloperoxidase
NASA Astrophysics Data System (ADS)
Bakhautdin, Bakytzhan; Bakhautdin, Esen Göksöy
2016-04-01
Ceruloplasmin (Cp) is a copper-containing ferroxidase with potent antioxidant activity. Cp is expressed by hepatocytes and activated macrophages and has been known as physiologic inhibitor of myeloperoxidase (MPO). Enzymatic activity of MPO produces anti-microbial agents and strong prooxidants such as hypochlorous acid and has a potential to damage host tissue at the sites of inflammation and infection. Thus Cp-MPO interaction and inhibition of MPO has previously been suggested as an important control mechanism of excessive MPO activity. Our aim in this study was to identify minimal Cp domain or peptide that interacts with MPO. We first confirmed Cp-MPO interaction by ELISA and surface plasmon resonance (SPR). SPR analysis of the interaction yielded 30 nM affinity between Cp and MPO. We then designed and synthesized 87 overlapping peptides spanning the entire amino acid sequence of Cp. Each of the peptides was tested whether it binds to MPO by direct binding ELISA. Two of the 87 peptides, P18 and P76 strongly interacted with MPO. Amino acid sequence analysis of identified peptides revealed high sequence and structural homology between them. Further structural analysis of Cp's crystal structure by PyMOL software unfolded that both peptides represent surface-exposed sites of Cp and face nearly the same direction. To confirm our finding we raised anti-P18 antisera in rabbit and demonstrated that this antisera disrupts Cp-MPO binding and rescues MPO activity. Collectively, our results confirm Cp-MPO interaction and identify two nearly identical sites on Cp that specifically bind MPO. We propose that inhibition of MPO by Cp requires two nearly identical sites on Cp to bind homodimeric MPO simultaneously and at an angle of at least 120 degrees, which, in turn, exerts tension on MPO and results in conformational change.
Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki
2014-05-01
The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.
Challier, Emilse; Lisa, María-Natalia; Nerli, Bibiana B; Calcaterra, Nora B; Armas, Pablo
2014-01-01
Cellular nucleic acid binding protein (CNBP) is a highly conserved multi-zinc knuckle protein that enhances c-MYC expression, is related to certain human muscular diseases and is required for proper rostral head development. CNBP binds to single-stranded DNA (ssDNA) and RNA and acts as nucleic acid chaperone. Despite the advances made concerning CNBP biological roles, a full knowledge about the structure-function relationship has not yet been achieved, likely due to difficulty in obtaining pure and tag-free CNBP. Here, we report a fast, simple, reproducible, and high-performance expression and purification protocol that provides recombinant tag-free CNBP from Escherichia coli cultures. We determined that tag-free CNBP binds its molecular targets with higher affinity than tagged-CNBP. Furthermore, fluorescence spectroscopy revealed the presence of a unique and conserved tryptophan, which is exposed to the solvent and involved, directly or indirectly, in nucleic acid binding. Size-exclusion HPLC revealed that CNBP forms homodimers independently of nucleic acid binding and coexist with monomers as non-interconvertible forms or in slow equilibrium. Circular dichroism spectroscopy showed that CNBP has a secondary structure dominated by random-coil and β-sheet coincident with the sequence-predicted repetitive zinc knuckles motifs, which folding is required for CNBP structural stability and biochemical activity. CNBP structural stability increased in the presence of single-stranded nucleic acid targets similar to other unstructured nucleic acid chaperones. Altogether, data suggest that CNBP is a flexible protein with interspersed structured zinc knuckles, and acquires a more rigid structure upon nucleic acid binding. Copyright © 2013 Elsevier Inc. All rights reserved.
Gruber, Patrick; Vieths, Stefan; Wangorsch, Andrea; Nerkamp, Jörg; Hofmann, Thomas
2004-06-16
The influence of thermal processing and nonenymatic as well as polyphenoloxidase-catalyzed browning reaction on the allergenicity of the major cherry allergen Pru av 1 was investigated. After thermal treatment of the recombinant protein rPru av 1 in the absence or presence of carbohydrates, SDS-PAGE, enzyme allergosorbent tests, and inhibition assays revealed that thermal treatment of rPru av 1 alone did not show any influence on the IgE-binding activity of the protein at least for 30 min, thus correlating well with the refolding of the allergen in buffer solution as demonstrated by CD spectroscopic experiments. Incubation of the protein with starch and maltose also showed no effect on IgE-binding activity, whereas reaction with glucose and ribose and, even more pronounced, with the carbohydrate breakdown products glyceraldehyde and glyoxal induced a strong decrease of the IgE-binding capacity of rPru av 1. In the second part of the study, the effect of polyphenoloxidase-catalyzed oxidation of polyphenols on food allergen activity was investigated. Incubation of rPru av 1 with epicatechin in the presence of tyrosinase led to a drastic decrease in IgE-binding activity of the protein. Variations of the phenolic compound revealed caffeic acid and epicatechin as the most active inhibitors of the IgE-binding activity of rPru av 1, followed by catechin and gallic acid, and, finally, by quercetin and rutin, showing significantly lower activity. On the basis of these data, reactive intermediates formed during thermal carbohydrate degradation as well as during enzymatic polyphenol oxidation are suggested as the active chemical species responsible for modifying nucleophilic amino acid side chains of proteins, thus inducing an irreversible change in the tertiary structure of the protein and resulting in a loss of conformational epitopes of the allergen.
Cook, W B; Walker, J C
1992-01-01
A cDNA encoding a nuclear-encoded chloroplast nucleic acid-binding protein (NBP) has been isolated from maize. Identified as an in vitro DNA-binding activity, NBP belongs to a family of nuclear-encoded chloroplast proteins which share a common domain structure and are thought to be involved in posttranscriptional regulation of chloroplast gene expression. NBP contains an N-terminal chloroplast transit peptide, a highly acidic domain and a pair of ribonucleoprotein consensus sequence domains. NBP is expressed in a light-dependent, organ-specific manner which is consistent with its involvement in chloroplast biogenesis. The relationship of NBP to the other members of this protein family and their possible regulatory functions are discussed. Images PMID:1346929
Synthesis and biological evaluation of cyclopropyl analogues of 2-amino-5-phosphonopentanoic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dappen, M.S.; Pellicciari, R.; Natalini, B.
1991-01-01
A series of cyclopropyl analogues related to 2-amino-5-phosphonopentanoic acid (AP5) were synthesized and their biological activity was assessed as competitive antagonists for the N-methyl-D-aspartate (NMDA) receptor. In vitro receptor binding using (3H)-L-glutamate as the radioligand provided affinity data, while modulation of (3H)MK-801 binding was used as a functional assay. The analogues were also evaluated in (3H)kainate binding to assess selectivity over non-NMDA glutamate receptors. Of the compounds tested, 4,5-methano-AP5 analogue 26 was the most potent selective NMDA antagonist; however, potency was lower than that for (((+/-)-2-carboxypiperidin-4-yl)methyl)phosphonic acid (CGS 19755, 5).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, A.E.; Dharwadkar, S.
1987-01-01
Polyunsaturated fatty acids of the omega-6 type have been shown to support the mixed function oxidases (MFO) responsible for carcinogen activation and to promote tumorigenesis in laboratory animals. The omega-3 fatty acids contained in menhaden oil (MO) have been shown to enhance MFO activity and increase the binding of Benzo(a)pyrene (B(a)P) metabolites to calf thymus DNA in an in vitro microsomal system. Rats fed two levels of MO (0.5% and 20%) for 11 days received a single i.p. dose of (/sup 3/H)B(a)P (5 m Ci/kg) dissolved in DMSO. At selected time intervals thereafter rats were killed, blood withdrawn, livers removedmore » and DNA extracted. Hepatic microsomes were recovered from control rats on each diet at the time of B(a)P administration to assess MFO activities. Binding of B(a)P to DNA was higher in rats fed the 20% MO diet suggesting an increased rate of B(a)P activation. Blood levels of B(a)P were elevated at 16 and 24 hours post B(a)P, however no differences in urine concentrations were observed. Elevations in concentration of cytochrome P-450, ethoxycoumarin dealkylase, and glutathione S-transferase suggest that omega-3 fatty acids of menhaden fish oil support MFO related reactions not unlike the omega-6 fatty acids.« less
Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho
2016-01-01
Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224
Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P.; Kier, Ann B.; Schroeder, Friedhelm
2014-01-01
The human liver fatty acid binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride (TG) levels. How this amino acid substitution elicits these effects is not known. This issue was addressed with human recombinant wild-type (WT, T94T) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC, and CC). T94A substitution did not or only slightly alter L-FABP binding affinities for saturated, monounsaturated, or polyunsaturated long chain fatty acids (LCFA), nor did it change the affinity for intermediates in TG synthesis. Nevertheless, T94A substitution markedly altered the secondary structural response of L-FABP induced by binding LCFA or intermediates of TG synthesis. Finally, T94A substitution markedly diminished polyunsaturated fatty acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), induction of peroxisome proliferator-activated receptor alpha (PPARα) - regulated proteins such as L-FABP, fatty acid transport protein 5 (FATP5), and PPARα itself in cultured primary human hepatocytes. Thus, while T94A substitution did not alter the affinity of human L-FABP for LCFAs, it significantly altered human L-FABP structure and stability as well as conformational and functional response to these ligands. PMID:24628888
Nie, Mei; Balda, Maria S.; Matter, Karl
2012-01-01
A central component of the cellular stress response is p21WAF1/CIP1, which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1–associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB’s activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3′-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival. PMID:22711822
Gao, Kui; Wong, Steven; Bushman, Frederic
2004-01-01
The D,DX35E motif characteristic of retroviral integrase enzymes (INs) is expected to bind the required metal cofactors (Mg2+ or Mn2+), but direct evidence for a catalytic role has been lacking. Here we used a metal rescue strategy to investigate metal binding. We established conditions for analysis of an activity of IN, disintegration, in both Mg2+ and Mn2+, and tested IN mutants with cysteine substitutions in each acidic residue of the D,DX35E motif. Mn2+ but not Mg2+ can bind tightly to Cys, so if metal binding at the acidic residues is mechanistically important, it is expected that the Cys-substituted enzymes would be active in the presence of Mn2+ only. Of the three acidic residues, a strong metal rescue effect was obtained for D116C, a weaker rescue was seen for D64C, and no rescue was seen with E152C. Modest rescue could also be detected for D116C in normal integration in vitro. Comparison to Ser and Ala substitutions at D116 established that the rescue was selective for Cys. Further studies of the response to pH suggest that the metal cofactor may stabilize the deprotonated nucleophile active in catalysis, and studies of the response to NaCl titrations disclose an additional role for the metal cofactor in stabilizing the IN-DNA complex. PMID:15194746
Wang, Zhen; Anderson, Nicholas Scott; Benning, Christoph
2013-01-01
Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, -2, and -3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1–80 and 110–145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N terminus and contains dimerization domains at its C terminus. PMID:23297418
Brandoli, Giulia; Lempinen, Antti; Artes, Sanna; Turku, Ainoleena; Jäntti, Maria Helena; Talman, Virpi; Yli-Kauhaluoma, Jari; Tuominen, Raimo K.; Boije af Gennäs, Gustav
2018-01-01
Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain–targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC. PMID:29641588
Provenzani, Riccardo; Tarvainen, Ilari; Brandoli, Giulia; Lempinen, Antti; Artes, Sanna; Turku, Ainoleena; Jäntti, Maria Helena; Talman, Virpi; Yli-Kauhaluoma, Jari; Tuominen, Raimo K; Boije Af Gennäs, Gustav
2018-01-01
Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain-targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.
McCormack, M; Brecher, P
1987-06-15
Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.
Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N
2014-10-17
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.
Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H
1997-03-14
Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.
Kang, H; Sayner, S L; Gross, K L; Russell, L C; Chinkers, M
2001-09-04
Protein phosphatase 5 (PP5) exhibits low basal activity due to the autoinhibitory properties of its N-terminal and C-terminal domains but can be activated approximately 40-fold in vitro by polyunsaturated fatty acids. To identify residues involved in regulating PP5 activity, we performed scanning mutagenesis of its N-terminal tetratricopeptide repeat (TPR) domain and deletion mutagenesis of its C-terminal domain. Mutating residues in a groove of the TPR domain that binds to heat shock protein 90 had no effect on basal phosphatase activity. Mutation of Glu-76, however, whose side chain projects away from this groove, resulted in a 10-fold elevation of basal activity without affecting arachidonic acid-stimulated activity. Thus, the interface of the TPR domain involved in PP5 autoinhibition appears to be different from that involved in heat shock protein 90 binding. We also observed a 10-fold elevation of basal phosphatase activity upon removing the C-terminal 13 amino acids of PP5, with a concomitant 50% decrease in arachidonic acid-stimulated activity. These two effects were accounted for by two distinct amino acid deletions: deleting the four C-terminal residues (496-499) of PP5 had no effect on its activity, but removing Gln-495 elevated basal activity 10-fold. Removal of a further three amino acids had no additional effect, but deleting Asn-491 resulted in a 50% reduction in arachidonic acid-stimulated activity. Thus, Glu-76 in the TPR domain and Gln-495 at the C-terminus were implicated in maintaining the low basal activity of PP5. While the TPR domain alone has been thought to mediate fatty acid activation of PP5, our data suggest that Asn-491, near its C-terminus, may also be involved in this process.
Carpentier, Mathieu; Allain, Fabrice; Slomianny, Marie-Christine; Durieux, Sandrine; Vanpouille, Christophe; Haendler, Bernard; Spik, Geneviève
2002-04-23
Cyclophilin B (CyPB), a cyclosporin A (CsA) binding protein, interacts with two types of binding sites at the surface of T-lymphocytes. The type I sites correspond to functional receptors involved in endocytosis and the type II sites to sulfated glycosaminoglycans (GAGs). Mutational analysis of CyPB has revealed that W128, which is part of the CsA-binding pocket, is implicated in the binding to the functional type I receptors and that two amino acid clusters located in the N-terminus ensure the binding to GAGs. The peptidyl-prolyl isomerase activity of CyPB is not required for receptor binding. We have recently demonstrated that CyPB enhances adhesion of peripheral blood T-lymphocytes to fibronectin, a component of the extracellular matrix. We intended to identify additional amino acids involved in the binding of CyPB to its functional type I receptor and to determine regions responsible for the stimulation of peripheral blood T-lymphocyte adhesion. We determined that residues R76, G77, K132, D155, and D158 of the calcineurin (CN) interacting region were implicated in the recognition of type I receptor but not of GAGs. We also found that two different changes in the N-terminal extension that abated binding to GAGs prevented adhesion of peripheral blood T-lymphocytes to coated CyPB, whereas abbrogation of the PPIase activity had no effect. On the other hand, the adhesion of peripheral blood T-lymphocytes to coated fibronectin was not stimulated by CyPB mutants devoid of either type I receptor or GAGs binding activity or by mutants of the PPIase site. Altogether, the results demonstrate that different regions of CyPB are involved in peripheral blood T-lymphocyte activation and imply a novel important physiological function for peptidyl-prolyl isomerase activity.
Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki
2015-12-01
Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Blevitt, Jonathan M; Hack, Michael D; Herman, Krystal; Chang, Leon; Keith, John M; Mirzadegan, Tara; Rao, Navin L; Lebsack, Alec D; Milla, Marcos E
2016-06-10
5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Bartoccioni, Paola; del Rio, César; Ratera, Merce; Kowalczyk, Lukasz; Baldwin, Jocelyn M.; Zorzano, Antonio; Quick, Matthias; Baldwin, Stephen A.; Vázquez-Ibar, José Luis; Palacín, Manuel
2010-01-01
System l-amino acid transporters (LAT) belong to the amino acid, polyamine, and organic cation superfamily of transporters and include the light subunits of heteromeric amino acid transporters and prokaryotic homologues. Cysteine reactivity of SteT (serine/threonine antiporter) has been used here to study the substrate-binding site of LAT transporters. Residue Cys-291, in transmembrane domain 8 (TM8), is inactivated by thiol reagents in a substrate protectable manner. Surprisingly, DTT activated the transporter by reducing residue Cys-291. Cysteine-scanning mutagenesis of TM8 showed DTT activation in the single-cysteine mutants S287C, G294C, and S298C, lining the same α-helical face. S-Thiolation in Escherichia coli cells resulted in complete inactivation of the single-cysteine mutant G294C. l-Serine blocked DTT activation with an EC50 similar to the apparent KM of this mutant. Thus, S-thiolation abolished substrate translocation but not substrate binding. Mutation of Lys-295, to Cys (K295C) broadened the profile of inhibitors and the spectrum of substrates with the exception of imino acids. A structural model of SteT based on the structural homologue AdiC (arginine/agmatine antiporter) positions residues Cys-291 and Lys-295 in the putative substrate binding pocket. All this suggests that Lys-295 is a main determinant in the recognition of the side chain of SteT substrates. In contrast, Gly-294 is not facing the surface, suggesting conformational changes involving TM8 during the transport cycle. Our results suggest that TM8 sculpts the substrate-binding site and undergoes conformational changes during the transport cycle of SteT. PMID:20610400
Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway
He, Yonghan; Li, Ying; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao
2013-01-01
Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. Conclusions Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity. PMID:23922935
REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS
Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...
Babcock, Gregory J.; Esshaki, Diana J.; Thomas, William D.; Ambrosino, Donna M.
2004-01-01
A novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), has recently been identified as the causative agent of severe acute respiratory syndrome (SARS). SARS-CoV appears similar to other coronaviruses in both virion structure and genome organization. It is known for other coronaviruses that the spike (S) glycoprotein is required for both viral attachment to permissive cells and for fusion of the viral envelope with the host cell membrane. Here we describe the construction and expression of a soluble codon-optimized SARS-CoV S glycoprotein comprising the first 1,190 amino acids of the native S glycoprotein (S1190). The codon-optimized and native S glycoproteins exhibit similar molecular weight as determined by Western blot analysis, indicating that synthetic S glycoprotein is modified correctly in a mammalian expression system. S1190 binds to the surface of Vero E6 cells, a cell permissive to infection, as demonstrated by fluorescence-activated cell sorter analysis, suggesting that S1190 maintains the biologic activity present in native S glycoprotein. This interaction is blocked with serum obtained from recovering SARS patients, indicating that the binding is specific. In an effort to map the ligand-binding domain of the SARS-CoV S glycoprotein, carboxy- and amino-terminal truncations of the S1190 glycoprotein were constructed. Amino acids 270 to 510 were the minimal receptor-binding region of the SARS-CoV S glycoprotein as determined by flow cytometry. We speculate that amino acids 1 to 510 of the SARS-CoV S glycoprotein represent a unique domain containing the receptor-binding site (amino acids 270 to 510), analogous to the S1 subunit of other coronavirus S glycoproteins. PMID:15078936
Niv-Spector, Leonora; Gonen-Berger, Dana; Gourdou, Isabelle; Biener, Eva; Gussakovsky, Eugene E.; Benomar, Yackir; Ramanujan, Krishnan V.; Taouis, Mohammed; Herman, Brian; Callebaut, Isabelle; Djiane, Jean; Gertler, Arieh
2005-01-01
Interaction of leptin with its receptors resembles that of interleukin-6 and granulocyte colony-stimulating factor, which interact with their receptors through binding sites I–III. Site III plays a pivotal role in receptors' dimerization or tetramerization and subsequent activation. Leptin's site III also mediates the formation of an active multimeric complex through its interaction with the IGD (immunoglobulin-like domain) of LEPRs (leptin receptors). Using a sensitive hydrophobic cluster analysis of leptin's and LEPR's sequences, we identified hydrophobic stretches in leptin's A–B loop (amino acids 39–42) and in the N-terminal end of LEPR's IGD (amino acids 325–328) that are predicted to participate in site III and to interact with each other in a β-sheet-like configuration. To verify this hypothesis, we prepared and purified to homogeneity (as verified by SDS/PAGE, gel filtration and reverse-phase chromatography) several alanine muteins of amino acids 39–42 in human and ovine leptins. CD analyses revealed that those mutations hardly affect the secondary structure. All muteins acted as true antagonists, i.e. they bound LEPR with an affinity similar to the wild-type hormone, had no agonistic activity and specifically inhibited leptin action in several leptin-responsive in vitro bioassays. Alanine mutagenesis of LEPR's IGD (amino acids 325–328) drastically reduced its biological but not binding activity, indicating the importance of this region for interaction with leptin's site III. FRET (fluorescence resonance energy transfer) microscopy experiments have documented that the transient FRET signalling occurring upon exposure to leptin results not from binding of the ligand, but from ligand-induced oligomerization of LEPRs mediated by leptin's site III. PMID:15952938
Banthiya, Swathi; Kalms, Jacqueline; Galemou Yoga, Etienne; Ivanov, Igor; Carpena, Xavi; Hamberg, Mats; Kuhn, Hartmut; Scheerer, Patrick
2016-11-01
Pseudomonas aeruginosa expresses a secreted LOX-isoform (PA-LOX, LoxA) capable of oxidizing polyenoic fatty acids to hydroperoxy derivatives. Here we report high-level expression of this enzyme in E. coli and its structural and functional characterization. Recombinant PA-LOX oxygenates polyenoic fatty acids including eicosapentaenoic acid and docosahexaenoic acid to the corresponding (n-6)S-hydroperoxy derivatives. This reaction involves abstraction of the proS-hydrogen from the n-8 bisallylic methylene. PA-LOX lacks major leukotriene synthase activity but converts 5S-HETE and 5S,6R/S-DiHETE to anti-inflammatory and pro-resolving lipoxins. It also exhibits phospholipid oxygenase activity as indicated by the formation of a specific pattern of oxygenation products from different phospholipid subspecies. Multiple mutagenesis studies revealed that PA-LOX does not follow classical concepts explaining the reaction specificity of mammalian LOXs. The crystal structure of PA-LOX was solved with resolutions of up to 1.48Å and its polypeptide chain is folded as single domain. The substrate-binding pocket consists of two fatty acid binding subcavities and lobby. Subcavity-1 contains the catalytic non-heme iron. A phosphatidylethanolamine molecule occupies the substrate-binding pocket and its sn1 fatty acid is located close to the catalytic non-heme iron. His377, His382, His555, Asn559 and the C-terminal Ile685 function as direct iron ligands and a water molecule (hydroxyl) completes the octahedral ligand sphere. Although the biological relevance of PA-LOX is still unknown its functional characteristics (lipoxin synthase activity) implicate this enzyme in a bacterial evasion strategy aimed at downregulating the hosts' immune system. Copyright © 2016 Elsevier B.V. All rights reserved.
Kitamura, Keisuke; Takegami, Shigehiko; Tanaka, Rumi; Omran, Ahmed Ahmed; Kitade, Tatsuya
2014-01-01
Human serum albumin (HSA) in the blood binds long-chain fatty acids (LCFAs), and the number of bound LCFAs varies from 1 to 7 depending on the physical condition of the body. In this study, the influence of LCFA-HSA binding on drug-HSA binding was studied using triflupromazine (TFZ), a psychotropic phenothiazine drug, in a buffer (0.1 M NaCl, pH 7.40, 37°C) by a second-derivative spectrophotometric method which can suppress the residual background signal effects of HSA observed in the absorption spectra. The examined LCFAs were caprylic acid (CPA), lauric acid (LRA), oleic acid (OLA), and linoleic acid (LNA), respectively. Using the derivative intensity change of TFZ induced by the addition of HSA containing LCFA, the binding mode of TFZ was predicted to be a partition-like nonspecific binding. The binding constant (K M(-1)) showed an increase according to the LCFA content in HSA for LRA, OLA, and LNA up to an LCFA/HSA molar ratio of 3-4. However, at higher ratios the K value decreased, i.e. for OLA and LNA, at an LCFA/HSA ratio of 6-7, the K value decreased to 40% of the value for HSA alone. In contrast, CPA, having the shortest chain length (8 carbons) among the studied LCFAs, induced a 20% decrease in the K value regardless of its content in HSA. Since the pharmacological activity of a drug is closely related to the unbound drug concentration in the blood, the results of the present study are pharmaco-kinetically, pharmacologically, and clinically very important.
Schenk, Gerhard; Gahan, Lawrence R.; Carrington, Lyle E.; Mitić, Nataša; Valizadeh, Mohsen; Hamilton, Susan E.; de Jersey, John; Guddat, Luke W.
2005-01-01
Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)–Mn(II) center and is distinguished from other PAPs by its increased catalytic efficiency for a range of activated and unactivated phosphate esters, its strict requirement for Mn(II), and the presence of a μ-oxo bridge at pH 4.90. This enzyme displays maximum catalytic efficiency (kcat/Km) at pH 4.5, whereas its catalytic rate constant (kcat) is maximal at near-neutral pH, and, in contrast to other PAPs, its catalytic parameters are not dependent on the pKa of the leaving group. The crystal structure of the phosphate-bound Fe(III)–Mn(II) PAP has been determined to 2.5-Å resolution (final Rfree value of 0.256). Structural comparisons of the active site of sweet potato, red kidney bean, and mammalian PAPs show several amino acid substitutions in the sweet potato enzyme that can account for its increased catalytic efficiency. The phosphate molecule binds in an unusual tripodal mode to the two metal ions, with two of the phosphate oxygen atoms binding to Fe(III) and Mn(II), a third oxygen atom bridging the two metal ions, and the fourth oxygen pointing toward the substrate binding pocket. This binding mode is unique among the known structures in this family but is reminiscent of phosphate binding to urease and of sulfate binding to λ protein phosphatase. The structure and kinetics support the hypothesis that the bridging oxygen atom initiates hydrolysis. PMID:15625111
Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania
2013-07-08
The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects.
Ebina, Hirotaka; Chatterjee, Atreyi Ghatak; Judson, Robert L.; Levin, Henry L.
2008-01-01
Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the γ-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining. PMID:18397885
Ebina, Hirotaka; Chatterjee, Atreyi Ghatak; Judson, Robert L; Levin, Henry L
2008-06-06
Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the gamma-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining.
Licht, J D; Hanna-Rose, W; Reddy, J C; English, M A; Ro, M; Grossel, M; Shaknovich, R; Hansen, U
1994-01-01
We previously demonstrated that the Drosophila Krüppel protein is a transcriptional repressor with separable DNA-binding and transcriptional repression activities. In this study, the minimal amino (N)-terminal repression region of the Krüppel protein was defined by transferring regions of the Krüppel protein to a heterologous DNA-binding protein, the lacI protein. Fusion of a predicted alpha-helical region from amino acids 62 to 92 in the N terminus of the Krüppel protein was sufficient to transfer repression activity. This putative alpha-helix has several hydrophobic surfaces, as well as a glutamine-rich surface. Mutants containing multiple amino acid substitutions of the glutamine residues demonstrated that this putative alpha-helical region is essential for repression activity of a Krüppel protein containing the entire N-terminal and DNA-binding regions. Furthermore, one point mutant with only a single glutamine on this surface altered to lysine abolished the ability of the Krüppel protein to repress, indicating the importance of the amino acid at residue 86 for repression. The N terminus also contained an adjacent activation region localized between amino acids 86 and 117. Finally, in accordance with predictions from primary amino acid sequence similarity, a repression region from the Drosophila even-skipped protein, which was six times more potent than that of the Krüppel protein in the mammalian cells, was characterized. This segment included a hydrophobic stretch of 11 consecutive alanine residues and a proline-rich region. Images PMID:8196644
Arthur, A K; Höss, A; Fanning, E
1988-01-01
The genomic coding sequence of the large T antigen of simian virus 40 (SV40) was cloned into an Escherichia coli expression vector by joining new restriction sites, BglII and BamHI, introduced at the intron boundaries of the gene. Full-length large T antigen, as well as deletion and amino acid substitution mutants, were inducibly expressed from the lac promoter of pUC9, albeit with different efficiencies and protein stabilities. Specific interaction with SV40 origin DNA was detected for full-length T antigen and certain mutants. Deletion mutants lacking T-antigen residues 1 to 130 and 260 to 708 retained specific origin-binding activity, demonstrating that the region between residues 131 and 259 must carry the essential binding domain for DNA-binding sites I and II. A sequence between residues 302 and 320 homologous to a metal-binding "finger" motif is therefore not required for origin-specific binding. However, substitution of serine for either of two cysteine residues in this motif caused a dramatic decrease in origin DNA-binding activity. This region, as well as other regions of the full-length protein, may thus be involved in stabilizing the DNA-binding domain and altering its preference for binding to site I or site II DNA. Images PMID:2835505
Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.
Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke
2014-12-01
Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.
Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F
2015-01-01
Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin’s bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world’s longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage. PMID:26101955
Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E.; Hinnebusch, Alan G.
2009-01-01
Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the α subunit of translation initiation factor 2 (eIF2α). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix αC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2α phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of αC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of αC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation. PMID:19114556
Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E; Hinnebusch, Alan G
2009-03-01
Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix alphaC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2alpha phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of alphaC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of alphaC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation.
Tsukamoto, Yuta; Ikeda, Sotaro; Uwai, Koji; Taguchi, Riho; Chayama, Kazuaki; Sakaguchi, Takemasa; Narita, Ryo; Yao, Wan-Ling; Takeuchi, Fumihiko; Otakaki, Yukie; Watashi, Koichi; Wakita, Takaji; Kato, Hiroki; Fujita, Takashi
2018-01-01
Current therapeutics for hepatitis B virus (HBV) patients such as nucleoside analogs (NAs) are effective; however, new antiviral drugs against HBV are still desired. Since the interaction between the epsilon (ε) sequence of HBV pregenomic RNA and viral polymerase (Pol) is a key step in the HBV replication cycle, we aimed to identify small compounds for its inhibition, and established a pull-down assay system for the detection of ε-RNA-binding-Pol. Screening showed that 5 out of 3,965 compounds inhibited ε-Pol binding, and we identified rosmarinic acid, which exhibited specificity, as a potential antiviral agent. In order to examine the anti-HBV effects of rosmarinic acid, HBV-infected primary human hepatocytes from a humanized mouse liver were treated with rosmarinic acid. The rosmarinic acid treatment decreased HBV components including the amounts of extracellular HBV DNA with negligible cytotoxicity. We also investigated the combined effects of rosmarinic acid and the NA, lamivudine. rosmarinic acid slightly enhanced the anti-HBV activity of lamivudine, suggesting that the HBV replication step targeted by rosmarinic acid is distinct from that of NA. We analyzed an additional 25 rosmarinic acid derivatives, and found that 5 also inhibited ε-Pol. Structural comparisons between these derivatives implied that the "two phenolic hydroxyl groups at both ends" and the "caffeic acid-like structure" of rosmarinic acid are critical for the inhibition of ε-Pol binding. Collectively, our results demonstrate that rosmarinic acid inhibits HBV replication in HBV-infected cells by specifically targeting ε-Pol binding.
