Science.gov

Sample records for acid binding motifs

  1. The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases.

    PubMed Central

    Hermann, T; Meier, T; Götte, M; Heumann, H

    1994-01-01

    Amino acid sequences homologous to 259KLVGKL (X)16KLLR284 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) are conserved in several nucleotide polymerizing enzymes. This amino acid motif has been identified in the crystal structure model as an element of the enzyme's nucleic acid binding apparatus. It is part of the helix-turn-helix structure, alpha H-turn-alpha I, within the 'thumb' region of HIV-1 RT. The motif grasps the complexed nucleic acid at one side. Molecular modeling studies on HIV-1 RT in complex with a nucleic acid fragment suggest that the motif has binding function in the p66 subunit as well as in the p51 subunit, acting as a kind of 'helix clamp'. Given its wide distribution within the nucleic acid polymerases, the helix clamp motif is assumed to be a structure of general significance for nucleic acid binding. Images PMID:7527138

  2. A Siglec-like sialic-acid-binding motif revealed in an adenovirus capsid protein

    PubMed Central

    Rademacher, Christoph; Bru, Thierry; McBride, Ryan; Robison, Elizabeth; Nycholat, Corwin M; Kremer, Eric J; Paulson, James C

    2012-01-01

    Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are a family of transmembrane receptors that are well documented to play roles in regulation of innate and adaptive immune responses. To see whether the features that define the molecular recognition of sialic acid were found in other sialic-acid-binding proteins, we analyzed 127 structures with bound sialic acids found in the Protein Data Bank database. Of these, the canine adenovirus 2-fiber knob protein showed close local structural relationship to Siglecs despite low sequence similarity. The fiber knob harbors a noncanonical sialic-acid recognition site, which was then explored for detailed specificity using a custom glycan microarray comprising 58 diverse sialosides. It was found that the adenoviral protein preferentially recognizes the epitope Neu5Acα2-3[6S]Galβ1-4GlcNAc, a structure previously identified as the preferred ligand for Siglec-8 in humans and Siglec-F in mice. Comparison of the Siglec and fiber knob sialic-acid-binding sites reveal conserved structural elements that are not clearly identifiable from the primary amino acid sequence, suggesting a Siglec-like sialic-acid-binding motif that comprises the consensus features of these proteins in complex with sialic acid. PMID:22522600

  3. Enhanced Binding Affinity for an i-Motif DNA Substrate Exhibited by a Protein Containing Nucleobase Amino Acids.

    PubMed

    Bai, Xiaoguang; Talukder, Poulami; Daskalova, Sasha M; Roy, Basab; Chen, Shengxi; Li, Zhongxian; Dedkova, Larisa M; Hecht, Sidney M

    2017-03-17

    Several variants of a nucleic acid binding motif (RRM1) of putative transcription factor hnRNP LL containing nucleobase amino acids at specific positions have been prepared and used to study binding affinity for the BCL2 i-motif DNA. Molecular modeling suggested a number of amino acids in RRM1 likely to be involved in interaction with the i-motif DNA, and His24 and Arg26 were chosen for modification based on their potential ability to interact with G14 of the i-motif DNA. Four nucleobase amino acids were introduced into RRM1 at one or both of positions 24 and 26. The introduction of cytosine nucleobase 2 into position 24 of RRM1 increased the affinity of the modified protein for the i-motif DNA, consistent with the possible Watson-Crick interaction of 2 and G14. In comparison, the introduction of uracil nucleobase 3 had a minimal effect on DNA affinity. Two structurally simplified nucleobase analogues (1 and 4) lacking both the N-1 and the 2-oxo substituents were also introduced in lieu of His24. Again, the RRM1 analogue containing 1 exhibited enhanced affinity for the i-motif DNA, while the protein analogue containing 4 bound less tightly to the DNA substrate. Finally, the modified protein containing 1 in lieu of Arg26 also bound to the i-motif DNA more strongly than the wild-type protein, but a protein containing 1 both at positions 24 and 26 bound to the DNA less strongly than wild type. The results support the idea of using nucleobase amino acids as protein constituents for controlling and enhancing DNA-protein interaction. Finally, modification of the i-motif DNA at G14 diminished RRM1-DNA interaction, as well as the ability of nucleobase amino acid 1 to stabilize RRM1-DNA interaction.

  4. The LIMP-2/SCARB2 Binding Motif on Acid β-Glucosidase

    PubMed Central

    Liou, Benjamin; Haffey, Wendy D.; Greis, Kenneth D.; Grabowski, Gregory A.

    2014-01-01

    The acid β-glucosidase (glucocerbrosidase (GCase)) binding sequence to LIMP-2 (lysosomal integral membrane protein 2), the receptor for intracellular GCase trafficking to the lysosome, has been identified. Heterologous expression of deletion constructs, the available GCase crystal structures, and binding and co-localization of identified peptides or mutant GCases were used to identify and characterize a highly conserved 11-amino acid sequence, DSPIIVDITKD, within human GCase. The binding to LIMP-2 is not dependent upon a single amino acid, but the interactions of GCase with LIMP-2 are heavily influenced by Asp399 and the di-isoleucines, Ile402 and Ile403. A single alanine substitution at any of these decreases GCase binding to LIMP-2 and alters its pH-dependent binding as well as diminishing the trafficking of GCase to the lysosome and significantly increasing GCase secretion. Enterovirus 71 also binds to LIMP-2 (also known as SCARB2) on the external surface of the plasma membrane. However, the LIMP-2/SCARB2 binding sequences for enterovirus 71 and GCase are not similar, indicating that LIMP-2/SCARB2 may have multiple or overlapping binding sites with differing specificities. These findings have therapeutic implications for the production of GCase and the distribution of this enzyme that is delivered to various organs. PMID:25202012

  5. New molecular motif for recognizing sialic acid using emissive lanthanide-macrocyclic polyazacarboxylate complexes: deprotonation of a coordinated water molecule controls specific binding.

    PubMed

    Ouchi, Kazuki; Saito, Shingo; Shibukawa, Masami

    2013-06-03

    A new molecular motif--lanthanide-macrocyclic polyazacarboxylate hexadentate complexes, Ln(3+)-ABNOTA--was found to specifically bind to sialic acid with strong emission enhancement and high affinity. The selectivity toward sialic acid over other monosaccharides was one of the highest among artificial receptors. Also, the novel binding mechanism was investigated in detail; binding selectivity is controlled by interactions between sialic acid and both the central metal and a hydroxyl group produced by deprotonation of a coordinated water molecule in the Ln(3+) complex.

  6. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras

    PubMed Central

    Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  7. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  8. The Role of Glutamic or Aspartic Acid in Position Four of the Epitope Binding Motif and Thyrotropin Receptor-Extracellular Domain Epitope Selection in Graves' Disease

    PubMed Central

    Inaba, Hidefumi; Martin, William; Ardito, Matt; De Groot, Anne Searls; De Groot, Leslie J.

    2010-01-01

    Context: Development of Graves' disease (GD) is related to HLA-DRB1*0301 (DR3),and more specifically to arginine at position 74 of the DRB1 molecule. The extracellular domain (ECD) of human TSH receptor (hTSH-R) contains the target antigen. Objective and Design: We analyzed the relation between hTSH-R-ECD peptides and DR molecules to determine whether aspartic acid (D) or glutamic acid (E) at position four in the binding motif influenced selection of functional epitopes. Results: Peptide epitopes from TSH-R-ECD with D or E in position four (D/E+) had higher affinity for binding to DR3 than peptides without D/E (D/E−) (IC50 29.3 vs. 61.4, P = 0.0024). HLA-DR7, negatively correlated with GD, and DRB1*0302 (HLA-DR18), not associated with GD, had different profiles of epitope binding. Toxic GD patients who are DR3+ had higher responses to D/E+ peptides than D/E− peptides (stimulation index 1.42 vs. 1.22, P = 0.028). All DR3+ GD patients (toxic + euthyroid) had higher responses, with borderline significance (Sl; 1.32 vs. 1.18, P = 0.051). Splenocytes of DR3 transgenic mice immunized to TSH-R-ECD responded to D/E+ peptides more than D/E− peptides (stimulation index 1.95 vs. 1.69, P = 0.036). Seven of nine hTSH-R-ECD peptide epitopes reported to be reactive with GD patients' peripheral blood mononuclear cells contain binding motifs with D/E at position four. Conclusions: TSH-R-ECD epitopes with D/E in position four of the binding motif bind more strongly to DRB1*0301 than epitopes that are D/E− and are more stimulatory to GD patients' peripheral blood mononuclear cells and to splenocytes from mice immunized to hTSH-R. These epitopes appear important in immunogenicity to TSH-R due to their favored binding to HLA-DR3, thus increasing presentation to T cells. PMID:20392871

  9. Identification of amino acids essential for DNA binding and dimerization in p67SRF: implications for a novel DNA-binding motif.

    PubMed Central

    Sharrocks, A D; Gille, H; Shaw, P E

    1993-01-01

    The serum response factor (p67SRF) binds to a palindromic sequence in the c-fos serum response element (SRE). A second protein, p62TCF binds in conjunction with p67SRF to form a ternary complex, and it is through this complex that growth factor-induced transcriptional activation of c-fos is thought to take place. A 90-amino-acid peptide, coreSRF, is capable for dimerizing, binding DNA, and recruiting p62TCF. By using extensive site-directed mutagenesis we have investigated the role of individual coreSRF amino acids in DNA binding. Mutant phenotypes were defined by gel retardation and cross-linking analyses. Our results have identified residues essential for either DNA binding or dimerization. Three essential basic amino acids whose conservative mutation severely reduced DNA binding were identified. Evidence which is consistent with these residues being on the face of a DNA binding alpha-helix is presented. A phenylalanine residue and a hexameric hydrophobic box are identified as essential for dimerization. The amino acid phasing is consistent with the dimerization interface being presented as a continuous region on a beta-strand. A putative second alpha-helix acts as a linker between these two regions. This study indicates that p67SRF is a member of a protein family which, in common with many DNA binding proteins, utilize an alpha-helix for DNA binding. However, this alpha-helix is contained within a novel domain structure. Images PMID:8417320

  10. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  11. A motif unique to the human DEAD-box protein DDX3 is important for nucleic acid binding, ATP hydrolysis, RNA/DNA unwinding and HIV-1 replication.

    PubMed

    Garbelli, Anna; Beermann, Sandra; Di Cicco, Giulia; Dietrich, Ursula; Maga, Giovanni

    2011-05-12

    DEAD-box proteins are enzymes endowed with nucleic acid-dependent ATPase, RNA translocase and unwinding activities. The human DEAD-box protein DDX3 has been shown to play important roles in tumor proliferation and viral infections. In particular, DDX3 has been identified as an essential cofactor for HIV-1 replication. Here we characterized a set of DDX3 mutants biochemically with respect to nucleic acid binding, ATPase and helicase activity. In particular, we addressed the functional role of a unique insertion between motifs I and Ia of DDX3 and provide evidence for its implication in nucleic acid binding and HIV-1 replication. We show that human DDX3 lacking this domain binds HIV-1 RNA with lower affinity. Furthermore, a specific peptide ligand for this insertion selected by phage display interferes with HIV-1 replication after transduction into HelaP4 cells. Besides broadening our understanding of the structure-function relationships of this important protein, our results identify a specific domain of DDX3 which may be suited as target for antiviral drugs designed to inhibit cellular cofactors for HIV-1 replication.

  12. Structure and ubiquitin binding of the ubiquitin-interacting motif

    SciTech Connect

    Fisher,R.; Wang, B.; Alam, S.; Higginson, D.; Robinson, H.; Sundquist, C.; Hill, C.

    2003-01-01

    Ubiquitylation is used to target proteins into a large number of different biological processes including proteasomal degradation, endocytosis, virus budding, and vacuolar protein sorting (Vps). Ubiquitylated proteins are typically recognized using one of several different conserved ubiquitin binding modules. Here, we report the crystal structure and ubiquitin binding properties of one such module, the ubiquitin-interacting motif (UIM). We found that UIM peptides from several proteins involved in endocytosis and vacuolar protein sorting including Hrs, Vps27p, Stam1, and Eps15 bound specifically, but with modest affinity (K{sub d} = 0.1-1 mM), to free ubiquitin. Full affinity ubiquitin binding required the presence of conserved acidic patches at the N and C terminus of the UIM, as well as highly conserved central alanine and serine residues. NMR chemical shift perturbation mapping experiments demonstrated that all of these UIM peptides bind to the I44 surface of ubiquitin. The 1.45 {angstrom} resolution crystal structure of the second yeast Vps27p UIM (Vps27p-2) revealed that the ubiquitin-interacting motif forms an amphipathic helix. Although Vps27p-2 is monomeric in solution, the motif unexpectedly crystallized as an antiparallel four-helix bundle, and the potential biological implications of UIM oligomerization are therefore discussed.

  13. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein.

    PubMed Central

    Yang, B; Yang, B L; Savani, R C; Turley, E A

    1994-01-01

    We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses

  14. Identification of second arginine-glycine-aspartic acid motif of ovine vitronectin as the complement C9 binding site and its implication in bacterial infection.

    PubMed

    T, Prasada Rao; T, Lakshmi Prasanth; R, Parvathy; S, Murugavel; Devi, Karuna; Joshi, Paritosh

    2017-02-02

    Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix interacts with complement C9. This interaction may modulate innate immunity. Details of Vn-C9 interaction are limited. An assessment of Vn-C9 interaction was made employing goat homologous system. Vn binding to C9 was observed in three different assays. Using recombinant fragments, the C9 binding was mapped to the N-terminus of Vn. Site directed mutagenesis was performed to alter the second RGD sequence (RGD-2) of Vn. Change of R to G or D to A in RGD-2 caused significant decrease in Vn binding to C9 whereas change of R to G in the first RGD motif (RGD-1) had no effect on Vn binding to C9. These results imply that the RGD-2 of goat Vn is involved in C9 binding. In competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 in terms of bacterial pathogenesis was also evaluated. Serum dependent inhibition of E. coli growth was significantly reverted when Vn or its N-fragment were included in the assay. The C-fragment, which did not support C9 binding, also partly nullified serum dependent inhibition of bacterial growth probably through other serum component(s).

  15. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    PubMed

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-02-20

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

  16. LibME-automatic extraction of 3D ligand-binding motifs for mechanistic analysis of protein-ligand recognition.

    PubMed

    He, Wei; Liang, Zhi; Teng, MaiKun; Niu, LiWen

    2016-12-01

    Identifying conserved binding motifs is an efficient way to study protein-ligand recognition. Most 3D binding motifs only contain information from the protein side, and so motifs that combine information from both protein and ligand sides are desired. Here, we propose an algorithm called LibME (Ligand-binding Motif Extractor), which automatically extracts 3D binding motifs composed of the target ligand and surrounding conserved residues. We show that the motifs extracted by LibME for ATP and its analogs are highly similar to well-known motifs reported by previous studies. The superiority of our method to handle flexible ligands was also demonstrated using isocitric acid as an example. Finally, we show that these motifs, together with their visual exhibition, permit better investigating and understanding of protein-ligand recognition process.

  17. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    PubMed Central

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally valuable information related to amino acid depletion. Seq2logo aims at resolving these issues allowing the user to include sequence weighting to correct for data redundancy, pseudo counts to correct for low number of observations and different logotype representations each capturing different aspects related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of interest. The output from the server is a sequence logo and a PSSM. Seq2Logo is available at http://www.cbs.dtu.dk/biotools/Seq2Logo (14 May 2012, date last accessed). PMID:22638583

  18. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion.

    PubMed

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-07-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally valuable information related to amino acid depletion. Seq2logo aims at resolving these issues allowing the user to include sequence weighting to correct for data redundancy, pseudo counts to correct for low number of observations and different logotype representations each capturing different aspects related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of interest. The output from the server is a sequence logo and a PSSM. Seq2Logo is available at http://www.cbs.dtu.dk/biotools/Seq2Logo (14 May 2012, date last accessed).

  19. Peptide-based identification of functional motifs and their binding partners.

    PubMed

    Shelton, Martin N; Huang, Ming Bo; Ali, Syed; Johnson, Kateena; Roth, William; Powell, Michael; Bond, Vincent

    2013-06-30

    Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.

  20. Small yet effective: the ethylene responsive element binding factor-associated amphiphilic repression (EAR) motif.

    PubMed

    Kagale, Sateesh; Rozwadowski, Kevin

    2010-06-01

    The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif is a small yet distinct regulatory motif that is conserved in many plant transcriptional regulator (TR) proteins associated with diverse biological functions. We have previously established a list of high-confidence Arabidopsis EAR repressors, the EAR repressome, comprising 219 TRs belonging to 21 different TR families. This class of proteins and the sequence context of the EAR motif exhibited a high degree of conservation across evolutionarily diverse plant species. Our comprehensive genome-wide analysis enabled refining EAR motifs as comprising either LxLxL or DLNxxP. Comparing the representation of these sequence signatures in TRs to that of other repressor motifs we show that the EAR motif is the one most frequently represented, detected in 10 to 25% of the TRs from diverse plant species. The mechanisms involved in regulation of EAR motif function and the cellular fates of EAR repressors are currently not well understood. Our earlier analysis had implicated amino acid residues flanking the EAR motifs in regulation of their functionality. Here, we present additional evidence supporting possible regulation of EAR motif function by phosphorylation of integral or adjacent Ser and/or Thr residues. Additionally, we discuss potential novel roles of EAR motifs in plant-pathogen interaction and processes other than transcriptional repression.

  1. The extended AT-hook is a novel RNA binding motif.

    PubMed

    Filarsky, Michael; Zillner, Karina; Araya, Ingrid; Villar-Garea, Ana; Merkl, Rainer; Längst, Gernot; Németh, Attila

    2015-01-01

    The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12-15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes.

  2. Zinc finger binding motifs do not explain recombination rate variation within or between species of Drosophila.

    PubMed

    Heil, Caiti S S; Noor, Mohamed A F

    2012-01-01

    In humans and mice, the Cys(2)His(2) zinc finger protein PRDM9 binds to a DNA sequence motif enriched in hotspots of recombination, possibly modifying nucleosomes, and recruiting recombination machinery to initiate Double Strand Breaks (DSBs). However, since its discovery, some researchers have suggested that the recombinational effect of PRDM9 is lineage or species specific. To test for a conserved role of PRDM9-like proteins across taxa, we use the Drosophila pseudoobscura species group in an attempt to identify recombination associated zinc finger proteins and motifs. We leveraged the conserved amino acid motifs in Cys(2)His(2) zinc fingers to predict nucleotide binding motifs for all Cys(2)His(2) zinc finger proteins in Drosophila pseudoobscura and identified associations with empirical measures of recombination rate. Additionally, we utilized recombination maps from D. pseudoobscura and D. miranda to explore whether changes in the binding motifs between species can account for changes in the recombination landscape, analogous to the effect observed in PRDM9 among human populations. We identified a handful of potential recombination-associated sequence motifs, but the associations are generally tenuous and their biological relevance remains uncertain. Furthermore, we found no evidence that changes in zinc finger DNA binding explains variation in recombination rate between species. We therefore conclude that there is no protein with a DNA sequence specific human-PRDM9-like function in Drosophila. We suggest these findings could be explained by the existence of a different recombination initiation system in Drosophila.

  3. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    PubMed Central

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. Reviewers This article was reviewed by Prof. Sandor Pongor, Dr. Yuriy Gusev, and Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong). PMID:24555784

  4. Sequence-motif Detection of NAD(P)-binding Proteins: Discovery of a Unique Antibacterial Drug Target

    NASA Astrophysics Data System (ADS)

    Hua, Yun Hao; Wu, Chih Yuan; Sargsyan, Karen; Lim, Carmay

    2014-09-01

    Many enzymes use nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NAD(P)) as essential coenzymes. These enzymes often do not share significant sequence identity and cannot be easily detected by sequence homology. Previously, we determined all distinct locally conserved pyrophosphate-binding structures (3d motifs) from NAD(P)-bound protein structures, from which 1d sequence motifs were derived. Here, we aim to establish the precision of these 3d and 1d motifs to annotate NAD(P)-binding proteins. We show that the pyrophosphate-binding 3d motifs are characteristic of NAD(P)-binding proteins, as they are rarely found in nonNAD(P)-binding proteins. Furthermore, several 1d motifs could distinguish between proteins that bind only NAD and those that bind only NADP. They could also distinguish between NAD(P)-binding proteins from nonNAD(P)-binding ones. Interestingly, one of the pyrophosphate-binding 3d and corresponding 1d motifs was found only in enoyl-acyl carrier protein reductases, which are enzymes essential for bacterial fatty acid biosynthesis. This unique 3d motif serves as an attractive novel drug target, as it is conserved across many bacterial species and is not found in human proteins.

  5. Identification of a binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors

    PubMed Central

    Fang, Bin; Mane-Padros, Daniel; Bolotin, Eugene; Jiang, Tao; Sladek, Frances M.

    2012-01-01

    Nuclear receptors (NRs) regulate gene expression by binding specific DNA sequences consisting of AG[G/T]TCA or AGAACA half site motifs in a variety of configurations. However, those motifs/configurations alone do not adequately explain the diversity of NR function in vivo. Here, a systematic examination of DNA binding specificity by protein-binding microarrays (PBMs) of three closely related human NRs—HNF4α, retinoid X receptor alpha (RXRα) and COUPTF2—reveals an HNF4-specific binding motif (H4-SBM), xxxxCAAAGTCCA, as well as a previously unrecognized polarity in the classical DR1 motif (AGGTCAxAGGTCA) for HNF4α, RXRα and COUPTF2 homodimers. ChIP-seq data indicate that the H4-SBM is uniquely bound by HNF4α but not 10 other NRs in vivo, while NRs PXR, FXRα, Rev-Erbα appear to bind adjacent to H4-SBMs. HNF4-specific DNA recognition and transactivation are mediated by residues Asp69 and Arg76 in the DNA-binding domain; this combination of amino acids is unique to HNF4 among all human NRs. Expression profiling and ChIP data predict ∼100 new human HNF4α target genes with an H4-SBM site, including several Co-enzyme A-related genes and genes with links to disease. These results provide important new insights into NR DNA binding. PMID:22383578

  6. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase

    PubMed Central

    Ding, Hao; Guo, Manhong; Vidhyasagar, Venkatasubramanian; Talwar, Tanu; Wu, Yuliang

    2015-01-01

    Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI). The Q motif, consisting of nine amino acids (GFXXPXPIQ) with an invariant glutamine (Q) residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase. PMID:26474416

  7. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  8. Identification of peptide motif that binds to the surface of zirconia.

    PubMed

    Hashimoto, Kazuhiko; Yoshinari, Masao; Matsuzaka, Kenichi; Shiba, Kiyotaka; Inoue, Takashi

    2011-01-01

    A zirconia-binding peptide motif was identified using a peptide phage display system. Yttria stabilized zirconia beads and discs were used as the target. Quartz crystal microbalance was used to monitor the binding of phages to zirconia. Starting from a library of phages displaying random sequences of 12-mer peptides, we repeated cycles of biopanning against zirconia beads. After four cycles of biopanning, we isolated a phage clone Φ#17. DNA sequencing of the corresponding portion of Φ#17 unexpectedly revealed that it displayed a 58-mer peptide (amino acid sequence: WMPSDVDINDPQGGGSRPNLHQPKPAAEAASKKKSENRKVPFYSHSWY-SSMSEDKRGW). We found that Φ#17 had a 300-fold, significantly higher binding affinity for zirconia discs than phages displaying no peptide. In quartz crystal microbalance assay, a rapid increase in energy dissipation was observed from Φ#17 but not from the control phages, indicating that Φ#17 binds to the surface of zirconia via its displayed peptide. We successfully identified a peptide motif that binds zirconia.

  9. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin

    PubMed Central

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units. PMID:26714191

  10. Identification and characterization of the actin-binding motif of phostensin.

    PubMed

    Wang, Tzu-Fan; Lai, Ning-Sheng; Huang, Kuang-Yung; Huang, Hsien-Lu; Lu, Ming-Chi; Lin, Yu-Shan; Chen, Chun-Yu; Liu, Su-Qin; Lin, Ta-Hsien; Huang, Hsien-Bin

    2012-11-28

    Phostensin, a protein phosphatase 1 F-actin cytoskeleton-targeting subunit encoded by KIAA1949, consists of 165 amino acids and caps the pointed ends of actin filaments. Sequence alignment analyses suggest that the C-terminal region of phostensin, spanning residues 129 to 155, contains a consensus actin-binding motif. Here, we have verified the existence of an actin-binding motif in the C-terminal domain of phostensin using colocalization, F-actin co-sedimentation and single filament binding assays. Our data indicate that the N-terminal region of phostensin (1-129) cannot bind to actin filaments and cannot retard the pointed end elongation of gelsolin-actin seeds. Furthermore, the C-terminal region of phostensin (125-165) multiply bind to the sides of actin filaments and lacks the ability to block the pointed end elongation, suggesting that the actin-binding motif is located in the C-terminal region of the phostensin. Further analyses indicate that phostensin binding to the pointed end of actin filament requires N-terminal residues 35 to 51. These results suggest that phostensin might fold into a rigid structure, allowing the N-terminus to sterically hinder the binding of C-terminus to the sides of actin filament, thus rendering phostensin binding to the pointed ends of actin filaments.

  11. Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs

    PubMed Central

    Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W.; Frank, Ronald

    2015-01-01

    ABSTRACT High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c

  12. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif.

    PubMed

    Joseph, G; Gorzalczany, Y; Koshkin, V; Pick, E

    1994-11-18

    The small GTP-binding protein (G protein) Rac1 is an obligatory participant in the assembly of the superoxide (O2-.)-generating NADPH oxidase complex of macrophages. We investigated the effect of synthetic peptides, mapping within the near carboxyl-terminal domains of Rac1 and of related G proteins, on the activity of NADPH oxidase in a cell-free system consisting of solubilized guinea pig macrophage membrane, a cytosolic fraction enriched in p47phox and p67phox (or total cytosol), highly purified Rac1-GDP dissociation inhibitor for Rho (Rho GDI) complex, and the activating amphiphile, lithium dodecyl sulfate. Peptides Rac1-(178-188) and Rac1-(178-191), but not Rac2-(178-188), inhibited NADPH oxidase activity in a Rac1-dependent system when added prior to or simultaneously with the initiation of activation. However, undecapeptides corresponding to the near carboxyl-terminal domains of RhoA and RhoC and, most notably, a peptide containing the same amino acids as Rac1-(178-188), but in reversed orientation, were also inhibitory. Surprisingly, O2-. production in a Rac2-dependent cell-free system was inhibited by Rac1-(178-188) but not by Rac2-(178-188). Finally, basic polyamino acids containing lysine, histidine, or arginine, also inhibited NADPH oxidase activation. We conclude that inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of certain small G proteins is not amino acid sequence-specific but related to the presence of a polybasic motif. It has been proposed that such a motif serves as a plasma membrane targeting signal for a number of small G proteins (Hancock, J.F., Paterson, H., and Marshall, C.J. (1990) Cell 63, 133-139).

  13. Decreased RNA-binding motif 5 expression is associated with tumor progression in gastric cancer.

    PubMed

    Kobayashi, Takahiko; Ishida, Junich; Shimizu, Yuichi; Kawakami, Hiroshi; Suda, Goki; Muranaka, Tetsuhito; Komatsu, Yoshito; Asaka, Masahiro; Sakamoto, Naoya

    2017-03-01

    RNA-binding motif 5 is a putative tumor suppressor gene that modulates cell cycle arrest and apoptosis. We recently demonstrated that RNA-binding motif 5 inhibits cell growth through the p53 pathway. This study evaluated the clinical significance of RNA-binding motif 5 expression in gastric cancer and the effects of altered RNA-binding motif 5 expression on cancer biology in gastric cancer cells. RNA-binding motif 5 protein expression was evaluated by immunohistochemistry using the surgical specimens of 106 patients with gastric cancer. We analyzed the relationships of RNA-binding motif 5 expression with clinicopathological parameters and patient prognosis. We further explored the effects of RNA-binding motif 5 downregulation with short hairpin RNA on cell growth and p53 signaling in MKN45 gastric cancer cells. Immunohistochemistry revealed that RNA-binding motif 5 expression was decreased in 29 of 106 (27.4%) gastric cancer specimens. Decreased RNA-binding motif 5 expression was correlated with histological differentiation, depth of tumor infiltration, nodal metastasis, tumor-node-metastasis stage, and prognosis. RNA-binding motif 5 silencing enhanced gastric cancer cell proliferation and decreased p53 transcriptional activity in reporter gene assays. Conversely, restoration of RNA-binding motif 5 expression suppressed cell growth and recovered p53 transactivation in RNA-binding motif 5-silenced cells. Furthermore, RNA-binding motif 5 silencing reduced the messenger RNA and protein expression of the p53 target gene p21. Our results suggest that RNA-binding motif 5 downregulation is involved in gastric cancer progression and that RNA-binding motif 5 behaves as a tumor suppressor gene in gastric cancer.

  14. Identifying DNA Binding Motifs by Combining Data from Different Sources

    SciTech Connect

    Mao, Linyong; Resat, Haluk; Nagib Callaos; Katsuhisa Horimoto; Jake Chen; Amy Sze Chan

    2004-07-19

    A transcription factor regulates the expression of its target genes by binding to their operator regions. It functions by affecting the interactions between RNA polymerases and the gene's promoter. Many transcription factors bind to their targets by recognizing a specific DNA sequence pattern, which is referred to as a consensus sequence or a motif. Since it would remove the possible biases, combining biological data from different sources can be expected to improve the quality of the information extracted from the biological data. We analyzed the microarray gene expression data and the organism's genome sequence jointly to determine the transcription factor recognition sequences with more accuracy. Utilizing such a data integration approach, we have investigated the regulation of the photosynthesis genes of the purple non-sulphur photosynthetic bacterium Rhodobacter sphaeroides. The photosynthesis genes in this organism are tightly regulated as a function of environmental growth conditions by three major regulatory systems, PrrB/PrrA, AppA/PpsR and FnrL. In this study, we have detected a previously undefined PrrA consensus sequence, improved the previously known DNA-binding motif of PpsR, and confirmed the consensus sequence of the global regulator FnrL.

  15. Numb directs the subcellular localization of EAAT3 through binding the YxNxxF motif.

    PubMed

    Su, Jin-Feng; Wei, Jian; Li, Pei-Shan; Miao, Hong-Hua; Ma, Yong-Chao; Qu, Yu-Xiu; Xu, Jie; Qin, Jie; Li, Bo-Liang; Song, Bao-Liang; Xu, Zheng-Ping; Luo, Jie

    2016-08-15

    Excitatory amino acid transporter type 3 (EAAT3, also known as SLC1A1) is a high-affinity, Na(+)-dependent glutamate carrier that localizes primarily within the cell and at the apical plasma membrane. Although previous studies have reported proteins and sequence regions involved in EAAT3 trafficking, the detailed molecular mechanism by which EAAT3 is distributed to the correct location still remains elusive. Here, we identify that the YVNGGF sequence in the C-terminus of EAAT3 is responsible for its intracellular localization and apical sorting in rat hepatoma cells CRL1601 and Madin-Darby canine kidney (MDCK) cells, respectively. We further demonstrate that Numb, a clathrin adaptor protein, directly binds the YVNGGF motif and regulates the localization of EAAT3. Mutation of Y503, N505 and F508 within the YVNGGF motif to alanine residues or silencing Numb by use of small interfering RNA (siRNA) results in the aberrant localization of EAAT3. Moreover, both Numb and the YVNGGF motif mediate EAAT3 endocytosis in CRL1601 cells. In summary, our study suggests that Numb is a pivotal adaptor protein that mediates the subcellular localization of EAAT3 through binding the YxNxxF (where x stands for any amino acid) motif.

  16. New structural motif for carboxylic acid perhydrolases.

    PubMed

    Yin, DeLu Tyler; Purpero, Vince M; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J

    2013-02-25

    Some serine hydrolases also catalyze a promiscuous reaction--reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five X-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (k(cat) comparison) than the wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over the wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83-times faster (k(cat) comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (β(0)=170 vs. 160 M(-1)), and a similar fast formation of acetyl-enzyme (140 vs. 62 U mg(-1)). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II β-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I β-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE, so that an acetate accepts a hydrogen bond to promote faster formation of the acetyl-enzyme.

  17. Identifying combinatorial regulation of transcription factors and binding motifs

    PubMed Central

    Kato, Mamoru; Hata, Naoya; Banerjee, Nilanjana; Futcher, Bruce; Zhang, Michael Q

    2004-01-01

    Background Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. Results Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. Conclusions Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways. PMID:15287978

  18. Identification of sequence–structure RNA binding motifs for SELEX-derived aptamers

    PubMed Central

    Hoinka, Jan; Zotenko, Elena; Friedman, Adam; Sauna, Zuben E.; Przytycka, Teresa M.

    2012-01-01

    Motivation: Systematic Evolution of Ligands by EXponential Enrichment (SELEX) represents a state-of-the-art technology to isolate single-stranded (ribo)nucleic acid fragments, named aptamers, which bind to a molecule (or molecules) of interest via specific structural regions induced by their sequence-dependent fold. This powerful method has applications in designing protein inhibitors, molecular detection systems, therapeutic drugs and antibody replacement among others. However, full understanding and consequently optimal utilization of the process has lagged behind its wide application due to the lack of dedicated computational approaches. At the same time, the combination of SELEX with novel sequencing technologies is beginning to provide the data that will allow the examination of a variety of properties of the selection process. Results: To close this gap we developed, Aptamotif, a computational method for the identification of sequence–structure motifs in SELEX-derived aptamers. To increase the chances of identifying functional motifs, Aptamotif uses an ensemble-based approach. We validated the method using two published aptamer datasets containing experimentally determined motifs of increasing complexity. We were able to recreate the author's findings to a high degree, thus proving the capability of our approach to identify binding motifs in SELEX data. Additionally, using our new experimental dataset, we illustrate the application of Aptamotif to elucidate several properties of the selection process. Contact: przytyck@ncbi.nlm.nih.gov, Zuben.Sauna@fda.hhs.gov PMID:22689764

  19. The helix bundle: A reversible lipid binding motif

    PubMed Central

    Narayanaswami, Vasanthy; Kiss, Robert S.; Weers, Paul M.M.

    2009-01-01

    Apolipoproteins are the protein components of lipoproteins that have the innate ability to inter convert between a lipid-free and a lipid-bound form in a facile manner, a remarkable property conferred by the helix bundle motif. Composed of a series of four or five amphipathic α-helices that fold to form a helix bundle, this motif allows the en face orientation of the hydrophobic faces of the α-helices in the protein interior in the lipid-free state. A conformational switch then permits helix-helix interactions to be substituted by helix-lipid interactions upon lipid binding interaction. This review compares the apolipoprotein high resolution structures and the factors that trigger this switch in insect apolipophorin III and the mammalian apolipoproteins, apolipoprotein E and apolipoprotein A-I, pointing out the commonalities and key differences in the mode of lipid interaction. Further insights into the lipid bound conformation of apolipoproteins are required to fully understand their functional role under physiological conditions. PMID:19770066

  20. In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype.

    PubMed

    Lower, Brian H; Lins, Roberto D; Oestreicher, Zachery; Straatsma, Tjerk P; Hochella, Michael F; Shi, Liang; Lower, Steven K

    2008-05-15

    Phage-display technology was used to evolve peptides that selectively bind to the metal-oxide hematite (Fe2O3) from a library of approximately 3 billion different polypeptides. The sequences of these peptides contained the highly conserved amino acid motif, Ser/Thr-hydrophobic/aromatic-Ser/Thr-Pro-Ser/Thr. To better understand the nature of the peptide-metal oxide binding demonstrated by these experiments, molecular dynamics simulations were carried out for Ser-Pro-Ser at a hematite surface. These simulations show that hydrogen bonding occurs between the two serine amino acids and the hydroxylated hematite surface and that the presence of proline between the hydroxide residues restricts the peptide flexibility, thereby inducing a structural-binding motif. A search of published sequence data revealed that the binding motif (Ser/Thr-Pro-Ser/Thr) is adjacent to the terminal heme-binding domain of both OmcA and MtrC, which are outer membrane cytochromes from the metal-reducing bacterium Shewanella oneidensis MR-1. The entire five amino acid consensus sequence (Ser/Thr-hydrophobic/ aromatic-Ser/Thr-Pro-Ser/Thr) was also found as multiple copies in the primary sequences of metal-oxide binding proteins Sil1 and Sil2 from Thalassiosira pseudonana. We suggest that this motif constitutes a natural metal-oxide binding archetype that could be exploited in enzyme-based biofuel cell design and approaches to synthesize tailored metal-oxide nanostructures.

  1. An examination of binding motifs associated with inter-particle interactions between facetted nano-crystals of acetylsalicylic acid and ascorbic acid through the application of molecular grid-based search methods.

    PubMed

    Hammond, R B; Jeck, S; Ma, C Y; Pencheva, K; Roberts, K J; Auffret, T

    2009-12-01

    Grid-based intermolecular search methods using atom-atom force fields are used to assess the structural nature of potential crystal-crystal interfacial binding associated with the examination of representative pharmaceutical formulation components, viz acetylsalicylic acid (aspirin) and ascorbic acid (vitamin C). Molecular models of nano-sized molecular clusters for these two compounds, shaped in accordance with an attachment energy model of the respective particle morphologies, are constructed and used together with a grid-based search method to model the likely inter-particle interactions. The most-stable, mutual alignments of the respective nano-clusters based on their interaction energies are identified in the expectation that these are indicative of the most likely inter-particle binding configurations. The stable inter-particle binding configurations identified reveal that the number of interfacial hydrogen bonds formed between the binding particles is, potentially, an important factor in terms of the stability of inter-particle cohesion. All preferred inter-particle alignments are found to involve either the (1 0 0) or the (1 1 0) face of aspirin crystals interacting with a number of the growth forms of ascorbic acid. Four main types of interfacial hydrogen bonds are found to be associated with inter-particle binding and involve acceptor-donor interactions between hydroxyl, carbonyl, ester and lactone acceptor groups and hydroxyl donor groups. This hydrogen bonding network is found to be consistent with the surface chemistry of the interacting habit faces with, in general, the number of hydrogen bonds increasing for the more stable alignments. The likely usefulness of this approach for predicting solid-state formulation properties is reviewed.

  2. Nucleotide binding database NBDB – a collection of sequence motifs with specific protein-ligand interactions

    PubMed Central

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N.

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand–protein interactions found in crystallized ligand–protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions. PMID:26507856

  3. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  4. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs.

    PubMed

    Alam, Tanvir; Alazmi, Meshari; Gao, Xin; Arold, Stefan T

    2014-06-15

    LD motifs (leucine-aspartic acid motifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs.

  5. Reconstitution of the receptor-binding motif of the SARS coronavirus.

    PubMed

    Freund, Natalia T; Roitburd-Berman, Anna; Sui, Jianhua; Marasco, Wayne A; Gershoni, Jonathan M

    2015-12-01

    The severe acute respiratory syndrome (SARS) coronavirus (CoV) identified in 2003 has infected ∼8000 people worldwide, killing nearly 10% of them. The infection of target cells by the SARS CoV is mediated through the interaction of the viral Spike (S) protein (1255 amino acids) and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). The SARS CoV receptor-binding domain (amino acids N318-T509 of S protein) harbors an extended excursion along its periphery that contacts ACE2 and is designated the receptor-binding motif (RBM, amino acids S432-T486). In addition, the RBM is a major antigenic determinant, able to elicit production of neutralizing antibodies. Hence, the role of the RBM is a bi-functional bioactive surface that can be demonstrated by antibodies such as the neutralizing human anti-SARS monoclonal antibody (mAb) 80R which targets the RBM and competes with the ACE2 receptor for binding. Here, we employ phage-display peptide-libraries to reconstitute a functional RBM. This is achieved by generating a vast collection of candidate RBM peptides that present a diversity of conformations. Screening such 'Conformer Libraries' with corresponding ligands has produced short RBM constructs (ca. 40 amino acids) that can bind both the ACE2 receptor and the neutralizing mAb 80R.

  6. Binding of the C-terminal sterile alpha motif (SAM) domain of human p73 to lipid membranes.

    PubMed

    Barrera, Francisco N; Poveda, José A; González-Ros, José M; Neira, José L

    2003-11-21

    The alpha splice variant of p73 (p73alpha), a homologue of the tumor suppressor p53, has close to its C terminus a sterile alpha motif (SAM), SAMp73, that is thought to be involved in protein-protein interactions. Here, we report the lipid binding properties of this domain. Binding was assayed against zwitterionic (phosphatidylcholine) and anionic (phosphatidic acid) lipids and was studied by different biophysical techniques, namely, circular dichroism and fluorescence spectroscopies and differential scanning calorimetry. These techniques unambiguously indicate that SAMp73 binds to lipids. The binding involves protein surface attachment and partial membrane penetration, accompanied by changes in SAMp73 structure.

  7. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    PubMed Central

    2010-01-01

    Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS") but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) not to be biological transcription factor binding sites ("empirical TFBS"). We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation. PMID:20875111

  8. A novel microtubule-binding motif identified in a high molecular weight microtubule-associated protein from Trypanosoma brucei

    PubMed Central

    1992-01-01

    The major component of the cytoskeleton of the parasitic hemoflagellate Trypanosoma brucei is a membrane skeleton which consists of a single layer of tightly spaced microtubules. This array encloses the entire cell body, and it is apposed to, and connected with, the overlying cell membrane. The microtubules of this array contain numerous microtubule- associated proteins. Prominent among those is a family of high molecular weight, repetitive proteins which consist to a large extent of tandemly arranged 38-amino acid repeat units. The binding of one of these proteins, MARP-1, to microtubules has now been characterized in vitro and in vivo. MARP-1 binds to microtubules via tubulin domains other than the COOH-termini used by microtubule-associated proteins from mammalian brain, e.g., MAP2 or Tau. In vitro binding assays using recombinant protein, as well as transfection of mammalian cell lines, have established that the repetitive 38-amino acid repeat units represent a novel microtubule-binding motif. This motif is very similar in length to those of the mammalian microtubule-associated proteins Tau, MAP2, and MAP-U, but both its sequence and charge are different. The observation that the microtubule-binding motifs both of the neural and the trypanosomal proteins are of similar length may reflect the fact that both mediate binding to the same repetitive surface, the microtubule, while their sequence and charge differences are in agreement with the observation that they interact with different domains of the tubulins. PMID:1348252

  9. A novel microtubule-binding motif identified in a high molecular weight microtubule-associated protein from Trypanosoma brucei.

    PubMed

    Hemphill, A; Affolter, M; Seebeck, T

    1992-04-01

    The major component of the cytoskeleton of the parasitic hemoflagellate Trypanosoma brucei is a membrane skeleton which consists of a single layer of tightly spaced microtubules. This array encloses the entire cell body, and it is apposed to, and connected with, the overlying cell membrane. The microtubules of this array contain numerous microtubule-associated proteins. Prominent among those is a family of high molecular weight, repetitive proteins which consist to a large extent of tandemly arranged 38-amino acid repeat units. The binding of one of these proteins, MARP-1, to microtubules has now been characterized in vitro and in vivo. MARP-1 binds to microtubules via tubulin domains other than the COOH-termini used by microtubule-associated proteins from mammalian brain, e.g., MAP2 or Tau. In vitro binding assays using recombinant protein, as well as transfection of mammalian cell lines, have established that the repetitive 38-amino acid repeat units represent a novel microtubule-binding motif. This motif is very similar in length to those of the mammalian microtubule-associated proteins Tau, MAP2, and MAP-U, but both its sequence and charge are different. The observation that the microtubule-binding motifs both of the neural and the trypanosomal proteins are of similar length may reflect the fact that both mediate binding to the same repetitive surface, the microtubule, while their sequence and charge differences are in agreement with the observation that they interact with different domains of the tubulins.

  10. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    PubMed Central

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-01-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences. PMID:28004744

  11. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    NASA Astrophysics Data System (ADS)

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-12-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences.

  12. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

    PubMed Central

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  13. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments

    PubMed Central

    Kheradpour, Pouya; Kellis, Manolis

    2014-01-01

    Recent advances in technology have led to a dramatic increase in the number of available transcription factor ChIP-seq and ChIP-chip data sets. Understanding the motif content of these data sets is an important step in understanding the underlying mechanisms of regulation. Here we provide a systematic motif analysis for 427 human ChIP-seq data sets using motifs curated from the literature and also discovered de novo using five established motif discovery tools. We use a systematic pipeline for calculating motif enrichment in each data set, providing a principled way for choosing between motif variants found in the literature and for flagging potentially problematic data sets. Our analysis confirms the known specificity of 41 of the 56 analyzed factor groups and reveals motifs of potential cofactors. We also use cell type-specific binding to find factors active in specific conditions. The resource we provide is accessible both for browsing a small number of factors and for performing large-scale systematic analyses. We provide motif matrices, instances and enrichments in each of the ENCODE data sets. The motifs discovered here have been used in parallel studies to validate the specificity of antibodies, understand cooperativity between data sets and measure the variation of motif binding across individuals and species. PMID:24335146

  14. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    SciTech Connect

    Zhang, Lei; Zhang, Qing; Yang, Yu; Wu, Chuanfang

    2014-02-14

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.

  15. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    PubMed Central

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls. PMID:27489856

  16. Structural basis for the binding of tryptophan-based motifs by δ-COP

    PubMed Central

    Suckling, Richard J.; Poon, Pak Phi; Travis, Sophie M.; Majoul, Irina V.; Hughson, Frederick M.; Evans, Philip R.; Duden, Rainer; Owen, David J.

    2015-01-01

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ’ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1–6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing. PMID:26578768

  17. Structural basis for the binding of tryptophan-based motifs by δ-COP.

    PubMed

    Suckling, Richard J; Poon, Pak Phi; Travis, Sophie M; Majoul, Irina V; Hughson, Frederick M; Evans, Philip R; Duden, Rainer; Owen, David J

    2015-11-17

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ'ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.

  18. WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar

    PubMed Central

    Wang, Guandong; Yu, Taotao; Zhang, Weixiong

    2005-01-01

    Transcription factor (TF) binding sites or motifs (TFBMs) are functional cis-regulatory DNA sequences that play an essential role in gene transcriptional regulation. Although many experimental and computational methods have been developed, finding TFBMs remains a challenging problem. We propose and develop a novel dictionary based motif finding algorithm, which we call WordSpy. One significant feature of WordSpy is the combination of a word counting method and a statistical model which consists of a dictionary of motifs and a grammar specifying their usage. The algorithm is suitable for genome-wide motif finding; it is capable of discovering hundreds of motifs from a large set of promoters in a single run. We further enhance WordSpy by applying gene expression information to separate true TFBMs from spurious ones, and by incorporating negative sequences to identify discriminative motifs. In addition, we also use randomly selected promoters from the genome to evaluate the significance of the discovered motifs. The output from WordSpy consists of an ordered list of putative motifs and a set of regulatory sequences with motif binding sites highlighted. The web server of WordSpy is available at . PMID:15980501

  19. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element

    PubMed Central

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-01-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5′-NNCCAC-3′ and 5′-GCGMGN′N′-3′ (M:A or C; N and N′ form Watson–Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences. PMID:23709277

  20. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  1. Nucleic acid-binding specificity of human FUS protein

    PubMed Central

    Wang, Xueyin; Schwartz, Jacob C.; Cech, Thomas R.

    2015-01-01

    FUS, a nuclear RNA-binding protein, plays multiple roles in RNA processing. Five specific FUS-binding RNA sequence/structure motifs have been proposed, but their affinities for FUS have not been directly compared. Here we find that human FUS binds all these sequences with Kdapp values spanning a 10-fold range. Furthermore, some RNAs that do not contain any of these motifs bind FUS with similar affinity. FUS binds RNA in a length-dependent manner, consistent with a substantial non-specific component to binding. Finally, investigation of FUS binding to different nucleic acids shows that it binds single-stranded DNA with three-fold lower affinity than ssRNA of the same length and sequence, while binding to double-stranded nucleic acids is weaker. We conclude that FUS has quite general nucleic acid-binding activity, with the various proposed RNA motifs being neither necessary for FUS binding nor sufficient to explain its diverse binding partners. PMID:26150427

  2. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    PubMed

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2016-11-28

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.

  3. A compendium of RNA-binding motifs for decoding gene regulation

    PubMed Central

    Ray, Debashish; Kazan, Hilal; Cook, Kate B.; Weirauch, Matthew T.; Najafabadi, Hamed S.; Li, Xiao; Gueroussov, Serge; Albu, Mihai; Zheng, Hong; Yang, Ally; Na, Hong; Irimia, Manuel; Matzat, Leah H.; Dale, Ryan K.; Smith, Sarah A.; Yarosh, Christopher A.; Kelly, Seth M.; Nabet, Behnam; Mecenas, Desirea; Li, Weimin; Laishram, Rakesh S.; Qiao, Mei; Lipshitz, Howard D.; Piano, Fabio; Corbett, Anita H.; Carstens, Russ P.; Frey, Brendan J.; Anderson, Richard A.; Lynch, Kristen W.; Penalva, Luiz O. F.; Lei, Elissa P.; Fraser, Andrew G.; Blencowe, Benjamin J.; Morris, Quaid D.; Hughes, Timothy R.

    2014-01-01

    RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes. PMID:23846655

  4. Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities.

    PubMed

    Dember, L M; Kim, N D; Liu, K Q; Anderson, P

    1996-02-02

    TIA-1 and TIAR are two closely related RNA recognition motif (RRM) proteins which possess three RRM-type RNA binding domains (RRMs 1, 2, and 3). Although both proteins have been implicated as effectors of apoptotic cell death, the specific functions of TIA-1 and TIAR are not known. We have performed in vitro selection/amplification from pools of random RNA sequences to identify RNAs to which TIA-1 and TIAR bind with high affinity. Both proteins selected RNAs containing one or several short stretches of uridylate residues suggesting that the two proteins have similar RNA binding specificities. Replacement of the uridylate stretch with an equal number of cytidine residues eliminates the protein-RNA interaction. Mutational analysis indicates that, for both TIA-1 and TIAR, it is the second RNA binding domain (RRM 2) which mediates the specific binding to uridylate-rich RNAs. Although RRM 2 is both necessary and sufficient for this interaction, the affinity for the selected RNA (as determined by filter binding assays) does increase when the second domain of TIAR is expressed together with the first and third domains (Kd = 2 x 10(-8) M) rather than alone (Kd = 5 x 10(-8) M). Although RRM 3 (of either TIA-1 or TIAR) does not interact with the uridylate-rich sequences selected by the full-length proteins, it is a bona fide RNA binding domain capable of affinity-precipitating a population of cellular RNAs ranging in size from 0.5 to 5 kilobases. In contrast, RRM 1 does not affinity-precipitate cellular RNA. The inability of RRM 1 to interact with RNA may be due to the presence of negatively charged amino acids within the RNP 1 octamer.

  5. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    SciTech Connect

    Lechner, Mark S. . E-mail: msl27@drexel.edu; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-06-17

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.

  6. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure.

    PubMed Central

    Thayer, M M; Ahern, H; Xing, D; Cunningham, R P; Tainer, J A

    1995-01-01

    The 1.85 A crystal structure of endonuclease III, combined with mutational analysis, suggests the structural basis for the DNA binding and catalytic activity of the enzyme. Helix-hairpin-helix (HhH) and [4Fe-4S] cluster loop (FCL) motifs, which we have named for their secondary structure, bracket the cleft separating the two alpha-helical domains of the enzyme. These two novel DNA binding motifs and the solvent-filled pocket in the cleft between them all lie within a positively charged and sequence-conserved surface region. Lys120 and Asp138, both shown by mutagenesis to be catalytically important, lie at the mouth of this pocket, suggesting that this pocket is part of the active site. The positions of the HhH motif and protruding FCL motif, which contains the DNA binding residue Lys191, can accommodate B-form DNA, with a flipped-out base bound within the active site pocket. The identification of HhH and FCL sequence patterns in other DNA binding proteins suggests that these motifs may be a recurrent structural theme for DNA binding proteins. Images PMID:7664751

  7. Bayesian multiple-instance motif discovery with BAMBI: inference of recombinase and transcription factor binding sites

    PubMed Central

    Jajamovich, Guido H.; Wang, Xiaodong; Arkin, Adam P.; Samoilov, Michael S.

    2011-01-01

    Finding conserved motifs in genomic sequences represents one of essential bioinformatic problems. However, achieving high discovery performance without imposing substantial auxiliary constraints on possible motif features remains a key algorithmic challenge. This work describes BAMBI—a sequential Monte Carlo motif-identification algorithm, which is based on a position weight matrix model that does not require additional constraints and is able to estimate such motif properties as length, logo, number of instances and their locations solely on the basis of primary nucleotide sequence data. Furthermore, should biologically meaningful information about motif attributes be available, BAMBI takes advantage of this knowledge to further refine the discovery results. In practical applications, we show that the proposed approach can be used to find sites of such diverse DNA-binding molecules as the cAMP receptor protein (CRP) and Din-family site-specific serine recombinases. Results obtained by BAMBI in these and other settings demonstrate better statistical performance than any of the four widely-used profile-based motif discovery methods: MEME, BioProspector with BioOptimizer, SeSiMCMC and Motif Sampler as measured by the nucleotide-level correlation coefficient. Additionally, in the case of Din-family recombinase target site discovery, the BAMBI-inferred motif is found to be the only one functionally accurate from the underlying biochemical mechanism standpoint. C++ and Matlab code is available at http://www.ee.columbia.edu/~guido/BAMBI or http://genomics.lbl.gov/BAMBI/. PMID:21948794

  8. Motif discovery with data mining in 3D protein structure databases: discovery, validation and prediction of the U-shape zinc binding ("Huf-Zinc") motif.

    PubMed

    Maurer-Stroh, Sebastian; Gao, He; Han, Hao; Baeten, Lies; Schymkowitz, Joost; Rousseau, Frederic; Zhang, Louxin; Eisenhaber, Frank

    2013-02-01

    Data mining in protein databases, derivatives from more fundamental protein 3D structure and sequence databases, has considerable unearthed potential for the discovery of sequence motif--structural motif--function relationships as the finding of the U-shape (Huf-Zinc) motif, originally a small student's project, exemplifies. The metal ion zinc is critically involved in universal biological processes, ranging from protein-DNA complexes and transcription regulation to enzymatic catalysis and metabolic pathways. Proteins have evolved a series of motifs to specifically recognize and bind zinc ions. Many of these, so called zinc fingers, are structurally independent globular domains with discontinuous binding motifs made up of residues mostly far apart in sequence. Through a systematic approach starting from the BRIX structure fragment database, we discovered that there exists another predictable subset of zinc-binding motifs that not only have a conserved continuous sequence pattern but also share a characteristic local conformation, despite being included in totally different overall folds. While this does not allow general prediction of all Zn binding motifs, a HMM-based web server, Huf-Zinc, is available for prediction of these novel, as well as conventional, zinc finger motifs in protein sequences. The Huf-Zinc webserver can be freely accessed through this URL (http://mendel.bii.a-star.edu.sg/METHODS/hufzinc/).

  9. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.

    PubMed

    Kagale, Sateesh; Links, Matthew G; Rozwadowski, Kevin

    2010-03-01

    The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.

  10. A designed DNA binding motif that recognizes extended sites and spans two adjacent major grooves†

    PubMed Central

    Rodríguez, Jéssica; Mosquera, Jesús; García-Fandiño, Rebeca; Vázquez, M. Eugenio; Mascareñas, José L.

    2016-01-01

    We report the rational design of a DNA-binding peptide construct composed of the DNA-contacting regions of two transcription factors (GCN4 and GAGA) linked through an AT-hook DNA anchor. The resulting chimera, which represents a new, non-natural DNA binding motif, binds with high affinity and selectivity to a long composite sequence of 13 base pairs (TCAT-AATT-GAGAG). PMID:27252825

  11. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray.

    PubMed

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2016-01-01

    Transcription factor binding sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k = 8∼10). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build TFBS (also known as DNA motif) models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement if choosing di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  12. Photonic crystal borax competitive binding carbohydrate sensing motif.

    PubMed

    Cui, Qingzhou; Ward Muscatello, Michelle M; Asher, Sanford A

    2009-05-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols.

  13. Investigation of structural mimetics of natural phosphate ion binding motifs.

    PubMed

    Kataev, Evgeny A; Shumilova, Tatiana A

    2015-02-16

    Phosphates are ubiquitous in biology and nearly half of all proteins interact with their partners by means of recognition of phosphate residues. Therefore, a better understanding of the phosphate ion binding by peptidic structures is highly desirable. Two new receptors have been designed and synthesized and their anion binding properties in an acetonitrile solution have been determined. The structure of hosts mimics a part of the kinase active site that is responsible for the recognition of the phosphate residue. New hosts contain additional free amino groups with the aim to facilitate coordination of protonated anions, such as dihydrogen phosphate. According to spectrophotometric measurements, stepwise 1:1 and 1:2 binding modes have been observed for both receptors in the presence of acetate, hydrogen sulfate and dihydrogen phosphate. Compared with the acyclic receptor, the macrocyclic receptor has demonstrated a remarkably enhanced selectivity for dihydrogen phosphate over other anions. Fluorometric measurements have revealed different responses of the acyclic and macrocyclic receptors towards anions. However, in both cases, a 5-8 nm hypsochromic shift of fluorescence maximum has been observed upon interaction of acetate and dihydrogen phosphate with receptors.

  14. Investigating the mechanism of the assembly of FGF1-binding heparan sulfate motifs

    PubMed Central

    Nguyen, Thao Kim Nu; Raman, Karthik; Trana, Vy My; Kuberan, Balagurunathan

    2011-01-01

    Heparan sulfate (HS) chains play crucial biological roles by binding to various signaling molecules including fibroblast growth factors (FGFs). Distinct sulfation patterns of HS chains are required for their binding to FGFs/FGF receptors (FGFRs). These sulfation patterns are putatively regulated by biosynthetic enzyme complexes, called GAGOSOMES, in the Golgi. While the structural requirements of HS-FGF interactions have been described previously, it is still unclear how the FGF-binding motif is assembled in vivo. In this study, we generated HS structures using biosynthetic enzymes in a sequential or concurrent manner to elucidate the potential mechanism by which the FGF1-binding HS motif is assembled. Our results indicate that the HS chains form ternary complexes with FGF1/FGFR when enzymes carry out modifications in a specific manner. PMID:21803043

  15. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites

    PubMed Central

    Lelieveld, Stefan H.; Schütte, Judith; Dijkstra, Maurits J.J.; Bawono, Punto; Kinston, Sarah J.; Göttgens, Berthold; Heringa, Jaap; Bonzanni, Nicola

    2016-01-01

    Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing. PMID:26721389

  16. The LIM motif defines a specific zinc-binding protein domain.

    PubMed

    Michelsen, J W; Schmeichel, K L; Beckerle, M C; Winge, D R

    1993-05-15

    The cysteine-rich protein (CRP) contains two copies of the LIM sequence motif, CX2CX17HX2CX2CX2CX17-CX2C, that was first identified in the homeodomain proteins Lin-11, Is1-1, and Mec-3. The abundance and spacing of the cysteine residues in the LIM motif are reminiscent of a metal-binding domain. We examined the metal-binding properties of CRP isolated from chicken smooth muscle (cCRP) and from a bacterial expression system and observed that cCRP is a specific Zn-binding metalloprotein. Four Zn(II) ions are maximally bound to cCRP, consistent with the idea that each LIM domain coordinates two metal ions. From spectroscopic studies of Co(II)- and 113Cd(II)-substituted cCRP, we determined that each metal ion is tetrahedrally coordinated with cysteinyl sulfurs dominating the ligand types. One metal site within each LIM motif has tetrathiolate (S4) coordination, the second site may either be S4 or S3N1. The LIM motif represents another example of a specific Zn-binding protein sequence.

  17. Olf-1-binding site: characterization of an olfactory neuron-specific promoter motif.

    PubMed Central

    Kudrycki, K; Stein-Izsak, C; Behn, C; Grillo, M; Akeson, R; Margolis, F L

    1993-01-01

    We report characterization of several domains within the 5' flanking region of the olfactory marker protein (OMP) gene that may participate in regulating transcription of this and other olfactory neuron-specific genes. Analysis by electrophoretic mobility shift assay and DNase I footprinting identifies two regions that contain a novel sequence motif. Interactions between this motif and nuclear proteins were detected only with nuclear protein extracts derived from olfactory neuroepithelium, and this activity is more abundant in olfactory epithelium enriched in immature neurons. We have designated a factor(s) involved in this binding as Olf-1. The Olf-1-binding motif consensus sequence was defined as TCCCC(A/T)NGGAG. Studies with transgenic mice indicate that a 0.3-kb fragment of the OMP gene containing one Olf-1 motif is sufficient for olfactory tissue-specific expression of the reporter gene. Some of the other identified sequence motifs also interact specifically with olfactory nuclear protein extracts. We propose that Olf-1 is a novel, olfactory neuron-specific trans-acting factor involved in the cell-specific expression of OMP. Images PMID:8474458

  18. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    PubMed

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  19. Molecular diversity of LysM carbohydrate-binding motifs in fungi.

    PubMed

    Akcapinar, Gunseli Bayram; Kappel, Lisa; Sezerman, Osman Ugur; Seidl-Seiboth, Verena

    2015-05-01

    LysM motifs are carbohydrate-binding modules found in prokaryotes and eukaryotes. They bind to N-acetylglucosamine-containing carbohydrates, such as chitin, chitio-oligosaccharides and peptidoglycan. In this review, we summarize the features of the protein architecture of LysM-containing proteins in fungi and discuss their so far known biochemical properties, transcriptional profiles and biological functions. Further, based on data from evolutionary analyses and consensus pattern profiling of fungal LysM motifs, we show that they can be classified into a fungal-specific group and a fungal/bacterial group. This facilitates the classification and selection of further LysM proteins for detailed analyses and will contribute to widening our understanding of the functional spectrum of this protein family in fungi. Fungal LysM motifs are predominantly found in subgroup C chitinases and in LysM effector proteins, which are secreted proteins with LysM motifs but no catalytic domains. In enzymes, LysM motifs mediate the attachment to insoluble carbon sources. In plants, receptors containing LysM motifs are responsible for the perception of chitin-oligosaccharides and are involved in beneficial symbiotic interactions between plants and bacteria or fungi, as well as plant defence responses. In plant pathogenic fungi, LysM effector proteins have already been shown to have important functions in the dampening of host defence responses as well as protective functions of fungal hyphae against chitinases. However, the large number and diversity of proteins with LysM motifs that are being unravelled in fungal genome sequencing projects suggest that the functional repertoire of LysM effector proteins in fungi is only partially discovered so far.

  20. An SOS Regulon under Control of a Noncanonical LexA-Binding Motif in the Betaproteobacteria

    PubMed Central

    Sanchez-Alberola, Neus; Campoy, Susana; Emerson, David; Barbé, Jordi

    2015-01-01

    ABSTRACT The SOS response is a transcriptional regulatory network governed by the LexA repressor that activates in response to DNA damage. In the Betaproteobacteria, LexA is known to target a palindromic sequence with the consensus sequence CTGT-N8-ACAG. We report the characterization of a LexA regulon in the iron-oxidizing betaproteobacterium Sideroxydans lithotrophicus. In silico and in vitro analyses show that LexA targets six genes by recognizing a binding motif with the consensus sequence GAACGaaCGTTC, which is strongly reminiscent of the Bacillus subtilis LexA-binding motif. We confirm that the closely related Gallionella capsiferriformans shares the same LexA-binding motif, and in silico analyses indicate that this motif is also conserved in the Nitrosomonadales and the Methylophilales. Phylogenetic analysis of LexA and the alpha subunit of DNA polymerase III (DnaE) reveal that the organisms harboring this noncanonical LexA form a compact taxonomic cluster within the Betaproteobacteria. However, their lexA gene is unrelated to the standard Betaproteobacteria lexA, and there is evidence of its spread through lateral gene transfer. In contrast to other reported cases of noncanonical LexA-binding motifs, the regulon of S. lithotrophicus is comparable in size and function to that of many other Betaproteobacteria, suggesting that a convergent SOS regulon has reevolved under the control of a new LexA protein. Analysis of the DNA-binding domain of S. lithotrophicus LexA reveals little sequence similarity with that of other LexA proteins targeting similar binding motifs, suggesting that network structure may limit site evolution or that structural constrains make the B. subtilis-type motif an optimal interface for multiple LexA sequences. IMPORTANCE Understanding the evolution of transcriptional systems enables us to address important questions in microbiology, such as the emergence and transfer potential of different regulatory systems to regulate virulence or

  1. Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean.

    PubMed

    Battistuzzi, G; Dietrich, M; Löcke, R; Witzel, H

    1997-05-01

    The di-iron core of mammalian purple acid phosphatases has been reproduced in the plant enzyme from kidney bean (Mr 111000) upon insertion of an Fe(II) ion in place of the native zinc(II) in the dinuclear Fe(III)Zn(II) core. The shortening of the electronic relaxation time of the metal centre allows detection of hyperfine-shifted 1H NMR resonances, although severe broadening due to Curie relaxation prevents independent signal assignment. Nevertheless, comparison of the spectral features of the structurally characterized plant enzyme with those of the mammalian species, which were previously extensively assigned, is consistent with a close similarity of the metal-binding sites, also suggested by previous sequence-alignment studies. Some differences appear to be mainly localized at the M(II) site. Spectral comparison was also carried out on the Fe(III)Co(II) derivatives.

  2. Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation

    PubMed Central

    Sun, Chaomin; Querol-Audí, Jordi; Mortimer, Stefanie A.; Arias-Palomo, Ernesto; Doudna, Jennifer A.; Nogales, Eva; Cate, Jamie H. D.

    2013-01-01

    The initiation of protein synthesis plays an essential regulatory role in human biology. At the center of the initiation pathway, the 13-subunit eukaryotic translation initiation factor 3 (eIF3) controls access of other initiation factors and mRNA to the ribosome by unknown mechanisms. Using electron microscopy (EM), bioinformatics and biochemical experiments, we identify two highly conserved RNA-binding motifs in eIF3 that direct translation initiation from the hepatitis C virus internal ribosome entry site (HCV IRES) RNA. Mutations in the RNA-binding motif of subunit eIF3a weaken eIF3 binding to the HCV IRES and the 40S ribosomal subunit, thereby suppressing eIF2-dependent recognition of the start codon. Mutations in the eIF3c RNA-binding motif also reduce 40S ribosomal subunit binding to eIF3, and inhibit eIF5B-dependent steps downstream of start codon recognition. These results provide the first connection between the structure of the central translation initiation factor eIF3 and recognition of the HCV genomic RNA start codon, molecular interactions that likely extend to the human transcriptome. PMID:23766293

  3. Discovery of widespread GTP-binding motifs in genomic DNA and RNA.

    PubMed

    Curtis, Edward A; Liu, David R

    2013-04-18

    Biological RNAs that bind small molecules have been implicated in a variety of regulatory and catalytic processes. Inspired by these examples, we used in vitro selection to search a pool of genome-encoded RNA fragments for naturally occurring GTP aptamers. Several aptamer classes were identified, including one (the "G motif") with a G-quadruplex structure. Further analysis revealed that most RNA and DNA G-quadruplexes bind GTP. The G motif is abundant in eukaryotes, and the human genome contains ~75,000 examples with dissociation constants comparable to the GTP concentration of a eukaryotic cell (~300 μM). G-quadruplexes play roles in diverse cellular processes, and our findings raise the possibility that GTP may play a role in the function of these elements. Consistent with this possibility, the sequence requirements of several classes of regulatory G-quadruplexes parallel those of GTP binding.

  4. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    SciTech Connect

    Lilic,M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella.

  5. Identification of the RGG Box Motif in Shadoo: RNA-Binding and Signaling Roles?

    PubMed Central

    Corley, Susan M.; Gready, Jill E.

    2008-01-01

    Using comparative genomics and in-silico analyses, we previously identified a new member of the prion-protein (PrP) family, the gene SPRN, encoding the protein Shadoo (Sho), and suggested its functions might overlap with those of PrP. Extended bioinformatics and conceptual biology studies to elucidate Sho’s functions now reveal Sho has a conserved RGG-box motif, a well-known RNA-binding motif characterized in proteins such as FragileX Mental Retardation Protein. We report a systematic comparative analysis of RGG-box containing proteins which highlights the motif’s functional versatility and supports the suggestion that Sho plays a dual role in cell signaling and RNA binding in brain. These findings provide a further link to PrP, which has well-characterized RNA-binding properties. PMID:19812790

  6. Novel DNA motif binding activity observed in vivo with an estrogen receptor α mutant mouse.

    PubMed

    Hewitt, Sylvia C; Li, Leping; Grimm, Sara A; Winuthayanon, Wipawee; Hamilton, Katherine J; Pockette, Brianna; Rubel, Cory A; Pedersen, Lars C; Fargo, David; Lanz, Rainer B; DeMayo, Francesco J; Schütz, Günther; Korach, Kenneth S

    2014-06-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as "tethering." Evidence for tethering is based on in vitro studies and a widely used "KIKO" mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the "EAAE" ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null-like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo.

  7. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  8. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    PubMed

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  9. Isolation of a gene encoding a developmentally regulated T cell-specific protein with a guanine nucleotide triphosphate-binding motif

    SciTech Connect

    Carlow, D.A.; Teh, H.S.; Marth, J.

    1995-02-15

    In this study, we describe a novel full length cDNA clone designated Tgtp that encodes a predicted 415-amino acid a T cell-specific guanine nucleotide triphosphate-binding protein (TGTP) bearing the characteristic motifs of a guanine nucleotide triphosphate (GTP) binding protein. Tgtp is expressed preferentially, if not exclusively, in T cells, and is up-regulated in both unfractionated and in purified CD4{sup +}8{sup +} thymocytes upon TCR cross-linking. In contrast, expression of Tgtp in peripheral T cells is maintained at relatively high levels and is not grossly affected by TCR cross-linking. Antiserum generated against synthetic peptides from the predicted TGTP amino acid sequence recognized a single protein with a molecular mass of {approx}50 kDa, corresponding well with the computed molecular mass of 47 kDa. The only known relative of Tgtp is MUSGTP, which is reportedly expressed in B cells and bears a GTP binding motif. Thus, the discovery of Tgtp resolves a subfamily of molecules with GTP binding motifs and apparent lymphoid lineage-restricted expression. Given the restricted expression pattern in T cells, the up-regulated expression observed in response to TCR signaling in immature thymocytes, and the presence of the motifs characteristic of GTP binding proteins, we suggest that TGTP may have an important function in T cell development and/or T cell activation. 51 refs., 6 figs.

  10. Alternative peptide binding motifs of Qa-2 class Ib molecules define rules for binding of self and nonself peptides.

    PubMed

    Tabaczewski, P; Chiang, E; Henson, M; Stroynowski, I

    1997-09-15

    Studies of naturally processed peptides eluted from membrane-bound and soluble isoforms of murine class Ib Qa-2 molecules determined several features of these ligands, such as the conserved nonameric length and the preferred usage of specific residues at four to six of nine peptide positions. The structural information derived from these studies proved insufficient to distinguish between two interpretations: 1) that Qa-2 are peptide receptors of higher stringency than ordinary class I molecules, and 2) that Qa-2 molecules, like classical class I Ags, bind diverse arrays of peptides. We have addressed this issue by a systematic analysis of peptide residues involved in the binding of membrane-bound Qa-2 molecule, MQ9b. The optimal binding of synthetic peptides in vitro occurs at neutral pH. Two dominant anchors are required for peptide binding to MQ9b: His at position 7 and a hydrophobic residue, Leu, Ile, or Phe, at position 9. In addition, one or two auxiliary anchors participate in binding. The identity and the position of the auxiliary anchors differ from peptide to peptide, suggesting that the binding motifs defined from pool sequencing are composed of many superimposed alternative motifs present in individual peptides. The number of anchors used by Qa-2 peptides is similar to that found in ligands of classical class I Ags. Consequently, the Qa-2 are predicted to bind large repertoires of self and nonself peptides. In support of this interpretation we demonstrate that MQ9b binds strongly 5 of 17 motif-positive, pathogen-derived synthetic peptides.

  11. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity

    PubMed Central

    Xu, Xiaojie; Fan, Zhongyi; Liang, Chaoyang; Li, Ling; Wang, Lili; Liang, Yingchun; Wu, Jun; Chang, Shaohong; Yan, Zhifeng; Lv, Zhaohui; Fu, Jing; Liu, Yang; Jin, Shuai; Wang, Tao; Hong, Tian; Dong, Yishan; Ding, Lihua; Cheng, Long; Liu, Rui; Fu, Shenbo; Jiao, Shunchang; Ye, Qinong

    2017-01-01

    Tumour radiotherapy resistance involves the cell cycle pathway. CDC25 phosphatases are key cell cycle regulators. However, how CDC25 activity is precisely controlled remains largely unknown. Here, we show that LIM domain-containing proteins, such as FHL1, increase inhibitory CDC25 phosphorylation by forming a complex with CHK2 and CDC25, and sequester CDC25 in the cytoplasm by forming another complex with 14-3-3 and CDC25, resulting in increased radioresistance in cancer cells. FHL1 expression, induced by ionizing irradiation in a SP1- and MLL1-dependent manner, positively correlates with radioresistance in cancer patients. We identify a cell-penetrating 11 amino-acid motif within LIM domains (eLIM) that is sufficient for binding CHK2 and CDC25, reducing the CHK2–CDC25 and CDC25–14-3-3 interaction and enhancing CDC25 activity and cancer radiosensitivity accompanied by mitotic catastrophe and apoptosis. Our results provide novel insight into molecular mechanisms underlying CDC25 activity regulation. LIM protein inhibition or use of eLIM may be new strategies for improving tumour radiosensitivity. PMID:28094252

  12. A threonine turnstile defines a dynamic amphiphilic binding motif in the AAA ATPase p97 allosteric binding site.

    PubMed

    Burnett, James C; Lim, Chaemin; Peyser, Brian D; Samankumara, Lalith P; Kovaliov, Marina; Colombo, Raffaele; Bulfer, Stacie L; LaPorte, Matthew G; Hermone, Ann R; McGrath, Connor F; Arkin, Michelle R; Gussio, Rick; Huryn, Donna M; Wipf, Peter

    2017-03-29

    The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain β-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.

  13. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Farooq, Amjad

    2009-05-19

    Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXpsiPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXpsiPXR motifs, designated S1, S2, S3, and S4, the cSH3 domain can only do so at the S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXpsiPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXpsiPXR motifs at S2, S3, and S4 sites, the PXpsiPXR motif at the S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of the cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of the nSH3 domain to the S1 site, but their role is not critical for the recognition of S2, S3, and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXpsiPXR motif at the S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXpsiPXR motif and flanking arginine residues at the S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery.

  14. SH3 Domains of Grb2 Adaptor Bind to PXψPXR Motifs Within the Sos1 Nucleotide Exchange Factor in a Discriminate Manner†

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Farooq, Amjad

    2009-01-01

    Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXψPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXψPXR motifs, designated S1, S2, S3 and S4, the cSH3 domain can only do so at S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXψPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXψPXR motifs at S2, S3 and S4 sites, the PXψPXR motif at S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of nSH3 domain to S1 site but their role is not critical for the recognition of S2, S3 and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXψPXR motif at S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXψPXR motif and flanking arginine residues at S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery. PMID:19323566

  15. Identification of putative DnaN-binding motifs in plasmid replication initiation proteins.

    PubMed

    Dalrymple, Brian P; Kongsuwan, Kritaya; Wijffels, Gene

    2007-01-01

    Recently the plasmid RK2 replication initiation protein, TrfA, has been shown to bind to the beta subunit of DNA Polymerase III (DnaN) via a short pentapeptide with the consensus QL[S/D]LF. A second consensus peptide, the hexapeptide QLxLxL, has also been demonstrated to mediate binding to DnaN. Here we describe the results of a comprehensive survey of replication initiation proteins encoded by bacterial plasmids to identify putative DnaN-binding sites. Both pentapeptide and hexapeptide motifs have been identified in a number of families of replication initiation proteins. The distribution of sites is sporadic and closely related families of proteins may differ in the presence, location, or type of putative DnaN-binding motif. Neither motif has been identified in replication initiation proteins encoded by plasmids that replicate via rolling circles or strand displacement. The results suggest that the recruitment of DnaN to the origin of replication of a replisome by plasmid replication initiation proteins is not generally required for plasmid replication, but that in some cases it may be beneficial for efficiency of replication initiation.

  16. AliBiMotif: integrating alignment and biclustering to unravel transcription factor binding sites in DNA sequences.

    PubMed

    Gonçalves, Joana P; Moreau, Yves; Madeira, Sara C

    2012-01-01

    Transcription Factors (TFs) control transcription by binding to specific sites in the promoter regions of the target genes, which can be modelled by structured motifs. In this paper we propose AliBiMotif, a method combining sequence alignment and a biclustering approach based on efficient string matching techniques using suffix trees to unravel approximately conserved sets of blocks (structured motifs) while straightforwardly disregarding non-conserved stretches in-between. The ability to ignore the width of non-conserved regions is a major advantage of the proposed method over other motif finders, as the lengths of the binding sites are usually easier to estimate than the separating distances.

  17. ATtRACT-a database of RNA-binding proteins and associated motifs.

    PubMed

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es.

  18. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs.

    PubMed

    Cussac, D; Frech, M; Chardin, P

    1994-09-01

    Phosphotyrosine peptide binding to Grb2 induces tryptophan fluorescence changes in the Src homology 2 (SH2) domain. Affinities are in the nanomolar range, the Shc peptide having the highest affinity, followed by peptides mimicking Grb2 binding sites on EGF and HGF receptors, the putative sites on insulin and IGF-1 receptors having much lower affinities. Proline-rich peptide binding to the SH3 domains induces fluorescence changes mainly in the C-terminal SH3. Affinities are in the micromolar range, the highest affinity peptides mimicking the first proline-rich motif of the Sos C-terminus. Additional residues before this PVPPPVPP motif provide a minor contribution to the binding, but the two residues after this motif are important and may contribute to specificity. The affinity of each SH3 for each proline-rich motif is too low to account for the high stability of the Grb2-Sos complex, suggesting that Grb2 recognizes other structural features in the Sos C-terminus. Binding of a phosphotyrosine peptide to the SH2 has no effect on the SH3s. Thus the binding of Grb2 to a receptor or to an associated protein phosphorylated on tyrosines is unlikely to activate the exchange factor activity of Sos through a conformational change transmitted from the SH2 to the SH3 domains.

  19. Americium binding to humic acid.

    PubMed

    Peters, A J; Hamilton-Taylor, J; Tipping, E

    2001-09-01

    The binding of americium (Am) by peat humic acid (PHA) has been investigated at Am concentrations between 10(-1) and 10(-7) M at pH approximately 2.6 in the presence and absence of Cu as a competing ion. Cu-PHA binding was also investigated in order to derive independent binding constants for use in modeling the competitive binding studies. Humic ion-binding model VI was used to compare the acquired data with previously published binding data and to investigate the importance of high-affinity binding sites in metal-PHA binding. Am was not observed to bind to high-affinity, low-concentration binding sites. The model VI parameter deltaLK2 takes into accountthe small number of strong sites in PHA and was found to be important for Cu-PHA binding but not for Am-PHA binding, regardless of whether Cu was present. Analysis of the PHA sample revealed that it contained a considerable quantity of Fe not removed by the extraction procedure, much of which is believed to be present as Fe(III). Model VI was then used to investigate the possible importance of the presence of Fe(III) in the Am-PHA binding experiments. When Fe(III) was assumed to be present, improved descriptions of the data by model VI were obtained by assuming that all of the metals [Am, Cu, and Fe(III)] undergo strong binding. This highlights the importance of Fe(III) competition in metal-PHA binding studies and possible shortcomings in the extraction procedure used to extract PHA.

  20. Analysis of immunoreceptor tyrosine-based activation motif (ITAM) binding to ZAP-70 by surface plasmon resonance.

    PubMed

    Vély, F; Nunès, J A; Malissen, B; Hedgecock, C J

    1997-11-01

    The signaling function of the T cell antigen receptor (TCR) is mediated via CD3 polypeptides, the cytoplasmic sequences of which bear conserved immunoreceptor tyrosine-based activation motifs (ITAM). ITAM are defined by two YxxL/I sequences separated by a six-eight amino acid long spacer. Upon antigen recognition, ITAM become phosphorylated on both tyrosine residues, creating a high affinity binding site for the tandem SH2 domains found in the protein tyrosine kinase ZAP-70. Using surface plasmon resonance, we further dissected the sequences required for the binding of ZAP-70 to each TCR-associated ITAM. First, we generated protein tyrosine phosphatase-resistant ITAM peptide analogs, in which difluorophosphonomethyl phenylalanyl (F2p) replaced both phosphotyrosines, and showed that those protein tyrosine phosphatase-resistant analogs bind ZAP-70 with high affinity, establishing a rational strategy for the design of novel pharmacological tools capable of interfering with TCR signaling function. Second, we substituted the five amino acids separating the two YxxL/I sequences of the CD3 zeta 1 ITAM with a non-peptidic linker made up of gamma-amino butyric acid units and demonstrated that the length of this intervening sequence rather than its chemical composition is essential for high affinity binding of phosphorylated ITAM to the ZAP-70 SH2 domains.

  1. Specific binding of the replication protein of plasmid pPS10 to direct and inverted repeats is mediated by an HTH motif.

    PubMed Central

    García de Viedma, D; Serrano-López, A; Díaz-Orejas, R

    1995-01-01

    The initiator protein of the plasmid pPS10, RepA, has a putative helix-turn-helix (HTH) motif at its C-terminal end. RepA dimers bind to an inverted repeat at the repA promoter (repAP) to autoregulate RepA synthesis. [D. García de Viedma, et al. (1996) EMBO J. in press]. RepA monomers bind to four direct repeats at the origin of replication (oriV) to initiate pPS10 replication This report shows that randomly generated mutations in RepA, associated with defficiencies in autoregulation, map either at the putative HTH motif or in its vicinity. These mutant proteins do not promote pPS10 replication and are severely affected in binding to both the repAP and oriV regions in vitro. Revertants of a mutant that map in the vicinity of the HTH motif have been obtained and correspond to a second amino acid substitution far upstream of the motif. However, reversion of mutants that map in the helices of the motif occurs less frequently, at least by an order of magnitude. All these data indicate that the helices of the HTH motif play an essential role in specific RepA-DNA interactions, although additional regions also seem to be involved in DNA binding activity. Some mutations have slightly different effects in replication and autoregulation, suggesting that the role of the HTH motif in the interaction of RepA dimers or monomers with their respective DNA targets (IR or DR) is not the same. Images PMID:8559664

  2. Structure-Specific Nucleic Acid Recognition by L-motifs And Their Diverse Roles in Expression And Regulation Of The Genome

    PubMed Central

    Thapar, Roopa

    2015-01-01

    The high-mobility group (HMG) domain containing proteins regulate transcription, DNA replication and recombination. They adopt L-shaped folds and are structure-specific DNA binding motifs. Here, I define the L-motif super-family that consists of DNA-binding HMG-box proteins and the L-motif of the histone mRNA binding domain of Stem-Loop Binding Protein (SLBP). The SLBP L-motif and HMG-box domains adopt similar L-shaped folds with three α-helices and two or three small hydrophobic cores that stabilize the overall fold, but have very different and distinct modes of nucleic acid recognition. A comparison of the structure, dynamics, protein-protein and nucleic acid interactions, and regulation by PTMs of the SLBP and the HMG-box L-motifs reveals the versatile and diverse modes by which L-motifs utilize their surfaces for structure-specific recognition of nucleic acids to regulate gene expression. PMID:25748361

  3. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    2016-10-01

    The composition of a genome with respect to all possible short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional DNA binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. We demonstrate that the underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, a signal that we detect in all species across domains of life. We consider the possibility that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Likewise, we show that evolutionary mechanisms based on interference of protein-DNA binding with replication and mutational repair processes could yield similar results and operate with similar rates. On the basis of these modeling and bioinformatic results, we conclude that genome-wide word compositions have been molded by DNA binding proteins acting through tiny evolutionary steps over time scales spanning millions of generations.

  4. Transcription Factor Binding Site Positioning in Yeast: Proximal Promoter Motifs Characterize TATA-Less Promoters

    PubMed Central

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of ‘proximal promoter motifs’ (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters. PMID:21931670

  5. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies.

    PubMed

    Mahony, Shaun; Auron, Philip E; Benos, Panayiotis V

    2007-03-30

    Transcription factor (TF) proteins recognize a small number of DNA sequences with high specificity and control the expression of neighbouring genes. The evolution of TF binding preference has been the subject of a number of recent studies, in which generalized binding profiles have been introduced and used to improve the prediction of new target sites. Generalized profiles are generated by aligning and merging the individual profiles of related TFs. However, the distance metrics and alignment algorithms used to compare the binding profiles have not yet been fully explored or optimized. As a result, binding profiles depend on TF structural information and sometimes may ignore important distinctions between subfamilies. Prediction of the identity or the structural class of a protein that binds to a given DNA pattern will enhance the analysis of microarray and ChIP-chip data where frequently multiple putative targets of usually unknown TFs are predicted. Various comparison metrics and alignment algorithms are evaluated (a total of 105 combinations). We find that local alignments are generally better than global alignments at detecting eukaryotic DNA motif similarities, especially when combined with the sum of squared distances or Pearson's correlation coefficient comparison metrics. In addition, multiple-alignment strategies for binding profiles and tree-building methods are tested for their efficiency in constructing generalized binding models. A new method for automatic determination of the optimal number of clusters is developed and applied in the construction of a new set of familial binding profiles which improves upon TF classification accuracy. A software tool, STAMP, is developed to host all tested methods and make them publicly available. This work provides a high quality reference set of familial binding profiles and the first comprehensive platform for analysis of DNA profiles. Detecting similarities between DNA motifs is a key step in the comparative study

  6. A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction.

    PubMed

    Sharma, Neeraj; LaRusch, Jessica; Sosnay, Patrick R; Gottschalk, Laura B; Lopez, Andrea P; Pellicore, Matthew J; Evans, Taylor; Davis, Emily; Atalar, Melis; Na, Chan-Hyun; Rosson, Gedge D; Belchis, Deborah; Milewski, Michal; Pandey, Akhilesh; Cutting, Garry R

    2016-12-01

    The development of cystic fibrosis transmembrane conductance regulator (CFTR) targeted therapy for cystic fibrosis has generated interest in maximizing membrane residence of mutant forms of CFTR by manipulating interactions with scaffold proteins, such as sodium/hydrogen exchange regulatory factor-1 (NHERF1). In this study, we explored whether COOH-terminal sequences in CFTR beyond the PDZ-binding motif influence its interaction with NHERF1. NHERF1 displayed minimal self-association in blot overlays (NHERF1, Kd = 1,382 ± 61.1 nM) at concentrations well above physiological levels, estimated at 240 nM from RNA-sequencing and 260 nM by liquid chromatography tandem mass spectrometry in sweat gland, a key site of CFTR function in vivo. However, NHERF1 oligomerized at considerably lower concentrations (10 nM) in the presence of the last 111 amino acids of CFTR (20 nM) in blot overlays and cross-linking assays and in coimmunoprecipitations using differently tagged versions of NHERF1. Deletion and alanine mutagenesis revealed that a six-amino acid sequence (1417)EENKVR(1422) and the terminal (1478)TRL(1480) (PDZ-binding motif) in the COOH-terminus were essential for the enhanced oligomerization of NHERF1. Full-length CFTR stably expressed in Madin-Darby canine kidney epithelial cells fostered NHERF1 oligomerization that was substantially reduced (∼5-fold) on alanine substitution of EEN, KVR, or EENKVR residues or deletion of the TRL motif. Confocal fluorescent microscopy revealed that the EENKVR and TRL sequences contribute to preferential localization of CFTR to the apical membrane. Together, these results indicate that COOH-terminal sequences mediate enhanced NHERF1 interaction and facilitate the localization of CFTR, a property that could be manipulated to stabilize mutant forms of CFTR at the apical surface to maximize the effect of CFTR-targeted therapeutics.

  7. Analysis of protective antigen peptide binding motifs using bacterial display technology

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  8. Automatic generation of 3D motifs for classification of protein binding sites

    PubMed Central

    Nebel, Jean-Christophe; Herzyk, Pawel; Gilbert, David R

    2007-01-01

    Background Since many of the new protein structures delivered by high-throughput processes do not have any known function, there is a need for structure-based prediction of protein function. Protein 3D structures can be clustered according to their fold or secondary structures to produce classes of some functional significance. A recent alternative has been to detect specific 3D motifs which are often associated to active sites. Unfortunately, there are very few known 3D motifs, which are usually the result of a manual process, compared to the number of sequential motifs already known. In this paper, we report a method to automatically generate 3D motifs of protein structure binding sites based on consensus atom positions and evaluate it on a set of adenine based ligands. Results Our new approach was validated by generating automatically 3D patterns for the main adenine based ligands, i.e. AMP, ADP and ATP. Out of the 18 detected patterns, only one, the ADP4 pattern, is not associated with well defined structural patterns. Moreover, most of the patterns could be classified as binding site 3D motifs. Literature research revealed that the ADP4 pattern actually corresponds to structural features which show complex evolutionary links between ligases and transferases. Therefore, all of the generated patterns prove to be meaningful. Each pattern was used to query all PDB proteins which bind either purine based or guanine based ligands, in order to evaluate the classification and annotation properties of the pattern. Overall, our 3D patterns matched 31% of proteins with adenine based ligands and 95.5% of them were classified correctly. Conclusion A new metric has been introduced allowing the classification of proteins according to the similarity of atomic environment of binding sites, and a methodology has been developed to automatically produce 3D patterns from that classification. A study of proteins binding adenine based ligands showed that these 3D patterns are not

  9. Targeting a DNA binding motif of the EVI1 protein by a pyrrole-imidazole polyamide.

    PubMed

    Zhang, Yi; Sicot, Géraldine; Cui, Xiaohui; Vogel, Marion; Wuertzer, Charles A; Lezon-Geyda, Kimberly; Wheeler, John; Harki, Daniel A; Muzikar, Katy A; Stolper, Daniel A; Dervan, Peter B; Perkins, Archibald S

    2011-12-06

    The zinc finger protein EVI1 is causally associated with acute myeloid leukemogenesis, and inhibition of its function with a small molecule therapeutic may provide effective therapy for EVI1-expressing leukemias. In this paper we describe the development of a pyrrole-imidazole polyamide to specifically block EVI1 binding to DNA. We first identify essential domains for leukemogenesis through structure-function studies on both EVI1 and the t(3;21)(q26;q22)-derived RUNX1-MDS1-EVI1 (RME) protein, which revealed that DNA binding to the cognate motif GACAAGATA via the first of two zinc finger domains (ZF1, encompassing fingers 1-7) is essential transforming activity. To inhibit DNA binding via ZF1, we synthesized a pyrrole-imidazole polyamide 1, designed to bind to a subsite within the GACAAGATA motif and thereby block EVI1 binding. DNase I footprinting and electromobility shift assays revealed a specific and high affinity interaction between polyamide 1 and the GACAAGATA motif. In an in vivo CAT reporter assay using NIH-3T3-derived cell line with a chromosome-embedded tet-inducible EVI1-VP16 as well as an EVI1-responsive reporter, polyamide 1 completely blocked EVI1-responsive reporter activity. Growth of a leukemic cell line bearing overexpressed EVI1 was also inhibited by treatment with polyamide 1, while a control cell line lacking EVI1 was not. Finally, colony formation by RME was attenuated by polyamide 1 in a serial replating assay. These studies provide evidence that a cell permeable small molecule may effectively block the activity of a leukemogenic transcription factor and provide a valuable tool to dissect critical functions of EVI1 in leukemogenesis.

  10. Identification of a positively evolving putative binding region with increased variability in posttranslational motifs in zonadhesin MAM domain 2.

    PubMed

    Herlyn, Holger; Zischler, Hans

    2005-10-01

    Positive selection has been shown to be pervasive in sex-related proteins of many metazoan taxa. However, we are only beginning to understand molecular evolutionary processes on the lineage to humans. To elucidate the evolution of proteins involved in human reproduction, we studied the sequence evolution of MAM domains of the sperm-ligand zonadhesin in respect to single amino acid sites, solvent accessibility, and posttranslational modification. GenBank-data were supplemented by new cDNA-sequences of a representative non-human primate panel. Solvent accessibility predictions identified a probably exposed fragment of 30 amino acids belonging to MAM domain 2 (i.e., MAM domain 3 in mouse). The fragment is characterized by significantly increased rate of positively selected amino acid sites and exhibits high variability in predicted posttranslational modification, and, thus, might represent a binding region in the mature protein. At the same time, there is a significant coincidence of positively selected amino acid sites and non-conserved posttranslational motifs. We conclude that the binding specificity of zonadhesin MAM domains, especially of the presumed epitope, is achieved by positive selection at the level of single amino acid sites and posttranslational modifications, respectively.

  11. Mutational analysis of putative calcium binding motifs within the skeletal ryanodine receptor isoform, RyR1.

    PubMed

    Fessenden, James D; Feng, Wei; Pessah, Isaac N; Allen, P D

    2004-12-17

    The functional relevance of putative Ca(2+) binding motifs previously identified with Ca(2+) overlay binding analysis within the skeletal muscle ryanodine receptor isoform (RyR1) was examined using mutational analysis. EF hands between amino acid positions 4081 and 4092 (EF1) and 4116 and 4127 (EF2) were scrambled singly or in combination within the full-length rabbit RyR1 cDNA. These cDNAs were expressed in 1B5 RyR-deficient myotubes and channel function assessed using Ca(2+)-imaging techniques, [(3)H]ryanodine binding measurements, and single channel experiments. In intact myotubes, these mutations did not affect functional responses to either depolarization or RyR agonists (caffeine, 4-chloro-m-cresol) compared with wtRyR1. However, in [(3)H]ryanodine binding measurements, both Ca(2+) activation and inhibition of the EF1 mutant was significantly altered compared with wtRyR1. No high affinity [(3)H]ryanodine binding was observed in membranes expressing the EF2 mutation, although in single channel measurements, the EF2-disrupted channel could be activated by micromolar Ca(2+) concentrations. In addition, micromolar levels of ryanodine placed these channels into the classical half-conductance state, thus indicating that occupancy of high affinity ryanodine binding sites is not required for ryanodine-induced subconductance states in RyR1. Disruption of three additional putative RyR1 calcium binding motifs located between amino acid positions 4254 and 4265 (EF3), 4407 and 4418 (EF4), or 4490 and 4502 (EF5) either singly or in combination (EF3-5) did not affect functional responses in 1B5 myotubes except that the EC(50) for caffeine activation for the EF3 construct was significantly increased compared with wtRyR1. However, in [(3)H]ryanodine binding experiments, the Ca(2+)-dependent activation and inactivation of mutated RyRs containing EF3, EF4, or EF5 was unaffected when compared with wtRyR1.

  12. Identification of an Orthogonal Peptide Binding Motif for Biarsenical Multiuse Affinity Probes

    SciTech Connect

    Chen, Baowei; Cao, Haishi; Yan, Ping; Mayer, M. Uljana; Squier, Thomas C.

    2007-07-01

    Biarsenical multiuse affinity probes (MAPs) complexed with ethanedithiol (EDT) permit the selective cellular labeling of proteins engineered with tetracysteine motifs, but are limited by the availability of a single binding motif (i.e., CCPGCC or PG tag) that prevents the differential labeling of co-expressed proteins. To overcome this problem, we have used a high-throughput peptide screen to identify an alternate binding motif (i.e., CCKACC or KA tag), which has a similar brightness to the classical sequence upon MAP binding, but displays altered rates and affinities of association that permit the differential labeling of these peptide sequences by the red probe 4,5-bis(1,3,2-dithiarsolan-2-yl)-resorufin (ReAsH-EDT2) or its green cognate 4’,5’-bis(1,3,2-dithoarsolan-2-yl)fluorescein-(1,2-ethanedithiol)2 (FLAsH-EDT2). The utility of this labeling strategy was demonstrated following the expression of PG- and KA-tagged subunits of RNA polymerase expressed in E. coli. Specific labeling of two subunits of RNA polymerase in cellular lysates was achieved, whereby ReAsH-EDT2 is shown to selectively label the PG-tag on RNA polymerase alpha subunit prior to the labeling of the KA-tag sequence of the beta subunit of RNA polymerase with FlAsH-EDT2. These results demonstrate the ability to selectively label multiple individual proteins with orthogonal sequence tags in complex cellular lystates with spectroscopically distinct MAPs, and indicate the absolute specificity of ReAsH to target expressed proteins with essentially no nonspecific binding interactions.

  13. A Novel Fibronectin Binding Motif in MSCRAMMs Targets F3 Modules

    PubMed Central

    Prabhakaran, Sabitha; Liang, Xiaowen; Skare, Jonathan T.; Potts, Jennifer R.; Höök, Magnus

    2009-01-01

    Background BBK32 is a surface expressed lipoprotein and fibronectin (Fn)-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21–205 of the lipoprotein. Methodology/Principal Findings Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn) inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence. Conclusions/Significance We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities. PMID:19404402

  14. GABPα Binding to Overlapping ETS and CRE DNA Motifs Is Enhanced by CREB1: Custom DNA Microarrays.

    PubMed

    He, Ximiao; Syed, Khund Sayeed; Tillo, Desiree; Mann, Ishminder; Weirauch, Matthew T; Vinson, Charles

    2015-07-16

    To achieve proper spatiotemporal control of gene expression, transcription factors cooperatively assemble onto specific DNA sequences. The ETS domain protein monomer of GABPα and the B-ZIP domain protein dimer of CREB1 cooperatively bind DNA only when the ETS ((C)/GCGGAA GT: ) and CRE ( GT: GACGTCAC) motifs overlap precisely, producing the ETS↔CRE motif ((C)/GCGGAA GT: GACGTCAC). We designed a Protein Binding Microarray (PBM) with 60-bp DNAs containing four identical sectors, each with 177,440 features that explore the cooperative interactions between GABPα and CREB1 upon binding the ETS↔CRE motif. The DNA sequences include all 15-mers of the form (C)/GCGGA--CG-, the ETS↔CRE motif, and all single nucleotide polymorphisms (SNPs), and occurrences in the human and mouse genomes. CREB1 enhanced GABPα binding to the canonical ETS↔CRE motif CCGGAAGT two-fold, and up to 23-fold for several SNPs at the beginning and end of the ETS motif, which is suggestive of two separate and distinct allosteric mechanisms of cooperative binding. We show that the ETS-CRE array data can be used to identify regions likely cooperatively bound by GABPα and CREB1 in vivo, and demonstrate their ability to identify human genetic variants that might inhibit cooperative binding.

  15. Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily.

    PubMed

    Tsuji, Motonori

    2014-03-01

    Structural and sequence alignment analyses have revealed the existence of class-dependent and -independent local motifs involved in the overall fold of the ligand-binding domain (LBD) in the nuclear receptor (NR) superfamily. Of these local motifs, three local motifs, i.e., AF-2 fixed motifs, were involved in the agonist conformation of the activation function-2 (AF-2) region of the LBD. Receptor-agonist interactions increased the stability of these AF-2 fixed motifs in the agonist conformation. In contrast, perturbation of the AF-2 fixed motifs by a ligand or another protein molecule led the AF-2 architecture to adopt an antagonist conformation. Knowledge of this process should provide us with novel insights into the 'agonism' and 'antagonism' of NRs.

  16. An isoform of microtubule-associated protein 2 (MAP2) containing four repeats of the tubulin-binding motif.

    PubMed

    Doll, T; Meichsner, M; Riederer, B M; Honegger, P; Matus, A

    1993-10-01

    Microtubule-associated protein 2 (MAP2) exists in both high- and low-molecular mass isoforms, each of which has a tubulin-binding domain consisting of 3 imperfect tandem repeats of 31 amino acids containing a more highly conserved 18 amino acid 'core' sequence. We describe here a novel form of low molecular mass MAP2 (MAP2c) that contains an additional 4th repeat of this tubulin-binding motif. Like the 3 previously known repeat sequences, this 4th copy is highly conserved between MAP2 and the two other known members of the same gene family, tau and MAP4. In each of these three genes the additional 4th repeat is inserted between the 1st and 2nd repeats of the 3-repeat form of the molecule. Experiments with brain cell cultures, in which the relative proportions of neurons and glia had been manipulated by drug treatment, showed that 4-repeat MAP2c is associated with glial cells whereas 3-repeat MAP2c is expressed in neurons. Whereas 3-repeat MAP2c is expressed early in development and then declines, the level of 4-repeat MAP2c increases later in development, corresponding to the relatively late differentiation of glial cells compared to neurons. When transfected into non-neuronal cells, the 4-repeat version of MAP2c behaved indistinguishably from the 3-repeat form in stabilising and rearranging cellular microtubules. The presence of an additional 4th repeat of the tubulin-binding motif in all three members of the MAP2 gene family suggests that this variant arose prior to their differentiation from an ancestral gene.

  17. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen.

    PubMed

    Konitsiotis, Antonios D; Raynal, Nicolas; Bihan, Dominique; Hohenester, Erhard; Farndale, Richard W; Leitinger, Birgit

    2008-03-14

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.

  18. Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root- and leaf-activity using TGACG motif rearrangement.

    PubMed

    Kumar, Deepak; Patro, Sunita; Ghosh, Jayasish; Das, Abhimanyu; Maiti, Indu B; Dey, Nrisingha

    2012-07-15

    In Figwort mosaic virus sub-genomic transcript promoter (F-Sgt), function of the TGACG-regulatory motif, was investigated in the background of artificially designed promoter sequences. The 131bp (FS, -100 to +31) long F-Sgt promoter sequence containing one TGACG motif [FS-(TGACG)] was engineered to generate a set of three modified promoter constructs: [FS-(TGACG)(2), containing one additional TGACG motif at 7 nucleotides upstream of the original one], [FS-(TGACG)(3), containing two additional TGACG motifs at 7 nucleotides upstream and two nucleotides downstream of the original one] and [FS-(TGCTG)(mu), having a mutated TGACG motif]. EMSA and foot-printing analysis confirmed binding of tobacco nuclear factors with modified TGACG motif/s. The transcription-activation of the GUS gene by the TGACG motif/s in above promoter constructs was examined in transgenic tobacco and Arabidopsis plants and observed that the transcription activation was affected by the spacing/s and number/s of the TGACG motif/s. The FS-(TGACG)(2) promoter showed strongest root-activity compared to other modified and CaMV35S promoters. Also under salicylic acid (SA) stress, the leaf-activity of the said promoter was further enhanced. All above findings were confirmed by real-time and semi-qRT PCR analysis. Taken together, these results clearly demonstrated that the TGACG motif plays an important role in inducing the root-specific expression of the F-Sgt promoter. This study advocates the importance of genetic manipulation of functional cis-motif for amending the tissue specificity of a plant promoter. SA inducible FS-(TGACG)(2) promoter with enhanced activity could be a useful candidate promoter for developing plants with enhanced crop productivity.

  19. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.

    PubMed

    Winstone, Tara M L; Turner, Raymond J

    2015-03-24

    The system specific chaperone DmsD interacts with the twin-arginine leader peptide of its substrate, DmsA, allowing for proper folding and assembly of the DmsA catalytic subunit of dimethyl sulfoxide reductase prior to translocation by the twin-arginine translocase. DmsD residues important for binding the complete 45-amino acid sequence of the DmsA leader (DmsAL) peptide were previously identified and found to cluster in a pocket of the DmsD structure. In this study, we have utilized isothermal titration calorimetry (ITC) to determine the dissociation constant and thermodynamic parameters of 15 single-substitution DmsD variant proteins and a synthetic DmsAL peptide consisting of 27 amino acids (DmsAL₁₅₋₄₁). The stoichiometry values were determined via ITC, and the multimeric compositions of the DmsD variants in the absence and presence of peptide were characterized via size exclusion chromatography and native polyacrylamide gel electrophoresis. An up to 4-fold change in affinity was observed for DmsD variant proteins relative to that of wild-type DmsD, and variation of the entropic contribution to binding divided the binding site into two clusters: residues with either more or less favorable entropy. Substitution of hydrophobic residues along one helix face (helix 5) or prolines found on adjacent loops caused reduced binding affinity because of the increased entropic cost, which suggests that the twin-arginine motif of the DmsAL peptide binds to a preformed site on DmsD. Most DmsD variants were more than 90% monomeric in solution and bound a single peptide per protein molecule. The DmsD variant with the largest dimer population showed increased affinity and induced the formation of tetramers in the presence of peptide, suggesting that dimeric DmsD or an alternatively folded form of DmsD may play an as yet undefined role in binding.

  20. Trans-regulation of RNA-binding protein motifs by microRNA

    PubMed Central

    Doyle, Francis; Tenenbaum, Scott A.

    2014-01-01

    The wide array of vital functions that RNA performs is dependent on its ability to dynamically fold into different structures in response to intracellular and extracellular changes. RNA-binding proteins regulate much of this activity by targeting specific RNA structures or motifs. One of these structures, the 3-way RNA junction, is characteristically found in ribosomal RNA and results from the RNA folding in cis, to produce three separate helices that meet around a central unpaired region. Here we demonstrate that 3-way junctions can also form in trans as a result of the binding of microRNAs in an unconventional manner with mRNA by splinting two non-contiguous regions together. This may be used to reinforce the base of a stem-loop motif being targeted by an RNA-binding protein. Trans interactions between non-coding RNA and mRNA may be used to control the post-transcriptional regulatory code and suggests a possible role for some of the recently described transcripts of unknown function expressed from the human genome. PMID:24795744

  1. Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif.

    PubMed

    Rosenbaum, Sabrina; Kreft, Sandra; Etich, Julia; Frie, Christian; Stermann, Jacek; Grskovic, Ivan; Frey, Benjamin; Mielenz, Dirk; Pöschl, Ernst; Gaipl, Udo; Paulsson, Mats; Brachvogel, Bent

    2011-02-18

    Identification and clearance of apoptotic cells prevents the release of harmful cell contents thereby suppressing inflammation and autoimmune reactions. Highly conserved annexins may modulate the phagocytic cell removal by acting as bridging molecules to phosphatidylserine, a characteristic phagocytosis signal of dying cells. In this study five members of the structurally and functionally related annexin family were characterized for their capacity to interact with phosphatidylserine and dying cells. The results showed that AnxA3, AnxA4, AnxA13, and the already described interaction partner AnxA5 can bind to phosphatidylserine and apoptotic cells, whereas AnxA8 lacks this ability. Sequence alignment experiments located the essential amino residues for the recognition of surface exposed phosphatidylserine within the calcium binding motifs common to all annexins. These amino acid residues were missing in the evolutionary young AnxA8 and when they were reintroduced by site directed mutagenesis AnxA8 gains the capability to interact with phosphatidylserine containing liposomes and apoptotic cells. By defining the evolutionary conserved amino acid residues mediating phosphatidylserine binding of annexins we show that the recognition of dying cells represent a common feature of most annexins. Hence, the individual annexin repertoire bound to the cell surface of dying cells may fulfil opsonin-like function in cell death recognition.

  2. An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer.

    PubMed

    Barraud, Pierre; Emmerth, Stephan; Shimada, Yukiko; Hotz, Hans-Rudolf; Allain, Frédéric H-T; Bühler, Marc

    2011-08-16

    Dicer proteins function in RNA interference (RNAi) pathways by generating small RNAs (sRNAs). Here, we report the solution structure of the C-terminal domain of Schizosaccharomyces pombe Dicer (Dcr1). The structure reveals an unusual double-stranded RNA binding domain (dsRBD) fold embedding a novel zinc-binding motif that is conserved among dicers in yeast. Although the C-terminal domain of Dcr1 still binds nucleic acids, this property is dispensable for proper functioning of Dcr1. In contrast, disruption of zinc coordination renders Dcr1 mainly cytoplasmic and leads to remarkable changes in gene expression and loss of heterochromatin assembly. In summary, our results reveal novel insights into the mechanism of nuclear retention of Dcr1 and raise the possibility that this new class of dsRBDs might generally function in nucleocytoplasmic trafficking and not substrate binding. The C-terminal domain of Dcr1 constitutes a novel regulatory module that might represent a potential target for therapeutic intervention with fungal diseases.

  3. Insight into centromere-binding properties of ParB proteins: a secondary binding motif is essential for bacterial genome maintenance

    PubMed Central

    Sanchez, Aurore; Rech, Jérôme; Gasc, Cyrielle; Bouet, Jean-Yves

    2013-01-01

    ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identified the sopC centromere nucleotides required for binding to the ParB homologue of plasmid F, SopB. This analysis also suggested a role in sopC binding for an arginine residue, R219, located outside the helix-turn-helix (HTH) DNA-binding motif previously shown to be the only determinant for sopC-specific binding. Here, we demonstrated that the R219 residue is critical for SopB binding to sopC during partition. Mutating R219 to alanine or lysine abolished partition by preventing partition complex assembly. Thus, specificity of SopB binding relies on two distinct motifs, an HTH and an arginine residue, which define a split DNA-binding domain larger than previously thought. Bioinformatic analysis over a broad range of chromosomal ParBs generalized our findings with the identification of a non-HTH positively charged residue essential for partition and centromere binding, present in a newly identified highly conserved motif. We propose that ParB proteins possess two DNA-binding motifs that form an extended centromere-binding domain, providing high specificity. PMID:23345617

  4. Multiple Binding Modes between HNF4α and the LXXLL Motifs of PGC-1α Lead to Full Activation*

    PubMed Central

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.; Chi, Young-In

    2009-01-01

    Hepatocyte nuclear factor 4α (HNF4α) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4α interacts, peroxisome proliferation-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1α recruitment, we have determined the crystal structure of HNF4α in complex with a fragment of PGC-1α containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4α toward the LXXLL motifs of PGC-1α could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators. PMID:19846556

  5. Magnetite-Binding Flagellar Filaments Displaying the MamI Loop Motif.

    PubMed

    Bereczk-Tompa, Éva; Pósfai, Mihály; Tóth, Balázs; Vonderviszt, Ferenc

    2016-11-03

    This work aimed at developing a novel method for fabricating 1 D magnetite nanostructures with the help of mutated flagellar filaments. We constructed four different flagellin mutants displaying magnetite-binding motifs: two contained fragments of magnetosome-associated proteins from magnetotactic bacteria (MamI and Mms6), and synthetic sequences were used for the other two. A magnetic selection method identified the MamI mutant as having the highest binding affinity to magnetite. Filaments built from MamI loop-containing flagellin subunits were used as templates to form chains of magnetite nanoparticles along the filament by capturing them from suspension. Our study represents a proof-of-concept that flagellar filaments can be engineered to facilitate formation of 1 D magnetite nanostructures under ambient conditions. In addition, it proves the interaction between MamI and magnetite, with implications for the role of this protein in magnetotactic bacteria.