Schmidt, A; Vogel, R; Holloway, M K; Rutledge, S J; Friedman, O; Yang, Z; Rodan, G A; Friedman, E
1999-09-10
LXR and PPAR receptors belong to the nuclear receptor superfamily of transcriptional activating factors. Using ligand-dependent transcription assays, we found that 5-tetradecyloxy-2-furancarboxylic acid (TOFA) transactivates chimeric receptors composed of the glucocorticoid receptor DNA binding domain and the ligand binding regions of PPARalpha, PPARbeta (NUC-1) and LXRbeta (NER) receptors. In the same assays, ligands for PPARs (oleic acid, WY-14643 and L-631,033) and LXRs (hydroxycholesterols) maintain their respective receptor selectivity. TOFA and hydroxycholesterols also stimulate transcription from a minimal fibrinogen promoter that is under the control of AP-1 or NF-kappaB transcription factor binding sites. In addition to their effects on transcription, these LXRbeta activators induce neuronal differentiation in rat pheochromocytoma cells. TOFA and the natural LXR agonist, 22 (R)-hydroxycholesterol, stimulate neurite outgrowth in 55 and 28% of cells, respectively. No neurite outgrowth was induced by the related 22(S)-hydroxycholesterol, which does not activate the LXR family. These results suggest that the hydroxycholesterol signaling pathway has a complex effect on transcription that mediates the activity of TOFA and hydroxycholesterol on neuronal differentiation in pheochromocytoma cells.
Seufert, Florian; Kuhn, Maximilian; Hein, Michael; Weiwad, Matthias; Vivoli, Mirella; Norville, Isobel H; Sarkar-Tyson, Mitali; Marshall, Laura E; Schweimer, Kristian; Bruhn, Heike; Rösch, Paul; Harmer, Nicholas J; Sotriffer, Christoph A; Holzgrabe, Ulrike
2016-11-01
The bacteria Burkholderia pseudomallei and Legionella pneumophila cause severe diseases like melioidosis and Legionnaire's disease with high mortality rates despite antibiotic treatment. Due to increasing antibiotic resistances against these and other Gram-negative bacteria, alternative therapeutical strategies are in urgent demand. As a virulence factor, the macrophage infectivity potentiator (Mip) protein constitutes an attractive target. The Mip proteins of B. pseudomallei and L. pneumophila exhibit peptidyl-prolyl cis/trans isomerase (PPIase) activity and belong to the PPIase superfamily. In previous studies, the pipecolic acid moiety proved to be a valuable scaffold for inhibiting this PPIase activity. Thus, a library of pipecolic acid derivatives was established guided by structural information and computational analyses of the binding site and possible binding modes. Stability and toxicity considerations were taken into account in iterative extensions of the library. Synthesis and evaluation of the compounds in PPIase assays resulted in highly active inhibitors. The activities can be interpreted in terms of a common binding mode obtained by docking calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Basic Aspects of Tumor Cell Fatty Acid-Regulated Signaling and Transcription Factors
Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martin Ernesto; Pasqualini, Marìa Eugenia
2012-01-01
This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P-450 (CYP-450), seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator–activated receptors (PPARs) or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C [PKC]) and other transcription factors (nuclear factor kappa B [NFκB] and sterol regulatory element binding protein [SREBP]). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer, and provide insight into the development of new therapeutic strategies for a better management of whole-body lipid metabolism. PMID:22048864
Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors.
Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martín Ernesto; Pasqualini, Marìa Eugenia
2011-12-01
This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases, cyclooxygenases, and cytochrome P-450, seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator-activated receptors or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C) and other transcription factors (nuclear factor kappa B and sterol regulatory element binding protein). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer and provide insight into the development of new therapeutic strategies for a better management of whole body lipid metabolism.
Zorrilla, Silvia; Garzón, Beatriz; Pérez-Sala, Dolores
2010-04-01
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily involved in insulin sensitization, atherosclerosis, inflammation, and carcinogenesis. PPARgamma transcriptional activity is modulated by specific ligands that promote conformational changes allowing interaction with coactivators. Here we show that the fluorophore 1-anilinonaphthalene-8-sulfonic acid (ANS) binds to PPARgamma-LBD (ligand binding domain), displaying negligible interaction with other nuclear receptors such as PPARalpha and retinoid X receptor alpha (RXRalpha). ANS binding is competed by PPARgamma agonists such as rosiglitazone, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), and 9,10-dihydro-15-deoxy-Delta(12,14)-prostaglandin J(2) (CAY10410). Moreover, the affinity of PPARgamma for these ligands, determined through ANS competition titrations, is within the range of that reported previously, thereby suggesting that ANS competition could be useful in the screening and characterization of novel PPARgamma agonists. In contrast, gel-based competition assays showed limited performance with noncovalently bound ligands. We applied the ANS binding assay to characterize a biotinylated analog of 15d-PGJ(2) that does not activate PPAR in cells. We found that although this compound bound to PPARgamma with low affinity, it failed to promote PPARgamma interaction with a fluorescent SRC-1 peptide, indicating a lack of receptor activation. Therefore, combined approaches using ANS and fluorescent coactivator peptides to monitor PPARgamma binding and interactions may provide valuable strategies to fully understand the role of PPARgamma ligands. Copyright 2009 Elsevier Inc. All rights reserved.
Chatterjee, Tanaya; Sheikh, Irshad Ali; Chakravarty, Devlina; Chakrabarti, Pinak; Sarkar, Paramita; Saha, Tultul; Chakrabarti, Manoj K.; Hoque, Kazi Mirajul
2015-01-01
Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC) inhibitors, namely CaCCinh-A01, digallic acid (DGA) and tannic acid. Biophysical studies indicate that the unfolding (induced by urea) free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD) simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders. PMID:26540279
Chung, C N; Hamaguchi, Y; Honjo, T; Kawaichi, M
1994-01-01
To map regions important for DNA binding of the mouse homologue of Suppressor of Hairless or RBP-J kappa protein, mutated mouse RBP-J kappa cDNAs were made by insertion of oligonucleotide linkers or base replacement. DNA binding assays using the mutated proteins expressed in COS cells showed that various mutations between 218 Arg and 227 Arg decreased the DNA binding activity drastically. The DNA binding activity was not affected by amino acid replacements within the integrase motif of the RBP-J kappa protein (230His-269His). Replacements between 291Arg and 323Tyr affected the DNA binding activity slightly but reproducibly. These results indicate that the region encompassing 218Arg-227Arg is critical for the DNA binding activity of RBP-J kappa. This region did not show any significant homology to motifs or domains of the previously described DNA binding proteins. Using a truncation mutant protein RBP-J kappa was shown to associate with DNA as a monomer. Images PMID:8065905
Wang, Chen; Uversky, Vladimir N; Kurgan, Lukasz
2016-05-01
Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty-by-association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (∼548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA-binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA-binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seth, P; Ganapathy, M E; Conway, S J; Bridges, C D; Smith, S B; Casellas, P; Ganapathy, V
2001-07-25
The type 1 sigma receptor (sigmaR1) has been shown to participate in a variety of functions in the central nervous system. To identify the specific regions of the brain that are involved in sigmaR1 function, we analyzed the expression pattern of the receptor mRNA in the mouse brain by in situ hybridization. SigmaR1 mRNA was detectable primarily in the cerebral cortex, hippocampus, and Purkinje cells of cerebellum. To identify the critical anionic amino acid residues in the ligand-binding domain of sigmaR1, we employed two different approaches: chemical modification of anionic amino acid residues and site-directed mutagenesis. Chemical modification of anionic amino acids in sigmaR1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide reduced the ligand-binding activity markedly. Since it is known that a splice variant of this receptor which lacks exon 3 does not have the ability to bind sigma ligands, the ligand-binding domain with its critical anionic amino acid residues is likely to be present in or around the region coded by exon 3. Therefore, each of the anionic amino acids in this region was mutated individually and the influence of each mutation on ligand binding was assessed. These studies have identified two anionic amino acids, D126 and E172, that are obligatory for ligand binding. Even though the ligand-binding function was abolished by these two mutations, the expression of these mutants was normal at the protein level. These results show that sigmaR1 is expressed at high levels in specific areas of the brain that are involved in memory, emotion and motor functions. The results also provide important information on the chemical nature of the ligand-binding site of sigmaR1 that may be of use in the design of sigmaR1-specific ligands with potential for modulation of sigmaR1-related brain functions.
Amakura, Yoshiaki; Tsutsumi, Tomoaki; Yoshimura, Morio; Nakamura, Masafumi; Handa, Hiroshi; Matsuda, Rieko; Teshima, Reiko; Watanabe, Takahiro
2016-01-01
The purpose of this study was to examine whether a simple bioassay used for the detection of dioxins (DXNs) could be applied to detect trace amounts of harmful DXN-like substances in food products. To identify substances with possible DXN-like activity, we assessed the ability of various compounds in the environment to bind the aryl hydrocarbon receptor (AhR) that binds specifically to DXNs. The compounds tested included 19 polycyclic aromatic hydrocarbons (PAHs), 20 PAH derivatives (nitrated, halogenated, and aminated derivatives), 23 pesticides, six amino acids, and eight amino acid metabolites. The AhR binding activities (AhR activity) of these compounds were measured using the chemical activated luciferase gene expression (CALUX) reporter gene assay system. The majority of the PAHs exhibited marked AhR activity that increased in a concentration-dependent manner. Furthermore, there was a positive link between AhR activity and the number of aromatic rings in the PAH derivatives. Conversely, there appeared to be a negative correlation between AhR activity and the number of chlorine residues present on halogenated PAH derivatives. However, there was no correlation between AhR activity and the number and position of substituents among nitrated and aminated derivatives. Among the pesticides tested, the indole-type compounds carbendazim and thiabendazole showed high levels of activity. Similarly, the indole compound tryptamine was the only amino acid metabolite to induce AhR activity. The results are useful in understanding the identification and characterization of AhR ligands in the CALUX assay. PMID:28231110
Herranz, Juan; Jaouen, Frédéric; Lefèvre, Michel; Kramm, Ulrike I.; Proietti, Eric; Dodelet, Jean-Pol; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Bertrand, Patrick; Arruda, Thomas M.; Mukerjee, Sanjeev
2013-01-01
The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH3 is mostly imparted by acid-resistant FeN4-sites whose turnover frequency for the O2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN4-sites. These results are interpreted as an increased turnover frequency of FeN4-sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date. PMID:24179561
Herranz, Juan; Jaouen, Frédéric; Lefèvre, Michel; Kramm, Ulrike I; Proietti, Eric; Dodelet, Jean-Pol; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Bertrand, Patrick; Arruda, Thomas M; Mukerjee, Sanjeev
2011-11-18
The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH 3 is mostly imparted by acid-resistant FeN 4 -sites whose turnover frequency for the O 2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O 2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN 4 -sites. These results are interpreted as an increased turnover frequency of FeN 4 -sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date.
Belcher, James; McLean, Kirsty J.; Matthews, Sarah; Woodward, Laura S.; Fisher, Karl; Rigby, Stephen E. J.; Nelson, David R.; Potts, Donna; Baynham, Michael T.; Parker, David A.; Leys, David; Munro, Andrew W.
2014-01-01
The production of hydrocarbons in nature has been documented for only a limited set of organisms, with many of the molecular components underpinning these processes only recently identified. There is an obvious scope for application of these catalysts and engineered variants thereof in the future production of biofuels. Here we present biochemical characterization and crystal structures of a cytochrome P450 fatty acid peroxygenase: the terminal alkene forming OleTJE (CYP152L1) from Jeotgalicoccus sp. 8456. OleTJE is stabilized at high ionic strength, but aggregation and precipitation of OleTJE in low salt buffer can be turned to advantage for purification, because resolubilized OleTJE is fully active and extensively dissociated from lipids. OleTJE binds avidly to a range of long chain fatty acids, and structures of both ligand-free and arachidic acid-bound OleTJE reveal that the P450 active site is preformed for fatty acid binding. OleTJE heme iron has an unusually positive redox potential (−103 mV versus normal hydrogen electrode), which is not significantly affected by substrate binding, despite extensive conversion of the heme iron to a high spin ferric state. Terminal alkenes are produced from a range of saturated fatty acids (C12–C20), and stopped-flow spectroscopy indicates a rapid reaction between peroxide and fatty acid-bound OleTJE (167 s−1 at 200 μm H2O2). Surprisingly, the active site is highly similar in structure to the related P450BSβ, which catalyzes hydroxylation of fatty acids as opposed to decarboxylation. Our data provide new insights into structural and mechanistic properties of a robust P450 with potential industrial applications. PMID:24443585
Crystal structure of tannase from Lactobacillus plantarum.
Ren, Bin; Wu, Mingbo; Wang, Qin; Peng, Xiaohong; Wen, Hua; McKinstry, William J; Chen, Qianming
2013-08-09
Tannins are water-soluble polyphenolic compounds in plants. Hydrolyzable tannins are derivatives of gallic acid (3,4,5-trihydroxybenzoic acid) or its meta-depsidic forms that are esterified to polyol, catechin, or triterpenoid units. Tannases are a family of esterases that catalyze the hydrolysis of the galloyl ester bond in hydrolyzable tannins to release gallic acid. The enzymes have found wide applications in food, feed, beverage, pharmaceutical, and chemical industries since their discovery more than a century ago, although little is known about them at the molecular level, including the details of the catalytic and substrate binding sites. Here, we report the first three-dimensional structure of a tannase from Lactobacillus plantarum. The enzyme displays an α/β structure, featured by a large cap domain inserted into the classical serine hydrolase fold. A catalytic triad was identified in the structure, which is composed of Ser163, His451, and Asp419. During the binding of gallic acid, the carboxyl group of the molecule forges hydrogen-bonding interactions with the catalytic triad of the enzyme while the three hydroxyl groups make contacts with Asp421, Lys343, and Glu357 to form another hydrogen-bonding network. Mutagenesis studies demonstrated that these residues are indispensable for the activity of the enzyme. Structural studies of the enzyme in complex with a number of substrates indicated that the interactions at the galloyl binding site are the determinant force for the binding of substrates. The single galloyl binding site is responsible for the esterase and depsidase activities of the enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hieber, A David; Bugos, Robert C; Verhoeven, Amy S; Yamamoto, Harry Y
2002-01-01
Violaxanthin de-epoxidase (VDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of violaxanthin to form antheraxanthin and zeaxanthin. VDE is predicted to be a lipocalin protein with a central barrel structure flanked by a cysteine-rich N-terminal domain and a glutamate-rich C-terminal domain. A full-length Arabidopsis thaliana (L.) Heynh. VDE and deletion mutants of the N- and C-terminal regions were expressed in Escherichia coli and tobacco (Nicotiana tabacum L. cv. Xanthi) plants. High expression of VDE in E. coli was achieved after adding the argU gene that encodes the E. coli arginine AGA tRNA. However, the specific activity of VDE expressed in E. coli was low, possibly due to incorrect folding. Removal of just 4 amino acids from the N-terminal region abolished all VDE activity whereas 71 C-terminal amino acids could be removed without affecting activity. The difficulties with expression in E. coli were overcome by expressing the Arabidopsis VDE in tobacco. The transformed tobacco exhibited a 13- to 19-fold increase in VDE specific activity, indicating correct protein folding. These plants also demonstrated an increase in the initial rate of nonphotochemical quenching consistent with an increased initial rate of de-epoxidation. Deletion mutations of the C-terminal region suggest that this region is important for binding of VDE to the thylakoid membrane. Accordingly, in vitro lipid-micelle binding experiments identified a region of 12 amino acids that is potentially part of a membrane-binding domain. The transformed tobacco plants are the first reported example of plants with an increased level of VDE activity.
Regulated expression of a repressor protein: FadR activates iclR.
Gui, L; Sunnarborg, A; LaPorte, D C
1996-01-01
The control of the glyoxylate bypass operon (aceBAK) of Escherichia coli is mediated by two regulatory proteins, IclMR and FadR. IclMR is a repressor protein which has previously been shown to bind to a site which overlaps the aceBAK promoter. FAR is a repressor/activator protein which participates in control of the genes of fatty acid metabolism. A sequence just upstream of the iclR promoter bears a striking resemblance to FadR binding sites found in the fatty acid metabolic genes. The in vitro binding specificity of FadR, determined by oligonucleotide selection, was in good agreement with the sequences of these sites. The ability of FadR to bind to the site associated with iclR was demonstrated by gel shift and DNase I footprint analyses. Disruption of FadR or inactivation of the FadR binding site of iclR decreased the expression of an iclR::lacZ operon fusion, indicating that FadR activates the expression of iclR. It has been reported that disruption of fadR increases the expression of aceBAK. We observed a similar increase when we inactivated the FadR binding site of an iclR+ allele. This result suggests that FadR regulates aceBAK indirectly by altering the expression of IclR. PMID:8755903
Helledie, Torben; Jørgensen, Claus; Antonius, Marianne; Krogsdam, Ann M; Kratchmarova, Irina; Kristiansen, Karsten; Mandrup, Susanne
2002-10-01
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that are activated by a number of fatty acids and fatty acid derivatives. By contrast, we have recently shown that acyl-CoA esters display PPAR antagonistic properties in vitro. We have also shown that the adipocyte lipid binding protein (ALBP), the keratinocyte lipid binding protein (KLBP) and the acyl-CoA binding protein (ACBP) exhibit a prominent nuclear localization in differentiating 3T3-L1 adipocytes. Similarly, ectopic expression of these proteins in CV-1 cells resulted in a primarily nuclear localization. We therefore speculated that FABPs and ACBP might regulate the availability of PPAR agonists and antagonists by affecting not only their esterification in the cytoplasm but also their transport to and availability in the nucleus. We show here that coexpression of ALBP or ACBP exerts a negative effect on ligand-dependent PPAR transactivation, when tetradecylthioacetic (TTA) is used as ligand but not when the thiazolidinedione BRL49653 is used as ligand. The results presented here do not support the hypothesis that ALBP facilitates the transport of the fatty acid-type ligands to the nucleus, rather ALBP appears to sequester or increase the turn-over of the agonist. Similarly, our results are in keeping with a model in which ACBP increase the metabolism of these ligands.
Fair-Mäkelä, Ruth; Salo-Ahen, Outi M. H.; Guédez, Gabriela; Bligt-Lindén, Eva; Grönholm, Janne; Jalkanen, Sirpa; Salminen, Tiina A.
2016-01-01
Sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on leukocyte surface is a counter-receptor for endothelial cell surface adhesin, human primary amine oxidase (hAOC3), a target protein for anti-inflammatory agents. This interaction can be used to detect inflammation and cancer in vivo, since the labeled peptides derived from the second C2 domain (C22) of Siglec-9 specifically bind to the inflammation-inducible hAOC3. As limited knowledge on the interaction between Siglec-9 and hAOC3 has hampered both hAOC3-targeted drug design and in vivo imaging applications, we have now produced and purified the extracellular region of Siglec-9 (Siglec-9-EC) consisting of the V, C21 and C22 domains, modeled its 3D structure and characterized the hAOC3–Siglec-9 interactions using biophysical methods and activity/inhibition assays. Our results assign individual, previously unknown roles for the V and C22 domains. The V domain is responsible for the unusually tight Siglec-9–hAOC3 interactions whereas the intact C22 domain of Siglec-9 is required for modulating the enzymatic activity of hAOC3, crucial for the hAOC3-mediated leukocyte trafficking. By characterizing the Siglec-9-EC mutants, we could conclude that R120 in the V domain likely interacts with the terminal sialic acids of hAOC3 attached glycans whereas residues R284 and R290 in C22 are involved in the interactions with the active site channel of hAOC3. Furthermore, the C22 domain binding enhances the enzymatic activity of hAOC3 although the sialic acid-binding capacity of the V domain of Siglec-9 is abolished by the R120S mutation. To conclude, our results prove that the V and C22 domains of Siglec-9-EC interact with hAOC3 in a multifaceted and unique way, forming both glycan-mediated and direct protein-protein interactions, respectively. The reported results on the mechanism of the Siglec-9–hAOC3 interaction are valuable for the development of hAOC3-targeted therapeutics and diagnostic tools. PMID:27893774
Matsubara, Naoko; Imamura, Akihiro; Yonemizu, Tatsuya; Akatsu, Chizuru; Yang, Hongrui; Ueki, Akiharu; Watanabe, Natsuki; Abdu-Allah, Hajjaj; Numoto, Nobutaka; Takematsu, Hiromu; Kitazume, Shinobu; Tedder, Thomas F.; Marth, Jamey D.; Ito, Nobutoshi; Ando, Hiromune; Ishida, Hideharu; Kiso, Makoto; Tsubata, Takeshi
2018-01-01
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic sialosides that bind to CD22 with high-affinity modulate B cell activation through endogenous ligand-dependent and independent pathways, and carry an adjuvant activity without inducing inflammation. PMID:29725338
Matsubara, Naoko; Imamura, Akihiro; Yonemizu, Tatsuya; Akatsu, Chizuru; Yang, Hongrui; Ueki, Akiharu; Watanabe, Natsuki; Abdu-Allah, Hajjaj; Numoto, Nobutaka; Takematsu, Hiromu; Kitazume, Shinobu; Tedder, Thomas F; Marth, Jamey D; Ito, Nobutoshi; Ando, Hiromune; Ishida, Hideharu; Kiso, Makoto; Tsubata, Takeshi
2018-01-01
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC 50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic sialosides that bind to CD22 with high-affinity modulate B cell activation through endogenous ligand-dependent and independent pathways, and carry an adjuvant activity without inducing inflammation.
Lin, Ai-Hsuan; Chen, Haw-Wen; Liu, Cheng-Tze; Tsai, Chia-Wen; Lii, Chong-Kuei
2012-07-04
Numerous genes expression is regulated in response to amino acid shortage, which helps organisms adapt to amino acid limitation. The expression of the π class of glutathione (GSH) S-transferase (GSTP), a highly inducible phase II detoxification enzyme, is regulated mainly by activates activating protein 1 (AP-1) binding to the enhancer I of GSTP (GPEI). Here we show the critical role of nuclear factor erythroid-2-related factor 2 (Nrf2) in up-regulating GSTP gene transcription. Primary rat hepatocytes were cultured in a methionine-restricted medium, and immunoblotting and RT-PCR analyses showed that methionine restriction time-dependently increased GSTP protein and mRNA expression over a 48 h period. Nrf2 translocation to the nucleus, nuclear proteins binding to GPEI, and antioxidant response element (ARE) luciferase reporter activity were increased by methionine restriction as well as by l-buthionine sulfoximine (BSO), a GSH synthesis inhibitor. Transfection with Nrf2 siRNA knocked down Nrf2 expression and reversed the methionine-induced GSTP expression and GPEI binding activity. Chromatin immunoprecipitation assay confirmed the binding of Nrf2 to the GPEI. Phosphorylation of extracellular signal-regulated kinase 2 (ERK2) was increased in methionine-restricted and BSO-treated cells. ERK2 siRNA abolished methionine restriction-induced Nrf2 nuclear translocation, GPEI binding activity, ARE-luciferase reporter activity, and GSTP expression. Our results suggest that the up-regulation of GSTP gene transcription in response to methionine restriction likely occurs via the ERK-Nrf2-GPEI signaling pathway.
USDA-ARS?s Scientific Manuscript database
Catalysis and inhibitor binding by the GH43 beta-xylosidase are governed by the protonation state of catalytic base (D14, pKa 5.0) and catalytic acid (E186, pKa 7.2) which reside in subsite -1 of the two-subsite active site. Cationic aminoalcohols are shown to bind exclusively to subsite -1 of the ...
Process for separation and preconcentration of radium from water
Dietz, Mark; Horwitz, E. Philip; Chiarizia, Renato; Bartsch, Richard A.
1999-01-01
A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an ›H.sup.+ ! concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured.
Process for separation and preconcentration of radium from water
Dietz, M.; Horwitz, E.P.; Chiarizia, R.; Bartsch, R.A.
1999-01-26
A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an [H{sup +}] concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured. 24 figs.
Helicobacter pylori and Complex Gangliosides
Roche, Niamh; Ångström, Jonas; Hurtig, Marina; Larsson, Thomas; Borén, Thomas; Teneberg, Susann
2004-01-01
Recognition of sialic acid-containing glycoconjugates by the human gastric pathogen Helicobacter pylori has been repeatedly demonstrated. To investigate the structural requirements for H. pylori binding to complex gangliosides, a large number of gangliosides were isolated and characterized by mass spectrometry and proton nuclear magnetic resonance. Ganglioside binding of sialic acid-recognizing H. pylori strains (strains J99 and CCUG 17874) and knockout mutant strains with the sialic acid binding adhesin SabA or the NeuAcα3Galβ4GlcNAcβ3Galβ4GlcNAcβ-binding neutrophil-activating protein HPNAP deleted was investigated using the thin-layer chromatogram binding assay. The wild-type bacteria bound to N-acetyllactosamine-based gangliosides with terminal α3-linked NeuAc, while gangliosides with terminal NeuGcα3, NeuAcα6, or NeuAcα8NeuAcα3 were not recognized. The factors affecting binding affinity were identified as (i) the length of the N-acetyllactosamine carbohydrate chain, (ii) the branches of the carbohydrate chain, and (iii) fucose substitution of the N-acetyllactosamine core chain. While the J99/NAP− mutant strain displayed a ganglioside binding pattern identical to that of the parent J99 wild-type strain, no ganglioside binding was obtained with the J99/SabA− mutant strain, demonstrating that the SabA adhesin is the sole factor responsible for the binding of H. pylori bacterial cells to gangliosides. PMID:14977958
Xie, Yongjing; Min, Soyoung; Harte, Níal P; Kirk, Hannah; O'Brien, John E; Voorheis, H Paul; Svanborg, Catharina; Hun Mok, K
2013-01-01
Human α-lactalbumin made lethal to tumor cells (HAMLET) and its analogs are partially unfolded protein-oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge-specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively-charged lysine residues to negatively-charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild-type α-lactalbumin-oleic acid complex. With the addition of OA, the wild-type and guanidinated α-lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α-lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively-charged basic groups on α-lactalbumin and the negatively-charged carboxylate groups on OA molecules play an essential role in the binding of OA to α-lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volakakis, Nikolaos; Joodmardi, Eliza; Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se
2009-12-25
The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4Amore » NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.« less
Villapakkam, Anuradha C; Handke, Luke D; Belitsky, Boris R; Levdikov, Vladimir M; Wilkinson, Anthony J; Sonenshein, Abraham L
2009-11-01
Bacillus subtilis CodY protein is a DNA-binding global transcriptional regulator that responds to branched-chain amino acids (isoleucine, leucine, and valine) and GTP. Crystal structure studies have shown that the N-terminal region of the protein includes a GAF domain that contains a hydrophobic pocket within which isoleucine and valine bind. This region is well conserved in CodY homologs. Site-directed mutagenesis was employed to understand the roles of some of the residues in the GAF domain and hydrophobic pocket in interaction with isoleucine and GTP. The F40A, F71E, and F98A forms of CodY were inactive in vivo. They were activatable by GTP but to a much lesser extent by branched-chain amino acids in vitro. The CodY mutant R61A retained partial repression of target promoters in vivo and was able to respond to GTP in vitro but also responded poorly to branched-chain amino acids in vitro unless GTP was simultaneously present. Thus, the GAF domain includes residues essential for full activation of CodY by branched-chain amino acids, but these residues are not critical for activation by GTP. Binding studies with branched-chain amino acids and their analogs revealed that an amino group at position 2 and a methyl group at position 3 of valine are critical components of the recognition of the amino acids by CodY.
Analogs of palmitoyl-CoA that are substrates for myristoyl-CoA:protein N-myristoyltransferase.
Rudnick, D A; Lu, T; Jackson-Machelski, E; Hernandez, J C; Li, Q; Gokel, G W; Gordon, J I
1992-11-01
Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (Nmt1p; EC 2.3.1.97) is an essential enzyme that is highly selective for myristoyl-CoA in vivo. It is unclear why myristate (C14:0), a rare cellular fatty acid, has been selected for this covalent protein modification over more abundant fatty acids such as palmitate (C16:0), nor is it obvious how the enzyme's acyl-CoA binding site is able to discriminate between these two fatty acids. Introduction of a cis double bond between C5 and C6 of palmitate [(Z)-5-hexadecenoic acid] or a triple bond between C4 and C5 or C6 and C7 (Y4- and Y6-hexadecenoic acids) yields compounds that, when converted to their CoA derivatives, approach the activity of myristoyl-CoA as Nmt1p substrates in vitro. Kinetic studies of 42 C12-C18 fatty acids containing triple bonds, para-phenylene, or a 2,5-furyl group, as well as cis and trans double bonds, suggest that the geometry of the enzyme's acyl-CoA binding site requires that the acyl chain of active substrates assume a bent conformation in the vicinity of C5. Moreover, the distance between C1 and the bend appears to be a critical determinant for optimal positioning of the acyl-CoA in this binding site so that peptide substrates can subsequently bind in the sequential ordered bi-bi reaction mechanism. Identification of active, conformationally restricted analogs of palmitate offers an opportunity to "convert" wild-type or mutant Nmts to palmitoyltransferases so that they can deliver these C16 fatty acids to critical N-myristoylproteins in vivo. nmt181p contains a Gly-451-->Asp mutation, which causes a marked reduction in the enzyme's affinity for myristoyl-CoA. Strains of S. cerevisiae containing nmt1-181 exhibit temperature-sensitive myristic acid auxotrophy: their complete growth arrest at 37 degrees C is relieved when the medium is supplemented with 500 microM C14:0 but not with C16:0. The CoA derivatives of (Z)-5-hexadecenoic and Y6-hexadecynoic acids are as active substrates for the mutant enzyme as myristoyl-CoA at 24 degrees C. However, unlike C16:0, they produce growth arrest of nmt181p-producing cells at this "permissive" temperature, suggesting that these C16 fatty acids do not allow expression of the biological functions of essential S. cerevisiae N-myristoylproteins.
Analogs of palmitoyl-CoA that are substrates for myristoyl-CoA:protein N-myristoyltransferase.