  6. Binding Mode of Acetylated Histones to Bromodomains: Variations on a Common Motif.

    PubMed

    Marchand, Jean-Rémy; Caflisch, Amedeo

    2015-08-01

    Bromodomains, epigenetic readers that recognize acetylated lysine residues in histone tails, are potential drug targets in cancer and inflammation. Herein we review the crystal structures of human bromodomains in complex with histone tails and analyze the main interaction motifs. The histone backbone is extended and occupies, in one of the two possible orientations, the bromodomain surface groove lined by the ZA and BC loops. The acetyl-lysine side chain is buried in the cavity between the four helices of the bromodomain, and its oxygen atom accepts hydrogen bonds from a structural water molecule and a conserved asparagine residue in the BC loop. In stark contrast to this common binding motif, a large variety of ancillary interactions emerge from our analysis. In 10 of 26 structures, a basic side chain (up to five residues up- or downstream in sequence with respect to the acetyl-lysine) interacts with the carbonyl groups of the C-terminal turn of helix αB. Furthermore, the complexes reveal many heterogeneous backbone hydrogen bonds (direct or water-bridged). These interactions contribute unselectively to the binding of acetylated histone tails to bromodomains, which provides further evidence that specific recognition is modulated by combinations of multiple histone modifications and multiple modules of the proteins involved in transcription.

  7. Ring A of nukacin ISK-1: a lipid II-binding motif for type-A(II) lantibiotic.

    PubMed

    Islam, Mohammad R; Nishie, Mami; Nagao, Jun-ichi; Zendo, Takeshi; Keller, Sandro; Nakayama, Jiro; Kohda, Daisuke; Sahl, Hans-Georg; Sonomoto, Kenji

    2012-02-29

    Ring A of nukacin ISK-1, which is also present in different type-A(II) lantibiotics, resembles a lipid II-binding motif (TxS/TxD/EC, x denotes undefined residues) similar to that present in mersacidin (type-B lantibiotics), which suggests that nukacin ISK-1 binds to lipid II as a docking molecule. Results from our experiments on peptidoglycan precursor (UDP-MurNAc-pp) accumulation and peptide antagonism assays clearly indicated that nukacin ISK-1 inhibits cell-wall biosynthesis, accumulating lipid II precursor inside the cell, and the peptide activity can be repressed by lipid I and lipid II. Interaction analysis of nukacin ISK-1 and different ring A variants with lipid II revealed that nukacin ISK-1 and nukacin D13E (a more active variant) have a high affinity (K(D) = 0.17 and 0.19 μM, respectively) for lipid II, whereas nukacin D13A (a less active variant) showed a lower affinity, and nukacin C14S (a negative variant lacking the ring A structure) exhibited no interaction. Therefore, on the basis of the structural similarity and positional significance of the amino acids in this region, we concluded that nukacin ISK-1 binds lipid II via its ring A region and may lead to the inhibition of cell-wall biosynthesis.

  8. The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif.

    PubMed Central

    Sette, M; van Tilborg, P; Spurio, R; Kaptein, R; Paci, M; Gualerzi, C O; Boelens, R

    1997-01-01

    The structure of the translational initiation factor IF1 from Escherichia coli has been determined with multidimensional NMR spectroscopy. Using 1041 distance and 78 dihedral constraints, 40 distance geometry structures were calculated, which were refined by restrained molecular dynamics. From this set, 19 structures were selected, having low constraint energy and few constraint violations. The ensemble of 19 structures displays a root-mean-square deviation versus the average of 0.49 A for the backbone atoms and 1.12 A for all atoms for residues 6-36 and 46-67. The structure of IF1 is characterized by a five-stranded beta-barrel. The loop connecting strands three and four contains a short 3(10) helix but this region shows considerably higher flexibility than the beta-barrel. The fold of IF1 is very similar to that found in the bacterial cold shock proteins CspA and CspB, the N-terminal domain of aspartyl-tRNA synthetase and the staphylococcal nuclease, and can be identified as the oligomer-binding motif. Several proteins of this family are nucleic acid-binding proteins. This suggests that IF1 plays its role in the initiation of protein synthesis by nucleic acid interactions. Specific changes of NMR signals of IF1 upon titration with 30S ribosomal subunit identifies several residues that are involved in the interaction with ribosomes. PMID:9135158

  9. Hydrogen Bonding Motifs in MutSaphla and their response to binding damaged DNA

    NASA Astrophysics Data System (ADS)

    Negureanu, Lacra; Salsbury, Freddie

    2013-03-01

    Over the past decade, there has been a growing interest in studying the binding of damaged DNA to the MutSalpha protein complex. This protein complex, the Msh2/Msh6 complex in humans, is the initial complex that binds mismatched DNA and other DNA defects that occur during replication. This complex has also been shown to bind at least some types of damaged DNA. As a result of this interest, multiple studies have contrasted the interactions of MutSalpha with its normal mismatched substrate and with the interactions of MutsSalpha to DNA damaged by the chemotherapeutic cisplatin. To complement these studies, we examined the interaction between MutSalpha and DNA damaged by carboplatin via all-atom molecular dynamics simulations. These simulations provide evidence for different hydrogen bonding interactions at the protein/DNA and protein/protein interface. The hydrogen bonding motifs found are broadly similar to those found in binding to the adduct from cis-platin, but have distinct differences. These subtle differences may play a role in the way the different damages are signaled by MutS.

  10. Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding

    PubMed Central

    Boddey, Justin A.; O'Neill, Matthew T.; Lopaticki, Sash; Carvalho, Teresa G.; Hodder, Anthony N.; Nebl, Thomas; Wawra, Stephan; van West, Pieter; Ebrahimzadeh, Zeinab; Richard, Dave; Flemming, Sven; Spielmann, Tobias; Przyborski, Jude; Babon, Jeff J.; Cowman, Alan F.

    2016-01-01

    Plasmodium falciparum exports proteins into erythrocytes using the Plasmodium export element (PEXEL) motif, which is cleaved in the endoplasmic reticulum (ER) by plasmepsin V (PMV). A recent study reported that phosphatidylinositol-3-phosphate (PI(3)P) concentrated in the ER binds to PEXEL motifs and is required for export independent of PMV, and that PEXEL motifs are functionally interchangeable with RxLR motifs of oomycete effectors. Here we show that the PEXEL does not bind PI(3)P, and that this lipid is not concentrated in the ER. We find that RxLR motifs cannot mediate export in P. falciparum. Parasites expressing a mutated version of KAHRP, with the PEXEL motif repositioned near the signal sequence, prevented PMV cleavage. This mutant possessed the putative PI(3)P-binding residues but is not exported. Reinstatement of PEXEL to its original location restores processing by PMV and export. These results challenge the PI(3)P hypothesis and provide evidence that PEXEL position is conserved for co-translational processing and export. PMID:26832821

  11. Flotillins bind to the dileucine sorting motif of β-site amyloid precursor protein-cleaving enzyme 1 and influence its endosomal sorting.

    PubMed

    John, Bincy A; Meister, Melanie; Banning, Antje; Tikkanen, Ritva

    2014-04-01

    The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a protease that participates in the amyloidogenic cleavage of the Alzheimer amyloid precursor protein. Trafficking of BACE1 has been shown to be largely mediated by an acidic cluster dileucine motif in its cytoplasmic tail. This sorting signal functions both in endocytosis and endosomal sorting/recycling of BACE1 by providing a binding site for various sorting factors, such as the Golgi-localizing γ-ear containing ADP ribosylation factor binding (GGA) proteins that mediate BACE1 sorting within endosomes. Because flotillin-1 has been suggested to bind to BACE1 cytoplasmic tail, we analyzed the role of flotillins in BACE1 sorting. We show that flotillin-1 directly binds to the dileucine motif in the cytoplasmic tail of BACE1, whereas flotillin-2 binding is mainly mediated by its interaction with flotillin-1. Depletion of flotillins results in altered subcellular localization of BACE1 in endosomes and stabilization of BACE1 protein. Furthermore, amyloidogenic processing of Alzheimer amyloid precursor protein is increased. Flotillins compete with GGA proteins for binding to the dileucine motif in the BACE1 tail, suggesting that they play an important role in endosomal sorting of BACE1. The present study shows for the first time that flotillins are involved in endosomal sorting of BACE1. Because the endosomal localization of BACE1 affects its function as the β-secretase by increasing amyloidogenic processing of the amyloid precursor protein, flotillins may play a novel role in Alzheimer's disease. The present study is the first to show that flotillins bind to a canonical sorting signal and influence the binding of endosomal sorting factors onto cargo tails.

  12. Nucleic Acid i-Motif Structures in Analytical Chemistry.

    PubMed

    Alba, Joan Josep; Sadurní, Anna; Gargallo, Raimundo

    2016-09-02

    Under the appropriate experimental conditions of pH and temperature, cytosine-rich segments in DNA or RNA sequences may produce a characteristic folded structure known as an i-motif. Besides its potential role in vivo, which is still under investigation, this structure has attracted increasing interest in other fields due to its sharp, fast and reversible pH-driven conformational changes. This "on/off" switch at molecular level is being used in nanotechnology and analytical chemistry to develop nanomachines and sensors, respectively. This paper presents a review of the latest applications of this structure in the field of chemical analysis.

  13. The Japanese feral mouse Pit1 and Pit2 homologs lack an acidic residue at position 550 but still function as gibbon ape leukemia virus receptors: implications for virus binding motif.

    PubMed

    Schneiderman, R D; Farrell, K B; Wilson, C A; Eiden, M V

    1996-10-01

    Murine cells are typically resistant to gibbon ape leukemia virus (GALV). MMMol, a Japanese feral mouse cell line, is an exception in that these cells are susceptible to infection by GALV. We show here that MMMol cells are further distinguished by their unusual receptor properties. MMMol cells infected by GALV are resistant to subsequent infection not only by GALV but also by amphotropic murine leukemia virus. This suggests that GALV can enter MMMol via not only the GALV receptor (MolPit1) but also the amphotropic murine leukemia virus receptor (MolPit2). Therefore, MolPit2 was cloned, sequenced, and compared with the previously reported sequence of MolPit1. Earlier studies have shown that a stretch of nine residues (position 550 to 558) in the fourth extracellular domain of Pit1 is crucial for GALV entry and that an acidic residue at position 550 is indispensable. However, MolPit1 has isoleucine at this position and MolPit2 has glutamine at the corresponding position (position 522), thus breaking this consensus. To determine what effect these specific changes in the fourth extracellular domain of MolPit1 and MolPit2 have on GALV receptor function, chimeric receptors were made by substituting the fourth extracellular domain of either MolPit1 or MolPit2 for the same region of Pit2, a nonfunctional receptor for GALV. These chimeras were then tested in MDTF, a cell line that lacks functional GALV receptors and is resistant to GALV. Results show that MDTF expressing these chimeras became susceptible to GALV, whereas cells expressing wild-type Pit2 remained resistant. Further, the MolPit1 chimera was identical to Pit1 in efficiency, but the MolPit2 chimera proved substantially less efficient.

  14. Identification of HI-like loop in CELO adenovirus fiber for incorporation of receptor binding motifs.

    PubMed

    Logunov, Denis Y; Zubkova, Olga V; Karyagina-Zhulina, Anna S; Shuvalova, Eugenia A; Karpov, Andrei P; Shmarov, Maxim M; Tutykhina, Irina L; Alyapkina, Yulia S; Grezina, Natalia M; Zinovieva, Natalia A; Ernst, Lev K; Gintsburg, Alexsandr L; Naroditsky, Boris S

    2007-09-01

    Vectors based on the chicken embryo lethal orphan (CELO) avian adenovirus (Ad) have two attractive properties for gene transfer applications: resistance to preformed immune responses to human Ads and the ability to grow in chicken embryos, allowing low-cost production of recombinant viruses. However, a major limitation of this technology is that CELO vectors demonstrate decreased efficiency of gene transfer into cells expressing low levels of the coxsackie-Ad receptor (CAR). In order to improve the efficacy of gene transfer into CAR-deficient cells, we modified viral tropism via genetic alteration of the CELO fiber 1 protein. The alphav integrin-binding motif (RGD) was incorporated at two different sites of the fiber 1 knob domain, within an HI-like loop that we identified and at the C terminus. Recombinant fiber-modified CELO viruses were constructed containing secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein genes as reporter genes. Our data show that insertion of the RGD motif within the HI-like loop of the fiber resulted in significant enhancement of gene transfer into CAR-negative and CAR-deficient cells. In contrast, CELO vectors containing the RGD motif at the fiber 1 C terminus showed reduced transduction of all cell lines. CELO viruses modified with RGD at the HI-like loop transduced the SEAP reporter gene into rabbit mammary gland cells in vivo with an efficiency significantly greater than that of unmodified CELO vector and similar to that of Ad type 5 vector. These results illustrate the potential for efficient CELO-mediated gene transfer into a broad range of cell types through modification of the identified HI-like loop of the fiber 1 protein.

  15. PfEMP1-DBL1alpha amino acid motifs in severe disease states of Plasmodium falciparum malaria.

    PubMed

    Normark, Johan; Nilsson, Daniel; Ribacke, Ulf; Winter, Gerhard; Moll, Kirsten; Wheelock, Craig E; Bayarugaba, Justus; Kironde, Fred; Egwang, Thomas G; Chen, Qijun; Andersson, Björn; Wahlgren, Mats

    2007-10-02

    An infection with Plasmodium falciparum may lead to severe malaria as a result of excessive binding of infected erythrocytes in the microvasculature. Vascular adhesion is mediated by P. falciparum erythrocyte membrane protein-1 (PfEMP1), which is encoded for by highly polymorphic members of the var-gene family. Here, we profile var gene transcription in fresh P. falciparum trophozoites from Ugandan children with malaria through var-specific DBL1alpha-PCR amplification and sequencing. A method for subsectioning region alignments into homology areas (MOTIFF) was developed to examine collected sequences. Specific PfEMP1-DBL1alpha amino acid motifs correlated with rosetting and severe malaria, with motif location corresponding to distinct regions of receptor interaction. The method is potentially applicable to other families of variant proteins and may be useful in identifying sequence-phenotype relationships. The results suggest that certain PfEMP1 sequences are predisposed to inducing severe malaria.

  16. Improved bioactivity of antimicrobial peptides by addition of amino-terminal copper and nickel (ATCUN) binding motifs.

    PubMed

    Libardo, M Daben; Cervantes, Jorge L; Salazar, Juan C; Angeles-Boza, Alfredo M

    2014-08-01

    Antimicrobial peptides (AMPs) are promising candidates to help circumvent antibiotic resistance, which is an increasing clinical problem. Amino-terminal copper and nickel (ATCUN) binding motifs are known to actively form reactive oxygen species (ROS) upon metal binding. The combination of these two peptidic constructs could lead to a novel class of dual-acting antimicrobial agents. To test this hypothesis, a set of ATCUN binding motifs were screened for their ability to induce ROS formation, and the most potent were then used to modify AMPs with different modes of action. ATCUN binding motif-containing derivatives of anoplin (GLLKRIKTLL-NH2), pro-apoptotic peptide (PAP; KLAKLAKKLAKLAK-NH2), and sh-buforin (RAGLQFPVGRVHRLLRK-NH2) were synthesized and found to be more active than the parent AMPs against a panel of clinically relevant bacteria. The lower minimum inhibitory concentration (MIC) values for the ATCUN-anoplin peptides are attributed to the higher pore-forming activity along with their ability to cause ROS-induced membrane damage. The addition of the ATCUN motifs to PAP also increases its ability to disrupt membranes. DNA damage is the major contributor to the activity of the ATCUN-sh-buforin peptides. Our findings indicate that the addition of ATCUN motifs to AMPs is a simple strategy that leads to AMPs with higher antibacterial activity and possibly to more potent, usable antibacterial agents.

  17. Associating transcription factor-binding site motifs with target GO terms and target genes

    PubMed Central

    Bodén, Mikael; Bailey, Timothy L.

    2008-01-01

    The roles and target genes of many transcription factors (TFs) are still unknown. To predict the roles of TFs, we present a computational method for associating Gene Ontology (GO) terms with TF-binding motifs. The method works by ranking all genes as potential targets of the TF, and reporting GO terms that are significantly associated with highly ranked genes. We also present an approach, whereby these predicted GO terms can be used to improve predictions of TF target genes. This uses a novel gene-scoring function that reflects the insight that genes annotated with GO terms predicted to be associated with the TF are more likely to be its targets. We construct validation sets of GO terms highly associated with known targets of various yeast and human TF. On the yeast reference sets, our prediction method identifies at least one correct GO term for 73% of the TF, 49% of the correct GO terms are predicted and almost one-third of the predicted GO terms are correct. Results on human reference sets are similarly encouraging. Validation of our target gene prediction method shows that its accuracy exceeds that of simple motif scanning. PMID:18544606

  18. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes

    PubMed Central

    2013-01-01

    Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316

  19. The Motif Tool Assessment Platform (MTAP) for sequence-based transcription factor binding site prediction tools.

    PubMed

    Quest, Daniel; Ali, Hesham

    2010-01-01

    Predicting transcription factor binding sites (TFBS) from sequence is one of the most challenging problems in computational biology. The development of (semi-)automated computer-assisted prediction methods is needed to find TFBS over an entire genome, which is a first step in reconstructing mechanisms that control gene activity. Bioinformatics journals continue to publish diverse methods for predicting TFBS on a monthly basis. To help practitioners in deciding which method to use to predict for a particular TFBS, we provide a platform to assess the quality and applicability of the available methods. Assessment tools allow researchers to determine how methods can be expected to perform on specific organisms or on specific transcription factor families. This chapter introduces the TFBS detection problem and reviews current strategies for evaluating algorithm effectiveness. In this chapter, a novel and robust assessment tool, the Motif Tool Assessment Platform (MTAP), is introduced and discussed.

  20. Hydrogen bonding motifs of protein side chains: descriptions of binding of arginine and amide groups.

    PubMed Central

    Shimoni, L.; Glusker, J. P.

    1995-01-01

    The modes of hydrogen bonding of arginine, asparagine, and glutamine side chains and of urea have been examined in small-molecule crystal structures in the Cambridge Structural Database and in crystal structures of protein-nucleic acid and protein-protein complexes. Analysis of the hydrogen bonding patterns of each by graph-set theory shows three patterns of rings (R) with one or two hydrogen bond acceptors and two donors and with eight, nine, or six atoms in the ring, designated R2(2)(8), R2(2)(9), and R1(2)(6). These three patterns are found for arginine-like groups and for urea, whereas only the first two patterns R2(2)(8) and R2(2)(9) are found for asparagine- and glutamine-like groups. In each case, the entire system is planar within 0.7 A or less. On the other hand, in macromolecular crystal structures, the hydrogen bonding patterns in protein-nucleic acid complexes between the nucleic acid base and the protein are all R2(2)(9), whereas hydrogen bonding between Watson-Crick-like pairs of nucleic acid bases is R2(2)(8). These two hydrogen bonding arrangements [R2(2)(9)] and R2(2)(8)] are predetermined by the nature of the groups available for hydrogen bonding. The third motif identified, R1(2)(6), involves hydrogen bonds that are less linear than in the other two motifs and is found in proteins. PMID:7773178

  1. The structure of FKBP38 in complex with the MEEVD tetratricopeptide binding-motif of Hsp90

    PubMed Central

    Blundell, Katie L. I. M.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H.

    2017-01-01

    Tetratricopeptide (TPR) domains are known protein interaction domains. We show that the TPR domain of FKBP8 selectively binds Hsp90, and interactions upstream of the conserved MEEVD motif are critical for tight binding. In contrast FKBP8 failed to bind intact Hsp70. The PPIase domain was not essential for the interaction with Hsp90 and binding was completely encompassed by the TPR domain alone. The conformation adopted by Hsp90 peptides, containing the conserved MEEVD motif, in the crystal structure were similar to that seen for the TPR domains of CHIP, AIP and Tah1. The carboxylate clamp interactions with bound Hsp90 peptide were a critical component of the interaction and mutation of Lys 307, involved in the carboxylate clamp, completely disrupted the interaction with Hsp90. FKBP8 binding to Hsp90 did not substantially influence its ATPase activity. PMID:28278223

  2. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.

    PubMed

    Polishchuk, Maya; Paz, Inbal; Kohen, Refael; Mesika, Rona; Yakhini, Zohar; Mandel-Gutfreund, Yael

    2017-03-06

    RNA binding proteins (RBPs) play an important role in regulating many processes in the cell. RBPs often recognize their RNA targets in a specific manner. In addition to the RNA primary sequence, the structure of the RNA has been shown to play a central role in RNA recognition by RBPs. In recent years, many experimental approaches, both in vitro and in vivo, were developed and employed to identify and characterize RBP targets and extract their binding specificities. In vivo binding techniques, such as CrossLinking and ImmunoPrecipitation (CLIP)-based methods, enable the characterization of protein binding sites on RNA targets. However, these methods do not provide information regarding the structural preferences of the protein. While methods to obtain the structure of RNA are available, inferring both the sequence and the structure preferences of RBPs remains a challenge. Here we present SMARTIV, a novel computational tool for discovering combined sequence and structure binding motifs from in vivo RNA binding data relying on the sequences of the target sites, the ranking of their binding scores and their predicted secondary structure. The combined motifs are provided in a unified representation that is informative and easy for visual perception. We tested the method on CLIP-seq data from different platforms for a variety of RBPs. Overall, we show that our results are highly consistent with known binding motifs of RBPs, offering additional information on their structural preferences.

  3. Inhibition of CIN85-Mediated Invasion by a Novel SH3 Domain Binding Motif in the Lysyl Oxidase Propeptide

    PubMed Central

    Sato, Seiichi; Zhao, Yingshe; Imai, Misa; Simister, Philip C.; Feller, Stephan M.; Trackman, Philip C.; Kirsch, Kathrin H.; Sonenshein, Gail E.

    2013-01-01

    The lysyl oxidase gene inhibits Ras signaling in transformed fibroblasts and breast cancer cells. Its activity was mapped to the 162 amino acid propeptide domain (LOX-PP) of the lysyl oxidase precursor protein. LOX-PP inhibited the Her-2/Ras signaling axis in breast cancer cells, and reduced the Her-2-driven breast tumor burden in a xenograft model. Since its mechanism of action is largely unknown, co-affinity-purification/mass spectrometry was performed and the “Cbl-interacting protein of 85-kDa” (CIN85) identified as an associating protein. CIN85 is an SH3-containing adapter protein that is overexpressed in invasive breast cancers. The CIN85 SH3 domains interact with c-Cbl, an E3 ubiquitin ligase, via an unconventional PxxxPR ligand sequence, with the highest affinity displayed by the SH3-B domain. Interaction with CIN85 recruits c-Cbl to the AMAP1 complex where its ubiquitination activity is necessary for cancer cells to develop an invasive phenotype and to degrade the matrix. Direct interaction of LOX-PP with CIN85 was confirmed using co-immunoprecipitation analysis of lysates from breast cancer cells and of purified expressed proteins. CIN85 interaction with c-Cbl was reduced by LOX-PP. Domain specific CIN85 regions and deletion mutants of LOX-PP were prepared and used to map the sites of interaction to the SH3-B domain of CIN85 and to an epitope encompassing amino acids 111 to 116 of LOX-PP. Specific LOX-PP point mutant proteins P111A and R116A failed to interact with CIN85 or to compete for CIN85 binding with c-Cbl. Structural modeling identified a new atypical PxpxxRh SH3-binding motif in this region of LOX-PP. The LOX-PP interaction with CIN85 was shown to reduce the invasive phenotype of breast cancer cells, including their ability to degrade the surrounding extracellular matrix and for Matrigel outgrowth. Thus, LOX-PP interacts with CIN85 via a novel SH3-binding motif and this association reduces CIN85-promoted invasion by breast cancer cells. PMID

  4. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators

    PubMed Central

    Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J.; Pines, Jonathon

    2016-01-01

    The APC/C is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the Spindle Assembly Checkpoint (SAC). How the APC/C recognises its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in Cyclin A, BUBR1, BUB1 and Acm1, and show that it binds to the APC/C co-activator CDC20. The ABBA motif in Cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. PMID:25669885

  5. Elucidation of a C-rich signature motif in target mRNAs of RNA-binding protein TIAR.

    PubMed

    Kim, Henry S; Kuwano, Yuki; Zhan, Ming; Pullmann, Rudolf; Mazan-Mamczarz, Krystyna; Li, Huai; Kedersha, Nancy; Anderson, Paul; Wilce, Matthew C J; Gorospe, Myriam; Wilce, Jacqueline A

    2007-10-01

    The RNA-binding protein TIAR (related to TIA-1 [T-cell-restricted intracellular antigen 1]) was shown to associate with subsets of mRNAs bearing U-rich sequences in their 3' untranslated regions. TIAR can function as a translational repressor, particularly in response to cytotoxic agents. Using unstressed colon cancer cells, collections of mRNAs associated with TIAR were isolated by immunoprecipitation (IP) of (TIAR-RNA) ribonucleoprotein (RNP) complexes, identified by microarray analysis, and used to elucidate a common signature motif present among TIAR target transcripts. The predicted TIAR motif was an unexpectedly cytosine-rich, 28- to 32-nucleotide-long element forming a stem and a loop of variable size with an additional side loop. The ability of TIAR to bind an RNA oligonucleotide with a representative C-rich TIAR motif sequence was verified in vitro using surface plasmon resonance. By this analysis, TIAR containing two or three RNA recognition domains (TIAR12 and TIAR123) showed low but significant binding to the C-rich sequence. In vivo, insertion of the C-rich motif into a heterologous reporter strongly suppressed its translation in cultured cells. Using this signature motif, an additional approximately 2,209 UniGene targets were identified (2.0% of the total UniGene database). A subset of specific mRNAs were validated by RNP IP analysis. Interestingly, in response to treatment with short-wavelength UV light (UVC), a stress agent causing DNA damage, each of these target mRNAs bearing C-rich motifs dissociated from TIAR. In turn, expression of the encoded proteins was elevated in a TIAR-dependent manner. In sum, we report the identification of a C-rich signature motif present in TIAR target mRNAs whose association with TIAR decreases following exposure to a stress-causing agent.

  6. A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and a ribosome modification enzyme?

    PubMed

    Koonin, E V; Bork, P; Sander, C

    1994-06-11

    Using computer methods for database search, multiple alignment, protein sequence motif analysis and secondary structure prediction, a putative new RNA-binding motif was identified. The novel motif is conserved in yeast omnipotent translation termination suppressor SUP1, the related DOM34 protein and its pseudogene homologue; three groups of eukaryotic and archaeal ribosomal proteins, namely L30e, L7Ae/S6e and S12e; an uncharacterized Bacillus subtilis protein related to the L7A/S6e group; and Escherichia coli ribosomal protein modification enzyme RimK. We hypothesize that a new type of RNA-binding domain may be utilized to deliver additional activities to the ribosome.

  7. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif.

    PubMed

    Huth, J R; Bewley, C A; Nissen, M S; Evans, J N; Reeves, R; Gronenborn, A M; Clore, G M

    1997-08-01

    The solution structure of a complex between a truncated form of HMG-I(Y), consisting of the second and third DNA binding domains (residues 51-90), and a DNA dodecamer containing the PRDII site of the interferon-beta promoter has been solved by multidimensional nuclear magnetic resonance spectroscopy. The stoichiometry of the complex is one molecule of HMG-I(Y) to two molecules of DNA. The structure reveals a new architectural minor groove binding motif which stabilizes B-DNA, thereby facilitating the binding of other transcription factors in the opposing major groove. The interactions involve a central Arg-Gly-Arg motif together with two other modules that participate in extensive hydrophobic and polar contracts. The absence of one of these modules in the third DNA binding domain accounts for its-100 fold reduced affinity relative to the second one.

  8. Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae.

    PubMed

    Liko, Dritan; Slattery, Matthew G; Heideman, Warren

    2007-09-07

    Transfer of quiescent Saccharomyces cerevisiae cells to fresh medium rapidly induces hundreds of genes needed for growth. A large subset of these genes is regulated via a DNA sequence motif known as the ribosomal RNA processing element (RRPE). However, no RRPE-binding proteins have been identified. We screened a panel of 6144 glutathione S-transferase-open reading frame fusions for RRPE-binding proteins and identified Stb3 as a specific RRPE-binding protein, both in vitro and in vivo. Chromatin immunoprecipitation experiments showed that glucose increases Stb3 binding to RRPE-containing promoters. Microarray experiments demonstrated that the loss of Stb3 inhibits the transcriptional response to fresh glucose, especially for genes with RRPE motifs. However, these experiments also showed that not all genes containing RRPEs were dependent on Stb3 for expression. Overall our data support a model in which Stb3 plays an important but not exclusive role in the transcriptional response to growth conditions.

  9. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor.

    PubMed

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction.

  10. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets

    PubMed Central

    Davies, Douglas R.; Gelinas, Amy D.; Zhang, Chi; Rohloff, John C.; Carter, Jeffrey D.; O’Connell, Daniel; Waugh, Sheela M.; Wolk, Steven K.; Mayfield, Wesley S.; Burgin, Alex B.; Edwards, Thomas E.; Stewart, Lance J.; Gold, Larry; Janjic, Nebojsa; Jarvis, Thale C.

    2012-01-01

    Selection of aptamers from nucleic acid libraries by in vitro evolution represents a powerful method of identifying high-affinity ligands for a broad range of molecular targets. Nevertheless, a sizeable fraction of proteins remain difficult targets due to inherently limited chemical diversity of nucleic acids. We have exploited synthetic nucleotide modifications that confer protein-like diversity on a nucleic acid scaffold, resulting in a new generation of binding reagents called SOMAmers (Slow Off-rate Modified Aptamers). Here we report a unique crystal structure of a SOMAmer bound to its target, platelet-derived growth factor B (PDGF-BB). The SOMAmer folds into a compact structure and exhibits a hydrophobic binding surface that mimics the interface between PDGF-BB and its receptor, contrasting sharply with mainly polar interactions seen in traditional protein-binding aptamers. The modified nucleotides circumvent the intrinsic diversity constraints of natural nucleic acids, thereby greatly expanding the structural vocabulary of nucleic acid ligands and considerably broadening the range of accessible protein targets. PMID:23139410

  11. Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat.

    PubMed Central

    Li, C; Lai, C F; Sigman, D S; Gaynor, R B

    1991-01-01

    Human immunodeficiency virus (HIV) gene expression is regulated by both general transcription factors and factors induced by activation of T lymphocytes such as NF-kappa B and the nuclear factor of activated T cells (NFAT). Within the HIV long terminal repeat (LTR), two purine-rich domains between nucleotides -283 and -195 have homology to a regulatory region found in the interleukin 2 promoter, which binds NFAT and other cellular factors. In the HIV LTR, this region has been demonstrated to have both positive and negative regulatory effects on HIV gene expression. In an attempt to clone genes encoding cellular factors that bind to these NFAT-like elements in the HIV LTR, we used lambda gt11 expression cloning with oligonucleotides corresponding to these binding motifs. A ubiquitously expressed cDNA encoding a 60-kDa protein, which we termed interleukin binding factor (ILF), binds specifically to these purine-rich motifs in the HIV LTR. This factor also binds to similar purine-rich motifs in the interleukin 2 promoter, through with lower affinity than to HIV LTR sequences. Sequence analysis reveals that the DNA binding domain of ILF has strong homology to the recently described fork head DNA binding domain found in the Drosophila homeotic protein fork head and a family of hepatocyte nuclear factors, HNF-3. Other domains found in ILF include a nucleotide binding site, an N-glycosylation motif, a signal for ubiquitin-mediated degradation, and a potential nuclear localization signal. These results describe a DNA binding protein that may be involved in both positive and negative regulation of important viral and cellular promoter elements. Images PMID:1909027

  12. Binding motifs in bacterial gene promoters modulate transcriptional effect of global regulators

    SciTech Connect

    Leuze, Michael Rex; Karpinets, Tatiana V; Syed, Mustafa H; Beliaev, Alexander S; Uberbacher, Edward C

    2012-01-01

    Bacterial gene regulation involves transcription factors (TFs) that influence the expression of many genes. Global regulators, including CRP (cAMP Receptor Protein), ArcA, and FNR, can modulate the transcriptional activity of multiple operons. The similarity of a regulatory element s sequence to a TF s consensus binding site (BS) and the position of the regulatory element in an operon promoter are considered the most important determinants of this TF s regulatory influence. In this study we explore the hypothesis that the number of TFBS half-sites (where a half-site is one half of the palindromic BS consensus sequence, which we shall refer to as a binding motif or a BM) of a global regulator in an operon s promoter plays an important role in the operon s transcriptional regulation. We examine empirical data from transcriptional profiling of the CRP regulon in Shewanella oneidenses MR 1 and Escherichia coli, and of the ArcA regulon in S. oneidenses MR 1. We compare the power of CRP BM counts and of full, symmetrical CRP TFBS characteristics, namely similarity to consensus and location, to predict CRP-induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full-length TFBS quality or location. Regression analysis indicates that IHF (Integration Host Factor) and ArcA have synergistic effects on CRP-induced gene transcription, positive and negative, respectively. Based on these results, we propose that the fine-tuning of bacterial transcriptional activity by CRP may involves not only the bending of the operon promoter, facilitated by CRP in cooperation with the histone-like protein IHF, but also the cumulative binding affinity of multiple weak BMs.

  13. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    PubMed

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  14. DNA consensus sequence motif for binding response regulator PhoP, a virulence regulator of Mycobacterium tuberculosis.

    PubMed

    He, Xiaoyuan; Wang, Shuishu

    2014-12-30

    Tuberculosis has reemerged as a serious threat to human health because of the increasing prevalence of drug-resistant strains and synergetic infection with HIV, prompting an urgent need for new and more efficient treatments. The PhoP-PhoR two-component system of Mycobacterium tuberculosis plays an important role in the virulence of the pathogen and thus represents a potential drug target. To study the mechanism of gene transcription regulation by response regulator PhoP, we identified a high-affinity DNA sequence for PhoP binding using systematic evolution of ligands by exponential enrichment. The sequence contains a direct repeat of two 7 bp motifs separated by a 4 bp spacer, TCACAGC(N4)TCACAGC. The specificity of the direct-repeat sequence for PhoP binding was confirmed by isothermal titration calorimetry and electrophoretic mobility shift assays. PhoP binds to the direct repeat as a dimer in a highly cooperative manner. We found many genes previously identified to be regulated by PhoP that contain the direct-repeat motif in their promoter sequences. Synthetic DNA fragments at the putative promoter-binding sites bind PhoP with variable affinity, which is related to the number of mismatches in the 7 bp motifs, the positions of the mismatches, and the spacer and flanking sequences. Phosphorylation of PhoP increases the affinity but does not change the specificity of DNA binding. Overall, our results confirm the direct-repeat sequence as the consensus motif for PhoP binding and thus pave the way for identification of PhoP directly regulated genes in different mycobacterial genomes.

  15. PDZ Domain Dependent Regulation of NHE3 Occurs by Both Internal Class II and C-terminal Class I PDZ Binding Motifs.

    PubMed

    Cha, Boyoung; Yang, Jianbo; Singh, Varsha; Zachos, Nicholas C; Sarker, Rafiquel I; Chen, Tian-E; Chakraborty, Molee; Tse, Chung-Ming; Donowitz, Mark

    2017-03-10

    NHE3 directly binds NHERF family scaffolding proteins that are required for many aspects of NHE3 regulation. The NHERFs bind both to an internal region (aa. 586-660) of the NHE3 C-terminus and to the NHE3 C-terminal four amino acids. The internal NHERF binding region contains both putative Class I (-592SAV-) and Class II (-595CLDM-) PDZ binding motifs (PBM). Point mutagenesis showed that only the Class II motif contributes to NHERF binding. In this study, the roles in regulation of NHE3 activity of these two PBMs were investigated, revealing: 1) Interaction between these binding sites since mutation of either removed nearly all NHERF binding. 2) Mutations in either significantly reduced basal NHE3 activity. Total and percent plasma membrane (PM) NHE3 protein expression were reduced in the C-terminal but not in the internal PBD mutation. 3) cGMP and Ca2+-mediated inhibition of NHE3 were impaired both in the internal and in the C-terminal PBM mutations. 4) A significant reduction in half-life of the PM pool of NHE3 in only the internal PBM mutation but no change in total NHE3 half-life in either. 5) Some difference in NHE3 associating proteins in the two PBM mutations. In conclusion, NHE3 binds to NHERF proteins via both an internal Class II and C-terminal Class I PBM, which interact. The former appears to determine NHE3 stability of a pool in the PM and the letter determines total expression and percent PM expression.

  16. Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway.

    PubMed Central

    Harter, C; Pavel, J; Coccia, F; Draken, E; Wegehingel, S; Tschochner, H; Wieland, F

    1996-01-01

    Coatomer, a cytosolic heterooligomeric protein complex that consists of seven subunits [alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP (nonclathrin coat protein)], has been shown to interact with dilysine motifs typically found in the cytoplasmic domains of various endoplasmic-reticulum-resident membrane proteins [Cosson, P. & Letourneur, F. (1994) Science 263, 1629-1631]. We have used a photo-cross-linking approach to identify the site of coatomer that is involved in binding to the dilysine motifs. An octapeptide corresponding to the C-terminal tail of Wbp1p, a component of the yeast N-oligosaccharyltransferase complex, has been synthesized with a photoreactive phenylalanine at position -5 and was radioactively labeled with [125I]iodine at a tyrosine residue introduced at the N terminus of the peptide. Photolysis of isolated coatomer in the presence of this peptide and immunoprecipitation of coatomer from photo-cross-linked cell lysates reveal that gamma-COP is the predominantly labeled protein. From these results, we conclude that coatomer is able to bind to the cytoplasmic dilysine motifs of membrane proteins of the early secretory pathway via its gamma-COP subunit, whose complete cDNA-derived amino acid sequence is also presented. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8700856

  17. DNase I-hypersensitive sites and transcription factor-binding motifs within the mouse E beta meiotic recombination hot spot.

    PubMed

    Shenkar, R; Shen, M H; Arnheim, N

    1991-04-01

    The second intron of the E beta gene in the mouse major histocompatibility complex is the site of a meiotic recombination hot spot. We detected two DNase I-hypersensitive sites in this intron in meiotic cells isolated from mouse testes. One site appears to be constitutive and is found in other tissues regardless of whether or not they express the E beta gene. Near this hypersensitive site are potential binding motifs for H2TF1/KBF1, NF kappa B, and octamer transcription factors. Gel retardation studies with mouse lymphoma cell nuclear extracts confirmed that each of these motifs is capable of binding protein. The binding of transcription factors may contribute to the enhancement of recombination potential by altering chromatin structure and increasing the accessibility of the DNA to the recombination machinery.

  18. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    SciTech Connect

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun Nishina, Hiroshi

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  19. Membrane targeting of TIRAP is negatively regulated by phosphorylation in its phosphoinositide-binding motif

    PubMed Central

    Zhao, Xiaolin; Xiong, Wen; Xiao, Shuyan; Tang, Tuo-Xian; Ellena, Jeffrey F.; Armstrong, Geoffrey S.; Finkielstein, Carla V.; Capelluto, Daniel G. S.

    2017-01-01

    Pathogen-activated Toll-like receptors (TLRs), such as TLR2 and TLR4, dimerize and move laterally across the plasma membrane to phosphatidylinositol (4,5)-bisphosphate-enriched domains. At these sites, TLRs interact with the TIR domain-containing adaptor protein (TIRAP), triggering a signaling cascade that leads to innate immune responses. Membrane recruitment of TIRAP is mediated by its phosphoinositide (PI)-binding motif (PBM). We show that TIRAP PBM transitions from a disordered to a helical conformation in the presence of either zwitterionic micelles or monodispersed PIs. TIRAP PBM bound PIs through basic and nonpolar residues with high affinity, favoring a more ordered structure. TIRAP is phosphorylated at Thr28 within its PBM, which leads to its ubiquitination and degradation. We demonstrate that phosphorylation distorts the helical structure of TIRAP PBM, reducing PI interactions and cell membrane targeting. Our study provides the basis for TIRAP membrane insertion and the mechanism by which it is removed from membranes to avoid sustained innate immune responses. PMID:28225045

  20. A new calmodulin-binding motif for inositol 1,4,5-trisphosphate 3-kinase regulation.

    PubMed

    Franco-Echevarría, Elsa; Baños-Sanz, Jose I; Monterroso, Begoña; Round, Adam; Sanz-Aparicio, Julia; González, Beatriz

    2014-11-01

    IP3-3K [Ins(1,4,5)P3 3-kinase] is a key enzyme that catalyses the synthesis of Ins(1,3,4,5)P4, using Ins(1,4,5)P3 and ATP as substrates. Both inositides, substrate and product, present crucial roles in the cell. Ins(1,4,5)P3 is a key point in Ca2+ metabolism that promotes Ca2+ release from intracellular stores and together with Ins(1,3,4,5)P4 regulates Ca2+ homoeostasis. In addition, Ins(1,3,4,5)P4 is involved in immune cell development. It has been proved that Ca2+/CaM (calmodulin) regulates the activity of IP3-3K, via direct interaction between both enzymes. Although we have extensive structural knowledge of the kinase domains of the three IP3-3K isoforms, no structural information is available about the interaction between IP3-3K and Ca2+/CaM. In the present paper we describe the crystal structure of the complex between human Ca2+/CaM and the CaM-binding region of human IP3-3K isoform A (residues 158-183) and propose a model for a complex including the kinase domain. The structure obtained allowed us to identify all of the key residues involved in the interaction, which have been evaluated by site-directed mutagenesis, pull-down and fluorescence anisotropy experiments. The results allowed the identification of a new CaM-binding motif, expanding our knowledge about how CaM interacts with its partners.

  1. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco.

    PubMed

    Felix, Georg; Boller, Thomas

    2003-02-21

    To detect microbial infection multicellular organisms have evolved sensing systems for pathogen-associated molecular patterns (PAMPs). Here, we identify bacterial cold shock protein (CSP) as a new such PAMP that acts as a highly active elicitor of defense responses in tobacco. Tobacco cells perceive a conserved domain of CSP and synthetic peptides representing 15 amino acids of this domain-induced responses at subnanomolar concentrations. Central to the elicitor-active domain is the RNP-1 motif KGFGFITP, a motif conserved also in many RNA- and DNA-binding proteins of eukaryotes. Csp15-Nsyl, a peptide representing the domain with highest homology to csp15 in a protein of Nicotiana sylvestris exhibited only weak activity in tobacco cells. Crystallographic and genetic data from the literature show that the RNP-1 domain of bacterial CSPs resides on a protruding loop and exposes a series of aromatic and basic side chains to the surface that are essential for the nucleotide-binding activity of CSPs. Similarly, these side chains were also essential for elicitor activity and replacement of single residues in csp15 with Ala strongly reduced or abolished activity. Most strikingly, csp15-Ala10, a peptide with the RNP-1 motif modified to KGAGFITP, lacked elicitor activity but acted as a competitive antagonist for CSP-related elicitors. Bacteria commonly have a small family of CSP-like proteins including both cold-inducible and noninducible members, and Csp-related elicitor activity was detected in extracts from all bacteria tested. Thus, the CSP domain containing the RNP-1 motif provides a structure characteristic for bacteria in general, and tobacco plants have evolved a highly sensitive chemoperception system to detect this bacterial PAMP.

  2. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.

    PubMed

    Tobiason, D M; Buchner, J M; Thiel, W H; Gernert, K M; Karls, A C

    2001-02-01

    Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.

  3. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.

    PubMed

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-17

    YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription.

  4. Bioassaying Putative RNA-Binding Motifs in a Protein Encoded by a Gene That Influences Courtship and Visually Mediated Behavior in Drosophila: In Vitro Mutagenesis of Nona

    PubMed Central

    Stanewsky, R.; Fry, T. A.; Reim, I.; Saumweber, H.; Hall, J. C.

    1996-01-01

    The no-on-transient-A (nonA) gene of Drosophila melanogaster influences vision, courtship song, and viability. The nonA-encoded polypeptide is inferred to bind single-stranded nucleic acids. Although sequence-analysis of NONA implies that it belongs to a special interspecific family of this protein type, it does contain two classical RNA recognition motifs (RRM). Their behavioral significance was assayed by generating transgenic strains that were singly or multiply mutated within the relatively N-terminal motif (RRM1) or within RRM2. Neither class of mutation affected NONA binding to polytene chromosomes. The former mutations led to extremely low viability, accompanied by diminished adult longevities that were much worse than for a nonA-null mutant, implying that faulty interpolypeptide interactions might accompany the effects of the amino-acid substitutions within RRM1. All in vitro-mutated types caused optomotor blindness and an absence of transient spikes in the electroretinogram. Courtship analysis discriminated between the effects of the mutations: the RRM2-mutated type generated song pulses and trains that tended to be mildly mutant. These phenotypic abnormalities reinforce the notion that nonA's ubiquitous expression has its most important consequences in the optic lobes, the thoracic ganglia, or both, depending in part on the nonA allele. PMID:8722780

  5. Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP.

    PubMed

    Cheng, Y S; Patterson, C E; Staeheli, P

    1991-09-01

    The primary structures of interferon (IFN)-induced guanylate-binding proteins (GBPs) were deduced from cloned human and murine cDNAs. These proteins contained only two of the three sequence motifs typically found in GTP/GDP-binding proteins. The N(T)KXD motif, which is believed to confer guanine specificity in other nucleotide-binding proteins, was absent. Nevertheless, the IFN-induced GBPs exhibited a high degree of selectivity for binding to agarose-immobilized guanine nucleotides. An interesting feature of IFN-induced GBPs is that they strongly bound to GMP agarose in addition to GDP and GTP agaroses but failed to bind to ATP agarose and all other nucleotide agaroses tested. Both GTP and GMP, but not ATP, competed for binding of murine GBP-1 to agarose-immobilized GMP. The IFN-induced GBPs thus define a distinct novel family of proteins with GTP-binding activity. We further demonstrate that human and murine cells contain at least two genes encoding IFN-induced GBPs. The cloned murine cDNA codes for GBP-1, an IFN-induced protein previously shown to be absent from mice of Gbp-1b genotype.

  6. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    PubMed

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-08-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  7. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast

    PubMed Central

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-01-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA “intrinsic properties” (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome. PMID:26291518

  8. Expression of RNA-binding motif 10 is associated with advanced tumor stage and malignant behaviors of lung adenocarcinoma cancer cells.

    PubMed

    Guan, Guofang; Li, Ranwei; Tang, Wenfang; Liu, Tiecheng; Su, Zhenzhong; Wang, Yan; Tan, Jingjin; Jiang, Shan; Wang, Ke

    2017-03-01

    This study assessed RNA-binding motif 10 expression in lung adenocarcinoma tissues and examined the role and mechanism of RNA-binding motif 10 in the regulation of lung adenocarcinoma malignancy. Lung adenocarcinoma and corresponding adjacent non-tumor lung tissues from 41 patients were subjected to reverse transcription-polymerase chain reaction and Western blot assessment to detect RNA-binding motif 10 expression. Recombinant lentivirus carrying RNA-binding motif 10 complementary DNA was used to infect lung adenocarcinoma cell lines, A549 and H1299 cells. Complementary DNA microarray was used to profile RNA-binding motif 10-regulated genes. Levels of RNA-binding motif 10 messenger RNA and protein were significantly lower in lung adenocarcinoma tissues than those in paired non-tumor tissues (p < 0.001). Reduced RNA-binding motif 10 expression was found to be associated with an advanced tumor stage. RNA-binding motif 10 overexpression inhibited viability and colony formation capacity of lung adenocarcinoma cell lines and induced cell-cycle arrest at G0/G1 phase in A549 cells and at S phase in H1299 cells. Complementary DNA microarray analysis identified 304 upregulated and 386 downregulated genes induced by RNA-binding motif 10 overexpression, which may be involved in cancer, focal adhesion, peroxisome proliferator-activated receptor-regulated gene pathway, cytokine-cytokine receptor interaction, mitogen-activated protein kinase signaling, complement and coagulation cascades, platelet amyloid precursor protein pathway, extracellular matrix-receptor interaction, and small cell lung cancer-related genes. Expression of FGF2, EGFR, WNT5A, NF-κB, and RAP1A was downregulated, whereas expression of AKT2, BIRC3, and JUN was upregulated. RNA-binding motif 10 messenger RNA and protein were reduced in lung adenocarcinoma tissues, and RNA-binding motif 10 overexpression inhibited lung adenocarcinoma cancer cell malignant behavior in vitro. Molecularly, RNA-binding motif

  9. Evidence for a Structural Motif in Toxins and Interleukin-2 That May Be Responsible for Binding to Endothelial Cells and Initiating Vascular Leak Syndrome

    NASA Astrophysics Data System (ADS)

    Baluna, Roxana; Rizo, Josep; Gordon, Brian E.; Ghetie, Victor; Vitetta, Ellen S.

    1999-03-01

    The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.

  10. A variety of DNA-binding and multimeric proteins contain the histone fold motif.

    PubMed Central

    Baxevanis, A D; Arents, G; Moudrianakis, E N; Landsman, D

    1995-01-01

    The histone fold motif has previously been identified as a structural feature common to all four core histones and is involved in both histone-histone and histone-DNA interactions. Through the use of a novel motif searching method, a group of proteins containing the histone fold motif has been established. The proteins in this group are involved in a wide variety of functions related mostly to DNA metabolism. Most of these proteins engage in protein-protein or protein-DNA interactions, as do their core histone counterparts. Among these, CCAAT-specific transcription factor CBF and its yeast homologue HAP are two examples of multimeric complexes with different component subunits that contain the histone fold motif. The histone fold proteins are distantly related, with a relatively small degree of absolute sequence similarity. It is proposed that these proteins may share a similar three-dimensional conformation despite the lack of significant sequence similarity. PMID:7651829

  11. Mutation of the Conserved Calcium-Binding Motif in Neisseria gonorrhoeae PilC1 Impacts Adhesion but Not Piliation

    PubMed Central

    Cheng, Yuan; Johnson, Michael D. L.; Burillo-Kirch, Christine; Mocny, Jeffrey C.; Anderson, James E.; Garrett, Christopher K.; Redinbo, Matthew R.

    2013-01-01

    Neisseria gonorrhoeae PilC1 is a member of the PilC family of type IV pilus-associated adhesins found in Neisseria species and other type IV pilus-producing genera. Previously, a calcium-binding domain was described in the C-terminal domains of PilY1 of Pseudomonas aeruginosa and in PilC1 and PilC2 of Kingella kingae. Genetic analysis of N. gonorrhoeae revealed a similar calcium-binding motif in PilC1. To evaluate the potential significance of this calcium-binding region in N. gonorrhoeae, we produced recombinant full-length PilC1 and a PilC1 C-terminal domain fragment. We show that, while alterations of the calcium-binding motif disrupted the ability of PilC1 to bind calcium, they did not grossly affect the secondary structure of the protein. Furthermore, we demonstrate that both full-length wild-type PilC1 and full-length calcium-binding-deficient PilC1 inhibited gonococcal adherence to cultured human cervical epithelial cells, unlike the truncated PilC1 C-terminal domain. Similar to PilC1 in K. kingae, but in contrast to the calcium-binding mutant of P. aeruginosa PilY1, an equivalent mutation in N. gonorrhoeae PilC1 produced normal amounts of pili. However, the N. gonorrhoeae PilC1 calcium-binding mutant still had partial defects in gonococcal adhesion to ME180 cells and genetic transformation, which are both essential virulence factors in this human pathogen. Thus, we conclude that calcium binding to PilC1 plays a critical role in pilus function in N. gonorrhoeae. PMID:24002068

  12. ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin

    PubMed Central

    Chang, David D.; Wong, Carol; Smith, Healy; Liu, Jenny

    1997-01-01

    The cytoplasmic domains of integrins are essential for cell adhesion. We report identification of a novel protein, ICAP-1 (integrin cytoplasmic domain– associated protein-1), which binds to the β1 integrin cytoplasmic domain. The interaction between ICAP-1 and β1 integrins is highly specific, as demonstrated by the lack of interaction between ICAP-1 and the cytoplasmic domains of other β integrins, and requires a conserved and functionally important NPXY sequence motif found in the COOH-terminal region of the β1 integrin cytoplasmic domain. Mutational studies reveal that Asn and Tyr of the NPXY motif and a Val residue located NH2-terminal to this motif are critical for the ICAP-1 binding. Two isoforms of ICAP-1, a 200–amino acid protein (ICAP-1α) and a shorter 150–amino acid protein (ICAP-1β), derived from alternatively spliced mRNA, are expressed in most cells. ICAP-1α is a phosphoprotein and the extent of its phosphorylation is regulated by the cell–matrix interaction. First, an enhancement of ICAP-1α phosphorylation is observed when cells were plated on fibronectin-coated but not on nonspecific poly-l-lysine–coated surface. Second, the expression of a constitutively activated RhoA protein that disrupts the cell–matrix interaction results in dephosphorylation of ICAP-1α. The regulation of ICAP-1α phosphorylation by the cell–matrix interaction suggests an important role of ICAP-1 during integrin-dependent cell adhesion. PMID:9281591

  13. Asp residues of βDELSEED-motif are required for peptide binding in the Escherichia coli ATP synthase.

    PubMed

    Ahmad, Zulfiqar; Tayou, Junior; Laughlin, Thomas F

    2015-04-01

    This study demonstrates the requirement of Asp-380 and Asp-386 in the βDELSEED-motif of Escherichia coli ATP synthase for peptide binding and inhibition. We studied the inhibition profiles of wild-type and mutant E. coli ATP synthase in presence of c-terminal amide bound melittin and melittin related peptide. Melittin and melittin related peptide inhibited wild-type ATPase almost completely while only partial inhibition was observed in single mutations with replacement of Asp to Ala, Gln, or Arg. Additionally, very little or no inhibition occurred among double mutants βD380A/βD386A, βD380Q/βD386Q, or βD380R/βD386R signifying that removal of one Asp residue allows limited peptide binding. Partial or substantial loss of oxidative phosphorylation among double mutants demonstrates the functional requirement of βD380 and βD386 Asp residues. Moreover, abrogation of wild-type E. coli cell growth and normal growth of mutant cells in presence of peptides provides strong evidence for the requirement of βDELSEED-motif Asp residues for peptide binding. It is concluded that while presence of one Asp residue may allow partial peptide binding, both Asp residues, βD380 and βD386, are essential for proper peptide binding and inhibition of ATP synthase.