Rudnick, D A; Lu, T; Jackson-Machelski, E; Hernandez, J C; Li, Q; Gokel, G W; Gordon, J I
1992-01-01
Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (Nmt1p; EC 2.3.1.97) is an essential enzyme that is highly selective for myristoyl-CoA in vivo. It is unclear why myristate (C14:0), a rare cellular fatty acid, has been selected for this covalent protein modification over more abundant fatty acids such as palmitate (C16:0), nor is it obvious how the enzyme's acyl-CoA binding site is able to discriminate between these two fatty acids. Introduction of a cis double bond between C5 and C6 of palmitate [(Z)-5-hexadecenoic acid] or a triple bond between C4 and C5 or C6 and C7 (Y4- and Y6-hexadecenoic acids) yields compounds that, when converted to their CoA derivatives, approach the activity of myristoyl-CoA as Nmt1p substrates in vitro. Kinetic studies of 42 C12-C18 fatty acids containing triple bonds, para-phenylene, or a 2,5-furyl group, as well as cis and trans double bonds, suggest that the geometry of the enzyme's acyl-CoA binding site requires that the acyl chain of active substrates assume a bent conformation in the vicinity of C5. Moreover, the distance between C1 and the bend appears to be a critical determinant for optimal positioning of the acyl-CoA in this binding site so that peptide substrates can subsequently bind in the sequential ordered bi-bi reaction mechanism. Identification of active, conformationally restricted analogs of palmitate offers an opportunity to "convert" wild-type or mutant Nmts to palmitoyltransferases so that they can deliver these C16 fatty acids to critical N-myristoylproteins in vivo. nmt181p contains a Gly-451-->Asp mutation, which causes a marked reduction in the enzyme's affinity for myristoyl-CoA. Strains of S. cerevisiae containing nmt1-181 exhibit temperature-sensitive myristic acid auxotrophy: their complete growth arrest at 37 degrees C is relieved when the medium is supplemented with 500 microM C14:0 but not with C16:0. The CoA derivatives of (Z)-5-hexadecenoic and Y6-hexadecynoic acids are as active substrates for the mutant enzyme as myristoyl-CoA at 24 degrees C. However, unlike C16:0, they produce growth arrest of nmt181p-producing cells at this "permissive" temperature, suggesting that these C16 fatty acids do not allow expression of the biological functions of essential S. cerevisiae N-myristoylproteins. Images PMID:1438240
Pfeiffer, M; Klein, A; Steinert, P; Schomburg, D
The 25 amino acid long subunit VhuU of the F420-non-reducing hydrogenase from Methanococcus voltae contains selenocysteine within the consensus sequence of known [NiFe] hydrogenases DP(C or U)CxxCxxH (U = selenocysteine). The sulfur-analogue VhuUc was chemically synthesized, purified and its metal binding capability, the catalytic properties, and structural features were investigated. The polypeptide was able to bind nickel, but did not catalyse the heterolytic activation of H2. 2D-NMR spectroscopy revealed an alpha-helical secondary structure for the 15 N-terminal amino acids in 50% TFE. Nickel only binds to the C-terminus, which contains the conserved amino acid motif. Structures derived from the NMR data are compatible with the participation of both sulfur atoms from the conserved cysteine residues in a metal ion binding. Structures obtained from the data sets for Ni.VhuUc as well as Zn.VhuUc showed no further ligands. The informational value for Ni.VhuUc was low due to paramagnetism.
Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin
2012-01-01
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614
Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin
2012-02-10
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.
Nitschke, Lars
2014-09-01
CD22 and Siglec-G are two B-cell expressed members of the Siglec (sialic acid-binding immunoglobulin (Ig)-like lectin) family and are potent inhibitors of B-cell signaling. Genetic approaches have provided evidence that this inhibition of B-cell antigen receptor (BCR) signaling by Siglecs is dependent on ligand binding to sialic acids in specific linkages. The cis-ligand-binding activity of CD22 leads to homo-oligomer formation, which are to a large extent found in membrane domains that are distinct from those containing the BCR. In contrast, Siglec-G is recruited via sialic acid binding to the BCR. This interaction of Siglec-G with mIgM leads to an inhibitory function that seems to be specific for B-1 cells. Both CD22 and Siglec-G control B-cell tolerance and loss of these proteins, its ligands or its inhibitory pathways can increase the susceptibility for autoimmune diseases. CD22 is a target protein both in B-cell leukemias and lymphomas, as well as in B-cell mediated autoimmune diseases. Both antibodies and synthetic chemically modified sialic acids are currently tested to target Siglecs on B cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study
NASA Astrophysics Data System (ADS)
Singh, T. Sanjoy; Mitra, Sivaprasad
2011-03-01
Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant ( κq), Stern-Volmer constant ( KSV) and also the ligand-protein association constant ( Ka). The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10 4 dm 3 mol -1. In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.
Ren, Xiao-Min; Cao, Lin-Ying; Zhang, Jing; Qin, Wei-Ping; Yang, Yu; Wan, Bin; Guo, Liang-Hong
2016-04-05
Human G protein-coupled receptor 40 (hGPR40), with medium- and long-chain free fatty acids (FFAs) as its natural ligands, plays an important role in the enhancement of glucose-dependent insulin secretion. To date, information about the direct binding of FFAs to hGPR40 is very limited, and how carbon-chain length affects the activities of FFAs on hGPR40 is not yet understood. In this study, a fluorescein-fasiglifam analogue (F-TAK-875A) conjugate was designed and synthesized as a site-specific fluorescence probe to study the interaction of FFAs with hGPR40. hGPR40 was expressed in human embryonic kidney 293 cells and labeled with F-TAK-875A. By using flow cytometry, competitive binding of FFA and F-TAK-875A to hGPR40-expressed cells was measured. Binding affinities of 18 saturated FFAs, with carbon-chain lengths ranging from C6 to C23, were analyzed. The results showed that the binding potencies of FFAs to hGPR40 were dependent on carbon length. There was a positive correlation between length and binding potency for seven FFAs (C9-C15), with myristic acid (C15) showing the highest potency, 0.2% relative to TAK-875. For FFAs with a length of fewer than C9 or more than C15, they had very weak or no binding. Molecular docking results showed that the binding pocket of TAK-875 in hGPR40 could enclose FFAs with lengths of C15 or fewer. However, for FFAs with lengths longer than C15, part of the alkyl chain extended out of the binding pocket. This study provided insights into the structural dependence of FFAs binding to and activation of hGPR40.
Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon
2017-08-01
Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.
Okuda, Ken-ichi; Yanagihara, Sae; Sugayama, Tomomichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji
2010-06-01
Lantibiotics are peptide-derived antibacterial substances produced by some Gram-positive bacteria and characterized by the presence of unusual amino acids, like lanthionines and dehydrated amino acids. Because lantibiotic producers may be attacked by self-produced lantibiotics, they express immunity proteins on the cytoplasmic membrane. An ATP-binding cassette (ABC) transport system mediated by the LanFEG protein complex is a major system in lantibiotic immunity. Multiple-sequence alignment analysis revealed that LanF proteins contain the E loop, a variant of the Q loop, which is a well-conserved motif in the nucleotide-binding domains (NBDs) of general ABC transporters. To elucidate E loop function, we introduced a mutation in the NukF protein, which is involved in the nukacin-ISK-1 immunity system. Amino acid replacement of glutamic acid in the E loop with glutamine (E85Q) resulted in slight decreases in the immunity level and transport activity. Additionally, the E85A mutation severely impaired the immunity level and transport activity. On the other hand, ATPase activities of purified E85Q and E85A mutants were almost similar to that of the wild type. These results suggested that the E loop found in ABC transporters involved in lantibiotic immunity plays a significant role in the function of these transporters, especially in the structural change of transmembrane domains.
Ashraf, Zaman; Rafiq, Muhammad; Nadeem, Humaira; Hassan, Mubashir; Afzal, Samina; Waseem, Muhammad; Afzal, Khurram; Latip, Jalifah
2017-01-01
The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.
Zhou, Zhanping; Zhao, Shuangzhi; Liu, Yang; Chang, Zhengying; Ma, Yanhe; Li, Jian; Song, Jiangning
2016-11-01
The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.
A novel glucan-binding protein with lipase activity from the oral pathogen Streptococcus mutans.
Shah, Deepan S H; Russell, Roy R B
2004-06-01
Streptococcus mutans produces extracellular glucosyltransferases (GTFs) that synthesize glucans from sucrose. These glucans are important in determining the permeability properties and adhesiveness of dental plaque. GTFs and the GbpA glucan-binding protein are characterized by a binding domain containing a series of 33-amino-acid repeats, called 'A' repeats. The S. mutans genome sequence was searched for ORFs containing 'A' repeats, and one novel gene, gbpD, which appears to be unique to the mutans group of streptococci, was identified. The GbpD sequence revealed the presence of three 'A' repeats, in the middle of the protein, and a novel glucan-binding assay showed that GbpD binds to dextran with a K(D) of 2-3 nM. Construction of truncated derivatives of GbpD confirmed that the 'A' repeat region was essential for binding. Furthermore, a gbpD knockout mutant was modified in the extent of aggregation induced by polymers derived from sucrose. The N-terminus of GbpD has a signal sequence, followed by a region with no homologues in the public databases, while the C-terminus has homology to the alpha/beta hydrolase family (including lipases and carboxylesterases). GbpD contains the two regions typical of these enzymes: a GxSxG active site 'lipase box' and an 'oxyanion hole'. GbpD released free fatty acids (FFAs) from a range of triglycerides in the presence of calcium, indicating a lipase activity. The glucan binding/lipase bifunctionality suggested the natural substrate for the enzyme may be a surface macromolecule consisting of carbohydrate linked to lipid. The gbpD mutant was less hydrophobic than wild-type and pure recombinant GbpD reduced the hydrophobicity of S. mutans and another plaque bacterium, Streptococcus sanguinis. GbpD bound to and released FFA from lipoteichoic acid (LTA) of S. sanguinis, but had no effect on LTA from S. mutans. These results raise the intriguing possibility that GbpD may be involved in direct interspecies competition within the plaque biofilm.
Deactivation of the E. coli pH stress sensor CadC by cadaverine.
Haneburger, Ina; Fritz, Georg; Jurkschat, Nicole; Tetsch, Larissa; Eichinger, Andreas; Skerra, Arne; Gerland, Ulrich; Jung, Kirsten
2012-11-23
At acidic pH and in the presence of lysine, the pH sensor CadC activates transcription of the cadBA operon encoding the lysine/cadaverine antiporter CadB and the lysine decarboxylase CadA. In effect, these proteins contribute to acid stress adaptation in Escherichia coli. cadBA expression is feedback inhibited by cadaverine, and a cadaverine binding site is predicted within the central cavity of the periplasmic domain of CadC on the basis of its crystallographic analysis. Our present study demonstrates that this site only partially accounts for the cadaverine response in vivo. Instead, evidence for a second, pivotal binding site was collected, which overlaps with the pH-responsive patch of amino acids located at the dimer interface of the periplasmic domain. The temporal response of the E. coli Cad module upon acid shock was measured and modeled for two CadC variants with mutated cadaverine binding sites. These studies supported a cascade-like binding and deactivation model for the CadC dimer: binding of cadaverine within the pair of central cavities triggers a conformational transition that exposes two further binding sites at the dimer interface, and the occupation of those stabilizes the inactive conformation. Altogether, these data represent a striking example for the deactivation of a pH sensor. Copyright © 2012 Elsevier Ltd. All rights reserved.
The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.
Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik
2014-01-01
The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.
Acid monolayer functionalized iron oxide nanoparticle catalysts
NASA Astrophysics Data System (ADS)
Ikenberry, Myles
Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide nanoparticle syntheses and functionalizations for biomedical and catalytic applications, affecting understandings of surface charge and other material properties.
NASA Astrophysics Data System (ADS)
Mulatsari, E.; Mumpuni, E.; Herfian, A.
2017-05-01
Curcumin is yellow colored phenolic compounds contained in Curcuma longa. Curcumin is known to have biological activities as anti-inflammatory, antiviral, antioxidant, and anti-infective agent [1]. Synthesis of curcumin analogue compounds has been done and some of them had biological activity like curcumin. In this research, the virtual screening of curcumin analogue compounds has been conducted. The purpose of this research was to determine the activity of these compounds as selective Cyclooxygenase-2inhibitors in in-silico. Binding mode elucidation was made by active and inactive representative compounds to see the interaction of the amino acids in the binding site of the compounds. This research used AYO_COX2_V.1.1, a structure-based virtual screening protocol (SBVS) that has been validated by Mumpuni E et al, 2014 [2]. AYO_COX2_V.1.1 protocol using a variety of integrated applications such as SPORES, PLANTS, BKchem, OpenBabel and PyMOL. The results of virtual screening conducted on 49 curcumin analogue compounds obtained 8 compounds with 4 active amino acid residues (GLY340, ILE503, PHE343, and PHE367) that were considered active as COX-2 inhibitor.
Using mass spectrometry to study the photo-affinity labeling of protein tyrosine phosphatase 1B
NASA Astrophysics Data System (ADS)
Leriche, Tammy; Skorey, Kathryn; Roy, Patrick; McKay, Dan; Bateman, Kevin P.
2004-11-01
Protein tyrosine phosphatase 1B (PTP1B) is a potential target for the treatment of Type II diabetes and several companies are developing small molecule inhibitors of this enzyme. Part of the characterization of these compounds as PTP1B inhibitors is the understanding of how they bind in the enzyme active site. The use of photo-activated inhibitors that target the active site can provide such insight. This paper describes the characterization of a photoprobe directed at the active site of PTP1B. Mass spectrometry revealed the specific binding of the probe to the intact protein. Digestion of the labeled protein followed by LC-MS and LC-MS/MS was used to show that the photoprobe binds to a specific active site amino acid. This was confirmed by comparison with the X-ray structure of PTP1B with a PTP1B inhibitor. The probe labels a conserved acidic residue (Asp) that is required for catalytic activity. This photoprobe may prove to be a useful tool for the development of a PTP1B inhibitor or for the study of PTPs in general.
Costigan, M G; Gilchrist, T L; Lindup, W E
1996-06-01
The furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (5-propyl FPA) accumulates in the plasma of patients with chronic renal failure and is a major contributor to the drug binding defect of uraemic plasma. This acid has also been implicated in several other aspects of the uraemic syndrome: anaemia, irregularities of thyroid function, neurological symptoms and inhibition of active tubular secretion. The acid is not commercially available and its synthesis, starting with Meldrum's acid and methyl succinyl chloride, is described. The pKa values were measured by titration and values of 3.2 and 3.6 respectively were assigned to the carboxylic acid groups attached directly to the ring at position 3 and at position 2 (on the side-chain). The partition coefficient (log P) between hydrochloric acid and octanol was 1.2 and the distribution coefficient (log D; octanol-phosphate buffer pH 7.4) was -0.59. The pKa values and the degree of hydrophobic character of 5-propyl FPA are consistent with those of other protein-bound acids which undergo active tubular secretion by the kidney and this substance may serve as an endogenous marker for the effects of drugs and disease on this process.
Sayre, M H; Geiduschek, E P
1988-09-01
The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.
Awate, Sanket; Brosh, Robert M
2017-06-08
Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.
Awate, Sanket; Brosh, Robert M.
2017-01-01
Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies. PMID:28594346
Kasuga, Jun-ichi; Yamasaki, Daisuke; Araya, Yoko; Nakagawa, Aya; Makishima, Makoto; Doi, Takefumi; Hashimoto, Yuichi; Miyachi, Hiroyuki
2006-12-15
A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes.
[Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].
Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian
2014-03-01
In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.
The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.
Catalá, A
1984-10-01
Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.
Strychnine Binding Associated with Glycine Receptors of the Central Nervous System
Young, Anne B.; Snyder, Solomon H.
1973-01-01
[3H]Strychnine binds to synaptic-membrane fractions of the spinal cord in a selective fashion, indicating an interaction with postsynaptic glycine receptors. Displacement of strychnine by glycine and other amino acids parallels their glycine-like neurophysiologic activity. The regional localization of strychnine binding in the central nervous system correlates closely with endogenous glycine concentrations. In subcellular fractionation experiments, strychnine binding is most enhanced in synaptic-membrane fractions. Strychnine binding is saturable, with affinity constants for glycine and strychnine of 10 and 0.03 μM, respectively. PMID:4200724
Jones, Brian W; Hinkle, Patricia M
2008-07-01
Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.
Selection of the simplest RNA that binds isoleucine
LOZUPONE, CATHERINE; CHANGAYIL, SHANKAR; MAJERFELD, IRENE; YARUS, MICHAEL
2003-01-01
We have identified the simplest RNA binding site for isoleucine using selection-amplification (SELEX), by shrinking the size of the randomized region until affinity selection is extinguished. Such a protocol can be useful because selection does not necessarily make the simplest active motif most prominent, as is often assumed. We find an isoleucine binding site that behaves exactly as predicted for the site that requires fewest nucleotides. This UAUU motif (16 highly conserved positions; 27 total), is also the most abundant site in successful selections on short random tracts. The UAUU site, now isolated independently at least 63 times, is a small asymmetric internal loop. Conserved loop sequences include isoleucine codon and anticodon triplets, whose nucleotides are required for amino acid binding. This reproducible association between isoleucine and its coding sequences supports the idea that the genetic code is, at least in part, a stereochemical residue of the most easily isolated RNA–amino acid binding structures. PMID:14561881
Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J. V.; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania
2013-01-01
The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This al1ows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects. PMID:23857228
Ogawa, Yuko; Iwama, Masanori; Ohgi, Kazuko; Tsuji, Tsutomu; Irie, Masachika; Itagaki, Tadashi; Kobayashi, Hiroko; Inokuchi, Norio
2002-06-01
The sialic acid binding lectin from bullfrog oocytes (cSBL) is known to have anti-tumor activity. In a previous report, to elucidate the relationship between the net charge and anti-tumor activity of cSBL, we examined the effect of chemical modifications of cSBL with a water-soluble carbodiimide in the presence of various nucleophiles. The results suggested that the anti-tumor activity and internalization into tumor cells increased with an increase in the net charge of cSBL. However, in the chemically modified cSBL, a modification site was observed on average in two of the carboxyl groups of cSBL. To confirm these previous results and to determine which modified carboxyl group contributes to the increase in anti-tumor activity, we prepared mutants with substitutions of Asn/Gln and Arg at three acidic amino acid residues of cSBL and studied their anti-tumor activity and internalization efficiency. The results showed the enhancing effect of charge on anti-tumor activity and internalization, and suggested that the replacement of D24 and E88 of cSBL with arginine is more effective than that of E97. The double mutant D24RE88R showed comparable anti-tumor activity to the ethylenediamine-modified cSBL reported previously. The mutant was well-characterized as a pure cSBL derivative suitable for studying the mechanism of the anti-tumor action of cSBL.
Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.
Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J
2014-08-01
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook
2008-01-01
FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402
Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook
2008-10-24
FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation.
Papoutsopoulou, Stamatia; Janknecht, Ralf
2000-01-01
The ETS protein ER81 is a DNA-binding factor capable of enhancing gene transcription and is implicated in cellular transformation, but presently the mechanisms of its actions are unclear. In this report, ER81 is shown to coimmunoprecipitate with the transcriptional coactivator CREB-binding protein (CBP) and the related p300 protein (together referred to as CBP/p300). Moreover, confocal laser microscopic studies demonstrated that ER81 and p300 colocalized to nuclear speckles. In vitro and in vivo interaction studies revealed that ER81 amino acids 249 to 429, which encompass the ETS DNA-binding domain, are responsible for binding to CBP/p300. However, mutation of a putative protein-protein interaction motif, LXXLL, in the ETS domain of ER81 did not affect interaction with CBP/p300, whereas DNA binding of ER81 was abolished. Furthermore, two regions within CBP, amino acids 451 to 721 and 1891 to 2175, are capable of binding to ER81. Consistent with the physical interaction between ER81 and the coactivators CBP and p300, ER81 transcriptional activity was potentiated by CBP/p300 overexpression. Moreover, an ER81-associated protein kinase activity was enhanced upon p300 overexpression. This protein kinase phosphorylates ER81 on serines 191 and 216, and mutation of these phosphorylation sites increased ER81 transcriptional activity in Mv1Lu cells but not in HeLa cells. Altogether, our data elucidate the mechanism of how ER81 regulates gene transcription, through interaction with the coactivators CBP and p300 and an associated kinase that may cell type specifically modulate the ability of ER81 to activate gene transcription. PMID:10982847
Biological activity of silylated amino acid containing substance P analogues.
Cavelier, F; Marchand, D; Martinez, J; Sagan, S
2004-03-01
The need to replace natural amino acids in peptides with nonproteinogenic counterparts to obtain new medicinal agents has stimulated a great deal of innovation on synthetic methods. Here, we report the incorporation of non-natural silylated amino acids in substance P (SP), the binding affinity for the two hNK-1 binding sites and, the potency to stimulate phospholipase C (PLC) and adenylate cyclase of the resulting peptide. We also assess the improvement of their stability towards enzyme degradation. Altogether, we found that replacing glycine with silaproline (Sip) in position 9 of SP leads to a potent analogue exhibiting an increased resistance to angiotensin-converting enzyme hydrolysis.
Preserved pharmacological activity of hepatocytes-treated extracts of valerian and St. John's wort.
Simmen, Urs; Saladin, Caroline; Kaufmann, Priska; Poddar, Manisha; Wallimann, Christine; Schaffner, Willi
2005-07-01
The two herbal extracts valerian (Valeriana officinalis L.) and St. John's wort (Hypericum perforatum L.) were studied for their metabolic changes upon incubation with freshly prepared rat hepatocytes and subsequently analysed phytochemically as well as pharmacologically in vitro. Quantitative HPLC analysis of valerian extracts revealed considerable metabolic activities with regard to sesquiterpenes and iridoids. The amount of acetoxyvalerenic acid decreased 9-fold, while that of hydroxyvalerenic acid correspondingly increased 9-fold due to O-deacetylation. The valepotriates didrovaltrate, isovaltrate and valtrate decreased 2-, 18- and 16-fold, respectively. However, the binding affinities of the incubated extracts to the benzodiazepine and picrotoxin binding site of the GABA (A) receptor were quite similar to those of the non-incubated extracts. Neither valerenic acids nor valepotriates exhibited any significant effect on the two binding sites when tested as single compounds. Therefore, either other constituents represent the active ones or multiple compounds are necessary for the observed inhibitory and allosteric effects at the GABA (A) receptor. Extracts of St. John's wort were less potently metabolised than valerian. The amount of pseudohypericin and the main flavonoids (hyperoside, rutin, isoquercitrin, quercitrin, quercetin and I3,II8-biapigenin) slightly decreased during the 4-h incubation period. Both the antagonist effect at the corticotropin-releasing factor (CRF) type 1 receptor and the binding inhibition at the 5-HT transporter were attenuated during the metabolic treatment. The reduced antagonist effect correlates with the decreasing amount of pseudohypericin known to be a CRF (1) receptor antagonist. In conclusion, the incubation of plant extracts with freshly prepared rat hepatocytes represents a useful approach to study the pharmacological action of metabolised plant extracts. The consistent pharmacological activity of both valerian and St. John's wort is concordant with the known clinical efficacy of pharmacological activities.
Somatostatin: a novel substrate and a modulator of insulin-degrading enzyme activity.
Ciaccio, Chiara; Tundo, Grazia R; Grasso, Giuseppe; Spoto, Giuseppe; Marasco, Daniela; Ruvo, Menotti; Gioia, Magda; Rizzarelli, Enrico; Coletta, Massimo
2009-02-06
Insulin-degrading enzyme (IDE) is an interesting pharmacological target for Alzheimer's disease (AD), since it hydrolyzes beta-amyloid, producing non-neurotoxic fragments. It has also been shown that the somatostatin level reduction is a pathological feature of AD and that it regulates the neprilysin activity toward beta-amyloid. In this work, we report for the first time that IDE is able to hydrolyze somatostatin [k(cat) (s(-1))=0.38 (+/-0.05); K(m) (M)=7.5 (+/-0.9) x 10(-6)] at the Phe6-Phe7 amino acid bond. On the other hand, somatostatin modulates IDE activity, enhancing the enzymatic cleavage of a novel fluorogenic beta-amyloid through a decrease of the K(m) toward this substrate, which corresponds to the 10-25 amino acid sequence of the Abeta(1-40). Circular dichroism spectroscopy and surface plasmon resonance imaging experiments show that somatostatin binding to IDE brings about a concentration-dependent structural change of the secondary and tertiary structure(s) of the enzyme, revealing two possible binding sites. The higher affinity binding site disappears upon inactivation of IDE by ethylenediaminetetraacetic acid, which chelates the catalytic Zn(2+) ion. As a whole, these features suggest that the modulatory effect is due to an allosteric mechanism: somatostatin binding to the active site of one IDE subunit (where somatostatin is cleaved) induces an enhancement of IDE proteolytic activity toward fluorogenic beta-amyloid by another subunit. Therefore, this investigation on IDE-somatostatin interaction contributes to a more exhaustive knowledge about the functional and structural aspects of IDE and its pathophysiological implications in the amyloid deposition and somatostatin homeostasis in the brain.
Xu, Li; Ji, Jin-Jun; Le, Wangping; Xu, Yan S; Dou, Dandan; Pan, Jieli; Jiao, Yifeng; Zhong, Tianfei; Wu, Dehong; Wang, Yumei; Wen, Chengping; Xie, Guan-Qun; Yao, Feng; Zhao, Heng; Fan, Yong-Sheng; Chin, Y Eugene
2015-10-15
Cytokine or growth factor activated STAT3 undergoes multiple post-translational modifications, dimerization and translocation into nuclei, where it binds to serum-inducible element (SIE, 'TTC(N3)GAA')-bearing promoters to activate transcription. The STAT3 DNA binding domain (DBD, 320-494) mutation in hyper immunoglobulin E syndrome (HIES), called the HIES mutation (R382Q, R382W or V463Δ), which elevates IgE synthesis, inhibits SIE binding activity and sensitizes genes such as TNF-α for expression. However, the mechanism by which the HIES mutation sensitizes STAT3 in gene induction remains elusive. Here, we report that STAT3 binds directly to the AGG-element with the consensus sequence 'AGG(N3)AGG'. Surprisingly, the helical N-terminal region (1-355), rather than the canonical STAT3 DBD, is responsible for AGG-element binding. The HIES mutation markedly enhances STAT3 AGG-element binding and AGG-promoter activation activity. Thus, STAT3 is a dual specificity transcription factor that promotes gene expression not only via SIE- but also AGG-promoter activity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Damayanti, E.; Istiqomah, L.; Saragih, J. E.; Purwoko, T.; Sardjono
2017-12-01
Our previous studies have selected lactic acid bacteria (LAB) with antifungal activities from traditional fermented foods made from cassava (G7) and silage feed palm leaf (PDS5 and PDS3). In this study we evaluated their ability to bind aflatoxin B1 (AFB1) and probiotic characteristic. The probiotic characteristic assays of LAB consisted of resistance to acidic conditions (pH 3), gastric juice and bile salts 0.3%. We also carried out an in vitro evaluation of LAB aflatoxin binding ability in viable and non-viable cell for 24 and 48 hours of incubation. The measurement of aflatoxin content was performed by ELISA method using AgraQuant Total Aflatoxin Assay kit. The results showed that all isolates were potential as probiotics and the G7 isolate had the highest viability among other isolates in pH 3 (92.61 %) and the bile salts assay (97.71 %). The percentage of aflatoxin reduction between viable and non-viable cell from each LAB isolate were different. The highest aflatoxin reduction in viable cell assay was performed by G7 isolate (69.11 %) whereas in non-viable cell assay was performed by PDS3 isolate (73.75 %) during incubation time 48 hours. In this study, G7 isolate performed the best probiotic characteristics with the highest viability in acid pH assay, bile salt 0.3% assay and percentage of aflatoxin B1 reduction in viable cell condition. Molecular identification using 16S rRNA sequence analysis showed that G7 isolate had homology with Lactobacillus plantarum (99.9%). It was concluded that Lactobacillus plantarum G7 was potential as probiotic with aflatoxin binding activities.
A kinetic study of Trichoderma reesei Cel7B catalyzed cellulose hydrolysis.
Song, Xiangfei; Zhang, Shujun; Wang, Yefei; Li, Jingwen; He, Chunyan; Yao, Lishan
2016-06-01
One prominent feature of Trichoderma reesei (Tr) endoglucanases catalyzed cellulose hydrolysis is that the reaction slows down quickly after it starts (within minutes). But the mechanism of the slowdown is not well understood. A structural model of Tr- Cel7B catalytic domain bound to cellulose was built computationally and the potentially important binding residues were identified and tested experimentally. The 13 tested mutants show different binding properties in the adsorption to phosphoric acid swollen cellulose and filter paper. Though the partitioning parameter to filter paper is about 10 times smaller than that to phosphoric acid swollen cellulose, a positive correlation is shown for two substrates. The kinetic studies show that the reactions slow down quickly for both substrates. This slowdown is not correlated to the binding constant but anticorrelated to the enzyme initial activity. The amount of reducing sugars released after 24h by Cel7B in phosphoric acid swollen cellulose, Avicel and filter paper cellulose hydrolysis is correlated with the enzyme activity against a soluble substrate p-nitrophenyl lactoside. Six of the 13 tested mutants, including N47A, N52D, S99A, N323D, S324A, and S346A, yield ∼15-35% more reducing sugars than the wild type (WT) Cel7B in phosphoric acid swollen cellulose and filter paper hydrolysis. This study reveals that the slowdown of the reaction is not due to the binding of the enzyme to cellulose. The activity of Tr- Cel7B against the insoluble substrate cellulose is determined by the enzyme's capability in hydrolyzing the soluble substrate. Copyright © 2016 Elsevier Inc. All rights reserved.
Pan, Yadi; Yang, Yufang; Pang, Yanjiao; Shi, Ying; Long, Yijuan; Zheng, Huzhi
2018-08-01
Ficin, a classical sulfhydryl protease, was found to possess intrinsic peroxidase-like activity. In this paper, we have put forward a novel strategy to improving the peroxidase-like activity of ficin through binding heme. Heme-ficin complexes were successfully obtained by simple one-step syntheticism. The results demonstrated that the catalytic activity and efficiency of heme-ficin complexes were about 1.7 times and 3 times higher than those of native ficin, respectively. Taking advantages of the high peroxidase-like activity, the heme-ficin complexes were used for colorimetric determination of uric acid with a low detection limit of 0.25 μM. Based on the excellent selectivity and sensitivity, we detected the concentration of uric acid in human serum successfully. On the basis of these findings, the heme-ficin complexes are promising for wide applications in various fields. Thus we not only optimized the peroxidase-like activity of the ficin, but also established a new strategy for development of artificial enzyme mimics by mimicking the architecture of the active site in horseradish peroxidase. Copyright © 2018 Elsevier B.V. All rights reserved.
Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.
2015-01-01
Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or, alternatively, it has a different mechanism of substrate binding than other polygalacturonases characterized to date. PMID:26571265
Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C
2015-01-01
Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or, alternatively, it has a different mechanism of substrate binding than other polygalacturonases characterized to date.
Structure-Activity Correlations with Compounds Related to Abscisic Acid 1
Sondheimer, Ernest; Walton, Daniel C.
1970-01-01
Inhibition of cell expansion of excised embryonic axes of Phaseolus vulgaris was used to evaluate the growth-inhibiting activity of abscisic acid and related compounds. None of the 13 compounds tested was as active as abscisic acid. 4-Hydroxyisophorone, a substance representative of the abscisic acid ring system was essentially inactive; cis, trans-3-methylsorbic acid, a compound resembling the side chain of abscisic acid, had low activity; and cis, trans-β-ionylideneacetic acid was one-sixth as active. Loss of the ring double bond results in a drastic decrease in biological activity. Comparison of our results with those reported previously leads to the suggestion that the double bond of the cyclohexyl moiety may have an important function in determining the degree of activity of cis, trans-ionylideneacetic acids. Two modes of action are discussed. It seems possible that the ring double bond is involved in covalent bonding in binding of the abscisic acid analogue to macromolecules. This may require formation of an intermediate epoxide. It can also be argued that stereochemical differences between cyclohexane derivatives are important factors in determining the degree of biological activity. PMID:5423465
Isogai, E; Isogai, H; Matuo, K; Hirose, K; Kowashi, Y; Okumuara, K; Hirata, M
2003-10-01
This paper reports the effect of the synthesized 27-amino acid sequence in the C-terminal domain of human CAP18 (hCAP18), a human cationic antibacterial protein or cathelicidin, on certain strains belonging to the genera Porophyromonas and Prevotella. The domain binds lipopolysaccharides (LPS) from Porophyromonas gingivalis and Porophyromonas circumdentaria as well as enterobacterial LPS. Two analogues of hCAP18, designated LL/CAP18 and FF/CAP18, were also tested to determine whether additional activity was obtained. The analogue peptides replaced with hydrophobic and cationic amino acid residues showed more potent bactericidal and LPS-binding activities than the original one.