  14. Oxidation-induced Structural Changes of Ceruloplasmin Foster NGR Motif Deamidation That Promotes Integrin Binding and Signaling

    PubMed Central

    Barbariga, Marco; Curnis, Flavio; Spitaleri, Andrea; Andolfo, Annapaola; Zucchelli, Chiara; Lazzaro, Massimo; Magnani, Giuseppe; Musco, Giovanna; Corti, Angelo; Alessio, Massimo

    2014-01-01

    Asparagine deamidation occurs spontaneously in proteins during aging; deamidation of Asn-Gly-Arg (NGR) sites can lead to the formation of isoAsp-Gly-Arg (isoDGR), a motif that can recognize the RGD-binding site of integrins. Ceruloplasmin (Cp), a ferroxidase present in the cerebrospinal fluid (CSF), contains two NGR sites in its sequence: one exposed on the protein surface (568NGR) and the other buried in the tertiary structure (962NGR). Considering that Cp can undergo oxidative modifications in the CSF of neurodegenerative diseases, we investigated the effect of oxidation on the deamidation of both NGR motifs and, consequently, on the acquisition of integrin binding properties. We observed that the exposed 568NGR site can deamidate under conditions mimicking accelerated Asn aging. In contrast, the hidden 962NGR site can deamidate exclusively when aging occurs under oxidative conditions, suggesting that oxidation-induced structural changes foster deamidation at this site. NGR deamidation in Cp was associated with gain of integrin-binding function, intracellular signaling, and cell pro-adhesive activity. Finally, Cp aging in the CSF from Alzheimer disease patients, but not in control CSF, causes Cp deamidation with gain of integrin-binding function, suggesting that this transition might also occur in pathological conditions. In conclusion, both Cp NGR sites can deamidate during aging under oxidative conditions, likely as a consequence of oxidative-induced structural changes, thereby promoting a gain of function in integrin binding, signaling, and cell adhesion. PMID:24366863

  15. A DNA-binding protein containing two widely separated zinc finger motifs that recognize the same DNA sequence.

    PubMed

    Fan, C M; Maniatis, T

    1990-01-01

    We have isolated a full-length cDNA clone encoding a protein (PRDII-BF1) that binds specifically to a positive regulatory domain (PRDII) of the human IFN-beta gene promoter, and to a similar sequence present in a number of other promoters and enhancers. The sequence of this protein reveals two novel structural features. First, it is the largest sequence-specific DNA-binding protein reported to date (298 kD). Second, it contains two widely separated sets of C2-H2-type zinc fingers. Remarkably, each set of zinc fingers binds to the same DNA sequence motif with similar affinities and methylation interference patterns. Thus, this protein may act by binding simultaneously to reiterated copies of the same recognition sequence. Although the function of PRDII-BF1 is not known, the level of its mRNA is inducible by serum and virus, albeit with different kinetics.

  16. Dual hydrogen-bonding motifs in complexes formed between tropolone and formic acid

    NASA Astrophysics Data System (ADS)

    Nemchick, Deacon J.; Cohen, Michael K.; Vaccaro, Patrick H.

    2016-11-01

    The near-ultraviolet π*←π absorption system of weakly bound complexes formed between tropolone (TrOH) and formic acid (FA) under cryogenic free-jet expansion conditions has been interrogated by exploiting a variety of fluorescence-based laser-spectroscopic probes, with synergistic quantum-chemical calculations built upon diverse model chemistries being enlisted to unravel the structural and dynamical properties of the pertinent ground [X˜ 1A'] and excited [A˜ 1A'(" separators="π*π )] electronic states. For binary TrOH ṡ FA adducts, the presence of dual hydrogen-bond linkages gives rise to three low-lying isomers designated (in relative energy order) as INT, EXT1, and EXT2 depending on whether docking of the FA ligand to the TrOH substrate takes place internal or external to the five-membered reaction cleft of tropolone. While the symmetric double-minimum topography predicted for the INT potential surface mediates an intermolecular double proton-transfer event, the EXT1 and EXT2 structures are interconverted by an asymmetric single proton-transfer process that is TrOH-centric in nature. The A ˜ -X ˜ origin of TrOH ṡ FA at ν˜ 00=27 484 .45 cm-1 is displaced by δ ν˜ 00=+466 .76 cm-1 with respect to the analogous feature for bare tropolone and displays a hybrid type - a/b rotational contour that reflects the configuration of binding. A comprehensive analysis of vibrational landscapes supported by the optically connected X˜ 1A' and A˜ 1A'(" separators="π*π ) manifolds, including the characteristic isotopic shifts incurred by partial deuteration of the labile TrOH and FA protons, has been performed leading to the uniform assignment of numerous intermolecular (viz., modulating hydrogen-bond linkages) and intramolecular (viz., localized on monomer subunits) degrees of freedom. The holistic interpretation of all experimental and computational findings affords compelling evidence that an external-binding motif (attributed to EXT1), rather than the

  17. Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins.

    PubMed

    Koide, Takaki; Nishikawa, Yoshimi; Asada, Shinichi; Yamazaki, Chisato M; Takahara, Yoshifumi; Homma, Daisuke L; Otaka, Akira; Ohtani, Katsuki; Wakamiya, Nobutaka; Nagata, Kazuhiro; Kitagawa, Kouki

    2006-04-21

    The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.

  18. Inhibitory Member of the Apoptosis-stimulating Proteins of the p53 Family (iASPP) Interacts with Protein Phosphatase 1 via a Noncanonical Binding Motif*

    PubMed Central

    Llanos, Susana; Royer, Christophe; Lu, Min; Bergamaschi, Daniele; Lee, Wen Hwa; Lu, Xin

    2011-01-01

    Although kinase mutations have been identified in various human diseases, much less is known about protein phosphatases. Here, we show that all apoptosis-stimulating proteins of p53 (ASPP) family members can bind protein phosphatase 1 (PP1) via two distinct interacting motifs. ASPP2 interacts with PP1 through an RVXF PP1 binding motif, whereas the inhibitory member of the ASPP family (iASPP) interacts with PP1 via a noncanonical motif (RNYF) that is located within its Src homology 3 domain (SH3). Phe-815 is crucial in mediating iASPP/PP1 interaction, and iASPP(F815A) fails to inhibit the transcriptional and apoptotic function of p53. This study identifies iASPP as a new binding partner of PP1, interacting through a noncanonical PP1 binding motif. PMID:21998301

  19. The N-terminal zinc finger of the erythroid transcription factor GATA-1 binds GATC motifs in DNA.

    PubMed

    Newton, A; Mackay, J; Crossley, M

    2001-09-21

    The mammalian transcription factor GATA-1 is required for normal erythroid and megakaryocytic development. GATA-1 contains two zinc fingers, the C-terminal finger, which is known to bind (A/T)GATA(A/G) motifs in DNA and the N-finger, which is important for interacting with co-regulatory proteins such as Friend of GATA (FOG). We now show that, like the C-finger, the N-finger of GATA-1 is also capable of binding DNA but recognizes distinct sequences with the core GATC. We demonstrate that the GATA-1 N-finger can bind these sequences in vitro and that in cellular assays, GATA-1 can activate promoters containing GATC motifs. Experiments with mutant GATA-1 proteins confirm the importance of the N-finger, as the C-finger is not required for transactivation from GATC sites. Recently four naturally occurring mutations in GATA-1 have been shown to be associated with familial blood disorders. These mutations all map to the N-finger domain. We have investigated the effect of these mutations on the recognition of GATC sites by the N-finger and show that one mutation R216Q abolishes DNA binding, whereas the others have only minor effects.

  20. Thermodynamic contribution of backbone conformational entropy in the binding between SH3 domain and proline-rich motif.

    PubMed

    Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun

    2017-02-26

    Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs.

  1. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    SciTech Connect

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-11-25

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: > We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. > Cre/loxP recombination was used to modify the adenovirus genome. > A targeting ligand present on capsid protein IX was removed or replaced using recombination. > Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  2. Binding determinants of the small heat shock protein, αB-crystallin: recognition of the ‘IxI' motif

    PubMed Central

    Delbecq, Scott P; Jehle, Stefan; Klevit, Rachel

    2012-01-01

    Small heat shock proteins (sHSPs) play a central role in protein homeostasis under conditions of stress by binding partly unfolded, aggregate-prone proteins and keeping them soluble. Like many sHSPs, the widely expressed human sHSP, αB-crystallin (‘αB'), forms large polydisperse multimeric assemblies. Molecular interactions involved in both sHSP function and oligomer formation remain to be delineated. A growing database of structural information reveals that a central conserved α-crystallin domain (ACD) forms dimeric building blocks, while flanking N- and C-termini direct the formation of larger sHSP oligomers. The most commonly observed inter-subunit interaction involves a highly conserved C-terminal ‘IxI/V' motif and a groove in the ACD that is also implicated in client binding. To investigate the inherent properties of this interaction, peptides mimicking the IxI/V motif of αB and other human sHSPs were tested for binding to dimeric αB-ACD. IxI-mimicking peptides bind the isolated ACD at 22°C in a manner similar to interactions observed in the oligomer at low temperature, confirming these interactions are likely to exist in functional αB oligomers. PMID:23188086

  3. Development of bacterium-based heavy metal biosorbents: Enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif

    SciTech Connect

    Pazirandeh, M.; Wells, B.M.; Ryan, R.L.

    1998-10-01

    A gene coding for a de novo peptide sequence containing a metal binding motif was chemically synthesized and expressed in Escherichia coli as a fusion with the maltose binding protein. Bacterial cells expressing the metal binding peptide fusion demonstrated enhanced binding of Cd{sup 2+} and Hg{sup 2+} compared to bacterial cells lacking the metal binding peptide. The potential use of genetically engineered bacteria as biosorbents for the removal of heavy metals from wastewaters is discussed.

  4. FCA does not bind abscisic acid.

    PubMed

    Risk, Joanna M; Macknight, Richard C; Day, Catherine L

    2008-12-11

    The RNA-binding protein FCA promotes flowering in Arabidopsis. Razem et al. reported that FCA is also a receptor for the phytohormone abscisic acid (ABA). However, we find that FCA does not bind ABA, suggesting that the quality of the proteins assayed and the sensitivity of the ABA-binding assay have led Razem et al. to erroneous conclusions. Because similar assays have been used to characterize other ABA receptors, our results indicate that the ABA-binding properties of these proteins should be carefully re-evaluated and that alternative ABA receptors are likely to be discovered.

  5. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1

    PubMed Central

    Sangadala, Sreedhara; Yoshioka, Katsuhito; Enyo, Yoshio; Liu, Yunshan; Titus, Louisa; Boden, Scott D.

    2014-01-01

    Development and repair of the skeletal system and other organs are highly dependent on precise regulation of the bone morphogenetic protein (BMP) pathway. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, increasing cellular responsiveness to BMPs has become our focus. We determined that an osteogenic LIM mineralization protein, LMP-1 interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads resulting in potentiation of BMP activity. In the region of LMP-1 responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and thus effectively competes for binding with Smad1 and Smad5, key signaling proteins in the BMP pathway. Here we show that the same region also contains a motif that interacts with Jun activation-domain-binding protein 1 (Jab1) which targets a common Smad, Smad4, shared by both the BMP and transforming growth factor-β (TGF-β) pathways, for proteasomal degradation. Jab1 was first identified as a coactivator of the transcription factor c-Jun. Jab1 binds to Smad4, Smad5, and Smad7, key intracellular signaling molecules of the TGF-β superfamily, and causes ubiquiti-nation and/or degradation of these Smads. We confirmed a direct interaction of Jab1 with LMP-1 using recombinantly expressed wild-type and mutant proteins in slot-blot-binding assays. We hypothesized that LMP-1 binding to Jab1 prevents the binding and subsequent degradation of these Smads causing increased accumulation of osteogenic Smads in cells. We identified a sequence motif in LMP-1 that was predicted to interact with Jab1 based on the MAME/MAST sequence analysis of several cellular signaling molecules that are known to interact with Jab-1. We further mutated the potential key interacting residues in LMP-1 and showed loss of binding to Jab1 in binding

  6. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1.

    PubMed

    Sangadala, Sreedhara; Yoshioka, Katsuhito; Enyo, Yoshio; Liu, Yunshan; Titus, Louisa; Boden, Scott D

    2014-01-01

    Development and repair of the skeletal system and other organs are highly dependent on precise regulation of the bone morphogenetic protein (BMP) pathway. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, increasing cellular responsiveness to BMPs has become our focus. We determined that an osteogenic LIM mineralization protein, LMP-1 interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads resulting in potentiation of BMP activity. In the region of LMP-1 responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and thus effectively competes for binding with Smad1 and Smad5, key signaling proteins in the BMP pathway. Here we show that the same region also contains a motif that interacts with Jun activation-domain-binding protein 1 (Jab1) which targets a common Smad, Smad4, shared by both the BMP and transforming growth factor-β (TGF-β) pathways, for proteasomal degradation. Jab1 was first identified as a coactivator of the transcription factor c-Jun. Jab1 binds to Smad4, Smad5, and Smad7, key intracellular signaling molecules of the TGF-β superfamily, and causes ubiquitination and/or degradation of these Smads. We confirmed a direct interaction of Jab1 with LMP-1 using recombinantly expressed wild-type and mutant proteins in slot-blot-binding assays. We hypothesized that LMP-1 binding to Jab1 prevents the binding and subsequent degradation of these Smads causing increased accumulation of osteogenic Smads in cells. We identified a sequence motif in LMP-1 that was predicted to interact with Jab1 based on the MAME/MAST sequence analysis of several cellular signaling molecules that are known to interact with Jab-1. We further mutated the potential key interacting residues in LMP-1 and showed loss of binding to Jab1 in binding

  7. PP1 phosphatase-binding motif in Reg1 protein of Saccharomyces cerevisiae is required for interaction with both the PP1 phosphatase Glc7 and the Snf1 protein kinase

    PubMed Central

    Tabba, Shadi; Mangat, Simmanjeet; McCartney, Rhonda; Schmidt, Martin C.

    2010-01-01

    In Saccharomyces cerevisiae, Snf1 kinase, the ortholog of the mammalian AMP-activated protein kinase, is activated by an increase in the phosphorylation of the conserved threonine residue in its activation loop. The phosphorylation status of this key site is determined by changes in the rate of dephosphorylation catalyzed by the yeast PP1 phosphatase Glc7 in a complex with the Reg1 protein. Reg1 and many PP1 phosphatase regulatory subunits utilize some variation of the conserved RVxF motif for interaction with PP1. In the Snf1 pathway, the exact role of the Reg1 protein is uncertain since it binds to both the Glc7 phosphatase and to Snf1, the Glc7 substrate. In this study we sought to clarify the role of Reg1 by separating the Snf1- and Glc7-binding functions. We generated a series of Reg1 proteins, some with deletions of conserved domains and one with two amino acid changes in the RVxF motif. The ability of Reg1 to bind Snf1 and Glc7 required the same domains of Reg1. Further, the RVxF motif that is essential for Reg1 binding to Glc7 is also required for binding to Snf1. Our data suggest that the regulation of Snf1 dephosphorylation is imparted through a dynamic competition between the Glc7 phosphatase and the Snf1 kinase for binding to the PP1 regulatory subunit Reg1. PMID:20170726

  8. Probing Ca2+-binding capability of viral proteins with the EF-hand motif by grafting approach.

    PubMed

    Zhou, Yubin; Xue, Shenghui; Chen, Yanyi; Yang, Jenny J

    2013-01-01

    Ca(2+) is implicated in almost every step of the life cycle of viruses, including virus entry into host cells, virus replication, virion assembly, maturation, and release. However, due to the lack of prediction algorithms and rigorous validation methods, only limited cases of viral Ca(2+)-binding sites are reported. Here, we introduce a method to predict continuous EF-hand or EF-hand-like motifs in the viral genomes based on their primary sequences. We then introduce a grafting approach, and the use of luminescence resonance energy transfer and Ca(2+) competition assay for experimental verification of predicted Ca(2+)-binding sites. This protocol will be valuable for the prediction and identification of unknown Ca(2+)-binding sites in virus.

  9. Binding motifs in bacterial gene promoters modulate transcriptional effects of global regulators CRP and ArcA

    SciTech Connect

    Leuze, Mike; Karpinets, Tatiana V.; Syed, Mustafa H.; Beliaev, Alex S.; Uberbacher, Edward

    2012-05-30

    Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full TFBS quality or location.

  10. Optimization of a Novel Binding Motif to (E)-3-(3,5-Difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic Acid (AZD9496), a Potent and Orally Bioavailable Selective Estrogen Receptor Downregulator and Antagonist.

    PubMed

    De Savi, Chris; Bradbury, Robert H; Rabow, Alfred A; Norman, Richard A; de Almeida, Camila; Andrews, David M; Ballard, Peter; Buttar, David; Callis, Rowena J; Currie, Gordon S; Curwen, Jon O; Davies, Chris D; Donald, Craig S; Feron, Lyman J L; Gingell, Helen; Glossop, Steven C; Hayter, Barry R; Hussain, Syeed; Karoutchi, Galith; Lamont, Scott G; MacFaul, Philip; Moss, Thomas A; Pearson, Stuart E; Tonge, Michael; Walker, Graeme E; Weir, Hazel M; Wilson, Zena

    2015-10-22

    The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.

  11. Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles.

    PubMed Central

    Chen, Y; Ludescher, R D; Montville, T J

    1997-01-01

    The purpose of this study was to characterize in detail the binding of pediocin PA-1 and its fragments to target membranes by using tryptophan fluorescence as a probe. Based on a three-dimensional model (Y. Chen, R. Shapira, M. Eisenstein, and T. J. Montville, Appl. Environ. Microbiol. 63:524-531, 1997), four synthetic N-terminal pediocin fragments were selected to study the mechanism of the initial step by which the bacteriocin associates with membranes. Binding of pediocin PA-1 to vesicles of phosphatidylglycerol, the major component of Listeria membranes, caused an increase in the intrinsic tryptophan fluorescence intensity with a blue shift of the emission maximum. The Stern-Volmer constants for acrylamide quenching of the fluorescence of pediocin PA-1 in buffer and in the lipid vesicles were 8.83 +/- 0.42 and 3.53 +/- 0.67 M-1, respectively, suggesting that the tryptophan residues inserted into the hydrophobic core of the lipid bilayer. The synthetic pediocin fragments bound strongly to the lipid vesicles when a patch of positively charged amino acid residues (K-11 and H-12) was present but bound weakly when this patch was mutated out. Quantitative comparison of changes in tryptophan fluorescence parameters, as well as the dissociation constants for pediocin PA-1 and its fragments, revealed that the relative affinity to the lipid vesicles paralleled the net positive charge in the peptide. The relative affinity for the fragment containing the YGNGV consensus motif was 10-fold lower than that for the fragment containing the positive patch. Furthermore, changing the pH from 6.0 to 8.0 decreased binding of the fragments containing the positive patch, probably due to deprotonation of His residues. These results demonstrate that electrostatic interactions, but not the YGNGV motif, govern pediocin binding to the target membrane. PMID:9406395

  12. Affinity of the heparin binding motif of Noggin1 to heparan sulfate and its visualization in the embryonic tissues.

    PubMed

    Nesterenko, Alexey M; Orlov, Eugeny E; Ermakova, Galina V; Ivanov, Igor A; Semenyuk, Pavel I; Orlov, Victor N; Martynova, Natalia Y; Zaraisky, Andrey G

    Heparin binding motifs were found in many secreted proteins and it was suggested that they are responsible for retardation of the protein diffusion within the intercellular space due to the binding to heparan sulfate proteoglycanes (HSPG). Here we used synthetic FITC labeled heparin binding motif (HBM peptide) of the Xenopus laevis secreted BMP inhibitor Noggin1 to study its diffusion along the surface of the heparin beads by FRAP method. As a result, we have found out that diffusivity of HBM-labeled FITC was indeed much lesser than those predicted by theoretical calculations even for whole protein of the Noggin size. We also compared by isothermal titration calorimetry the binding affinity of HBM and the control oligolysine peptide to several natural polyanions including heparan sulfate (HS), heparin, the bacterial dextran sulfate and salmon sperm DNA, and demonstrated that HBM significantly exceeds oligolysine peptide in the affinity to HS, heparin and DNA. By contrast, oligolysine peptide bound with higher affinity to dextran sulfate. We speculate that such a difference may ensure specificity of the morphogen binding to HSPG and could be explained by steric constrains imposed by different distribution of the negative charges along a given polymeric molecule. Finally, by using EGFP-HBM recombinant protein we have visualized the natural pattern of the Noggin1 binding sites within the X. laevis gastrula and demonstrated that these sites forms a dorsal-ventral concentration gradient, with a maximum in the dorsal blastopore lip. In sum, our data provide a quantitative basis for modeling the process of Noggin1 diffusion in embryonic tissues, considering its interaction with HSPG.

  13. Alteration of the carbohydrate-binding specificity of a C-type lectin CEL-I mutant with an EPN carbohydrate-binding motif.

    PubMed

    Hatakeyama, Tomomitsu; Ishimine, Tomohiro; Baba, Tomohiro; Kimura, Masanari; Unno, Hideaki; Goda, Shuichiro

    2013-07-01

    CEL-I is a Gal/GalNAc-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-recognition domains (CRDs) with the carbohydrate-recognition motif QPD (Gln-Pro- Asp), which is generally known to exist in galactose-specific C-type CRDs. In the present study, a mutant CEL-I with EPN (Glu-Pro-Asn) motif, which is thought to be responsible for the carbohydrate-recognition of mannose-specific Ctype CRDs, was produced in Escherichia coli, and its effects on the carbohydrate-binding specificity were examined using polyamidoamine dendrimer (PD) conjugated with carbohydrates. Although wild-type CEL-I effectively formed complexes with N-acetylgalactosamine (GalNAc)-PD but not with mannose-PD, the mutant CEL-I showed relatively weak but definite affinity for mannose-PD. These results indicated that the QPD and EPN motifs play a significant role in the carbohydrate-recognition mechanism of CEL-I, especially in the discrimination of galactose and mannose. Additional mutations in the recombinant CEL-I binding site may further increase its specificity for mannose, and should provide insights into designing novel carbohydrate-recognition proteins.

  14. New melanocortin 1 receptor binding motif based on the C-terminal sequence of alpha-melanocyte-stimulating hormone.

    PubMed

    Schiöth, Helgi B; Muceniece, Ruta; Mutule, Ilga; Wikberg, Jarl E S

    2006-10-01

    The C-terminal tripeptide of the alpha-melanocyte stimulating hormone (alpha-MSH11-13) possesses strong antiinflammatory activity without known cellular target. In order to better understand the structural requirements for function of such motif, we designed, synthesized and tested out Trp- and Tyr-containing analogues of the alpha-MSH11-13. Seven alpha-MSH11-13 analogues were synthesized and characterized for their binding to the melanocortin receptors recombinantly expressed in insect (Sf9) cells, infected with baculovirus carrying corresponding MC receptor DNA. We also tested these analogues on B16-F1 mouse melanoma cells endogenously expressing the MC1 receptor for binding and for ability to increase cAMP levels as well as on COS-7 cells transfected with the human MC receptors. The data indicate that HS401 (Ac-Tyr-Lys-Pro-Val-NH2) and HS402 (Ac-Lys-Pro-Val-Tyr-NH2) selectively bound to the MC1 receptor and stimulated cAMP generation in a concentration dependent way while the other Tyr- and Trp-containing alpha-MSH11-13 analogues neither bound to MC receptors nor stimulated cAMP. We have thus identified new MC receptor binding motif derived from the C-terminal sequence of alpha-MSH. The tetrapeptides have novel properties as the both act via MC-ergic pathways and also carry the anti-inflammatory alpha-MSH11-13 message sequence.

  15. The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins.

    PubMed

    Oz, S; Kapitansky, O; Ivashco-Pachima, Y; Malishkevich, A; Giladi, E; Skalka, N; Rosin-Arbesfeld, R; Mittelman, L; Segev, O; Hirsch, J A; Gozes, I

    2014-10-01

    The NAP motif of activity-dependent neuroprotective protein (ADNP) enhanced memory scores in patients suffering from mild cognitive impairment and protected activities of daily living in schizophrenia patients, while fortifying microtubule (MT)-dependent axonal transport, in mice and flies. The question is how does NAP fortify MTs? Our sequence analysis identified the MT end-binding protein (EB1)-interacting motif SxIP (SIP, Ser-Ile-Pro) in ADNP/NAP and showed specific SxIP binding sites in all members of the EB protein family (EB1-3). Others found that EB1 enhancement of neurite outgrowth is attenuated by EB2, while EB3 interacts with postsynaptic density protein 95 (PSD-95) to modulate dendritic plasticity. Here, NAP increased PSD-95 expression in dendritic spines, which was inhibited by EB3 silencing. EB1 or EB3, but not EB2 silencing inhibited NAP-mediated cell protection, which reflected NAP binding specificity. NAPVSKIPQ (SxIP=SKIP), but not NAPVAAAAQ mimicked NAP activity. ADNP, essential for neuronal differentiation and brain formation in mouse, a member of the SWI/SNF chromatin remodeling complex and a major protein mutated in autism and deregulated in schizophrenia in men, showed similar EB interactions, which were enhanced by NAP treatment. The newly identified shared MT target of NAP/ADNP is directly implicated in synaptic plasticity, explaining the breadth and efficiency of neuroprotective/neurotrophic capacities.

  16. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  17. Definition of an extended MHC class II-peptide binding motif for the autoimmune disease-associated Lewis rat RT1.BL molecule.

    PubMed

    Wauben, M H; van der Kraan, M; Grosfeld-Stulemeyer, M C; Joosten, I

    1997-02-01

    The Lewis rat, an inbred rat strain susceptible to several well-characterized experimental autoimmune diseases, provides a good model to study peptide-mediated immunotherapy. Peptide immunotherapy focussing on the modulation of T cell responses by interfering with TCR-peptide-MHC complex formation requires the elucidation of the molecular basis of TCR-peptide-MHC interactions for an efficient design of modulatory peptides. In the Lewis rat most autoimmune-associated CD4+ T cell responses are MHC class II RT1.BL restricted. In this study, the characteristics of RT1.BL-peptide interactions were explored. A series of substitution analogs of two Lewis rat T cell epitopes was examined in a direct peptide-MHC binding assay on isolated RT1.BL molecules. Furthermore, other autoimmune-related as well as non-disease-related T cell epitopes were tested in the binding assay. This has led to the definition of an extended RT1.BL-peptide binding motif. The RT1.BL-peptide binding motif established in this study is the first described rat MHC-peptide binding motif based on direct MHC-peptide binding experiments. To predict good or intermediate RT1.BL binding peptides, T cell epitope search profiles were deduced from this motif. The motif and search profiles will greatly facilitate the prediction of modulatory peptides based on autoimmune-associated T cell epitopes and the identification of target structures in experimental autoimmune diseases in Lewis rats.

  18. Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59[C][W][OA

    PubMed Central

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C.; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P.; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C.M.; Pieterse, Corné M.J.

    2013-01-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCFCOI1, which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCFCOI1-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59. PMID:23435661

  19. MINT: software to identify motifs and short-range interactions in trajectories of nucleic acids

    PubMed Central

    Górska, Anna; Jasiński, Maciej; Trylska, Joanna

    2015-01-01

    Structural biology experiments and structure prediction tools have provided many high-resolution three-dimensional structures of nucleic acids. Also, molecular dynamics force field parameters have been adapted to simulating charged and flexible nucleic acid structures on microsecond time scales. Therefore, we can generate the dynamics of DNA or RNA molecules, but we still lack adequate tools for the analysis of the resulting huge amounts of data. We present MINT (Motif Identifier for Nucleic acids Trajectory) — an automatic tool for analyzing three-dimensional structures of RNA and DNA, and their full-atom molecular dynamics trajectories or other conformation sets (e.g. X-ray or nuclear magnetic resonance-derived structures). For each RNA or DNA conformation MINT determines the hydrogen bonding network resolving the base pairing patterns, identifies secondary structure motifs (helices, junctions, loops, etc.) and pseudoknots. MINT also estimates the energy of stacking and phosphate anion-base interactions. For many conformations, as in a molecular dynamics trajectory, MINT provides averages of the above structural and energetic features and their evolution. We show MINT functionality based on all-atom explicit solvent molecular dynamics trajectory of the 30S ribosomal subunit. PMID:26024667

  20. Crystal Structure of (+)-[delta]-Cadinene Synthase from Gossypium arboreum and Evolutionary Divergence of Metal Binding Motifs for Catalysis

    SciTech Connect

    Gennadios, Heather A.; Gonzalez, Veronica; Di Costanzo, Luigi; Li, Amang; Yu, Fanglei; Miller, David J.; Allemann, Rudolf K.; Christianson, David W.

    2009-09-11

    (+)-{delta}-Cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 {angstrom} resolution and the structure of its complex with three putative Mg{sup 2+} ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 {angstrom} resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D{sup 307}DTYD{sup 311} motif on helix D that interacts with Mg{sub A}{sup 2+} and Mg{sub C}{sup 2+}. However, DCS appears to be unique among terpenoid cyclases in that it does not contain the 'NSE/DTE' motif on helix H that specifically chelates Mg{sub B}{sup 2+}, which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg{sub B}{sup 2+} ligands). Instead, DCS contains a second aspartate-rich motif, D{sup 451}DVAE{sup 455}, that interacts with Mg{sub B}{sup 2+}. In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg{sub B}{sup 2+} binding motif. Analyses of DCS mutants with alanine substitutions in the D{sup 307}DTYD{sup 311} and D{sup 451}DVAE{sup 455} segments reveal the contributions of these segments to catalysis.

  1. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    SciTech Connect

    Ogawa, H.; Qiu, Y; Philo, J; Arakawa, T; Ogata, C; Misono, K

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  2. Kinetics of ligand binding to nucleic acids.

    PubMed

    Arakelyan, V B; Babayan, S Y; Tairyan, V I; Arakelyan, A V; Parsadanyan, M A; Vardevanyan, P O

    2006-02-01

    Ligand binding to nucleic acids (NA) is considered as a stationary Markov process. It is shown that the probabilistic description of ligand-NA binding allows one to describe not only the kinetics of the change of number of bound ligands at arbitrary fillings but also to calculate stationary values of the number of bound ligands and its dispersion. The general analysis of absorption isotherms and kinetics of ligand binding to NA make it possible to determine of rate constants of ligand-NA complex formation and dissociation.

  3. Characterization of the metal ion binding helix-hairpin-helix motifs in human DNA polymerase beta by X-ray structural analysis.

    PubMed

    Pelletier, H; Sawaya, M R

    1996-10-01

    X-ray crystallographic studies have shown that DNA binding by human polymerase beta (pol beta) occurs primarily through two structurally and sequentially homologous helix-hairpin-helix (HhH) motifs, one in the fingers subdomain and the other in the 8-kDa domain [Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., & Kraut, J. (1996a) Biochemistry 35, 12742-12761]. In that DNA binding by each HhH motif is facilitated by a metal ion, we set out to determine the identity of the metal ion that most likely binds to the HhH motif in vivo. Crystal soaking experiments were performed on human pol beta-DNA cocrystals with Mg2+, Ca2+, Na+, and K+, the four most prevalent metal ions in the cell, and in each case a data set was collected and the resulting structure was refined. Under the conditions tested, the HhH motifs of pol beta have an affinity for these biologically prevalent metal ions in the order Mg2+ < Ca2+ < Na+ < K+, with K+ displaying the strongest binding. Crystals soaked in the presence of Tl+, a commonly used spectroscopic probe for K+, were too X-ray-sensitive to establish the binding behavior of Tl+, but soaking experiments with Ba2+ and Cs+ resulted in relatively stable crystals that gave evidence of metal ion binding in both HhH motifs, confirming that larger monovalent and divalent metal ions are capable of binding to the HhH metal sites. Although Mn2+, which has been categorized as a potent polymerase mutagen, binds to the HhH motifs with a greater affinity than Mg2+, Mn2+ does not bind to the HhH motifs in the presence of equimolar concentrations of Na+. These results suggest that in vivo, where Mn2+ is present only in trace amounts, Mn2+ probably does not have a large effect on DNA binding and may instead manifest a mutagenic effect on pol beta primarily by distorting nucleotide binding or by directly affecting the catalytic step [Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., & Kraut, J. (1996b) Biochemistry 35, 12762-12777]. Crystal

  4. Generation of mice deficient in RNA-binding motif protein 3 (RBM3) and characterization of its role in innate immune responses and cell growth

    SciTech Connect

    Matsuda, Atsushi; Ogawa, Masahiro; Yanai, Hideyuki; Naka, Daiji; Goto, Ayana; Ao, Tomoka; Tanno, Yuji; Takeda, Kiyoshi; Watanabe, Yoshinori; Honda, Kenya; Taniguchi, Tadatsugu

    2011-07-22

    Highlights: {yields} We identified RNA-binding motif protein 3 (RBM3) as CpG-B DNA-binding protein. {yields} RBM3 translocates from the nucleus to the cytoplasm and co-localized with CpG-B DNA. {yields} We newly generated Rbm3-deficient (Rbm3{sup -/-}) mice. {yields} DNA-mediated cytokine gene induction was normally occured in Rbm3{sup -/-} cells. {yields}Rbm3{sup -/-} MEFs showed poorer proliferation rate and increased number of G2-phase cells. -- Abstract: The activation of innate immune responses is critical to host defense against microbial infections, wherein nucleic acid-sensing pattern recognition receptors recognize DNA or RNA from viruses or bacteria and activate downstream signaling pathways. In a search for new DNA-sensing molecules that regulate innate immune responses, we identified RNA-binding motif protein 3 (RBM3), whose role has been implicated in the regulation of cell growth. In this study, we generated Rbm3-deficient (Rbm3{sup -/-}) mice to study the role of RBM3 in immune responses and cell growth. Despite evidence for its interaction with immunogenic DNA in a cell, no overt phenotypic abnormalities were found in cells from Rbm3{sup -/-} mice for the DNA-mediated induction of cytokine genes. Interestingly, however, Rbm3{sup -/-} mouse embryonic fibroblasts (MEFs) showed poorer proliferation rates as compared to control MEFs. Further cell cycle analysis revealed that Rbm3{sup -/-} MEFs have markedly increased number of G2-phase cells, suggesting a hitherto unknown role of RBM3 in the G2-phase control. Thus, these mutant mice and cells may provide new tools with which to study the mechanisms underlying the regulation of cell cycle and oncogenesis.

  5. A survey of DNA motif finding algorithms

    PubMed Central

    Das, Modan K; Dai, Ho-Kwok

    2007-01-01

    Background Unraveling the mechanisms that regulate gene expression is a major challenge in biology. An important task in this challenge is to identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA segments that are called motifs. Recent advances in genome sequence availability and in high-throughput gene expression analysis technologies have allowed for the development of computational methods for motif finding. As a result, a large number of motif finding algorithms have been implemented and applied to various motif models over the past decade. This survey reviews the latest developments in DNA motif finding algorithms. Results Earlier algorithms use promoter sequences of coregulated genes from single genome and search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic footprinting or orthologous sequences and also an integrated approach where promoter sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied have been reported to correctly detect the motifs that have been previously detected by laboratory experimental approaches, and some algorithms were able to find novel motifs. However, most of these motif finding algorithms have been shown to work successfully in yeast and other lower organisms, but perform significantly worse in higher organisms. Conclusion Despite considerable efforts to date, DNA motif finding remains a complex challenge for biologists and computer scientists. Researchers have taken many different approaches in developing motif discovery tools and the progress made in this area of research is very encouraging. Performance comparison of different motif finding tools and identification of the best tools have proven to be a difficult task because tools are designed based on algorithms and motif models that are diverse and complex and our incomplete understanding of

  6. The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells.

    PubMed

    Liang, Yu-Chih; Lin, Wei-Cheng; Lin, Ying-Ju; Lin, Jung-Chun

    2015-11-10

    Dysregulated splicing of pre-messenger (m)RNA is considered a molecular occasion of carcinogenesis. However, the underlying mechanism is complex and remains to be investigated. Herein, we report that the upregulated miR-92a reduced the RNA-binding motif 4 (RBM4) protein expression, leading to the imbalanced expression of the neuronal polypyrimidine tract-binding (nPTB) protein through alternative splicing-coupled nonsense mediated decay (NMD) mechanism. Increase in nPTB protein enhances the relative level of fibroblast growth factor receptor 2 IIIc (FGFR2) and pyruvate kinase M2 (PKM2) transcripts which contribute to the progression and metabolic signature of CRC cells. Expression profiles of RBM4 and downstream alternative splicing events are consistently observed in cancerous tissues compared to adjacent normal tissues. These results constitute a mechanistic understanding of RBM4 on repressing the carcinogenesis of colorectal cells.

  7. Adhesive and Migratory Effects of Phosphophoryn Are Modulated by Flanking Peptides of the Integrin Binding Motif

    PubMed Central

    Suzuki, Shigeki; Kobuke, Seiji; Haruyama, Naoto; Hoshino, Hiroaki; Kulkarni, Ashok B.; Nishimura, Fusanori

    2014-01-01

    Phosphophoryn (PP) is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP). Gene duplications in the ancestor dentin matrix protein-1 (DMP-1) genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs). Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD) domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH) was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH). This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  8. Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif

    PubMed Central

    Alenton, Rod Russel R.; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo

    2017-01-01

    C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation. PMID:28374848

  9. Copper-binding tripeptide motif increases potency of the antimicrobial peptide Anoplin via Reactive Oxygen Species generation.

    PubMed

    Libardo, M Daben J; Nagella, Sai; Lugo, Andrea; Pierce, Scott; Angeles-Boza, Alfredo M

    2015-01-02

    Antimicrobial peptides (AMPs) are broad spectrum antimicrobial agents that act through diverse mechanisms, this characteristic makes them suitable starting points for development of novel classes of antibiotics. We have previously reported the increase in activity of AMPs upon addition of the Amino Terminal Copper and Nickel (ATCUN) Binding Unit. Herein we synthesized the membrane active peptide, Anoplin and two ATCUN-Anoplin derivatives and show that the increase in activity is indeed due to the ROS formation by the Cu(II)-ATCUN complex. We found that the ATCUN-Anoplin peptides were up to four times more potent compared to Anoplin alone against standard test bacteria. We studied membrane disruption, and cellular localization and found that addition of the ATCUN motif did not lead to a difference in these properties. When helical content was calculated, we observed that ATCUN-Anoplin had a lower helical composition. We found that ATCUN-Anoplin are able to oxidatively damage lipids in the bacterial membrane and that their activity trails the rate at which ROS is formed by the Cu(II)-ATCUN complexes alone. This study shows that addition of a metal binding tripeptide motif is a simple strategy to increase potency of AMPs by conferring a secondary action.

  10. Link protein hyaluronan-binding motif abrogates CD44-hyaluronan-mediated leukemia-liver cell adhesion.

    PubMed

    Chen, Jing; Li, Na; Li, Gongchu

    2013-05-01

    The liver is a frequent site for the metastasis of cancer cells originating from other sites. Leukemic liver metastasis is associated with poor prognosis. The ligation of CD44 with hyaluronan (HA) has been shown to contribute to the drug resistance of leukemic cells. In this study, a link protein HA-binding motif was genetically fused with enhanced green fluorescence protein (EGFP) to generate an EGFP-L fusion protein. Furthermore, a coculture system was established to investigate the interaction of leukemic cells with liver cells. CD44-positive Kasumi-1, but not CD44-negative HL-60 cells, were observed to adhere to the liver cell line L02. This cell-cell adhesion was significantly blocked by HA, indicating that Kasumi-L02 cell adhesion was mediated by the CD44-HA interaction. Compared to EGFP, EGFP-L fusion protein bound to L02 and BEL7404 liver cells. EGFP-L partially abrogated the Kasumi-L02 adhesion, suggesting that the link protein-binding motif is able to inhibit CD44-HA-mediated leukemia-liver adhesion. These results may help provide insight into novel therapeutic methods for leukemic patients diagnosed with liver metastasis.

  11. Clustered somatic mutations are frequent in transcription factor binding motifs within proximal promoter regions in melanoma and other cutaneous malignancies

    PubMed Central

    Colebatch, Andrew J.; Di Stefano, Leon; Wong, Stephen Q.; Hannan, Ross D.; Waring, Paul M.; Dobrovic, Alexander

    2016-01-01

    Most cancer DNA sequencing studies have prioritized recurrent non-synonymous coding mutations in order to identify novel cancer-related mutations. Although attention is increasingly being paid to mutations in non-coding regions, standard approaches to identifying significant mutations may not be appropriate and there has been limited analysis of mutational clusters in functionally annotated non-coding regions. We sought to identify clustered somatic mutations (hotspot regions across samples) in functionally annotated regions in melanoma and other cutaneous malignancies (cutaneous squamous cell carcinoma, basal cell carcinoma and Merkel cell carcinoma). Sliding window analyses revealed numerous recurrent clustered hotspot mutations in proximal promoters, with some specific clusters present in up to 25% of cases. Mutations in melanoma were clustered within ETS and Sp1 transcription factor binding motifs, had a UV signature and were identified in other cutaneous malignancies. Clinicopathologic correlation and mutation analysis support a causal role for chronic UV irradiation generating somatic mutations in transcription factor binding motifs of proximal promoters. PMID:27611953

  12. Retinoic acid-induced down-regulation of the interleukin-2 promoter via cis-regulatory sequences containing an octamer motif.

    PubMed Central

    Felli, M P; Vacca, A; Meco, D; Screpanti, I; Farina, A R; Maroder, M; Martinotti, S; Petrangeli, E; Frati, L; Gulino, A

    1991-01-01

    Retinoic acid (RA) is known to influence the proliferation and differentiation of a wide variety of transformed and developing cells. We found that RA and the specific RA receptor (RAR) ligand Ch55 inhibited the phorbol ester and calcium ionophore-induced expression of the T-cell growth factor interleukin-2 (IL-2) gene. Expression of transiently transfected chloramphenicol acetyltransferase vectors containing the 5'-flanking region of the IL-2 gene was also inhibited by RA. RA-induced down-regulation of the IL-2 enhancer is mediated by RAR, since overexpression of transfected RARs increased RA sensitivity of the IL-2 promoter. Functional analysis of chloramphenicol acetyltransferase vectors containing either internal deletion mutants of the region from -317 to +47 bp of the IL-2 enhancer or multimerized cis-regulatory elements showed that the RA-responsive element in the IL-2 promoter mapped to sequences containing an octamer motif. RAR also inhibited the transcriptional activity of the octamer motif of the immunoglobulin heavy chain enhancer. In spite of the transcriptional inhibition of the IL-2 octamer motif, RA did not decrease the in vitro DNA-binding capability of octamer-1 protein. These results identify a regulatory pathway within the IL-2 promoter which involves the octamer motif and RAR. Images PMID:1652063

  13. Bean yellow dwarf virus RepA, but not rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif.

    PubMed

    Liu, L; Saunders, K; Thomas, C L; Davies, J W; Stanley, J

    1999-04-10

    It has previously been reported that complementary-sense gene products of wheat dwarf virus (WDV), a geminivirus of the genus Mastrevirus that infects monocotyledonous plants, bind to human and maize retinoblastoma (Rb) protein. Rb proteins control cell-cycle progression by sequestering transcription factors required for entry into S-phase, suggesting that the virus modifies the cellular environment to produce conditions suitable for viral DNA replication. Using a yeast two-hybrid assay, we have investigated whether the complementary-sense gene products of bean yellow dwarf virus, a mastrevirus that is adapted to dicotyledonous plants, also bind maize Rb protein. We demonstrate that whereas RepA binds to Rb protein, Rep does not, suggesting that RepA alone regulates host gene expression and progression of cells to S-phase. RepA mutants containing L --> I, C --> S, C --> G, and E --> Q mutations within the consensus Rb protein binding motif LXCXE retained the ability to bind to Rb, but with reduced efficiency. Most notably, the E --> Q mutation reduced binding by approximately 95%. Nonetheless, all LXCXE mutants were able to replicate in tobacco protoplasts and to systemically infect Nicotiana benthamiana and bean, in which they produced wild-type symptoms.

  14. Iodine binding to humic acid.

    PubMed

    Bowley, H E; Young, S D; Ander, E L; Crout, N M J; Watts, M J; Bailey, E H

    2016-08-01

    The rate of reactions between humic acid (HA) and iodide (I(-)) and iodate (IO3(-)) have been investigated in suspensions spiked with (129)I at concentrations of 22, 44 and 88 μg L(-1) and stored at 10 °C. Changes in the speciation of (129)I(-), (129)IO3(-) and mixed ((129)I(-) + (129)IO3(-)) spikes were monitored over 77 days using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). In suspensions spiked with (129)I(-) 25% of the added I(-) was transformed into organic iodine (Org-(129)I) within 77 days and there was no evidence of (129)IO3(-) formation. By contrast, rapid loss of (129)IO3(-) and increase in both (129)I(-) and Org-(129)I was observed in (129)IO3(-)-spiked suspensions. However, the rate of Org-(129)I production was greater in mixed systems compared to (129)IO3(-)-spiked suspensions with the same total (129)I concentration, possibly indicating IO3(-)I(-) redox coupling. Size exclusion chromatography (SEC) demonstrated that Org-(129)I was present in both high and low molecular weight fractions of the HA although a slight preference to bond with the lower molecular weight fractions was observed indicating that, after 77 days, the spiked isotope had not fully mixed with the native (127)I pool. Iodine transformations were modelled using first order rate equations and fitted rate coefficients determined. However, extrapolation of the model to 250 days indicated that a pseudo-steady state would be attained after ∼200 days but that the proportion of (129)I incorporated into HA was less than that of (127)I indicating the presence of a recalcitrant pool of (127)I that was unavailable for isotopic mixing.

  15. SMN2 exon 7 splicing is inhibited by binding of hnRNP A1 to a common ESS motif that spans the 3' splice site.

    PubMed

    Doktor, Thomas Koed; Schroeder, Lisbeth Dahl; Vested, Anne; Palmfeldt, Johan; Andersen, Henriette Skovgaard; Gregersen, Niels; Andresen, Brage Storstein

    2011-02-01

    Spinal Muscular Atrophy is caused by homozygous loss of SMN1 with phenotypic modulation by SMN2. SMN2 expresses only limited amounts of full-length transcript due to skipping of exon 7 caused by disruption of an SF2/ASF binding ESE. Additionally, hnRNP A1 has been reported to inhibit inclusion of SMN2 exon 7. We previously reported high similarity between the sequence spanning the 3' ss of SMN1 and SMN2 exon 7 and an hnRNP A1 binding ESS, which regulates MCAD exon 5 splicing. We show here that this 3' ss motif indeed functions as a crucial hnRNP A1 binding ESS, which inhibits inclusion of SMN1/2 exon 7 and is antagonized by the SMN1 ESE, but not by the inactive SMN2 sequence. Pull-down experiments revealed a specific interaction between hnRNP A1 and the 3' ss AG-dinucleotide, which could be disrupted by mutations shown to improve splicing in reporter minigenes. Genomic analyses revealed that in the human genome, 3' ss matching the SMN1/2 ESS motif region are much less abundant than 3' ss with a disrupted ESS motif. This indicates that this ESS may be a general splicing inhibitory motif, which binds hnRNP A1 and inhibits exon inclusion by binding to 3' ss harboring this ESS motif.

  16. Mutation of an EF-hand Ca(2+)-binding motif in phospholipase C of Dictyostelium discoideum: inhibition of activity but no effect on Ca(2+)-dependence.

    PubMed

    Drayer, A L; Meima, M E; Derks, M W; Tuik, R; van Haastert, P J

    1995-10-15

    Phosphoinositide-specific phospholipase C (PLC) is dependent on Ca2+ ions for substrate hydrolysis. The role of an EF-hand Ca(2+)-binding motif in Ca(2+)-dependent PLC activity was investigated by site-directed mutagenesis of the Dictyostelium discoideum PLC enzyme. Amino acid residues with oxygen-containing side chains at co-ordinates x, y, z, -x and -z of the putative Ca(2+)-binding-loop sequence were replaced by isoleucine (x), valine (y) or alanine (z, -x and -z). The mutated proteins were expressed in a Dictyostelium cell line with a disrupted plc gene displaying no endogenous PLC activity, and PLC activity was measured in cell lysates at different Ca2+ concentrations. Replacement of aspartate at position x, which is considered to play an essential role in Ca2+ binding, had little effect on Ca2+ affinity and maximal enzyme activity. A mutant with substitutions at both aspartate residues in position x and y also showed no decrease in Ca2+ affinity, whereas the maximal PLC activity was reduced by 60%. Introduction of additional mutations in the EF-hand revealed that the Ca2+ concentration giving half-maximal activity was unaltered, but PLC activity levels at saturating Ca2+ concentrations were markedly decreased. The results demonstrate that, although the EF-hand domain is required for enzyme activity, it is not the site that regulates the Ca(2+)-dependence of the PLC reaction.

  17. Examination of the transcription factor NtcA-binding motif by in vitro selection of DNA sequences from a random library.

    PubMed

    Jiang, F; Wisén, S; Widersten, M; Bergman, B; Mannervik, B

    2000-08-25

    A recursive in vitro selection among random DNA sequences was used for analysis of the cyanobacterial transcription factor NtcA-binding motifs. An eight-base palindromic sequence, TGTA-(N(8))-TACA, was found to be the optimal NtcA-binding sequence. The more divergent the binding sequences, compared to this consensus sequence, the lower the NtcA affinity. The second and third bases in each four-nucleotide half of the consensus sequence were crucial for NtcA binding, and they were in general highly conserved. The most frequently occurring sequence in the middle weakly conserved region was similar to that of the NtcA-binding motif of the Anabaena sp. strain PCC 7120 glnA gene, previously known to have high affinity for NtcA. This indicates that the middle sequences were selected for high NtcA affinity. Analysis of natural NtcA-binding motifs showed that these could be classified into two groups based on differences in recognition consensus sequences. It is suggested that NtcA naturally recognizes different DNA-binding motifs, or has differential affinities to these sequences under different physiological conditions.

  18. MSDmotif: exploring protein sites and motifs

    PubMed Central

    Golovin, Adel; Henrick, Kim

    2008-01-01

    Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB) is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS) protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures. PMID:18637174

  19. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation.

    PubMed

    Cockburn, Darrell; Nielsen, Morten M; Christiansen, Camilla; Andersen, Joakim M; Rannes, Julie B; Blennow, Andreas; Svensson, Birte

    2015-04-01

    Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley α-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser scanning microscopy, affinity gel electrophoresis and surface plasmon resonance to unravel functional roles of the SBSs. SBS1 was critical for binding to different starch types as Kd increased by 7-62-fold or was not measurable upon mutation. By contrast SBS2 was particularly important for binding to soluble polysaccharides and oligosaccharides with α-1,6 linkages, suggesting that branch points are key structural elements in recognition by SBS2. Mutation at both SBS1 and SBS2 eliminated binding to all starch granule types tested. Taken together, the findings indicate that the two SBSs act in concert to localize AMY1 to the starch granule surface and that SBS2 works synergistically with the active site in the degradation of amylopectin.

  20. Selective Targeting of G-Quadruplex Structures by a Benzothiazole-Based Binding Motif.

    PubMed

    Buchholz, Ina; Karg, Beatrice; Dickerhoff, Jonathan; Sievers-Engler, Adrian; Lämmerhofer, Michael; Weisz, Klaus

    2017-03-09

    A benzothiazole derivative was identified as potent ligand for DNA G-quadruplex structures. Fluorescence titrations revealed selective binding to quadruplexes of different topologies including parallel, antiparallel and (3+1) hybrid structures. The parallel c-MYC sequence was found to constitute the preferred target with dissociation constants in the micromolar range. Binding of the benzothiazole-based ligand to c-MYC was structurally and thermodynamically characterized in detail by employing a comprehensive set of spectroscopic and calorimetric techniques. Job plot analyses and mass spectral data indicate non-cooperative ligand binding to form 1:1 and 2:1 complex stoichiometries. Whereas stacking interactions are suggested by optical methods, NMR chemical shift perturbations also indicate significant rearrangements of both 5'- and 3'-flanking sequences upon ligand binding. Additional isothermal calorimetry studies yield a thermodynamic profile of the ligand-quadruplex association and reveal enthalpic contributions to be the major driving force for binding. The structural and thermodynamic information obtained in the present work provides the basis for the rational development of benzothiazole derivatives as promising quadruplex binding agents.

  1. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    SciTech Connect

    Kwasnicka-Crawford, Dorota A. . E-mail: dakc@yorku.ca; Carson, Andrew R.; Scherer, Stephen W.

    2006-12-01

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNA is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions.

  2. One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs.

    PubMed

    Lock, Antonia; Forfar, Rachel; Weston, Cathryn; Bowsher, Leo; Upton, Graham J G; Reynolds, Christopher A; Ladds, Graham; Dixon, Ann M

    2014-12-01

    G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs.

  3. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication.

    PubMed Central

    Koonin, E V

    1993-01-01

    A new superfamily of (putative) DNA-dependent ATPases is described that includes the ATPase domains of prokaryotic NtrC-related transcription regulators, MCM proteins involved in the initiation of eukaryotic DNA replication, and a group of uncharacterized bacterial and chloroplast proteins. MCM proteins are shown to contain a modified form of the ATP-binding motif and are predicted to mediate ATP-dependent opening of double-stranded DNA in the replication origins. In a second line of investigation, it is demonstrated that the products of unidentified open reading frames from Marchantia mitochondria and from yeast, and a domain of a baculovirus protein involved in viral DNA replication are related to the superfamily III of DNA and RNA helicases that previously has been known to include only proteins of small viruses. Comparison of the multiple alignments showed that the proteins of the NtrC superfamily and the helicases of superfamily III share three related sequence motifs tightly packed in the ATPase domain that consists of 100-150 amino acid residues. A similar array of conserved motifs is found in the family of DnaA-related ATPases. It is hypothesized that the three large groups of nucleic acid-dependent ATPases have similar structure of the core ATPase domain and have evolved from a common ancestor. PMID:8332451

  4. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease.

  5. Binding of the cSH3 Domain of Grb2 Adaptor to Two Distinct RXXK Motifs within Gab1 Docker Employs Differential Mechanisms

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Bhat, Vikas; Farooq, Amjad

    2010-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3 and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 310-helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. PMID:21472810

  6. Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly.

    PubMed

    Hung, Liang-Yi; Chen, Hua-Ling; Chang, Ching-Wen; Li, Bor-Ran; Tang, Tang K

    2004-06-01

    We have previously identified a new centrosomal protein, centrosomal protein 4.1-associated protein (CPAP), which is associated with the gamma-tubulin complex. Here, we report that CPAP carries a novel microtubule-destabilizing motif that not only inhibits microtubule nucleation from the centrosome but also depolymerizes taxol-stabilized microtubules. Deletion mapping and functional analyses have defined a 112-residue CPAP that is necessary and sufficient for microtubule destabilization. This 112-residue CPAP directly recognizes the plus end of a microtubule and inhibits microtubule nucleation from the centrosome. Biochemical and functional analyses revealed that this 112-residue CPAP also binds to tubulin dimers, resulting in the destabilization of microtubules. Using the tetracycline-controlled system (tet-off), we observed that overexpression of this 112-residue CPAP inhibits cell proliferation and induces apoptosis after G2/M arrest. The possible mechanisms of how this 112-residue motif in CPAP that inhibits microtubule nucleation from the centrosome and disassembles preformed microtubules are discussed.

  7. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport

    PubMed Central

    1995-01-01

    In the study of motor proteins, the molecular mechanism of mechanochemical coupling, as well as the cellular role of these proteins, is an important issue. To assess these questions we introduced cDNA of wild-type and site-directed mutant kinesin heavy chains into fibroblasts, and analyzed the behavior of the recombinant proteins and the mechanisms involved in organelle transports. Overexpression of wild-type kinesin significantly promoted elongation of cellular processes. Wild-type kinesin accumulated at the tips of the long processes, whereas the kinesin mutants, which contained either a T93N- or T93I mutation in the ATP-binding motif, tightly bound to microtubules in the center of the cells. These mutant kinesins could bind to microtubules in vitro, but could not dissociate from them even in the presence of ATP, and did not support microtubule motility in vitro, thereby indicating rigor-type mutations. Retrograde transport from the Golgi apparatus to the endoplasmic reticulum, as well as lysosome dispersion, was shown to be a microtubule-dependent, plus-end- directed movement. The latter was selectively blocked in the rigor- mutant cells, although the microtubule minus-end-directed motion of lysosomes was not affected. We found the point mutations that make kinesin motor in strong binding state with microtubules in vitro and showed that this mutant causes a dominant effect that selectively blocks anterograde lysosome membrane transports in vivo. PMID:7490281

  8. Identification of the Catalytic Ubiquinone-binding Site of Vibrio cholerae Sodium-dependent NADH Dehydrogenase: A NOVEL UBIQUINONE-BINDING MOTIF.

    PubMed

    Tuz, Karina; Li, Chen; Fang, Xuan; Raba, Daniel A; Liang, Pingdong; Minh, David D L; Juárez, Oscar

    2017-02-17

    The sodium-dependent NADH dehydrogenase (Na(+)-NQR) is a key component of the respiratory chain of diverse prokaryotic species, including pathogenic bacteria. Na(+)-NQR uses the energy released by electron transfer between NADH and ubiquinone (UQ) to pump sodium, producing a gradient that sustains many essential homeostatic processes as well as virulence factor secretion and the elimination of drugs. The location of the UQ binding site has been controversial, with two main hypotheses that suggest that this site could be located in the cytosolic subunit A or in the membrane-bound subunit B. In this work, we performed alanine scanning mutagenesis of aromatic residues located in transmembrane helices II, IV, and V of subunit B, near glycine residues 140 and 141. These two critical glycine residues form part of the structures that regulate the site's accessibility. Our results indicate that the elimination of phenylalanine residue 211 or 213 abolishes the UQ-dependent activity, produces a leak of electrons to oxygen, and completely blocks the binding of UQ and the inhibitor HQNO. Molecular docking calculations predict that UQ interacts with phenylalanine 211 and pinpoints the location of the binding site in the interface of subunits B and D. The mutagenesis and structural analysis allow us to propose a novel UQ-binding motif, which is completely different compared with the sites of other respiratory photosynthetic complexes. These results are essential to understanding the electron transfer pathways and mechanism of Na(+)-NQR catalysis.

  9. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    PubMed

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families.

  10. Design of polymer motifs for nucleic acid recognition and assembly stabilization

    NASA Astrophysics Data System (ADS)

    Zhou, Zhun

    This dissertation describes the synthesis and assembly of bio-functional polymers and the applications of these polymers to drug encapsulation, delivery, and multivalent biomimetic macromolecular recognition between synthetic polymer and nucleic acids. The main content is divided into three parts: (1) polyacidic domains as strongly stabilizing design elements for aqueous phase polyacrylate diblock assembly; (2) small molecule/polymer recognition triggered macromolecular assembly and drug encapsulation; (3) trizaine derivatized polymer as a novel class of "bifacial polymer nucleic acid" (bPoNA) and applications of bPoNA to nanoparticle loading of DNA/RNA, silencing delivery as well as control of aptamer function. Through the studies in part (1) and part (2), it was demonstrated that well-designed polymer motifs are not only able to enhance assemblies driven by non-specific hydrophobic effect, but are also able to direct assemblies based on specific recognitions. In part (3) of this dissertation, this concept was further extended by the design of polyacrylate polymers that are capable of discrete and robust hybridization with nucleic acids. This surprising finding demonstrated both fundamental and practical applications. Overall, these studies provided insights into the rational design elements for improving the bio-functions of synthetic polymers, and significantly expanded the scope of biological applications in which polymers synthesized via controlled radical polymerization may play a role.

  11. The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate.

    PubMed

    Gutiérrez-Jiménez, Javier; Arciniega, Ivonne; Navarro-García, Fernando

    2008-08-01

    The pic gene is harbored on the chromosomes of three important pathogens: enteroaggregative Escherichia coli (EAEC), uropathogenic E. coli (UPEC), and Shigella flexneri. Since Pic is secreted into the intestinal lumen during EAEC infection, we sought to identify intestinal-mucosal substrates for Pic. Pic did not damage epithelial cells, cleave fodrin, or degrade host defense proteins embedded in the mucus layer (sIgA, lactoferrin and lysozyme). However, by using a solid-phase assay to evaluate the mucinolytic activity of EAEC Pic, we documented a specific, dose-dependent mucinolytic activity. A serine protease inhibitor and an enzymatically inactive variant of Pic were used to show that the Pic serine protease motif is required for mucinolytic activity. Pic binds mucin, and this binding was blocked in competition assays using monosaccharide constituents of the oligosaccharide side chains of mucin. Moreover, Pic mucinolytic activity decreased when sialic acid was removed from mucin. Thus, Pic is a mucinase with lectin-like activity that can be related to its reported hemagglutinin activity. Our results suggest that EAEC may secrete Pic into the intestinal lumen as a strategy for penetrating the gel-like mucus layer during EAEC colonization.

  12. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  13. Supramolecular Polymers with Multiple Types of Binding Motifs: From Fundamental Studies to Multifunctional Materials

    DTIC Science & Technology

    2015-07-10

    the goal of preparing multi-responsive polymer actuators, we have incorporated liquid crystalline metal-binding Bip monomers into polymeric networks...SECURITY CLASSIFICATION OF: This research project is focused on the development and investigation of a new class of multi-stimuli-responsive polymers ...studies metallo and hydrogen bonded supramolecular polymers that exhibit defect healing characteristics and multi- 1. REPORT DATE (DD-MM-YYYY) 4

  14. Binding motifs of CBP2 a potential cell surface target for carcinoma cells.

    PubMed

    Sauk, J J; Coletta, R D; Norris, K; Hebert, C

    2000-05-01

    Previously we have shown (Hebert et al. [1999] J. Cell Biochem. 73:248-258) that among many cell lines the CBP2 gene product, Hsp47, eludes its retention receptor, erd2P, resulting in the appearance of Hsp47 on the cell surface associated with the tetraspanin protein CD9. Since Hsp47 possesses a highly restricted binding cleft, random peptide display libraries were used to characterize peptides binding to Hsp47 and then to target this protein on carcinoma cell lines in vitro. Comparison of the clones obtained from panning revealed little specific homology based on sequence alone. To determine whether carcinoma cells expressing Hsp47 could selectively take up the selected bacteriophages, traditional immunofluorescence and confocal microscopy were employed. These studies revealed that phage-displaying Hsp47 binding peptides bound to cell lines expressing Hsp47 and that the peptides were rapidly taken up to a location coincident with Hsp47 staining. These observations were confirmed by cytometric analyses. These data indicate that CBP2 product may provide a molecular target for chemotherapy and/or imaging of malignancies.

  15. LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance.

    PubMed

    Wilbert, Melissa L; Huelga, Stephanie C; Kapeli, Katannya; Stark, Thomas J; Liang, Tiffany Y; Chen, Stella X; Yan, Bernice Y; Nathanson, Jason L; Hutt, Kasey R; Lovci, Michael T; Kazan, Hilal; Vu, Anthony Q; Massirer, Katlin B; Morris, Quaid; Hoon, Shawn; Yeo, Gene W

    2012-10-26

    LIN28 is a conserved RNA-binding protein implicated in pluripotency, reprogramming, and oncogenesis. It was previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, but here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28-binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions.

  16. LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance

    PubMed Central

    Wilbert, Melissa L.; Huelga, Stephanie C.; Kapeli, Katannya; Stark, Thomas J.; Liang, Tiffany Y.; Chen, Stella X.; Yan, Bernice Y.; Nathanson, Jason L.; Hutt, Kasey R.; Lovci, Michael T.; Kazan, Hilal; Vu, Anthony Q; Massirer, Katlin B.; Morris, Quaid; Hoon, Shawn; Yeo, Gene W.

    2012-01-01

    SUMMARY LIN28 is a conserved RNA binding protein implicated in pluripotency, reprogramming and oncogenesis. Previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through cross-linking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28 binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions. PMID:22959275

  17. Structure prediction of LDLR-HNP1 complex based on docking enhanced by LDLR binding 3D motif.

    PubMed

    Esmaielbeiki, Reyhaneh; Naughton, Declan P; Nebel, Jean-Christophe

    2012-04-01

    Human antimicrobial peptides (AMPs), including defensins, have come under intense scrutiny owing to their key multiple roles as antimicrobial agents. Not only do they display direct action on microbes, but also recently they have been shown to interact with the immune system to increase antimicrobial activity. Unfortunately, since mechanisms involved in the binding of AMPs to mammalian cells are largely unknown, their potential as novel anti-infective agents cannot be exploited yet. Following the reported interaction of Human Neutrophil Peptide 1 dimer (HNP1) with a low density lipoprotein receptor (LDLR), a computational study was conducted to discover their putative mode of interaction. State-of-the-art docking software produced a set of LDLR-HNP1 complex 3D models. Creation of a 3D motif capturing atomic interactions of the LDLR binding interface allowed selection of the most plausible configurations. Eventually, only two models were in agreement with the literature. Binding energy estimations revealed that only one of them is particularly stable, but also interaction with LDLR weakens significantly bonds within the HNP1 dimer. This may be significant since it suggests a mechanism for internalisation of HNP1 in mammalian cells. In addition to a novel approach for complex structure prediction, this study proposes a 3D model of the LDLR-HNP1 complex which highlights the key residues which are involved in the interactions. The putative identification of the receptor binding mechanism should inform the future design of synthetic HNPs to afford maximum internalisation, which could lead to novel anti-infective drugs.

  18. The SH3 regulatory domain of the hematopoietic cell kinase Hck binds ELMO via its polyproline motif

    PubMed Central

    Awad, Rida; Marion, Sévajol; Isabel, Ayala; Anne, Chouquet; Philippe, Frachet; Pierre, Gans; Jean-Baptiste, Reiser; Jean-Philippe, Kleman

    2015-01-01

    Eukaryotic EnguLfment and cell MOtility (ELMO) proteins form an evolutionary conserved family of regulators involved in small GTPase dependent actin remodeling processes that regulates the guanine exchange factor activity of some of the Downstream Of CrK (DOCK) family members. Gathered data strongly suggest that DOCK activation by ELMO and the subsequent signaling result from a subtle balance in the binding of partners to ELMO. Among its putative upward modulators, the Hematopoietic cell kinase (Hck), a member of the Src kinase superfamily, has been identified as a binding partner and a specific tyrosine kinase for ELMO1. Indeed, Hck is implicated in distinct molecular signaling pathways governing phagocytosis, cell adhesion, and migration of hematopoietic cells. Although ELMO1 has been shown to interact with the regulatory Src Homology 3 (SH3) domain of Hck, no direct evidence indicating the mode of interaction between Hck and ELMO1 have been provided in the literature. In the present study, we report convergent pieces of evidence that demonstrate the specific interaction between the SH3 domain of Hck and the polyproline motif of ELMO1. Our results also suggest that the tyrosine-phosphorylation state of ELMO1 tail might act as a putative modulator of Hck kinase activity towards ELMO1 that in turn participates in DOCK180 activation and further triggers subsequent signaling towards actin remodeling. PMID:25737835

  19. Recruitment of RNA molecules by connexin RNA-binding motifs: Implication in RNA and DNA transport through microvesicles and exosomes.

    PubMed

    Varela-Eirin, Marta; Varela-Vazquez, Adrian; Rodríguez-Candela Mateos, Marina; Vila-Sanjurjo, Anton; Fonseca, Eduardo; Mascareñas, José L; Eugenio Vázquez, M; Mayan, Maria D

    2017-04-01

    Connexins (Cxs) are integral membrane proteins that form high-conductance plasma membrane channels, allowing communication from cell to cell (via gap junctions) and from cells to the extracellular environment (via hemichannels). Initially described for their role in joining excitable cells (nerve and muscle), gap junctions (GJs) are found between virtually all cells in solid tissues and are essential for functional coordination by enabling the direct transfer of small signalling molecules, metabolites, ions, and electrical signals from cell to cell. Several studies have revealed diverse channel-independent functions of Cxs, which include the control of cell growth and tumourigenicity. Connexin43 (Cx43) is the most widespread Cx in the human body. The myriad roles of Cx43 and its implication in the development of disorders such as cancer, inflammation, osteoarthritis and Alzheimer's disease have given rise to many novel questions. Several RNA- and DNA-binding motifs were predicted in the Cx43 and Cx26 sequences using different computational methods. This review provides insights into new, ground-breaking functions of Cxs, highlighting important areas for future work such as transfer of genetic information through extracellular vesicles. We discuss the implication of potential RNA- and DNA-binding domains in the Cx43 and Cx26 sequences in the cellular communication and control of signalling pathways.

  20. FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs.

    PubMed

    Kemble, David J; McCullough, Laura L; Whitby, Frank G; Formosa, Tim; Hill, Christopher P

    2015-10-15

    FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.

  1. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs

    PubMed Central

    Kemble, David J.; McCullough, Laura L.; Whitby, Frank G.; Formosa, Tim; Hill, Christopher P.

    2015-01-01

    SUMMARY FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C-termini of each subunit. Mutations throughout these regions impact binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions. PMID:26455391

  2. Despite a Conserved Cystine Knot Motif, Different Cyclotides Have Different Membrane Binding Modes

    PubMed Central

    Wang, Conan K.; Colgrave, Michelle L.; Ireland, David C.; Kaas, Quentin; Craik, David J.

    2009-01-01

    Abstract Cyclotides are cyclic proteins produced by plants for defense against pests. Because of their remarkable stability and diverse bioactivities, they have a range of potential therapeutic applications. The bioactivities of cyclotides are believed to be mediated through membrane interactions. To determine the structural basis for the biological activity of the two major subfamilies of cyclotides, we determined the conformation and orientation of kalata B2 (kB2), a Möbius cyclotide, and cycloviolacin O2 (cO2), a bracelet cyclotide, bound to dodecylphosphocholine micelles, using NMR spectroscopy in the presence and absence of 5- and 16-doxylstearate relaxation probes. Analysis of binding curves using the Langmuir isotherm indicated that cO2 and kB2 have association constants of 7.0 × 103 M−1 and 6.0 × 103 M−1, respectively, consistent with the notion that they are bound near the surface, rather than buried deeply within the micelle. This suggestion is supported by the selective broadening of micelle-bound cyclotide NMR signals upon addition of paramagnetic Mn ions. The cyclotides from the different subfamilies exhibited clearly different binding orientations at the micelle surface. Structural analysis of cO2 confirmed that the main element of the secondary structure is a β-hairpin centered in loop 5. A small helical turn is present in loop 3. Analysis of the surface profile of cO2 shows that a hydrophobic patch stretches over loops 2 and 3, in contrast to the hydrophobic patch of kB2, which predominantly involves loops 2 and 5. The different location of the hydrophobic patches in the two cyclotides explains their different binding orientations and provides an insight into the biological activities of cyclotides. PMID:19720036

  3. A bidentate Lewis acid with a telluronium ion as an anion-binding site

    NASA Astrophysics Data System (ADS)

    Zhao, Haiyan; Gabbaï, François P.

    2010-11-01

    The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B-F --> Te chelate motif supported by a strong lone-pair(F) --> σ*(Te-C) donor-acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

  4. A bidentate Lewis acid with a telluronium ion as an anion-binding site.

    PubMed

    Zhao, Haiyan; Gabbaï, François P

    2010-11-01

    The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B-F → Te chelate motif supported by a strong lone-pair(F) → σ*(Te-C) donor-acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

  5. A Conserved Phenylalanine of Motif IV in Superfamily 2 Helicases Is Required for Cooperative, ATP-Dependent Binding of RNA Substrates in DEAD-Box Proteins▿ †

    PubMed Central

    Banroques, Josette; Cordin, Olivier; Doère, Monique; Linder, Patrick; Tanner, N. Kyle

    2008-01-01

    We have identified a highly conserved phenylalanine in motif IV of the DEAD-box helicases that is important for their enzymatic activities. In vivo analyses of essential proteins in yeast showed that mutants of this residue had severe growth phenotypes. Most of the mutants also were temperature sensitive, which suggested that the mutations altered the conformational stability. Intragenic suppressors of the F405L mutation in yeast Ded1 mapped close to regions of the protein involved in ATP or RNA binding in DEAD-box crystal structures, which implicated a defect at this level. In vitro experiments showed that these mutations affected ATP binding and hydrolysis as well as strand displacement activity. However, the most pronounced effect was the loss of the ATP-dependent cooperative binding of the RNA substrates. Sequence analyses and an examination of the Protein Data Bank showed that the motif IV phenylalanine is conserved among superfamily 2 helicases. The phenylalanine appears to be an anchor that maintains the rigidity of the RecA-like domain. For DEAD-box proteins, the phenylalanine also aligns a highly conserved arginine of motif VI through van der Waals and cation-π interactions, thereby helping to maintain the network of interactions that exist between the different motifs involved in ATP and RNA binding. PMID:18332124

  6. A large displacement of the SXN motif of Cys115-modified penicillin-binding protein 5 from Escherichia coli

    PubMed Central

    2005-01-01

    Penicillin-binding proteins (PBPs), which are the lethal targets of β-lactam antibiotics, catalyse the final stages of peptidoglycan biosynthesis of the bacterial cell wall. PBP 5 of Escherichia coli is a D-alanine CPase (carboxypeptidase) that has served as a useful model to elucidate the catalytic mechanism of low-molecular-mass PBPs. Previous studies have shown that modification of Cys115 with a variety of reagents results in a loss of CPase activity and a large decrease in the rate of deacylation of the penicilloyl–PBP 5 complex [Tamura, Imae and Strominger (1976) J. Biol. Chem. 251, 414–423; Curtis and Strominger (1978) J. Biol. Chem. 253, 2584–2588]. The crystal structure of wild-type PBP 5 in which Cys115 fortuitously had formed a covalent adduct with 2-mercaptoethanol was solved at 2.0 Å (0.2 nm) resolution, and these results provide a structural rationale for how thiol-directed reagents lower the rate of deacylation. When compared with the structure of the unmodified wild-type enzyme, a major change in the architecture of the active site is observed. The two largest differences are the disordering of a loop comprising residues 74–90 and a shift in residues 106–111, which results in the displacement of Ser110 of the SXN active-site motif. These results support the developing hypothesis that the SXN motif of PBP 5, and especially Ser110, is intimately involved in the catalytic mechanism of deacylation. PMID:16038617

  7. Guidelines for choosing molecular "alligator clip" binding motifs in electron transport devices

    NASA Astrophysics Data System (ADS)

    Reuter, Matthew G.; Seideman, Tamar; Ratner, Mark A.

    2011-04-01

    We employ a one-electron, tight-binding model of an electrode-molecule-electrode junction to explore the fundamental relationship between adsorption geometry and electron transport, producing exact results (within this model). By varying the chemisorption location (e.g., atop a surface atom or in a hollow site between surface atoms) and the molecule-electrode coupling, we find that the largest currents are realized when the molecule (i) is highly coordinated by the surface and (ii) has favorable overlap with electrode states near the Fermi level. We also show the importance of electrode-induced molecular level shifting for certain adsorption geometries, which can cause molecular levels far from the Fermi level to conduct better than those near the Fermi level. Since all of these factors are greatly influenced by the chemical moiety used to link the molecule to an electrode, these results present a set of guidelines to help choose "alligator clips" for molecular electronic devices.

  8. A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus.

    PubMed Central

    Olabarría, G; Carrascosa, J L; de Pedro, M A; Berenguer, J

    1996-01-01

    There is experimental evidence to suggest that the 100-kDa S-layer protein from Thermus thermophilus HB8 binds to the peptidoglycan cell wall. This property could be related to the presence of a region (SLH) of homology with other S-layer proteins and extracellular enzymes (A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, J. Bacteriol. 176:1224-1233, 1994). By using specific monoclonal antibodies, we show that similar regions are present in different members of the Deinococcus-Thermus phylogenetic group. To analyze the role that the SLH domain plays in vivo and in vitro in T. thermophilus, we have obtained a mutant form (slpA.X) of the S-layer gene (slpA) in which the SLH domain was deleted. The slpA.X gene was inserted into the chromosome of the thermophile by gene replacement, resulting in a mutant which expressed a major membrane protein with the size expected from the construction (90 kDa). This protein was identified as the product of slpA.X by its differential reaction with monoclonal antibodies. Mutants expressing the SlpA.X protein grow as groups of cells, surrounded by a common external envelope of trigonal symmetry that contains the SlpA.X protein as a main component, thus showing the inability of the SLH-defective protein to attach to the underlying material in vivo. In addition, averaged images of SlpA.X-rich fractions showed a regular arrangement, identical to that built up by the wild-type (SlpA) protein in the absence of peptidoglycan. Finally, we demonstrate by Western blotting (immunoblotting) the direct role of the SLH domain in the binding of the S-layer of T. thermophilus HB8 to the peptidoglycan layer. PMID:8759836

  9. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    PubMed

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.

  10. The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins

    PubMed Central

    Grundy, Gabrielle J.; Rulten, Stuart L.; Arribas-Bosacoma, Raquel; Davidson, Kathryn; Kozik, Zuzanna; Oliver, Antony W.; Pearl, Laurence H.; Caldecott, Keith W.

    2016-01-01

    The Ku-binding motif (KBM) is a short peptide module first identified in APLF that we now show is also present in Werner syndrome protein (WRN) and in Modulator of retrovirus infection homologue (MRI). We also identify a related but functionally distinct motif in XLF, WRN, MRI and PAXX, which we denote the XLF-like motif. We show that WRN possesses two KBMs; one at the N terminus next to the exonuclease domain and one at the C terminus next to an XLF-like motif. We reveal that the WRN C-terminal KBM and XLF-like motif function cooperatively to bind Ku complexes and that the N-terminal KBM mediates Ku-dependent stimulation of WRN exonuclease activity. We also show that WRN accelerates DSB repair by a mechanism requiring both KBMs, demonstrating the importance of WRN interaction with Ku. These data define a conserved family of KBMs that function as molecular tethers to recruit and/or stimulate enzymes during NHEJ. PMID:27063109

  11. ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors

    PubMed Central

    Starick, Stephan R.; Ibn-Salem, Jonas; Jurk, Marcel; Hernandez, Céline; Love, Michael I.; Chung, Ho-Ryun; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H.

    2015-01-01

    The classical DNA recognition sequence of the glucocorticoid receptor (GR) appears to be present at only a fraction of bound genomic regions. To identify sequences responsible for recruitment of this transcription factor (TF) to individual loci, we turned to the high-resolution ChIP-exo approach. We exploited this signal by determining footprint profiles of TF binding at single-base-pair resolution using ExoProfiler, a computational pipeline based on DNA binding motifs. When applied to our GR and the few available public ChIP-exo data sets, we find that ChIP-exo footprints are protein- and recognition sequence-specific signatures of genomic TF association. Furthermore, we show that ChIP-exo captures information about TFs other than the one directly targeted by the antibody in the ChIP procedure. Consequently, the shape of the ChIP-exo footprint can be used to discriminate between direct and indirect (tethering to other DNA-bound proteins) DNA association of GR. Together, our findings indicate that the absence of classical recognition sequences can be explained by direct GR binding to a broader spectrum of sequences than previously known, either as a homodimer or as a heterodimer binding together with a member of the ETS or TEAD families of TFs, or alternatively by indirect recruitment via FOX or STAT proteins. ChIP-exo footprints also bring structural insights and locate DNA:protein cross-link points that are compatible with crystal structures of the studied TFs. Overall, our generically applicable footprint-based approach uncovers new structural and functional insights into the diverse ways of genomic cooperation and association of TFs. PMID:25720775

  12. Affinity regression predicts the recognition code of nucleic acid binding proteins

    PubMed Central

    Pelossof, Raphael; Singh, Irtisha; Yang, Julie L.; Weirauch, Matthew T.; Hughes, Timothy R.; Leslie, Christina S.

    2016-01-01

    Predicting the affinity profiles of nucleic acid-binding proteins directly from the protein sequence is a major unsolved problem. We present a statistical approach for learning the recognition code of a family of transcription factors (TFs) or RNA-binding proteins (RBPs) from high-throughput binding assays. Our method, called affinity regression, trains on protein binding microarray (PBM) or RNA compete experiments to learn an interaction model between proteins and nucleic acids, using only protein domain and probe sequences as inputs. By training on mouse homeodomain PBM profiles, our model correctly identifies residues that confer DNA-binding specificity and accurately predicts binding motifs for an independent set of divergent homeodomains. Similarly, learning from RNA compete profiles for diverse RBPs, our model can predict the binding affinities of held-out proteins and identify key RNA-binding residues. More broadly, we envision applying our method to model and predict biological interactions in any setting where there is a high-throughput ‘affinity’ readout. PMID:26571099

  13. A CAF40-binding motif facilitates recruitment of the CCR4-NOT complex to mRNAs targeted by Drosophila Roquin

    PubMed Central

    Sgromo, Annamaria; Raisch, Tobias; Bawankar, Praveen; Bhandari, Dipankar; Chen, Ying; Kuzuoğlu-Öztürk, Duygu; Weichenrieder, Oliver; Izaurralde, Elisa

    2017-01-01

    Human (Hs) Roquin1 and Roquin2 are RNA-binding proteins that promote mRNA target degradation through the recruitment of the CCR4-NOT deadenylase complex and are implicated in the prevention of autoimmunity. Roquin1 recruits CCR4-NOT via a C-terminal region that is not conserved in Roquin2 or in invertebrate Roquin. Here we show that Roquin2 and Drosophila melanogaster (Dm) Roquin also interact with the CCR4-NOT complex through their C-terminal regions. The C-terminal region of Dm Roquin contains multiple motifs that mediate CCR4-NOT binding. One motif binds to the CAF40 subunit of the CCR4-NOT complex. The crystal structure of the Dm Roquin CAF40-binding motif (CBM) bound to CAF40 reveals that the CBM adopts an α-helical conformation upon binding to a conserved surface of CAF40. Thus, despite the lack of sequence conservation, the C-terminal regions of Roquin proteins act as an effector domain that represses the expression of mRNA targets via recruitment of the CCR4-NOT complex. PMID:28165457

  14. Identification of the Rps28 binding motif from yeast Edc3 involved in the autoregulatory feedback loop controlling RPS28B mRNA decay.

    PubMed

    Kolesnikova, Olga; Back, Régis; Graille, Marc; Séraphin, Bertrand

    2013-11-01

    In the yeast Saccharomyces cerevisiae, the Edc3 protein was previously reported to participate in the auto-regulatory feedback loop controlling the level of the RPS28B messenger RNA (mRNA). We show here that Edc3 binds directly and tightly to the globular core of Rps28 ribosomal protein. This binding occurs through a motif that is present exclusively in Edc3 proteins from yeast belonging to the Saccharomycetaceae phylum. Functional analyses indicate that the ability of Edc3 to interact with Rps28 is not required for its general function and for its role in the regulation of the YRA1 pre-mRNA decay. In contrast, this interaction appears to be exclusively required for the auto-regulatory mechanism controlling the RPS28B mRNA decay. These observations suggest a plausible model for the evolutionary appearance of a Rps28 binding motif in Edc3.

  15. 5-Hydroxymethylcytosine in E-box motifs ACAT|GTG and ACAC|GTG increases DNA-binding of the B-HLH transcription factor TCF4.

    PubMed

    Khund-Sayeed, Syed; He, Ximiao; Holzberg, Timothy; Wang, Jun; Rajagopal, Divya; Upadhyay, Shriyash; Durell, Stewart R; Mukherjee, Sanjit; Weirauch, Matthew T; Rose, Robert; Vinson, Charles

    2016-09-12

    We evaluated DNA binding of the B-HLH family members TCF4 and USF1 using protein binding microarrays (PBMs) containing double-stranded DNA probes with cytosine on both strands or 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC) on one DNA strand and cytosine on the second strand. TCF4 preferentially bound the E-box motif (CAN|NTG) with strongest binding to the 8-mer CAG|GTGGT. 5mC uniformly decreases DNA binding of both TCF4 and USF1. The bulkier 5hmC also inhibited USF1 binding to DNA. In contrast, 5hmC dramatically enhanced TCF4 binding to E-box motifs ACAT|GTG and ACAC|GTG, being better bound than any 8-mer containing cytosine. Examination of X-ray structures of the closely related TCF3 and USF1 bound to DNA suggests TCF3 can undergo a conformational shift to preferentially bind to 5hmC while the USF1 basic region is bulkier and rigid precluding a conformation shift to bind 5hmC. These results greatly expand the regulatory DNA sequence landscape bound by TCF4.

  16. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.

    PubMed Central

    Hurlin, P J; Steingrìmsson, E; Copeland, N G; Jenkins, N A; Eisenman, R N

    1999-01-01

    The basic-helix-loop-helix-leucine zipper (bHLHZip) proteins Myc, Mad and Mnt are part of a transcription activation/repression system involved in the regulation of cell proliferation. The function of these proteins as transcription factors is mediated by heterodimerization with the small bHLHZip protein Max, which is required for their specific DNA binding to E-box sequences. We have identified a novel Max-interacting protein, Mga, which contains a Myc-like bHLHZip motif, but otherwise shows no relationship with Myc or other Max-interacting proteins. Like Myc, Mad and Mnt proteins, Mga requires heterodimerization with Max for binding to the preferred Myc-Max-binding site CACGTG. In addition to the bHLHZip domain, Mga contains a second DNA-binding domain: the T-box or T-domain. The T-domain is a highly conserved DNA-binding motif originally defined in Brachyury and characteristic of the Tbx family of transcription factors. Mga binds the preferred Brachyury-binding sequence and represses transcription of reporter genes containing promoter-proximal Brachyury-binding sites. Surprisingly, Mga is converted to a transcription activator of both Myc-Max and Brachyury site-containing reporters in a Max-dependent manner. Our results suggest that Mga functions as a dual-specificity transcription factor that regulates the expression of both Max-network and T-box family target genes. PMID:10601024

  17. The histidine of the c-type cytochrome CXXCH haem-binding motif is essential for haem attachment by the Escherichia coli cytochrome c maturation (Ccm) apparatus.

    PubMed

    Allen, James W A; Leach, Nicholas; Ferguson, Stuart J

    2005-07-15

    c-type cytochromes are characterized by covalent attachment of haem to the protein by two thioether bonds formed between the haem vinyl groups and the cysteine sulphurs in a CXXCH peptide motif. In Escherichia coli and many other Gram-negative bacteria, this post-translational haem attachment is catalysed by the Ccm (cytochrome c maturation) system. The features of the apocytochrome substrate required and recognized by the Ccm apparatus are uncertain. In the present study, we report investigations of maturation of cytochrome b562 variants containing CXXCR, CXXCK or CXXCM haem-binding motifs. None of them showed any evidence for correct maturation by the Ccm system. However, we have determined, for each variant, that the proteins (i) were expressed in large amounts, (ii) could bind haem in vivo and/or in vitro and (iii) were not degraded in the cell. Together with previous observations, these results strongly suggest that the apocytochrome substrate feature recognized by the Ccm system is simply the two cysteine residues and the histidine of the CXXCH haem-binding motif. Using the same experimental approach, we have also investigated a cytochrome b562 variant containing the special CWSCK motif that binds the active-site haem of E. coli nitrite reductase NrfA. Whereas a CWSCH analogue was matured by the Ccm apparatus in large amounts, the CWSCK form was not detectably matured either by the Ccm system or by the dedicated Nrf biogenesis proteins, implying that the substrate recognition features for haem attachment in NrfA may be more extensive than the CWSCK motif.

  18. Presence of calcium-binding motifs in PilY1 homologs correlates with Ca-mediated twitching motility and evolutionary history across diverse bacteria.

    PubMed

    Parker, Jennifer K; Cruz, Luisa F; Evans, Michael R; De La Fuente, Leonardo

    2015-02-01

    Twitching motility, involving type IV pili, is essential for host colonization and virulence of many pathogenic bacteria. Studies of PilY1, a tip-associated type IV pili protein, indicate that PilY1 functions as a switch between pilus extension and retraction, resulting in twitching motility. Recent work detected a calcium-binding motif in PilY1 of some animal bacterial pathogens and demonstrated that binding of calcium to PilY1 with this motif regulates twitching. Though studies of PilY1 in non-animal pathogens are limited, our group demonstrated that twitching motility in the plant pathogen Xylella fastidiosa, which contains three PilY1 homologs, is increased by calcium supplementation. A study was conducted to investigate the phylogenetic relationship between multiple PilY1 homologs, the presence of calcium-binding motifs therein, and calcium-mediated twitching motility across diverse bacteria. Strains analyzed contained one to three PilY1 homologs, but phylogenetic analyses indicated that PilY1 homologs containing the calcium-binding motif Dx[DN]xDGxxD are phylogenetically divergent from other PilY1 homologs. Plant-associated bacteria included in these analyses were then examined for a calcium-mediated twitching response. Results indicate that bacteria must have at least one PilY1 homolog containing the Dx[DN]xDGxxD motif to display a calcium-mediated increase in twitching motility, which likely reflects an adaption to environmental calcium concentrations.

  19. Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation.

    PubMed

    Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping

    2016-03-02

    Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p < 0.05). Concentration-dependent adsorption is consistent with a single Langmuir model, whereas time-dependent adsorption is in line with a two-domain Langmuir model. Additionally, the chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.

  20. In silico identification of enhancers on the basis of a combination of transcription factor binding motif occurrences

    PubMed Central

    Fang, Yaping; Wang, Yunlong; Zhu, Qin; Wang, Jia; Li, Guoliang

    2016-01-01

    Enhancers interact with gene promoters and form chromatin looping structures that serve important functions in various biological processes, such as the regulation of gene transcription and cell differentiation. However, enhancers are difficult to identify because they generally do not have fixed positions or consensus sequence features, and biological experiments for enhancer identification are costly in terms of labor and expense. In this work, several models were built by using various sequence-based feature sets and their combinations for enhancer prediction. The selected features derived from a recursive feature elimination method showed that the model using a combination of 141 transcription factor binding motif occurrences from 1,422 transcription factor position weight matrices achieved a favorably high prediction accuracy superior to that of other reported methods. The models demonstrated good prediction accuracy for different enhancer datasets obtained from different cell lines/tissues. In addition, prediction accuracy was further improved by integration of chromatin state features. Our method is complementary to wet-lab experimental methods and provides an additional method to identify enhancers. PMID:27582178

  1. Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif

    PubMed Central

    Camacho, Erika; Sanz, Libia; Escalante, Teresa; Pérez, Alicia; Villalta, Fabián; Lomonte, Bruno; Neves-Ferreira, Ana Gisele C.; Feoli, Andrés; Calvete, Juan J.; Gutiérrez, José María; Rucavado, Alexandra

    2016-01-01

    Snake venom metalloproteinases (SVMPs) play key biological roles in prey immobilization and digestion. The majority of these activities depend on the hydrolysis of relevant protein substrates in the tissues. Hereby, we describe several isoforms and a cDNA clone sequence, corresponding to PII SVMP homologues from the venom of the Central American pit viper Bothriechis lateralis, which have modifications in the residues of the canonical sequence of the zinc-binding motif HEXXHXXGXXH. As a consequence, the proteolytic activity of the isolated proteins was undetectable when tested on azocasein and gelatin. These PII isoforms comprise metalloproteinase and disintegrin domains in the mature protein, thus belonging to the subclass PIIb of SVMPs. PII SVMP homologues were devoid of hemorrhagic and in vitro coagulant activities, effects attributed to the enzymatic activity of SVMPs, but induced a mild edema. One of the isoforms presents the characteristic RGD sequence in the disintegrin domain and inhibits ADP- and collagen-induced platelet aggregation. Catalytically-inactive SVMP homologues may have been hitherto missed in the characterization of snake venoms. The presence of such enzymatically-inactive homologues in snake venoms and their possible toxic and adaptive roles deserve further investigation. PMID:27754342

  2. Carbohydrate-binding motif in Chitinase 3-like 1 (CHI3L1/YKL-40) specifically activates Akt signaling pathway in colonic epithelial cells

    PubMed Central

    Chen, Chun-Chuan; Llado, Victoria; Eurich, Katrin; Tran, Hoa T.; Mizoguchi, Emiko

    2011-01-01

    Host-microbial interactions play a key role during the development of colitis. We have previously shown that chinase 3-like 1 (CHI3L1) is an inducible molecule overexpressed in colonic epithelial cells (CECs) under inflammatory conditions. In this study, we found that chitin-binding motif (CBM) of CHI3L1 is specifically associated with the CHI3L1-mediated activation of the Akt-signaling in CEC by transfecting the CBM-mutant CHI3L1 vectors in SW480 CECs. Downstream, CHI3L1 enhanced the secretion of IL-8 and TNFα in a dose-dependent manner. We previously show that 325 through 339 amino-acids in CBM are crucial for the biological function of CHI3L1. Here we demonstrated that 325th–339th residues of CBM in CHI3L1 is a critical region for the activation of Akt, IL-8 production, and for a specific cellular localization of CHI3L1. In conclusion, CBM region of CHI3L1 is critical in activating Akt signaling in CECs, and the activation may be associated with the development of chronic colitis. PMID:21546314

  3. Association of the amino acid motifs of BoLA-DRB3 alleles with mastitis pathogens in Japanese Holstein cows.

    PubMed

    Yoshida, Tatsuyuki; Mukoyama, Harutaka; Furuta, Hiroki; Kondo, Yasuko; Takeshima, Shin-nosuke; Aida, Yoko; Kosugiyama, Motoaki; Tomogane, Hiroshi

    2009-10-01

    The association of the polymorphism of bovine leukocyte antigen (BoLA-DRB3) genes, identified by the polymerase chain reaction sequence-based typing (PCR-SBT) method, with resistance and susceptibility to mastitis caused by Streptococci, coagulase-negative Staphylococci, Escherichia coli and Staphylococcus aureus was investigated. Blood samples for DNA extraction were collected from 170 Holstein cows (129 mastitis and 41 healthy cows) from 5 districts in Chiba prefecture, Japan. Susceptibility or resistance to the mastitis-causing pathogens was thought to vary by the presence of amino acid substitutions at the 9, 11, 13, and 30 positions. DRB3*0101 and DRB3*1501 had amino acid motifs of Glu(9), Ser(11), Ser(13), and Tyr(30), and they were considered to have susceptibility to all 4 mastitis pathogens. In contrast, DRB3*1101 and DRB3*1401 had amino acid motifs of Gln(9), His(11), Gly(13), and His(30) in these positions, and they also had Val(86), so these alleles were considered to have resistance to Streptococcal and coagulase-negative Staphylococcal mastitis. However, in the case of Escherichia coli mastitis, amino acid substitutions at the 9, 11, 13, and 30 positions had little effect, but rather substitutions at the 47, 67 positions of pocket 7, and at the 71, 74 positions of pocket 4, Tyr(47), Ile(67), Ala(71), and Ala(74), were associated with resistance. This motif was present in DRB3*1201.

  4. Identification of Streptococcus mutans PAc peptide motif binding with human MHC class II molecules (DRB1*0802, *1101, *1401 and *1405).

    PubMed Central

    Senpuku, H; Yanagi, K; Nisizawa, T

    1998-01-01

    A surface protein antigen (PAc) of Streptococcus mutans, in particular the A-region of this PAc molecule, has been noted as a possible target in research for an effective dental caries vaccine. To identify the antigenic peptide binding to major histocompatibility complex (MHC) class II (HLA-DR) molecules in the A-region, we prepared a panel of overlapping synthetic peptides in the second unit of the A-region, and established that a simple enzyme-linked immunosorbent assay (ELISA) binding assay could be achieved by incubating the DR-crude. Binding to DR molecules of these peptides from nine donors was investigated by using the ELISA binding assay. It was revealed that the PAc(316-334) peptide bound more strongly to the HLA-DR molecule in seven out of nine subjects. In particular, DR8 (DRB1*0802), DR5 (DRB1*1101) and DR6 (DRB1*1402 and *1405), which bound strongly to PAc(316-334) peptide, were identified. Moreover, we synthesized glycine-substituted peptide analogues of the peptide and examined the binding motif of the binding region. As a result, the multiple binding motif in DR8, DR5 and DR6 was found in L-RV-K-A. It is suggested that a peptide vaccine for dental caries that is more effective for humans, with fewer adverse side-effects, could be designed by combining the multiple binding motif with the B-cell epitope to produce only the inhibiting antibody against dental caries. The peptide could therefore be useful for peptide vaccine development in the general human population. PMID:9824493

  5. Identification of Streptococcus mutans PAc peptide motif binding with human MHC class II molecules (DRB1*0802, *1101, *1401 and *1405).

    PubMed

    Senpuku, H; Yanagi, K; Nisizawa, T

    1998-11-01

    A surface protein antigen (PAc) of Streptococcus mutans, in particular the A-region of this PAc molecule, has been noted as a possible target in research for an effective dental caries vaccine. To identify the antigenic peptide binding to major histocompatibility complex (MHC) class II (HLA-DR) molecules in the A-region, we prepared a panel of overlapping synthetic peptides in the second unit of the A-region, and established that a simple enzyme-linked immunosorbent assay (ELISA) binding assay could be achieved by incubating the DR-crude. Binding to DR molecules of these peptides from nine donors was investigated by using the ELISA binding assay. It was revealed that the PAc(316-334) peptide bound more strongly to the HLA-DR molecule in seven out of nine subjects. In particular, DR8 (DRB1*0802), DR5 (DRB1*1101) and DR6 (DRB1*1402 and *1405), which bound strongly to PAc(316-334) peptide, were identified. Moreover, we synthesized glycine-substituted peptide analogues of the peptide and examined the binding motif of the binding region. As a result, the multiple binding motif in DR8, DR5 and DR6 was found in L-RV-K-A. It is suggested that a peptide vaccine for dental caries that is more effective for humans, with fewer adverse side-effects, could be designed by combining the multiple binding motif with the B-cell epitope to produce only the inhibiting antibody against dental caries. The peptide could therefore be useful for peptide vaccine development in the general human population.

  6. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling.

    PubMed

    Turner, C E; Brown, M C; Perrotta, J A; Riedy, M C; Nikolopoulos, S N; McDonald, A R; Bagrodia, S; Thomas, S; Leventhal, P S

    1999-05-17

    Paxillin is a focal adhesion adaptor protein involved in the integration of growth factor- and adhesion-mediated signal transduction pathways. Repeats of a leucine-rich sequence named paxillin LD motifs (Brown M.C., M.S. Curtis, and C.E. Turner. 1998. Nature Struct. Biol. 5:677-678) have been implicated in paxillin binding to focal adhesion kinase (FAK) and vinculin. Here we demonstrate that the individual paxillin LD motifs function as discrete and selective protein binding interfaces. A novel scaffolding function is described for paxillin LD4 in the binding of a complex of proteins containing active p21 GTPase-activated kinase (PAK), Nck, and the guanine nucleotide exchange factor, PIX. The association of this complex with paxillin is mediated by a new 95-kD protein, p95PKL (paxillin-kinase linker), which binds directly to paxillin LD4 and PIX. This protein complex also binds to Hic-5, suggesting a conservation of LD function across the paxillin superfamily. Cloning of p95PKL revealed a multidomain protein containing an NH2-terminal ARF-GAP domain, three ankyrin-like repeats, a potential calcium-binding EF hand, calmodulin-binding IQ motifs, a myosin homology domain, and two paxillin-binding subdomains (PBS). Green fluorescent protein- (GFP-) tagged p95PKL localized to focal adhesions/complexes in CHO.K1 cells. Overexpression in neuroblastoma cells of a paxillin LD4 deletion mutant inhibited lamellipodia formation in response to insulin-like growth fac- tor-1. Microinjection of GST-LD4 into NIH3T3 cells significantly decreased cell migration into a wound. These data implicate paxillin as a mediator of p21 GTPase-regulated actin cytoskeletal reorganization through the recruitment to nascent focal adhesion structures of an active PAK/PIX complex potentially via interactions with p95PKL.

  7. Validation of chemical compound library screening for transcriptional co-activator with PDZ-binding motif inhibitors using GFP-fused transcriptional co-activator with PDZ-binding motif.

    PubMed

    Nagashima, Shunta; Maruyama, Junichi; Kawano, Shodai; Iwasa, Hiroaki; Nakagawa, Kentaro; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Nishina, Hiroshi; Hata, Yutaka

    2016-06-01

    Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds.

  8. Di-acidic Motifs in the Membrane-distal C Termini Modulate the Transport of Angiotensin II Receptors from the Endoplasmic Reticulum to the Cell Surface*

    PubMed Central

    Zhang, Xiaoping; Dong, Chunmin; Wu, Qiong J.; Balch, William E.; Wu, Guangyu

    2011-01-01

    The molecular mechanisms underlying the endoplasmic reticulum (ER) export and cell surface transport of nascent G protein-coupled receptors (GPCRs) have just begun to be revealed and previous studies have shown that hydrophobic motifs in the putative amphipathic 8th α-helical region within the membrane-proximal C termini play an important role. In this study, we demonstrate that di-acidic motifs in the membrane-distal, nonstructural C-terminal portions are required for the exit from the ER and transport to the plasma membrane of angiotensin II receptors, but not adrenergic receptors. More interestingly, distinct di-acidic motifs dictate optimal export trafficking of different angiotensin II receptors and export ability of each acidic residue in the di-acidic motifs cannot be fully substituted by other acidic residue. Moreover, the function of the di-acidic motifs is likely mediated through facilitating the recruitment of the receptors onto the ER-derived COPII transport vesicles. Therefore, the di-acidic motifs located in the membrane-distal C termini may represent the first linear motifs which recruit selective GPCRs onto the COPII vesicles to control their export from the ER. PMID:21507945

  9. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    SciTech Connect

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke; Kostsin, Dzmitry G.; Kashiwayama, Yoshinori; Takanashi, Kojiro; Yazaki, Kazufumi; Imanaka, Tsuneo; Morita, Masashi

    2014-10-24

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.

  10. Developmentally Regulated RNA-binding Protein 1 (Drb1)/RNA-binding Motif Protein 45 (RBM45), a Nuclear-Cytoplasmic Trafficking Protein, Forms TAR DNA-binding Protein 43 (TDP-43)-mediated Cytoplasmic Aggregates.

    PubMed

    Mashiko, Takafumi; Sakashita, Eiji; Kasashima, Katsumi; Tominaga, Kaoru; Kuroiwa, Kenji; Nozaki, Yasuyuki; Matsuura, Tohru; Hamamoto, Toshiro; Endo, Hitoshi

    2016-07-15

    Cytoplasmic protein aggregates are one of the pathological hallmarks of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Several RNA-binding proteins have been identified as components of inclusion bodies. Developmentally regulated RNA-binding protein 1 (Drb1)/RNA-binding motif protein 45 is an RNA-binding protein that was recently described as a component in ALS- and FTLD-related inclusion bodies. However, the molecular mechanism underlying cytoplasmic Drb1 aggregation remains unclear. Here, using an in vitro cellular model, we demonstrated that Drb1 co-localizes with cytoplasmic aggregates mediated by TAR DNA-binding protein 43, a major component of ALS and FTLD-related inclusion bodies. We also defined the domains involved in the subcellular localization of Drb1 to clarify the role of Drb1 in the formation of cytoplasmic aggregates in ALS and FTLD. Drb1 predominantly localized in the nucleus via a classical nuclear localization signal in its carboxyl terminus and is a shuttling protein between the nucleus and cytoplasm. Furthermore, we identify a double leucine motif serving as a nuclear export signal. The Drb1 mutant, presenting mutations in both nuclear localization signal and nuclear export signal, is prone to aggregate in the cytoplasm. The mutant Drb1-induced cytoplasmic aggregates not only recruit TAR DNA-binding protein 43 but also decrease the mitochondrial membrane potential. Taken together, these results indicate that perturbation of Drb1 nuclear-cytoplasmic trafficking induces toxic cytoplasmic aggregates, suggesting that mislocalization of Drb1 is involved in the cause of cytotoxicity in neuronal cells.

  11. Biophysical analysis of binding of WW domains of the YAP2 transcriptional regulator to PPXY motifs within WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; McIntosh, Samantha K N; Mikles, David C; Bhat, Vikas; Deegan, Brian J; Seldeen, Kenneth L; Saeed, Ali M; Buffa, Laura; Sudol, Marius; Nawaz, Zafar; Farooq, Amjad

    2011-11-08

    The YAP2 transcriptional regulator mediates a plethora of cellular functions, including the newly discovered Hippo tumor suppressor pathway, by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using isothermal titration calorimery and circular dichroism in combination with molecular modeling and molecular dynamics, we provide evidence that the WW1 and WW2 domains of YAP2 recognize various PPXY motifs within WBP1 and WBP2 in a highly promiscuous and subtle manner. Thus, although both WW domains strictly require the integrity of the consensus PPXY sequence, nonconsensus residues within and flanking this motif are not critical for high-affinity binding, implying that they most likely play a role in stabilizing the polyproline type II helical conformation of the PPXY ligands. Of particular interest is the observation that both WW domains bind to a PPXYXG motif with highest affinity, implicating a preference for a nonbulky and flexible glycine one residue to the C-terminal side of the consensus tyrosine. Importantly, a large set of residues within both WW domains and the PPXY motifs appear to undergo rapid fluctuations on a nanosecond time scale, suggesting that WW-ligand interactions are highly dynamic and that such conformational entropy may be an integral part of the reversible and temporal nature of cellular signaling cascades. Collectively, our study sheds light on the molecular determinants of a key WW-ligand interaction pertinent to cellular functions in health and disease.

  12. The HIV-1 Envelope Transmembrane Domain Binds TLR2 through a Distinct Dimerization Motif and Inhibits TLR2-Mediated Responses

    PubMed Central

    Rotem, Etai; Schwarzter, Roland; Gramatica, Andrea; Futerman, Anthony H.; Shai, Yechiel

    2014-01-01

    HIV-1 uses a number of means to manipulate the immune system, to avoid recognition and to highjack signaling pathways. HIV-1 infected cells show limited Toll-Like Receptor (TLR) responsiveness via as yet unknown mechanisms. Using biochemical and biophysical approaches, we demonstrate that the trans-membrane domain (TMD) of the HIV-1 envelope (ENV) directly interacts with TLR2 TMD within the membrane milieu. This interaction attenuates TNFα, IL-6 and MCP-1 secretion in macrophages, induced by natural ligands of TLR2 both in in vitro and in vivo models. This was associated with decreased levels of ERK phosphorylation. Furthermore, mutagenesis demonstrated the importance of a conserved GxxxG motif in driving this interaction within the membrane milieu. The administration of the ENV TMD in vivo to lipotechoic acid (LTA)/Galactosamine-mediated septic mice resulted in a significant decrease in mortality and in tissue damage, due to the weakening of systemic macrophage activation. Our findings suggest that the TMD of ENV is involved in modulation of the innate immune response during HIV infection. Furthermore, due to the high functional homology of viral ENV proteins this function may be a general character of viral-induced immune modulation. PMID:25121610

  13. The HIV-1 envelope transmembrane domain binds TLR2 through a distinct dimerization motif and inhibits TLR2-mediated responses.

    PubMed

    Reuven, Eliran Moshe; Ali, Mohammad; Rotem, Etai; Schwarzer, Roland; Schwarzter, Roland; Gramatica, Andrea; Futerman, Anthony H; Shai, Yechiel

    2014-08-01

    HIV-1 uses a number of means to manipulate the immune system, to avoid recognition and to highjack signaling pathways. HIV-1 infected cells show limited Toll-Like Receptor (TLR) responsiveness via as yet unknown mechanisms. Using biochemical and biophysical approaches, we demonstrate that the trans-membrane domain (TMD) of the HIV-1 envelope (ENV) directly interacts with TLR2 TMD within the membrane milieu. This interaction attenuates TNFα, IL-6 and MCP-1 secretion in macrophages, induced by natural ligands of TLR2 both in in vitro and in vivo models. This was associated with decreased levels of ERK phosphorylation. Furthermore, mutagenesis demonstrated the importance of a conserved GxxxG motif in driving this interaction within the membrane milieu. The administration of the ENV TMD in vivo to lipotechoic acid (LTA)/Galactosamine-mediated septic mice resulted in a significant decrease in mortality and in tissue damage, due to the weakening of systemic macrophage activation. Our findings suggest that the TMD of ENV is involved in modulation of the innate immune response during HIV infection. Furthermore, due to the high functional homology of viral ENV proteins this function may be a general character of viral-induced immune modulation.

  14. Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets.

    PubMed

    Nelson, Christopher S; Fuller, Chris K; Fordyce, Polly M; Greninger, Alexander L; Li, Hao; DeRisi, Joseph L

    2013-07-01

    The transcription factor forkhead box P2 (FOXP2) is believed to be important in the evolution of human speech. A mutation in its DNA-binding domain causes severe speech impairment. Humans have acquired two coding changes relative to the conserved mammalian sequence. Despite intense interest in FOXP2, it has remained an open question whether the human protein's DNA-binding specificity and chromatin localization are conserved. Previous in vitro and ChIP-chip studies have provided conflicting consensus sequences for the FOXP2-binding site. Using MITOMI 2.0 microfluidic affinity assays, we describe the binding site of FOXP2 and its affinity profile in base-specific detail for all substitutions of the strongest binding site. We find that human and chimp FOXP2 have similar binding sites that are distinct from previously suggested consensus binding sites. Additionally, through analysis of FOXP2 ChIP-seq data from cultured neurons, we find strong overrepresentation of a motif that matches our in vitro results and identifies a set of genes with FOXP2 binding sites. The FOXP2-binding sites tend to be conserved, yet we identified 38 instances of evolutionarily novel sites in humans. Combined, these data present a comprehensive portrait of FOXP2's-binding properties and imply that although its sequence specificity has been conserved, some of its genomic binding sites are newly evolved.

  15. Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp.

    PubMed Central

    Ruddock, L. W.; Freedman, R. B.; Klappa, P.

    2000-01-01

    Using a cross-linking approach, we recently demonstrated that radiolabeled peptides or misfolded proteins specifically interact in vitro with two luminal proteins in crude extracts from pancreas microsomes. The proteins were the folding catalysts protein disulfide isomerase (PDI) and PDIp, a glycosylated, PDI-related protein, expressed exclusively in the pancreas. In this study, we explore the specificity of these proteins in binding peptides and related ligands and show that tyrosine and tryptophan residues in peptides are the recognition motifs for their binding by PDIp. This peptide-binding specificity may reflect the selectivity of PDIp in binding regions of unfolded polypeptide during catalysis of protein folding. PMID:10794419

  16. Conserved Asp327 of Walker B motif in the N-terminal Nucleotide Binding Domain (NBD-1) of Cdr1p of Candida albicans has acquired a new role in ATP hydrolysis

    PubMed Central

    Rai, Versha; Gaur, Manisha; Shukla, Sudhanshu; Shukla, Suneet; Ambudkar, Suresh V.; Komath, Sneha Sudha; Prasad, Rajendra

    2008-01-01

    The Walker A and B motifs of nucleotide binding domains (NBDs) of Cdr1p though almost identical to all ABC transporters, has unique substitutions. We have in the past shown that Trp326 of Walker B and Cys193 of Walker A motifs of N-terminal NBD of Cdr1p have distinct roles in ATP binding and hydrolysis, respectively. In the present study, we have examined the role of a well conserved Asp327 in the Walker B motif of the N-terminal NBD which is preceded (Trp326) and followed (Asn328) by atypical amino acid substitutions and compared it with its equivalent well conserved Asp1026 of the C-terminal NBD of Cdr1p. We observed that the removal of the negative charge by D327N, D327A, D1026N, D1026A and D327N/D1026N substitutions, resulted in Cdr1p mutant variants that were severely impaired in ATPase activity and drug efflux. Importantly, all the mutant variants showed characteristics similar to those of wild type with respect to cell surface expression and photoaffinity drug analogue [125I] IAAP and [3H] azidopine labeling. While Cdr1p D327N mutant variant showed comparable binding with [α-32P] 8-azido ATP, Cdr1p D1026N and Cdr1p D327N/D1026N mutant variants were crippled in nucleotide binding. That the two conserved carboxylate residues Asp327 and Asp1026 are functionally different was further evident from the pH profile of ATPase activity. Cdr1p D327N mutant variant showed ∼40% enhancement of its residual ATPase activity at acidic pH while no such pH effect was seen with Cdr1p D1026N mutant variant. Our experimental data suggest that Asp327 of N-terminal NBD has acquired a new role to act as a catalytic base in ATP hydrolysis, a role normally conserved for Glu present adjacent to the conserved Asp in the Walker B motif of all the non-fungal transporters. PMID:17144665

  17. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  18. The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats

    PubMed Central

    Bowman, Andrew; Lercher, Lukas; Singh, Hari R.; Zinne, Daria; Timinszky, Gyula; Carlomagno, Teresa; Ladurner, Andreas G.