Liu, J; Burdette, J E; Sun, Y; Deng, S; Schlecht, S M; Zheng, W; Nikolic, D; Mahady, G; van Breemen, R B; Fong, H H S; Pezzuto, J M; Bolton, J L; Farnsworth, N R
2004-01-01
A methanol extract of chaste-tree berry (Vitex agnus-castus L.) was tested for its ability to displace radiolabeled estradiol from the binding site of estrogen receptors alpha (ERalpha) and beta (ERbeta). The extract at 46 +/- 3 microg/ml displaced 50% of estradiol from ERalpha and 64 +/- 4 microg/ml from ERbeta. Treatment of the ER+ hormone-dependent T47D:A18 breast cancer cell line with the extract induced up-regulation of ERbeta mRNA. Progesterone receptor (PR) mRNA was upregulated in the Ishikawa endometrial cancer cell line. However, chaste-tree berry extract did not induce estrogen-dependent alkaline phosphatase (AP) activity in Ishikawa cells. Bioassay-guided isolation, utilizing ER binding as a monitor, resulted in the isolation of linoleic acid as one possible estrogenic component of the extract. The use of pulsed ultrafiltration liquid chromatography-mass spectrometry, which is an affinity-based screening technique, also identified linoleic acid as an ER ligand based on its selective affinity, molecular weight, and retention time. Linoleic acid also stimulated mRNA ERbeta expression in T47D:A18 cells, PR expression in Ishikawa cells, but not AP activity in Ishikawa cells. These data suggest that linoleic acid from the fruits of Vitex agnus-castus can bind to estrogen receptors and induce certain estrogen inducible genes.
Characterization and antifungal properties of wheat nonspecific lipid transfer proteins.
Sun, Jin-Yue; Gaudet, Denis A; Lu, Zhen-Xiang; Frick, Michele; Puchalski, Byron; Laroche, André
2008-03-01
This study simultaneously considered the phylogeny, fatty acid binding ability, and fungal toxicity of a large number of monocot nonspecific lipid transfer proteins (ns-LTP). Nine novel full-length wheat ns-LTP1 clones, all possessing coding sequences of 348 bp, isolated from abiotic- and biotic-stressed cDNA libraries from aerial tissues, exhibited highly conserved coding regions with 78 to 99 and 71 to 100% identity at the nucleotide and amino acid levels, respectively. Phylogenetic analyses revealed two major ns-LTP families in wheat. Eight wheat ns-LTP genes from different clades were cloned into the expression vector pPICZalpha and transformed into Pichia pastoris. Sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and in vitro lipid binding activity assay confirmed that the eight ns-LTP were all successfully expressed and capable of in vitro binding fatty acid molecules. A comparative in vitro study on the toxicity of eight wheat ns-LTP to mycelium growth or spore germination of eight wheat pathogens and three nonwheat pathogens revealed differential toxicities among different ns-LTP. Values indicating 50% inhibition of fungal growth or spore germination of three selected ns-LTP against six fungi ranged from 1 to 7 microM. In vitro lipid-binding activity of ns-LTP was not correlated with their antifungal activity. Using the fluorescent probe SYTOX Green as an indicator of fungal membrane integrity, the in vitro toxicity of wheat ns-LTP was associated with alteration in permeability of fungal membranes.
Zhu, Hong; Yoshimoto, Tanihiro; Yamashima, Tetsumori
2014-10-03
The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Ueshima, Shuhei; Nagata, Kyosuke; Okuwaki, Mitsuru
2017-11-15
Upstream binding factor (UBF) is a member of the high-mobility group (HMG) box protein family, characterized by multiple HMG boxes and a C-terminal acidic region (AR). UBF is an essential transcription factor for rRNA genes and mediates the formation of transcriptionally active chromatin in the nucleolus. However, it remains unknown how UBF is specifically localized to the nucleolus. Here, we examined the molecular mechanisms that localize UBF to the nucleolus. We found that the first HMG box (HMG box 1), the linker region (LR), and the AR cooperatively regulate the nucleolar localization of UBF1. We demonstrated that the AR intramolecularly associates with and attenuates the DNA binding activity of HMG boxes and confers the structured DNA preference to HMG box 1. In contrast, the LR was found to serve as a nuclear localization signal and compete with HMG boxes to bind the AR, permitting nucleolar localization of UBF1. The LR sequence binds DNA and assists the stable chromatin binding of UBF. We also showed that the phosphorylation status of the AR does not clearly affect the localization of UBF1. Our results strongly suggest that associations of the AR with HMG boxes and the LR regulate UBF nucleolar localization. Copyright © 2017 American Society for Microbiology.
Banerjee, Rajat; Pennington, Matthew W.; Garza, Amanda; Owens, Ida S.
2008-01-01
The UDP-glucuronosyltransferase (UGT) isozyme system is critical for protecting the body against endogenous and exogenous chemicals by linking glucuronic acid donated by UDP-glucuronic acid to a lipophilic acceptor substrate. UGTs convert metabolites, dietary constituents and environmental toxicants to highly excretable glucuronides. Because of difficulties associated with purifying endoplasmic reticulum-bound UGTs for structural studies, we carried out homology-based computer modeling to aid analysis. The search found structural homology in Escherichia coli UDP-galactose 4-epimerase. Consistent with predicted similarities involving the common UDP-moiety in substrates, UDP-glucose and UDP-hexanol amine caused competitive inhibition by Lineweaver-Burk plots. Among predicted binding sites N292, K314, K315 and K404 in UGT1A10, two informative sets of mutants K314R/Q/A/E /G and K404R/E had null activities or 2.7-fold higher/50% less activity, respectively. Scatchard analysis of binding data of affinity-ligand, 5-azido-uridine-[β-32P]-diphosphoglucuronic acid, to purified UGT1A10-His or UGT1A7-His revealed high and low affinity binding sites. 2-Nitro 5-thiocyanobenzoic acid-digested UGT1A10-His bound with radiolabeled affinity-ligand revealed an 11.3- and 14.3-kDa peptide associated with K314 and K404, respectively, in a discontinuous SDS-PAGE system. Similar treatment of 1A10His-K314A bound with the ligand lacked both peptides; 1A10-HisK404R- and 1A10-HisK404E showed 1.3-fold greater- and 50% less-label in the 14.3-kDa peptide, respectively, compared to 1A10-His without affecting the 11.3-kDa peptide. Scatchard analysis of binding data of affinity-ligand to 1A10His-K404R and -K404E showed a 6-fold reduction and a large increase in Kd, respectively. Our results indicate: K314 and K404 are required UDP-glcA binding sites in 1A10, that K404 controls activity and high affinity sites and that K314 and K404 are strictly conserved in 70 aligned UGTs, except for S321--equivalent to K314-- in UGT2B15 and 2B17 and I321 in the inactive UGT8, which suggests UGT2B15 and 2B17 contain suboptimal activity. Hence our data strongly support UDPglcA binding to K314 and K404 in UGT1A10. PMID:18570380
Structure–activity relationships for the binding of polymyxins with human α-1-acid glycoprotein
Azad, Mohammad A.K.; Huang, Johnny X.; Cooper, Matthew A.; Roberts, Kade D.; Thompson, Philip E.; Nation, Roger L.; Li, Jian; Velkov, Tony
2012-01-01
Here, for the first time, we have characterized binding properties of the polymyxin class of antibiotics for human α-1-acid glycoprotein (AGP) using a combination of biophysical techniques. The binding affinity of colistin, polymyxin B, polymyxin B3, colistin methansulfonate, and colistin nona-peptide was determined by isothermal titration calorimetry (ITC), surface plasma resonance (SPR) and fluorometric assay methods. All assay techniques indicated colistin, polymyxin B and polymyxin B3 display a moderate binding affinity for AGP. ITC and SPR showed there was no detectable binding affinity for colistin methansulfonate and colistin nona-peptide, suggesting both the positive charges of the diaminobutyric acid (Dab) side chains and the N-terminal fatty acyl chain of the polymyxin molecule are required to drive binding to AGP. In addition, the ITC and fluorometric data suggested that endogenous lipidic substances bound to AGP provide part of the polymyxin binding surface. A molecular model of the polymyxin B3–AGP F1*S complex was presented that illustrates the pivotal role of the N-terminal fatty acyl chain and the D-Phe6-L-Leu7 hydrophobic motif of polymyxin B3 for binding to the cleft-like ligand binding cavity of AGP F1*S variant. The model conforms with the entropy driven binding interaction characterized by ITC which suggests hydrophobic interactions coupled to desolvation events and conformational changes are the primary driving force for polymyxins binding to AGP. Collectively, the data are consistent with a role of this acute-phase reactant protein in the transport of polymyxins in plasma. PMID:22587817
NASA Technical Reports Server (NTRS)
Yang, Tianbao; Poovaiah, B. W.
2002-01-01
We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Cifuentes, Gladys
Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.
Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.
2011-01-01
Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671
Bharadwaj, Vivek S; Dean, Anthony M; Maupin, C Mark
2013-08-21
The fumarate addition reaction, catalyzed by the enzyme benzylsuccinate synthase (BSS), is considered to be one of the most intriguing and energetically challenging reactions in biology. BSS belongs to the glycyl radical enzyme family and catalyzes the fumarate addition reaction, which enables microorganisms to utilize hydrocarbons as an energy source under anaerobic conditions. Unfortunately, the extreme sensitivity of the glycyl radical to oxygen has hampered the structural and kinetic characterization of BSS, thereby limiting our knowledge on this enzyme. To enhance our molecular-level understanding of BSS, a computational approach involving homology modeling, docking studies, and molecular dynamics (MD) simulations has been used to deduce the structure of BSS's catalytic subunit (BSSα) and illuminate the molecular basis for the fumarate addition reaction. We have identified two conserved and distinct binding pockets at the BSSα active site: a hydrophobic pocket for toluene binding and a polar pocket for fumaric acid binding. Subsequent dynamical and energetic evaluations have identified Glu509, Ser827, Leu390, and Phe384 as active site residues critical for substrate binding. The orientation of substrates at the active site observed in MD simulations is consistent with experimental observations of the syn addition of toluene to fumaric acid. It is also found that substrate binding tightens the active site and restricts the conformational flexibility of the thiyl radical, leading to hydrogen transfer distances conducive to the proposed reaction mechanism. The stability of substrates at the active site and the occurrence of feasible radical transfer distances between the thiyl radical, substrates, and the active site glycine indicate a substrate-assisted radical transfer pathway governing fumarate addition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi
2009-08-01
The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid andmore » glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.« less
Rühl, R; Plum, C; Elmazar, M M; Nau, H
2001-09-01
Isotretinoin (13-cis-retinoic acid [13CRA], Accutane) is used for the treatment of dermatological diseases. Isotretinoin is, however, teratogenic in animals and humans. The mechanism of action of its teratogenicity is still not clearly identified. It has little or no binding properties to cytosolic retinoid-binding proteins or nuclear retinoid receptors (RAR, RXR). One hypothesis is that the teratogenicity of 2 approximately equipotent teratogenic doses of 13CRA and all-trans-retinoic acids (ATRA) could mainly be correlated to ATRA in the nuclei, where the retinoic acid receptors (RARs) are located. To test this hypothesis, female mice at gestational day 11 were treated with approximately equipotent teratogenic doses of 13-cis-retinoic acid (100 mg/kg orally) or all-trans-retinoic acid (10 mg/kg orally) and sacrificed 1 h and 4 h after administration. Embryos were homogenized and centrifuged into 4 fractions, and the purity of the fractions was tested by quantification of marker constituents for various cell compartments. We analyzed, by RP-HPLC, nuclear, mitochondrial, microsomal, and cytosolic fractions, as well as embryo homogenate and maternal plasma. After treatment with 13-cis-retinoic acid, this substance was mainly located in the nuclear fraction of the embryo (approximately 82%), whereas all-trans-retinoic acid, after ATRA treatment, was mainly located in the cytosolic supernatant (approximately 64%). The binding to cellular retinoid-binding protein (CRABP) may limit the access of ATRA to the nucleus, in contrast to 13CRA, which does not bind to CRABP. The concentration of ATRA in the nuclear fraction was similar after administration of either 13CRA or ATRA. The teratogenic activity of 13-cis-retinoic acid could therefore be explained by its access to the nucleus and its possible conversion to all-trans-retinoic acids, which will interact with the nuclear retinoid receptors.
Qin, Ling; Mills, Denise A.; Hiser, Carrie; Murphree, Anna; Garavito, R. Michael; Ferguson-Miller, Shelagh; Hosler, Jonathan
2008-01-01
Cytochrome c oxidase (CcO) transfers protons from the inner surface of the enzyme to the buried O2 reduction site through two different pathways, termed K and D, and from the outer surface via an undefined route. These proton paths can be inhibited by metals such as zinc or cadmium, but the sites of inhibition have not been established. Anomalous difference Fourier analyses of Rhodobacter sphaeroides CcO crystals, with cadmium added, reveal metal binding sites that include the proposed initial proton donor/acceptor of the K pathway, Glu-101 of subunit II. Mutant forms of CcO that lack Glu-101II (E101A and E101A/H96A) exhibit low activity and eliminate metal binding at this site. Significant activity is restored to E101A and E101A/H96A by adding the lipophilic carboxylic compounds, arachidonic acid and cholic acid, but not by their non-carboxylic analogues. These amphipathic acids likely provide their carboxylic groups as substitute proton donors/acceptors in the absence of Glu-101II, as previously observed for arachidonic acid in mutants that alter Asp-132I of the D pathway. The activity of E101A/H96A is still inhibited by zinc, but this remaining inhibition is nearly eliminated by removal of subunit III, which is known to alter the D pathway. The results identify the Glu-101/His-96 site of subunit II as the site of metal binding that inhibits the uptake of protons into the K pathway and indicate that subunit III contributes to zinc binding and/or inhibition of the D pathway. By removing subunit III from E101A/H96A, thereby eliminating zinc inhibition of the uptake of protons from the inner surface of CcO, we confirm that an external zinc binding site is involved in inhibiting the backflow of protons to the active site. PMID:17477548
Abdullah, Mohammed A A; Abuo-Rahma, Gamal El-Din A A; Abdelhafez, El-Shimaa M N; Hassan, Heba A; Abd El-Baky, Rehab M
2017-02-01
New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC 50 =1.22μM and 2.20μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease. Copyright © 2016 Elsevier Inc. All rights reserved.
Domonkos, Celesztina; Fitos, Ilona; Visy, Júlia; Zsila, Ferenc
2013-12-02
Harmane and norharmane are representative members of the large group of natural β-carboline alkaloids featured with diverse pharmacological activities. In blood, these agents are transported by human serum albumin (HSA) which has a profound impact on the pharmacokinetic and pharmacodynamic properties of many therapeutic drugs and xenobiotics. By combination of various spectroscopic methods, the present contribution is aimed to elucidate how nonesterified fatty acids (FAs), the primary endogenous ligands of HSA, affect the binding properties of harmane and norharmane. Analysis of induced circular dichroism (CD) and fluorescence spectroscopic data indicates the inclusion of the neutral form of both molecules into the binding pocket of subdomain IIIA, which hosts two FA binding sites, too. The induced CD and UV absorption spectra of harmane and norharmane exhibit peculiar changes upon addition of FAs, suggesting the formation of ternary complexes in which the lipid ligands significantly alter the binding mode of the alkaloids via cooperative allosteric mechanism. To our knowledge, it is the first instance of the demonstration of drug-FA cobinding at site IIIA. In line with these results, molecular docking calculations showed two distinct binding positions of norharmane within subdomain IIIA. The profound increase in the affinity constants of β-carbolines estimated in the presence of FAs predicts that the unbound, pharmacologically active serum fraction of these compounds strongly depends on the actual lipid binding profile of HSA.
Li, Q L; Yi, S C; Li, D Z; Nie, X P; Li, S Q; Wang, M-Q; Zhou, A M
2018-06-01
Odorant binding proteins (OBPs) are considered as the core molecular targets in reverse chemical ecology, which is a convenient and efficient method by which to screen potential semiochemicals. Herein, we identified a classic OBP, AbamOBP1 from Aenasius bambawalei, which showed high mRNA expression in male antennae. Fluorescence competitive binding assay (FCBA) results demonstrated that AbamOBP1 has higher binding affinity with ligands at acid pH, suggesting the physiologically inconsistent binding affinity of this protein. Amongst the four compounds with the highest binding affinities at acid pH, 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one were shown to have attractant activity for male adults, whereas (-)-limonene and an analogue of 1-octen-3-ol exhibited nonbehavioural activity. Further homology modelling and fluorescence quenching experiments demonstrated that the stoichiometry of the binding of this protein to these ligands was not 1: 1, suggesting that the results of FCBA were false. In contrast, the apparent association constants (Ka) of fluorescence quenching experiments seemed to be more reliable, because 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one had observably higher Ka than (-)-limonene and 1-octen-3-ol at neutral pH. Based on the characteristics of different OBPs, various approaches should be applied to study their binding affinities with ligands, which could modify and complement the results of FCBA and contribute to the application of reverse chemical ecology. © 2018 The Royal Entomological Society.
Wu, Fang; Yan, Ming; Li, Yikun; Chang, Shaojie; Song, Xiaomin; Zhou, Zhaocai; Gong, Weimin
2003-12-19
SPE-16 is a new 16kDa protein that has been purified from the seeds of Pachyrrhizus erosus. It's N-terminal amino acid sequence shows significant sequence homology to pathogenesis-related class 10 proteins. cDNA encoding 150 amino acids was cloned by RT-PCR and the gene sequence proved SPE-16 to be a new member of PR-10 family. The cDNA was cloned into pET15b plasmid and expressed in Escherichia coli. The bacterially expressed SPE-16 also demonstrated ribonuclease-like activity in vitro. Site-directed mutation of three conserved amino acids E95A, E147A, Y150A, and a P-loop truncated form were constructed and their different effects on ribonuclease activities were observed. SPE-16 is also able to bind the fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) in the native state. The ANS anion is a much-utilized "hydrophobic probe" for proteins. This binding activity indicated another biological function of SPE-16.
Suzuki, Shunsuke; Kasai, Kentaro; Yamauchi, Kiyoshi
2015-01-01
Transthyretin (TTR) diverged from an ancestral 5-hydroxyisourate hydrolase (HIUHase) by gene duplication at some early stage of chordate evolution. To clarify how TTR had participated in the thyroid system as an extracellular thyroid hormone (TH) binding protein, TH binding properties of recombinant little skate Leucoraja erinacea TTR was investigated. At the amino acid level, skate TTR showed 37-46% identities with the other vertebrate TTRs. Because the skate TTR had a unique histidine-rich segment in the N-terminal region, it could be purified by Ni-affinity chromatography. The skate TTR was a 46-kDa homotetramer of 14.5kDa subunits, and had one order of magnitude higher affinity for 3,3',5-triiodo-l-thyronine (T3) and some halogenated phenols than for l-thyroxine. However, the skate TTR had no HIUHase activity. Ethylenediaminetetraacetic acid (EDTA) treatment inhibited [(125)I]T3 binding activity whereas the addition of Zn(2+) to the EDTA-treated TTR recovered [(125)I]T3 binding activity in a Zn(2+) concentration-dependent manner. Scatchard analysis revealed the presence of two classes of binding site for T3, with dissociation constants of 0.24 and 17nM. However, the high-affinity sites were completely abolished with 1mM EDTA, whereas the remaining low-affinity sites decreased binding capacity. The number of zinc per TTR was quantified to be 4.5-6.3. Our results suggest that skate TTR has tight Zn(2+)-binding sites, which are essential for T3 binding to at least the high-affinity sites. Zn(2+) binding to the N-terminal histidine-rich segment may play an important role in acquisition or reinforcement of TH binding ability during early evolution of TTR. Copyright © 2015 Elsevier Inc. All rights reserved.
Chicken scFvs with an Artificial Cysteine for Site-Directed Conjugation
Kim, Soohyun; Kim, Hyori; Chung, Junho
2016-01-01
For the site-directed conjugation of chemicals and radioisotopes to the chicken-derived single-chain variable fragment (scFv), we investigated amino acid residues replaceable with cysteine. By replacing each amino acid of the 157 chicken variable region framework residues (FR, 82 residues on VH and 75 on VL) with cysteine, 157 artificial cysteine mutants were generated and characterized. At least 27 residues on VL and 37 on VH could be replaced with cysteine while retaining the binding activity of the original scFv. We prepared three VL (L5, L6 and L7) and two VH (H13 and H16) mutants as scFv-Ckappa fusion proteins and showed that PEG-conjugation to the sulfhydryl group of the artificial cysteine was achievable in all five mutants. Because the charge around the cysteine residue affects the in vivo stability of thiol-maleimide conjugation, we prepared 16 charge-variant artificial cysteine mutants by replacing the flanking residues of H13 with charged amino acids and determined that the binding activity was not affected in any of the mutants except one. We prepared four charge-variant H13 artificial cysteine mutants (RCK, DCE, ECD and ECE) as scFv-Ckappa fusion proteins and confirmed that the reactivity of the sulfhydryl group on cysteine is active and their binding activity is retained after the conjugation process. PMID:26764487
Feng, Youjun; Cronan, John E
2011-04-01
Two transcriptional regulators, the FadR activator and the FabR repressor, control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was blocked in the absence of exogenous unsaturated fatty acids in a ΔfadR strain and found that the rates of transcription of fabA and fabB were unaffected by the lack of unsaturated thioesters. To examine the discrepancy between our in vivo results and the prior in vitro results we obtained active, natively folded forms of the E. coli and Vibrio cholerae FabRs by use of an in vitro transcription-translation system. We report that FabR bound the intact promoter regions of both fabA and fabB in the absence of unsaturated acyl thioesters, but bound the two promoters differently. Native FabR bound the fabA promoter region provided that the canonical FabR binding site is extended by inclusion of flanking sequences that overlap the neighbouring FadR binding site. In contrast, although binding to the fabB operator also required a flanking sequence, a non-specific sequence could suffice. However, unsaturated thioesters did allow FabR binding to the minimal FabR operator sites of both promoters which otherwise were not bound. Thus unsaturated thioester ligands were not essential for FabR/target DNA interaction, but acted to enhance binding. The gel mobility shift data plus in vivo expression data indicate that despite the remarkably similar arrangements of promoter elements, FadR predominately regulates fabA expression whereas FabR is the dominant regulator of fabB expression. We also report that E. coli fabR expression is not autoregulated. Complementation, qRT-PCR and fatty acid composition analyses demonstrated that V. cholerae FabR was a functional repressor of unsaturated fatty acid synthesis. However, in contrast to E. coli, gel mobility shift assays indicated that neither E. coli nor V. cholerae FabRs bound the V. cholerae fabB promoter, although both proteins efficiently bound the V. cholerae fabA promoter. This asymmetry was shown to be due to the lack of a FabR binding site within the V. cholerae fabB promoter region. © 2011 Blackwell Publishing Ltd.
Labib, Rola M; Youssef, Fadia S; Ashour, Mohamed L; Abdel-Daim, Mohamed M; Ross, Samir A
2017-08-29
The chemical composition of Pinus roxburghii bark essential oil (PRO) was qualitatively and quantitatively determined using GC/FID and GC/MS. The anti-inflammatory activity was assessed in vitro by evaluating the binding percentages on the cannabinoids and opioids receptors. Bleomycin (BLM)-induced pulmonary inflammation in albino mice was adopted to assess PRO anti-inflammatory efficacy in vivo. In silico molecular modelling of its major components was performed on human glucocorticoids receptor (GR). Seventy-five components were identified in which longifolene (33.13%) and palmitic acid (9.34%) constituted the predominant components. No binding was observed on cannabinoid receptor type 1 (CB1), whereas mild binding was observed on cannabinoid receptor type 2 (CB2), delta , kappa , and mu receptors accounting for 2.9%, 6.9%, 10.9% and 22% binding. A significant in vivo activity was evidenced by reduction of the elevated malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), interleukin-6 (IL-6), and tumor necrosis factor- α (TNF- α ) levels by 55.56%, 55.66%, 64.64%, 58.85% and 77.78% with concomitant elevation of superoxide dismutase (SOD) and catalase (CAT) activities comparable to BLM-treated group at 100 mg/kg body weight. In silico studies showed that palmitic acid exerted the fittest binding. PRO could serve as a potent anti-inflammatory natural candidate that should be supported by further clinical trials.
Ayers, Steven D.; Lin, Jean Z.; Cvoro, Aleksandra; Silveira, Rodrigo L.; Martínez, Leandro; Souza, Paulo C. T.; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A.; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A. R.; Skaf, Munir S.; Webb, Paul; Polikarpov, Igor
2012-01-01
Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products. PMID:22649490
Liberato, Marcelo Vizoná; Nascimento, Alessandro S; Ayers, Steven D; Lin, Jean Z; Cvoro, Aleksandra; Silveira, Rodrigo L; Martínez, Leandro; Souza, Paulo C T; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A R; Skaf, Munir S; Webb, Paul; Polikarpov, Igor
2012-01-01
Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.
Mahankali, Madhu; Henkels, Karen M.; Speranza, Francis; Gomez-Cambronero, Julian
2015-01-01
ABSTRACT Timely activation of Aurora kinase A (AURA, also known as AURKA) is vital for centrosome formation and the progression of mitosis. Nonetheless, it is still unclear if and when other cellular functions are activated by AURA. We report here that Src phosphorylates and activates AURA at T288, and AURA also activates focal adhesion kinase (FAK, also known as PTK2), leading to initiation of cell movement. An additional and new way by which AURA is regulated, is by phospholipase D2 (PLD2), which causes AURA activation. In addition, AURA phosphorylates PLD, so both proteins engage in a positive reinforcement loop. AURA and PLD2 form a protein–protein complex and colocalize to cytoplasmic regions in cells. The reason why PLD activates AURA is because of the production of phosphatidic acid by the lipase, which binds directly to AURA, with the region E171–E211 projected to be a phosphatidic-acid-binding pocket. Furthermore, this direct interaction with phosphatidic acid enhances tubulin polymerization and cooperates synergistically with AURA, FAK and Src in yielding a fully effectual cellular migration. Thus, Src and FAK, and PLD and phosphatidic acid are new upstream regulators of AURA that mediate its role in the non-mitotic cellular function of cell migration. PMID:25501815
Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte; Demmer, Charles S; Hansen, Jeanette; Han, Liwei; Monrad, Rune N; Nielsen, Birgitte; Tapken, Daniel; Pickering, Darryl S; Kastrup, Jette S; Frydenvang, Karla; Bunch, Lennart
2015-08-13
Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate. The 3-carboxyphenyl ring of 2e and 2f forms contacts comparable to those of the distal carboxylate in kainate.
A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor
Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G
2015-01-01
Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clerc, Isabelle, E-mail: isabelle.clerc@univ-montp1.f; CNRS, UM5236, CPBS, F-34965 Montpellier; Universite Montpellier 2, CPBS, F-34095 Montpellier
2009-09-01
HTLV-I bZIP factor (HBZ) contains a C-terminal zipper domain involved in its interaction with c-Jun. This interaction leads to a reduction of c-Jun DNA-binding activity and prevents the protein from activating transcription of AP-1-dependent promoters. However, it remained unclear whether the negative effect of HBZ-SP1 was due to its weak DNA-binding activity or to its capacity to target cellular factors to transcriptionally-inactive nuclear bodies. To answer this question, we produced a mutant in which specific residues present in the modulatory and DNA-binding domain of HBZ-SP1 were substituted for the corresponding c-Fos amino acids to improve the DNA-binding activity of themore » c-Jun/HBZ-SP1 heterodimer. The stability of the mutant, its interaction with c-Jun, DNA-binding activity of the resulting heterodimer, and its effect on the c-Jun activity were tested. In conclusion, we demonstrate that the repression of c-Jun activity in vivo is mainly due to the HBZ-SP1-mediated sequestration of c-Jun to the HBZ-NBs.« less
Sehar, Ujala; Mehmood, Muhammad Aamer; Hussain, Khadim; Nawaz, Salman; Nadeem, Shahid; Siddique, Muhammad Hussnain; Nadeem, Habibullah; Gull, Munazza; Ahmad, Niaz; Sohail, Iqra; Gill, Saba Shahid; Majeed, Summera
2013-01-01
This paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain. The protein presented a unique modular structure which could not be modeled using ordinary procedures. So, domain wise modeling using MODELLER and docking analyses using Autodock Vina were performed. The best conformation for each domain was selected using standard procedure. It was revealed that four amino acid residues Glu-71, Ser-74, Glu-76 and Gln-90 from N-terminal domain are involved in protein-substrate interaction. Similarly, amino acid residues Trp-20, Asn-21, Ser-23 and Val-30 of Fn-III like domains and Glu-15, Ala-17, Ser-18 and Leu-35 of C-terminal domain were involved in substrate binding. Site-directed mutagenesis of these proposed amino acid residues in future will elucidate the key amino acids involved in chitin binding activity of CBP50 protein.
Sun, Meng; Grigsby, Iwen F; Gorelick, Robert J; Mansky, Louis M; Musier-Forsyth, Karin
2014-01-01
Retroviral RNA encapsidation involves a recognition event between genomic RNA (gRNA) and one or more domains in Gag. In HIV-1, the nucleocapsid (NC) domain is involved in gRNA packaging and displays robust nucleic acid (NA) binding and chaperone functions. In comparison, NC of human T-cell leukemia virus type 1 (HTLV-1), a deltaretrovirus, displays weaker NA binding and chaperone activity. Mutation of conserved charged residues in the deltaretrovirus bovine leukemia virus (BLV) matrix (MA) and NC domains affects virus replication and gRNA packaging efficiency. Based on these observations, we hypothesized that the MA domain may generally contribute to NA binding and genome encapsidation in deltaretroviruses. Here, we examined the interaction between HTLV-2 and HIV-1 MA proteins and various NAs in vitro. HTLV-2 MA displays higher NA binding affinity and better chaperone activity than HIV-1 MA. HTLV-2 MA also binds NAs with higher affinity than HTLV-2 NC and displays more robust chaperone function. Mutation of two basic residues in HTLV-2 MA α-helix II, previously implicated in BLV gRNA packaging, reduces NA binding affinity. HTLV-2 MA binds with high affinity and specificity to RNA derived from the putative packaging signal of HTLV-2 relative to nonspecific NA. Furthermore, an HIV-1 MA triple mutant designed to mimic the basic character of HTLV-2 MA α-helix II dramatically improves binding affinity and chaperone activity of HIV-1 MA in vitro and restores RNA packaging to a ΔNC HIV-1 variant in cell-based assays. Taken together, these results are consistent with a role for deltaretrovirus MA proteins in viral RNA packaging.