    2016-01-01

    Eukaryotic chromatin is a complex yet dynamic structure, which is regulated in part by the assembly and disassembly of nucleosomes. Key to this process is a group of proteins termed histone chaperones that guide the thermodynamic assembly of nucleosomes by interacting with soluble histones. Here we investigate the interaction between the histone chaperone sNASP and its histone H3 substrate. We find that sNASP binds with nanomolar affinity to a conserved heptapeptide motif in the globular domain of H3, close to the C-terminus. Through functional analysis of sNASP homologues we identified point mutations in surface residues within the TPR domain of sNASP that disrupt H3 peptide interaction, but do not completely disrupt binding to full length H3 in cells, suggesting that sNASP interacts with H3 through additional contacts. Furthermore, chemical shift perturbations from 1H-15N HSQC experiments show that H3 peptide binding maps to the helical groove formed by the stacked TPR motifs of sNASP. Our findings reveal a new mode of interaction between a TPR repeat domain and an evolutionarily conserved peptide motif found in canonical H3 and in all histone H3 variants, including CenpA and have implications for the mechanism of histone chaperoning within the cell. PMID:26673727

  19. The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain : the 'double wing' motif.

    SciTech Connect

    Li, N.; Sickmier, E. A.; Zhang, R.; Joachimiak, A.; White, S. W.; Biosciences Division; St. Jude Children's Research Hospital; Univ. of Tennessee Health Science Center; Corixa Inc.

    2002-01-01

    MotA is a transcription factor from bacteriophage T4 that helps adapt the host Escherichia coli transcription apparatus to T4 middle promoters. We have determined the crystal structure of the C-terminal DNA-binding domain of MotA (MotCF) to 1.6 A resolution using multiwavelength, anomalous diffraction methods. The structure reveals a novel DNA-binding alpha/beta motif that contains an exposed beta-sheet surface that mediates interactions with the DNA. Independent biochemical experiments have shown that MotCF binds to one surface of a single turn of DNA through interactions in adjacent major and minor grooves. We present a model of the interaction in which beta-ribbons at opposite corners of the six-stranded beta-sheet penetrate the DNA grooves, and call the motif a 'double wing' to emphasize similarities to the 'winged-helix' motif. The model is consistent with data on how MotA functions at middle promoters, and provides an explanation for why MotA can form non-specific multimers on DNA.

  20. The dual role of LSD1 and HDAC3 in STAT5-dependent transcription is determined by protein interactions, binding affinities, motifs and genomic positions

    PubMed Central

    Nanou, Aikaterini; Toumpeki, Chrisavgi; Lavigne, Matthieu D.; Lazou, Vassiliki; Demmers, Jeroen; Paparountas, Triantafillos; Thanos, Dimitris; Katsantoni, Eleni

    2017-01-01

    STAT5 interacts with other factors to control transcription, and the mechanism of regulation is of interest as constitutive active STAT5 has been reported in malignancies. Here, LSD1 and HDAC3 were identified as novel STAT5a interacting partners in pro-B cells. Characterization of STAT5a, LSD1 and HDAC3 target genes by ChIP-seq and RNA-seq revealed gene subsets regulated by independent or combined action of the factors and LSD1/HDAC3 to play dual role in their activation or repression. Genes bound by STAT5a alone or in combination with weakly associated LSD1 or HDAC3 were enriched for the canonical STAT5a GAS motif, and such binding induced activation or repression. Strong STAT5 binding was seen more frequently in intergenic regions, which might function as distal enhancer elements. Groups of genes bound weaker by STAT5a and stronger by LSD1/HDAC3 showed an absence of the GAS motif, and were differentially regulated based on their genomic binding localization and binding affinities. These genes exhibited increased binding frequency in promoters, and in conjunction with the absence of GAS sites, the data indicate a requirement for stabilization by additional factors, which might recruit LSD1/HDAC3. Our study describes an interaction network of STAT5a/LSD1/HDAC3 and a dual function of LSD1/HDAC3 on STAT5-dependent transcription, defined by protein–protein interactions, genomic binding localization/affinity and motifs. PMID:27651463

  1. Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR.

    PubMed

    Liu, Xinyan; Olczak, Teresa; Guo, Hwai-Chen; Dixon, Dabney W; Genco, Caroline Attardo

    2006-02-01

    We have previously identified and characterized a heme/hemoglobin receptor, HmuR, in Porphyromonas gingivalis. To analyze the conserved amino acid residues of HmuR that may be involved in hemin/hemoprotein binding and utilization, we constructed a series of P. gingivalis A7436 hmuR mutants with amino acid replacements and characterized the ability of these mutants to utilize hemin and hemoproteins. Site-directed mutagenesis was employed to introduce mutations H95A, H434A, H95A-H434A, YRAP420-423YAAA, and NPDL442-445NAAA into HmuR in both P. gingivalis and Escherichia coli. Point mutations at H95 and H434 and in the NPDL motif of HmuR resulted in decreased binding to hemin, hemoglobin, and human serum albumin-hemin complex. Notably, mutations of these conserved sites and motifs led to reduced growth of P. gingivalis when human serum was used as the heme source. Analysis using a three-dimensional homology model of HmuR indicated that H95, H434, and the NPDL motif are present on apical or extracellular loops of HmuR, while the YRAP motif is present on the barrel wall. Taken together, these results support a role for H95, H434, and the NPDL motif of the P. gingivalis HmuR protein in heme binding and utilization of serum hemoproteins and the HmuR YRAP motif in serum hemoprotein utilization.

  2. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  3. Cellular Retinoic Acid Binding Protein and Breast Cancer

    DTIC Science & Technology

    2006-05-01

    fatty acid probe anilinonaphtalene-8- sulphonic acid (ANS) was measured. ANS readily associates with various FABPs and its fluorescence is highly...DAMD17-03-1-0249 TITLE: Cellular Retinoic Acid Binding Protein and Breast Cancer PRINCIPAL INVESTIGATOR: Leslie J. (Willmert) Donato...DATES COVERED (From - To) 14 Apr 03 – 13 Apr 06 5a. CONTRACT NUMBER Cellular Retinoic Acid Binding Protein and Breast Cancer 5b. GRANT NUMBER

  4. Ehrlichia chaffeensis TRP120 binds a G+C-rich motif in host cell DNA and exhibits eukaryotic transcriptional activator function.

    PubMed

    Zhu, Bing; Kuriakose, Jeeba A; Luo, Tian; Ballesteros, Efren; Gupta, Sharu; Fofanov, Yuriy; McBride, Jere W

    2011-11-01

    Ehrlichia chaffeensis is an obligately intracellular bacterium that modulates host cell gene transcription in the mononuclear phagocyte, but the host gene targets and mechanisms involved in transcriptional modulation are not well-defined. In this study, we identified a novel tandem repeat DNA-binding domain in the E. chaffeensis 120-kDa tandem repeat protein (TRP120) that directly binds host cell DNA. TRP120 was observed by immunofluorescent microscopy in the nucleus of E. chaffeensis-infected host cells and was detected in nuclear extracts by Western immunoblotting with TRP120-specific antibody. The TRP120 binding sites and associated host cell target genes were identified using high-throughput deep sequencing (Illumina) of immunoprecipitated DNA (chromatin immunoprecipitation and high-throughput DNA sequencing). Multiple em motif elicitation (MEME) analysis of the most highly enriched TRP120-bound sequences revealed a G+C-rich DNA motif, and recombinant TRP120 specifically bound synthetic oligonucleotides containing the motif. TRP120 target gene binding sites were mapped most frequently to intersecting regions (intron/exon; 49%) but were also identified in upstream regulatory regions (25%) and downstream locations (26%). Genes targeted by TRP120 were most frequently associated with transcriptional regulation, signal transduction, and apoptosis. TRP120 targeted inflammatory chemokine genes, CCL2, CCL20, and CXCL11, which were strongly upregulated during E. chaffeensis infection and were also upregulated by direct transfection with recombinant TRP120. This study reveals that TRP120 is a novel DNA-binding protein that is involved in a host gene transcriptional regulation strategy.

  5. Characterization of the Canine MHC Class I DLA-88*50101 Peptide Binding Motif as a Prerequisite for Canine T Cell Immunotherapy

    PubMed Central

    Barth, Sharon M.; Schreitmüller, Christian M.; Proehl, Franziska; Oehl, Kathrin; Lumpp, Leonie M.; Kowalewski, Daniel J.; Di Marco, Moreno; Sturm, Theo; Backert, Linus; Schuster, Heiko; Stevanović, Stefan; Rammensee, Hans-Georg; Planz, Oliver

    2016-01-01

    There are limitations in pre-clinical settings using mice as a basis for clinical development in humans. In cancer, similarities exist between humans and dogs; thus, the dog patient can be a link in the transition from laboratory research on mouse models to clinical trials in humans. Knowledge of the peptides presented on MHC molecules is fundamental for the development of highly specific T cell-based immunotherapies. This information is available for human MHC molecules but is absent for the canine MHC. In the present study, we characterized the binding motif of dog leukocyte antigen (DLA) class I allele DLA-88*50101, using human C1R and K562 transfected cells expressing the DLA-88*50101 heavy chain. MHC class I immunoaffinity-purification revealed 3720 DLA-88*50101 derived peptides, which enabled the determination of major anchor positions. The characterized binding motif of DLA-88*50101 was similar to HLA-A*02:01. Peptide binding analyses on HLA-A*02:01 and DLA-88*50101 via flow cytometry showed weak binding of DLA-88*50101 derived peptides to HLA-A*02:01, and vice versa. Our results present for the first time a detailed peptide binding motif of the canine MHC class I allelic product DLA-88*50101. These data support the goal of establishing dogs as a suitable animal model for the evaluation and development of T cell-based cancer immunotherapies, benefiting both dog and human patients. PMID:27893789

  6. Exploratory Study on the RNA-Binding Structural Motifs by Library Screening Targeting pre-miRNA-29 a.

    PubMed

    Fukuzumi, Takeo; Murata, Asako; Aikawa, Haruo; Harada, Yasue; Nakatani, Kazuhiko

    2015-11-16

    The metabolic stream of microRNA (miRNA) production, the so-called maturation process of miRNAs, became one of important metabolic paths for drug-targeting to modulate the expression of genes related to a number of diseases. We carried out discovery studies on small molecules binding to the precursor of miR-29a (pre-miR-29a) from a chemical library containing 41,119 compounds (AQ library) by the fluorescent indicator displacement (FID) assay using the xanthone derivative X2SdiMe as a fluorescent indicator. The FID assay provided 1075 compounds, which showed an increase of fluorescence. These compounds were subsequently submitted to a binding analysis in a surface plasmon resonance (SPR) assay on a pre-miR-29a immobilized surface. 21 hit compounds were identified with a good reproducibility in the binding. These compounds have not been reported to bind to RNA until now and can be classified into two groups on the basis of the kinetics in the binding. To gain more information on the motif structures that could be necessary for the binding to pre-miR-29a, 19 substructures were selected from the hit compounds. The substructure library (SS library) which consisted of 362 compounds was prepared from the AQ library. An SPR assay of the SS library on pre-miR-29a-immobilized surface suggested that five substructures could potentially be important structural motifs to bind to pre-miR-29a. These studies demonstrate that the combination of FID-based screening of chemical library and subsequent SPR assay would be one way for obtaining practical solutions for the discovery of molecules which bind to the target pre-miRNAs.

  7. [Kinetics of ligand binding to nucleic acids at random fillings].

    PubMed

    Arakelian, V B; Babaian, S Iu; Tairian, V I; Arakelian, A V; Parsadanian, M A; Vardevanian, P O

    2006-01-01

    Ligand binding with nucleic acids is described in frames of the theory of random processes. It is shown that the probabilistic description of binding of a ligand to nucleic acid allows one to describe not only the kinetics of changes in the number of bound ligands at arbitrary fillings but also to calculate stationary values of the number of bound ligands and its dispersion. A general analysis of absorption isotherms and the kinetics of ligand binding with nucleic acids allows one to determine the rate constants of formation and decomposition of the ligand-nucleic acid complex. A comparison of the results obtained with the case of low fillings is conducted.

  8. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  9. Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding

    PubMed Central

    1993-01-01

    A new protein, fibulin-2, was predicted from sequence analysis of cDNA clones obtained from a mouse fibroblast library. This protein consists of a 1195-residue polypeptide preceded by a 26-residue signal peptide. The COOH-terminal region of 787 amino acids contained three anaphylatoxin-related segments (domain I), 11 EGF-like repeats (domain II), 10 of which had a consensus motif for calcium-binding, and a 115- residue globular domain III. Except for two additional EGF-like repeats, this COOH-terminal region showed 43% sequence identity with the previously described fibulin-1 (BM-90). The NH2-terminal 408 residues, unique to fibulin-2, showed no sequence homology to other known proteins and presumably form two additional domains that differ in their cysteine content. Recombinant fibulin-2 was produced and secreted by human cell clones as a disulfide-bonded trimer. Rotary shadowing visualized the protein as three 40-45 nm long rods which are connected at one end in a globe-like structure. No significant immunological cross-reaction could be detected between fibulin-1 and fibulin-2. Production of the fibulin-2 was demonstrated by Northern blots and radioimmunoassay in fibroblasts but not in several tumor cell lines. Together with the observation that the serum level of fibulin-2 is 1,000-fold lower than that of fibulin-1, the data indicate that these two isoforms are not always coordinately expressed. This is also suggested by Northern blots of tissue mRNAs and by immunofluorescence localizations using mouse tissues. The latter studies also demonstrated an extracellular localization for fibulin-2 in basement membranes and other connective tissue compartments. PMID:8245130

  10. Using Weeder, Pscan, and PscanChIP for the Discovery of Enriched Transcription Factor Binding Site Motifs in Nucleotide Sequences.

    PubMed

    Zambelli, Federico; Pesole, Graziano; Pavesi, Giulio

    2014-09-08

    One of the greatest challenges facing modern molecular biology is understanding the complex mechanisms regulating gene expression. A fundamental step in this process requires the characterization of sequence motifs involved in the regulation of gene expression at transcriptional and post-transcriptional levels. In particular, transcription is modulated by the interaction of transcription factors (TFs) with their corresponding binding sites. Weeder, Pscan, and PscanChIP are software tools freely available for noncommercial users as a stand-alone or Web-based applications for the automatic discovery of conserved motifs in a set of DNA sequences likely to be bound by the same TFs. Input for the tools can be promoter sequences from co-expressed or co-regulated genes (for which Weeder and Pscan are suitable), or regions identified through genome wide ChIP-seq or similar experiments (Weeder and PscanChIP). The motifs are either found by a de novo approach (Weeder) or by using descriptors of the binding specificity of TFs (Pscan and PscanChIP).

  11. Downstream signaling molecules bind to different phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) peptides of the high affinity IgE receptor.

    PubMed

    Kimura, T; Kihara, H; Bhattacharyya, S; Sakamoto, H; Appella, E; Siraganian, R P

    1996-11-01

    The cytoplasmic tails of both the beta and gamma subunits of the high affinity IgE receptor (FcepsilonRI) contain a consensus sequence termed the immunoreceptor tyrosine-based activation motif (ITAM). This motif plays a critical role in receptor-mediated signal transduction. Synthetic peptides based on the ITAM sequences of the beta and gamma subunits of FcepsilonRI were used to investigate which proteins associate with these motifs. Tyrosine-phosphorylated beta and gamma ITAM peptides immobilized on beads precipitated Syk, Lyn, Shc, Grb2, and phospholipase C-gamma1 from lysates of rat basophilic leukemia RBL-2H3 cells. Syk was precipitated predominantly by the tyrosine-diphosphorylated gamma ITAM peptide, but much less by the diphosphorylated beta ITAM peptide or by the monophosphorylated peptides. Phospholipase C-gamma1, Shc, and Grb2 were precipitated only by the diphosphorylated beta ITAM peptide. Non-phosphorylated ITAM peptides did not precipitate these proteins. In membrane binding assays, fusion proteins containing the Src homology 2 domains of phospholipase C-gamma1, Shc, Syk, and Lyn directly bound the tyrosine-phosphorylated ITAM peptides. Although the ITAM sequences of the beta and gamma subunits of FcepsilonRI are similar, once they are tyrosine-phosphorylated they preferentially bind different downstream signaling molecules. Tyrosine phosphorylation of the ITAM of the gamma subunit recruits and activates Syk, whereas the beta subunit may be important for the Ras signaling pathway.

  12. ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8.

    PubMed

    Skytte Rasmussen, Mads; Mouilleron, Stéphane; Kumar Shrestha, Birendra; Wirth, Martina; Lee, Rebecca; Bowitz Larsen, Kenneth; Abudu Princely, Yakubu; O'Reilly, Nicola; Sjøttem, Eva; Tooze, Sharon A; Lamark, Trond; Johansen, Terje

    2017-02-15

    The cysteine protease ATG4B cleaves off one or more C-terminal residues of the inactive proform of proteins of the ortholog and paralog LC3 and GABARAP subfamilies of yeast Atg8 to expose a C-terminal glycine that is conjugated to phosphatidylethanolamine during autophagosome formation. We show that ATG4B contains a C-terminal LC3-interacting region (LIR) motif important for efficient binding to and cleavage of LC3 and GABARAP proteins. We solved the crystal structures of the GABARAPL1-ATG4B C-terminal LIR complex. Analyses of the structures and in vitro binding assays, using specific point mutants, clearly showed that the ATG4B LIR binds via electrostatic-, aromatic HP1 and hydrophobic HP2 pocket interactions. Both these interactions and the catalytic site-substrate interaction contribute to binding between LC3s or GABARAPs and ATG4B. We also reveal an unexpected role for ATG4B in stabilizing the unlipidated forms of GABARAP and GABARAPL1. In mouse embryonic fibroblast (MEF) atg4b knockout cells, GABARAP and GABARAPL1 were unstable and degraded by the proteasome. Strikingly, the LIR motif of ATG4B was required for stabilization of the unlipidated forms of GABARAP and GABARAPL1 in cells.

  13. SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation.

    PubMed

    Chien, Y; Manna, A C; Projan, S J; Cheung, A L

    1999-12-24

    The expression of many virulence determinants in Staphylococcus aureus including alpha-hemolysin-, protein A-, and fibronectin-binding proteins is controlled by global regulatory loci such as sar and agr. In addition to controlling target gene expression via agr (e.g. alpha-hemolysin), the sar locus can also regulate target gene transcription via agr-independent mechanisms. In particular, we have found that SarA, the major regulatory protein encoded within sar, binds to a conserved sequence, homologous to the SarA-binding site on the agr promoter, upstream of the -35 promoter boxes of several target genes including hla (alpha-hemolysin gene), spa (protein A gene), fnb (fibronectin-binding protein genes), and sec (enterotoxin C gene). Deletion of the SarA recognition motif in the promoter regions of agr and hla in shuttle plasmids rendered the transcription of these genes undetectable in agr and hla mutants, respectively. Likewise, the transcription activity of spa (a gene normally repressed by sar), as measured by a XylE reporter fusion assay, became derepressed in a wild type strain containing a shuttle plasmid in which the SarA recognition site had been deleted from the spa promoter region. However, DNase I footprinting assays demonstrated that the SarA-binding region on the spa and hla promoter is more extensive than the predicted consensus sequence, thus raising the possibility that the consensus sequence is an activation site within a larger binding region. Because the sar and agr regulate an assortment of virulence factors in S. aureus, we propose, based on our data, a unifying hypothesis for virulence gene activation in S. aureus whereby SarA is a regulatory protein that binds to its consensus SarA recognition motif to activate (e.g. hla) or repress (e.g. spa) the transcription of sar target genes, thus accounting for both agr-dependent and agr-independent mode of regulation.

  14. Different motif requirements for the localization zipcode element of β-actin mRNA binding by HuD and ZBP1

    PubMed Central

    Kim, Hak Hee; Lee, Seung Joon; Gardiner, Amy S.; Perrone-Bizzozero, Nora I.; Yoo, Soonmoon

    2015-01-01

    Interactions of RNA-binding proteins (RBPs) with their target transcripts are essential for regulating gene expression at the posttranscriptional level including mRNA export/localization, stability, and translation. ZBP1 and HuD are RBPs that play pivotal roles in mRNA transport and local translational control in neuronal processes. While HuD possesses three RNA recognition motifs (RRMs), ZBP1 contains two RRMs and four K homology (KH) domains that either increase target specificity or provide a multi-target binding capability. Here we used isolated cis-element sequences of the target mRNA to examine directly protein-RNA interactions in cell-free systems. We found that both ZBP1 and HuD bind the zipcode element in rat β-actin mRNA's 3′ UTR. Differences between HuD and ZBP1 were observed in their binding preference to the element. HuD showed a binding preference for U-rich sequence. In contrast, ZBP1 binding to the zipcode RNA depended more on the structural level, as it required the proper spatial organization of a stem-loop that is mainly determined by the U-rich element juxtaposed to the 3′ end of a 5′-ACACCC-3′ motif. On the basis of this work, we propose that ZBP1 and HuD bind to overlapping sites in the β-actin zipcode, but they recognize different features of this target sequence. PMID:26152301

  15. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ.

    PubMed

    Baraquet, Claudine; Harwood, Caroline S

    2013-11-12

    The transcription factor FleQ is a bacterial AAA+ ATPase enhancer-binding protein that is the master activator of flagella gene expression in the opportunistic bacterial pathogen Pseudomonas aeruginosa. Homologs of FleQ are present in all Pseudomonas species and in many polarly flagellated gamma proteobacteria. Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls the transition between planktonic and biofilm modes of growth in bacteria in response to diverse environmental signals. C-di-GMP binds to FleQ to dampen its activity, causing down-regulation of flagella gene expression. This action is potentiated in the simultaneous presence of another protein, FleN. We explored the effect of c-di-GMP and FleN on the ATPase activity of FleQ and found that a relatively low concentration of c-di-GMP competitively inhibited FleQ ATPase activity, suggesting that c-di-GMP competes with ATP for binding to the Walker A motif of FleQ. Confirming this, a FleQ Walker A motif mutant failed to bind c-di-GMP. FleN, whose gene is regulated by FleQ, also inhibited FleQ ATPase activity, and FleQ ATPase activity was much more inhibited by c-di-GMP in the presence of FleN than in its absence. These results indicate that FleN and c-di-GMP cooperate to inhibit FleQ activity and, by extension, flagella synthesis in P. aeruginosa. The Walker A motif of FleQ is perfectly conserved, opening up the possibility that other AAA+ ATPases may respond to c-di-GMP.

  16. Inhibition of NF-kappaB by ZAS3, a zinc-finger protein that also binds to the kappaB motif.

    PubMed

    Hong, Joung-Woo; Allen, Carl E; Wu, Lai-Chu

    2003-10-14

    The ZAS proteins are large zinc-finger transcriptional proteins implicated in growth, signal transduction, and lymphoid development. Recombinant ZAS fusion proteins containing one of the two DNA-binding domains have been shown to bind specifically to the kappaB motif, but the endogenous ZAS proteins or their physiological functions are largely unknown. The kappaB motif, GGGACTTTCC, is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth. The Rel family of NF-kappaB, predominantly p65.p50 and p50.p50, are transcription factors well known for inducing gene expression by means of interaction with the kappaB motif during acute-phase responses. A functional link between ZAS and NF-kappaB, two distinct families of kappaB-binding proteins, stems from our previous in vitro studies that show that a representative member, ZAS3, associates with TRAF2, an adaptor molecule in tumor necrosis factor signaling, to inhibit NF-kappaB activation. Biochemical and genetic evidence presented herein shows that ZAS3 encodes major kappaB-binding proteins in B lymphocytes, and that NF-kappaB is constitutively activated in ZAS3-deficient B cells. The data suggest that ZAS3 plays crucial functions in maintaining cellular homeostasis, at least in part by inhibiting NF-kappaB by means of three mechanisms: inhibition of nuclear translocation of p65, competition for kappaB gene regulatory elements, and repression of target gene transcription.

  17. Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis.

    SciTech Connect

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    2010-07-19

    PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth in M. tuberculosis, but is important for proper cell division in Mycobacterium smegmatis. We have determined the crystal structure of PBPA at 2.05 {angstrom} resolution, the first published structure of a PBP from this important pathogen. Compared to other PBPs, PBPA has a relatively small N-terminal domain, and conservation of a cluster of charged residues within this domain suggests that PBPA is more related to class B PBPs than previously inferred from sequence analysis. The C-terminal domain is a typical transpeptidase fold and contains the three conserved active-site motifs characterisitic of penicillin-interacting enzymes. While the arrangement of the SxxK and KTG motifs is similar to that observed in other PBPs, the SxN motif is markedly displaced away from the active site, such that its serine (Ser281) is not involved in hydrogen bonding with residues of the other two motifs. A disulfide bridge between Cys282 (the 'x' of the SxN motif) and Cys266, which resides on an adjacent loop, may be responsible for this unusual conformation. Another interesting feature of the structure is a relatively long connection between {beta}5 and {alpha}11, which restricts the space available in the active site of PBPA and suggests that conformational changes would be required to accommodate peptide substrate or {beta}-lactam antibiotics during acylation. Finally, the structure shows that one of the two threonines postulated to be targets for phosphorylation is inaccessible (Thr362), whereas the other (Thr437) is well placed on a surface loop near the active site.

  18. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis

    PubMed Central

    Wang, Chunyan; Bae, Jin H.; Zhang, David Yu

    2016-01-01

    DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C. PMID:26782977

  19. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Bae, Jin H.; Zhang, David Yu

    2016-01-01

    DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C.

  20. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis.

    PubMed

    Wang, Chunyan; Bae, Jin H; Zhang, David Yu

    2016-01-19

    DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C.

  1. Key Importance of Small RNA Binding for the Activity of a Glycine-Tryptophan (GW) Motif-containing Viral Suppressor of RNA Silencing*

    PubMed Central

    Pérez-Cañamás, Miryam; Hernández, Carmen

    2015-01-01

    Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus. PMID:25505185

  2. Maize regulatory gene opaque-2 encodes a protein with a "leucine-zipper" motif that binds to zein DNA.

    PubMed

    Schmidt, R J; Burr, F A; Aukerman, M J; Burr, B

    1990-01-01

    The opaque-2 locus (o2) in maize regulates the expression of many members of the zein multigene family of storage proteins. cDNA clones for a wild-type allele of the (o2) locus (O2) were isolated from a maize endosperm cDNA library and sequenced. We found a 258-nucleotide 5' leader sequence containing three short open reading frames followed by a sequence specifying a protein of 437 amino acids. The presumptive amino acid sequence of the protein (O2) specified by the O2 cDNA contains a "leucine-zipper" domain characteristic of some mammalian and fungal transcription activation factors. lacZ-O2 fusion constructs, using nearly the entire coding region of O2 or only a fragment specifying the leucine-zipper domain, were expressed in Escherichia coli. In an in vitro binding assay, the beta-galactosidase-O2 fusion proteins bound to two specific regions on the 5' side of the coding sequence in a zein genomic clone. This suggests that the O2 protein affects zein transcription through direct interaction with one or more zein promoter elements.

  3. Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding

    SciTech Connect

    Chen, Yong; Wan, Bingbing; Wang, Kevin C.; Cao, Fang; Yang, Yuting; Protacio, Angeline; Dou, Yali; Chang, Howard Y.; Lei, Ming

    2011-09-06

    Ash2L is a core component of the MLL family histone methyltransferases and has an important role in regulating the methylation of histone H3 on lysine 4. Here, we report the crystal structure of the N-terminal domain of Ash2L and reveal a new function of Ash2L. The structure shows that Ash2L contains an atypical PHD finger that does not have histone tail-binding activity. Unexpectedly, the structure shows a previously unrecognized winged-helix motif that directly binds to DNA. The DNA-binding-deficient mutants of Ash2L reduced Ash2L localization to the HOX locus. Strikingly, a single mutation in Ash2L{sub WH} (K131A) breaks the chromatin domain boundary, suggesting that Ash2L also has a role in chromosome demarcation.

  4. Gas-phase complexes of Ni2+ and Ca2+ with deprotonated histidylhistidine (HisHis): A model case for polyhistidyl-metal binding motifs

    NASA Astrophysics Data System (ADS)

    Peckelsen, Katrin; Martens, Jonathan; Berden, Giel; Oomens, Jos; Dunbar, Robert C.; Meijer, Anthony J. H. M.; Schäfer, Mathias

    2017-02-01

    In the complex formed between the calcium cation (Ca2+) and a deprotonated HisHis dipeptide, the complex adopts a charge solvation (CS) structure. Ca2+, a weak binding main group metal cation, interacts with the oxygens of the peptide carbonyl moiety and the deprotonated C-terminus. In contrast, the much stronger binding Ni2+ cation deprotonates the peptide nitrogen and induces an iminolate (Im) ligand structure in the [Ni(HisHis-H)]+ complex ion. The combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and quantum chemistry evidence these two representative binding motifs. The iminolate coordination pattern identified and characterized in the [Ni(HisHis-H)]+ complex serves as a model case for nickel complexes of poly-histidyl-domains and is thereby also of interest to better understand the fundamentals of immobilized metal ion affinity chromatography as well as of Ni co-factor chemistry in enzymology.

  5. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    SciTech Connect

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  6. [Analysis of the molecular motif for inducing response to jasmonic acid and ethylene in Pib promoter via rice transformation].

    PubMed

    Yu, Li; Yang, Shi-Hu; Jin, Yu-Kuan; Wan, Jian-Min; Zhao, Bao-Quan

    2010-01-01

    The expression of Pib gene in rice was induced by hormone, such as jasmonic acid and ethylene. In order to determine the necessary regions of sequence or motifs for response to jasmonic acid and ethylene in Pib promoter, the full length promoter of Pib (-3,572 approximately 2 bp) and three different 5' deletion fragments of Pib promoter (-2,692 approximately 2 bp, -1,335 approximately 2 bp, -761 approximately 2 bp) were synthesized by PCR and then were substituted for 35S upstream gus in a binary plasmid to construct re-combined plasmids of Pib promoter-gus fusions. Transgenic rice plants of the four recombined plasmids were produced by Agrobacterium-mediated transformation. Quality and quantum analysis of gus activities in transgenic plants at both protein and mRNA levels were conducted. The promotion activity of the full length promoter of Pib (-3,572 approximately 2 bp, pNAR901) was the highest in the four recombinants and the gus activities in its transgenic plant organs were enhanced obviously at 6 h after treatment with jasmonic acid or ethylene. The promotion activity of the deleted Pib promoters was significantly decreased and the response to jasmonic acid or ethylene treatment was not present when the -3,572 approximately -2,692 bp sequence was knocked out from the Pib promoter. Although the disparity in the lengths of the deleted Pib promoter of pNAR902 (-2,692 approximately 2 bp), pNAR903 (-1,335 approximately 2 bp), and pNAR904 (-761 approximately 2 bp) was more than 2 or 3 times, the response to jasmonic acid or ethylene treatment was not different among their transgenic plants. All these results indicated that the common deleted sequences (-3,572 approximately -2,692 bp) in the three deleted Pib promoter constructs were the essential region to the response to jasmonic acid and ethylene treatment. The result of pib promoter sequence searching indicated that there was only one GCCGCC motif at -2,722 bp of this common deleted segment in the Pib promoter

  7. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  8. The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs1

    PubMed Central

    Hecker, Andreas; Brand, Luise H.; Peter, Sébastien; Simoncello, Nathalie; Kilian, Joachim; Gaudin, Valérie

    2015-01-01

    Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein BASIC PENTACYSTEINE6 (BPC6) interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a PRC1 component, and associates with VERNALIZATION2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution. PMID:26025051

  9. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.

    PubMed

    Moreno, Renata; Hernández-Arranz, Sofía; La Rosa, Ruggero; Yuste, Luis; Madhushani, Anjana; Shingler, Victoria; Rojo, Fernando

    2015-01-01

    The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation.

  10. Unlocked nucleic acids with a pyrene-modified uracil: synthesis, hybridization studies, fluorescent properties and i-motif stability.

    PubMed

    Perlíková, Pavla; Karlsen, Kasper K; Pedersen, Erik B; Wengel, Jesper

    2014-01-03

    The synthesis of two new phosphoramidite building blocks for the incorporation of 5-(pyren-1-yl)uracilyl unlocked nucleic acid (UNA) monomers into oligonucleotides has been developed. Monomers containing a pyrene-modified nucleobase component were found to destabilize an i-motif structure at pH 5.2, both under molecular crowding and noncrowding conditions. The presence of the pyrene-modified UNA monomers in DNA strands led to decreases in the thermal stabilities of DNA*/DNA and DNA*/RNA duplexes, but these duplexes' thermal stabilities were better than those of duplexes containing unmodified UNA monomers. Pyrene-modified UNA monomers incorporated in bulges were able to stabilize DNA*/DNA duplexes due to intercalation of the pyrene moiety into the duplexes. Steady-state fluorescence emission studies of oligonucleotides containing pyrene-modified UNA monomers revealed decreases in fluorescence intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene-modified UNA monomers was observed after formation of i-motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene-modified nucleic acids might be useful for designing antisense oligonucleotides and hybridization probes.

  11. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis

    PubMed Central

    Gasch, Philipp; Fundinger, Moritz; Müller, Jana T.; Lee, Travis; Mustroph, Angelika

    2016-01-01

    The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species. PMID:26668304

  12. Central Role of the Copper-Binding Motif in the Complex Mechanism of Action of Ixosin: Enhancing Oxidative Damage and Promoting Synergy with Ixosin B.

    PubMed

    Libardo, M Daben J; Gorbatyuk, Vitaliy Y; Angeles-Boza, Alfredo M

    2016-01-08

    Ticks transmit multiple pathogens to different hosts without compromising their health. Their ability to evade microbial infections is largely a result of their effective innate immune response including various antimicrobial peptides. Therefore, a deep understanding of how ticks (and other arthropod vectors) control microbial loads could lead to the design of broad-spectrum antimicrobial agents. In this paper we study the role of the amino-terminal copper and nickel (ATCUN)-binding sequence in the peptide ixosin, isolated from the salivary glands of the hard tick Ixodes sinensis. Our results indicate that the ATCUN motif is not essential to the potency of ixosin, but is indispensable to its oxidative mechanism of action. Specifically, the ATCUN motif promotes dioxygen- and copper-dependent lipid (per)oxidation of bacterial membranes in a temporal fashion coinciding with the onset of bacterial death. Microscopy and studies on model membranes indicate that the oxidized phospholipids are utilized as potential targets of ixosin B (another tick salivary gland peptide) involving its delocalization to the bacterial membrane, thus resulting in a synergistic effect. Our proposed mechanism of action highlights the centrality of the ATCUN motif to ixosin's mechanism of action and demonstrates a novel way in which (tick) antimicrobial peptides (AMPs) utilize metal ions in its activity. This study suggests that ticks employ a variety of effectors to generate an amplified immune response, possibly justifying its vector competence.

  13. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction

    PubMed Central

    Karlsson, Thomas; Altankhuyag, Altanchimeg; Dobrovolska, Olena; Turcu, Diana C.; Lewis, Aurélia E.

    2016-01-01

    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1. PMID:27118868

  14. An amino acid sequence motif sufficient for subnuclear localization of an arginine/serine-rich splicing factor.

    PubMed

    Hedley, M L; Amrein, H; Maniatis, T

    1995-12-05

    We have identified an amino acid sequence in the Drosophila Transformer (Tra) protein that is capable of directing a heterologous protein to nuclear speckles, regions of the nucleus previously shown to contain high concentrations of spliceosomal small nuclear RNAs and splicing factors. This sequence contains a nucleoplasmin-like bipartite nuclear localization signal (NLS) and a repeating arginine/serine (RS) dipeptide sequence adjacent to a short stretch of basic amino acids. Sequence comparisons from a number of other splicing factors that colocalize to nuclear speckles reveal the presence of one or more copies of this motif. We propose a two-step subnuclear localization mechanism for splicing factors. The first step is transport across the nuclear envelope via the nucleoplasmin-like NLS, while the second step is association with components in the speckled domain via the RS dipeptide sequence.

  15. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  16. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides

    PubMed Central

    Dixon, James E.; Osman, Gizem; Morris, Gavin E.; Markides, Hareklea; Rotherham, Michael; Bayoussef, Zahia; El Haj, Alicia J.; Denning, Chris; Shakesheff, Kevin M.

    2016-01-01

    Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application. PMID:26733682

  17. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  19. Activation of ATP binding for the autophosphorylation of DosS, a Mycobacterium tuberculosis histidine kinase lacking an ATP lid motif.

    PubMed

    Cho, Ha Yeon; Lee, Young-Hoon; Bae, Young-Seuk; Kim, Eungbin; Kang, Beom Sik

    2013-05-03

    The sensor histidine kinases of Mycobacterium tuberculosis, DosS and DosT, are responsible for sensing hypoxic conditions and consist of sensor and kinase cores responsible for accepting signals and phosphorylation activity, respectively. The kinase core contains a dimerization and histidine phosphate-accepting (DHp) domain and an ATP binding domain (ABD). The 13 histidine kinase genes of M. tuberculosis can be grouped based on the presence or absence of the ATP lid motif and F box (elements known to play roles in ATP binding) in their ABDs; DosS and DosT have ABDs lacking both these elements, and the crystal structures of their ABDs indicated that they were unsuitable for ATP binding, as a short loop covers the putative ATP binding site. Although the ABD alone cannot bind ATP, the kinase core is functional in autophosphorylation. Appropriate spatial arrangement of the ABD and DHp domain within the kinase core is required for both autophosphorylation and ATP binding. An ionic interaction between Arg(440) in the DHp domain and Glu(537) in the short loop of the ABD is available and may open the ATP binding site, by repositioning the short loop away from the site. Mutations at Arg(440) and Glu(537) reduce autophosphorylation activity. Unlike other histidine kinases containing an ATP lid, which protects bound ATP, DosS is unable to accept ATP until the ABD is properly positioned relative to the histidine; this may prevent unexpected ATP reactions. ATP binding can, therefore, function as a control mechanism for histidine kinase activity.

  20. Identification of small-molecule inhibitors of calcineurin-NFATc signaling that mimic the PxIxIT motif of calcineurin binding partners.

    PubMed

    Matsoukas, Minos-Timotheos; Aranguren-Ibáñez, Álvaro; Lozano, Teresa; Nunes, Virginia; Lasarte, Juan José; Pardo, Leonardo; Pérez-Riba, Mercè

    2015-06-23

    Calcineurin (CN), a serine and threonine protein phosphatase that depends on Ca(2+) and calmodulin for its activity, is the target of the immunosuppressant drugs cyclosporin A (CsA) and tacrolimus (FK506). CN dephosphorylates and activates members of the NFATc (nuclear factor of activated T cells) family of transcription factors in T cells by binding to their conserved PxIxIT motif. Upon dephosphorylation, NFATc proteins translocate to the nucleus, where they stimulate the expression of genes encoding cytokines and chemokines that are required for T cell proliferation and the immune response. We performed a pharmacophore-based virtual screening of ~5.5 million commercially available, "drug-like" compounds to identify nonpeptidic compounds that inhibited the CN-dependent activation of NFATc signaling and that could serve as potential drug candidates for immunosuppressive therapy. Of 32 compounds that mimicked the PxIxIT motif, 7 competed with NFATc for binding to CN in vitro without interfering with the phosphatase activity of CN. Furthermore, in activated human CD4(+) T cells, four of the seven compounds inhibited the expression of NFATc-dependent genes, cytokine production, and cell proliferation, suggesting that these may have therapeutic potential as immunosuppressive agents.

  1. PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo.

    PubMed

    Xie, Li; Yamamoto, Brenda; Haoudi, Abdelali; Semmes, O John; Green, Patrick L

    2006-03-01

    HTLV-1 cellular transformation and disease induction is dependent on expression of the viral Tax oncoprotein. PDZ is a modular protein interaction domain used in organizing signaling complexes in eukaryotic cells through recognition of a specific binding motif in partner proteins. Tax-1, but not Tax-2, contains a PDZ-binding domain motif (PBM) that promotes the interaction with several cellular PDZ proteins. Herein, we investigate the contribution of the Tax-1 PBM in HTLV-induced proliferation and immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. We generated several HTLV-1 and HTLV-2 Tax viral mutants, including HTLV-1deltaPBM, HTLV-2+C22(+PBM), and HTLV-2+ C18(deltaPBM). All Tax mutants maintained the ability to significantly activate the CREB/ATF or NFkappaB signaling pathways. Microtiter proliferation assays revealed that the Tax-1 PBM significantly increases both HTLV-1- and HTLV-2-induced primary T-cell proliferation. In addition, Tax-1 PBM was responsible for the micronuclei induction activity of Tax-1 relative to that of Tax-2. Viral infection and persistence were severely attenuated in rabbits inoculated with HTLV-1deltaPBM. Our results provide the first direct evidence suggesting that PBM-mediated associations between Tax-1 and cellular proteins play a key role in HTLV-induced cell proliferation and genetic instability in vitro and facilitate viral persistence in vivo.

  2. Allosteric regulation of helicase core activities of the DEAD-box helicase YxiN by RNA binding to its RNA recognition motif.

    PubMed

    Samatanga, Brighton; Andreou, Alexandra Z; Klostermeier, Dagmar

    2017-01-23

    DEAD-box proteins share a structurally similar core of two RecA-like domains (RecA_N and RecA_C) that contain the conserved motifs for ATP-dependent RNA unwinding. In many DEAD-box proteins the helicase core is flanked by ancillary domains. To understand the regulation of the DEAD-box helicase YxiN by its C-terminal RNA recognition motif (RRM), we investigated the effect of RNA binding to the RRM on its position relative to the core, and on core activities. RRM/RNA complex formation substantially shifts the RRM from a position close to the RecA_C to the proximity of RecA_N, independent of RNA contacts with the core. RNA binding to the RRM is communicated to the core, and stimulates ATP hydrolysis and RNA unwinding. The conformational space of the core depends on the identity of the RRM-bound RNA. Allosteric regulation of core activities by RNA-induced movement of ancillary domains may constitute a general regulatory mechanism of DEAD-box protein activity.

  3. ALIX binds a YPX(3)L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting.

    PubMed

    Dores, Michael R; Chen, Buxin; Lin, Huilan; Soh, Unice J K; Paing, May M; Montagne, William A; Meerloo, Timo; Trejo, JoAnn

    2012-04-30

    The sorting of signaling receptors to lysosomes is an essential regulatory process in mammalian cells. During degradation, receptors are modified with ubiquitin and sorted by endosomal sorting complex required for transport (ESCRT)-0, -I, -II, and -III complexes into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs). However, it remains unclear whether a single universal mechanism mediates MVB sorting of all receptors. We previously showed that protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is internalized after activation and sorted to lysosomes independent of ubiquitination and the ubiquitin-binding ESCRT components hepatocyte growth factor-regulated tyrosine kinase substrate and Tsg101. In this paper, we report that PAR1 sorted to ILVs of MVBs through an ESCRT-III-dependent pathway independent of ubiquitination. We further demonstrate that ALIX, a charged MVB protein 4-ESCRT-III interacting protein, bound to a YPX(3)L motif of PAR1 via its central V domain to mediate lysosomal degradation. This study reveals a novel MVB/lysosomal sorting pathway for signaling receptors that bypasses the requirement for ubiquitination and ubiquitin-binding ESCRTs and may be applicable to a subset of GPCRs containing YPX(n)L motifs.

  4. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy

    PubMed Central

    Tubbs, Julie L.; Pegg, Anthony E.; Tainer, John A.

    2007-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a crucial target both for the prevention of cancer and for chemotherapy, since it repairs mutagenic lesions in DNA, and it limits the effectiveness of alkylating chemotherapies. AGT catalyzes the unique, single-step, direct damage reversal repair of O6-alkylguanines by selectively transferring the O6-alkyl adduct to an internal cysteine residue. Recent crystal structures of human AGT alone and in complex with substrate DNA reveal a two-domain a/β fold and a bound zinc ion. AGT uses its helix-turn-helix motif to bind substrate DNA via the minor groove. The alkylated guanine is then flipped out from the base stack into the AGT active site for repair by covalent transfer of the alkyl adduct to Cys145. An asparagine hinge (Asn137) couples the helix-turn-helix DNA binding and active site motifs. An arginine finger (Arg128) stabilizes the extrahelical DNA conformation. With this newly improved structural understanding of AGT and its interactions with biologically relevant substrates, we can now begin to unravel the role it plays in preserving genetic integrity and discover how it promotes resistance to anticancer therapies. PMID:17485252

  5. The PPFLMLLKGSTR motif in globular domain 3 of the human laminin-5 {alpha}3 chain is crucial for integrin {alpha}3{beta}1 binding and cell adhesion

    SciTech Connect

    Kim, Jin-Man; Park, Won Ho; Min, Byung-Moo . E-mail: bmmin@snu.ac.kr

    2005-03-10

    Laminin-5 regulates various cellular functions, including cell adhesion, spreading, and motility. Here, we expressed the five human laminin {alpha}3 chain globular (LG) domains as monomeric, soluble fusion proteins, and examined their biological functions and signaling. Recombinant LG3 (rLG3) protein, unlike rLG1, rLG2, rLG4, and rLG5, played roles in cell adhesion, spreading, and integrin {alpha}3{beta}1 binding. More significantly, we identified a novel motif (PPFLMLLKGSTR) in the LG3 domain that is crucial for these responses. Studies with the synthetic peptides delineated the PPFLMLLKGSTR peptide within LG3 domain as a major site for both integrin {alpha}3{beta}1 binding and cell adhesion. Substitution mutation experiments suggest that the Arg residue is important for these activities. rLG3 protein- and PPFLMLLKGSTR peptide-induced keratinocyte adhesion triggered cell signaling through FAK phosphorylation at tyrosine-397 and -577. To our knowledge, this is the first report demonstrating that the PPFLMLLKGSTR peptide within the LG3 domain is a novel motif that is capable of supporting integrin {alpha}3{beta}1-dependent cell adhesion and spreading.

  6. Crystallization and preliminary crystallographic analysis of calcium-binding protein-2 from Entamoeba histolytica and its complexes with strontium and the IQ1 motif of myosin V

    SciTech Connect

    Gourinath, S. Padhan, Narendra; Alam, Neelima; Bhattacharya, Alok

    2005-04-01

    Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Two domains with four canonical EF-hand-containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though they have very high sequence similarity, these bind to different target proteins in a Ca{sup 2+}-dependent manner, leading to different functional pathways. Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 111.74, b = 68.83, c = 113.25 Å, β = 116.7°. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 69.18, b = 112.03, c = 93.42 Å, β = 92.8°. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. This complex was crystallized with MPD and ethanol as precipitating agents. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 60.5, b = 69.86, c = 86.5 Å, β = 97.9°.

  7. Trypanosoma cruzi Binds to Cytokeratin through Conserved Peptide Motifs Found in the Laminin-G-Like Domain of the gp85/Trans-sialidase Proteins

    PubMed Central

    Teixeira, Andre Azevedo Reis; de Vasconcelos, Veronica de Cássia Sardinha; Colli, Walter; Alves, Maria Júlia Manso; Giordano, Ricardo José

    2015-01-01

    Background Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is a disease that affects millions of people most of them living in South and Central Americas. There are few treatment options for individuals with Chagas' disease making it important to understand the molecular details of parasite infection, so novel therapeutic alternatives may be developed for these patients. Here, we investigate the interaction between host cell intermediate filament proteins and the T. cruzi gp85 glycoprotein superfamily with hundreds of members that have long been implicated in parasite cell invasion. Methodology/Principal Findings An in silico analysis was utilized to identify peptide motifs shared by the gp85 T. cruzi proteins and, using phage display, these selected peptide motifs were screened for their ability to bind to cells. One peptide, named TS9, showed significant cell binding capacity and was selected for further studies. Affinity chromatography, phage display and invasion assays revealed that peptide TS9 binds to cytokeratins and vimentin, and prevents T. cruzi cell infection. Interestingly, peptide TS9 and a previously identified binding site for intermediate filament proteins are disposed in an antiparallel β-sheet fold, present in a conserved laminin-G-like domain shared by all members of the family. Moreover, peptide TS9 overlaps with an immunodominant T cell epitope. Conclusions/Significance Taken together, the present study reinforces previous results from our group implicating the gp85 superfamily of glycoproteins and the intermediate filament proteins cytokeratin and vimentin in the parasite infection process. It also suggests an important role in parasite biology for the conserved laminin-G-like domain, present in all members of this large family of cell surface proteins. PMID:26398185

  8. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya.

    PubMed

    Idrovo Espín, Fabio Marcelo; Peraza-Echeverria, Santy; Fuentes, Gabriela; Santamaría, Jorge M

    2012-05-01

    The TGA transcription factors belong to the subfamily of bZIP group D that play a major role in disease resistance and development. Most of the TGA identified in Arabidopsis interact with the master regulator of SAR, NPR1 that controls the expression of PR genes. As a first approach to determine the possible involvement of these transcription factors in papaya defense, we characterized Arabidopsis TGA orthologs from the genome of Carica papaya cv. SunUp. Six orthologs CpTGA1 to CpTGA6, were identified. The predicted CpTGA proteins were highly similar to AtTGA sequences and probably share the same DNA binding properties and transcriptional regulation features. The protein sequences alignment evidenced the presence of conserved domains, characteristic of this group of transcription factors. The phylogeny showed that CpTGA evolved into three different subclades associated with defense and floral development. This is the first report of basal expression patterns assessed by RT-PCR, from the whole subfamily of CpTGA members in different tissues from papaya cv. Maradol mature plants. Overall, CpTGA1, CpTGA3 CpTGA6 and CpTGA4 showed a basal expression in all tissues tested; CpTGA2 expressed strongly in all tissues except in petioles while CpTGA5 expressed only in petals and to a lower extent in petioles. Although more detailed studies in anthers and other floral structures are required, we suggest that CpTGA5 might be tissue-specific, and it might be involved in papaya floral development. On the other hand, we report here for the first time, the expression of the whole family of CpTGA in response to salicylic acid (SA). The expression of CpTGA3, CpTGA4 and CpTGA6 increased in response to SA, what would suggest its involvement in the SAR response in papaya.

  9. Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

    PubMed Central

    Baek, Yu Mi; Yoon, Soojin; Hwang, Yeo Eun

    2016-01-01

    Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I. PMID:27574504

  10. Delayed secondary glucocorticoid response elements. Unusual nucleotide motifs specify glucocorticoid receptor binding to transcribed regions of alpha 2u-globulin DNA.

    PubMed

    Chan, G C; Hess, P; Meenakshi, T; Carlstedt-Duke, J; Gustafsson, J A; Payvar, F

    1991-11-25

    Glucocorticoids stimulate the transcription of rat alpha 2u-globulin (RUG) genes. Because this induction occurs after a time lag of several hours and is blocked by inhibitors of protein synthesis, it exemplifies a delayed secondary response to steroid hormones. In this report, we show that a region of RUG-transcribed DNA (approximately +1800 to +2174) contains multiple footprint sites for glucocorticoid receptor that are, apparently, organized into at least three independent binding clusters. The DNA sequences bound by the receptor and the location of binding sites were determined. A family of sequences related to half-sites of the consensus primary glucocorticoid response element (GRE) is discernible at each cluster of sites. Compared to the consensus GRE, which contains two pseudo-palindromic hexanucleotides arranged in a tail-to-tail fashion and separated by three bases, the arrangements of hexanucleotides within this segment of RUG DNA are unusual and heterogeneous. Methylation interference of a binding cluster containing three receptor footprints demonstrates that certain guanines of the GRE-like hexanucleotides are essential for efficient receptor binding. A synthetic 29-base pair (bp) RUG element, containing one receptor footprint from this cluster, selectively binds the receptor. Within this 29-bp element, six nucleotides separate two directly repeated copies of GRE-like hexanucleotides. RUG DNA fragments containing all or part of the three binding clusters, including the 29-bp element, confer a delayed secondary hormone responsiveness upon a linked heterologous promoter and reporter gene in stably transfected cell lines. We speculate that the unusual DNA sequence motifs of the receptor-binding sites are crucial for the generation of certain delayed secondary responses.

  11. Betaine 0.77-perhydrate 0.23-hydrate and common structural motifs in crystals of amino acid perhydrates.

    PubMed

    Minkov, Vasily S; Kapustin, Evgeny A; Boldyreva, Elena V

    2013-04-01

    The title compound, betaine 0.77-perhydrate 0.23-hydrate, (CH3)3N(+)CH2COO(-)·0.77H2O2·0.23H2O, crystallizes in the orthorhombic noncentrosymmetric space group Pca2(1). Chiral molecules of hydrogen peroxide are positionally disordered with water molecules in a ratio of 0.77:0.23. Betaine, 2-(trimethylazaniumyl)acetate, preserves its zwitterionic state, with a positively charged ammonium group and a negatively charged carboxylate group. The molecular conformation of betaine here differs from the conformations of both anhydrous betaine and its hydrate, mainly in the orientation of the carboxylate group with respect to the C-C-N skeleton. Hydrogen peroxide is linked via two hydrogen bonds to carboxylate groups, forming infinite chains along the crystallographic a axis, which are very similar to those in the crystal structure of betaine hydrate. The present work contributes to the understanding of the structure-forming factors for amino acid perhydrates, which are presently attracting much attention. A correlation is suggested between the ratio of amino acid zwitterions and hydrogen peroxide in the unit cell and the structural motifs present in the crystal structures of all currently known amino acids perhydrates. This can help to classify the crystal structures of amino acid perhydrates and to design new crystal structures.

  12. Novel antiplatelet role for a protein disulfide isomerase-targeted peptide: Evidence of covalent binding to C-terminal CGHC redox motif.

    PubMed

    Sousa, H R; Gaspar, R S; Sena, E M L; da Silva, S A; de L Fontelles, J L; Araújo, T L S; Mastrogiovanni, M; Fries, D M; Azevedo-Santos, A P S; Laurindo, F R M; Trostchansky, A; Paes, A M

    2017-01-21

    Protein disulfide isomerase (PDI) plays a major role in platelet aggregation and its inhibitors have emerged as novel antithrombotic drugs. In previous work, we designed a peptide based on PDI redox motif (CGHC) that inhibited both PDI reductase activity and PDI-modulated superoxide generation by neutrophil Nox2. Thus, we hypothesized this peptide would also inhibit platelet aggregation by association to surface PDI. Three peptides were used: CxxC, containing the PDI redox motif; Scr, presenting a scrambled sequence of the same residues and AxxA, with cysteines replaced by alanine. We showed that CxxC decreased platelet aggregation in a dose-dependent manner, being more potent at lower agonist concentrations, whereas neither AxxA nor Scr peptides exerted any effect. In thrombin-activated platelets, surface expression of activated αIIbβ3 integrin, P-selectin and granulophysin were analyzed by flow cytometry. CxxC decreased αIIbβ3 activation, but had no effect on the other markers. Upon membrane free thiol labeling in resting platelets, CxxC decreased cell-surface PDI pull down without interfering in total thiol protein content. Finally, the capacity of CxxC to covalently bind to PDI active site was analyzed by ESI LC-MS/MS. We detected the addition of one CxxC molecule to reduced PDI through binding to Cys400 , an important site for PDI prothrombotic activity. Interestingly, CxxC did not react with oxidized PDI. In summary, our data support an antiplatelet activity for CxxC through binding to Cys400 in PDI a' domain, which can be further exploited as a model for site-driven antithrombotic agents development. This article is protected by copyright. All rights reserved.

  13. Myosin IIIB uses an actin-binding motif in its espin-1 cargo to reach the tips of actin protrusions.

    PubMed

    Merritt, Raymond C; Manor, Uri; Salles, Felipe T; Grati, M'hamed; Dose, Andrea C; Unrath, William C; Quintero, Omar A; Yengo, Christopher M; Kachar, Bechara

    2012-02-21

    Myosin IIIA (MYO3A) targets actin protrusion tips using a motility mechanism dependent on both motor and tail actin-binding activity [1]. We show that myosin IIIB (MYO3B) lacks tail actin-binding activity and is unable to target COS7 cell filopodia tips, yet is somehow able to target stereocilia tips. Strikingly, when MYO3B is coexpressed with espin-1 (ESPN1), a MYO3A cargo protein endogenously expressed in stereocilia [2], MYO3B targets and carries ESPN1 to COS7 filopodia tips. We show that this tip localization is lost when we remove the ESPN1 C terminus actin-binding site. We also demonstrate that, like MYO3A [2], MYO3B can elongate filopodia by transporting ESPN1 to the polymerizing end of actin filaments. The mutual dependence of MYO3B and ESPN1 for tip localization reveals a novel mechanism for the cell to regulate myosin tip localization via a reciprocal relationship with cargo that directly participates in actin binding for motility. Our results are consistent with a novel form of motility for class III myosins that requires both motor and tail domain actin-binding activity and show that the actin-binding tail can be replaced by actin-binding cargo. This study also provides a framework to better understand the late-onset hearing loss phenotype in patients with MYO3A mutations.

  14. Switch recombination breakpoints are strictly correlated with DNA recognition motifs for immunoglobulin S gamma 3 DNA-binding proteins

    PubMed Central

    1992-01-01

    The deletion looping out model of switch (S) recombination predicts that the intervening DNA between switch regions will be excised as a circle. Circular excision products of immunoglobulin switch recombination have been recently isolated from lipopolysaccharide (LPS)- stimulated spleen cells. The recombination breakpoints in these large circles were found to fall within switch regions. Since switch recombination is clearly focused on switch regions, we hypothesized that some DNA-binding protein factor might be involved in specifically recognizing and facilitating the alignment of switch regions before recombination. Two DNA-binding proteins that specifically interact with two discrete regions of the S gamma 3 tandem repeat have been identified in crude and partially purified nuclear extracts derived from LPS- and dextran sulfate (DxS)-activated splenic B cells. The first factor has been found indistinguishable from NF-kappa B by mobility shift assays, methylation interference, competition binding studies, and supershift analysis using an antiserum specific for the p50 component. The second appears to be composed of two closely traveling mobilities that do not separate upon partial purification. This second complex is unique and specific for S gamma 3 by methylation interference assays and competition-binding analysis. The sites at which recombination occurs in the S gamma 3 switch region have been analyzed and found to strictly correlate with the binding sites of the S gamma 3 switch binding proteins. PMID:1500850

  15. Using a color-coded ambigraphic nucleic acid notation to visualize conserved palindromic motifs within and across genomes

    PubMed Central

    2014-01-01

    Background Ambiscript is a graphically-designed nucleic acid notation that uses symbol symmetries to support sequence complementation, highlight biologically-relevant palindromes, and facilitate the analysis of consensus sequences. Although the original Ambiscript notation was designed to easily represent consensus sequences for multiple sequence alignments, the notation’s black-on-white ambiguity characters are unable to reflect the statistical distribution of nucleotides found at each position. We now propose a color-augmented ambigraphic notation to encode the frequency of positional polymorphisms in these consensus sequences. Results We have implemented this color-coding approach by creating an Adobe Flash® application ( http://www.ambiscript.org) that shades and colors modified Ambiscript characters according to the prevalence of the encoded nucleotide at each position in the alignment. The resulting graphic helps viewers perceive biologically-relevant patterns in multiple sequence alignments by uniquely combining color, shading, and character symmetries to highlight palindromes and inverted repeats in conserved DNA motifs. Conclusion Juxtaposing an intuitive color scheme over the deliberate character symmetries of an ambigraphic nucleic acid notation yields a highly-functional nucleic acid notation that maximizes information content and successfully embodies key principles of graphic excellence put forth by the statistician and graphic design theorist, Edward Tufte. PMID:24447494

  16. CDR3 clonotype and amino acid motif diversity of BV19 expressing circulating human CD8 T cells

    PubMed Central

    Yassai, Maryam B.; Demos, Wendy; Janczak, Teresa; Naumova, Elena N.; Gorski, Jack

    2015-01-01

    Generating a detailed description of human T cell repertoire diversity is an important goal in the study of human immunology. The circulation is the source of most T cells used for studies in humans. Here we use high throughput sequencing of TCR BV19 transcripts from CD8 T cells derived from unmanipulated PBMC from an older HLA-A2 individual to provide a quantitative and qualitative description of the clonotypic CDR3 nucleotide and amino acid composition of the TCR β-chain from this subset of circulating CD8 T cells. Aggregated samples from six time points spanning ~ 1.5 years were analyzed to smooth possible temporal fluctuation. BV19 encompasses the well studied RS-encoding clonotypes involved in recognition of the M158–66 epitope from influenza A in HLA-A2 individuals. The clonotype distribution was diverse, complex and self-similar. The amino acid composition was generally skewed in favor of glycines and there were specific amino acids observed at higher frequency at the NDN start position. The motif repertoire distribution was also diverse, complex and self-similar with respect to CDR3 length, NDN start and length. PMID:26593155

  17. The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in alpha-like DNA polymerases is required by phage phi 29 DNA polymerase for protein-primed initiation and polymerization.

    PubMed Central

    Bernad, A; Lázaro, J M; Salas, M; Blanco, L

    1990-01-01

    The alpha-like DNA polymerases from bacteriophage phi 29 and other viruses, prokaryotes and eukaryotes contain an amino acid consensus sequence that has been proposed to form part of the dNTP binding site. We have used site-directed mutants to study five of the six highly conserved consecutive amino acids corresponding to the most conserved C-terminal segment (Tyr-Gly-Asp-Thr-Asp-Ser). Our results indicate that in phi 29 DNA polymerase this consensus sequence, although irrelevant for the 3'----5' exonuclease activity, is essential for initiation and elongation. Based on these results and on its homology with known or putative metal-binding amino acid sequences, we propose that in phi 29 DNA polymerase the Tyr-Gly-Asp-Thr-Asp-Ser consensus motif is part of the dNTP binding site, involved in the synthetic activities of the polymerase (i.e., initiation and polymerization), and that it is involved particularly in the metal binding associated with the dNTP site. Images PMID:2191296

  18. Decreased plasma arachidonic acid binding capacity in neonates.

    PubMed

    Sadowitz, P D; Walenga, R W; Clark, D; Stuart, M J

    1987-01-01

    Arachidonic acid (AA) metabolites have been implicated in neonatal pathologic states such as respiratory distress syndrome (RDS). Since free (nonprotein bound) AA is the substrate for synthesis of these compounds, a decreased capacity to bind AA in neonatal plasma could contribute to these disorders. AA binding was assayed by equilibrium dialysis in plasma samples from healthy adults and various infant groups. Plasma from these infant groups bound significantly less AA than adult plasma. Premature infants with RDS and premature infants receiving intralipid had the lowest capacity to bind AA. The increased availability of free AA may be important in neonatal pathophysiologic states involving arachidonate metabolites.

  19. Binding sites of retinol and retinoic acid with serum albumins.

    PubMed

    Belatik, A; Hotchandani, S; Bariyanga, J; Tajmir-Riahi, H A

    2012-02-01

    Retinoids are effectively transported in the bloodstream via serum albumins. We report the complexation of bovine serum albumin (BSA) with retinol and retinoic acid at physiological conditions, using constant protein concentration and various retinoid contents. FTIR, CD and fluorescence spectroscopic methods and molecular modeling were used to analyze retinoid binding site, the binding constant and the effects of complexation on BSA stability and secondary structure. Structural analysis showed that retinoids bind BSA via hydrophilic and hydrophobic interactions with overall binding constants of K(Ret)(-BSA) = 5.3 (±0.8) × 10(6) M(-1) and K(Retac-BSA) = 2.3 (±0.4) × 10(6) M(-1). The number of bound retinoid molecules (n) was 1.20 (±0.2) for retinol and 1.8 (±0.3) for retinoic acid. Molecular modeling showed the participation of several amino acids in retinoid-BSA complexes stabilized by H-bonding network. The retinoid binding altered BSA conformation with a major reduction of α-helix from 61% (free BSA) to 36% (retinol-BSA) and 26% (retinoic acid-BSA) with an increase in turn and random coil structures indicating a partial protein unfolding. The results indicate that serum albumins are capable of transporting retinoids in vitro and in vivo.

  20. Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling.

    PubMed

    Ma, Fei; Kimura, Yukihiro; Yu, Long-Jiang; Wang, Peng; Ai, Xi-Cheng; Wang, Zheng-Yu; Zhang, Jian-Ping

    2009-03-01

    Native and Ca(2+)-depleted light-harvesting-reaction center core complexes (LH1-RC) from the photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibit maximal LH1-Q(y) absorption at 915 and 889 nm, respectively. To understand the structural origins of the spectral variation, we performed spectroscopic and structure modeling investigations. For the 889 nm form of LH1-RC, bacteriochlorophyll a (BChl a) in the native form was found by means of near-infrared Fourier-transform Raman spectroscopy, a higher degree of macrocycle distortion and a stronger hydrogen bond with the beta-Trp(-8) residue. SWISS-MODEL structure modeling suggests the presence of a specific coordination motif of Ca(2+) at the C-terminus of the alpha-subunit of LH1, while MODELLER reveals the tilt of alpha- and beta-polypeptides with reference to the structural template, as well as a change in the concentric orientation of BChl a molecules, both of which may be connected to the long-wavelength LH1-Q(y) absorption of the 915 nm form. The carotenoid spirilloxanthin shows a twisted all-trans configuration in both forms of LH1 as evidenced by the resonance Raman spectroscopic results. With regard to the thermal stability, the 915 nm form was shown by the use of temperature-dependent fluorescence spectroscopy to be approximately 20 K more stable than the 889 nm form, which may be ascribed to the specific Ca(2+)-binding motif of LH1.

  1. TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif.

    PubMed

    Segura-Puimedon, Maria; Borralleras, Cristina; Pérez-Jurado, Luis A; Campuzano, Victoria

    2013-09-25

    General transcription factor (TFII-I) is a multi-functional protein involved in the transcriptional regulation of critical developmental genes, encoded by the GTF2I gene located on chromosome 7q11.23. Haploinsufficiency at GTF2I has been shown to play a major role in the neurodevelopmental features of Williams-Beuren syndrome (WBS). Identification of genes regulated by TFII-I is thus critical to detect molecular determinants of WBS as well as to identify potential new targets for specific pharmacological interventions, which are currently absent. We performed a microarray screening for transcriptional targets of TFII-I in cortex and embryonic cells from Gtf2i mutant and wild-type mice. Candidate genes with altered expression were verified using real-time PCR. A novel motif shared by deregulated genes was found and chromatin immunoprecipitation assays in embryonic fibroblasts were used to document in vitro TFII-I binding to this motif in the promoter regions of deregulated genes. Interestingly, the PI3K and TGFβ signaling pathways were over-represented among TFII-I-modulated genes. In this study we have found a highly conserved DNA element, common to a set of genes regulated by TFII-I, and identified and validated novel in vivo neuronal targets of this protein affecting the PI3K and TGFβ signaling pathways. Overall, our data further contribute to unravel the complexity and variability of the different genetic programs orchestrated by TFII-I.

  2. Metallofullerenol Gd@C82(OH)22 distracts the proline-rich-motif from putative binding on the SH3 domain

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Gu; Huynh, Tien; Zhou, Ruhong

    2013-03-01

    Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses due to the complicated protein-protein interactions. Here, we investigate a potential interference of a metallofullerenol, Gd@C82(OH)22, on the function of SH3 domain, a highly promiscuous protein-protein interaction mediator involved in signaling and regulatory pathways through its binding with the proline-rich motif (PRM) peptides, using the atomistic molecular dynamics simulation. Our study shows that when only Gd@C82(OH)22 and the SH3 domain are present (without the PRM ligand), Gd@C82(OH)22 can interact with the SH3 domain by either directly blocking the hydrophobic active site or binding with a hydrophilic off-site with almost equal probability, which can be understood from its intrinsic amphiphilic nature. In a binding competition with the PRM onto the SH3 domain, however, the on-site binding mode is depleted while Gd@C82(OH)22 effectively intercepts the PRM from the putative binding site of the SH3 domain, implying that Gd@C82(OH)22 can disturb protein-protein interactions mediated by the SH3 domain. Despite a successful surface modification in an aqueous biological medium and a more recent demonstration as potential de novo cancer therapeutics, our study indicates that greater attention is needed in assessing the potential cytotoxicity of these nanomaterials.Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses

  3. Purification, crystallization and preliminary crystallographic studies of C-terminal RNA recognition motif (RRM-3) of human ELAV-type RNA-binding protein 3 (ETR-3)

    PubMed Central

    Kashyap, Maruthi; Sharma, Ashwani; Bhavesh, Neel Sarovar

    2013-01-01

    Human embryonically lethal abnormal vision (ELAV)-type RNA-binding protein 3 (ETR-3) has been implicated in many aspects of RNA-processing events including alternative splicing, stability, editing and translation. RNA recognition motif 3 (RRM-3) is an independent C-terminal RNA-binding domain of ETR-3 that preferentially binds to UG-rich repeats of the nuclear or cytoplasmic pre-mRNA, and along with the other domains mediates the inclusion of cardiac troponin T (c-TNT) exon 5 in embryonic muscle, which is otherwise excluded in the adult. In the present study, RRM-3 was cloned, overexpressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to 3 Å resolution at the home source and belonged to space group P213, with unit-cell parameters a = b = c = 118.5 Å, α = β = γ = 90°. There were two molecules of RRM-3 in the asymmetric unit and the calculated Matthews coefficient (V M) was 6.35 Å3 Da−1, with a solvent content of 80.62%. Initial phases were determined by molecular replacement. PMID:24100559

  4. Structure and function of Plasmodium falciparum malate dehydrogenase: role of critical amino acids in co-substrate binding pocket.

    PubMed

    Pradhan, Anupam; Tripathi, Abhai K; Desai, Prashant V; Mukherjee, Prasenjit K; Avery, Mitchell A; Walker, Larry A; Tekwani, Babu L

    2009-01-01

    The malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our laboratory have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal glycine motif, which forms a characteristic Rossman dinucleotide-binding fold in the co-substrate binding pocket, differentiates PfMDH (GlyXGlyXXGly) from other eukaryotic and prokaryotic malate dehydrogenases (GlyXXGlyXXGly). The amino acids lining the co-substrate binding pocket are completely conserved in MDHs from different species of human, primate and rodent malaria parasites. Based on this knowledge and conserved domains among prokaryotic and eukaryotic MDH, the role of critical amino acids lining the co-substrate binding pocket was analyzed in catalytic functions of PfMDH using site-directed mutagenesis. Insertion of Ala at the 9th or 10th position, which converts the N-terminal GlyXGlyXXGly motif (characteristic of malarial MDH and LDH) to GlyXXGlyXXGly (as in bacterial and eukaryotic MDH), uncoupled regulation of the enzyme through substrate inhibition. The dinucleotide fold GlyXGlyXXGly motif seems not to be responsible for the distinct affinity of PfMDH to 3-acetylpyridine-adenine dinucleotide (APAD, a synthetic analog of NAD), since Ala9 and Ala10 insertion mutants still utilized APADH. The Gln11Met mutation, which converts the signature glycine motif in PfMDH to that of PfLDH, did not change the enzyme function. However, the Gln11Gly mutant showed approximately a 5-fold increase in catalytic activity, and higher susceptibility to inhibition with gossypol. Asn119 and His174 participate in binding of both co-substrate and substrate. The Asn119Gly mutant exhibited approximately a 3-fold decrease in catalytic efficiency, while mutation of His174 to Asn or Ala resulted in an inactive enzyme. These studies provide critical insights into the co

  5. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    SciTech Connect

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-03-01

    The crystal structure of a phosphatidylethanolamine-binding protein from P. vivax, a homolog of Raf-kinase inhibitor protein (RKIP), has been solved to a resolution of 1.3 Å. The inferred interaction surface near the anion-binding site is found to include a distinctive left-handed α-helix. The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family.

  6. Two-dimensional combinatorial screening of a bacterial rRNA A-site-like motif library: defining privileged asymmetric internal loops that bind aminoglycosides.

    PubMed

    Tran, Tuan; Disney, Matthew D

    2010-03-09

    RNAs have diverse structures that are important for biological function. These structures include bulges and internal loops that can form tertiary contacts or serve as ligand binding sites. The most commonly exploited RNA drug target for small molecule intervention is the bacterial ribosome, more specifically the rRNA aminoacyl-tRNA site (rRNA A-site) which is a major target for the aminoglycoside class of antibiotics. The bacterial A-site is composed of a 1 x 1 nucleotide all-U internal loop and a 2 x 1 nucleotide all-A internal loop separated by a single GC base pair. Therefore, we probed the molecular recognition of a small library of four aminoglycosides for binding a 16384-member bacterial rRNA A-site-like internal loop library using two-dimensional combinatorial screening (2DCS). 2DCS is a microarray-based method that probes RNA and chemical spaces simultaneously. These studies sought to determine if aminoglycosides select their therapeutic target if given a choice of binding all possible internal loops derived from an A-site-like library. Results show that the bacterial rRNA A-site was not selected by any aminoglycoside. Analyses of selected sequences using the RNA Privileged Space Predictor (RNA-PSP) program show that each aminoglycoside preferentially binds different types of internal loops. For three of the aminoglycosides, 6''-azido-kanamycin A, 5-O-(2-azidoethyl)-neamine, and 6''-azido-tobramycin, the selected internal loops bind with approximately 10-fold higher affinity than the bacterial rRNA A-site. The internal loops selected to bind 5''-azido-neomycin B bind with an affinity similar to that of the therapeutic target. Selected internal loops that are unique for each aminoglycoside have dissociation constants ranging from 25 to 270 nM and are specific for the aminoglycoside they was selected to bind compared to the other arrayed aminoglycosides. These studies further establish a database of RNA motifs that are recognized by small molecules that

  7. The splenic autoimmune response to ADAMTS13 in thrombotic thrombocytopenic purpura contains recurrent antigen-binding CDR3 motifs.

    PubMed

    Schaller, Monica; Vogel, Monique; Kentouche, Karim; Lämmle, Bernhard; Kremer Hovinga, Johanna A

    2014-11-27

    Acquired thrombotic thrombocytopenic purpura (TTP) is the consequence of a severe ADAMTS13 deficiency resulting from autoantibodies inhibiting ADAMTS13 or accelerating its clearance. Despite the success of plasma exchange the risk of relapse is high. From 2 patients (A and B), splenectomized for recurrent episodes of acquired TTP, the splenic B-cell response against ADAMTS13 was characterized through generation of human monoclonal anti-ADAMTS13 autoantibodies (mAbs) by cloning an immunoglobulin G (IgG)4κ- and IgG4λ-Fab library using phage display technology and by Epstein-Barr virus transformation of switched memory B cells (CD19+/CD27+/IgG+). Sequence analysis of the anti-ADAMTS13 IgGs of both patients revealed that the VH gene use was limited in our patients to VH1-3 (55%), VH1-69 (17%), VH3-30 (7%), and VH4-28 (21%) and contained 8 unique and thus far not reported heavy-chain complementarity determining region 3 motifs, of which 4 were shared by the 2 patients. The discovery of several highly similar anti-ADAMTS13 autoantibodies in 2 unrelated TTP patients suggests that the autoimmune response is antigen driven, because the probability that such similar immunoglobulin rearrangements happen by chance is very low (< 10(-9)).

  8. Nucleic acid binding and other biomedical properties of artificial oligolysines

    PubMed Central

    Roviello, Giovanni N; Vicidomini, Caterina; Costanzo, Vincenzo; Roviello, Valentina

    2016-01-01

    In the present study, we report the interaction of an artificial oligolysine (referred to as AOL) realized in our laboratory with targets of biomedical importance. These included polyinosinic acid (poly rI) and its complex with polycytidylic acid (poly I:C), RNAs with well-known interferon-inducing ability, and double-stranded (ds) DNA. The ability of the peptide to bind both single-stranded poly rI and ds poly I:C RNAs emerged from our circular dichroism (CD) and ultraviolet (UV) studies. In addition, we found that AOL forms complexes with dsDNA, as shown by spectroscopic binding assays and UV thermal denaturation experiments. These findings are encouraging for the possible use of AOL in biomedicine for nucleic acid targeting and oligonucleotide condensation, with the latter being a key step preceding their clinical application. Moreover, we tested the ability of AOL to bind to proteins, using serum albumin as a model protein. We demonstrated the oligolysine–protein binding by CD experiments which suggested that AOL, positively charged under physiological conditions, binds to the protein regions rich in anionic residues. Finally, the morphology characterization of the solid oligolysine, performed by scanning electron microscopy, showed different crystal forms including cubic-shaped crystals confirming the high purity of AOL. PMID:28115843

  9. Introduction of Ca(2+)-binding amino-acid sequence into the T4 lysozyme.

    PubMed

    Leontiev, V V; Uversky, V N; Permyakov, E A; Murzin, A G

    1993-03-05

    The 51-62 loop of T4 phage lysozyme was altered by site-directed mutagenesis to obtain maximal homology with the typical EF-hand motif. A Ca(2+)-binding site was designed and created by replacing both Gly-51 and Asn-53 with aspartic acid. The mutant T4 lysozyme (G51D/N53D) was expressed in Escherichia coli. The activity of the G51D/N53D-mutant was about 60% of that of the wild-type protein. This mutant can bind Ca2+ ions specifically, while the effective dissociation constant was essentially greater than that of the EF-hand proteins. Stability of the G51D/N53D-mutant apo-form to urea- or temperature-induced denaturation was the same as that of the wild-type protein. In the presence of Ca2+ ions in solution the stability of the mutant T4 phage lysozyme was less than that of the wild-type protein. It is suggested that the binding of Ca2+ by the mutant is accompanied by the considerable conformational changes in the 'corrected' loop, which can lead to the Ca(2+)-induced destabilization of the protein.

  10. An eIF2α-binding motif in protein phosphatase 1 subunit GADD34 and its viral orthologs is required to promote dephosphorylation of eIF2α

    PubMed Central

    Rojas, Margarito; Vasconcelos, Gabriel; Dever, Thomas E.

    2015-01-01

    Transient protein synthesis inhibition, mediated by phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α), is an important protective mechanism cells use during stress conditions. Following relief of the stress, the growth arrest and DNA damage-inducible protein GADD34 associates with the broadly acting serine/threonine protein phosphatase 1 (PP1) to dephosphorylate eIF2α. Whereas the PP1-binding motif on GADD34 has been defined, it remains to be determined how GADD34 directs PP1 to specifically dephosphorylate eIF2α. In this report, we map a novel eIF2α-binding motif to the C terminus of GADD34 in a region distinct from where PP1 binds to GADD34. This motif is characterized by the consensus sequence Rx[Gnl]x1–2Wxxx[Arlv]x[Dn][Rg]xRFxx[Rlvk][Ivc], where capital letters are preferred and x is any residue. Point mutations altering the eIF2α-binding motif impair the ability of GADD34 to interact with eIF2α, promote eIF2α dephosphorylation, and suppress PKR toxicity in yeast. Interestingly, this eIF2α-docking motif is conserved among viral orthologs of GADD34, and is necessary for the proteins produced by African swine fever virus, Canarypox virus, and Herpes simplex virus to promote eIF2α dephosphorylation. Taken together, these data indicate that GADD34 and its viral orthologs direct specific dephosphorylation of eIF2α by interacting with both PP1 and eIF2α through independent binding motifs. PMID:26100893

  11. An eIF2α-binding motif in protein phosphatase 1 subunit GADD34 and its viral orthologs is required to promote dephosphorylation of eIF2α.

    PubMed

    Rojas, Margarito; Vasconcelos, Gabriel; Dever, Thomas E

    2015-07-07

    Transient protein synthesis inhibition, mediated by phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α), is an important protective mechanism cells use during stress conditions. Following relief of the stress, the growth arrest and DNA damage-inducible protein GADD34 associates with the broadly acting serine/threonine protein phosphatase 1 (PP1) to dephosphorylate eIF2α. Whereas the PP1-binding motif on GADD34 has been defined, it remains to be determined how GADD34 directs PP1 to specifically dephosphorylate eIF2α. In this report, we map a novel eIF2α-binding motif to the C terminus of GADD34 in a region distinct from where PP1 binds to GADD34. This motif is characterized by the consensus sequence Rx[Gnl]x(1-2)Wxxx[Arlv]x[Dn][Rg]xRFxx[Rlvk][Ivc], where capital letters are preferred and x is any residue. Point mutations altering the eIF2α-binding motif impair the ability of GADD34 to interact with eIF2α, promote eIF2α dephosphorylation, and suppress PKR toxicity in yeast. Interestingly, this eIF2α-docking motif is conserved among viral orthologs of GADD34, and is necessary for the proteins produced by African swine fever virus, Canarypox virus, and Herpes simplex virus to promote eIF2α dephosphorylation. Taken together, these data indicate that GADD34 and its viral orthologs direct specific dephosphorylation of eIF2α by interacting with both PP1 and eIF2α through independent binding motifs.

  12. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    PubMed

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  13. Urinary intestinal fatty acid binding protein predicts necrotizing enterocolitis.

    PubMed

    Gregory, Katherine E; Winston, Abigail B; Yamamoto, Hidemi S; Dawood, Hassan Y; Fashemi, Titilayo; Fichorova, Raina N; Van Marter, Linda J

    2014-06-01

    Necrotizing enterocolitis, characterized by sudden onset and rapid progression, remains the most significant gastrointestinal disorder among premature infants. In seeking a predictive biomarker, we found intestinal fatty acid binding protein, an indicator of enterocyte damage, was substantially increased within three and seven days before the diagnosis of necrotizing enterocolitis.

  14. Structure of L-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic L-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold

    SciTech Connect

    Shi, Rong; Pineda, Marco; Ajamian, Eunice; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw

    2009-01-15

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+}, which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.

  15. Identification of a gene for an ancient cytokine, interleukin 15-like, in mammals; interleukins 2 and 15 co-evolved with this third family member, all sharing binding motifs for IL-15Rα.

    PubMed

    Dijkstra, Johannes M; Takizawa, Fumio; Fischer, Uwe; Friedrich, Maik; Soto-Lampe, Veronica; Lefèvre, Christophe; Lenk, Matthias; Karger, Axel; Matsui, Taei; Hashimoto, Keiichiro

    2014-02-01

    Interleukins 2 and 15 (IL-2 and IL-15) are highly differentiated but related cytokines with overlapping, yet also distinct functions, and established benefits for medical drug use. The present study identified a gene for an ancient third IL-2/15 family member in reptiles and mammals, interleukin 15-like (IL-15L), which hitherto was only reported in fish. IL-15L genes with intact open reading frames (ORFs) and evidence of transcription, and a recent past of purifying selection, were found for cattle, horse, sheep, pig and rabbit. In human and mouse the IL-15L ORF is incapacitated. Although deduced IL-15L proteins share only ~21 % overall amino acid identity with IL-15, they share many of the IL-15 residues important for binding to receptor chain IL-15Rα, and recombinant bovine IL-15L was shown to interact with IL-15Rα indeed. Comparison of sequence motifs indicates that capacity for binding IL-15Rα is an ancestral characteristic of the IL-2/15/15L family, in accordance with a recent study which showed that in fish both IL-2 and IL-15 can bind IL-15Rα. Evidence reveals that the species lineage leading to mammals started out with three similar cytokines IL-2, IL-15 and IL-15L, and that later in evolution (1) IL-2 and IL-2Rα receptor chain acquired a new and specific binding mode and (2) IL-15L was lost in several but not all groups of mammals. The present study forms an important step forward in understanding this potent family of cytokines, and may help to improve future strategies for their application in veterinarian and human medicine.

  16. Intramolecular i-motif structure at acidic pH for progressive myoclonus epilepsy (EPM1) repeat d(CCCCGCCCCGCG)n.

    PubMed

    Pataskar, S S; Dash, D; Brahmachari, S K

    2001-10-01

    The most common mutation associated with Progressive Myoclonus Epilepsy (EPM1) of Unverricht-Lundberg type is the expansion of a dodecamer repeat, d(CCCCGCCCCGCG)n. We show that the C-rich strand of this repeat (2-3 copies) forms intercalated i-motif structure at acidic pH as judged by CD spectroscopy and anomalous gel electrophoretic mobility. The stability of the structure increases with the increase in the length of the repeat. Transient formation of stable, folded back structure like i-motif could play an important role in the mechanism of expansion of this repeat.

  17. A novel cysteine-rich sequence-specific DNA-binding protein interacts with the conserved X-box motif of the human major histocompatibility complex class II genes via a repeated Cys-His domain and functions as a transcriptional repressor

    PubMed Central

    1994-01-01

    The class II major histocompatibility complex (MHC) molecules function in the presentation of processed peptides to helper T cells. As most mammalian cells can endocytose and process foreign antigen, the critical determinant of an antigen-presenting cell is its ability to express class II MHC molecules. Expression of these molecules is usually restricted to cells of the immune system and dysregulated expression is hypothesized to contribute to the pathogenesis of a severe combined immunodeficiency syndrome and certain autoimmune diseases. Human complementary DNA clones encoding a newly identified, cysteine-rich transcription factor, NF-X1, which binds to the conserved X-box motif of class II MHC genes, were obtained, and the primary amino acid sequence deduced. The major open reading frame encodes a polypeptide of 1,104 amino acids with a symmetrical organization. A central cysteine-rich portion encodes the DNA-binding domain, and is subdivided into seven repeated motifs. This motif is similar to but distinct from the LIM domain and the RING finger family, and is reminiscent of known metal-binding regions. The unique arrangement of cysteines indicates that the consensus sequence CX3CXL-XCGX1- 5HXCX3CHXGXC represents a novel cysteine-rich motif. Two lines of evidence indicate that the polypeptide encodes a potent and biologically relevant repressor of HLA-DRA transcription: (a) overexpression of NF-X1 from a retroviral construct strongly decreases transcription from the HLA-DRA promoter; and (b) the NF-X1 transcript is markedly induced late after induction with interferon gamma (IFN- gamma), coinciding with postinduction attenuation of HLA-DRA transcription. The NF-X1 protein may therefore play an important role in regulating the duration of an inflammatory response by limiting the period in which class II MHC molecules are induced by IFN-gamma. PMID:7964459

  18. Purification, cloning, and expression of a murine phosphoprotein that binds the kappa B motif in vitro identifies it as the homolog of the human heterogeneous nuclear ribonucleoprotein K protein. Description of a novel DNA-dependent phosphorylation process.

    PubMed

    Ostrowski, J; Van Seuningen, I; Seger, R; Rauch, C T; Sleath, P R; McMullen, B A; Bomsztyk, K

    1994-07-01

    The kappa B enhancer element regulates expression of many genes involved in immune responses and other processes. kappa B motif binds a number of proteins, some but not all, are related to the NF-kappa B family of transcription factors. We have previously identified a 65-kDa phosphoprotein that is specifically recognized by the kappa B motif (Ostrowski, J., Sims, J. E., Sibley, C. H., Valentine, M. A., Dower, S. K., Meier, K. E., and Bomsztyk, K. (1991) J. Biol. Chem. 266, 12722-12733). This protein is closely associated with a serine/threonine kinase that is responsive to treatment of cells with interleukin-1 and other agents. We report here purification, cloning, and expression of this kappa B motif-binding phosphoprotein. The primary structure deduced from the isolated murine cDNA, identifies the protein as the homolog of the human heterogeneous nuclear ribonucleoprotein K protein. Antipeptide antibodies and expression of the cloned cDNA in Escherichia coli, demonstrated that the K protein is the authentic phosphoprotein that binds the kappa B motif in vitro. We also demonstrate that the in vitro phosphorylation of the natural and the recombinant K proteins by the associated kinase is stimulated by the kappa B motif.

  19. Histatins: salivary peptides with copper(II)- and zinc(II)-binding motifs: perspectives for biomedical applications.

    PubMed

    Melino, Sonia; Santone, Celeste; Di Nardo, Paolo; Sarkar, Bibudhendra

    2014-02-01

    Natural antimicrobial peptides represent a primordial mechanism of immunity in both vertebrate and nonvertebrate organisms. Among them, histatins belong to a family of human salivary metal-binding peptides displaying potent antibacterial, antifungal and wound-healing activities. These properties, along with the ability of histatins to inhibit collagenases and cysteine proteases, have attracted much attention for their potential use in the treatment of several oral diseases. This review critically assesses the studies carried out to date in order to provide a comprehensive and systematic vision of the information accumulated so far. In particular, the relationship between metal-binding and peptide activity is extensively analysed. The review provides important clues for developing possible therapeutic applications of histatins and their synthetic peptide analogues by creating a set of necessary resource materials to support investigators and industries interested in exploiting their unique properties.

  20. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    PubMed Central

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-01-01

    The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family. PMID:17329808

  1. The First Aspartic Acid of the DQxD Motif for Human UDP-Glucuronosyltransferase 1A10 Interacts with UDP-Glucuronic Acid during Catalysis

    PubMed Central

    Xiong, Yan; Patana, Anne-Sisko; Miley, Michael J.; Zielinska, Agnieszka K.; Bratton, Stacie M.; Miller, Grover P.; Goldman, Adrian; Finel, Moshe; Redinbo, Matt R.; Radominska-Pandya, Anna

    2008-01-01

    All UDP-glucuronosyltransferase enzymes (UGTs) share a common cofactor, UDP-glucuronic acid (UDP-GlcUA). The binding site for UDP-GlcUA is localized to the C-terminal domain of UGTs on the basis of amino acid sequence homology analysis and crystal structures of glycosyltransferases, including the C-terminal domain of human UGT2B7. We hypothesized that the 393DQMD-NAK399 region of human UGT1A10 interacts with the glucuronic acid moiety of UDP-GlcUA. Using site-directed mutagenesis and enzymatic analysis, we demonstrated that the D393A mutation abolished the glucuronidation activity of UGT1A10 toward all substrates. The effects of the alanine mutation at Q394, D396, and K399 on glucuronidation activities were substrate-dependent. Previously, we examined the importance of these residues in UGT2B7. Although D393 (D398 in UGT2B7) is similarly critical for UDP-GlcUA binding in both enzymes, the effects of Q394 (Q399 in UGT2B7) to Ala mutation on activity were significant but different between UGT1A10 and UGT2B7. A model of the UDP-GlcUA binding site suggests that the contribution of other residues to cosubstrate binding may explain these differences between UGT1A10 and UGT2B7. We thus postulate that D393 is critical for the binding of glucuronic acid and that proximal residues, e.g., Q394 (Q399 in UGT2B7), play a subtle role in cosubstrate binding in UGT1A10 and UGT2B7. Hence, this study provides important new information needed for the identification and understanding of the binding sites of UGTs, a major step forward in elucidating their molecular mechanism. PMID:18048489

  2. Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D.

    PubMed

    Christensen, Brian; Schack, Lotte; Kläning, Eva; Sørensen, Esben S

    2010-03-12

    Osteopontin (OPN) is a highly modified integrin-binding protein present in most tissues and body fluids where it has been implicated in numerous biological processes. A significant regulation of OPN function is mediated through phosphorylation and proteolytic processing. Proteolytic cleavage by thrombin and matrix metalloproteinases close to the integrin-binding Arg-Gly-Asp sequence modulates the function of OPN and its integrin binding properties. In this study, seven N-terminal OPN fragments originating from proteolytic cleavage have been characterized from human milk. Identification of the cleavage sites revealed that all fragments contained the Arg-Gly-Asp(145) sequence and were generated by cleavage of the Leu(151)-Arg(152), Arg(152)-Ser(153), Ser(153)-Lys(154), Lys(154)-Ser(155), Ser(155)-Lys(156), Lys(156)-Lys(157), or Phe(158)-Arg(159) peptide bonds. Six cleavages cannot be ascribed to thrombin or matrix metalloproteinase activity, whereas the cleavage at Arg(152)-Ser(153) matches thrombin specificity for OPN. The principal protease in milk, plasmin, hydrolyzed the same peptide bond as thrombin, but its main cleavage site was identified to be Lys(154)-Ser(155). Another endogenous milk protease, cathepsin D, cleaved the Leu(151)-Arg(152) bond. OPN fragments corresponding to plasmin activity were also identified in urine showing that plasmin cleavage of OPN is not restricted to milk. Plasmin, but not cathepsin D, cleavage of OPN increased cell adhesion mediated by the alpha(V)beta(3)- or alpha(5)beta(1)-integrins. Similar cellular adhesion was mediated by plasmin and thrombin-cleaved OPN showing that plasmin can be a potent regulator of OPN activity. These data show that OPN is highly susceptible to cleavage near its integrin-binding motifs, and the protein is a novel substrate for plasmin and cathepsin D.

  3. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice.

    PubMed

    Jing, Pei; Zou, Juanzi; Kong, Lin; Hu, Shiqi; Wang, Biying; Yang, Jun; Xie, Guosheng

    2016-06-01

    Calcium-binding proteins play key roles in the signal transduction in the growth and stress response in eukaryotes. However, a subfamily of proteins with one EF-hand motif has not been fully studied in higher plants. Here, a novel small calcium-binding protein with a C-terminal centrin-like domain (CCD1) in rice, OsCCD1, was characterized to show high similarity with a TaCCD1 in wheat. As a result, OsCCD1 can bind Ca(2+) in the in vitro EMSA and the fluorescence staining calcium-binding assays. Transient expression of green fluorescent protein (GFP)-tagged OsCCD1 in rice protoplasts showed that OsCCD1 was localized in the nucleus and cytosol of rice cells. OsCCD1 transcript levels were transiently induced by osmotic stress and salt stress through the calcium-mediated ABA signal. The rice seedlings of T-DNA mutant lines showed significantly less tolerance to osmotic and salt stresses than wild type plants (p<0.01). Conversely, its overexpressors can significantly enhance the tolerance to osmotic and salt stresses than wild type plants (p<0.05). Semi-quantitative RT-PCR analysis revealed that, OsDREB2B, OsAPX1 and OsP5CS genes are involved in the rice tolerance to osmotic and salt stresses. In sum, OsCCD1 gene probably affects the DREB2B and its downstream genes to positively regulate osmotic and salt tolerance in rice seedlings.

  4. Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides.

    PubMed

    Wei, Fang; Zhang, Dongmao; Halas, Naomi J; Hartgerink, Jeffrey D

    2008-07-31

    Raman and surface-enhanced Raman spectroscopies (SERS) are potentially important tools in the characterization of biomolecules such as proteins and DNA. In this work, SERS spectra of three cysteine-containing aromatic peptides: tryptophan-cysteine, tyrosine-cysteine, and phenylalanine-cysteine, bound to Au nanoshell substrates, were obtained, and compared to their respective normal Raman spectra. While the linewidths of the SERS peaks are significantly broadened (up to 70%), no significant spectral shifts (<6 cm (-1)) of the major Stokes modes were observed between the two modalities. We show that the Raman and SERS spectra of penetratin, a cell-penetrating peptide oligomer, can be comprised quite reliably from the spectra of its constituent aromatic amino acids except in the backbone regions where the spectral intensities are critically dependent on the length and conformations of the probed molecules. From this study we conclude that, together with protein backbone groups, aromatic amino acid residues provide the overwhelmingly dominant features in the Raman and SERS spectra of peptides and proteins when present. It follows that the Raman modes of these three small constructed peptides may likely apply to the assignment of Raman and SERS features in the spectra of other peptides and proteins.

  5. Structural Analysis of a β-Helical Protein Motif Stabilized by Targeted Replacements with Conformationally Constrained Amino Acids

    PubMed Central

    Ballano, Gema; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    Here we study conformational stabilization induced in a β-helical nanostructure by position-specific mutations. The nanostructure is constructed through the self-assembly of the β-helical building block excised from E. coli galactoside acetyltransferase (PDB code 1krr, chain A; residues 131-165). The mutations involve substitutions by cyclic, conformationally constrained amino acids. Specifically, a complete structural analysis of the Pro-Xaa-Val sequence [with Xaa being Gly, Ac3c (1-aminocyclopropane-1-carboxylic acid) and Ac5c (1-aminocyclopentane-1-carboxylic acid)], corresponding to the 148-150 loop region in the wild-type (Gly) and mutated (Ac3c and Ac5c) 1krr, has been performed using Molecular Dynamics simulations and X-ray crystallography. Simulations have been performed for the wild-type and mutants of three different systems, namely the building block, the nanoconstruct and the isolated Pro-Xaa-Val tripeptide. Furthermore, the crystalline structures of five peptides of Pro-Xaa-Val or Xaa-Val sequences have been solved by X-ray diffraction analysis and compared with theoretical predictions. Both the theoretical and crystallographic studies indicate that the Pro-Acnc-Val sequences exhibit a high propensity to adopt turn-like conformations, and this propensity is little affected by the chemical environment. Overall, the results indicate that replacement of Gly149 by Ac3c or Ac5c significantly reduce the conformational flexibility of the target site enhancing the structural specificity of the building block and the nanoconstruct derived from the 1krr β-helical motif. PMID:18811190

  6. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  7. Modeling lanthanide series binding sites on humic acid.

    PubMed

    Pourret, Olivier; Martinez, Raul E

    2009-02-01

    Lanthanide (Ln) binding to humic acid (HA) has been investigated by combining ultrafiltration and ICP-MS techniques. A Langmuir-sorption-isotherm metal-complexation model was used in conjunction with a linear programming method (LPM) to fit experimental data representing various experimental conditions both in HA/Ln ratio (varying between 5 and 20) and in pH range (from 2 to 10) with an ionic strength of 10(-3) mol L(-1). The LPM approach, not requiring prior knowledge of surface complexation parameters, was used to solve the existing discrepancies in LnHA binding constants and site densities. The application of the LPM to experimental data revealed the presence of two discrete metal binding sites at low humic acid concentrations (5 mg L(-1)), with log metal complexation constants (logK(S,j)) of 2.65+/-0.05 and 7.00 (depending on Ln). The corresponding site densities were 2.71+/-0.57x10(-8) and 0.58+/-0.32x10(-8) mol of Ln(3+)/mg of HA (depending on Ln). Total site densities of 3.28+/-0.28x10(-8), 4.99+/-0.02x10(-8), and 5.01+/-0.01x10(-8) mol mg(-1) were obtained by LPM for humic acid, for humic acid concentrations of 5, 10, and 20 mg L(-1), respectively. These results confirm that lanthanide binding occurs mainly at weak sites (i.e., ca. 80%) and second at strong sites (i.e., ca. 20%). The first group of discrete metal binding sites may be attributed to carboxylic groups (known to be the main binding sites of Ln in HA), and the second metal binding group to phenolic moieties. Moreover, this study evidences heterogeneity in the distribution of the binding sites among Ln. Eventually, the LPM approach produced feasible and reasonable results, but it was less sensitive to error and did not require an a priori assumption of the number and concentration of binding sites.

  8. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  9. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR.

    PubMed

    Miyazaki, Saori; Sato, Yutaka; Asano, Tomoya; Nagamura, Yoshiaki; Nonomura, Ken-Ichi

    2015-10-01

    Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.

  10. A Synthetic Peptide with the Putative Iron Binding Motif of Amyloid Precursor Protein (APP) Does Not Catalytically Oxidize Iron

    PubMed Central

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2012-01-01

    The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and – by implication – of APP should be re-evaluated. PMID:22916096

  11. Characterization of Putative Cholesterol Recognition/Interaction Amino Acid Consensus-Like Motif of Campylobacter jejuni Cytolethal Distending Toxin C

    PubMed Central

    Lai, Chih-Ho; Lai, Cheng-Kuo; Lin, Ying-Ju; Hung, Chiu-Lien; Chu, Chia-Han; Feng, Chun-Lung; Chang, Chia-Shuo; Su, Hong-Lin

    2013-01-01

    Cytolethal distending toxin (CDT) produced by Campylobacter jejuni comprises a heterotrimeric complex formed by CdtA, CdtB, and CdtC. Among these toxin subunits, CdtA and CdtC function as essential proteins that mediate toxin binding to cytoplasmic membranes followed by delivery of CdtB into the nucleus. The binding of CdtA/CdtC to the cell surface is mediated by cholesterol, a major component in lipid rafts. Although the putative cholesterol recognition/interaction amino acid consensus (CRAC) domain of CDT has been reported from several bacterial pathogens, the protein regions contributing to CDT binding to cholesterol in C. jejuni remain unclear. Here, we selected a potential CRAC-like region present in the CdtC from C. jejuni for analysis. Molecular modeling showed that the predicted functional domain had the shape of a hydrophobic groove, facilitating cholesterol localization to this domain. Mutation of a tyrosine residue in the CRAC-like region decreased direct binding of CdtC to cholesterol rather than toxin intermolecular interactions and led to impaired CDT intoxication. These results provide a molecular link between C. jejuni CdtC and membrane-lipid rafts through the CRAC-like region, which contributes to toxin recognition and interaction with cholesterol. PMID:23762481

  12. Knowledge discovery of multilevel protein motifs

    SciTech Connect

    Conklin, D.; Glasgow, J.; Fortier, S.

    1994-12-31

    A new category of protein motif is introduced. This type of motif captures, in addition to global structure, the nested structure of its component parts. A dataset of four proteins is represented using this scheme. A structured machine discovery procedure is used to discover recurrent amino acid motifs and this knowledge is utilized for the expression of subsequent protein motif discoveries. Examples of discovered multilevel motifs are presented.

  13. Evolution of the hydrogen-bonding motif in the melamine-cyanuric acid co-crystal: a topological study.

    PubMed

    Petelski, Andre N; Peruchena, Nelida M; Sosa, Gladis L

    2016-09-01

    The melamine (M)/cyanuric acid (CA) supramolecular system is perhaps one of the most exploited in the field of self-assembly because of the high complementarity of the components. However, it is necessary to investigate further the factors involved in the assembly process. In this study, we analyzed a set of 13 M n /CA m clusters (with n , m = 1, 2, 3), taken from crystallographic data, to characterize the nature of the hydrogen bonds involved in the self-assembly of these components as well as to provide greater understanding of the phenomenon. The calculations were performed at the B3LYP/6-311++G(d,p) and ω-B97XD (single point) levels of theory, and the interactions were analyzed within the framework of the quantum theory of atoms in molecules and by means of molecular electrostatic potential maps. Our results show that the stablest structure is the rosette-type motif and the aggregation mechanism is governed by a combination of cooperative and anticooperative effects. Our topological results explain the polymorphism in the self-assembly of coadsorbed monolayers of M and CA. Graphical abstract The aggregation steps of the melamine-cyanuric co-crystal is driven by a hydrogen-bonded network which is governed by a complex combination of cooperative and anticooperative effects.

  14. Candidate disease resistance genes in sunflower cloned using conserved nucleotide-binding site motifs: genetic mapping and linkage to the downy mildew resistance gene Pl1.

    PubMed

    Gedil, M A; Slabaugh, M B; Berry, S; Johnson, R; Michelmore, R; Miller, J; Gulya, T; Knapp, S J

    2001-04-01

    Disease resistance gene candidates (RGCs) belonging to the nucleotide-binding site (NBS) superfamily have been cloned from numerous crop plants using highly conserved DNA sequence motifs. The aims of this research were to (i) isolate genomic DNA clones for RGCs in cultivated sunflower (Helianthus annuus L.) and (ii) map RGC markers and Pl1, a gene for resistance to downy mildew (Plasmopara halstedii (Farl.) Berl. & de Toni) race 1. Degenerate oligonucleotide primers targeted to conserved NBS DNA sequence motifs were used to amplify RGC fragments from sunflower genomic DNA. PCR products were cloned, sequenced, and assigned to 11 groups. RFLP analyses mapped six RGC loci to three linkage groups. One of the RGCs (Ha-4W2) was linked to Pl1, a downy mildew resistance gene. A cleaved amplified polymorphic sequence (CAPS) marker was developed for Ha-4W2 using gene-specific oligonucleotide primers. Downy mildew susceptible lines (HA89 and HA372) lacked a 276-bp Tsp5091 restriction fragment that was present in downy mildew resistant lines (HA370, 335, 336, 337, 338, and 339). HA370 x HA372 F2 progeny were genotyped for the Ha-4W2 CAPS marker and phenotyped for resistance to downy mildew race 1. The CAPS marker was linked to but did not completely cosegregate with Pl1 on linkage group 8. Ha-4W2 was found to comprise a gene family with at least five members. Although genetic markers for Ha-4W2 have utility for marker-assisted selection, the RGC detected by the CAPS marker has been ruled out as a candidate gene for Pl1. Three of the RGC probes were monomorphic between HA370 and HA372 and still need to be mapped and screened for linkage to disease resistance loci.

  15. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae.

    PubMed

    Tomberg, Joshua; Temple, Brenda; Fedarovich, Alena; Davies, Christopher; Nicholas, Robert A

    2012-04-03

    Insertion of an aspartate residue at position 345a in penicillin-binding protein 2 (PBP 2), which lowers the rate of penicillin acylation by ~6-fold, is commonly observed in penicillin-resistant strains of Neisseria gonorrhoeae. Here, we show that insertions of other amino acids also lower the penicillin acylation rate of PBP 2, but none supported growth of N. gonorrhoeae, indicating loss of essential transpeptidase activity. The Asp345a mutation likely acts by altering the interaction between its adjacent residue, Asp346, in the β2a-β2d hairpin loop and Ser363, the middle residue of the SXN active site motif. Because the adjacent aspartate creates ambiguity in the position of the insertion, we also examined if insertions at position 346a could confer decreased susceptibility to penicillin. However, only aspartate insertions were identified, indicating that only an Asp-Asp couple can confer resistance and retain transpeptidase function. The importance of the Asp346-Ser363 interaction was assessed by mutation of each residue to Ala. Although both mutants lowered the acylation rate of penicillin G by 5-fold, neither could support growth of N. gonorrhoeae, again indicating loss of transpeptidase function. Interaction between a residue in the equivalent of the β2a-β2d hairpin loop and the middle residue of the SXN motif is observed in crystal structures of other Class B PBPs, and its importance is also supported by multisequence alignments. Overall, these results suggest that this conserved interaction can be manipulated (e.g., by insertion) to lower the acylation rate by β-lactam antibiotics and increase resistance, but only if essential transpeptidase activity is preserved.

  16. Motif enrichment tool.

    PubMed

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/.

  17. Direct Imaging of Hippocampal Epileptiform Calcium Motifs Following Kainic Acid Administration in Freely Behaving Mice

    PubMed Central

    Berdyyeva, Tamara K.; Frady, E. Paxon; Nassi, Jonathan J.; Aluisio, Leah; Cherkas, Yauheniya; Otte, Stephani; Wyatt, Ryan M.; Dugovic, Christine; Ghosh, Kunal K.; Schnitzer, Mark J.; Lovenberg, Timothy; Bonaventure, Pascal

    2016-01-01

    Prolonged exposure to abnormally high calcium concentrations is thought to be a core mechanism underlying hippocampal damage in epileptic patients; however, no prior study has characterized calcium activity during seizures in the live, intact hippocampus. We have directly investigated this possibility by combining whole-brain electroencephalographic (EEG) measurements with microendoscopic calcium imaging of pyramidal cells in the CA1 hippocampal region of freely behaving mice treated with the pro-convulsant kainic acid (KA). We observed that KA administration led to systematic patterns of epileptiform calcium activity: a series of large-scale, intensifying flashes of increased calcium fluorescence concurrent with a cluster of low-amplitude EEG waveforms. This was accompanied by a steady increase in cellular calcium levels (>5 fold increase relative to the baseline), followed by an intense spreading calcium wave characterized by a 218% increase in global mean intensity of calcium fluorescence (n = 8, range [114–349%], p < 10−4; t-test). The wave had no consistent EEG phenotype and occurred before the onset of motor convulsions. Similar changes in calcium activity were also observed in animals treated with 2 different proconvulsant agents, N-methyl-D-aspartate (NMDA) and pentylenetetrazol (PTZ), suggesting the measured changes in calcium dynamics are a signature of seizure activity rather than a KA-specific pathology. Additionally, despite reducing the behavioral severity of KA-induced seizures, the anticonvulsant drug valproate (VA, 300 mg/kg) did not modify the observed abnormalities in calcium dynamics. These results confirm the presence of pathological calcium activity preceding convulsive motor seizures and support calcium as a candidate signaling molecule in a pathway connecting seizures to subsequent cellular damage. Integrating in vivo calcium imaging with traditional assessment of seizures could potentially increase translatability of pharmacological

  18. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    SciTech Connect

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  19. Drosophila melanogaster Hox Transcription Factors Access the RNA Polymerase II Machinery through Direct Homeodomain Binding to a Conserved Motif of Mediator Subunit Med19

    PubMed Central

    Boube, Muriel; Hudry, Bruno; Immarigeon, Clément; Carrier, Yannick; Bernat-Fabre, Sandra; Merabet, Samir; Graba, Yacine; Bourbon, Henri-Marc; Cribbs, David L.

    2014-01-01

    Hox genes in species across the metazoa encode transcription factors (TFs) containing highly-conserved homeodomains that bind target DNA sequences to regulate batteries of developmental target genes. DNA-bound Hox proteins, together with other TF partners, induce an appropriate transcriptional response by RNA Polymerase II (PolII) and its associated general transcription factors. How the evolutionarily conserved Hox TFs interface with this general machinery to generate finely regulated transcriptional responses remains obscure. One major component of the PolII machinery, the Mediator (MED) transcription complex, is composed of roughly 30 protein subunits organized in modules that bridge the PolII enzyme to DNA-bound TFs. Here, we investigate the physical and functional interplay between Drosophila melanogaster Hox developmental TFs and MED complex proteins. We find that the Med19 subunit directly binds Hox homeodomains, in vitro and in vivo. Loss-of-function Med19 mutations act as dose-sensitive genetic modifiers that synergistically modulate Hox-directed developmental outcomes. Using clonal analysis, we identify a role for Med19 in Hox-dependent target gene activation. We identify a conserved, animal-specific motif that is required for Med19 homeodomain binding, and for activation of a specific Ultrabithorax target. These results provide the first direct molecular link between Hox homeodomain proteins and the general PolII machinery. They support a role for Med19 as a PolII holoenzyme-embedded “co-factor” that acts together with Hox proteins through their homeodomains in regulated developmental transcription. PMID:24786462

  20. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition.

    PubMed

    Langelaan, David N; Liburd, Janine; Yang, Yidai; Miller, Emily; Chitayat, Seth; Crawley, Scott W; Côté, Graham P; Smith, Steven P

    2016-09-09

    Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition.

  1. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1

    PubMed Central

    Ivie, Susan E.; McClain, Mark S.

    2012-01-01

    Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1. PMID:22938730

  2. Ion channel clustering by membrane-associated guanylate kinases. Differential regulation by N-terminal lipid and metal binding motifs.