Yang, Yi; Li, Wang; Liu, Yang; Sun, Yuning; Li, Yan; Yao, Qing; Li, Jianning; Zhang, Qian; Gao, Yujing; Gao, Ling; Zhao, Jiajun
2014-11-01
Understanding the mechanism by which alpha-lipoic acid supplementation has a protective effect upon nonalcoholic fatty liver disease in vivo and in vitro may lead to targets for preventing hepatic steatosis. Male C57BL/6J mice were fed a normal diet, high-fat diet or high-fat diet supplemented with alpha-lipoic acid for 24 weeks. HepG2 cells were incubated with normal medium, palmitate or alpha-lipoic acid. The lipid-lowering effects were measured. The protein expression and distribution were analyzed by Western blot, immunoprecipitation and immunofluorescence, respectively. We found that alpha-lipoic acid enhanced sirtuin 1 deacetylase activity through liver kinase B1 and stimulated AMP-activated protein kinase. By activating the sirtuin 1/liver kinase B1/AMP-activated protein kinase pathway, the translocation of sterol regulatory element-binding protein-1 into the nucleus and forkhead box O1 into the cytoplasm was prevented. Alpha-lipoic acid increased adipose triacylglycerol lipase expression and decreased fatty acid synthase abundance. In in vivo and in vitro studies, alpha-lipoic acid also increased nuclear NF-E2-related factor 2 levels and downstream target amounts via the sirtuin 1 pathway. Alpha-lipoic acid eventually reduced intrahepatic and serum triglyceride content. The protective effects of alpha-lipoic acid on hepatic steatosis appear to be associated with the transcription factors sterol regulatory element-binding protein-1, forkhead box O1 and NF-E2-related factor 2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Qian, Wenjian; Park, Jung-Eun; Liu, Fa; Lee, Kyung S.; Burke, Terrence R.
2012-01-01
Protein-protein interactions (PPIs) mediated by the polo-box domain (PBD) of polo-like kinase 1 (Plk1) serve important roles in cell proliferation. Critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pThr/pSer-residues in the binding ligands. However, there has been little examination of pThr/pSer mimetics within a PBD context. Our current paper compares the abilities of a variety of amino acid residues and derivatives to serve as pThr/pSer replacements by exploring the role of methyl functionality at the pThr β–position and by replacing the phosphoryl group by phosphonic acid, sulfonic acid and carboxylic acids. This work sheds new light on structure activity relationships for PBD recognition of phosphoamino acid mimetics. PMID:22743087
Nieva, Claudia; Busk, Peter K; Domínguez-Puigjaner, Eva; Lumbreras, Victoria; Testillano, Pilar S; Risueño, Maria-Carmen; Pagès, Montserrat
2005-08-01
The plant hormone abscisic acid regulates gene expression in response to growth stimuli and abiotic stress. Previous studies have implicated members of the bZIP family of transcription factors as mediators of abscisic acid dependent gene expression through the ABRE cis-element. Here, we identify two new maize bZIP transcription factors, EmBP-2 and ZmBZ-1 related to EmBP-1 and OsBZ-8 families. They are differentially expressed during embryo development; EmBP-2 is constitutive, whereas ZmBZ-1 is abscisic acid-inducible and accumulates during late embryogenesis. Both factors are nuclear proteins that bind to ABREs and activate transcription of the abscisic acid-inducible gene rab28 from maize. EmBP-2 and ZmBZ-1 are phosphorylated by protein kinase CK2 and phosphorylation alters their DNA binding properties. Our data suggest that EmBP-2 and ZmBZ-1 are involved in the expression of abscisic acid inducible genes such as rab28 and their activity is modulated by ABA and by phosphorylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela
To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressedmore » for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.« less
Keller, H; Givel, F; Perroud, M; Wahli, W
1995-07-01
Peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) are nuclear hormone receptors that are activated by fatty acids and 9-cis-retinoic acid, respectively. PPARs and RXRs form heterodimers that activate transcription by binding to PPAR response elements (PPREs) in the promoter of target genes. The PPREs described thus far consist of a direct tandem repeat of the AGGTCA core element with one intervening nucleotide. We show here that the vitellogenin A2 estrogen response element (ERE) can also function as a PPRE and is bound by a PPAR/RXR heterodimer. Although this heterodimer can bind to several other ERE-related palindromic response elements containing AGGTCA half-sites, only the ERE is able to confer transactivation of test reporter plasmids, when the ERE is placed either close to or at a distance from the transcription initiation site. Examination of natural ERE-containing promoters, including the pS2, very-low-density apolipoprotein II and vitellogenin A2 genes, revealed considerable differences in the binding of PPAR/RXR heterodimers to these EREs. In their natural promoter context, these EREs did not allow transcriptional activation by PPARs/RXRs. Analysis of this lack of stimulation of the vitellogenin A2 promoter demonstrated that PPARs/RXRs bind to the ERE but cannot transactivate due to a nonpermissive promoter structure. As a consequence, PPARs/RXRs inhibit transactivation by the estrogen receptor through competition for ERE binding. This is the first example of signaling cross-talk between PPAR/RXR and estrogen receptor.
Influence of freeze-thawing on hyaluronic acid binding of human spermatozoa.
Nijs, Martine; Creemers, Eva; Cox, Annemie; Janssen, Mia; Vanheusden, Elke; Castro-Sanchez, Yovanna; Thijs, Herbert; Ombelet, Willem
2009-08-01
Mature human spermatozoa have at least three specific hyaluronic acid (HA) binding proteins present on their sperm membrane. These receptors play a role in the acrosome reaction, hyaluronidase activity, hyaluronan-mediated motility and sperm-zona and sperm-oolemmal binding. Cryopreservation of spermatozoa can cause ultrastructural and even molecular damage. The aim of this study was to investigate if HA binding receptors of human spermatozoa remain functional after freeze-thawing. Forty patients were enrolled in the study. Semen samples were analysed before and after cryopreservation. Parameters analysed included concentration, motility, morphology and hyaluronan binding. Samples were frozen in CBS straws using a glycerol-glucose-based cryoprotectant. HA binding was studied using the sperm-hyaluronan binding assay. Freeze-thawing resulted in a significant decline in motility: the percentage of motile spermatozoa reduced from 50.6 to 30.3% (P < 0.001). HA binding properties of frozen-thawed spermatozoa remained unchanged after the freeze-thawing process: 68.5 +/- 17.1% spermatozoa of the neat sample were bound to HA, as were 71.3 +/- 20.4 of the frozen-thawed sample. This study indicates that freeze-thawing did not alter the functional hyaluronan binding sites of mature motile spermatozoa, and therefore will not alter their fertilizing potential.
Hill, R A; Wallace, L J; Miller, D D; Weinstein, D M; Shams, G; Tai, H; Layer, R T; Willins, D; Uretsky, N J; Danthi, S N
1997-09-26
Antagonists of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptors may have therapeutic potential as psychotropic agents. A series of mononitro- and dinitro-2- and 3-hydroxyphenylalanines was prepared, and their activity compared with willardiine, 5-nitrowillardiine, AMPA, and 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) as inhibitors of specific [3H]AMPA and [3H]kainate binding in rat brain homogenates. The most active compounds were highly acidic (pKa 3-4), namely, 2-hydroxy-3,5-dinitro-DL-phenylalanine (13; [3H]AMPA IC50 approximately equal to 25 microM) and 3-hydroxy-2,4-dinitro-DL-phenylalanine (19; [3H]AMPA IC50 approximately equal to 5 microM). Two other dinitro-3-hydroxyphenylalanines, and 3,5-dinitro-DL-tyrosine, were considerably less active. Various mononitrohydroxyphenylalanines, which are less acidic, were also less active or inactive, and 2- and 3-hydroxyphenylalanine (o- and m-tyrosine) were inactive. Compounds 13 and 19, DL-willardiine (pKa 9.3, [3H]AMPA IC50 = 2 microM), and 5-nitro-DL-willardiine (pKa 6.4, [3H]AMPA IC50 = 0.2 microM) displayed AMPA > kainate selectivity in binding studies. Compound 19 was an AMPA-like agonist, but 13 was an antagonist in an AMPA-evoked norepinephrine release assay in rat hippocampal nerve endings. Also, compound 13 injected into the rat ventral pallidum antagonized the locomotor activity elicited by systemic amphetamine.
Alfonso, Pilar; Pampín, Sandra; Estrada, Jorge; Rodríguez-Rey, José Carlos; Giraldo, Pilar; Sancho, Javier; Pocoví, Miguel
2005-01-01
Gaucher disease (GD) is a disorder of glycosphinglipid metabolism caused by deficiency of lysosomal acid beta-glucosidase (GC), resulting in progressive deposition of glucosylceramide in macrophages. The glucose analogue, N-butyl-deoxynojirimycin (NB-DNJ, Miglustat), is an inhibitor of the ceramide-specific glucosyltransferase (CSG) which catalyzes the first step of glycosphingolipids biosynthesis and is currently approved for the oral treatment of type 1 GD. Using site-directed mutagenesis, we constructed plasmids containing wild-type and several mutations in glucocerebrosidase (GBA) gene. The plasmids were transfected into COS-7 cells and stable transfected cell lines were obtained by geneticin (G418) selection. Cells were cultured during 6 days with medium with or without 10 microM NB-DNJ. The addition of NB-DNJ to COS-7 cell medium leads to 1.3-, 2.1-, 2.3-, 3.6-, and 9.9-fold increase in the activity of S364R, wild-type, N370S, V15M, and M123T GC, respectively. However, no significant changes were observed in the activity of the L444P, L336P, and S465del mutated proteins, but a small decrease in the rare P266L variant was observed. These results suggest that NB-DNJ, in addition to the inhibitory effect on CSG, also works as a "chemical chaperone", increasing the activity of acid beta-glucosidase of wild-type and several GC mutated proteins, including the most frequent N370S mutation. The specific location of the Miglustat binding site in GC is unknown. Potential binding sites in the enzyme have been searched for using computational molecular docking. The searching strategy identified three potential GC binding sites for Miglustat, one being the substrate-binding site of the enzyme, which was the best-ranked site by AutoDock program. Therefore, it is possible that Miglustat exerts its chaperoning activity on acid beta-glucosidase by acting as an inhibitor bound at the active site. This increase on the activity of the acid beta-glucosidase would imply that Miglustat is not only a substrate reducer but also an inhibitor of the GC degradation, with very promising clinical implications for the treatment of GD patients.
Klein, O; Kegler-Ebo, D; Su, J; Smith, S; DiMaio, D
1999-04-01
The bovine papillomavirus E5 gene encodes a 44-amino-acid, homodimeric transmembrane protein that is the smallest known transforming protein. The E5 protein transforms cultured fibroblasts by forming a stable complex with the endogenous platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, leading to sustained receptor activation. Aspartic acid 33 in the extracellular juxtamembrane region of the E5 protein is important for cell transformation and interaction with the PDGF beta receptor. A. N. Meyer et al. (Proc. Natl. Acad. Sci USA 91:4634-4638, 1994) speculated that this residue interacted with lysine 499 on the receptor. We constructed E5 mutants containing all possible substitutions at position 33, as well as several double mutants containing substitutions at aspartic acid 33 and at glutamic acid 36, and we examined the ability of these mutants to transform C127 mouse fibroblasts and to bind to and induce activation of the PDGF beta receptor. There was an excellent correlation between the transformation activities of the various mutants and their ability to bind to and activate the PDGF beta receptor. Analysis of the mutants demonstrated that a juxtamembrane negative charge on the E5 protein was required for cell transformation and for productive interaction with the PDGF beta receptor and indicated that aspartic acid 33 was more important for these activities than was glutamic acid 36. These results are consistent with the existence of an essential juxtamembrane salt bridge between lysine 499 on the PDGF beta receptor and an acidic residue in the C terminus of the E5 protein and lend support to our proposed model for the complex between the E5 dimer and the PDGF beta receptor.
Nkhili, Ezzohra; Loonis, Michèle; Mihai, Simona; El Hajji, Hakima; Dangles, Olivier
2014-06-01
In this work, the affinity of common dietary phenols (gallic acid, caffeic acid, catechin, and rutin) for iron and copper ions was quantitatively investigated in neutral phosphate buffer as well as the reactivity of the complexes toward dioxygen. Contrasting behaviors were observed: because of the competing phosphate ions, Fe(III) binding is much slower than Fe(II) binding, which is rapidly followed by autoxidation of Fe(II) into Fe(III). With both ions, O2 consumption and H2O2 production are modest and the phenolic ligands are only slowly oxidized. By contrast, metal-phenol binding is fast with both Cu(I) and Cu(II). With Cu(I), O2 consumption and H2O2 production are very significant and the phenolic ligands are rapidly oxidized into a complex mixture of oligomers. The corresponding mechanism with Cu(II) is hampered by the preliminary rate-determining step of Cu(II) reduction by the phenols. The consequences of these findings for the stability and antioxidant activity of plant phenols are discussed.
THE EFFECT OF X-IRRADIATION ON THE PHOSPHOLIPASE AND ANTIOXIDANT ACTIVITIES OF RAT INTESTINAL MUCOSA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottolenghi, A.; Bernheim, F.
1960-04-01
The antioxidant effect of intestinal mucosa is the result of the liberation of free fatty acid from phospholipid by phospholipase. The fatty acid binds the iron and thus inhibits peroxidation of unsaturated lipids in the test system. The phospholipase and antioxidant activity of rat intestinal mucosa decreases markedly 24 hours postirradiation and to approximately the same extent. (auth)
Modular Synthesis of Biologically Active Phosphatidic Acid Probes Using Click Chemistry
Smith, Matthew D.; Sudhahar, Christopher G.; Gong, Denghuang; Stahelin, Robert V.
2018-01-01
Phosphatidic acid (PA) is an important signaling lipid that plays roles in a range of biological processes including both physiological and pathophysiological events. PA is one of a number of signaling lipids that can act as site-specific ligands for protein receptors in binding events that enforce membrane-association and generally regulate both receptor function and subcellular localization. However, elucidation of the full scope of PA activities has proven problematic, primarily due to the lack of a consensus sequence among PA-binding receptors. Thus, experimental approaches, such as those employing lipid probes, are necessary for characterizing interactions at the molecular level. Herein, we describe an efficient modular approach to the synthesis of a range of PA probes that employs a late stage introduction of reporter groups. This strategy was exploited in the synthesis of PA probes bearing fluorescent and photoaffinity tags as well as a bifunctional probe containing both a photoaffinity moiety and an azide as a secondary handle for purification purposes. To discern the ability of these PA analogues to mimic the natural lipid in protein binding properties, each compound was incorporated into vesicles for binding studies using a known PA receptor, the C2 domain of PKCα. In these studies, each compound exhibited binding properties that were comparable to those of synthetic PA, indicating their viability as probes for effectively studying the activities of PA in cellular processes. PMID:19668861
Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J
2002-09-01
gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.
NASA Astrophysics Data System (ADS)
Ghosh, Utpal; Giri, Kalyan; Bhattacharyya, Nitai P.
2009-12-01
In the investigation of interaction of aurintricarboxylic acid (ATA) with four biologically important proteins we observed inhibition of enzymatic activity of DNase I, RNase A, M-MLV reverse transcriptase and Taq polymerase by ATA in vitro assay. As the telomerase reverse transcriptase (TERT) is the main catalytic subunit of telomerase holoenzyme, we also monitored effect of ATA on telomerase activity in vivo and observed dose-dependent inhibition of telomerase activity in Chinese hamster V79 cells treated with ATA. Direct association of ATA with DNase I ( Kd = 9.019 μM)), RNase A ( Kd = 2.33 μM) reverse transcriptase ( Kd = 0.255 μM) and Taq polymerase ( Kd = 81.97 μM) was further shown by tryptophan fluorescence quenching studies. Such association altered the three-dimensional conformation of DNase I, RNase A and Taq polymerase as detected by circular dichroism. We propose ATA inhibits enzymatic activity of the four proteins through interfering with DNA or RNA binding to the respective proteins either competitively or allosterically, i.e. by perturbing three-dimensional structure of enzymes.
Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan; Kim, Hyung Sik; Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung; Oh, Seon-Hee; Jun, Dae Won; Lee, Byung-Hoon
2017-02-01
Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. Copyright © 2016 Elsevier Inc. All rights reserved.
2011-01-01
Background The phenazines are redox-active secondary metabolites that a large number of bacterial strains produce and excrete into the environment. They possess antibiotic activity owing to the fact that they can reduce molecular oxygen to toxic reactive oxygen species. In order to take advantage of this activity, phenazine producers need to protect themselves against phenazine toxicity. Whereas it is believed that phenazine-producing pseudomonads possess highly active superoxide dismutases and catalases, it has recently been found that the plant-colonizing bacterium Enterobacter agglomerans expresses a small gene ehpR to render itself resistant towards D-alanyl-griseoluteic acid, the phenazine antibiotic produced by this strain. Results To understand the resistance mechanism installed by EhpR we have determined its crystal structure in the apo form at 2.15 Å resolution and in complex with griseoluteic acid at 1.01 Å, respectively. While EhpR shares a common fold with glyoxalase-I/bleomycin resistance proteins, the ligand binding site does not contain residues that some related proteins employ to chemically alter their substrates. Binding of the antibiotic is mediated by π-stacking interactions of the aromatic moiety with the side chains of aromatic amino acids and by a few polar interactions. The dissociation constant KD between EhpR and griseoluteic acid was quantified as 244 ± 45 μM by microscale thermophoresis measurements. Conclusions The data accumulated here suggest that EhpR confers resistance by binding D-alanyl-griseoluteic acid and acting as a chaperone involved in exporting the antibiotic rather than by altering it chemically. It is tempting to speculate that EhpR acts in concert with EhpJ, a transport protein of the major facilitator superfamily that is also encoded in the phenazine biosynthesis operon of E. agglomerans. The low affinity of EhpR for griseoluteic acid may be required for its physiological function. PMID:21849072
Cytosolic nucleic acid sensors and innate immune regulation.
Ori, Daisuke; Murase, Motoya; Kawai, Taro
2017-03-04
During viral and bacterial infections, pathogen-derived cytosolic nucleic acids are recognized by the intracellular RNA sensors retinoic acid-inducible gene I and melanoma-differentiated gene 5 and intracellular DNA sensors, including cyclic-di-GMP-AMP synthase, absent in melanoma 2, interferon (IFN)-gamma inducible protein 16, polymerase III, and so on. Binding of intracellular nucleic acids to these sensors activates downstream signaling cascades, resulting in the production of type I IFNs and pro-inflammatory cytokines to induce appropriate systematic immune responses. While these sensors also recognize endogenous nucleic acids and activate immune responses, they can discriminate between self- and non-self-nucleic acids. However, dysfunction of these sensors or failure of regulatory mechanisms causes aberrant activation of immune response and autoimmune disorders. In this review, we focus on how intracellular immune sensors recognize exogenous nucleic acids and activate the innate immune system, and furthermore, how autoimmune diseases result from dysfunction of these sensors.
Cloning and characterization of the hamster and guinea pig nicotinic acid receptors.
Torhan, April Smith; Cheewatrakoolpong, Boonlert; Kwee, Lia; Greenfeder, Scott
2007-09-01
In this study, we present the identification and characterization of hamster and guinea pig nicotinic acid receptors. The hamster receptor shares approximately 80-90% identity with the nucleotide and amino acid sequences of human, mouse, and rat receptors. The guinea pig receptor shares 76-80% identity with the nucleotide and amino acid sequences of these other species. [(3)H]nicotinic acid binding affinity at guinea pig and hamster receptors is similar to that in human (dissociation constant = 121 nM for guinea pig, 72 nM for hamster, and 74 nM for human), as are potencies of nicotinic acid analogs in competition binding studies. Inhibition of forskolin-stimulated cAMP production by nicotinic acid and related analogs is also similar to the activity in the human receptor. Analysis of mRNA tissue distribution for the hamster and guinea pig nicotinic acid receptors shows expression across a number of tissues, with higher expression in adipose, lung, skeletal muscle, spleen, testis, and ovary.
Inhibitory activity of chelating agent against bacteria associated with poultry processing
USDA-ARS?s Scientific Manuscript database
Ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N, N’-disuccinic acid (EDDS) are chelating agents that can bind minerals that produce water hardness. By sequestering minerals in hard water, chelators reduce water hardness and increase the ability of cleansers to remove dirt and debris dur...
Sestrin2 is a leucine sensor for the mTORC1 pathway
Wolfson, Rachel L.; Chantranupong, Lynne; Saxton, Robert A.; Shen, Kuang; Scaria, Sonia M.; Cantor, Jason R.; Sabatini, David M.
2015-01-01
Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, a GTPase activating protein (GAP); GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a Kd of 20 µM, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway. PMID:26449471
Locating the binding sites of folic acid with milk α- and β-caseins.
Bourassa, P; Tajmir-Riahi, H A
2012-01-12
We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.
Protective Mechanisms of Nitrone Antioxidants in Kanic Acid Induced Neurodegeneration
2004-01-01
Hong, Dextromethorphan modulates the AP-1 DNA bind- Med. 14 (1993) 633-642. ing activity induced by kainic acid, Brain Res. 824 (1999) 125-132. [71 S.C...Hong, The effect of dextromethorphan on kainic acid-induced after kainic acid-induced seizures, Free Radical Biol. Med. 18 seizures in the rat...Bing, G., Bronstein, D., McMillian, M., Hong, J.-S. (1996) the effects of dextromethorphan on kainic acid-induced seizures in the rat. J. Neurotoxic
2015-05-01
and phosphatidic acid .18,19 Akt activation is known to be dependent on the PIP3 generation. However, interaction between Akt and membrane PS is also...binding domains for phosphatidylserine and phosphatidic acid . Phosphatidic acid regulates the translocation of Raf-1 in 12-O- tetradecanoylphorbol-13...AWARD NUMBER: W81XWH-11-2-0074 TITLE: Neural Resilience to Traumatic Brain Injury: identification of Bioactive Metabolites of Docosahexaenoic Acids
Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch
Morales-Lázaro, Sara L.; Llorente, Itzel; Sierra-Ramírez, Félix; López-Romero, Ana E.; Ortíz-Rentería, Miguel; Serrano-Flores, Barbara; Simon, Sidney A.; Islas, León D.; Rosenbaum, Tamara
2016-01-01
The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation. PMID:27721373
Gim, Hyo Jin; Li, Hua; Lee, Eun; Ryu, Jae-Ha; Jeon, Raok
2013-01-15
A series of carbazole or phenoxazine containing alkoxyindole-3-acetic acid analogs were prepared as PPARγ/δ agonists and their transactivation activities for PPAR receptor subtypes (α, γ and δ) were investigated. Structure-activity relationship studies disclosed the effect of the lipophilic tail, attaching position of the alkoxy group and N-benzyl substitution at indole. Compound 1b was the most potent for PPARδ and 3b for PPARγ. Molecular modeling suggested two different binding modes of our alkoxyindole-3-acetic acid analogs providing the insight into their PPAR activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nanjo, H; Adachi, H; Morihana, S; Mizoguchi, T; Nishihara, T; Terada, T
1995-05-11
Bovine liver cytosolic dihydrodiol dehydrogenase (DD3) has been characterized by its unique dihydrodiol dehydrogenase activity for trans-benzenedihydrodiol (trans-1,2-dihydrobenzene-1,2-diol) with the highest affinity and the greatest velocity among three multiple forms of dihydrodiol dehydrogenases (DD1-DD3). It is the first time that DD3 has shown a significant dehydrogenase activity for (S)-(+)-1-indanol with low Km value (0.33 +/- 0.022 mM) and high K(cat) value (25 +/- 0.79 min-1). The investigation of the product inhibition of (S)-(+)-1-indanol with NADP+ versus 1-indanone and NADPH clearly showed that the enzymatic reaction of DD3 may follow a typical ordered Bi Bi mechanism similar to many aldo/keto reductases. Additionally, DD3 was shown to catalyze the dehydrogenation of bile acids (lithocholic acid, taurolithocholic acid and taurochenodeoxycholic acid) having no 12-hydroxy groups with low Km values (17 +/- 0.65, 33 +/- 1.9 and 890 +/- 73 microM, respectively). In contrast, DD1, 3 alpha-hydroxysteroid dehydrogenase, shows a broad substrate specificity for many bile acids with higher affinity than those of DD3. Competitive inhibition of DD3 with androsterone against dehydrogenase activity for (S)-(+)-1-indanol, trans-benzenedihydrodiol or lithocholic acid suggests that these three substrates bind to the same substrate binding site of DD3, different from the case of human liver bile acid binder/dihydrodiol dehydrogenase (Takikawa, H., Stolz, A., Sugiyama, Y., Yoshida, H., Yamamoto, M. and Kaplowitz, N. (1990) J. Biol. Chem. 265, 2132-2136). Considering the reaction mechanism, DD3 may also play an important role in bile acids metabolism as well as the detoxication of aromatic hydrocarbons.
Cellular Retinoic Acid Binding Proteins: Genomic and Non-genomic Functions and their Regulation.
Wei, Li-Na
Cellular retinoic acid binding proteins (CRABPs) are high-affinity retinoic acid (RA) binding proteins that mainly reside in the cytoplasm. In mammals, this family has two members, CRABPI and II, both highly conserved during evolution. The two proteins share a very similar structure that is characteristic of a "β-clam" motif built up from10-strands. The proteins are encoded by two different genes that share a very similar genomic structure. CRABPI is widely distributed and CRABPII has restricted expression in only certain tissues. The CrabpI gene is driven by a housekeeping promoter, but can be regulated by numerous factors, including thyroid hormones and RA, which engage a specific chromatin-remodeling complex containing either TRAP220 or RIP140 as coactivator and corepressor, respectively. The chromatin-remodeling complex binds the DR4 element in the CrabpI gene promoter to activate or repress this gene in different cellular backgrounds. The CrabpII gene promoter contains a TATA-box and is rapidly activated by RA through an RA response element. Biochemical and cell culture studies carried out in vitro show the two proteins have distinct biological functions. CRABPII mainly functions to deliver RA to the nuclear RA receptors for gene regulation, although recent studies suggest that CRABPII may also be involved in other cellular events, such as RNA stability. In contrast, biochemical and cell culture studies suggest that CRABPI functions mainly in the cytoplasm to modulate intracellular RA availability/concentration and to engage other signaling components such as ERK activity. However, these functional studies remain inconclusive because knocking out one or both genes in mice does not produce definitive phenotypes. Further studies are needed to unambiguously decipher the exact physiological activities of these two proteins.
Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE).
Buyannemekh, Dolgorsuren; Nham, Sang-Uk
2017-05-31
The β2 integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of β2 integrin, αMβ2 and αXβ2, share the leukocyte distribution profile and integrin αXβ2 is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. Receptor for advanced glycation end products (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and αXβ2 play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of αXβ2, we characterize the binding nature and the interacting moieties of αX I-domain and RAGE. Their binding requires divalent cations (Mg 2+ and Mn 2+ ) and shows an affinity on the sub-micro molar level: the dissociation constant of αX I-domains binding to RAGE being 0.49 μM. Furthermore, the αX I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of αX I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to αX I-domain. In conclusion, the main mechanism of αX I-domain binding to RAGE is a charge interaction, in which the acidic moieties of αX I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.
Yin, Jia; Li, Haiying; Meng, Chengjie; Chen, Dongdong; Chen, Zhouqing; Wang, Yibin; Wang, Zhong; Chen, Gang
2016-06-01
Omega-3 fatty acids have been reported to improve neuron functions during aging and in patients affected by mild cognitive impairment, and mediate potent anti-inflammatory via G protein-coupled receptor 120 (GPR120) signal pathway. Neuron dysfunction and inflammatory response also contributed to the progression of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was to examine the effects of omega-3 fatty acids on SAH-induced EBI. Two weeks before SAH, 30% Omega-3 fatty acids was administered by oral gavage at 1g/kg body weight once every 24h. Specific siRNA for GPR120 was exploited. Terminal deoxynucleotidyl transferase dUTP nick end labeling, fluoro-Jade B staining, and neurobehavioral scores and brain water content test showed that omega-3 fatty acids effectively suppressed SAH-induced brain cell apoptosis and neuronal degradation, behavioral impairment, and brain edema. Western blot, immunoprecipitation, and electrophoretic mobility shift assays results showed that omega-3 fatty acids effectively suppressed SAH-induced elevation of inflammatory factors, including cyclooxygenase-2, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. In addition, omega-3 fatty acids could inhibit phosphorylation of transforming growth factor β activated kinase-1 (TAK1), MEK4, c-Jun N-terminal kinase, and IkappaB kinase as well as activation of nuclear factor kappa B through regulating GPR120/β-arrestin2/TAK1 binding protein-1 pathway. Furthermore, siRNA-induced GPR120 silencing blocked the protective effects of omega-3 fatty acids. Here, we show that stimulation of GPR120 with omega-3 fatty acids pretreatment causes anti-apoptosis and anti-inflammatory effects via β-arrestin2/TAK1 binding protein-1/TAK1 pathway in the brains of SAH rats. Fish omega-3 fatty acids as part of a daily diet may reduce EBI in an experimental rat model of SAH. Copyright © 2016 Elsevier Ltd. All rights reserved.
Díaz-Guerra, M; Rivas, C; Esteban, M
1999-02-01
To define protein domains important for activation of the interferon (IFN)-induced enzyme 2-5A-dependent RNaseL, we have generated vaccinia virus (VV) recombinants able to express in cultured cells truncated forms of this protein and compared their biologic activities with those producing the wild-type enzyme, with and without coexpression of 2-5A synthetase. Our results show that full activation of RNaseL requires binding of 2-5A oligonucleotides within amino acid positions 212-339, corresponding to ankyrin repeats 6 to 9. The protein kinase and ribonuclease domains of RNaseL, amino acids 340-741, are sufficient for a constitutively active enzyme that is unresponsive to excess 2-5A. These results demonstrate in vivo the importance of the ankyrin domains in the biologic function of RNaseL. We suggest that ankyrin repeats act as key modulators of RNaseL activity.
Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong
2015-09-01
Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta
Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less
Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; ...
2015-08-05
Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less
NASA Astrophysics Data System (ADS)
Makarska-Bialokoz, Magdalena
2018-07-01
The specific spectroscopic and redox properties of porphyrins predestine them to fulfill the role of sensors during interacting with different biologically active substances. Monitoring of binding interactions in the systems porphyrin-biologically active compound is a key question not only in the field of physiological functions of living organisms, but also in environmental protection, notably in the light of the rapidly growing drug consumption and concurrently the production of drug effluents. Not always beneficial action of drugs on natural porphyrin systems induces to further studies, with commercially available porphyrins as the model systems. Therefore the binding process between several water-soluble porphyrins and a series of biologically active compounds (e.g. caffeine, guanine, theophylline, theobromine, xanthine, uric acid) has been studied in different aqueous solutions analyzing their absorption and steady-state fluorescence spectra, the porphyrin fluorescence lifetimes and their quantum yields. The magnitude of the binding and fluorescence quenching constants values for particular quenchers decreases in a series: uric acid > guanine > caffeine > theophylline > theobromine > xanthine. In all the systems studied there are characters of static quenching, as a consequence of the π-π-stacked non-covalent and non-fluorescent complexes formation between porphyrins and interacting compounds, accompanied simultaneously by the additional specific binding interactions. The porphyrin fluorescence quenching can be explain by the photoinduced intermolecular electron transfer from aromatic compound to the center of the porphyrin molecule, playing the role of the binding site. Presented results can be valuable for designing of new fluorescent porphyrin chemosensors or monitoring of drug traces in aqueous solutions. The obtained outcomes have also the toxicological and medical importance, providing insight into the interactions of the water-soluble porphyrins with biologically active substances.
Kawabata, Fuminori; Kawabata, Yuko; Liang, Ruojun; Nishimura, Shotaro; Tabata, Shoji
2017-01-01
Postprandial hyperglycemia is a risk factor for cardiovascular diseases. It has been reported that intragastric administration of allyl isothiocyanate (AITC), which is one of the pungent ingredients of wasabi and horseradish but it is not included in hot chili pepper, increased carbohydrate oxidation and reduced postprandial increase of blood glucose via transient receptor potential vanilloid 1 (TRPV1)in mice. However, the action site of AITC on TRPV1 for increasing carbohydrate oxidation is unclear. Both mammalian and chicken TRPV1 (cTRPV1) are activated by heat and acid, but unlike its mammalian counterpart, cTRPV1 is only faintly activated by capsaicin. This difference is due to the 8 chicken-specific amino acid residues around transmembrane 3, which is the main site of capsaicin-binding in rat TRPV1. Moreover, AITC-induced activation of mouse TRPV1 (mTRPV1) is largely dependent on S513, a residue that is involved in capsaicin-binding. Thus, we hypothesized that the increase of carbohydrate oxidation by AITC in mammals is induced by the binding of AITC to the capsaicin-binding site of TRPV1. In this study, we performed a comparative study using chickens and mice, since chickens are thought to partly lack the capsaicin-binding site of TRPV1. We examined the effects of AITC on the respiratory quotient (RQ), the index of carbohydrate oxidation and fat oxidation, in chickens and mice. Respiratory gas analysis revealed that AITC does not increase the RQ in chickens, and Ca 2+ imaging methods and a whole cell-patch clamp analysis showed that AITC does not activate cTRPV1. These results implied that the capsaicin-binding site is an important region for increasing carbohydrate oxidation by AITC administration in animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli; Sheng, Gang; Juranek, Stefan
The slicer activity of the RNA-induced silencing complex is associated with argonaute, the RNase H-like PIWI domain of which catalyses guide-strand-mediated sequence-specific cleavage of target messenger RNA. Here we report on the crystal structure of Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-base DNA guide strand, thereby identifying the nucleic-acid-binding channel positioned between the PAZ- and PIWI-containing lobes, as well as the pivot-like conformational changes associated with complex formation. The bound guide strand is anchored at both of its ends, with the solvent-exposed Watson-Crick edges of stacked bases 2 to 6 positioned for nucleation with the mRNA target, whereas twomore » critically positioned arginines lock bases 10 and 11 at the cleavage site into an unanticipated orthogonal alignment. Biochemical studies indicate that key amino acid residues at the active site and those lining the 5'-phosphate-binding pocket made up of the Mid domain are critical for cleavage activity, whereas alterations of residues lining the 2-nucleotide 3'-end-binding pocket made up of the PAZ domain show little effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustchina, Alla; Li, Mi; Wunschmann, Sabina
2010-07-19
The crystal structure of Bla g 2 was solved in order to investigate the structural basis for the allergenic properties of this unusual protein. This is the first structure of an aspartic protease in which conserved glycine residues, in two canonical DTG triads, are substituted by different amino acid residues. Another unprecedented feature revealed by the structure is the single phenylalanine residue insertion on the tip of the flap, with the side-chain occupying the S1 binding pocket. This and other important amino acid substitutions in the active site region of Bla g 2 modify the interactions in the vicinity ofmore » the catalytic aspartate residues, increasing the distance between them to {approx}4 {angstrom} and establishing unique direct contacts between the flap and the catalytic residues. We attribute the absence of substantial catalytic activity in Bla g 2 to these unusual features of the active site. Five disulfide bridges and a Zn-binding site confer stability to the protein, which may contribute to sensitization at lower levels of exposure than other allergens.« less
Kwong, Huey Chong; Chidan Kumar, C S; Mah, Siau Hui; Chia, Tze Shyang; Quah, Ching Kheng; Loh, Zi Han; Chandraju, Siddegowda; Lim, Gin Keat
2017-01-01
Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site.
Boussardon, Clément; Avon, Alexandra; Kindgren, Peter; Bond, Charles S; Challenor, Michael; Lurin, Claire; Small, Ian
2014-09-01
In flowering plants, RNA editing involves deamination of specific cytidines to uridines in both mitochondrial and chloroplast transcripts. Pentatricopeptide repeat (PPR) proteins and multiple organellar RNA editing factor (MORF) proteins have been shown to be involved in RNA editing but none have been shown to possess cytidine deaminase activity. The DYW domain of some PPR proteins contains a highly conserved signature resembling the zinc-binding active site motif of known nucleotide deaminases. We modified these highly conserved amino acids in the DYW motif of DYW1, an editing factor required for editing of the ndhD-1 site in Arabidopsis chloroplasts. We demonstrate that several amino acids of this signature motif are required for RNA editing in vivo and for zinc binding in vitro. We conclude that the DYW domain of DYW1 has features in common with cytidine deaminases, reinforcing the hypothesis that this domain forms part of the active enzyme that carries out RNA editing in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Vickerman, M M; Jones, G W
1992-10-01
Growing Streptococcus gordonii Spp+ phase variants, which have normal levels of glucosyltransferase (GTF) activity, use sucrose to promote their accumulation on surfaces by forming a cohesive bacterium-insoluble glucan polymer mass (BPM). Spp- phase variants, which have lower levels of GTF activity, do not form BPMs and do not remain in BPMs formed by Spp+ cells when grown in mixed cultures. To test the hypothesis that segregation of attached Spp+ and unattached Spp- cells was due to differences in adhesiveness, adhesion between washed, [3H]thymidine-labeled cells and preformed BPM substrata was measured. Unexpectedly, the results showed that cells of both phenotypes, as well as GTF-negative cells, attached equally well to preformed BPMs, indicating that attachment to BPMs was independent of cell surface GTF activity. Initial characterization of this binding interaction suggested that a protease-sensitive component on the washed cells may be binding to lipoteichoic acids sequestered in the BPM, since exogenous lipoteichoic acid inhibited adhesion. Surprisingly, the adhesion of both Spp+ and Spp- cells was markedly inhibited in the presence of sucrose, which also released lipoteichoic acid from the BPM. These in vitro findings suggest that, in vivo, sucrose and lipoteichoic acid may modify dental plaque development by enhancing or inhibiting the attachment of additional bacteria.
Vickerman, M M; Jones, G W
1992-01-01
Growing Streptococcus gordonii Spp+ phase variants, which have normal levels of glucosyltransferase (GTF) activity, use sucrose to promote their accumulation on surfaces by forming a cohesive bacterium-insoluble glucan polymer mass (BPM). Spp- phase variants, which have lower levels of GTF activity, do not form BPMs and do not remain in BPMs formed by Spp+ cells when grown in mixed cultures. To test the hypothesis that segregation of attached Spp+ and unattached Spp- cells was due to differences in adhesiveness, adhesion between washed, [3H]thymidine-labeled cells and preformed BPM substrata was measured. Unexpectedly, the results showed that cells of both phenotypes, as well as GTF-negative cells, attached equally well to preformed BPMs, indicating that attachment to BPMs was independent of cell surface GTF activity. Initial characterization of this binding interaction suggested that a protease-sensitive component on the washed cells may be binding to lipoteichoic acids sequestered in the BPM, since exogenous lipoteichoic acid inhibited adhesion. Surprisingly, the adhesion of both Spp+ and Spp- cells was markedly inhibited in the presence of sucrose, which also released lipoteichoic acid from the BPM. These in vitro findings suggest that, in vivo, sucrose and lipoteichoic acid may modify dental plaque development by enhancing or inhibiting the attachment of additional bacteria. PMID:1398940
Marshall, Kathryn M; Laval, Marie; Sims, Ioulia; Shulkes, Arthur; Baldwin, Graham S
2015-12-01
Non-amidated gastrin peptides such as glycine-extended gastrin (Ggly) are biologically active in vitro and in vivo and have been implicated in the development of gastric and colonic cancers. Previous studies have shown that the truncated form of Ggly, the octapeptide LE5AY, was still biologically active in vitro, and that activity was dependent on ferric ion binding but independent of binding to the cholecystokinin 2 (CCK2) receptor. The present work was aimed at creating more stable gastrin-derived 'super agonists' using retro-inverso technology. The truncated LE5AY peptide was synthesized using end protecting groups in three forms with l-amino acids (GL), d-amino acids (GD) or retro-inverso (reverse order with d-amino acids; GRI). All of these peptides bound ferric ions with a 2:1 (Fe: peptide) ratio. As predicted, Ggly, GL and GRI were biologically active in vitro and increased cell proliferation in mouse gastric epithelial (IMGE-5) and human colorectal cancer (DLD-1) cell lines, and increased cell migration in DLD-1 cells. These activities were likely via the same mechanism as Ggly since no CCK1 or CCK2 binding was identified, and GD remained inactive in all assays. Surprisingly, unlike Ggly, GL and GRI were not active in vivo. While Ggly stimulated colonic crypt height and proliferation rates in gastrin knockout mice, GL and GRI did not. The apparent lack of activity may be due to rapid clearance of these smaller peptides. Nevertheless further work designing and testing retro-inverso gastrins is warranted, as it may lead to the generation of super agonists that could potentially be used to treat patients with gastrointestinal disorders with reduced mucosal function. Copyright © 2015 Elsevier Inc. All rights reserved.
Mori, Yoshikazu; Ogawa, Kazuo; Warabi, Eiji; Yamamoto, Masahiro; Hirokawa, Takatsugu
2016-01-01
Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX) has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol) were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670) were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator. PMID:27606946
A Spectrophotometric Assay Optimizing Conditions for Pepsin Activity.
ERIC Educational Resources Information Center
Harding, Ethelynda E.; Kimsey, R. Scott
1998-01-01
Describes a laboratory protocol optimizing the conditions for the assay of pepsin activity using the Coomasie Blue dye binding assay of protein concentration. The dye bonds through strong, noncovalent interactions to basic and aromatic amino acid residues. (DDR)
Cai, Haiyan; Liu, Qiufeng; Gao, Dingding; Wang, Ting; Chen, Tiantian; Yan, Guirui; Chen, Kaixian; Xu, Yechun; Wang, Heyao; Li, Yingxia; Zhu, Weiliang
2015-01-27
Fatty acid binding protein 4 (FABP4) is a potential drug target for diabetes and atherosclerosis. For discovering new chemical entities as FABP4 inhibitors, structure-based virtual screening (VS) was performed, bioassay demonstrated that 16 of 251 tested compounds are FABP4 inhibitors, among which compound m1 are more active than endogenous ligand linoleic acid (LA). Based on the structure of m1, new derivatives were designed and prepared, leading to the discovery of two more potent inhibitors, compounds 9 and 10. To further explore the binding mechanisms of these new inhibitors, we determined the X-ray structures of the complexes of FABP4-9 and FABP4-10, which revealed similar binding conformations of the two compounds. Residue Ser53 and Arg126 formed direct hydrogen bonding with the ligands. We also found that 10 could significantly reduce the levels of lipolysis on mouse 3T3-L1 adipocytes. Taken together, in silico, in vitro and crystallographic data provide useful hints for future development of novel inhibitors against FABP4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Cole, C N; Tornow, J; Clark, R; Tjian, R
1986-01-01
The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional domains. Images PMID:3003386
Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A; Schroeder, Charles M
2012-09-19
Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays, and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry.
Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.
2012-01-01
Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171
A novel antifungal peptide from leaves of the weed Stellaria media L.
Rogozhin, Eugene A; Slezina, Marina P; Slavokhotova, Anna A; Istomina, Ekaterina A; Korostyleva, Tatyana V; Smirnov, Alexey N; Grishin, Eugene V; Egorov, Tsezi A; Odintsova, Tatyana I
2015-09-01
A novel peptide named SmAMP3 was isolated from leaves of common chickweed (Stellaria media L.) by a combination of acidic extraction and a single-step reversed-phase HPLC and sequenced. The peptide is basic and cysteine-rich, consists of 35 amino acids, and contains three disulphide bridges. Homology search revealed that SmAMP3 belongs to the family of hevein-like antimicrobial peptides carrying a conserved chitin-binding site. Efficient binding of chitin by SmAMP3 was proved by in vitro assays. Molecular modeling confirmed conservation of the chitin-binding module in SmAMP3 locating the variable amino acid residues to the solvent-exposed loops of the molecule. The peptide exhibits potent antifungal activity against important plant pathogens in the micromolar range, although it is devoid of antibacterial activity at concentrations below 10 μM. As judged by chromatographic behavior and mass spectrometric data, the peptide is constitutively expressed in above-ground organs and seeds of S. media plants, thus representing an important player in the preformed branch of the plant immune system. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A
2003-01-01
Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173
Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.
2016-01-01
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Soo-Ik; Hammes, G.G.
1989-11-01
Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chickenmore » and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.« less
Acid sphingomyelinase possesses a domain homologous to its activator proteins: saposins B and D.
Ponting, C. P.
1994-01-01
An N-terminal region of the acid sphingomyelinase sequence (residues 89-165) is shown to be homologous to saposin-type sequences. By analogy with the known functions of saposins, this sphingomyelinase saposin-type domain may possess lipid-binding and/or sphingomyelinase-activator properties. This finding may prove to be important in the understanding of Niemann-Pick disease, which results from sphingomyelinase deficiency. PMID:8003971
NASA Technical Reports Server (NTRS)
Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.
1997-01-01
A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farr, K.L.; Montano, C.Y.; Paxton, L.L.
1988-11-01
The effect of prenatal ethanol exposure on the kainate-sensitive subtype of glutamate receptor binding sites was studied using in vitro /sup 3/H-vinylidene kainic acid (VKA) autoradiography. Pregnant Sprague-Dawley rats were fed a liquid diet containing either 3.35% or 6.7% ethanol throughout gestation. Pair-fed dams received isocalorically matched liquid diets and a lab chow ad lib group served as control for paired feeding. At 45 days of age, the offspring were sacrificed and their brains analyzed for specific /sup 3/H-VKA binding. Compared to pair-fed controls, specific /sup 3/H-VKA binding was reduced by 13% to 32% in dorsal and ventral hippocampal CA3more » stratum lucidum, entorhinal cortex and cerebellum of 45-day-old rats whose mothers consumed either 3.35% or 6.7% ethanol diets. The binding site reductions were statistically significant only in the ventral hippocampal formation and entorhinal cortex of the 3.35% ethanol diet group rats. Saturation of binding studies in the ventral hippocampal formation of 3.35% ethanol rats indicated that the decrease in specific /sup 3/H-VKA binding was due to a decrease in the total number of binding sites. Given the excitatory effect of kainic acid on the spontaneous firing rate of hippocampal CA3 pyramidal neurons, the reduction of kainate-sensitive glutamate binding in this region is consistent with the electrophysiological observation of decreased spontaneous activity of CA3 pyramidal neurons in fetal alcohol rats.« less
Wolfrum, C; Borrmann, C M; Borchers, T; Spener, F
2001-02-27
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARalpha colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARalpha. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARalpha and PPARgamma but not with PPARbeta and retinoid X receptor-alpha by protein-protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARalpha and PPARgamma transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARalpha and PPARgamma agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes.
Prior, Lynn; Bordet, Sylvie; Trifiro, Mark A.; Mhatre, Anand; Kaufman, Morris; Pinsky, Leonard; Wrogeman, Klaus; Belsham, Denise D.; Pereira, Fred; Greenberg, Cheryl; Trapman, Jan; Brinkman, Albert O.; Chang, Chawnshang; Liao, Shutsung
1992-01-01
We have discovered two different point mutations in a single codon of the X-linked androgen-receptor (AR) gene in two pairs of unrelated families who have complete androgen insensitivity (resistance) associated with different AR phenotypes in their genital skin fibroblasts. One mutation is a C-to-T transition at a CpG sequence near the 5' terminus of exon 6; it changes the sense of codon 773 from arginine to cysteine, ablates specific androgen-binding activity at 37°C, and eliminates a unique KpnI site at the intron-exon boundary. The other mutation is a G-to-A transition that changes amino acid 773 to histidine and eliminates an SphI site. This mutant AR has a normal androgen-binding capacity at 37°C but has a reduced affinity for androgens and is thermolabile in their presence. Transient transfection of COS cells with cDNA expression vectors yielded little androgen-binding activity at 37°C from Arg773Cys and abundant activity with abnormal properties from Arg773His, thereby proving the pathogenicity of both sequence alterations. This conclusion coincides with the following facts about evolutionary preservation of the position homologous to Arg773 in the AR: it is occupied by Arg or lysine in the progesterone, glucocorticoid, and mineralocorticoid receptors, and it is within a 14-amino-acid region of their steroid-binding domains that share ∼85% amino acid identity. ImagesFigure 7Figure 2Figure 3Figure 5Figure 6Figure 8 PMID:1609793
Protons inhibit anoctamin 1 by competing with calcium.
Chun, Hyeyeon; Cho, Hawon; Choi, Jimi; Lee, Jesun; Kim, Sung Min; Kim, Hyungsup; Oh, Uhtaek
2015-11-01
Cl(-) efflux through Ca(2+)-activated Cl(-) channels (CaCCs) in secretory epithelial cells plays a key role in the regulation of fluid secretion. The fluid and electrolyte secretion is closely related to intracellular pH. CaCCs have been known to be inhibited by intracellular acid. However, the molecular mechanism for the inhibition remains unknown. Anoctamin 1 (ANO1) is a Ca(2+)-activated Cl(-) channel that mediates numerous physiological functions including fluid secretion in secretory epithelia. However, little is known about whether ANO1 can be modulated by change of intracellular pH. Here, we demonstrate that Ca(2+)-induced activation of ANO1 and its homolog ANO2 are strongly inhibited by intracellular acid. Intracellular acid caused a rightward shift of the concentration-response curve of Ca(2+) in activating ANO1 and ANO2. To identify the location of the acid-induced inhibition, mutations were made on each of all histidine residues in cytoplasmic part of ANO1. However, none of the His-mutant showed the reduction in the acid-induced inhibition. Furthermore, mutation on Glu- or Asp-residues in the multiple acidic-amino acid regions was ineffective in blocking the acid-induced inhibition. Because the Ca(2+)-binding site of a fungal anoctamin (nhTMEM16) was uncovered by crystallography, mutagenesis was performed in this region. Surprisingly, mutations at Glu, Asp or Asn residues in the hydrophobic core that are known to be essential for Ca(2+)-induced activation of ANO1 blocked the acid-induced inhibition. These results suggest that protons interfere with Ca(2+) at the Ca(2+) binding site of ANO1. These findings provide a molecular mechanism underlying the acid-induced inhibition of ANO1, which may contribute to control fluid and electrolyte secretion in the secretory epithelia. Copyright © 2015. Published by Elsevier Ltd.
Locked and proteolysis-based transcription activator-like effector (TALE) regulation.
Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman
2016-02-18
Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Dzhekieva, Liudmila; Kumar, Ish; Pratt, R F
2012-04-03
The DD-peptidases or penicillin-binding proteins (PBPs) catalyze the final steps of bacterial peptidoglycan biosynthesis and are inhibited by the β-lactam antibiotics. There is at present a question of whether the active site structure and activity of these enzymes is the same in the solubilized (truncated) DD-peptidase constructs employed in crystallographic and kinetics studies as in membrane-bound holoenzymes. Recent experiments with peptidoglycan-mimetic boronic acids have suggested that these transition state analogue-generating inhibitors may be able to induce reactive conformations of these enzymes and thus inhibit strongly. We have now, therefore, measured the dissociation constants of peptidoglycan-mimetic boronic acids from Escherichia coli and Bacillus subtilis PBPs in membrane preparations and, in the former case, in vivo, by means of competition experiments with the fluorescent penicillin Bocillin Fl. The experiments showed that the boronic acids bound measurably (K(i) < 1 mM) to the low-molecular mass PBPs but not to the high-molecular mass enzymes, both in membrane preparations and in whole cells. In two cases, E. coli PBP2 and PBP5, the dissociation constants obtained were very similar to those obtained with the pure enzymes in homogeneous solution. The boronic acids, therefore, are unable to induce tightly binding conformations of these enzymes in vivo. There is no evidence from these experiments that DD-peptidase inhibitors are more or less effective in vivo than in homogeneous solution.
Euston, S R; Hughes, P; Naser, Md A; Westacott, R E
2008-11-01
Molecular dynamic simulations have been carried out on systems containing a mixture of barley lipid transfer protein (LTP) and cis-isocohumulone (a hop derived iso-alpha-acid) in one of its enol forms, in bulk water and at the vacuum-water interface. In solution, the cis-isocohumulone molecules bind to the surface of the LTP molecule. The mechanism of binding appears to be purely hydrophobic in nature via desolvation of the protein surface. Binding of hop acids to the LTP leads to a small change in the 3-D conformation of the protein, but no change in the proportion of secondary structure present in helices, even though there is a significant degree of hop acid binding to the helical regions. At the vacuum-water interface, cis-isocohumulone shows a high surface activity and adsorbs rapidly at the interface. LTP then shows a preference to bind to the preadsorbed hop acid layer at the interface rather than to the bare water-vacuum interface. The free energy of adsorption of LTP at the hop-vacuum-water interface is more favorable than for adsorption at the vacuum-water interface. Our results support the view that hop iso-alpha-acids promote beer foam stability by forming bridges between separate adsorbed protein molecules, thus strengthening the adsorbed protein layer and reducing foam breakdown by lamellar phase drainage. The results also suggest a second mechanism may also occur, whereby the concentration of protein at the interface is increased via enhanced protein adsorption to adsorbed hop acid layers. This too would increase foam stability through its effect on the stabilizing protein layer around the foam bubbles.
Hu, Xiaozhen; Zhao, Jinlei; DeGrado, William F.; Binns, Andrew N.
2013-01-01
Agrobacterium tumefaciens is a broad host range plant pathogen that combinatorially recognizes diverse host molecules including phenolics, low pH, and aldose monosaccharides to activate its pathogenic pathways. Chromosomal virulence gene E (chvE) encodes a periplasmic-binding protein that binds several neutral sugars and sugar acids, and subsequently interacts with the VirA/VirG regulatory system to stimulate virulence (vir) gene expression. Here, a combination of genetics, X-ray crystallography, and isothermal calorimetry reveals how ChvE binds the different monosaccharides and also shows that binding of sugar acids is pH dependent. Moreover, the potency of a sugar for vir gene expression is modulated by a transport system that also relies on ChvE. These two circuits tune the overall system to respond to sugar concentrations encountered in vivo. Finally, using chvE mutants with restricted sugar specificities, we show that there is host variation in regard to the types of sugars that are limiting for vir induction. PMID:23267119
Correnti, Colin; Clifton, Matthew C.; Abergel, Rebecca J.; Allred, Ben; Hoette, Trisha M.; Ruiz, Mario; Cancedda, Ranieri; Raymond, Kenneth N.; Descalzi, Fiorella; Strong, Roland K.
2011-01-01
SUMMARY Galline Ex-FABP was identified as another candidate antibacterial, catecholate siderophore binding lipocalin (siderocalin) based on structural parallels with the family archetype, mammalian Siderocalin. Binding assays show that Ex-FABP retains iron in a siderophore-dependent manner in both hypertrophic and dedifferentiated chondrocytes, where Ex-FABP expression is induced after treatment with proinflammatory agents, and specifically binds ferric complexes of enterobactin, parabactin, bacillibactin and, unexpectedly, monoglucosylated enterobactin, which does not bind to Siderocalin. Growth arrest assays functionally confirm the bacteriostatic effect of Ex-FABP in vitro under iron-limiting conditions. The 1.8Å crystal structure of Ex-FABP explains the expanded specificity, but also surprisingly reveals an extended, multi-chambered cavity extending through the protein and encompassing two separate ligand specificities, one for bacterial siderophores (as in Siderocalin) at one end and one specifically binding co-purified lysophosphatidic acid, a potent cell signaling molecule, at the other end, suggesting Ex-FABP employs dual functionalities to explain its diverse endogenous activities. PMID:22153502
Deka, G; Bharath, S R; Savithri, H S; Murthy, M R N
2017-09-02
Enteric pathogens such as Salmonella typhimurium colonize the human gut in spite of the lethal acidic pH environment (pH < 2.5) due to the activation of inducible acid tolerance response (ATR) systems. The pyridoxal 5'-phosphate (PLP)-dependent enzyme, biodegradative arginine decarboxylase (ADC, encoded by AdiA), is a component of an ATR system. The enzyme consumes a cytoplasmic proton in the process of arginine degradation to agmatine. Arginine-agmatine antiporter (AdiC) exchanges the product agmatine for arginine. In this manuscript, we describe the structure of Salmonella typhimurium ADC (StADC). The decameric structure assembled from five dimers related by a non crystallographic 5-fold symmetry represents the first apo-form of the enzyme. The structure suggests that PLP-binding is not a prerequisite for oligomerization. Comparison with E. coli ADC reveals that PLP-binding is accompanied by the movement and ordering of two loops (residues 150-159 and 191-197) and a few active site residues such as His256 and Lys257. A number of residues important for substrate binding are disordered in the apo-StADC structure indicating that PLP binding is important for substrate binding. Unlike the interactions between 5-fold related protomers, interactions that stabilize the dimeric structure are not pH dependent. Copyright © 2017 Elsevier Inc. All rights reserved.
Structural Requirements For Bone Sialoprotein Binding And Modulation Of Matrix Metalloproteinase-2
Jain, Alka; Karadag, Abdullah; Fisher, Larry W.; Fedarko, Neal S.
2008-01-01
Bone sialoprotein (BSP) has been shown to induce limited gelatinase activity in latent matrix metalloproteinase-2 (MMP-2) without removal of the propeptide and to restore enzymatic activity to MMP-2 previously inhibited by tissue inhibitor of matrix metalloproteinase-2 (TIMP2). The current study identifies structural domains in human BSP and MMP-2 that contribute to these interactions. The 26 amino acid domain encoded by exon 4 of BSP is shown by a series of binding and activity assays to be involved in the displacement of MMP-2′s propeptide from the active site and thereby inducing the protease activity. Binding assays in conjunction with enzyme activity assays demonstrate that both amino- and carboxy-terminal domains of BSP contribute to restoration of activity to TIMP2-inhibited MMP-2, while the MMP-2 hemopexin domain is not required for reactivation. PMID:18729384
Structural requirements for bone sialoprotein binding and modulation of matrix metalloproteinase-2.
Jain, Alka; Karadag, Abdullah; Fisher, Larry W; Fedarko, Neal S
2008-09-23
Bone sialoprotein (BSP) has been shown to induce limited gelatinase activity in latent matrix metalloproteinase-2 (MMP-2) without removal of the propeptide and to restore enzymatic activity to MMP-2 previously inhibited by tissue inhibitor of matrix metalloproteinase-2 (TIMP2). The current study identifies structural domains in human BSP and MMP-2 that contribute to these interactions. The 26 amino acid domain encoded by exon 4 of BSP is shown by a series of binding and activity assays to be involved in the displacement of MMP-2's propeptide from the active site and thereby inducing the protease activity. Binding assays in conjunction with enzyme activity assays demonstrate that both amino- and carboxy-terminal domains of BSP contribute to restoration of activity to TIMP2-inhibited MMP-2, while the MMP-2 hemopexin domain is not required for reactivation.
Zhang, Song; Ding, Jingjing; Liu, Ying; Kong, Jilie; Hofstetter, Oliver
2006-11-01
This work describes a highly enantioselective and sensitive immunosensor for the detection of chiral amino acids based on capacitive measurement. The sensor was prepared by first binding mercaptoacetic acid to the surface of a gold electrode, followed by modification with tyramine utilizing carbodiimide activation. The hapten 4-amino-D-phenylalanine was then covalently immobilized onto the electrode by diazotization. Stereoselective binding of an anti-D-amino acid antibody to the hapten-modified sensor surface resulted in capacitance changes that were detected with high sensitivity by a potentiostatic step method. Using capacitance measurement, detection limits of 5 pg of antibody/mL were attained. The exquisite stereoselectivity of the antibody was also utilized in a competitive setup to quantitatively determine the concentration of the analyte d-phenylalanine in nonracemic samples containing both enantiomers of this amino acid. Trace impurities of d-phenylalanine as low as 0.001% could be detected.
Miyabe, Y; Amano, T; Deyashiki, Y; Hara, A; Tsukada, F
1995-01-01
We have investigated the steady-state kinetics for a cytosolic 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme of human liver and its inhibition by several bile acids and anti-inflammatory drugs such as indomethacin, flufemanic acid and naproxen. Initial velocity and product inhibition studies performed in the NADP(+)-linked (S)-1-indanol oxidation at pH 7.4 were consistent with a sequential ordered mechanism in which NADP+ binds first and leaves last. The bile acids and drugs, competitive inhibitors with respect to the alcohol substrate, exhibited uncompetitive inhibition with respect to the coenzyme, with Ki values less than 1 microM, whereas indomethacin exhibited noncompetitive inhibition (Ki < 24 microM). The kinetics of the inhibition by a mixture of the two inhibitors suggests that bile acids and drugs, except indomethacin, bind to overlapping sites at the active center of the enzyme-coenzyme binary complex.
Kleckner, Ian R.; McElroy, Craig A.; Kuzmic, Petr; Gollnick, Paul; Foster, Mark P.
2014-01-01
The trp RNA-binding Attenuation Protein (TRAP) assembles into an 11-fold symmetric ring that regulates transcription and translation of trp-mRNA in bacilli via heterotropic allosteric activation by the amino acid tryptophan (Trp). Whereas nuclear magnetic resonance studies have revealed that Trp-induced activation coincides with both μs-ms rigidification and local structural changes in TRAP, the pathway of binding of the 11 Trp ligands to the TRAP ring remains unclear. Moreover, because each of eleven bound Trp molecules is completely surrounded by protein, its release requires flexibility of Trp-bound (holo) TRAP. Here, we used stopped-flow fluorescence to study the kinetics of Trp binding by Bacillus stearothermophilus TRAP over a range of temperatures and we observed well-separated kinetic steps. These data were analyzed using non-linear least-squares fitting of several two- and three-step models. We found that a model with two binding steps best describes the data, although the structural equivalence of the binding sites in TRAP implies a fundamental change in the time-dependent structure of the TRAP rings upon Trp binding. Application of the two binding step model reveals that Trp binding is much slower than the diffusion limit, suggesting a gating mechanism that depends on the dynamics of apo TRAP. These data also reveal that Trp dissociation from the second binding mode is much slower than after the first Trp binding mode, revealing insight into the mechanism for positive homotropic allostery, or cooperativity. Temperature dependent analyses reveal that both binding modes imbue increases in bondedness and order toward a more compressed active state. These results provide insight into mechanisms of cooperative TRAP activation, and underscore the importance of protein dynamics for ligand binding, ligand release, protein activation, and allostery. PMID:24224873
Pal-Bhowmick, Ipsita; Andersen, John; Srinivasan, Prakash; Narum, David L; Bosch, Jürgen; Miller, Louis H
2012-01-01
Invasion of erythrocytes by Plasmodium falciparum requires a connection between the cytoplasmic tail of the parasite's ligands for its erythrocyte receptors and the actin-myosin motor of the parasite. For the thromobospondin-related anonymous protein (TRAP) ligand on Plasmodium sporozoites, aldolase forms this connection and requires tryptophan and negatively charged amino acids in the ligand's cytoplasmic tail. Because of the importance of the Duffy binding-like (DBL) and the reticulocyte homology (RH) ligand families in erythrocyte binding and merozoite invasion, we characterized the ability of their cytoplasmic tails to bind aldolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), both of which bind actin. We tested the binding of the cytoplasmic peptides of the two ligand families to aldolase and GAPDH. Only the cytoplasmic peptides of some RH ligands showed strong binding to aldolase, and the binding depended on the presence of an aromatic amino acid (phenylalanine or tyrosine), rather than tryptophan, in the context of negatively charged amino acids. The binding was confirmed by surface plasmon resonance analysis and was found to represent affinity similar to that seen with TRAP. An X-ray crystal structure of aldolase at 2.5 Å in the presence of RH2b peptide suggested that the binding site location was near the TRAP-binding site. GAPDH bound to some of the cytoplasmic tails of certain RH and DBL ligands in an aromatic amino acid-dependent manner. Thus, the connection between Plasmodium merozoite ligands and erythrocyte receptors and the actin motor can be achieved through the activity of either aldolase or GAPDH by mechanisms that do not require tryptophan but, rather, other aromatic amino acids. IMPORTANCE The invasion of the Plasmodium merozoite into erythrocytes is a critical element in malaria pathogenesis. It is important to understand the molecular details of this process, as this machinery can be a target for both vaccine and drug development. In Plasmodium sporozoites and Toxoplasma tachyzoites, invasion involves a glycolytic enzyme aldolase, linking the cytoplasmic tail domains of the parasite ligands to the actin-myosin motor that drives invasion. This binding requires a tryptophan that cannot be replaced by other aromatic residues. Here we show that aldolase binds the cytoplasmic tails of some P. falciparum merozoite erythrocyte-binding ligands but that the binding involves aromatic residues other than tryptophan. The biological relevance of aldolase binding to cytoplasmic tails of parasite ligands in invasion is demonstrated by our observation that RH2b but not RH2a binds to aldolase and, as previously shown, that RH2b but not RH2a is required for P. falciparum invasion of erythrocytes.
Hunt, A F; Reed, M I
1990-07-01
The binding mechanisms and binding sites involved in the tannic acid and chromic chloride-induced binding of protein to red cells were investigated using the binding of IgA paraprotein to red cells as model systems. Inhibition studies of these model systems using amino acid homopolymers and compounds (common as red cell membrane constituents) suggest that the mechanisms involved are similar to those proposed for the conversion of hide or skin collagen to leather, as in commercial tanning. These studies also suggest that tannic acid-induced binding of IgA paraprotein to red cells involves the amino acid residues of L-arginine, L-lysine, L-histidine, and L-proline analogous to tanning with phenolic plant extracts. The amino acid residues of L-aspartate, L-glutamate and L-asparagine are involved in a similar manner in chronic chloride-induced binding of protein to red cells.
Lee, Sung G.; Lipmann, Fritz
1977-01-01
Dissociation of the multienzymes of tyrocidine synthesis by prolonged incubation of crude extracts of Bacillus brevis (Dubos strain, ATCC 8185) has yielded, on Sephadex G-100 chromatography, two fractions of amino acid activating subunits, a larger one of 70,000 daltons and a smaller one of 90,000 daltons; the latter was a complex consisting of the 70,000 dalton subunit and the pantetheine-carrying protein of about 20,000 daltons. When it dissociated, the intermediate enzyme, which activates three amino acids, contained two-thirds of the subunits in the 70,000 dalton and one-third in the 90,000 dalton fraction; the heavy enzyme, which activates six amino acids, contained five-sixths of the subunits in the former fraction and one-sixth in the latter. Both fractions showed ATP-PPi exchange with all amino acids that are activated by the respective polyenzymes. With proline as an example, the 70,000 dalton subunit exhibited a single low-affinity binding site, which should correspond to the peripheral thiol acceptor site, whereas the 90,000 dalton subunit showed both a low-affinity binding site and an additional high-affinity site for proline; the high-affinity site is attributed to the pantetheine present on the pantetheine-carrying protein, and suggests that amino acids are translocated from the peripheral SH to the pantetheine-carrying moiety during chain elongation. This was confirmed by the observation that the 90,000 dalton complex, when incubated with the light enzyme in the presence of phenylalanine and proline, produced DPhe-Pro dipeptide that cyclized into DPhe-Pro diketopiperazine, but the 70,000 dalton activating subunit, when similarly incubated, did not. After subunit dissociation, however, no further elongation occurred after the transfer from phenylalanine to proline. Images PMID:196286
Wagle, Aditi; Seong, Su Hui; Zhao, Bing Tian; Woo, Mi Hee; Jung, Hyun Ah; Choi, Jae Sue
2018-04-01
Hizikia fusiformis (Harvey) Okamura is a brown seaweed widely used in Korea and Japan, and it contains different therapeutically active constituents. In the present study, we investigated the activities of glycyrrhizin isolated from H. fusiformis, including its metabolites, 18α- and 18β-glycyrrhetinic acid against Alzheimer's disease (AD) via acetyl and butyrylcholinesterase and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibition. Among these three compounds, 18β-glycyrrhetinic acid (IC 50 = 8.93 ± 0.69 µM) demonstrated two fold potent activity against BACE1 compared to the positive control, quercetin (IC 50 = 20.18 ± 0.79 µM). Additionally, glycyrrhizin with an IC 50 value of 20.12 ± 1.87 µM showed similarity to quercetin, while 18α-glycyrrhetinic acid showed moderate activity (IC 50 = 104.35 ± 2.84 µM). A kinetic study revealed that glycyrrhizin and 18β-glycyrrhetinic acid were non-competitive and competitive inhibitiors of BACE1, demonstrated via K i values of 16.92 and 10.91 µM, respectively. Molecular docking simulation studies evidently revealed strong binding energy of these compounds for BACE1, indicating their high affinity and capacity for tighter binding to the active site of the enzyme. These data suggest that glycyrrhizin isolated from the edible seaweed, H. fusiformis and its metabolite, 18β-glycyrrhetinic acid demonstrated selective inhibitory activity against BACE1 to alleviate AD.
Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L
2006-07-01
The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. (c) 2006 Wiley-Liss, Inc.
Shinji, Chihiro; Maeda, Satoko; Imai, Keisuke; Yoshida, Minoru; Hashimoto, Yuichi; Miyachi, Hiroyuki
2006-11-15
A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).
Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides.
Chokhawala, Harshal A; Huang, Shengshu; Lau, Kam; Yu, Hai; Cheng, Jiansong; Thon, Vireak; Hurtado-Ziola, Nancy; Guerrero, Juan A; Varki, Ajit; Chen, Xi
2008-09-19
Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.
Gao, Zhan; Li, Mengyang; Ma, Jie; Zhang, Shicui
2014-12-01
The origin of the classical complement pathway remains open during chordate evolution. A C1q-like member, BjC1q, was identified in the basal chordate amphioxus. It is predominantly expressed in the hepatic caecum, hindgut, and notochord, and is significantly upregulated following challenge with bacteria or lipoteichoic acid and LPS. Recombinant BjC1q and its globular head domain specifically interact with lipoteichoic acid and LPS, but BjC1q displays little lectin activity. Moreover, rBjC1q can assemble to form the high molecular weight oligomers necessary for binding to proteases C1r/C1s and for complement activation, and binds human C1r/C1s/mannan-binding lectin-associated serine protease-2 as well as amphioxus serine proteases involved in the cleavage of C4/C2, and C3 activation. Importantly, rBjC1q binds with human IgG as well as an amphioxus Ig domain containing protein, resulting in the activation of the classical complement pathway. This is the first report showing that a C1q-like protein in invertebrates is able to initiate classical pathway, raising the possibility that amphioxus possesses a C1q-mediated complement system. It also suggests a new scenario for the emergence of the classical complement pathway, in contrast to the proposal that the lectin pathway evolved into the classical pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of Stomach Acid-Stable and Mucin-Binding Enzyme Polymer Conjugates.
Cummings, Chad S; Campbell, Alan S; Baker, Stefanie L; Carmali, Sheiliza; Murata, Hironobu; Russell, Alan J
2017-02-13
The reduced immunogenicity and increased stability of protein-polymer conjugates has made their use in therapeutic applications particularly attractive. However, the physicochemical interactions between polymer and protein, as well as the effect of this interaction on protein activity and stability, are still not fully understood. In this work, polymer-based protein engineering was used to examine the role of polymer physicochemical properties on the activity and stability of the chymotrypsin-polymer conjugates and their degree of binding to intestinal mucin. Four different chymotrypsin-polymer conjugates, each with the same polymer density, were synthesized using "grafting-from" atom transfer radical polymerization. The influence of polymer charge on chymotrypsin-polymer conjugate mucin binding, bioactivity, and stability in stomach acid was determined. Cationic polymers covalently attached to chymotrypsin showed high mucin binding, while zwitterionic, uncharged, and anionic polymers showed no mucin binding. Cationic polymers also increased chymotrypsin activity from pH 6-8, while zwitterionic polymers had no effect, and uncharged and anionic polymers decreased enzyme activity. Lastly, cationic polymers decreased the tendency of chymotrypsin to structurally unfold at extremely low pH, while uncharged and anionic polymers induced unfolding more quickly. We hypothesized that when polymers are covalently attached to the surface of a protein, the degree to which those polymers interact with the protein surface is the predominant determinant of whether the polymer will stabilize or inactivate the protein. Preferential interactions between the polymer and the protein lead to removal of water from the surface of the protein, and this, we believe, inactivates the enzyme.
Djinovic-Carugo, Kristina; Bläsi, Udo
2013-01-01
The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa. PMID:23717639
Milojevic, Tetyana; Grishkovskaya, Irina; Sonnleitner, Elisabeth; Djinovic-Carugo, Kristina; Bläsi, Udo
2013-01-01
The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa.
Chen, Jeremy J. W.; Wu, Wen-Lin; Yuann, Jeu-Ming P.; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon
2012-01-01
The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion. PMID:23144800
Wang, Sheng-Yu; Lee, Alan Yueh-Luen; Lee, Yueh-Luen; Lai, Yi-Hua; Chen, Jeremy J W; Wu, Wen-Lin; Yuann, Jeu-Ming P; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon
2012-01-01
The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.
Wieczorek, Anna; McHenry, Charles S
2006-05-05
The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.
Radlow, Madlen; Czjzek, Mirjam; Jeudy, Alexandra; Dabin, Jerome; Delage, Ludovic; Leblanc, Catherine; Hartung, Jens
2018-05-18
X-ray diffraction of native bromoperoxidase II (EC 1.11.1.18) from the brown alga Ascophyllum nodosum reveals at a resolution of 2.26 Å details of orthovanadate binding and homohexameric protein organization. Three dimers interwoven in contact regions and tightened by hydrogen-bond-clamped guanidinium stacks along with regularly aligned water molecules form the basic structure of the enyzme. Intra- and intermolecular disulfide bridges further stabilize the enzyme preventing altogether the protein from denaturing up to a temperature of 90 °C, as evident from dynamic light scattering and the on-gel ortho-dianisidine assay. Every monomer binds one equivalent of orthovanadate in a cavity formed from side chains of three histidines, two arginines, one lysine, serine, and tryptophan. Protein binding occurs primarily through hydrogen bridges and superimposed by Coulomb attraction according to thermochemical model on density functional level of theory (B3LYP/6-311++G**). The strongest attractor is the arginine side chain mimic N-methylguanidinium, enhancing in positive cooperative manner hydrogen bridges toward weaker acceptors, such as residues from lysine and serine. Activating hydrogen peroxide occurs in the thermochemical model by side-on binding in orthovanadium peroxoic acid, oxidizing bromide with virtually no activation energy to hydrogen bonded hypobromous acid.
Kahlon, Talwinder Singh; Chiu, Mei-Chen M; Chapman, Mary H
2008-06-01
Bile acid binding capacity has been related to the cholesterol-lowering potential of foods and food fractions. Lowered recirculation of bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile acid binding potential has been related to lowering the risk of heart disease and that of cancer. Previously, we have reported bile acid binding by several uncooked vegetables. However, most vegetables are consumed after cooking. How cooking would influence in vitro bile acid binding of various vegetables was investigated using a mixture of bile acids secreted in human bile under physiological conditions. Eight replicate incubations were conducted for each treatment simulating gastric and intestinal digestion, which included a substrate only, a bile acid mixture only, and 6 with substrate and bile acid mixture. Cholestyramine (a cholesterol-lowering, bile acid binding drug) was the positive control treatment and cellulose was the negative control. Relative to cholestyramine, in vitro bile acid binding on dry matter basis was for the collard greens, kale, and mustard greens, 13%; broccoli, 10%; Brussels sprouts and spinach, 8%; green bell pepper, 7%; and cabbage, 5%. These results point to the significantly different (P < or = .05) health-promoting potential of collard greens = kale = mustard greens > broccoli > Brussels sprouts = spinach = green bell pepper > cabbage as indicated by their bile acid binding on dry matter basis. Steam cooking significantly improved the in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage compared with previously observed bile acid binding values for these vegetables raw (uncooked). Inclusion of steam-cooked collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage in our daily diet as health-promoting vegetables should be emphasized. These green/leafy vegetables, when consumed regularly after steam cooking, would lower the risk of cardiovascular disease and cancer, advance human nutrition research, and improve public health.
Models of metal binding structures in fulvic acid from the Suwannee River, Georgia
Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.
1998-01-01
Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.
Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro.
Dietz, Birgit M; Mahady, Gail B; Pauli, Guido F; Farnsworth, Norman R
2005-08-18
Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABA(A) receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT(5a) receptor, but only weak binding affinity to the 5-HT(2b) and the serotonin transporter. Subsequent binding studies focused on the 5-HT(5a) receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep-wake cycle. The PE extract inhibited [(3)H]lysergic acid diethylamide (LSD) binding to the human 5-HT(5a) receptor (86% at 50 microg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC(50) curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC(50) of 15.7 ng/ml for the high-affinity state and 27.7 microg/ml for the low-affinity state. The addition of GTP (100 microM) resulted in a right-hand shift of the binding curve with an IC(50) of 11.4 microg/ml. Valerenic acid, the active constituent of both extracts, had an IC(50) of 17.2 microM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT(5a) receptor.
Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro
Dietz, Birgit M.; Mahady, Gail B.; Pauli, Guido F.; Farnsworth, Norman R.
2018-01-01
Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABAA receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT5a receptor, but only weak binding affinity to the 5-HT2b and the serotonin transporter. Subsequent binding studies focused on the 5-HT5a receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep–wake cycle. The PE extract inhibited [3H]lysergic acid diethylamide (LSD) binding to the human 5-HT5a receptor (86% at 50 μg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC50 curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC50 of 15.7 ng/ml for the high-affinity state and 27.7 μg/ml for the low-affinity state. The addition of GTP (100 AM) resulted in a right-hand shift of the binding curve with an IC50 of 11.4 μg/ml. Valerenic acid, the active constituent of both extracts, had an IC50 of 17.2 AM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT5a receptor. PMID:15921820
Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert
2016-03-01
It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.
Passive transport and binding of lead by human red blood cells.
Simons, T J
1986-09-01
The uptake of Pb into human red blood cells has been studied using Pb buffers. Passive Pb movements can be studied conveniently when the cells are depleted of adenosine 5'-triphosphate (ATP), to eliminate active transport, and of inorganic phosphate, to prevent precipitation of lead phosphate. Pb can cross the membrane passively in either direction. Influx and efflux show similar properties. Passive Pb transport is strongly stimulated by HCO3-, and is reduced by replacing Cl- with ClO4-. It is inhibited by low concentrations of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) and 4,4'-diisothiocyanostilbene-2.2'-disulphonic acid (DIDS), characteristic inhibitors of anion transport. Pb uptake is unaffected by varying the external concentrations of Na+, K+ and Ca2+. When Pb enters the cell, it binds mainly to haemoglobin. The ratio of bound Pb:free Pb2+ in the cytosol is estimated to be 6000:1. Pb binding to haemoglobin is unaffected by oxygenation. Binding to albumin is quantitatively similar to binding to haemoglobin. The implications of these results for the transport and binding of Pb in the blood are discussed.
Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism.
Genzer, Yoni; Chapnik, Nava; Froy, Oren
2017-07-01
Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Hongjun; Zangar, Richard C.
Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine,more » and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.« less
Qi, Xiangbing; Gui, Wen-Jun; Morlock, Lorraine K.; Wallace, Amy L.; Ahmed, Kamran; Laxman, Sunil; Campeau, Philippe M.; Lee, Brendan H.; Hutson, Susan M.; Tu, Benjamin P.; Williams, Noelle S.; Tambar, Uttam K.; Wynn, R. Max; Chuang, David T.
2013-01-01
The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP]. Crystal structures of the BDK-(S)-CPP complex show that (S)-CPP binds to a unique allosteric site in the N-terminal domain, triggering helix movements in BDK. These conformational changes are communicated to the lipoyl-binding pocket, which nullifies BDK activity by blocking its binding to the BCKDC core. Administration of (S)-CPP to mice leads to the full activation and dephosphorylation of BCKDC with significant reduction in plasma BCAA concentrations. The results buttress the concept of targeting mitochondrial BDK as a pharmacological approach to mitigate BCAA accumulation in metabolic diseases and heart failure. PMID:23716694
Wilkinson, T C; Wilton, D C
1986-01-01
Fatty acid-binding protein from rat liver is shown to bind the fluorescent fatty acid probe dansyl undecanoic acid. Binding is accompanied by a shift in the fluorescence emission maximum from 550 nm to 500 nm and a 60-fold fluorescence enhancement at 500 nm. These spectral properties have allowed the use of this probe to detect and quantify microgram amounts of liver fatty acid-binding protein during purification procedures. In conjunction with h.p.l.c. the method allows the rapid estimation of liver fatty acid-binding protein in biological samples. The validity of the method is demonstrated by measuring the concentration of fatty acid-binding protein in livers from control and hypolipidaemic-drug-treated rats. The dramatic diurnal rhythm previously reported for this protein [Dempsey (1984) Curr. Top. Cell. Regul. 24, 63-86] was not observed with this method. Images Fig. 1. PMID:3800946
Gansser, D; Spiteller, G
1995-01-01
A test system is described, which allows the search for compounds interfering with human sex hormone-binding globulin (SHBG) even in complex plant extracts. The method has been evaluated and applied to Urtica dioica root extracts. The lignan secoisolariciresinol (5) as well as a mixture of isomeric (11 E)-9,10,13-trihydroxy-11-octadecenoic and (10 E)-9,12,13-trihydroxy-10-octadecenoic acids (3 and 4, resp.) were demonstrated to reduce binding activity of human SHBG. Methylation of the mixture of 3 and 4 increased its activity about 10-fold.
Attenni, Barbara; Ontoria, Jesus M; Cruz, Jonathan C; Rowley, Michael; Schultz-Fademrecht, Carsten; Steinkühler, Christian; Jones, Philip
2009-06-01
Histone deacetylase (HDAC) inhibition causes hyperacetylation of histones leading to differentiation, growth arrest and apoptosis of malignant cells, representing a new strategy in cancer therapy. Many of the known HDAC inhibitors (HDACi) that are in clinical trials possess a hydroxamic acid, that is a strong Zn(2+) binding group, thereby inhibiting some of the class I and class II isoforms. Herein we describe the identification of a selective class I HDAC inhibitor bearing a primary carboxamide moiety as zinc binding group. This HDACi displays good antiproliferative activity against multiple cancer cell lines, and demonstrates efficacy in a xenograft model comparable to vorinostat.
Dutta, Dipanjan; Chattopadhyay, Shiladitya; Bagchi, Parikshit; Halder, Umesh Chandra; Nandi, Satabdi; Mukherjee, Anupam; Kobayashi, Nobumichi; Taniguchi, Koki; Chawla-Sarkar, Mamta
2011-01-01
Heat shock protein 90 (Hsp90) has been reported to positively regulate rotavirus replication by modulating virus induced PI3K/Akt and NFκB activation. Here, we report the active association of Hsp90 in the folding and stabilization of rotavirus nonstructural protein 3 (NSP3). In pCD-NSP3-transfected cells, treatment with Hsp90 inhibitor (17-N,N-dimethylethylenediamine-geldanamycin (17DMAG)) resulted in the proteasomal degradation of NSP3. Sequence analysis and deletion mutations revealed that the region spanning amino acids 225–258 within the C-terminal eIF4G-binding domain of NSP3 is a putative Hsp90 binding region. Co-immunoprecipitation and mammalian two-hybrid experiments revealed direct interaction of the C-terminal 12-kDa domain of Hsp90 (C90) with residues 225–258 of NSP3. NSP3-Hsp90 interaction is important for the formation of functionally active mature NSP3, because full-length NSP3 in the presence of the Hsp90 inhibitor or NSP3 lacking the amino acid 225–258 region did not show NSP3 dimers following in vitro coupled transcription-translation followed by chase. Disruption of residues 225–258 within NSP3 also resulted in poor RNA binding and eIF4G binding activity. In addition, inhibition of Hsp90 by 17DMAG resulted in reduced nuclear translocation of poly(A)-binding protein and translation of viral proteins. These results highlight the crucial role of Hsp90 chaperone in the regulation of assembly and functionality of a viral protein during the virus replication and propagation in host cells. PMID:21489987
Mechanism of arginine sensing by CASTOR1 upstream of mTORC1
Saxton, Robert A.; Chantranupong, Lynne; Knockenhauer, Kevin E.; Schwartz, Thomas U.; Sabatini, David M.
2016-01-01
Summary The mechanistic Target of Rapamycin Complex 1 (mTORC1) is a major regulator of eukaryotic growth that coordinates anabolic and catabolic cellular processes with inputs such as growth factors and nutrients, including amino acids1–3. In mammals, arginine is particularly important and promotes diverse physiological effects including immune cell activation, insulin secretion, and muscle growth, largely through activation of mTORC14–7. Arginine activates mTORC1 upstream of the Rag GTPases8, through either the lysosomal amino acid transporter SLC38A9 or the GATOR2-interacting CASTOR1 (Cellular Arginine Sensor for mTORC1)9–12. However, the mechanism by which the mTORC1 pathway detects and transmits the arginine signal has been elusive. Here, we present the 1.8 Å crystal structure of arginine-bound CASTOR1. Homodimeric CASTOR1 binds arginine at the interface of two ACT domains, enabling allosteric control of the adjacent GATOR2-binding site to trigger dissociation from GATOR2 and the downstream activation of mTORC1. Our data reveal that CASTOR1 shares substantial structural homology with the lysine-binding regulatory domain of prokaryotic aspartate kinases, suggesting that the mTORC1 pathway exploited an ancient amino-acid-dependent allosteric mechanism to acquire arginine sensitivity. Together, these results establish a structural basis for arginine sensing by the mTORC1 pathway and provide insights into the evolution of a mammalian nutrient sensor. PMID:27487210
Lim, Y P; Low, B C; Lim, J; Wong, E S; Guy, G R
1999-07-02
FRS2 is a docker protein that recruits signaling proteins to the plasma membrane in fibroblast growth factor signal transduction. We report here that FRS2 was associated with PKC lambda when Swiss 3T3 cells were stimulated with basic fibroblast growth factor. PKC zeta, the other member of the atypical PKC subfamily, could also bind FRS2. The association between FRS2 and PKC lambda is likely to be direct as shown by yeast two-hybrid analysis. The C-terminal fragments of FRS2 (amino acid residues 300-508) and SNT2 (amino acids 281-492), an isoform bearing 50% identity to FRS2, interacted with PKC lambda at a region (amino acids 240-562) that encompasses the catalytic domain. In vitro kinase assays revealed neither FRS2 nor SNT2 was a substrate of PKC lambda or zeta. Mutation of the alanine residue (Ala-120) to glutamate in the pseudo-substrate region of PKC lambda results in a constitutively active kinase that exhibited more than 2-fold greater binding to FRS2 in vitro than its "closed" wild-type counterpart. Tyrosine phosphorylation of FRS2 did not affect its binding to the constitutively active PKC lambda mutant, suggesting that the activation of PKC lambda is necessary and sufficient for its association with FRS2. It is likely that FRS2 serves as an anchoring protein for targeting activated atypical PKCs to the cell plasma membrane in signaling pathways.
E-p-Methoxycinnamic acid protects cultured neuronal cells against neurotoxicity induced by glutamate
Kim, So Ra; Sung, Sang Hyun; Jang, Young Pyo; Markelonis, George J; Oh, Tae H; Kim, Young Choong
2002-01-01
We previously reported that four new phenylpropanoid glycosides and six known cinnamate derivatives isolated from roots of Scrophularia buergeriana Miquel (Scrophulariaceae) protected cultured cortical neurons from neurotoxicity induced by glutamate. Here, we have investigated the structure-activity relationships in the phenylpropanoids using our primary culture system. The α,β-unsaturated ester moiety and the para-methoxy group in the phenylpropanoids appeared to play a vital role in neuroprotective activity. This suggested that E-p-methoxycinnamic acid (E-p-MCA) might be a crucial component for their neuroprotective activity within the phenylpropanoid compounds. E-p-MCA significantly attenuated glutamate-induced neurotoxicity when added prior to an excitotoxic glutamate challenge. The neuroprotective activity of E-p-MCA appeared to be more effective in protecting neurons against neurotoxicity induced by NMDA than from that induced by kainic acid. E-p-MCA inhibited the binding of [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine to their respective binding sites on rat cortical membranes. However, even high concentrations of E-p-MCA failed to inhibit completely [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine binding. Indeed, E-p-MCA diminished the calcium influx that routinely accompanies glutamate-induced neurotoxicity, and inhibited the subsequent overproduction of nitric oxide and cellular peroxide in glutamate-injured neurons. Thus, our results suggest that E-p-MCA exerts significant protective effects against neurodegeneration induced by glutamate in primary cultures of cortical neurons by an action suggestive of partial glutamatergic antagonism. PMID:11877337
Manolios, N; Bakiera, B; Geczy, C L; Schrieber, L
1991-02-01
In peripheral lymphoid organs the number of lymphocytes and the proportion of functional lymphocyte subsets are regulated by multiple factors including the control of lymphocyte migration by selective lymphocyte-high endothelial venule (HEV) interactions. In this study, prostaglandin E2 (PGE2) levels from normal and autoimmune mouse lymph node cells were measured. The contribution of eicosanoids to lymphocyte-HEV interactions in normal (CBA/T6) and autoimmune (MRL/n) mice was examined. There was no association between PGE2 production in normal or autoimmune mice and the age of onset of disease activity in the latter strains. Arachidonic acid metabolites, in particular PGE2 and leukotriene B4 (LTB4), did not have any effects on lymphocyte-HEV binding. Likewise, lymphocytes treated in vivo and/or in vitro with arachidonic acid metabolite inhibitors (acetyl salicylic acid, indomethacin, BW755C) did not alter lymphocyte-HEV binding interactions in both normal and autoimmune mice. No clinical significance could be attributed to lymph node PGE2 production and the age of onset of autoimmune disease. In summary, these findings cast doubt on the role of arachidonic acid metabolites in lymphocyte-HEV binding interactions.
2014-01-01
Background The positive transcription elongation factor b (P-TEFb) plays an essential role in activating HIV genome transcription. It is recruited to the HIV LTR promoter through an interaction between the Tat viral protein and its Cyclin T1 subunit. P-TEFb activity is inhibited by direct binding of its subunit Cyclin T (1 or 2) with Hexim (1 or 2), a cellular protein, bound to the 7SK small nuclear RNA. Hexim1 competes with Tat for P-TEFb binding. Results Mutations that impair human Cyclin T1/Hexim1 interaction were searched using systematic mutagenesis of these proteins coupled with a yeast two-hybrid screen for loss of protein interaction. Evolutionary conserved Hexim1 residues belonging to an unstructured peptide located N-terminal of the dimerization domain, were found to be critical for P-TEFb binding. Random mutagenesis of the N-terminal region of Cyclin T1 provided identification of single amino-acid mutations that impair Hexim1 binding in human cells. Furthermore, conservation of critical residues supported the existence of a functional Hexim1 homologue in nematodes. Conclusions Single Cyclin T1 amino-acid mutations that impair Hexim1 binding are located on a groove between the two cyclin folds and define a surface overlapping the HIV-1 Tat protein binding surface. One residue, Y175, in the centre of this groove was identified as essential for both Hexim1 and Tat binding to P-TEFb as well as for HIV transcription. PMID:24985203
Kwon, Hye-Sook; Huang, Boli; Ho Jeoung, Nam; Wu, Pengfei; Steussy, Calvin N; Harris, Robert A
2006-01-01
Induction of pyruvate dehydrogenase kinase 4 (PDK4) conserves glucose and substrates for gluconeogenesis and thereby helps regulate blood glucose levels during starvation. We report here that retinoic acids (RA) as well as Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC), regulate PDK4 gene expression. Two retinoic acid response elements (RAREs) to which retinoid X receptor alpha (RXRalpha) and retinoic acid receptor alpha (RARalpha) bind and activate transcription are present in the human PDK4 (hPDK4) proximal promoter. Sp1 and CCAAT box binding factor (CBF) bind to the region between two RAREs. Mutation of either the Sp1 or the CBF site significantly decreases basal expression, transactivation by RXRalpha/RARalpha/RA, and the ability of TSA to stimulate hPDK4 gene transcription. By the chromatin immunoprecipitation assay, RA and TSA increase acetylation of histones bound to the proximal promoter as well as occupancy of CBP and Sp1. Interaction of p300/CBP with E1A completely prevented hPDK4 gene activation by RXRalpha/RARalpha/RA and TSA. The p300/CBP may enhance acetylation of histones bound to the hPDK4 promoter and cooperate with Sp1 and CBF to stimulate transcription of the hPDK4 gene in response to RA and TSA.
Buku, Angeliki; Mendlowitz, Milton; Condie, Barry A; Price, Joseph A
2004-06-01
The influence of the two histidine and two arginine residues of mast cell degranulating peptide (MCD) in activity and binding was studied by replacing these amino acids in the MCD sequence with L-alanine. Their histamine releasing activity was determined on rat peritoneal mast cells. Their binding affinity to the FcepsilonRIalpha binding subunit of the human mast cell receptor protein, was carried out using fluorescence polarization. The histamine assay showed that replacement of His13 by Ala o ccurred without loss of activity compared with the activity of MCD. Alanine substitutions for Arg7 and His8 resulted in an approximately 40 fold increase, and for Arg16 in a 14-fold increase in histamine-releasing activity of MCD. The binding affinities of the analogs were tested by competitive displacement of bound fluorescent MCD peptide from the FcepsilonRIalpha binding protein of the mast cell receptor by the Ala analogs using fluorescence polarization. The analogs Ala8 (for His) and Ala16 (for Arg) showed the same binding affinities as MCD, whereas analog Ala7 (for Arg) and analog Ala13 (for His) showed slightly better binding affinity than the parent compound. This study showed that the introduction of alanine residues in these positions resulted in MCD agonists of diverse potency. These findings will be useful in further MCD structure-activity studies.
Oh, Chang-Sik; Carpenter, Sara C D; Hayes, Marshall L; Beer, Steven V
2010-04-01
DspA/E is a type III effector of Erwinia amylovora, the bacterial pathogen that causes fire blight disease in roseaceous plants. This effector is indispensable for disease development, and it is translocated into plant cells. A DspA/E-specific chaperone, DspB/F, is necessary for DspA/E secretion and possibly for its translocation. In this work, DspB/F-binding sites and secretion and translocation signals in the DspA/E protein were determined. Based on yeast two-hybrid assays, DspB/F was found to bind DspA/E within the first 210 amino acids of the protein. Surprisingly, both DspB/F and OrfA, the putative chaperone of Eop1, also interacted with the C-terminal 1059 amino acids of DspA/E; this suggests another chaperone-binding site. Secretion and translocation assays using serial N-terminal lengths of DspA/E fused with the active form of AvrRpt2 revealed that at least the first 109 amino acids, including the first N-terminal chaperone-binding motif and DspB/F, were required for efficient translocation of DspA/E, although the first 35 amino acids were sufficient for its secretion and the presence of DspB/F was not required. These results indicate that secretion and translocation signals are present in the N terminus of DspA/E, and that at least one DspB/F-binding motif is required for efficient translocation into plant cells.
Cutsforth, G A; Koppaka, V; Krishnaswamy, S; Wu, J R; Mann, K G; Lentz, B R
1996-01-01
The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic-lipid-specific sites on the factor Va molecule. Images FIGURE 5 PMID:8744332
Polymorphic Nucleic Acid Binding of Bioactive Isoquinoline Alkaloids and Their Role in Cancer
Maiti, Motilal; Kumar, Gopinatha Suresh
2010-01-01
Bioactive alkaloids occupy an important position in applied chemistry and play an indispensable role in medicinal chemistry. Amongst them, isoquinoline alkaloids like berberine, palmatine and coralyne of protoberberine group, sanguinarine of the benzophenanthridine group, and their derivatives represent an important class of molecules for their broad range of clinical and pharmacological utility. In view of their extensive occurrence in various plant species and significantly low toxicities, prospective development and use of these alkaloids as effective anticancer agents are matters of great current interest. This review has focused on the interaction of these alkaloids with polymorphic nucleic acid structures (B-form, A-form, Z-form, HL-form, triple helical form, quadruplex form) and their topoisomerase inhibitory activity reported by several research groups using various biophysical techniques like spectrophotometry, spectrofluorimetry, thermal melting, circular dichroism, NMR spectroscopy, electrospray ionization mass spectroscopy, viscosity, isothermal titration calorimetry, differential scanning calorimetry, molecular modeling studies, and so forth, to elucidate their mode and mechanism of action for structure-activity relationships. The DNA binding of the planar sanguinarine and coralyne are found to be stronger and thermodynamically more favoured compared to the buckled structure of berberine and palmatine and correlate well with the intercalative mechanism of sanguinarine and coralyne and the partial intercalation by berberine and palmatine. Nucleic acid binding properties are also interpreted in relation to their anticancer activity. PMID:20814427
Cebrián-Prats, Anna; Rovira, Tiffani; Saura, Patricia; González-Lafont, Àngels; Lluch, José M
2017-12-28
Ebselen is a potent competitive inhibitor of the active form of rabbit 15-lipoxygenase, an enzyme involved in many inflammatory diseases. Light-induced Z-to-E isomerization of the ebselen-like 2-(3-benzylidene)-3-oxo-2,3-dihydrobenzo[b]thiophene-7-carboxylic acid methyl ester (BODTCM) molecule was used to convert the weak (Z)-BOTDCM inhibitor into the (E)-isomer with much higher inhibitory capacity. In this study, the binding modes of ebselen, (E)-BOTDCM and (Z)-BOTDCM, have been analyzed to provide molecular insights on the inhibitory potency of ebselen and on the geometric-isomer specificity of (E)- and (Z)-BOTDCM inhibitors. The inhibitor-enzyme structures obtained from docking and molecular dynamics simulations as well as from QM/MM calculations show that the inhibitor molecules are not coordinated to the nonheme iron in the active site. Thermal motion allows ebselen and (E)-BOTDCM to visit a wide range of the configurational space competing with the polyunsaturated fatty acid for binding at the active site. Both molecules present similar MM/PBSA binding free energies. The energy penalty for the bigger geometric deformation undergone by (E)-BODTCM would explain its lower inhibitor potency. The (Z)-isomer is the weakest inhibitor because thermal motion moves it to a region very far from the first coordination sphere of Fe, where it could not compete with the fatty acid substrate.
Singh, Neha; Dalal, Vikram; Kumar, Pravindra
2018-03-01
Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (hACMSD) is a zinc containing amidohydrolase which is a vital enzyme of the kynurenine pathway in tryptophan metabolism. It prevents the accumulation of quinolinic acid (QA) and helps in the maintenance of basal Trp-niacin ratio. To assess the structure based inhibitory action of PAEs such as DMP, DEP, DBP, DIBP, DEHP and their metabolites, these were docked into the active site cavity of hACMSD. Docking results show that the binding affinities of PAEs lie in the comparable range (-4.9 kca/mol-7.48kcal/mol) with Dipicolinic acid (-6.21kcal/mol), a substrate analogue of hACMSD. PAEs interact with the key residues such as Arg47 and Trp191 and lie within the 4Å vicinity of zinc metal at the active site of hACMSD. Dynamics and stability of the PAEs-hACMSD complexes were determined by performing molecular dynamics simulations using GROMACS 5.14. Binding free energy calculations of the PAEs-hACMSD complexes were estimated by using MMPBSA method. The results emphasize that PAEs can structurally mimic the binding pattern of tryptophan metabolites to hACMSD, which further leads to inhibition of its activity and accumulation of the quinolate in the kynurenine pathway of tryptophan metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.
Cl- channel blockers NPPB and niflumic acid blunt Ca(2+)-induced erythrocyte 'apoptosis'.
Myssina, Svetlana; Lang, Philipp A; Kempe, Daniela S; Kaiser, Stefanie; Huber, Stephan M; Wieder, Thomas; Lang, Florian
2004-01-01
Exposure to Ca2+ ionophore ionomycin, osmotic shock, oxidative stress and glucose depletion trigger cell shrinkage and scramblase-mediated phosphatidylserine exposure at the outer leaflet of the erythrocyte cell membrane. The effects are partially due to activation of GARDOS channels and subsequent cellular K+ loss leading not only to cell shrinkage but also participating in the triggering of erythrocyte scramblase. As conductive loss of K+ would depend on the parallel loss of anions we hypothesised that activation of scramblase is similarly dependent on the activity of Cl- channels. To test this hypothesis, we used Cl- channel blockers NPPB and niflumic acid. It is shown here that treatment of erythrocytes with 1 microM ionomycin leads to cellular K+ loss, decrease of hematocrit and decrease of forward scatter in FACS analysis reflecting cell shrinkage as well as increase of annexin positive cells reflecting phosphatidylserine exposure. Those events were significantly blunted in the presence of 100 microM NPPB by 34% (K+ loss), 45% (hematocrit), 32% (forward scatter) and 69% (annexin binding), or in the presence of 100 microM niflumic acid by 15% (forward scatter) and 45% (annexin binding), respectively. Moreover, oxidative stress triggered annexin binding which was again significantly inhibited (by 51%) in the presence of 100 microM NPPB. In conclusion, Cl- channels presumably participate in the regulation of erythrocyte 'apoptosis'. Copyright 2004 S. Karger AG, Basel
McGhee, Pamela; Clark, Catherine; Credito, Kim; Beachel, Linda; Pankuch, Glenn A.; Appelbaum, Peter C.; Kosowska-Shick, Klaudia
2011-01-01
We tested the MICs of fusidic acid (CEM-102) plus other agents against 40 methicillin-resistant Staphylococcus aureus (MRSA) isolates from cystic fibrosis patients and the activities of fusidic acid with or without tobramycin or amikacin against Pseudomonas aeruginosa, MRSA, and Burkholderia cepacia isolates from cystic fibrosis patients in a 24-h time-kill study. Fusidic acid was potent (MICs, 0.125 to 0.5 μg/ml; a single 500-mg dose of fusidic acid at 8 h averaged 8 to 12. 5 μg/ml with 91 to 97% protein binding) against all MRSA strains. No antagonism was observed; synergy occurred for one MRSA strain treated with fusidic acid plus tobramycin. PMID:21343445
McGhee, Pamela; Clark, Catherine; Credito, Kim; Beachel, Linda; Pankuch, Glenn A; Appelbaum, Peter C; Kosowska-Shick, Klaudia
2011-05-01
We tested the MICs of fusidic acid (CEM-102) plus other agents against 40 methicillin-resistant Staphylococcus aureus (MRSA) isolates from cystic fibrosis patients and the activities of fusidic acid with or without tobramycin or amikacin against Pseudomonas aeruginosa, MRSA, and Burkholderia cepacia isolates from cystic fibrosis patients in a 24-h time-kill study. Fusidic acid was potent (MICs, 0.125 to 0.5 μg/ml; a single 500-mg dose of fusidic acid at 8 h averaged 8 to 12. 5 μg/ml with 91 to 97% protein binding) against all MRSA strains. No antagonism was observed; synergy occurred for one MRSA strain treated with fusidic acid plus tobramycin.
Docking and Hydropathic Scoring of Polysubstituted Pyrrole Compounds with Anti-Tubulin Activity
Tripathi, Ashutosh; Fornabaio, Micaela; Kellogg, Glen E.; Gupton, John T.; Gewirtz, David A.; Yeudall, W. Andrew; Vega, Nina E.; Mooberry, Susan L.
2008-01-01
Compounds that bind at the colchicine site of tubulin have drawn considerable attention with studies indicating that these agents suppress microtubule dynamics and inhibit tubulin polymerization. Data for eighteen polysubstituted pyrrole compounds are reported, including antiproliferative activity against human MDA-MB-435 cells and calculated free energies of binding following docking the compounds into models of αβ-tubulin. These docking calculations coupled with HINT interaction analyses are able to represent the complex structures and the binding modes of inhibitors such that calculated and measured free energies of binding correlate with an r2 of 0.76. Structural analysis of the binding pocket identifies important intermolecular contacts that mediate binding. As seen experimentally, the complex with JG-03-14 (3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2- carboxylic acid ethyl ester) is the most stable. These results illuminate the binding process and should be valuable in the design of new pyrrole-based colchicine site inhibitors as these compounds have very accessible syntheses. PMID:18083520
PFAAs have been found to elicit various physiological effects including peroxisome proliferation, indicating the mechanism of action for these chemicals could involve PPAR. This study investigates the ability of PFAAs to bind and activate mouse and human PPARα in COS-1 cell...
Mechanism of MenE Inhibition by Acyl-Adenylate Analogues and Discovery of Novel Antibacterial Agents
Sharma, Indrajeet; Lavaud, Lubens J.; Ngo, Stephen C.; Shek, Roger; Rajashankar, Kanagalaghatta R.; French, Jarrod B.; Tan, Derek S.; Tonge, Peter J.
2015-01-01
MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1) which has an IC50 value of ≤ 25 nM for the Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in S. aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ~1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure–activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto-acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively-charged keto-acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future. PMID:26394156
Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J
2015-10-27
MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.
The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong
2015-11-30
Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibitsmore » constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.« less
Kim, Dong-Gyu; Yoo, Jae Cheal; Kim, Eunju; Lee, Young-Sun; Yarishkin, Oleg V; Lee, Da Yong; Lee, Kun Ho; Hong, Seong-Geun; Hwang, Eun Mi; Park, Jae-Yong
2014-06-01
Mitochondrial trans-2-enoyl-CoA reductase (MECR) is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively. Therefore, the presence of a cytosolic or nuclear isoform of MECR is necessary for functional interaction between MECR and PPARα. To identify the expression pattern of MECR and the cytosolic form of MECR (cMECR), we performed reverse transcription polymerase chain reaction (RT-PCR) with various tissue samples from Sprague-Dawley rats. To confirm the interaction between cMECR and PPARα, we performed several binding assays such as yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation. To observe subcellular localization of these proteins, immunocytochemistry was performed. A luciferase assay was used to measure PPARα activity. We provide evidence of an alternatively spliced variant of the rat MECR gene that yields cMECR. The cMECR lacks the N-terminal 76 amino acids of MECR and shows uniform distribution in the cytoplasm and nucleus of HeLa cells. cMECR directly bound PPARα in the nucleus and increased PPARα-dependent luciferase activity in HeLa cells. We found the cytosolic form of MECR (cMECR) was expressed in the cytosolic and/or nuclear region, directly binds with PPARα, and enhances PPARα activity.
Fatty acid binding proteins and the nervous system: Their impact on mental conditions.
Matsumata, Miho; Inada, Hitoshi; Osumi, Noriko
2016-01-01
The brain is rich in lipid and fatty molecules. In this review article, we focus on fatty acid binding proteins (Fabps) that bind to fatty acids such as arachidonic acid and docosahexianoic acid and transfer these lipid ligands within the cytoplasm. Among Fabp family molecules, Fabp3, Fabp5, and Fabp7 are specifically localized in neural stem/progenitor cells, neurons and glia in a cell-type specific manner. Quantitative trait locus analysis has revealed that Fabp7 is related with performance of prepulse inhibition (PPI) that is used as an endophenotype of psychiatric diseases such as schizophrenia. Fabp5 and Fabp7 play important roles on neurogenesis and differentially regulate acoustic startle response and PPI. However, other behavior performances including spatial memory, anxiety-like behavior, and diurnal changes in general activity were not different in mice deficient for Fabp7 or Fabp5. Considering the importance of fatty acids in neurogenesis, we would like to emphasize that lipid nutrition and its dynamism via Fabps play significant roles in mental conditions. This might provide a good example of how nutritional environment can affect psychiatric conditions at the molecular level. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Byrn, R A; Medrek, P; Thomas, P; Jeanloz, R W; Zamcheck, N
1985-07-01
Carcinoembryonic antigen (CEA) is a glycoprotein metabolized primarily by the liver. Subcellular fractions of rat liver were examined for CEA binding activity. Hepatocyte plasma membrane and microsome fractions bound CEA, and this binding shared the calcium requirement, neuraminidase sensitivity, and carbohydrate specificity of the hepatocyte asialoglycoprotein receptor. CEA had previously been shown to react with this galactose-specific receptor, in vivo, only following neuraminidase treatment. Galactose receptor binding of CEA was measured in three different purified CEA preparations. The fraction of CEA capable of binding to excess levels of galactose receptor on membranes varied (46.5%, 40.2%, and 4.7% for CEA-1, -2, and -3, respectively). These CEAs were shown to be 2.3%, 7.9%, and 0.7% as effective, respectively, as asialo-alpha 1-acid glycoprotein in inhibiting the binding of radiolabeled asialo-alpha 1-acid glycoprotein to liver cell membranes. Each of the three CEA preparations showed different clearance kinetics from the circulation of mice. Coinjection of asialo-alpha 1-acid glycoprotein with the CEAs revealed differing inhibition of the clearances. These results show that differences in the carbohydrate components of purified CEA preparations affect their rate of removal from circulation and thus possibly the relationship between CEA production and observed plasma levels in patients. The possible origin of these CEA differences is discussed with their clinical implications.
NASA Astrophysics Data System (ADS)
Iryani, I.; Amelia, F.; Iswendi, I.
2018-04-01
Cervix cancer triggered by Human papillomavirus infection is the second cause to woman death in worldwide. The binding site of E1-E2 protein of HPV 16 is not known from a 3-D structure yet, so in this study we address this issue to study the structure of E1-E2 protein from Human papillomavirus type 16 and to find its potential binding sites using biphenylsulfonacetic acid as inhibitor. Swiss model was used for 3D structure prediction and PDB: 2V9P (E1 protein) and 2NNU (E2 protein) having 52.32% and 100% identity respectively was selected as a template. The 3D model structure developed of E1 and E2 in the core and allowed regions were 99.2% and 99.5%. The ligand binding sites were predicted using online server meta pocket 2.0 and MOE 2009.10 was used for docking. E1-and E2 protein of HPV-16 has three potential binding site that can interact with the inhibitors. The Docking biphenylsulfonacetic acid using these binding sites shows that ligand interact with the protein through hydrogen bonds on Lys 403, Arg 410, His 551 in the first pocket, on Tyr 32, Leu 99 in the second pocket, and Lys 558m Lys 517 in the third pocket.
Extended HSR/CARD domain mediates AIRE binding to DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslovskaja, Julia, E-mail: julia.maslovskaja@ut.ee; Saare, Mario; Liiv, Ingrid
Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved inmore » AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.« less
Specific Interactions of Antitumor Metallocenes with Deoxydinucleoside Monophosphates
NASA Astrophysics Data System (ADS)
Eberle, Rahel P.; Hari, Yvonne; Schürch, Stefan
2017-09-01
Bent metallocenes Cp2MCl2 (M = Ti, V, Nb, Mo) are known to exhibit cytotoxic activity against a variety of cancer types. Though the mechanism of action is not fully understood yet, the accumulation of the metal ions in the nucleus points towards DNA as one of the primary targets. A set of eight deoxydinucleoside monophosphates was used to study the adduct yields with metallocenes and cisplatin. The binding affinities are reflected by the relative intensities of the adducts and were found to follow the order of Pt > V > Ti > Mo (no adducts were detected with Nb). High-resolution tandem mass spectrometry was applied to locate the binding patterns in the deoxydinucleoside monophosphates. Whereas cisplatin binds to the soft nitrogen atoms in the purine nucleobases, the metallocenes additionally interact with the hard phosphate oxygen, which is in good agreement with the hard and soft (Lewis) acids and bases (HSAB) concept. However, the binding specificities were found to be unique for each metallocene. The hard Lewis acids titanium and vanadium predominantly bind to the deprotonated phosphate oxygen, whereas molybdenum, an intermediate Lewis acid, preferentially interacts with the nucleobases. Nucleobases comprise alternative binding sites for titanium and vanadium, presumably oxygen atoms for the first and nitrogen atoms for the latter. In summary, the intrinsic binding behavior of the different metallodrugs is reflected by the gas-phase dissociation of the adducts. Consequently, MS/MS can provide insights into therapeutically relevant interactions between metallodrugs and their cellular targets. [Figure not available: see fulltext.
Bassaganya-Riera, Josep; Guri, Amir J.; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W.; Horne, William T.; Lewis, Stephanie N.; Bevan, David R.; Hontecillas, Raquel
2011-01-01
Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E2 and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation. PMID:21088297
Bassaganya-Riera, Josep; Guri, Amir J; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W; Horne, William T; Lewis, Stephanie N; Bevan, David R; Hontecillas, Raquel
2011-01-28
Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.
Kinetic properties of the human liver cytosolic aldehyde dehydrogenase for retinal isomers.
Bhat, P V; Samaha, H
1999-01-15
Retinoic acid exerts pleiotropic effects by acting through two families of nuclear receptors, RAR and RXR. All-trans and 9-cis retinoic acid bind RARs, whereas 9-cis retinoic acid binds and activates only the RXRs. To understand the role of human liver cytosolic aldehyde dehydrogenase (ALDH1) in retinoic acid synthesis, we examined the ability of ALDH 1 to catalyze the oxidation of the naturally occurring retinal isomers. ALDH1 catalyzed the oxidation of all-trans, 9-cis, and 13-cis retinal with equal efficiency. However, the affinity to all-trans retinal (Km = 2.2 microM) was twofold higher than to 9-cis (Km = 5.5 microM) and 13-cis (Km = 4.6 microM) retinal. All-trans retinol was a potent inhibitor of ALDH1 activity, and inhibited all-trans retinal oxidation uncompetitively. Comparison of the kinetic properties of ALDH1 for retinal isomers with those of previously reported rat kidney retinal dehydrogenase showed distinct differences, suggesting that ALDH1 may play a different role in retinal metabolism in liver.
Hypolipidemic mechanism of oryzanol components- ferulic acid and phytosterols.
Bhaskaragoud, G; Rajath, S; Mahendra, V P; Kumar, G Sunil; Gopala Krishna, A G; Kumar, G Suresh
2016-07-22
The effect of oryzanol (well known hypolipidemic component in rice bran oil) and its chemical constituents- ferulic acid (FA) and phytosterols on hypolipidemia were investigated. Docking (in silico) studies showed that FA had a better binding ability with lipase while sterols bound well with HMG-CoA reductase. Further in vivo studies of feeding high fat (30%) to rats increased body weights, serum TC, TG, non-HDL-C and reduced HDL-C were observed, compared to normal diet fed group (ND). ORZ treated groups alleviated the lipid profile. Furthermore, increased organ weights, higher intestinal lipase activity, and liver lipid peroxidation was observed in the high-fat group (HF). These effects were ameliorated in oryzanol concentrate fed groups (ORZ). Higher fecal fat was found in ORZ groups, analysis of fecal matter by mass spectroscopy revealed the presence of FA. In vitro, a bile acid binding study supported the strong affinity of sterol towards bile acids. In conclusion, oryzanol in the intestine is cleaved into FA and sterol by intestinal lipase enzymes both lipase and HMG-CoA reductase activities were inhibited, respectively. These hydrolysates eliminated the bile acids, thus lowering lipid profiles. Copyright © 2016 Elsevier Inc. All rights reserved.
The elusive permeability barriers and binding sites for proflavine in Escherichia coli.
Gravelle, M J; Mehta, B M; Kushner, D J
1972-06-01
Cells of proflavine-sensitive and -resistant Escherichia coli strains were altered in different ways, and the proflavine binding of the changed material was studied. Spheroplasts prepared from sensitive and resistant cells bound similar amounts of proflavine at saturation, whether or not they were osmotically protected by 10% sucrose. Intact cells bound approximately the same amounts of proflavine as spheroplasts. On addition of glucose, osmotically protected resistant but not sensitive spheroplasts released proflavine; unprotected spheroplasts did not release bound proflavine. Thus, osmotically protected membranes are not required for proflavine binding (a passive process) but are required for proflavine release (an active process). The presence of sucrose reduced proflavine binding by resistant cells. Adding glucose to cells in 20% sucrose did not cause a release of residual proflavine, though glucose caused a release of proflavine from cells suspended in 0 or 10% sucrose. On treatment of heated cells or ruptured spheroplasts with nucleases and Pronase, practically all nucleic acids were removed. Proflavine-binding ability of such preparations fell by only 30 to 50%. Washing heated cells with ethanol did not reduce their proflavine-binding ability. There appear to be important binding sites in cells aside from nucleic acids.
The Elusive Permeability Barriers and Binding Sites for Proflavine in Escherichia coli
Gravelle, M. Joan; Mehta, B. M.; Kushner, D. J.
1972-01-01
Cells of proflavine-sensitive and -resistant Escherichia coli strains were altered in different ways, and the proflavine binding of the changed material was studied. Spheroplasts prepared from sensitive and resistant cells bound similar amounts of proflavine at saturation, whether or not they were osmotically protected by 10% sucrose. Intact cells bound approximately the same amounts of proflavine as spheroplasts. On addition of glucose, osmotically protected resistant but not sensitive spheroplasts released proflavine; unprotected spheroplasts did not release bound proflavine. Thus, osmotically protected membranes are not required for proflavine binding (a passive process) but are required for proflavine release (an active process). The presence of sucrose reduced proflavine binding by resistant cells. Adding glucose to cells in 20% sucrose did not cause a release of residual proflavine, though glucose caused a release of proflavine from cells suspended in 0 or 10% sucrose. On treatment of heated cells or ruptured spheroplasts with nucleases and Pronase, practically all nucleic acids were removed. Proflavine-binding ability of such preparations fell by only 30 to 50%. Washing heated cells with ethanol did not reduce their proflavine-binding ability. There appear to be important binding sites in cells aside from nucleic acids. PMID:4618456
Torabi, Forough; Binduraihem, Adel; Miller, David
2017-03-01
Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. Immature spermatozoa may be unable to interact because they do not express the appropriate hyaladherins on their surface. Fresh human semen samples were fractionated using differential density gradient centrifugation (DDGC) and the ability of these fractions to bind hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 was located mainly on the acrosome and equatorial segment and became more restricted to the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronic acid conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm populations obtained after DDGC or after interaction with hyaluronic acid were assessed for DNA fragmentation and chromatin maturity. Strong relationships between both measures and sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation enhanced hyaluronic acid binding of both DDGC-pelleted sperm and sperm washed free of seminal fluid. In conclusion, hyaladherins were detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA fragmentation and better chromatin maturity. Capacitation induced changes in the distribution and presence of hyaladherins may enhance hyaluronic-acid-binding. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Angela, Mulki; Endo, Yusuke; Asou, Hikari K.; Yamamoto, Takeshi; Tumes, Damon J.; Tokuyama, Hirotake; Yokote, Koutaro; Nakayama, Toshinori
2016-01-01
To fulfil the bioenergetic requirements for increased cell size and clonal expansion, activated T cells reprogramme their metabolic signatures from energetically quiescent to activated. However, the molecular mechanisms and essential components controlling metabolic reprogramming in T cells are not well understood. Here, we show that the mTORC1–PPARγ pathway is crucial for the fatty acid uptake programme in activated CD4+ T cells. This pathway is required for full activation and rapid proliferation of naive and memory CD4+ T cells. PPARγ directly binds and induces genes associated with fatty acid uptake in CD4+ T cells in both mice and humans. The PPARγ-dependent fatty acid uptake programme is critical for metabolic reprogramming. Thus, we provide important mechanistic insights into the metabolic reprogramming mechanisms that govern the expression of key enzymes, fatty acid metabolism and the acquisition of an activated phenotype during CD4+ T cell activation. PMID:27901044
A dynamically coupled allosteric network underlies binding cooperativity in Src kinase
Foda, Zachariah H.; Shan, Yibing; Kim, Eric T.; Shaw, David E.; Seeliger, Markus A.
2015-01-01
Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity. PMID:25600932
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan
2010-11-22
Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues thatmore » flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.« less
Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves
1999-01-01
The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375
Interlandi, Gianluca; Yakovenko, Olga; Tu, An-Yue; Harris, Jeff; Le, Jennie; Chen, Junmei; López, José A; Thomas, Wendy E
2017-11-10
The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp 1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Binding of Dissolved Strontium by Micrococcus luteus
Faison, Brendlyn D.; Cancel, Carmen A.; Lewis, Susan N.; Adler, Howard I.
1990-01-01
Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl2 at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H+. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity. PMID:16348370
Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya
2014-07-01
Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less
Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger
2017-01-01
Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570
Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.
Shao, Qing; Hall, Carol K
2016-08-09
A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.
Navarrete-Vázquez, Gabriel; Alaniz-Palacios, Alfredo; Hidalgo-Figueroa, Sergio; González-Acevedo, Cristina; Ávila-Villarreal, Gabriela; Estrada-Soto, Samuel; Webster, Scott P; Medina-Franco, José L; López-Vallejo, Fabian; Guerrero-Álvarez, Jorge; Tlahuext, Hugo
2013-06-01
A tetrazole isosteric analogue of clofibric acid (1) was prepared using a short synthetic route and was characterized by elemental analysis, NMR ((1)H, (13)C) spectroscopy, and single-crystal X-ray diffraction. The in vitro inhibitory activity of 1 against 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) was evaluated, showing a moderate inhibitory enzyme activity (51.17% of inhibition at 10 μM), being more active than clofibrate and clofibric acid. The antidiabetic activity of compound 1 was determined at 50 mg/Kg single dose using a non insulin dependent diabetes mellitus rat model. The results indicated a significant decrease of plasma glucose levels, during the 7h post-administration. Additionally, we performed a molecular docking of 1 into the ligand binding pocket of one subunit of human 11β-HSD1. In this model, compound 1 binds into the catalytic site of 11β-HSD1 in two different orientations. Both of them, show important short contacts with the catalytic residues Ser 170, Tyr 183, Asp 259 and also with the nicotinamide ring of NADP(+). Copyright © 2013 Elsevier Ltd. All rights reserved.
Andera, L; Geiduschek, E P
1994-03-01
The role of the carboxy-terminal amino acids of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1, in DNA binding was analyzed. Chain-terminating mutations truncating the normally 99-amino-acid TF1 at amino acids 96, 97, and 98 were constructed, as were missense mutations substituting cysteine, arginine, and serine for phenylalanine at amino acid 97 and tryptophan for lysine at amino acid 99. The binding of the resulting proteins to a synthetic 44-bp binding site in 5-(hydroxymethyl)uracil DNA, to binding sites in larger SPO1 [5-(hydroxymethyl)uracil-containing] DNA fragments, and to thymine-containing homologous DNA was analyzed by gel retardation and also by DNase I and hydroxy radical footprinting. We conclude that the C tail up to and including phenylalanine at amino acid 97 is essential for DNA binding and that the two C-terminal amino acids, 98 and 99, are involved in protein-protein interactions between TF1 dimers bound to DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ping; Paterson, Reay G.; Leser, George P.
2012-09-06
Paramyxovirus hemagglutinin-neuraminidase (HN) plays roles in viral entry and maturation, including binding to sialic acid receptors, activation of the F protein to drive membrane fusion, and enabling virion release during virus budding. HN can thereby directly influence virulence and in a subset of avirulent Newcastle disease virus (NDV) strains, such as NDV Ulster, HN must be proteolytically activated to remove a C-terminal extension not found in other NDV HN proteins. Ulster HN is 616 amino acids long and the 45 amino acid C-terminal extension present in its precursor (HN0) form has to be cleaved to render HN biologically active. Heremore » we show that Ulster HN contains an inter-subunit disulfide bond within the C-terminal extension at residue 596, which regulates HN activities and neuraminidase (NA) domain dimerization. We determined the crystal structure of the dimerized NA domain containing the C-terminal extension, which extends along the outside of the sialidase {beta}-propeller domain and inserts C-terminal residues into the NA domain active site. The C-terminal extension also engages a secondary sialic acid binding site present in NDV HN proteins, which is located at the NA domain dimer interface, that most likely blocks its attachment function. These results clarify how the Ulster HN C-terminal residues lead to an auto-inhibited state of HN, the requirement for proteolytic activation of HN{sub 0} and associated reduced virulence.« less
Ivie, Susan E; McClain, Mark S
2012-09-25
Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1.