    PubMed

    El-Husseini, A E; Topinka, J R; Lehrer-Graiwer, J E; Firestein, B L; Craven, S E; Aoki, C; Bredt, D S

    2000-08-04

    The postsynaptic density protein PSD-95 and related membrane-associated guanylate kinase (MAGUK) proteins assemble signal transduction complexes at sites of cell-cell contact including synapses. Whereas PSD-95 and PSD-93 occur only at postsynaptic sites in hippocampal neurons, SAP-102 also occurs in axons. In heterologous cells, PSD-95 and PSD-93 mediate cell surface ion channel clustering, but SAP-102 and SAP-97 do not. This selective ion channel clustering activity by MAGUKs is explained by differential palmitoylation, as PSD-93 and PSD-95 are palmitoylated though SAP-97, and SAP-102 are not. Rather than being palmitoylated, we find that N-terminal cysteines from SAP-102 tightly bind to zinc. And, appending the N terminus of SAP-102 to PSD-95 results in localization of the chimera to both axons and dendrites. These data suggest that lipid modifications and heavy metal associations with the N termini of MAGUKs mediate differential functions and subcellular localizations of these synaptic scaffolds.

  3. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  4. Reversible Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect

    Heldebrant, David J.; Koech, Phillip K.; Yonker, Clement R.; Rainbolt, James E.; Zheng, Feng

    2010-08-31

    Acid gas scrubbing technology is predominantly aqueous alkanolamine based. Of the acid gases, CO2, H2S and SO2 have been shown to be reversible, however there are serious disadvantages with corrosion and high regeneration costs. The primary scrubbing system composed of monoethanolamine is limited to 30% by weight because of the highly corrosive solution. This gravimetric limitation limits the CO2 volumetric (≤108 g/L) and gravimetric capacity (≤7 wt%) of the system. Furthermore the scrubbing system has a large energy penalty from pumping and heating the excess water required to dissolve the MEA bicarbonate salt. Considering the high specific heat of water (4 j/g-1K-1), low capacities and the high corrosion we set out to design a fully organic solvent that can chemically bind all acid gases i.e. CO2 as reversible alkylcarbonate ionic liquids or analogues thereof. Having a liquid acid gas carrier improves process economics because there is no need for excess solvent to pump and to heat. We have demonstrated illustrated in Figure 1, that CO2-binding organic liquids (CO2BOLs) have a high CO2 solubility paired with a much lower specific heat (<1.5 J/g-1K-1) than aqueous systems. CO2BOLs are a subsection of a larger class of materials known as Binding Organic Liquids (BOLs). Our BOLs have been shown to reversibly bind and release COS, CS2, and SO2, which we denote COSBOLS, CS2BOLs and SO2BOLs. Our BOLs are highly tunable and can be designed for post or pre-combustion gas capture. The design and testing of the next generation zwitterionic CO2BOLs and SO2BOLs are presented.

  5. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  6. Efficient Binding of the NOS1AP C-Terminus to the nNOS PDZ Pocket Requires the Concerted Action of the PDZ Ligand Motif, the Internal ExF Site and Structural Integrity of an Independent Element

    PubMed Central

    Li, Li-Li; Cisek, Katryna; Courtney, Michael J.

    2017-01-01

    Neuronal nitric oxide synthase is widely regarded as an important contributor to a number of disorders of excitable tissues. Recently the adaptor protein NOS1AP has emerged as a contributor to several nNOS-linked conditions. As a consequence, the unexpectedly complex mechanisms of interaction between nNOS and its effector NOS1AP have become a particularly interesting topic from the point of view of both basic research and the potential for therapeutic applications. Here we demonstrate that the concerted action of two previously described motif regions contributing to the interaction of nNOS with NOS1AP, the ExF region and the PDZ ligand motif, efficiently excludes an alternate ligand from the nNOS-PDZ ligand-binding pocket. Moreover, we identify an additional element with a denaturable structure that contributes to interaction of NOS1AP with nNOS. Denaturation does not affect the functions of the individual motifs and results in a relatively mild drop, ∼3-fold, of overall binding affinity of the C-terminal region of NOS1AP for nNOS. However, denaturation selectively prevents the concerted action of the two motifs that normally results in efficient occlusion of the PDZ ligand-binding pocket, and results in 30-fold reduction of competition between NOS1AP and an alternate PDZ ligand. PMID:28360833

  7. Effects of microgravity on the binding of acetylsalicylic acid by Rhizobium leguminosarum bv. trifolii

    NASA Astrophysics Data System (ADS)

    Urban, James E.; Gerren, Richard; Zoelle, Jeffery

    1995-07-01

    Bacteroids can be induced in vitro by treating growing Rhizobium leguminosarum bv. trifolii with succinic acid or succinic acid structural analogs like acetylsalicylic acid. Quantitating bacteroid induction by measuring acetylsalicylic binding under normal (1 g) conditions showed two forms of binding to occur. In one form of binding cells immediately bound comparatively high levels of acetylsalicylic acid, but the binding was quickly reversed. The second form of binding increased with time by first-order kinetics, and reached saturation in 40 s. Similar experiments performed in the microgravity environment aboard the NASA 930 aircraft showed only one form of binding and total acetylsalicylic acid bound was 32% higher than at 1 g.

  8. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    PubMed

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  9. Interaction of N-terminal fragments of fibronectin with synthetic and recombinant D motifs from its binding protein on Staphylococcus aureus studied using fluorescence anisotropy.

    PubMed

    Huff, S; Matsuka, Y V; McGavin, M J; Ingham, K C

    1994-06-03

    The N-terminal 29-kDa fragment of fibronectin (Fn29K) contains five type I "finger" modules. It binds to heparin, fibrin, and bacteria and is involved in fibronectin (Fn) matrix assembly. Binding to Staphylococcus aureus involves a cell wall-associated protein that contains approximately three repeats of a 38-residue D motif (Signäs, C., Raucci, G., Jönsson, K., Lindgren, P.-E., Anantharamaiah, G.M., Höök, M., and Lindberg, M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 699-703). Synthetic peptides representing D1, D2, and D3, when labeled with fluorescein isothiocyanate (FITC), exhibited increases in fluorescence anisotropy upon addition of Fn29K but not other Fn fragments. The response could be reversed by titration with unlabeled peptides to yield inhibition constants that agreed with the dissociation constants obtained by fitting the initial response. Values of Kd ranged between 2 and 12 microM, with D3 having the highest affinity. Specificity of D3 for Fn29K was further illustrated by the fact that its C-terminal half (D3b, Lys801 to Lys821), when immobilized, selectively adsorbed Fn29K from a thermolysin digest of fibronectin. The binding site in Fn was further localized within Fn29K by analyzing smaller proteolytic or recombinant subfragments. Those containing fingers, F3-5 and F4-5, were purified on D3b-Sepharose and bound FITC-D3b with Kd values of 4-6 microM. Subfragments containing pairs of fingers 1-2, 2-3, or single fingers 1, 4, or 5 were inactive. Whole D1-3, expressed in Escherichia coli and labeled with fluorescein, bound 1.9 mol/mol of Fn29K with Kd = 1.5 nM. F4-5 and F2-3 bound with respective Kd values of 0.35 and 4.4 microM. These and other results indicate that binding of the individual D region peptides is mediated through their C-terminal halves, primarily to fingers 4 and 5 of fibronectin. The possible basis of the much higher affinity of D1-3 is discussed.

  10. Machine learning study of classifiers trained with biophysiochemical properties of amino acids to predict fibril forming Peptide motifs.

    PubMed

    Kumaran Nair, Smitha Sunil; Subba Reddy, N V; Hareesha, K S

    2012-09-01

    It is important to understand the cause of amyloid illnesses by predicting the short protein fragments capable of forming amyloid-like fibril motifs aiding in the discovery of sequence-targeted anti-aggregation drugs. It is extremely desirable to design computational tools to provide affordable in silico predictions owing to the limitations of molecular techniques for their identification. In this research article, we tried to study, from a machine learning perspective, the performance of several machine learning classifiers that use heterogenous features based on biochemical and biophysical properties of amino acids to discriminate between amyloidogenic and non-amyloidogenic regions in peptides. Four conventional machine learning classifiers namely Support Vector Machine, Neural network, Decision tree and Random forest were trained and tested to find the best classifier that fits the problem domain well. Prior to classification, novel implementations of two biologically-inspired feature optimization techniques based on evolutionary algorithms and methodologies that mimic social life and a multivariate method based on projection are utilized in order to remove the unimportant and uninformative features. Among the dimenionality reduction algorithms considered under the study, prediction results show that algorithms based on evolutionary computation is the most effective. SVM best suits the problem domain in its fitment among the classifiers considered. The best classifier is also compared with an online predictor to evidence the equilibrium maintained between true positive rates and false positive rates in the proposed classifier. This exploratory study suggests that these methods are promising in providing amyloidogenity prediction and may be further extended for large-scale proteomic studies.

  11. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization.

    PubMed

    Schwarzer, Roland; Levental, Ilya; Gramatica, Andrea; Scolari, Silvia; Buschmann, Volker; Veit, Michael; Herrmann, Andreas

    2014-10-01

    Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell-to-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes.

  12. Biophysical Analysis of Kindlin-3 Reveals an Elongated Conformation and Maps Integrin Binding to the Membrane-distal β-Subunit NPXY Motif

    PubMed Central

    Yates, Luke A.; Füzéry, Anna K.; Bonet, Roman; Campbell, Iain D.; Gilbert, Robert J. C.

    2012-01-01

    Kindlin-3, a 75-kDa protein, has been shown to be critical for hemostasis, immunity, and bone metabolism via its role in integrin activation. The Kindlin family is hallmarked by a FERM domain comprised of F1, F2, and F3 subdomains together with an N-terminal F0 domain and a pleckstrin homology domain inserted in the F2 domain. Recombinant Kindlin-3 was cloned, expressed, and purified, and its domain organization was studied by x-ray scattering and other techniques to reveal an extended conformation. This unusual elongated structure is similar to that found in the paralogue Talin head domain. Analytical ultracentrifugation experiments indicated that Kindlin-3 forms a ternary complex with the Talin and β-integrin cytoplasmic tails. NMR showed that Kindlin-3 specifically recognizes the membrane-distal tail NPXY motif in both the β1A and β1D isoforms, although the interaction is stronger with β1A. An upstream Ser/Thr cluster in the tails also plays a critical role. Overall these data support current biological, clinical, and mutational data on Kindlin-3/β-tail binding and provide novel insights into the overall conformation and interactions of Kindlin-3. PMID:22989875

  13. DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs.

    PubMed

    Tori, Kazuo; Kimizu, Megumi; Ishino, Sonoko; Ishino, Yoshizumi

    2007-08-01

    Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3'-5' exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex.

  14. Efficient ensemble system based on the copper binding motif for highly sensitive and selective detection of cyanide ions in 100% aqueous solutions by fluorescent and colorimetric changes.

    PubMed

    Jung, Kwan Ho; Lee, Keun-Hyeung

    2015-09-15

    A peptide-based ensemble for the detection of cyanide ions in 100% aqueous solutions was designed on the basis of the copper binding motif. 7-Nitro-2,1,3-benzoxadiazole-labeled tripeptide (NBD-SSH, NBD-SerSerHis) formed the ensemble with Cu(2+), leading to a change in the color of the solution from yellow to orange and a complete decrease of fluorescence emission. The ensemble (NBD-SSH-Cu(2+)) sensitively and selectively detected a low concentration of cyanide ions in 100% aqueous solutions by a colorimetric change as well as a fluorescent change. The addition of cyanide ions instantly removed Cu(2+) from the ensemble (NBD-SSH-Cu(2+)) in 100% aqueous solutions, resulting in a color change of the solution from orange to yellow and a "turn-on" fluorescent response. The detection limits for cyanide ions were lower than the maximum allowable level of cyanide ions in drinking water set by the World Health Organization. The peptide-based ensemble system is expected to be a potential and practical way for the detection of submicromolar concentrations of cyanide ions in 100% aqueous solutions.

  15. Worldwide genetic features of HIV-1 Env α4β7 binding motif: the Local Dissemination Impact of the LDI tripeptide

    PubMed Central

    Hait, Sabrina H.; Soares, Esmeralda A.; Sprinz, Eduardo; Arthos, James; Machado, Elizabeth S.; Soares, Marcelo A.

    2015-01-01

    Background HIV-1 gp120 binds to integrin α4β7, a homing receptor of lymphocytes to gut-associated lymphoid tissues. This interaction is mediated by the LDI/V tripeptide encoded in the V2-loop. This tripeptide mimics similar motifs in MAdCAM and VCAM, the natural ligands of α4β7. In this study we explored the association of V2-loop LDI/V mimotopes with transmission routes and patterns of disease progression in HIV-infected adult and pediatric patients. HIV-1 env sequences available in the Los Alamos HIV Sequence Database were included in the analyses. Methodology HIV-1 V2-loop sequences generated from infected adults and infants from South and Southeast Brazil, and also retrieved from the Los Alamos Database, were assessed for α4β7 binding tripeptide composition. Chi-Square/Fisher’s Exact test and Mann Whitney U-test were used for tripeptide comparisons. Shannon entropy was assessed for conservancy of the α4β7 tripeptide mimotope. Results We observed no association between the tripeptide composition or conservation and virus transmission route or disease progression. However, LDI was linked to successful epidemic dissemination of HIV-1 subtype C in South America, and further to other expanding non-B subtypes in Europe and Asia. In Africa, subtypes showing increased LDV prevalence evidenced an ongoing process of selection towards LDI expansion, an observation also extended to subtype B in the Americas and Western Europe. Conclusions The V2-loop LDI mimotope was conserved in HIV-1C from South America and other expanding subtypes across the globe, which suggests that LDI may promote successful dissemination of HIV at local geographic levels by means of increased transmission fitness. PMID:26569174

  16. A Secreted Protein with Plant-Specific Cysteine-Rich Motif Functions as a Mannose-Binding Lectin That Exhibits Antifungal Activity1[W

    PubMed Central

    Miyakawa, Takuya; Hatano, Ken-ichi; Miyauchi, Yumiko; Suwa, You-ichi; Sawano, Yoriko; Tanokura, Masaru

    2014-01-01

    Plants have a variety of mechanisms for defending against plant pathogens and tolerating environmental stresses such as drought and high salinity. Ginkbilobin2 (Gnk2) is a seed storage protein in gymnosperm that possesses antifungal activity and a plant-specific cysteine-rich motif (domain of unknown function26 [DUF26]). The Gnk2-homologous sequence is also observed in an extracellular region of cysteine-rich repeat receptor-like kinases that function in response to biotic and abiotic stresses. Here, we report the lectin-like molecular function of Gnk2 and the structural basis of its monosaccharide recognition. Nuclear magnetic resonance experiments showed that mannan was the only yeast (Saccharomyces cerevisiae) cell wall polysaccharide that interacted with Gnk2. Gnk2 also interacted with mannose, a building block of mannan, with a specificity that was similar to those of mannose-binding legume lectins, by strictly recognizing the configuration of the hydroxy group at the C4 position of the monosaccharide. The crystal structure of Gnk2 in complex with mannose revealed that three residues (asparagine-11, arginine-93, and glutamate-104) recognized mannose by hydrogen bonds, which defined the carbohydrate-binding specificity. These interactions were directly related to the ability of Gnk2 to inhibit the growth of fungi, including the plant pathogenic Fusarium spp., which were disrupted by mutation of arginine-93 or the presence of yeast mannan in the assay system. In addition, Gnk2 did not inhibit the growth of a yeast mutant strain lacking the α1,2-linked mannose moiety. These results provide insights into the molecular basis of the DUF26 protein family. PMID:25139159

  17. Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex*

    PubMed Central

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S.; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  18. Stimulation and binding of myocardial phospholipase C by phosphatidic acid.

    PubMed

    Henry, R A; Boyce, S Y; Kurz, T; Wolf, R A

    1995-08-01

    Exposure of adult ventricular myocytes to exogenous natural phosphatidic acid results in the production of inositol phosphates by unknown mechanism(s). We characterized stimulation of myocytic phosphoinositide-specific phospholipase C (PLC) by synthetic dioleoyl phosphatidic acid (PA) as a potential mechanism for modulation of inositol phosphate production. Our data demonstrate that exogenous PA, at 10(-8)-10(-5) M, caused a concentration-dependent increase in inositol 1,4,5-trisphosphate in adult rabbit ventricular myocytes. PA also caused a concentration-dependent increase in in vitro activity of myocytic PLC in the presence or absence of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). PLC-delta 1, the predominant isozyme of PLC expressed in adult rabbit ventricular myocytes, bound to liposomes of PA with high affinity in the presence of EGTA. The phosphomonoester group of PA was critical to in vitro stimulation of myocytic PLC activity and high-affinity binding of PLC-delta 1. We propose that binding of PLC-delta 1 to phosphatidic acid may be a novel mechanism for dynamic membrane association and modulation of PLC in adult ventricular myocytes.

  19. Identify the key amino acid of BAFF binding with TACI.

    PubMed

    Wang, Renxi; Wang, Ru; Ma, Ning; Guo, Yueling; Xiao, He; Chen, Guojiang; Han, Gencheng; Hou, Chunmei; Shen, Beifen; Feng, Jiannan; Li, Yan

    2013-01-01

    B-cell activating factor (BAFF) has been used as a therapeutic target. To develop BAFF-specific small molecular inhibitors, it is necessary to know the key amino acid in the BAFF binding with its receptor. The key binding amino acid of BAFF interacting with its receptor TACI (trans-membrane activator and calcium modulator and cyclophilin ligand interactor) was analyzed based on the computer-guided molecular modeling method. According to theoretical prediction, a series of key amino acid mutants of BAFF, including M204 (Lys(204) to Ala), M208 (Met(208) to Ala), M209 (Gly(209) to Ala), M210 (His(210) to Ala), M234 (Gln(234) to Ala), M236 (Met(236) to Ala), and M237 (Pro(237) to Ala) were designed and evaluated with biological experiments. The results show that M208, M209, M236, and M237 of BAFF were the key amino acids and in accord with the theoretical results. The results highlight clues for the further development of BAFF-specific small molecular inhibitors.

  20. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    SciTech Connect

    Raza, H.; Chung, W.L.; Mukhtar, H. )

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  1. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis.

    PubMed

    Wang, Liuqiang; Qin, Liping; Liu, Wenjin; Zhang, Daoyuan; Wang, Yucheng

    2014-09-01

    Ethylene-responsive factor (ERF) family is one of the largest families of plant-specific transcription factor that can positively or negatively regulate abiotic stress tolerance. However, their functions in regulating abiotic stress tolerance are still not fully understood. In this study, we characterized the functions of an ERF gene from Tamarix hispida, ThERF1, which can negatively regulate abiotic stress tolerance. The expression of ThERF1 was induced by salinity, PEG-simulated drought and abscisic acid (ABA) treatments. ThERF1 can specifically bind to GCC-box and DRE motifs. Overexpression of ThERF1 in transgenic Arabidopsis plants showed inhibited seed germination, and decreased fresh weight gain and root growth compared with wild-type (WT) plants. In addition, the transcript levels of several superoxide dismutase (SOD) and peroxidase (POD) genes in transgenic plants were significantly inhibited compared with in WT plants, resulting in decreased SOD and POD activities in transgenic plants under salt and drought stress conditions. Furthermore, the reactive oxygen species (ROS) levels, malondialdehyde (MDA) contents and cell membrane damage in ThERF1-transformed plants were all highly increased relative to WT plants. Our results suggest that ThERF1 negatively regulates abiotic stress tolerance by strongly inhibiting the expression of SOD and POD genes, leading to decreased ROS-scavenging ability.

  2. Amino acid substitutions in the FXYD motif enhance phospholemman-induced modulation of cardiac L-type calcium channels.

    PubMed

    Guo, Kai; Wang, Xianming; Gao, Guofeng; Huang, Congxin; Elmslie, Keith S; Peterson, Blaise Z

    2010-11-01

    We have found that phospholemman (PLM) associates with and modulates the gating of cardiac L-type calcium channels (Wang et al., Biophys J 98: 1149-1159, 2010). The short 17 amino acid extracellular NH(2)-terminal domain of PLM contains a highly conserved PFTYD sequence that defines it as a member of the FXYD family of ion transport regulators. Although we have learned a great deal about PLM-dependent changes in calcium channel gating, little is known regarding the molecular mechanisms underlying the observed changes. Therefore, we investigated the role of the PFTYD segment in the modulation of cardiac calcium channels by individually replacing Pro-8, Phe-9, Thr-10, Tyr-11, and Asp-12 with alanine (P8A, F9A, T10A, Y11A, D12A). In addition, Asp-12 was changed to lysine (D12K) and cysteine (D12C). As expected, wild-type PLM significantly slows channel activation and deactivation and enhances voltage-dependent inactivation (VDI). We were surprised to find that amino acid substitutions at Thr-10 and Asp-12 significantly enhanced the ability of PLM to modulate Ca(V)1.2 gating. T10A exhibited a twofold enhancement of PLM-induced slowing of activation, whereas D12K and D12C dramatically enhanced PLM-induced increase of VDI. The PLM-induced slowing of channel closing was abrogated by D12A and D12C, whereas D12K and T10A failed to impact this effect. These studies demonstrate that the PFXYD motif is not necessary for the association of PLM with Ca(V)1.2. Instead, since altering the chemical and/or physical properties of the PFXYD segment alters the relative magnitudes of opposing PLM-induced effects on Ca(V)1.2 channel gating, PLM appears to play an important role in fine tuning the gating kinetics of cardiac calcium channels and likely plays an important role in shaping the cardiac action potential and regulating Ca(2+) dynamics in the heart.

  3. The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal.

    PubMed Central

    Shewan, A M; Marsh, B J; Melvin, D R; Martin, S; Gould, G W; James, D E

    2000-01-01

    The insulin-responsive glucose transporter GLUT4 is targeted to a post-endocytic compartment in adipocytes, from where it moves to the cell surface in response to insulin. Previous studies have identified two cytosolic targeting motifs that regulate the intracellular sequestration of this protein: FQQI(5-8) in the N-terminus and LL(489,490) (one-letter amino acid notation) in the C-terminus. In the present study we show that a GLUT4 chimaera in which the C-terminal 12 amino acids in GLUT4 have been replaced with the same region from human GLUT3 is constitutively targeted to the plasma membrane when expressed in 3T3-L1 adipocytes. To further dissect this domain it was divided into three regions, each of which was mutated en bloc to alanine residues. Analysis of these constructs revealed that the targeting information is contained within the residues TELEYLGP(498-505). Using the transferrin-horseradish peroxidase endosomal ablation technique in 3T3-L1 adipocytes, we show that mutants in which this C-terminal domain has been disrupted are more sensitive to chemical ablation than wild-type GLUT4. These data indicate that GLUT4 contains a targeting signal in its C-terminus, distal to the dileucine motif, that regulates its sorting into a post-endosomal compartment. Similar membrane-distal, acidic-cluster-based motifs are found in the cytosolic tails of the insulin-responsive aminopeptidase IRAP (insulin-regulated aminopeptidase) and the proprotein convertase PC6B, indicating that this type of motif may play an important role in the endosomal sequestration of a number of different proteins. PMID:10926832

  4. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini.

    PubMed

    McCartney, Andrew W; Dyer, John M; Dhanoa, Preetinder K; Kim, Peter K; Andrews, David W; McNew, James A; Mullen, Robert T

    2004-01-01

    Fatty acid desaturases (FADs) play a prominent role in plant lipid metabolism and are located in various subcellular compartments, including the endoplasmic reticulum (ER). To investigate the biogenesis of ER-localized membrane-bound FADs, we characterized the mechanisms responsible for insertion of Arabidopsis FAD2 and Brassica FAD3 into ER membranes and determined the molecular signals that maintain their ER residency. Using in vitro transcription/translation reactions with ER-derived microsomes, we show that both FAD2 and FAD3 are efficiently integrated into membranes by a co-translational, translocon-mediated pathway. We also demonstrate that while the C-terminus of FAD3 (-KSKIN) contains a functional prototypic dilysine ER retrieval motif, FAD2 contains a novel C-terminal aromatic amino acid-containing sequence (-YNNKL) that is both necessary and sufficient for maintaining localization in the ER. Co-expression of a membrane-bound reporter protein containing the FAD2 C-terminus with a dominant-negative mutant of ADP-ribosylation factor (Arf)1 abolished transient localization of the reporter protein in the Golgi, indicating that the FAD2 peptide signal acts as an ER retrieval motif. Mutational analysis of the FAD2 ER retrieval signal revealed a sequence-specific motif consisting of Phi-X-X-K/R/D/E-Phi-COOH, where -Phi- are large hydrophobic amino acid residues. Interestingly, this aromatic motif was present in a variety of other known and putative ER membrane proteins, including cytochrome P450 and the peroxisomal biogenesis factor Pex10p. Taken together, these data describe the insertion and retrieval mechanisms of FADs and define a new ER localization signal in plants that is responsible for the retrieval of escaped membrane proteins back to the ER.

  5. A poly(A) binding protein-specific sequence motif: MRTENGKSKGFGFVC binding to mRNA poly(A) and polynucleotides and its role on mRNA translation.

    PubMed

    Rubin, H N; Halim, M N; Leavis, P C

    1994-06-01

    A consensus sequence (GKSKGFGFV) was recognized in all the sequenced poly(A) binding proteins. We synthesized a 15-amino acid peptide (corresponding to 354-368 in the yeast poly(A) binding protein) which includes the consensus sequence to test its binding affinity to different nucleotides, polynucleotides and mRNA with or without a poly(A) tail. Biochemical and biophysical studies revealed that the 15-amino acid peptide has a strong binding affinity to poly(A) alone or poly(A) attached at the 3' end of mRNA. Circular dichroism spectroscopy demonstrated that the secondary structure of the 15-mer is consistent with that expected based on the structure of the native RNP domain. Furthermore, among the various mononucleotides performed in the present studies, ATP was preferentially found to bind to the 15-mer. To further examine the biological significance of the binding of the 15-mer to the poly(A) tail of mRNA, in vitro translation of the mRNA poly(A)+ in the presence of the 15-mer drastically increased globin synthesis by almost 2-fold, while translation of the deadenylated mRNA in the presence of the 15-mer almost did not alter the rate of incorporation of radiolabeled leucine into globin.

  6. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins.

  7. N-Termini of Fungal CSL Transcription Factors Are Disordered, Enriched in Regulatory Motifs and Inhibit DNA Binding in Fission Yeast

    PubMed Central

    Převorovský, Martin; Atkinson, Sophie R.; Ptáčková, Martina; McLean, Janel R.; Gould, Kathleen; Folk, Petr; Půta, František; Bähler, Jürg

    2011-01-01

    Background CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) transcription factors are the effector components of the Notch receptor signalling pathway, which is critical for metazoan development. The metazoan CSL proteins (class M) can also function in a Notch-independent manner. Recently, two novel classes of CSL proteins, designated F1 and F2, have been identified in fungi. The role of the fungal CSL proteins is unclear, because the Notch pathway is not present in fungi. In fission yeast, the Cbf11 and Cbf12 CSL paralogs play antagonistic roles in cell adhesion and the coordination of cell and nuclear division. Unusually long N-terminal extensions are typical for fungal and invertebrate CSL family members. In this study, we investigate the functional significance of these extended N-termini of CSL proteins. Methodology/Principal Findings We identify 15 novel CSL family members from 7 fungal species and conduct bioinformatic analyses of a combined dataset containing 34 fungal and 11 metazoan CSL protein sequences. We show that the long, non-conserved N-terminal tails of fungal CSL proteins are likely disordered and enriched in phosphorylation sites and PEST motifs. In a case study of Cbf12 (class F2), we provide experimental evidence that the protein is proteolytically processed and that the N-terminus inhibits the Cbf12-dependent DNA binding activity in an electrophoretic mobility shift assay. Conclusions/Significance This study provides insight into the characteristics of the long N-terminal tails of fungal CSL proteins that may be crucial for controlling DNA-binding and CSL function. We propose that the regulation of DNA binding by Cbf12 via its N-terminal region represents an important means by which fission yeast strikes a balance between the class F1 and class F2 paralog activities. This mode of regulation might be shared with other CSL-positive fungi, some of which are relevant to human disease and biotechnology. PMID:21858190

  8. The Dynamic Character of the BCL2 Promoter i-Motif Provides a Mechanism for Modulation of Gene Expression by Compounds That Bind Selectively to the Alternative DNA Hairpin Structure

    PubMed Central

    2015-01-01

    It is generally accepted that DNA predominantly exists in duplex form in cells. However, under torsional stress imposed by active transcription, DNA can assume nonduplex structures. The BCL2 promoter region forms two different secondary DNA structures on opposite strands called the G-quadruplex and the i-motif. The i-motif is a highly dynamic structure that exists in equilibrium with a flexible hairpin species. Here we identify a pregnanol derivative and a class of piperidine derivatives that differentially modulate gene expression by stabilizing either the i-motif or the flexible hairpin species. Stabilization of the i-motif structure results in significant upregulation of the BCL2 gene and associated protein expression; in contrast, stabilization of the flexible hairpin species lowers BCL2 levels. The BCL2 levels reduced by the hairpin-binding compound led to chemosensitization to etoposide in both in vitro and in vivo models. Furthermore, we show antagonism between the two classes of compounds in solution and in cells. For the first time, our results demonstrate the principle of small molecule targeting of i-motif structures in vitro and in vivo to modulate gene expression. PMID:24559410

  9. Characterization of the binding sites for dicarboxylic acids on bovine serum albumin.

    PubMed Central

    Tonsgard, J H; Meredith, S C

    1991-01-01

    Dicarboxylic acids are prominent features of several diseases, including Reye's syndrome and inborn errors of mitochondrial and peroxisomal fatty acid oxidation. Moreover, dicarboxylic acids are potentially toxic to cellular processes. Previous studies [Tonsgard, Mendelson & Meredith (1988) J. Clin. Invest. 82, 1567-1573] demonstrated that long-chain dicarboxylic acids have a single high-affinity binding site and between one and three lower-affinity sites on albumin. Medium-chain-length dicarboxylic acids have a single low-affinity site. We further characterized dicarboxylic acid binding to albumin in order to understand the potential effects of drugs and other ligands on dicarboxylic acid binding and toxicity. Progesterone and oleate competitively inhibit octadecanedioic acid binding to the single high-affinity site. Octanoate inhibits binding to the low-affinity sites. Dansylated probes for subdomain 2AB inhibit dodecanedioic acid binding whereas probes for subdomain 3AB do not. In contrast, low concentrations of octadecanedioic acid inhibit the binding of dansylated probes to subdomain 3AB and 2AB. L-Tryptophan, which binds in subdomain 3AB, inhibits hexadecanedioic acid binding but has no effect on dodecanedioic acid. Bilirubin and acetylsalicylic acid, which bind in subdomain 2AB, inhibit the binding of medium-chain and long-chain dicarboxylic acids. Our results suggest that long-chain dicarboxylic acids bind in subdomains 2C, 3AB and 2AB. The single low-affinity binding site for medium-chain dicarboxylic acids is in subdomain 2AB. These studies suggest that dicarboxylic acids are likely to be unbound in disease states and may be potentially toxic. PMID:2064600

  10. The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets

    PubMed Central

    Scheiba, Rafael M; de Opakua, Alain Ibáñez; Díaz-Quintana, Antonio; Cruz-Gallardo, Isabel; Martínez-Cruz, Luis A; Martínez-Chantar, María L; Blanco, Francisco J; Díaz-Moreno, Irene

    2014-01-01

    Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5′-mer U-rich RNA stretches through the solvent exposed side of its β-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain. PMID:25584704

  11. The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets.

    PubMed

    Scheiba, Rafael M; de Opakua, Alain Ibáñez; Díaz-Quintana, Antonio; Cruz-Gallardo, Isabel; Martínez-Cruz, Luis A; Martínez-Chantar, María L; Blanco, Francisco J; Díaz-Moreno, Irene

    2014-01-01

    Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5'-mer U-rich RNA stretches through the solvent exposed side of its β-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain.

  12. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs.

    PubMed

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5' distal regions were often enriched in 3' distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/.

  13. Binding of coumarins to site I of human serum albumin. Effect of the fatty acids.

    PubMed

    Zatón, A M; Ferrer, J M; Ruiz de Gordoa, J C; Marquínez, M A

    1995-07-14

    It is known that binding site I on human serum albumin (HSA) consists of a zone of two overlapping regions: the specific binding region represented by warfarin binding and the specific binding region represented by azapropazone and phenylbutazone binding. In this paper binding parameters to defatted HSA and to HSA with fatty acids (molar ratio of fatty acid/HSA = 4) were compared. High-affinity binding sites for warfarin, 4-chromanol, 4-hydroxycoumarin, coumarin, 3-acetylcoumarin and phenylbutazone (759,549 M-1 > Ka > 67,024 M-1) constitute binding site I on HSA. In this binding area defatted HSA can bind two molecules of warfarin, but the presence of fatty acids diminish the binding capacity of warfarin to HSA (2 > n > 1).

  14. Carboxylation of cytosine (5caC) in the CG dinucleotide in the E-box motif (CGCAG|GTG) increases binding of the Tcf3|Ascl1 helix-loop-helix heterodimer 10-fold.

    PubMed

    Golla, Jaya Prakash; Zhao, Jianfei; Mann, Ishminder K; Sayeed, Syed K; Mandal, Ajeet; Rose, Robert B; Vinson, Charles

    2014-06-27

    Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors.

  15. Calcium-binding protein, spermatid-specific 1 is expressed in human salivary glands and contains an anti-inflammatory motif

    PubMed Central

    St. Laurent, Chris D.; St. Laurent, Katherine E.; Mathison, Ron D.

    2015-01-01

    Salivary glands are involved in the production and exocrine and endocrine secretion of biologically active proteins, polypeptides, and hormones involved in growth and differentiation, homeostasis, and digestion. We have previously studied the prohormone submandibular rat 1 (SMR1), product of the Vcsa1 gene, which is highly expressed in the testes and salivary glands of rats, and can be cleaved to produce polypeptides with analgesic, erectile function, and anti-inflammatory activities. Humans lack the Vcsa1 gene, but homologous sequences and functions for analgesia and erectile function exist in the human genes Prol1, SMR3a, and SMR3b located on the human chromosomal region close to where Vcsa1 lies in the rat. Here we show the human protein calcium-binding protein spermatid-specific 1 (CABS1) contains a similar sequence to the anti-inflammatory sequence in rat SMR1, thus CABS1 may be another human gene with homologous function to Vcsa1. Using Western blot and PCR, we discovered that the human protein CABS1, previously thought to only be expressed in the testes, is also expressed in the salivary glands and lung, in a tissue-specific manner. Peptides derived from CABS1 were tested in an in vivo mouse model of lipopolysaccharide (LPS)-induced neutrophilia and an ex vivo rat model of antigen-induced intestinal anaphylaxis and significantly reduced both neutrophil accumulation in bronchoalveolar lavage fluid and antigen-induced ileal contractions, respectively. Thus human CABS1 has a peptide motif homologous to the anti-inflammatory peptide sequence of rat SMR1. Whether this similarity of CABS1 extends to the neuroendocrine regulation of the anti-inflammatory activity seen for SMR1 remains to be determined. PMID:25632019

  16. RNA-binding motif protein 5 inhibits the proliferation of cigarette smoke-transformed BEAS-2B cells through cell cycle arrest and apoptosis.

    PubMed

    Lv, Xue-Jiao; Du, Yan-Wei; Hao, Yu-Qiu; Su, Zhen-Zhong; Zhang, Lin; Zhao, Li-Jing; Zhang, Jie

    2016-04-01

    Cigarette smoking has been shown to be the most significant risk factor for lung cancer. Recent studies have also indicated that RNA-binding motif protein 5 (RBM5) can modulate apoptosis and suppress tumor growth. The present study focused on the role of RBM5 in the regulation of cigarette smoke extract (CSE)-induced transformation of bronchial epithelial cells into the cancerous phenotype and its mechanism of action. Herein, we exposed normal BEAS-2B cells for 8 days to varying concentrations of CSE or dimethylsulfoxide (DMSO), followed by a recovery period of 2 weeks. Next, the RBM5 protein was overexpressed in these transformed BEAS-2B cells though lentiviral infection. Later, the morphological changes, cell proliferation, cell cycle, apoptosis, invasion and migration were assessed. In addition, we analyzed the role of RBM5 in xenograft growth. The expression of RBM5 along with the genes related to cell cycle regulation, apoptosis and invasion were also examined. Finally, our results revealed that BEAS-2B cells exposed to 100 µg/ml CSE acquired phenotypic changes and formed tumors in nude mice, indicative of their cancerous transformation and had reduced RBM5 expression. Subsequent overexpression of RBM5 in these cells significantly inhibited their proliferation, induced G1/S arrest, triggered apoptosis and inhibited their invasion and migration, including xenograft growth. Thus, we established an in vitro model of CSE-induced cancerous transformation and concluded that RBM5 overexpression inhibited the growth of these transformed cells through cell cycle arrest and induction of apoptosis. Therefore, our study suggests the importance of RBM5 in the pathogenesis of smoking-related cancer.

  17. Aberrant Assembly of RNA Recognition Motif 1 Links to Pathogenic Conversion of TAR DNA-binding Protein of 43 kDa (TDP-43)*

    PubMed Central

    Shodai, Akemi; Morimura, Toshifumi; Ido, Akemi; Uchida, Tsukasa; Ayaki, Takashi; Takahashi, Rina; Kitazawa, Soichiro; Suzuki, Sakura; Shirouzu, Mikako; Kigawa, Takanori; Muto, Yutaka; Yokoyama, Shigeyuki; Takahashi, Ryosuke; Kitahara, Ryo; Ito, Hidefumi; Fujiwara, Noriko; Urushitani, Makoto

    2013-01-01

    Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS. PMID:23558684

  18. Calcium-binding protein, spermatid-specific 1 is expressed in human salivary glands and contains an anti-inflammatory motif.

    PubMed

    St Laurent, Chris D; St Laurent, Katherine E; Mathison, Ron D; Befus, A Dean

    2015-04-01

    Salivary glands are involved in the production and exocrine and endocrine secretion of biologically active proteins, polypeptides, and hormones involved in growth and differentiation, homeostasis, and digestion. We have previously studied the prohormone submandibular rat 1 (SMR1), product of the Vcsa1 gene, which is highly expressed in the testes and salivary glands of rats, and can be cleaved to produce polypeptides with analgesic, erectile function, and anti-inflammatory activities. Humans lack the Vcsa1 gene, but homologous sequences and functions for analgesia and erectile function exist in the human genes Prol1, SMR3a, and SMR3b located on the human chromosomal region close to where Vcsa1 lies in the rat. Here we show the human protein calcium-binding protein spermatid-specific 1 (CABS1) contains a similar sequence to the anti-inflammatory sequence in rat SMR1, thus CABS1 may be another human gene with homologous function to Vcsa1. Using Western blot and PCR, we discovered that the human protein CABS1, previously thought to only be expressed in the testes, is also expressed in the salivary glands and lung, in a tissue-specific manner. Peptides derived from CABS1 were tested in an in vivo mouse model of lipopolysaccharide (LPS)-induced neutrophilia and an ex vivo rat model of antigen-induced intestinal anaphylaxis and significantly reduced both neutrophil accumulation in bronchoalveolar lavage fluid and antigen-induced ileal contractions, respectively. Thus human CABS1 has a peptide motif homologous to the anti-inflammatory peptide sequence of rat SMR1. Whether this similarity of CABS1 extends to the neuroendocrine regulation of the anti-inflammatory activity seen for SMR1 remains to be determined.

  19. The nuclear splicing factor RNA binding motif 5 promotes caspase activation in human neuronal cells, and increases after traumatic brain injury in mice

    PubMed Central

    Jackson, Travis C; Du, Lina; Janesko-Feldman, Keri; Vagni, Vincent A; Dezfulian, Cameron; Poloyac, Samuel M; Jackson, Edwin K; Clark, Robert SB; Kochanek, Patrick M

    2015-01-01

    Splicing factors (SFs) coordinate nuclear intron/exon splicing of RNA. Splicing factor disturbances can cause cell death. RNA binding motif 5 (RBM5) and 10 (RBM10) promote apoptosis in cancer cells by activating detrimental alternative splicing of key death/survival genes. The role(s) of RBM5/10 in neurons has not been established. Here, we report that RBM5 knockdown in human neuronal cells decreases caspase activation by staurosporine. In contrast, RBM10 knockdown augments caspase activation. To determine whether brain injury alters RBM signaling, we measured RBM5/10 protein in mouse cortical/hippocampus homogenates after controlled cortical impact (CCI) traumatic brain injury (TBI) plus hemorrhagic shock (CCI+HS). The RBM5/10 staining was higher 48  to 72 hours after injury and appeared to be increased in neuronal nuclei of the hippocampus. We also measured levels of other nuclear SFs known to be essential for cellular viability and report that splicing factor 1 (SF1) but not splicing factor 3A (SF3A) decreased 4  to 72 hours after injury. Finally, we confirm that RBM5/10 regulate protein expression of several target genes including caspase-2, cellular FLICE-like inhibitory protein (c-FLIP), LETM1 Domain-Containing Protein 1 (LETMD1), and amyloid precursor-like protein 2 (APLP2) in neuronal cells. Knockdown of RBM5 appeared to increase expression of c-FLIP(s), LETMD1, and APLP2 but decrease caspase-2. PMID:25586139

  20. Promoters with the octamer DNA motif (ATGCAAAT) can be ubiquitous or cell type-specific depending on binding affinity of the octamer site and Oct-factor concentration.

    PubMed Central

    Kemler, I; Bucher, E; Seipel, K; Müller-Immerglück, M M; Schaffner, W

    1991-01-01

    Immunoglobulin (Ig) gene promoters contain the octamer sequence motif ATGCAAAT which is recognized by cellular transcription factors (Oct factors). Besides the ubiquitous Oct-1 factor, there is also a group of related factors (Oct-2 factors) encoded by a separate gene. The Oct-2 gene is regulated in a cell-type specific manner, and the protein is present in large amounts in B lymphocytes. We have previously shown that simple composite promoters of an octamer/TATA box type are poorly active in non-B cells but are strongly responsive to ectopic expression of Oct-2A factor, a major representative of the lymphocyte Oct-2 factors. In the present study we have tested the activity of a number of composite promoters and natural Ig promoters, and their response to Oct-1 and Oct-2 factors. Unexpectedly, we find that octamer/TATA promoters with a high affinity octamer site direct ubiquitous expression. By contrast, promoter constructions that behave in a B cell-specific manner tend to have a weak octamer binding site. These promoters are responsive to ectopic expression of additional Oct-factor, irrespective of whether it is Oct-1 or Oct-2. Using natural Ig promoters rather than composite promoters, we find that an IgH promoter is well transcribed in non-B cells via the ubiquitous Oct-1 factor, while Ig kappa and Ig lambda light chain promoters require additional Oct factor for maximal expression. It seems therefore likely that during B cell differentiation, Ig heavy chain promoters can be activated by Oct-1, before the appearance of Oct-2 factors. Oct-2 factors then would serve to boost the expression from Ig light chain promoters, which are known to be activated only after successful heavy chain gene rearrangement. Images PMID:2014164

  1. 2,6-Diiminopiperidin-1-ol: an overlooked motif relevant to uranyl and transition metal binding on poly(amidoxime) adsorbents

    SciTech Connect

    Kennedy, Zachary C.; Cardenas, Allan Jay P.; Corbey, Jordan F.; Warner, Marvin G.

    2016-01-01

    Glutardiamidoxime, a structural motif on sorbents used in uranium extraction from seawater, was discovered to cyclize in situ at room temperature to 2,6-diimino-piperidin-1-ol in the presence of uranyl nitrate. The new diimino motif was also generated when exposed to competing transition metals Cu(II) and Ni(II). Multinuclear μ-O bridged U(VI), Cu(II), and Ni(II) complexes featuring bound diimino ligands were isolated. A Cu(II) complex with the historically relevant cyclic imide dioxime motif is also reported for structural comparison to the reported diimino complexes.

  2. The Chlamydia effector TarP mimics the mammalian leucine-aspartic acid motif of paxillin to subvert the focal adhesion kinase during invasion.

    PubMed

    Thwaites, Tristan; Nogueira, Ana T; Campeotto, Ivan; Silva, Ana P; Grieshaber, Scott S; Carabeo, Rey A

    2014-10-31

    Host cell signal transduction pathways are often targets of bacterial pathogens, especially during the process of invasion when robust actin remodeling is required. We demonstrate that the host cell focal adhesion kinase (FAK) was necessary for the invasion by the obligate intracellular pathogen Chlamydia caviae. Bacterial adhesion triggered the transient recruitment of FAK to the plasma membrane to mediate a Cdc42- and Arp2/3-dependent actin assembly. FAK recruitment was via binding to a domain within the virulence factor TarP that mimicked the LD2 motif of the FAK binding partner paxillin. Importantly, bacterial two-hybrid and quantitative imaging assays revealed a similar level of interaction between paxillin-LD2 and TarP-LD. The conserved leucine residues within the L(D/E)XLLXXL motif were essential to the recruitment of FAK, Cdc42, p34(Arc), and actin to the plasma membrane. In the absence of FAK, TarP-LD-mediated F-actin assembly was reduced, highlighting the functional relevance of this interaction. Together, the data indicate that a prokaryotic version of the paxillin LD2 domain targets the FAK signaling pathway, with TarP representing the first example of an LD-containing Type III virulence effector.

  3. Comparative Analysis of P450 Signature Motifs EXXR and CXG in the Large and Diverse Kingdom of Fungi: Identification of Evolutionarily Conserved Amino Acid Patterns Characteristic of P450 Family

    PubMed Central

    Syed, Khajamohiddin; Mashele, Samson Sitheni

    2014-01-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins distributed across the biological kingdoms. P450s are catalytically versatile and play key roles in organisms primary and secondary metabolism. Identification of P450s across the biological kingdoms depends largely on the identification of two P450 signature motifs, EXXR and CXG, in the protein sequence. Once a putative protein has been identified as P450, it will be assigned to a family and subfamily based on the criteria that P450s within a family share more than 40% homology and members of subfamilies share more than 55% homology. However, to date, no evidence has been presented that can distinguish members of a P450 family. Here, for the first time we report the identification of EXXR- and CXG-motifs-based amino acid patterns that are characteristic of the P450 family. Analysis of P450 signature motifs in the under-explored fungal P450s from four different phyla, ascomycota, basidiomycota, zygomycota and chytridiomycota, indicated that the EXXR motif is highly variable and the CXG motif is somewhat variable. The amino acids threonine and leucine are preferred as second and third amino acids in the EXXR motif and proline and glycine are preferred as second and third amino acids in the CXG motif in fungal P450s. Analysis of 67 P450 families from biological kingdoms such as plants, animals, bacteria and fungi showed conservation of a set of amino acid patterns characteristic of a particular P450 family in EXXR and CXG motifs. This suggests that during the divergence of P450 families from a common ancestor these amino acids patterns evolve and are retained in each P450 family as a signature of that family. The role of amino acid patterns characteristic of a P450 family in the structural and/or functional aspects of members of the P450 family is a topic for future research. PMID:24743800

  4. Structural and biochemical characterization of an RNA/DNA binding motif in the N-terminal domain of RecQ4 helicases

    PubMed Central

    Marino, Francesca; Mojumdar, Aditya; Zucchelli, Chiara; Bhardwaj, Amit; Buratti, Emanuele; Vindigni, Alessandro; Musco, Giovanna; Onesti, Silvia

    2016-01-01

    The RecQ4 helicase belongs to the ubiquitous RecQ family but its exact role in the cell is not completely understood. In addition to the helicase domain, RecQ4 has a unique N-terminal part that is essential for viability and is constituted by a region homologous to the yeast Sld2 replication initiation factor, followed by a cysteine-rich region, predicted to fold as a Zn knuckle. We carried out a structural and biochemical analysis of both the human and Xenopus laevis RecQ4 cysteine-rich regions, and showed by NMR spectroscopy that the Xenopus fragment indeed assumes the canonical Zn knuckle fold, whereas the human sequence remains unstructured, consistent with the mutation of one of the Zn ligands. Both the human and Xenopus Zn knuckles bind to a variety of nucleic acid substrates, with a mild preference for RNA. We also investigated the effect of a segment located upstream the Zn knuckle that is highly conserved and rich in positively charged and aromatic residues, partially overlapping with the C-terminus of the Sld2-like domain. In both the human and Xenopus proteins, the presence of this region strongly enhances binding to nucleic acids. These results reveal novel possible roles of RecQ4 in DNA replication and genome stability. PMID:26888063

  5. L-Rhamnose-binding lectin from eggs of the Echinometra lucunter: Amino acid sequence and molecular modeling.

    PubMed

    Carneiro, Rômulo Farias; Teixeira, Claudener Souza; de Melo, Arthur Alves; de Almeida, Alexandra Sampaio; Cavada, Benildo Sousa; de Sousa, Oscarina Viana; da Rocha, Bruno Anderson Matias; Nagano, Celso Shiniti; Sampaio, Alexandre Holanda

    2015-01-01

    An L-rhamnose-binding lectin named ELEL was isolated from eggs of the rock boring sea urchin Echinometra lucunter by affinity chromatography on lactosyl-agarose. ELEL is a homodimer linked by a disulfide bond with subunits of 11 kDa each. The new lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as L-rhamnose, melibiose, galactose and lactose. The amino acid sequence of ELEL was determined by tandem mass spectrometry. The ELEL subunit has 103 amino acids, including nine cysteine residues involved in four conserved intrachain disulfide bonds and one interchain disulfide bond. The full sequence of ELEL presents conserved motifs commonly found in rhamnose-binding lectins, including YGR, DPC and KYL. A three-dimensional model of ELEL was created, and molecular docking revealed favorable binding energies for interactions between ELEL and rhamnose, melibiose and Gb3 (Galα1-4Galβ1-4Glcβ1-Cer). Furthermore, ELEL was able to agglutinate Gram-positive bacterial cells, suggesting its ability to recognize pathogens.

  6. RAG-1 interacts with the repeated amino acid motif of the human homologue of the yeast protein SRP1.

    PubMed Central

    Cortes, P; Ye, Z S; Baltimore, D

    1994-01-01

    Genes for immunoglobulins and T-cell receptor are generated by a process known as V(D)J recombination. This process is highly regulated and mediated by the recombination activating proteins RAG-1 and RAG-2. By the use of the two-hybrid protein interaction system, we isolated a human protein that specifically interacts with RAG-1. This protein is the human homologue of the yeast SRP1 (suppressor of a temperature-sensitive RNA polymerase I mutation). The SRP1-1 mutation is an allele-specific dominant suppressor of a temperature-sensitive mutation in the zinc binding domain of the 190-kDa subunit of Saccharomyces cerevisiae RNA polymerase I. The human SRP cDNA clone was used to screen a mouse cDNA library. We obtained a 3.9-kbp cDNA clone encoding the mouse SRP1. The open reading frame of this cDNA encodes a 538-amino acid protein with eight degenerate repeats of 40-45 amino acids each. The mouse and human SRP1 are 98% identical, while the mouse and yeast SRP1 have 48% identity. After cotransfection of the genes encoding RAG-1 and human SRP1 into 293T cells, a stable complex was evident. Deletion analysis indicated that the region of the SRP1 protein interacting with RAG-1 involved four repeats. The domain of RAG-1 that associates with SRP1 mapped N-terminal to the zinc finger domain. Because this region of RAG-1 is not required for recombination and SRP1 appears to be bound to the nuclear envelope, we suggest that this interaction helps to localize RAG-1. Images PMID:8052633

  7. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs

    SciTech Connect

    Kelleher, Alan; Darwiche, Rabih; Rezende, Wanderson C.; Farias, Leonardo P.; Leite, Luciana C. C.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2014-08-01

    The first structure of an S. mansoni venom allergen-like protein is presented. Schistosomiasis is a parasitic disease that affects over 200 million people. Vaccine candidates have been identified, including Schistosoma mansoni venom allergen-like proteins (SmVALs) from the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. The first SmVAL structure, SmVAL4, was refined to a resolution limit of 2.16 Å. SmVAL4 has a unique structure that could not be predicted from homologous structures, with longer loops and an unusual C-terminal extension. SmVAL4 has the characteristic α/β-sandwich and central SCP/TAPS cavity. Furthermore, SmVAL4 has only one of the signature CAP cavity tetrad amino-acid residues and is missing the histidines that coordinate divalent cations such as Zn{sup 2+} in other SCP/TAPS proteins. SmVAL4 has a cavity between α-helices 1 and 4 that was observed to bind lipids in tablysin-15, suggesting the ability to bind lipids. Subsequently, SmVAL4 was shown to bind cholesterol in vitro. Additionally, SmVAL4 was shown to complement the in vivo sterol-export phenotype of yeast mutants lacking their endogenous CAP proteins. Expression of SmVAL4 in yeast cells lacking endogenous CAP function restores the block in sterol export. These studies suggest an evolutionarily conserved lipid-binding function shared by CAP proteins such as SmVAL4 and yeast CAP proteins such as Pry1.

  8. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  9. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity

    SciTech Connect

    He Yuxian . E-mail: yhe@nybloodcenter.org; Li Jingjing; Jiang Shibo

    2006-05-26

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.

  10. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  11. An aspartic acid at amino acid 108 is required to rescue infectious virus after transfection of a poliovirus cDNA containing a CGDD but not SGDD amino acid motif in 3Dpol.

    PubMed Central

    Walker, D E; McPherson, D; Jablonski, S A; McPherson, S; Morrow, C D

    1995-01-01

    The poliovirus RNA-dependent RNA polymerase (3Dpol) contains a region of homology centered around the amino acid motif YGDD (amino acids 326 to 329), which has been postulated to be involved in the catalytic activity of the enzyme. Previous studies from this laboratory have used oligonucleotide site-directed mutagenesis to substitute the tyrosine amino acid at this motif with other amino acids (S. A. Jablonski and C. D. Morrow, J. Virol. 67:373-381, 1993). The viruses recovered with 3Dpol genes with a methionine mutation also contained a second mutation at amino acid 108 resulting in a glutamic acid-to-aspartic acid change (3D-E-108 to 3D-D-108) in the poliovirus RNA polymerase. On the basis of these results, we suggested that the amino acid at position 108 might interact with the YGDD region of the poliovirus polymerase. To further investigate this possibility, we have constructed a series of constructs in which the poliovirus RNA polymerases contained a mutation at amino acid 108 (3D-E-108 to 3D-D-108) as well as a mutation in which the tyrosine amino acid (3D-Y-326) was substituted with cysteine (3D-C-326) or serine (3D-S-326). The mutant 3Dpol polymerases were expressed in Escherichia coli, and in vitro enzyme activity was analyzed. Enzymes containing the 3D-D-108 mutation with the wild-type amino acid (3D-Y-326) demonstrated in vitro enzyme activity similar to that of the wild-type enzyme containing 3D-E-108. In contrast, enzymes with the 3D-C-326 or 3D-S-326 mutation had less in vitro activity than the wild type. The inclusion of the second mutation at amino acid 3D-D-108 did not significantly affect the in vitro activity of the polymerases containing 3D-C-326 or 3D-S-326 mutation. Transfections of poliovirus cDNAs containing the substitution at amino acid 326 with or without the second mutation at amino acid 108 were performed. Consistent with previous findings, we found that transfection of poliovirus cDNAs containing the 3D-C-326 or 3D-S-326 mutation in 3

  12. A Sialic Acid Binding Site in a Human Picornavirus

    PubMed Central

    Frank, Martin; Hähnlein-Schick, Irmgard; Ekström, Jens-Ola; Arnberg, Niklas; Stehle, Thilo

    2014-01-01

    The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors.