Science.gov

Sample records for acid binding pocket

  1. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  2. Fatty Acid- and Retinoid-binding Proteins Have Distinct Binding Pockets for the Two Types of Cargo*

    PubMed Central

    Jordanova, Rositsa; Groves, Matthew R.; Kostova, Elena; Woltersdorf, Christian; Liebau, Eva; Tucker, Paul A.

    2009-01-01

    Parasitic nematodes cause serious diseases in humans, animals, and plants. They have limited lipid metabolism and are reliant on lipid-binding proteins to acquire these metabolites from their hosts. Several structurally novel families of lipid-binding proteins in nematodes have been described, including the fatty acid- and retinoid-binding protein family (FAR). In Caenorhabditis elegans, used as a model for studying parasitic nematodes, eight C. elegans FAR proteins have been described. The crystal structure of C. elegans FAR-7 is the first structure of a FAR protein, and it exhibits a novel fold. It differs radically from the mammalian fatty acid-binding proteins and has two ligand binding pockets joined by a surface groove. The first can accommodate the aliphatic chain of fatty acids, whereas the second can accommodate the bulkier retinoids. In addition to demonstrating lipid binding by fluorescence spectroscopy, we present evidence that retinol binding is positively regulated by casein kinase II phosphorylation at a conserved site near the bottom of the second pocket. far-7::GFP (green fluorescent protein) expression shows that it is localized in the head hypodermal syncytia and the excretory cell but that this localization changes under starvation conditions. In conclusion, our study provides the basic structural and functional information for investigation of inhibitors of lipid binding by FAR proteins. PMID:19828452

  3. Ascorbic acid reduction of compound I of mammalian catalases proceeds via specific binding to the NADPH binding pocket.

    PubMed

    Korth, Hans-Gert; Meier, Ann-Cathérine; Auferkamp, Oliver; Sicking, Willi; de Groot, Herbert; Sustmann, Reiner; Kirsch, Michael

    2012-06-12

    Mammalian (Clade 3) catalases utilize NADPH as a protective cofactor to prevent one-electron reduction of the central reactive intermediate Compound I (Cpd I) to the catalytically inactive Compound II (Cpd II) species by re-reduction of Cpd I to the enzyme's resting state (ferricatalase). It has long been known that ascorbate/ascorbic acid is capable of reducing Cpd I of NADPH-binding catalases to Cpd II, but the mode of this one-electron reduction had hitherto not been explored. We here demonstrate that ascorbate-mediated reduction of Cpd I, generated by addition of peroxoacetic acid to NADPH-free bovine liver catalase (BLC), requires specific binding of the ascorbate anion to the NADPH binding pocket. Ascorbate-mediated Cpd II formation was found to be suppressed by added NADPH in a concentration-dependent manner, for the achievement of complete suppression at a stoichiometric 1:1 NADPH:heme concentration ratio. Cpd I → Cpd II reduction by ascorbate was similarly inhibited by addition of NADH, NADP(+), thio-NADP(+), or NAD(+), though with 0.5-, 0.1-, 0.1-, and 0.01-fold reduced efficiencies, respectively, in agreement with the relative binding affinities of these dinucleotides. Unexpected was the observation that although Cpd II formation is not observed in the presence of NADP(+), the decay of Cpd I is slightly accelerated by ascorbate rather than retarded, leading to direct regeneration of ferricatalase. The experimental findings are supported by molecular mechanics docking computations, which show a similar binding of NADPH, NADP(+), and NADH, but not NAD(+), as found in the X-ray structure of NADPH-loaded human erythrocyte catalase. The computations suggest that two ascorbate molecules may occupy the empty NADPH pocket, preferably binding to the adenine binding site. The biological relevance of these findings is discussed. PMID:22616883

  4. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A.; Alvarez, Susana; de Lera, Angel R.; Kuraku, Shigehiro; Bourguet, William; Laudet, Vincent

    2016-01-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication–degeneration–complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor–ligand interactions of NRs following WGDs. PMID:27069642

  5. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A; Alvarez, Susana; de Lera, Angel R; Kuraku, Shigehiro; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2016-03-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs. PMID:27069642

  6. Reshaping an enzyme binding pocket for enhanced and inverted stereoselectivity: use of smallest amino acid alphabets in directed evolution.

    PubMed

    Sun, Zhoutong; Lonsdale, Richard; Kong, Xu-Dong; Xu, Jian-He; Zhou, Jiahai; Reetz, Manfred T

    2015-10-12

    Directed evolution based on saturation mutagenesis at sites lining the binding pocket is a commonly practiced strategy for enhancing or inverting the stereoselectivity of enzymes for use in organic chemistry or biotechnology. However, as the number of residues in a randomization site increases to five or more, the screening effort for 95 % library coverage increases astronomically until it is no longer feasible. We propose the use of a single amino acid for saturation mutagenesis at superlarge randomization sites comprising 10 or more residues. When used to reshape the binding pocket of limonene epoxide hydrolase, this strategy, which drastically reduces the search space and thus the screening effort, resulted in R,R- and S,S-selective mutants for the hydrolytic desymmetrization of cyclohexene oxide and other epoxides. X-ray crystal structures and docking studies of the mutants unveiled the source of stereoselectivity and shed light on the mechanistic intricacies of this enzyme. PMID:25891639

  7. Structure and function of Plasmodium falciparum malate dehydrogenase: role of critical amino acids in co-substrate binding pocket.

    PubMed

    Pradhan, Anupam; Tripathi, Abhai K; Desai, Prashant V; Mukherjee, Prasenjit K; Avery, Mitchell A; Walker, Larry A; Tekwani, Babu L

    2009-01-01

    The malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our laboratory have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal glycine motif, which forms a characteristic Rossman dinucleotide-binding fold in the co-substrate binding pocket, differentiates PfMDH (GlyXGlyXXGly) from other eukaryotic and prokaryotic malate dehydrogenases (GlyXXGlyXXGly). The amino acids lining the co-substrate binding pocket are completely conserved in MDHs from different species of human, primate and rodent malaria parasites. Based on this knowledge and conserved domains among prokaryotic and eukaryotic MDH, the role of critical amino acids lining the co-substrate binding pocket was analyzed in catalytic functions of PfMDH using site-directed mutagenesis. Insertion of Ala at the 9th or 10th position, which converts the N-terminal GlyXGlyXXGly motif (characteristic of malarial MDH and LDH) to GlyXXGlyXXGly (as in bacterial and eukaryotic MDH), uncoupled regulation of the enzyme through substrate inhibition. The dinucleotide fold GlyXGlyXXGly motif seems not to be responsible for the distinct affinity of PfMDH to 3-acetylpyridine-adenine dinucleotide (APAD, a synthetic analog of NAD), since Ala9 and Ala10 insertion mutants still utilized APADH. The Gln11Met mutation, which converts the signature glycine motif in PfMDH to that of PfLDH, did not change the enzyme function. However, the Gln11Gly mutant showed approximately a 5-fold increase in catalytic activity, and higher susceptibility to inhibition with gossypol. Asn119 and His174 participate in binding of both co-substrate and substrate. The Asn119Gly mutant exhibited approximately a 3-fold decrease in catalytic efficiency, while mutation of His174 to Asn or Ala resulted in an inactive enzyme. These studies provide critical insights into the co

  8. Binding Pocket Alterations in Dihydrofolate Synthase Confer Resistance to para-Aminosalicylic Acid in Clinical Isolates of Mycobacterium tuberculosis

    PubMed Central

    Zhao, Fei; Wang, Xu-De; Erber, Luke N.; Luo, Ming; Guo, Ai-zhen; Yang, Shan-shan; Gu, Jing; Turman, Breanna J.; Gao, Yun-rong; Li, Dong-fang; Cui, Zong-qiang; Zhang, Zhi-ping; Bi, Li-jun; Baughn, Anthony D.

    2014-01-01

    The mechanistic basis for the resistance of Mycobacterium tuberculosis to para-aminosalicylic acid (PAS), an important agent in the treatment of multidrug-resistant tuberculosis, has yet to be fully defined. As a substrate analog of the folate precursor para-aminobenzoic acid, PAS is ultimately bioactivated to hydroxy dihydrofolate, which inhibits dihydrofolate reductase and disrupts the operation of folate-dependent metabolic pathways. As a result, the mutation of dihydrofolate synthase, an enzyme needed for the bioactivation of PAS, causes PAS resistance in M. tuberculosis strain H37Rv. Here, we demonstrate that various missense mutations within the coding sequence of the dihydropteroate (H2Pte) binding pocket of dihydrofolate synthase (FolC) confer PAS resistance in laboratory isolates of M. tuberculosis and Mycobacterium bovis. From a panel of 85 multidrug-resistant M. tuberculosis clinical isolates, 5 were found to harbor mutations in the folC gene within the H2Pte binding pocket, resulting in PAS resistance. While these alterations in the H2Pte binding pocket resulted in reduced dihydrofolate synthase activity, they also abolished the bioactivation of hydroxy dihydropteroate to hydroxy dihydrofolate. Consistent with this model for abolished bioactivation, the introduction of a wild-type copy of folC fully restored PAS susceptibility in folC mutant strains. Confirmation of this novel PAS resistance mechanism will be beneficial for the development of molecular method-based diagnostics for M. tuberculosis clinical isolates and for further defining the mode of action of this important tuberculosis drug. PMID:24366731

  9. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets

    PubMed Central

    Palermo, Giulia; Bauer, Inga; Campomanes, Pablo; Cavalli, Andrea; Armirotti, Andrea; Girotto, Stefania; Rothlisberger, Ursula; De Vivo, Marco

    2015-01-01

    The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. PMID:26111155

  10. The Binding of Antigenic Peptides to HLA-DR Is Influenced by Interactions between Pocket 6 and Pocket 91

    PubMed Central

    James, Eddie A.; Moustakas, Antonis K.; Bui, John; Nouv, Randi; Papadopoulos, George K.; Kwok, William W.

    2013-01-01

    Peptide binding to class II MHC protein is commonly viewed as a combination of discrete anchor residue preferences for pockets 1, 4, 6/7, and 9. However, previous studies have suggested cooperative effects during the peptide binding process. Investigation of the DRB1*0901 binding motif demonstrated a clear interaction between peptide binding pockets 6 and 9. In agreement with prior studies, pockets 1 and 4 exhibited clear binding preferences. Previously uncharacterized pockets 6 and 7 accommodated a wide variety of residues. However, although it was previously reported that pocket 9 is completely permissive, several substitutions at this position were unable to bind. Structural modeling revealed a probable interaction between pockets 6 and 9 through β9Lys. Additional binding studies with doubly substituted peptides confirmed that the amino acid bound within pocket 6 profoundly influences the binding preferences for pocket 9 of DRB1*0901, causing complete permissiveness of pocket 9 when a small polar residue is anchored in pocket 6 but accepting relatively few residues when a basic residue is anchored in pocket 6. The β9Lys residue is unique to DR9 alleles. However, similar studies with doubly substituted peptides confirmed an analogous interaction effect for DRA1/B1*0301, a β9Glu allele. Accounting for this interaction resulted in improved epitope prediction. These findings provide a structural explanation for observations that an amino acid in one pocket can influence binding elsewhere in the MHC class II peptide binding groove. PMID:19648278

  11. Identification of amino acid residues that form part of the ligand-binding pocket of integrin alpha5 beta1.

    PubMed

    Mould, A P; Burrows, L; Humphries, M J

    1998-10-01

    Arg-Arg-Glu-Thr-Ala-Trp-Ala (RRETAWA) is a novel ligand peptide for integrin alpha5 beta1, which blocks alpha5 beta1-mediated cell adhesion to fibronectin (Koivunen, E., Wang, B., and Ruoslahti, E. (1994) J. Cell Biol. 124, 373-380). Here we have localized the binding site for RRETAWA on alpha5 beta1 using inhibitory monoclonal antibodies (mAbs) and site-directed mutagenesis. A cyclic peptide containing this sequence (*CRRETAWAC*) had little effect on the binding of most anti-alpha5 and anti-beta1 mAbs to alpha5 beta1 but completely blocked binding of the anti-alpha5 mAb 16 in a directly competitive manner. Hence, the binding site of RRETAWA appears to closely overlap with the epitope of mAb 16. *CRRETAWAC* also acted as a direct competitive inhibitor of the binding of Arg-Gly-Asp (RGD)-containing fibronectin fragments to alpha5 beta1, suggesting that the binding site for RRETAWA is also closely overlapping with that for RGD. However, differences between the binding sites of RRETAWA and RGD were apparent in that (i) RGD peptides allosterically inhibited the binding of mAb 16 to alpha5 beta1, and (ii) several mAbs that perturbed binding of alpha5 beta1 to RGD had little effect on binding of alpha5 beta1 to RRETAWA. A double mutation in alpha5 (S156G/W157S) blocked the interaction of both RRETAWA and mAb 16 with alpha5 beta1 but had no effect on fibronectin binding or on the binding of other anti-alpha5 mAbs. Ser156-Trp157 is located near the apex of a putative loop region on the upper surface of a predicted beta-propeller structure formed by the NH2-terminal repeats of alpha5. Our findings suggest that this sequence forms part of the ligand-binding pocket of alpha5 beta1. Furthermore, as Ser156-Trp157 is unique to the alpha5 subunit, it may be responsible for the specific recognition of RRETAWA by alpha5 beta1. PMID:9748233

  12. Mutational Analysis of the Binding Pockets of the Diketo Acid Inhibitor L-742,001 in the Influenza Virus PA Endonuclease

    PubMed Central

    Stevaert, Annelies; Dallocchio, Roberto; Dessì, Alessandro; Pala, Nicolino; Rogolino, Dominga; Sechi, Mario

    2013-01-01

    The influenza virus PA endonuclease, which cleaves capped host pre-mRNAs to initiate synthesis of viral mRNA, is a prime target for antiviral therapy. The diketo acid compound L-742,001 was previously identified as a potent inhibitor of the influenza virus endonuclease reaction, but information on its precise binding mode to PA or potential resistance profile is limited. Computer-assisted docking of L-742,001 into the crystal structure of inhibitor-free N-terminal PA (PA-Nter) indicated a binding orientation distinct from that seen in a recent crystallographic study with L-742,001-bound PA-Nter (R. M. DuBois et al., PLoS Pathog. 8:e1002830, 2012). A comprehensive mutational analysis was performed to determine which amino acid changes within the catalytic center of PA or its surrounding hydrophobic pockets alter the antiviral sensitivity to L-742,001 in cell culture. Marked (up to 20-fold) resistance to L-742,001 was observed for the H41A, I120T, and G81F/V/T mutant forms of PA. Two- to 3-fold resistance was seen for the T20A, L42T, and V122T mutants, and the R124Q and Y130A mutants were 3-fold more sensitive to L-742,001. Several mutations situated at noncatalytic sites in PA had no or only marginal impact on the enzymatic functionality of viral ribonucleoprotein complexes reconstituted in cell culture, consistent with the less conserved nature of these PA residues. Our data provide relevant insights into the binding mode of L-742,001 in the PA endonuclease active site. In addition, we predict some potential resistance sites that should be taken into account during optimization of PA endonuclease inhibitors toward tight binding in any of the hydrophobic pockets surrounding the catalytic center of the enzyme. PMID:23824822

  13. Mutational analysis of the binding pockets of the diketo acid inhibitor L-742,001 in the influenza virus PA endonuclease.

    PubMed

    Stevaert, Annelies; Dallocchio, Roberto; Dessì, Alessandro; Pala, Nicolino; Rogolino, Dominga; Sechi, Mario; Naesens, Lieve

    2013-10-01

    The influenza virus PA endonuclease, which cleaves capped host pre-mRNAs to initiate synthesis of viral mRNA, is a prime target for antiviral therapy. The diketo acid compound L-742,001 was previously identified as a potent inhibitor of the influenza virus endonuclease reaction, but information on its precise binding mode to PA or potential resistance profile is limited. Computer-assisted docking of L-742,001 into the crystal structure of inhibitor-free N-terminal PA (PA-Nter) indicated a binding orientation distinct from that seen in a recent crystallographic study with L-742,001-bound PA-Nter (R. M. DuBois et al., PLoS Pathog. 8:e1002830, 2012). A comprehensive mutational analysis was performed to determine which amino acid changes within the catalytic center of PA or its surrounding hydrophobic pockets alter the antiviral sensitivity to L-742,001 in cell culture. Marked (up to 20-fold) resistance to L-742,001 was observed for the H41A, I120T, and G81F/V/T mutant forms of PA. Two- to 3-fold resistance was seen for the T20A, L42T, and V122T mutants, and the R124Q and Y130A mutants were 3-fold more sensitive to L-742,001. Several mutations situated at noncatalytic sites in PA had no or only marginal impact on the enzymatic functionality of viral ribonucleoprotein complexes reconstituted in cell culture, consistent with the less conserved nature of these PA residues. Our data provide relevant insights into the binding mode of L-742,001 in the PA endonuclease active site. In addition, we predict some potential resistance sites that should be taken into account during optimization of PA endonuclease inhibitors toward tight binding in any of the hydrophobic pockets surrounding the catalytic center of the enzyme. PMID:23824822

  14. POVME: An Algorithm for Measuring Binding-Pocket Volumes

    PubMed Central

    Durrant, Jacob D.; de Oliveira, César Augusto F.; McCammon, J. Andrew

    2011-01-01

    Researchers engaged in computer-aided drug design often wish to measure the volume of a ligand-binding pocket in order to predict pharmacology. We have recently developed a simple algorithm, called POVME (POcket Volume MEasurer), for this purpose. POVME is Python implemented, fast, and freely available. To demonstrate its utility, we use the new algorithm to study three members of the matrix-metalloproteinase family of proteins. Despite the structural similarity of these proteins, differences in binding-pocket dynamics are easily identified. PMID:21147010

  15. Molecular recognition of CYP26A1 binding pockets and structure-activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents.

    PubMed

    Sun, Bin; Song, Shuai; Hao, Chen-Zhou; Huang, Wan-Xu; Liu, Chun-Chi; Xie, Hong-Lei; Lin, Bin; Cheng, Mao-Sheng; Zhao, Dong-Mei

    2015-03-01

    All-trans-retinoic acid (ATRA), the biologically most active metabolite of vitamin A, plays a major role in the regulation of cellular differentiation and proliferation, and it is also an important pharmacological agent particularly used in the treatment of cancer, skin, neurodegenerative and autoimmune diseases. However, ATRA is very easy to be metabolized into 4-hydroxyl-RA in vivo by CYP26A1, an inducible cytochrome P450 enzyme, eventually into more polar metabolites. Therefore, it is vital to develop specific retinoic acid metabolism blocking agents (RAMBAs) to inhibit the metabolic enzyme CYP26A1 in the treatment of relevant diseases aforementioned. In this study, CYP26A1 and its interactions with retinoic acid-competitive metabolism blocking agents were investigated by a combined ligand- and structure-based approach. First, since the crystal structure of CYP26A1 protein has not been determined, we constructed the 3D structure of CYP26A1 using homology modeling. In order to achieve a deeper insight into the mode of action of RAMBAs in the active site, the molecular superimposition model and the common feature pharmacophore model were constructed, and molecular docking was performed. The molecular superimposition model is composed of three features: the main chain groups, side chain groups, and azole groups. The common feature pharmacophore model consists of five chemical features: four hydrophobic groups and one hydrogen acceptor (HHHHA). The results of molecular docking show that the characteristic groups of RAMBAs were mapped into three different active pockets, respectively. A structure-activity relationship (SAR) was obtained by a combination of the molecular superimposition and docking results with the pharmacophore model. This study gives more insight into the interaction model inside the CYP26A1 active site and provides guidance for the design of more potent and possibly more selective RAMBAs. PMID:25541526

  16. New members of the brachyurins family in lobster include a trypsin-like enzyme with amino acid substitutions in the substrate-binding pocket.

    PubMed

    Perera, Erick; Pons, Tirso; Hernandez, Damir; Moyano, Francisco J; Martínez-Rodríguez, Gonzalo; Mancera, Juan M

    2010-09-01

    Crustacean serine proteases (Brachyurins, EC 3.4.21.32) exhibit a wide variety of primary specificities and no member of this family has been reported for spiny lobsters. The aim of this work was to study the diversity of trypsins in the digestive gland of Panulirus argus. Several trypsin-like proteases were cloned and the results suggest that at least three gene families encode trypsins in the lobster. Three-dimensional comparative models of each trypsin anticipated differences in the interaction of these enzymes with proteinaceous substrates and inhibitors. Most of the studied enzymes were typical trypsins, but one could not be allocated to any of the brachyurins groups due to amino acid substitutions found in the vicinity of the active site. Among other changes in this form of the enzyme, conserved Gly216 and Gly226 (chymotrypsin numbering) are substituted by Leu and Pro, respectively, while retaining all other key residues for trypsin specificity. These substitutions may impair the access of bulky residues to the S1 site while they make the pocket more hydrophobic. The physiological role of this form of the enzyme could be relevant as it was found to be highly expressed in lobster. Further studies on the specificity and structure of this variant must be performed to locate it within the brachyurins family. It is suggested that specificity within this family of enzymes is broader than is currently believed. PMID:20649906

  17. Amino acid substitution at peptide-binding pockets of HLA class I molecules increases risk of severe acute GVHD and mortality

    PubMed Central

    Wang, Tao; Haagenson, Michael; Spellman, Stephen R.; Askar, Medhat; Battiwalla, Minoo; Baxter-Lowe, Lee Ann; Bitan, Menachem; Fernandez-Viña, Marcelo; Gandhi, Manish; Jakubowski, Ann A.; Maiers, Martin; Marino, Susana R.; Marsh, Steven G. E.; Oudshoorn, Machteld; Palmer, Jeanne; Prasad, Vinod K.; Reddy, Vijay; Ringden, Olle; Saber, Wael; Santarone, Stella; Schultz, Kirk R.; Setterholm, Michelle; Trachtenberg, Elizabeth; Turner, E. Victoria; Woolfrey, Ann E.; Lee, Stephanie J.; Anasetti, Claudio

    2013-01-01

    HLA disparity has a negative impact on the outcomes of hematopoietic cell transplantation (HCT). We studied the independent impact of amino acid substitution (AAS) at peptide-binding positions 9, 99, 116, and 156, and killer immunoglobulin-like receptor binding position 77 of HLA-A, B, or C, on the risks for grade 3-4 acute graft-versus-host disease (GVHD), chronic GVHD, treatment-related mortality (TRM), relapse, and overall survival. In multivariate analysis, a mismatch at HLA-C position 116 was associated with increased risk for severe acute GVHD (hazard ratio [HR] = 1.45, 95% confidence interval [CI] = 1.15-1.82, P = .0016). Mismatch at HLA-C position 99 was associated with increased transplant-related mortality (HR = 1.37, 95% CI = 1.1-1.69, P = .0038). Mismatch at HLA-B position 9 was associated with increased chronic GVHD (HR = 2.28, 95% CI = 1.36-3.82, P = .0018). No AAS were significantly associated with outcome at HLA-A. Specific AAS pair combinations with a frequency >30 were tested for association with HCT outcomes. Cysteine to tyrosine substitution at position 99 of HLA-C was associated with increased TRM (HR = 1.78, 95% = CI 1.27-2.51, P = .0009). These results demonstrate that donor-recipient mismatch for certain peptide-binding residues of the HLA class I molecule is associated with increased risk for acute and chronic GVHD and death. PMID:23982174

  18. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation. PMID:8663249

  19. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    PubMed

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design. PMID:27399277

  20. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.

    PubMed Central

    Liang, J.; Edelsbrunner, H.; Woodward, C.

    1998-01-01

    Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structure-based ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities; the volume and area of pockets and cavities; and the area and circumference of mouth openings. CAST analysis of over 100 proteins has been carried out; proteins examined include a set of 51 monomeric enzyme-ligand structures, several elastase-inhibitor complexes, the FK506 binding protein, 30 HIV-1 protease-inhibitor complexes, and a number of small and large protein inhibitors. Medium-sized globular proteins typically have 10-20 pockets/cavities. Most often, binding sites are pockets with 1-2 mouth openings; much less frequently they are cavities. Ligand binding pockets vary widely in size, most within the range 10(2)-10(3)A3. Statistical analysis reveals that the number of pockets and cavities is correlated with protein size, but there is no correlation between the size of the protein and the size of binding sites. Most frequently, the largest pocket/cavity is the active site, but there are a number of instructive exceptions. Ligand volume and binding site volume are somewhat correlated when binding site volume is < or =700 A3, but the ligand seldom occupies the entire site. Auxiliary pockets near the active site have been suggested as additional binding surface for designed ligands (Mattos C et al., 1994, Nat Struct Biol 1:55-58). Analysis of elastase-inhibitor complexes suggests that CAST can identify ancillary pockets suitable for recruitment in ligand design strategies. Analysis of the FK506 binding protein, and of compounds developed in SAR by NMR (Shuker SB et

  1. Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.

    PubMed

    Ingram-Smith, Cheryl; Woods, Barrett I; Smith, Kerry S

    2006-09-26

    AMP-forming acetyl-CoA synthetase [ACS; acetate:CoA ligase (AMP-forming), EC 6.2.1.1] catalyzes the activation of acetate to acetyl-CoA in a two-step reaction. This enzyme is a member of the adenylate-forming enzyme superfamily that includes firefly luciferase, nonribosomal peptide synthetases, and acyl- and aryl-CoA synthetases/ligases. Although the structures of several superfamily members demonstrate that these enzymes have a similar fold and domain structure, the low sequence conservation and diversity of the substrates utilized have limited the utility of these structures in understanding substrate binding in more distantly related enzymes in this superfamily. The crystal structures of the Salmonella enterica ACS and Saccharomyces cerevisiae ACS1 have allowed a directed approach to investigating substrate binding and catalysis in ACS. In the S. enterica ACS structure, the propyl group of adenosine 5'-propylphosphate, which mimics the acyl-adenylate intermediate, lies in a hydrophobic pocket. Modeling of the Methanothermobacter thermautotrophicus Z245 ACS (MT-ACS1) on the S. cerevisiae ACS structure showed similar active site architecture, and alignment of the amino acid sequences of proven ACSs indicates that the four residues that compose the putative acetate binding pocket are well conserved. These four residues, Ile312, Thr313, Val388, and Trp416 of MT-ACS1, were targeted for alteration, and our results support that they do indeed form the acetate binding pocket and that alterations at these positions significantly alter the enzyme's affinity for acetate as well as the range of acyl substrates that can be utilized. In particular, Trp416 appears to be the primary determinant for acyl chain length that can be accommodated in the binding site. PMID:16981708

  2. Identification of a Ligand Binding Pocket in LdtR from Liberibacter asiaticus.

    PubMed

    Pagliai, Fernando A; Gonzalez, Claudio F; Lorca, Graciela L

    2015-01-01

    LdtR is a transcriptional activator involved in the regulation of a putative L,D transpeptidase in Liberibacter asiaticus, an unculturable pathogen and one of the causative agents of Huanglongbing disease. Using small molecule screens we identified benzbromarone as an inhibitor of LdtR activity, which was confirmed using in vivo and in vitro assays. Based on these previous results, the objective of this work was to identify the LdtR ligand binding pocket and characterize its interactions with benzbromarone. A structural model of LdtR was constructed and the molecular interactions with the ligand were predicted using the SwissDock interface. Using site-directed mutagenesis, these residues were changed to alanine. Electrophoretic mobility shift assays, thermal denaturation, isothermal titration calorimetry experiments, and in vivo assays were used to identify residues T43, L61, and F64 in the Benz1 pocket of LdtR as the amino acids most likely involved in the binding to benzbromarone. These results provide new information on the binding mechanism of LdtR to a modulatory molecule and provide a blue print for the design of therapeutics for other members of the MarR family of transcriptional regulators involved in pathogenicity. PMID:26635775

  3. Identification of a Ligand Binding Pocket in LdtR from Liberibacter asiaticus

    PubMed Central

    Pagliai, Fernando A.; Gonzalez, Claudio F.; Lorca, Graciela L.

    2015-01-01

    LdtR is a transcriptional activator involved in the regulation of a putative L,D transpeptidase in Liberibacter asiaticus, an unculturable pathogen and one of the causative agents of Huanglongbing disease. Using small molecule screens we identified benzbromarone as an inhibitor of LdtR activity, which was confirmed using in vivo and in vitro assays. Based on these previous results, the objective of this work was to identify the LdtR ligand binding pocket and characterize its interactions with benzbromarone. A structural model of LdtR was constructed and the molecular interactions with the ligand were predicted using the SwissDock interface. Using site-directed mutagenesis, these residues were changed to alanine. Electrophoretic mobility shift assays, thermal denaturation, isothermal titration calorimetry experiments, and in vivo assays were used to identify residues T43, L61, and F64 in the Benz1 pocket of LdtR as the amino acids most likely involved in the binding to benzbromarone. These results provide new information on the binding mechanism of LdtR to a modulatory molecule and provide a blue print for the design of therapeutics for other members of the MarR family of transcriptional regulators involved in pathogenicity. PMID:26635775

  4. Color tuning in binding pocket models of the chlamydomonas-type channelrhodopsins.

    PubMed

    Welke, Kai; Frähmcke, Jan S; Watanabe, Hiroshi C; Hegemann, Peter; Elstner, Marcus

    2011-12-22

    We examined the shift of absorption maxima between the chlamydomonas-type channelrhodopsins (ChRs) and bacteriorhodopsin (BR). Starting from the BR X-ray structure, we modeled the color tuning in the binding pockets of the ChRs by mutating up to 28 amino acids in the vicinity of the chromophore. By applying the efficient self-consistent charge density functional tight binding (SCC-DFTB) method in a quantum mechanical/molecular mechanical (QM/MM) framework, including explicit polarization and calculating excitation energies with the semiempirical OM2/MRCI method and the ab initio SORCI method, we have shown that multiple mutations in the binding pocket of BR causes large hypsochromic shifts that are of the same order as the experimentally observed shifts of the absorption maxima between BR and the ChRs. This study further demonstrates that mutations in the proximity of the Schiff base and complex counterion lead to a stronger but more flexible interaction with the retinal, which could serve as a possible explanation for the spectral patterns found in the ChRs. PMID:22077286

  5. Divergence of Pumilio/fem-3 mRNA Binding Factor (PUF) Protein Specificity through Variations in an RNA-binding Pocket*

    PubMed Central

    Qiu, Chen; Kershner, Aaron; Wang, Yeming; Holley, Cynthia P.; Wilinski, Daniel; Keles, Sunduz; Kimble, Judith; Wickens, Marvin; Hall, Traci M. Tanaka

    2012-01-01

    mRNA control networks depend on recognition of specific RNA sequences. Pumilio-fem-3 mRNA binding factor (PUF) RNA-binding proteins achieve that specificity through variations on a conserved scaffold. Saccharomyces cerevisiae Puf3p achieves specificity through an additional binding pocket for a cytosine base upstream of the core RNA recognition site. Here we demonstrate that this chemically simple adaptation is prevalent and contributes to the diversity of RNA specificities among PUF proteins. Bioinformatics analysis shows that mRNAs associated with Caenorhabditis elegans fem-3 mRNA binding factor (FBF)-2 in vivo contain an upstream cytosine required for biological regulation. Crystal structures of FBF-2 and C. elegans PUF-6 reveal binding pockets structurally similar to that of Puf3p, whereas sequence alignments predict a pocket in PUF-11. For Puf3p, FBF-2, PUF-6, and PUF-11, the upstream pockets and a cytosine are required for maximal binding to RNA, but the quantitative impact on binding affinity varies. Furthermore, the position of the upstream cytosine relative to the core PUF recognition site can differ, which in the case of FBF-2 originally masked the identification of this consensus sequence feature. Importantly, other PUF proteins lack the pocket and so do not discriminate upstream bases. A structure-based alignment reveals that these proteins lack key residues that would contact the cytosine, and in some instances, they also present amino acid side chains that interfere with binding. Loss of the pocket requires only substitution of one serine, as appears to have occurred during the evolution of certain fungal species. PMID:22205700

  6. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  7. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    SciTech Connect

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C.

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  8. A Characteristic Back Support Structure in the Bisphenol A-Binding Pocket in the Human Nuclear Receptor ERRγ

    PubMed Central

    Liu, Xiaohui; Matsushima, Ayami; Shimohigashi, Miki; Shimohigashi, Yasuyuki

    2014-01-01

    The endocrine disruptor bisphenol A (BPA) affects various genes and hormones even at merely physiological levels. We recently demonstrated that BPA binds strongly to human nuclear receptor estrogen-related receptor (ERR) γ and that the phenol-A group of BPA is in a receptacle pocket with essential amino acid residues to provide structural support at the backside. This led BPA to bind to ERRγ in an induced-fit-type binding mode, for example, with a rotated motion of Val313 to support the Tyr326-binding site. A similar binding mechanism appears to occur at the binding site of the BPA phenol-B ring. X-ray crystal analysis of the ERRγ-ligand-binding domain/BPA complex suggested that the ERRγ receptor residues Leu342, Leu345, Asn346, and Ile349 function as intrinsic binding sites of the BPA phenol-B, whereas Leu265, Leu268, Ile310, Val313, Leu324, Tyr330, Lys430, Ala431, and His434 work as structural elements to assist these binding sites. In the present study, by evaluating the mutant receptors replaced by a series of amino acids, we demonstrated that a finely assembled structural network indeed exists around the two adjacent Leu342-Asn346 and Leu345-Ile349 ridges on the same α-helix 7 (H7), constructing a part of the binding pocket structure with back support residues for the BPA phenol-B ring. The results reveal that the double-layer binding sites, namely, the ordinary ligand binding sites and their back support residues, substantiate the strong binding of BPA to ERRγ. When ERRγ-Asn346 was replaced by the corresponding Gly and Tyr in ERRα and ERRβ, respectively, the binding affinity of BPA and even 4-hydroxytamxifen (4-OHT) is much reduced. Asn346 was found to be one of the residues that make ERRγ to be exclusive to BPA. PMID:24978476

  9. Fast prediction and visualization of protein binding pockets with PASS.

    PubMed

    Brady, G P; Stouten, P F

    2000-05-01

    PASS (Putative Active Sites with Spheres) is a simple computational tool that uses geometry to characterize regions of buried volume in proteins and to identify positions likely to represent binding sites based upon the size, shape, and burial extent of these volumes. Its utility as a predictive tool for binding site identification is tested by predicting known binding sites of proteins in the PDB using both complexed macromolecules and their corresponding apoprotein structures. The results indicate that PASS can serve as a front-end to fast docking. The main utility of PASS lies in the fact that it can analyze a moderate-size protein (approximately 30 kDa) in under 20 s, which makes it suitable for interactive molecular modeling, protein database analysis, and aggressive virtual screening efforts. As a modeling tool, PASS (i) rapidly identifies favorable regions of the protein surface, (ii) simplifies visualization of residues modulating binding in these regions, and (iii) provides a means of directly visualizing buried volume, which is often inferred indirectly from curvature in a surface representation. PASS produces output in the form of standard PDB files, which are suitable for any modeling package, and provides script files to simplify visualization in Cerius2, InsightII, MOE, Quanta, RasMol, and Sybyl. PASS is freely available to all. PMID:10815774

  10. Competitive Binding of a Benzimidazole to the Histone-Binding Pocket of the Pygo PHD Finger

    PubMed Central

    2014-01-01

    The Pygo-BCL9 complex is a chromatin reader, facilitating β-catenin-mediated oncogenesis, and is thus emerging as a potential therapeutic target for cancer. Its function relies on two ligand-binding surfaces of Pygo’s PHD finger that anchor the histone H3 tail methylated at lysine 4 (H3K4me) with assistance from the BCL9 HD1 domain. Here, we report the first use of fragment-based screening by NMR to identify small molecules that block protein–protein interactions by a PHD finger. This led to the discovery of a set of benzothiazoles that bind to a cleft emanating from the PHD–HD1 interface, as defined by X-ray crystallography. Furthermore, we discovered a benzimidazole that docks into the H3K4me specificity pocket and displaces the native H3K4me peptide from the PHD finger. Our study demonstrates the ligandability of the Pygo–BCL9 complex and uncovers a privileged scaffold as a template for future development of lead inhibitors of oncogenesis. PMID:25323450

  11. S1 pocket of glutamate carboxypeptidase II: a new binding site for amyloid-β degradation.

    PubMed

    Lee, Suk Kyung; Kim, Hyunyoung; Cheong, You-Hoon; Kim, Min-Ju; Jo, Sangmee Ahn; Youn, Hyung-Seop; Park, Sang Ick

    2013-09-01

    We recently reported that glutamate carboxypeptidase II (GCPII) has a new physiological function degrading amyloid-β (Aβ), distinct from its own hydrolysis activity in N-acetyl-L-aspartyl-L-glutamate (NAAG); however, its underlying mechanism remains undiscovered. Using site-directed mutagenesis and S1 pocket-specific chemical inhibitor (compound 2), which was developed for the present study based on in sillico computational modeling, we discovered that the Aβ degradation occurs through S1 pocket but not through S1' pocket responsible for NAAG hydrolysis. Treatment with compound 2 prevented GCPII from Aβ degradation without any impairment in NAAG hydrolysis. Likewise, 2-PMPA (specific GCPII inhibitor developed targeting S1' pocket) completely blocked the NAAG hydrolysis without any effect on Aβ degradation. Pre-incubation with NAAG and Aβ did not affect Aβ degradation and NAAG hydrolysis, respectively. These data suggest that GCPII has two distinctive binding sites for two different substrates and that Aβ degradation occurs through binding to S1 pocket of GCPII. PMID:23891752

  12. Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket

    PubMed Central

    Saalau-Bethell, Susanne M; Berdini, Valerio; Cleasby, Anne; Congreve, Miles; Coyle, Joseph E; Lock, Victoria; Murray, Christopher W; O'Brien, M Alistair; Rich, Sharna J; Sambrook, Tracey; Vinkovic, Mladen; Yon, Jeff R; Jhoti, Harren

    2014-01-01

    Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5′-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein. PMID:24616449

  13. Probing a Polar Cluster in the Retinal Binding Pocket of Bacteriorhodopsin by a Chemical Design Approach

    PubMed Central

    Simón-Vázquez, Rosana; Domínguez, Marta; Lórenz-Fonfría, Víctor A.; Álvarez, Susana; Bourdelande, José-Luís; de Lera, Ángel R.; Padrós, Esteve; Perálvarez-Marín, Alex

    2012-01-01

    Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C13 of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoproteins with all-trans-retinal and its 20-methyl derivative (hereafter, 13-ethyl retinal). Biophysical characterization indicates that recovering the steric interaction between the residue 90 and retinal, eases the accommodation of the chromophore, however it is not enough for a complete phenotype rescue. The characterization of these chemically engineered chromoproteins provides further insight into the role of the hydrogen bond network and the steric interactions involving the retinal binding pocket in bacteriorhodopsin and other microbial sensory rhodopsins. PMID:22879987

  14. HIV-1 Protease Dimerization Dynamics Reveals a Transient Druggable Binding Pocket at the Interface.

    PubMed

    Pietrucci, Fabio; Vargiu, Attilio Vittorio; Kranjc, Agata

    2015-01-01

    The binding mechanism of HIV-1 protease monomers leading to the catalytically competent dimeric enzyme has been investigated by means of state-of-the-art atomistic simulations. The emerging picture allows a deeper understanding of experimental observations and reveals that water molecules trapped at the interface have an important role in slowing down the kinetics of the association process. Unexpectedly, a cryptic binding pocket is identified at the interface of the complex, corresponding to a partially bound dimer that lacks enzymatic function. The pocket has a transient nature with a lifetime longer than 1 μs, and it displays very favorable druggability features. Docking as well as MM-GBSA free-energy calculations further support the possibility to target the new binding site by means of inhibitors able to prevent the complete dimerization by capturing the inactive conformation. This discovery could open the way to the rational design of a new class of anti-HIV drugs. PMID:26692118

  15. HIV-1 Protease Dimerization Dynamics Reveals a Transient Druggable Binding Pocket at the Interface

    PubMed Central

    Pietrucci, Fabio; Vargiu, Attilio Vittorio; Kranjc, Agata

    2015-01-01

    The binding mechanism of HIV-1 protease monomers leading to the catalytically competent dimeric enzyme has been investigated by means of state-of-the-art atomistic simulations. The emerging picture allows a deeper understanding of experimental observations and reveals that water molecules trapped at the interface have an important role in slowing down the kinetics of the association process. Unexpectedly, a cryptic binding pocket is identified at the interface of the complex, corresponding to a partially bound dimer that lacks enzymatic function. The pocket has a transient nature with a lifetime longer than 1 μs, and it displays very favorable druggability features. Docking as well as MM-GBSA free-energy calculations further support the possibility to target the new binding site by means of inhibitors able to prevent the complete dimerization by capturing the inactive conformation. This discovery could open the way to the rational design of a new class of anti-HIV drugs. PMID:26692118

  16. Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics.

    PubMed

    Kumar, Rakesh; Hazan, Adina; Basu, Arijit; Zalcman, Nomi; Matzner, Henry; Priel, Avi

    2016-06-24

    Vanilloids are pain evoking molecules that serve as ligands of the "heat and capsaicin receptor" TRPV1. Binding of either endogenous or exogenous vanilloids evokes channel and subsequent neuronal activation, leading to pain sensation. Despite its pivotal physiological role, the molecular basis of TRPV1 activation and deactivation is not fully understood. The highly conserved tyrosine in position 511 (Tyr(511)) of the rat TRPV1 (rTRPV1) was the first residue to be identified as a necessary participant in the vanilloid-mediated response. rTRPV1 cryo-EM structures implicated rotation of this residue in the vanilloids bound state. Therefore, we hypothesize that the rTRPV1 Tyr(511) residue entraps vanilloids in their binding site, prolonging channel activity. To test our hypothesis, we generated an array of rTRPV1 mutants, containing the whole spectrum of Tyr(511) substitutions, and tested their response to both exo- and endovanilloids. Our data show that only substitutions of Tyr(511) to aromatic amino acids were able to mimic, albeit partially, the vanilloid-evoked activation pattern of the wt receptor. Although these substitutions reduced the channel sensitivity to vanilloids, a maximal open-channel lifetime could be achieved. Moreover, whereas their current activation rate remains intact, receptors with Tyr(511) substitutions exhibited a faster current deactivation. Our findings therefore suggest that the duration of channel activity evoked by vanilloids is regulated by the interaction between Tyr(511) and the agonist. To conclude, we suggest that Tyr(511)-mediated anchoring of vanilloids in their binding pocket is pivotal for TRPV1 activation and subsequent pain sensation. PMID:27143360

  17. Pancreatic Polypeptide Is Recognized by Two Hydrophobic Domains of the Human Y4 Receptor Binding Pocket*

    PubMed Central

    Pedragosa-Badia, Xavier; Sliwoski, Gregory R.; Dong Nguyen, Elizabeth; Lindner, Diana; Stichel, Jan; Kaufmann, Kristian W.; Meiler, Jens; Beck-Sickinger, Annette G.

    2014-01-01

    Structural characterization of the human Y4 receptor (hY4R) interaction with human pancreatic polypeptide (hPP) is crucial, not only for understanding its biological function but also for testing treatment strategies for obesity that target this interaction. Here, the interaction of receptor mutants with pancreatic polypeptide analogs was studied through double-cycle mutagenesis. To guide mutagenesis and interpret results, a three-dimensional comparative model of the hY4R-hPP complex was constructed based on all available class A G protein-coupled receptor crystal structures and refined using experimental data. Our study reveals that residues of the hPP and the hY4R form a complex network consisting of ionic interactions, hydrophobic interactions, and hydrogen binding. Residues Tyr2.64, Asp2.68, Asn6.55, Asn7.32, and Phe7.35 of Y4R are found to be important in receptor activation by hPP. Specifically, Tyr2.64 interacts with Tyr27 of hPP through hydrophobic contacts. Asn7.32 is affected by modifications on position Arg33 of hPP, suggesting a hydrogen bond between these two residues. Likewise, we find that Phe7.35 is affected by modifications of hPP at positions 33 and 36, indicating interactions between these three amino acids. Taken together, we demonstrate that the top of transmembrane helix 2 (TM2) and the top of transmembrane helices 6 and 7 (TM6–TM7) form the core of the peptide binding pocket. These findings will contribute to the rational design of ligands that bind the receptor more effectively to produce an enhanced agonistic or antagonistic effect. PMID:24375409

  18. Occupation of nucleotide in the binding pocket is critical to the stability of Rab11A.

    PubMed

    Shin, Young-Cheul; Kim, Chang Min; Choi, Jae Young; Jeon, Ju-Hong; Park, Hyun Ho

    2016-04-01

    The Ras superfamily of small G proteins is a family of guanosine triphosphatases (GTPases) and each GTPase has conserved amino acid sequences in the enzymatic active site that are responsible for specific interactions with GDP and GTP molecules. Rab GTPases, which belong to the Ras superfamily, are key regulators of intracellular vesicle trafficking via the recruitment of effector molecules. Here, we purified wild type, active mutant and inactive mutant of Rab11A. In this process, we found that the inactive mutant (Rab11A S25N) had low stability compared with wild type and other mutants. Further analysis revealed that the stability of Rab11A S25N is dependent on the occupation of GDP in the nucleotide binding pocket of the protein. We found that the stability of Rab11A S25N is affected by the presence of GDP, not other nucleotides, and is independent of pH or salt in FPLC buffer. Our results provide a better understanding of how GTPase can be stable under in vitro conditions without effector proteins and how proper substrate/cofactor coordination is crucial to the stability of Rab11A. Successful purification and proposed purification methods will provide a valuable guide for investigation of other small GTPase proteins. PMID:26767484

  19. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function

    PubMed Central

    Breslin, Claire; Hornyak, Peter; Ridley, Andrew; Rulten, Stuart L.; Hanzlikova, Hana; Oliver, Antony W.; Caldecott, Keith W.

    2015-01-01

    Poly (ADP-ribose) is synthesized at DNA single-strand breaks and can promote the recruitment of the scaffold protein, XRCC1. However, the mechanism and importance of this process has been challenged. To address this issue, we have characterized the mechanism of poly (ADP-ribose) binding by XRCC1 and examined its importance for XRCC1 function. We show that the phosphate-binding pocket in the central BRCT1 domain of XRCC1 is required for selective binding to poly (ADP-ribose) at low levels of ADP-ribosylation, and promotes interaction with cellular PARP1. We also show that the phosphate-binding pocket is required for EGFP-XRCC1 accumulation at DNA damage induced by UVA laser, H2O2, and at sites of sub-nuclear PCNA foci, suggesting that poly (ADP-ribose) promotes XRCC1 recruitment both at single-strand breaks globally across the genome and at sites of DNA replication stress. Finally, we show that the phosphate-binding pocket is required following DNA damage for XRCC1-dependent acceleration of DNA single-strand break repair, DNA base excision repair, and cell survival. These data support the hypothesis that poly (ADP-ribose) synthesis promotes XRCC1 recruitment at DNA damage sites and is important for XRCC1 function. PMID:26130715

  20. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function.

    PubMed

    Breslin, Claire; Hornyak, Peter; Ridley, Andrew; Rulten, Stuart L; Hanzlikova, Hana; Oliver, Antony W; Caldecott, Keith W

    2015-08-18

    Poly (ADP-ribose) is synthesized at DNA single-strand breaks and can promote the recruitment of the scaffold protein, XRCC1. However, the mechanism and importance of this process has been challenged. To address this issue, we have characterized the mechanism of poly (ADP-ribose) binding by XRCC1 and examined its importance for XRCC1 function. We show that the phosphate-binding pocket in the central BRCT1 domain of XRCC1 is required for selective binding to poly (ADP-ribose) at low levels of ADP-ribosylation, and promotes interaction with cellular PARP1. We also show that the phosphate-binding pocket is required for EGFP-XRCC1 accumulation at DNA damage induced by UVA laser, H2O2, and at sites of sub-nuclear PCNA foci, suggesting that poly (ADP-ribose) promotes XRCC1 recruitment both at single-strand breaks globally across the genome and at sites of DNA replication stress. Finally, we show that the phosphate-binding pocket is required following DNA damage for XRCC1-dependent acceleration of DNA single-strand break repair, DNA base excision repair, and cell survival. These data support the hypothesis that poly (ADP-ribose) synthesis promotes XRCC1 recruitment at DNA damage sites and is important for XRCC1 function. PMID:26130715

  1. Unique Functional and Structural Properties of the LRRK2 Protein ATP-binding Pocket*

    PubMed Central

    Liu, Zhiyong; Galemmo, Robert A.; Fraser, Kyle B.; Moehle, Mark S.; Sen, Saurabh; Volpicelli-Daley, Laura A.; DeLucas, Lawrence J.; Ross, Larry J.; Valiyaveettil, Jacob; Moukha-Chafiq, Omar; Pathak, Ashish K.; Ananthan, Subramaniam; Kezar, Hollis; White, E. Lucile; Gupta, Vandana; Maddry, Joseph A.; Suto, Mark J.; West, Andrew B.

    2014-01-01

    Pathogenic mutations in the LRRK2 gene can cause late-onset Parkinson disease. The most common mutation, G2019S, resides in the kinase domain and enhances activity. LRRK2 possesses the unique property of cis-autophosphorylation of its own GTPase domain. Because high-resolution structures of the human LRRK2 kinase domain are not available, we used novel high-throughput assays that measured both cis-autophosphorylation and trans-peptide phosphorylation to probe the ATP-binding pocket. We disclose hundreds of commercially available activity-selective LRRK2 kinase inhibitors. Some compounds inhibit cis-autophosphorylation more strongly than trans-peptide phosphorylation, and other compounds inhibit G2019S-LRRK2 more strongly than WT-LRRK2. Through exploitation of structure-activity relationships revealed through high-throughput analyses, we identified a useful probe inhibitor, SRI-29132 (11). SRI-29132 is exquisitely selective for LRRK2 kinase activity and is effective in attenuating proinflammatory responses in macrophages and rescuing neurite retraction phenotypes in neurons. Furthermore, the compound demonstrates excellent potency, is highly blood-brain barrier-permeant, but suffers from rapid first-pass metabolism. Despite the observed selectivity of SRI-29132, docking models highlighted critical interactions with residues conserved in many protein kinases, implying a unique structural configuration for the LRRK2 ATP-binding pocket. Although the human LRRK2 kinase domain is unstable and insoluble, we demonstrate that the LRRK2 homolog from ameba can be mutated to approximate some aspects of the human LRRK2 ATP-binding pocket. Our results provide a rich resource for LRRK2 small molecule inhibitor development. More broadly, our results provide a precedent for the functional interrogation of ATP-binding pockets when traditional approaches to ascertain structure prove difficult. PMID:25228699

  2. Identification of a Cholesterol-Binding Pocket in Inward Rectifier K+ (Kir) Channels

    PubMed Central

    Fürst, Oliver; Nichols, Colin G.; Lamoureux, Guillaume; D’Avanzo, Nazzareno

    2014-01-01

    Cholesterol is the major sterol component of all mammalian plasma membranes. Recent studies have shown that cholesterol inhibits both bacterial (KirBac1.1 and KirBac3.1) and eukaryotic (Kir2.1) inward rectifier K+ (Kir) channels. Lipid-sterol interactions are not enantioselective, and the enantiomer of cholesterol (ent-cholesterol) does not inhibit Kir channel activity, suggesting that inhibition results from direct enantiospecific binding to the channel, and not indirect effects of changes to the bilayer. Furthermore, conservation of the effect of cholesterol among prokaryotic and eukaryotic Kir channels suggests an evolutionary conserved cholesterol-binding pocket, which we aimed to identify. Computational experiments were performed by docking cholesterol to the atomic structures of Kir2.2 (PDB: 3SPI) and KirBac1.1 (PDB: 2WLL) using Autodock 4.2. Poses were assessed to ensure biologically relevant orientation and then clustered according to location and orientation. The stability of cholesterol in each of these poses was then confirmed by molecular dynamics simulations. Finally, mutation of key residues (S95H and I171L) in this putative binding pocket found within the transmembrane domain of Kir2.1 channels were shown to lead to a loss of inhibition by cholesterol. Together, these data provide support for this location as a biologically relevant pocket. PMID:25517146

  3. Investigation on the sucrose binding pocket of HIV-1 Integrase by molecular dynamics and synergy experiments.

    PubMed

    Tintori, Cristina; Esposito, Francesca; Morreale, Francesca; Martini, Riccardo; Tramontano, Enzo; Botta, Maurizio

    2015-08-01

    Enzymes whose catalytic activity depends on multimeric assembly are targets for inhibitors that perturb the interactions between the protein subunits such as the HIV-1 Integrase (IN). Sucrose has been recently crystallized in complex with IN revealing an allosteric binding pocket at the monomer-monomer interface. Herein, molecular dynamics were applied to theoretically test the effect of this small ligand on IN. As a result, such a compound increases the mutual free energy of binding between the two interacting monomers. Biological experiments confirmed the computational forecast. PMID:26048795

  4. Spatial Decomposition of Translational Water-Water Correlation Entropy in Binding Pockets.

    PubMed

    Nguyen, Crystal N; Kurtzman, Tom; Gilson, Michael K

    2016-01-12

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST's entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water-water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water-water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water-water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  5. A simple method for finding a protein’s ligand-binding pockets

    PubMed Central

    2014-01-01

    Background This paper provides a simple and rapid method for a protein-clustering strategy. The basic idea implemented here is to use computational geometry methods to predict and characterize ligand-binding pockets of a given protein structure. In addition to geometrical characteristics of the protein structure, we consider some simple biochemical properties that help recognize the best candidates for pockets in a protein’s active site. Results Our results are shown to produce good agreement with known empirical results. Conclusions The method presented in this paper is a low-cost rapid computational method that could be used to classify proteins and other biomolecules, and furthermore could be useful in reducing the cost and time of drug discovery. PMID:25038637

  6. Computational approaches for identification of conserved/unique binding pockets in the A chain of ricin

    SciTech Connect

    Ecale Zhou, C L; Zemla, A T; Roe, D; Young, M; Lam, M; Schoeniger, J; Balhorn, R

    2005-01-29

    Specific and sensitive ligand-based protein detection assays that employ antibodies or small molecules such as peptides, aptamers, or other small molecules require that the corresponding surface region of the protein be accessible and that there be minimal cross-reactivity with non-target proteins. To reduce the time and cost of laboratory screening efforts for diagnostic reagents, we developed new methods for evaluating and selecting protein surface regions for ligand targeting. We devised combined structure- and sequence-based methods for identifying 3D epitopes and binding pockets on the surface of the A chain of ricin that are conserved with respect to a set of ricin A chains and unique with respect to other proteins. We (1) used structure alignment software to detect structural deviations and extracted from this analysis the residue-residue correspondence, (2) devised a method to compare corresponding residues across sets of ricin structures and structures of closely related proteins, (3) devised a sequence-based approach to determine residue infrequency in local sequence context, and (4) modified a pocket-finding algorithm to identify surface crevices in close proximity to residues determined to be conserved/unique based on our structure- and sequence-based methods. In applying this combined informatics approach to ricin A we identified a conserved/unique pocket in close proximity (but not overlapping) the active site that is suitable for bi-dentate ligand development. These methods are generally applicable to identification of surface epitopes and binding pockets for development of diagnostic reagents, therapeutics, and vaccines.

  7. Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: targeting positions 72 and 82 of the cyclic nucleotide binding pocket.

    PubMed Central

    Belduz, A O; Lee, E J; Harman, J G

    1993-01-01

    The 3', 5' cyclic adenosine monophosphate (cAMP) binding pocket of the cAMP receptor protein (CRP) of Escherichia coli was mutagenized to substitute leucine, glutamine, or aspartate for glutamate 72; and lysine, histidine, leucine, isoleucine, or glutamine for arginine 82. Substitutions were made in wild-type CRP and in a CRP*, or cAMP-independent, form of the protein to assess the effects of the amino acid substitutions on CRP structure. Cells containing the binding pocket residue-substituted forms of CRP were characterized through beta-galactosidase activity and by measurement of cAMP binding activity. This study confirms a role for both glutamate 72 and arginine 82 in cAMP binding and activation of CRP. Glutamine or leucine substitution of glutamate 72 produced forms of CRP having low affinity for the cAMP and unresponsive to the nucleotide. Aspartate substituted for glutamate 72 produced a low affinity cAMP-responsive form of CRP. CRP has a stringent requirement for the positioning of the position 72 glutamate carboxyl group within the cyclic nucleotide binding pocket. Results of this study also indicate that there are differences in the binding requirements of cAMP and cGMP, a competitive inhibitor of cAMP binding to CRP. PMID:8388097

  8. Identification and Characterization of Botulinum Neurotoxin A Substrate Binding Pockets and Their Re-Engineering for Human SNAP-23.

    PubMed

    Sikorra, Stefan; Litschko, Christa; Müller, Carina; Thiel, Nadine; Galli, Thierry; Eichner, Timo; Binz, Thomas

    2016-01-29

    Botulinum neurotoxins (BoNTs) are highly potent bacterial proteins that block neurotransmitter release at the neuromuscular junction by cleaving SNAREs (soluble N-ethyl maleimide sensitive factor attachment protein receptors). However, their serotype A (BoNT/A) that cleaves SNAP-25 (synaptosomal-associated protein of 25 kDa) has also been an established pharmaceutical for treatment of medical conditions that rely on hyperactivity of cholinergic nerve terminals for 25 years. The expansion of its use to a variety of further medical conditions associated with hypersecretion components is prevented partly because the involved SNARE isoforms are not cleaved. Therefore, we examined by mutational analyses the reason for the resistance of human SNAP-23, an isoform of SNAP-25. We show that replacement of 10 SNAP-23 residues with their SNAP-25 counterparts effects SNAP-25-like cleavability. Conversely, transfer of each of the replaced SNAP-23 residues to SNAP-25 drastically decreased the cleavability of SNAP-25. By means of the existing SNAP-25-toxin co-crystal structure, molecular dynamics simulations, and corroborative mutagenesis studies, the appropriate binding pockets for these residues in BoNT/A were characterized. Systematic mutagenesis of two major BoNT/A binding pockets was conducted in order to adapt these pockets to corresponding amino acids of human SNAP-23. Human SNAP-23 cleaving mutants were isolated using a newly established yeast-based screening system. This method may be useful for engineering novel BoNT/A pharmaceuticals for the treatment of diseases that rely on SNAP-23-mediated hypersecretion. PMID:26523682

  9. Fine spatial assembly for construction of the phenol-binding pocket to capture bisphenol A in the human nuclear receptor estrogen-related receptor γ.

    PubMed

    Liu, Xiaohui; Matsushima, Ayami; Nakamura, Masayuki; Costa, Tommaso; Nose, Takeru; Shimohigashi, Yasuyuki

    2012-04-01

    Various lines of evidence have shown that bisphenol A (BPA) acts as an endocrine disruptor that affects various hormones even at merely physiological levels. We demonstrated recently that BPA binds strongly to human nuclear receptor estrogen-related receptor γ (ERRγ), one of 48 nuclear receptors. Based on X-ray crystal analysis of the ERRγ ligand-binding domain (LBD)/BPA complex, we demonstrated that ERRγ receptor residues, Glu275 and Arg316, function as the intrinsic-binding site of the phenol-hydroxyl group of BPA. If these phenol-hydroxyl↔Glu275 and Arg316 hydrogen bonds anchor the A-benzene ring of BPA, the benzene-phenyl group of BPA would be in a pocket constructed by specific amino acid side chain structures. In the present study, by evaluating the Ala-replaced mutant receptors, we identified such a ligand-binding pocket. Leu268, Leu271, Leu309 and Tyr326, in addition to the previously reported participants Glu275 and Arg316, were found to make a receptacle pocket for the A-ring, whereas Ile279, Ile310 and Val313 were found to assist or structurally support these residues. The results revealed that each amino acid residue is an essential structural element for the strong binding of BPA to ERRγ. PMID:22298789

  10. Electrostatic Modifications of the Human Leukocyte Antigen-DR P9 Peptide-Binding Pocket and Susceptibility to Primary Sclerosing Cholangitis

    PubMed Central

    Hov, Johannes R; Kosmoliaptsis, Vasilis; Traherne, James A; Olsson, Marita; Boberg, Kirsten M; Bergquist, Annika; Schrumpf, Erik; Bradley, J Andrew; Taylor, Craig J; Lie, Benedicte A; Trowsdale, John; Karlsen, Tom H

    2011-01-01

    The strongest genetic risk factors for primary sclerosing cholangitis (PSC) are found in the human leukocyte antigen (HLA) complex at chromosome 6p21. Genes in the HLA class II region encode molecules that present antigen to T lymphocytes. Polymorphisms in these genes are associated with most autoimmune diseases, most likely because they contribute to the specificity of immune responses. The aim of this study was to analyze the structure and electrostatic properties of the peptide-binding groove of HLA-DR in relation to PSC. Thus, four-digit resolution HLA-DRB1 genotyping was performed in 356 PSC patients and 366 healthy controls. Sequence information was used to assign which amino acids were encoded at all polymorphic positions. In stepwise logistic regressions, variations at residues 37 and 86 were independently associated with PSC (P = 1.2 × 10−32 and P = 1.8 × 10−22 in single-residue models, respectively). Three-dimensional modeling was performed to explore the effect of these key residues on the HLA-DR molecule. This analysis indicated that residue 37 was a major determinant of the electrostatic properties of pocket P9 of the peptide-binding groove. Asparagine at residue 37, which was associated with PSC, induced a positive charge in pocket P9. Tyrosine, which protected against PSC, induced a negative charge in this pocket. Consistent with the statistical observations, variation at residue 86 also indirectly influenced the electrostatic properties of this pocket. DRB1*13:01, which was PSC-associated, had a positive P9 pocket and DRB1*13:02, protective against PSC, had a negative P9 pocket. Conclusion: The results suggest that in patients with PSC, residues 37 and 86 of the HLA-DRβ chain critically influence the electrostatic properties of pocket P9 and thereby the range of peptides presented. (Hepatology 2011;53:1967-1976) PMID:21413052

  11. A Substrate-induced Biotin Binding Pocket in the Carboxyltransferase Domain of Pyruvate Carboxylase*

    PubMed Central

    Lietzan, Adam D.; St. Maurice, Martin

    2013-01-01

    Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp590 and Tyr628 and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes. PMID:23698000

  12. Distinct Pose of Discodermolide in Taxol Binding Pocket Drives a Complementary Mode of Microtubule Stabilization

    PubMed Central

    Khrapunovich-Baine, Marina; Menon, Vilas; Verdier-Pinard, Pascal; Smith, Amos B.; Angeletti, Ruth Hogue; Fiser, Andras; Horwitz, Susan Band; Xiao, Hui

    2010-01-01

    The microtubule cytoskeleton has proven to be an effective target for cancer therapeutics. One class of drugs, known as microtubule stabilizing agents (MSAs), binds to microtubule polymers and stabilizes them against depolymerization. The prototype of this group of drugs, Taxol, is an effective chemotherapeutic agent used extensively in the treatment of human ovarian, breast, and lung carcinomas. Although electron crystallography and photoaffinity labeling experiments determined that the binding site for Taxol is in a hydrophobic pocket in β-tubulin, little was known about the effects of this drug on the conformation of the entire microtubule. A recent study from our laboratory utilizing hydrogen-deuterium exchange (HDX) in concert with various mass spectrometry (MS) techniques has provided new information on the structure of microtubules upon Taxol binding. In the current study we apply this technique to determine the binding mode and the conformational effects on chicken erythrocyte tubulin (CET) of another MSA, discodermolide, whose synthetic analogues may have potential use in the clinic. We confirmed that like Taxol, discodermolide binds to the taxane binding pocket in β-tubulin. However, as opposed to Taxol, which has major interactions with the M-loop, discodermolide orients itself away from this loop and towards the N-terminal H1–S2 loop. Additionally, discodermolide stabilizes microtubules mainly via its effects on interdimer contacts, specifically on the α-tubulin side, and to a lesser extent on interprotofilament contacts between adjacent β-tubulin subunits. Also, our results indicate complementary stabilizing effects of Taxol and discodermolide on the microtubules, which may explain the synergy observed between the two drugs in vivo. PMID:19863156

  13. Do drugs have access to the P-glycoprotein drug-binding pocket through gates?

    PubMed

    Ferreira, Ricardo J; Ferreira, Maria-José U; Dos Santos, Daniel J V A

    2015-10-13

    The P-glycoprotein efflux mechanism is being studied since its identification as a leading protagonist in multidrug resistance. Recently, it was suggested that drugs enter the drug-binding pocket (DBP) through gates located between the transmembrane domains. For both a substrate and a modulator, the potential of mean force curves along the reaction coordinate obtained with the WHAM approach were similar, with no activation energy required for crossing the gate. Moreover, drug transit from bulk water into the DBP was characterized as an overall free-energy downhill process. PMID:26574244

  14. Progress in antiandrogen design targeting hormone binding pocket to circumvent mutation based resistance

    PubMed Central

    Tian, Xiaohong; He, Yang; Zhou, Jinming

    2015-01-01

    Androgen receptor (AR) plays a critical role in the development and progression of prostate cancer (PCa). Current clinically used antiandrogens such as flutamide, bicalutamide, and newly approved enzalutamide mainly target the hormone binding pocket (HBP) of AR. However, over time, drug resistance invariably develops and switches these antiandrogens from antagonist to agonist of the AR. Accumulated evidence indicates that AR mutation is an important cause for the drug resistance. This review will give an overview of the mutation based resistance of the current clinically used antiandrogens and the rational drug design to overcome the resistance, provides a promising strategy for the development of the new generation of antiandrogens targeting HBP. PMID:25852559

  15. WDR5 Intearcts with Mixed Lineage Leukemia (MLL) Protein via the Histone H3-binding Pocket

    SciTech Connect

    Song, J.; Kingston, R

    2008-01-01

    WDR5 is a component of the mixed lineage leukemia (MLL) complex, which methylates lysine 4 of histone H3, and was identified as a methylated Lys-4 histone H3-binding protein. Here, we present a crystal structure of WDR5 bound to an MLL peptide. Surprisingly, we find that WDR5 utilizes the same pocket shown to bind histone H3 for this MLL interaction. Furthermore, the WDR5-MLL interaction is disrupted preferentially by mono- and di-methylated Lys-4 histone H3 over unmodified and tri-methylated Lys-4 histone H3. These data implicate a delicate interplay between the effector, WDR5, the catalytic subunit, MLL, and the substrate, histone H3, of the MLL complex. We suggest that the activity of the MLL complex might be regulated through this interplay.

  16. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs.

    PubMed

    DeVree, Brian T; Mahoney, Jacob P; Vélez-Ruiz, Gisselle A; Rasmussen, Soren G F; Kuszak, Adam J; Edwald, Elin; Fung, Juan-Jose; Manglik, Aashish; Masureel, Matthieu; Du, Yang; Matt, Rachel A; Pardon, Els; Steyaert, Jan; Kobilka, Brian K; Sunahara, Roger K

    2016-07-01

    G-protein-coupled receptors (GPCRs) remain the primary conduit by which cells detect environmental stimuli and communicate with each other. Upon activation by extracellular agonists, these seven-transmembrane-domain-containing receptors interact with heterotrimeric G proteins to regulate downstream second messenger and/or protein kinase cascades. Crystallographic evidence from a prototypic GPCR, the β2-adrenergic receptor (β2AR), in complex with its cognate G protein, Gs, has provided a model for how agonist binding promotes conformational changes that propagate through the GPCR and into the nucleotide-binding pocket of the G protein α-subunit to catalyse GDP release, the key step required for GTP binding and activation of G proteins. The structure also offers hints about how G-protein binding may, in turn, allosterically influence ligand binding. Here we provide functional evidence that G-protein coupling to the β2AR stabilizes a ‘closed’ receptor conformation characterized by restricted access to and egress from the hormone-binding site. Surprisingly, the effects of G protein on the hormone-binding site can be observed in the absence of a bound agonist, where G-protein coupling driven by basal receptor activity impedes the association of agonists, partial agonists, antagonists and inverse agonists. The ability of bound ligands to dissociate from the receptor is also hindered, providing a structural explanation for the G-protein-mediated enhancement of agonist affinity, which has been observed for many GPCR–G-protein pairs. Our data also indicate that, in contrast to agonist binding alone, coupling of a G protein in the absence of an agonist stabilizes large structural changes in a GPCR. The effects of nucleotide-free G protein on ligand-binding kinetics are shared by other members of the superfamily of GPCRs, suggesting that a common mechanism may underlie G-protein-mediated enhancement of agonist affinity. PMID:27362234

  17. Selective membrane disruption by the cyclotide kalata B7: complex ions and essential functional groups in the phosphatidylethanolamine binding pocket.

    PubMed

    Strömstedt, Adam A; Kristiansen, Per Eugen; Gunasekera, Sunithi; Grob, Nathalie; Skjeldal, Lars; Göransson, Ulf

    2016-06-01

    The cyclic cystine knot plant peptides called cyclotides are active against a wide variety of organisms. This is primarily achieved through membrane binding and disruption, in part deriving from a high affinity for phosphatidylethanolamine (PE) lipids. Some cyclotides, such as kalata B7 (kB7), form complexes with divalent cations in a pocket associated with the tyrosine residue at position 15 (Tyr15). In the current work we explore the effect of cations on membrane leakage caused by cyclotides kB1, kB2 and kB7, and we identify a functional group that is essential for PE selectivity. The presence of PE-lipids in liposomes increased the membrane permeabilizing potency of the cyclotides, with the potency of kB7 increasing by as much as 740-fold. The divalent cations Mn(2+), Mg(2+) and Ca(2+) had no apparent effect on PE selectivity. However, amino acid substitutions in kB7 proved that Tyr15 is crucial for PE-selective membrane permeabilization on various liposome systems. Although the tertiary structure of kB7 was maintained, as reflected by the NMR solution structure, mutating Tyr into Ser at position 15 resulted in substantially reduced PE selectivity. Ala substitution at the same position produced a similar reduction in PE selectivity, while substitution with Phe maintained high selectivity. We conclude that the phenyl ring in Tyr15 is critical for the high PE selectivity of kB7. Our results suggest that PE-binding and divalent cation coordination occur in the same pocket without adverse effects of competitive binding for the phospholipid. PMID:26878982

  18. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription

    SciTech Connect

    Huang, Jing; Gurung, Buddha; Wan, Bingbing; Matkar, Smita; Veniaminova, Natalia A.; Wan, Ke; Merchant, Juanita L.; Hua, Xianxin; Lei, Ming

    2013-04-08

    Menin is a tumour suppressor protein whose loss or inactivation causes multiple endocrine neoplasia 1 (MEN1), a hereditary autosomal dominant tumour syndrome that is characterized by tumorigenesis in multiple endocrine organs. Menin interacts with many proteins and is involved in a variety of cellular processes. Menin binds the JUN family transcription factor JUND and inhibits its transcriptional activity. Several MEN1 missense mutations disrupt the menin-JUND interaction, suggesting a correlation between the tumour-suppressor function of menin and its suppression of JUND-activated transcription. Menin also interacts with mixed lineage leukaemia protein 1 (MLL1), a histone H3 lysine 4 methyltransferase, and functions as an oncogenic cofactor to upregulate gene transcription and promote MLL1-fusion-protein-induced leukaemogenesis. A recent report on the tethering of MLL1 to chromatin binding factor lens epithelium-derived growth factor (LEDGF) by menin indicates that menin is a molecular adaptor coordinating the functions of multiple proteins. Despite its importance, how menin interacts with many distinct partners and regulates their functions remains poorly understood. Here we present the crystal structures of human menin in its free form and in complexes with MLL1 or with JUND, or with an MLL1-LEDGF heterodimer. These structures show that menin contains a deep pocket that binds short peptides of MLL1 or JUND in the same manner, but that it can have opposite effects on transcription. The menin-JUND interaction blocks JUN N-terminal kinase (JNK)-mediated JUND phosphorylation and suppresses JUND-induced transcription. In contrast, menin promotes gene transcription by binding the transcription activator MLL1 through the peptide pocket while still interacting with the chromatin-anchoring protein LEDGF at a distinct surface formed by both menin and MLL1.

  19. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    SciTech Connect

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  20. A comprehensive ligand based mapping of the σ₂ receptor binding pocket.

    PubMed

    Rhoades, Derek J; Kinder, David H; Mahfouz, Tarek M

    2014-01-01

    The sigma (σ) receptor system consists of at least two major receptor subtypes: σ₁ and σ₂. Several potential therapeutic applications would benefit from structural knowledge of the σ₂ receptor but gaining this knowledge has been hampered by the difficulties associated with its isolation and, thus, characterization. Here, a ligand based approach has been adopted using the program PHASE® and a group of 41 potent and structurally diverse σ₂ ligands to develop several pharmacophore models for different families of σ₂ ligands. These pharmacophores were analyzed to identify the different binding modes to the receptor and were combined together to construct a comprehensive pharmacophore that was used to develop a structural model for the σ₂ binding pocket. A total of six binding modes were identified and could be classified as neutral or charged modes. The results presented here also indicate the significance of hydrophobic interactions to σ₂ binding and the requirement of hydrogen bonding interactions to increase the affinity for this receptor subtype. This work adds breadth to our knowledge of this receptor's binding site, and should contribute significantly to the development of novel selective σ₂ ligands. PMID:23521001

  1. Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets.

    PubMed

    Warneke, Jonas; Jenne, Carsten; Bernarding, Johannes; Azov, Vladimir A; Plaumann, Markus

    2016-05-01

    A gas phase binding study revealed strong intrinsic intermolecular interactions between dianionic halogenated closo-dodecaborates [B12X12](2-) and several neutral organic receptors. Oxidation of a tetrathiafulvalene host allowed switching between two host-guest binding modes in a supramolecular complex. Complexes of β-cyclodextrin with [B12F12](2-) show remarkable stability in the gas phase and were successfully tested as carriers for the delivery of boron clusters into cancer cells. PMID:27087168

  2. Structural consequences of two methyl additions in the E. coli trp repressor L-tryptophan binding pocket

    SciTech Connect

    Lawson, C.L.

    1995-12-01

    The flexibility and specificity of the L-tryptophan corepressor binding pocket of E coli trp repressor are being investigated by high-resolution crystallographic examination of aporepressor/corepressor analog complexes. While addition of a methyl group on the corepressor indole (5-methyl-tryptophan) results in a small but measurable shift in the position of that functional group introduction of a methyl group on a nearby residue in the binding pocket (Val 58 {yields} Ile) leaves the indole position of L-tryptophan essentially unchanged. Careful alignment of these structures with aporepressor/L-tryptophan/operator-DNA complexes reveal why 5-methyltryptophan is a better corepressor than L-tryptophan.

  3. Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase.

    PubMed

    Francis, Kevin; Gadda, Giovanni

    2009-10-01

    A series of monovalent, inorganic anions and aliphatic aldehydes were tested as inhibitors for Hansenula mrakii and Neurospora crassa nitronate monooxygenase, formerly known as 2-nitropropane dioxygenase, to investigate the structural features that contribute to the binding of the anionic nitronate substrates to the enzymes. A linear correlation between the volumes of the inorganic anions and their effectiveness as competitive inhibitors of the enzymes was observed in a plot of pK(is)versus the ionic volume of the anion with slopes of 0.041+/-0.001 mM/A(3) and 0.027+/-0.001 mM/A(3) for the H. mrakii and N. crassa enzymes, respectively. Aliphatic aldehydes were weak competitive inhibitors of the enzymes, with inhibition constants that are independent of their alkyl chain lengths. The reductive half reactions of H. mrakii nitronate monooxygenase with primary nitronates containing two to four carbon atoms all showed apparent K(d) values of approximately 5 mM. These results are consistent with the presence of an anion binding pocket in the active site of nitronate monooxygenase that interacts with the nitro group of the substrate, and suggest a minimal contribution of the hydrocarbon chain of the nitronates to the binding of the ligands to the enzyme. PMID:19683782

  4. Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes.

    PubMed

    Cahn, J K B; Baumschlager, A; Brinkmann-Chen, S; Arnold, F H

    2016-01-01

    NAD(P)H-dependent enzymes are ubiquitous in metabolism and cellular processes and are also of great interest for pharmaceutical and industrial applications. Here, we present a structure-guided enzyme engineering strategy for improving catalytic properties of NAD(P)H-dependent enzymes toward native or native-like reactions using mutations to the enzyme's adenine-binding pocket, distal to the site of catalysis. Screening single-site saturation mutagenesis libraries identified mutations that increased catalytic efficiency up to 10-fold in 7 out of 10 enzymes. The enzymes improved in this study represent three different cofactor-binding folds (Rossmann, DHQS-like, and FAD/NAD binding) and utilize both NADH and NADPH. Structural and biochemical analyses show that the improved activities are accompanied by minimal changes in other properties (cooperativity, thermostability, pH optimum, uncoupling), and initial tests on two enzymes (ScADH6 and EcFucO) show improved functionality in Escherichia coli. PMID:26512129

  5. Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: targeting positions 83, 127 and 128 of the cyclic nucleotide binding pocket.

    PubMed Central

    Lee, E J; Glasgow, J; Leu, S F; Belduz, A O; Harman, J G

    1994-01-01

    The cyclic 3', 5' adenosine monophosphate (cAMP) binding pocket of the cAMP receptor protein (CRP) of Escherichia coli was mutagenized to substitute cysteine or glycine for serine 83; cysteine, glycine, isoleucine, or serine for threonine 127; and threonine or alanine for serine 128. Cells that expressed the binding pocket residue-substituted forms of CRP were characterized by measurements of beta-galactosidase activity. Purified wild-type and mutant CRP preparations were characterized by measurement of cAMP binding activity and by their capacity to support lacP activation in vitro. CRP structure was assessed by measurement of sensitivity to protease and DTNB-mediated subunit crosslinking. The results of this study show that cAMP interactions with serine 83, threonine 127 and serine 128 contribute to CRP activation and have little effect on cAMP binding. Amino acid substitutions that introduce hydrophobic amino acid side chain constituents at either position 127 or 128 decrease CRP discrimination of cAMP and cGMP. Finally, cAMP-induced CRP structural change(s) that occur in or near the CRP hinge region result from cAMP interaction with threonine 127; substitution of threonine 127 by cysteine, glycine, isoleucine, or serine produced forms of CRP that contained, independently of cAMP binding, structural changes similar to those of the wild-type CRP:cAMP complex. Images PMID:8065899

  6. Identification of Glucose-Binding Pockets in Human Serum Albumin Using Support Vector Machine and Molecular Dynamics Simulations.

    PubMed

    Ranganarayanan, Preethi; Thanigesan, Narmadha; Ananth, Vivek; Jayaraman, Valadi K; Ramakrishnan, Vigneshwar

    2016-01-01

    Human Serum Albumin (HSA) has been suggested to be an alternate biomarker to the existing Hemoglobin-A1c (HbA1c) marker for glycemic monitoring. Development and usage of HSA as an alternate biomarker requires the identification of glycation sites, or equivalently, glucose-binding pockets. In this work, we combine molecular dynamics simulations of HSA and the state-of-art machine learning method Support Vector Machine (SVM) to predict glucose-binding pockets in HSA. SVM uses the three dimensional arrangement of atoms and their chemical properties to predict glucose-binding ability of a pocket. Feature selection reveals that the arrangement of atoms and their chemical properties within the first 4Å from the centroid of the pocket play an important role in the binding of glucose. With a 10-fold cross validation accuracy of 84 percent, our SVM model reveals seven new potential glucose-binding sites in HSA of which two are exposed only during the dynamics of HSA. The predictions are further corroborated using docking studies. These findings can complement studies directed towards the development of HSA as an alternate biomarker for glycemic monitoring. PMID:26886739

  7. Coupling between side chain interactions and binding pocket flexibility in HLA-B*44:02 molecules investigated by molecular dynamics simulations.

    PubMed

    Ostermeir, Katja; Springer, Sebastian; Zacharias, Martin

    2015-02-01

    MHC class I molecules present antigenic peptides to cytotoxic T-cells at the cell surface. Peptide loading of class I molecules in the endoplasmatic reticulum can involve interaction with the tapasin chaperone protein. The human class I allotype HLA-B*44:02 with an Asp at position 116 at the floor of the F pocket (which binds the peptide C-terminal residues) depends on tapasin for efficient peptide loading. However, HLA-B*44:05 (identical to B*44:02 except for tyrosine 116) can efficiently load peptides in the absence of tapasin. Both allotypes adopt very similar structures in the presence of the same peptide. Molecular dynamics simulations indicate a significantly higher conformational flexibility of the F pocket in the absence of a peptide for B*44:02 compared to B*44:05. Free energy simulations to open the F pocket indicate a molecular side chain switch mechanism that underlies the global opening motion. This side chain switch involves the rearrangement of salt bridges and hydrogen bonding of the basic arginine 97 with three acidic aspartate residues 114, 116 and 156 near the F pocket. A replica exchange simulation to specifically accelerate side chain motions demonstrates that the same side chain rearrangements induce global opening motions of the F pocket. In case of B*44:05 the free energy barrier for F pocket opening was significantly higher compared to B*44:02 and no associated side chain rearrangement was observed. Such coupling of local side chain rearrangements with global conformational changes might be the basis for allosteric changes in other class I allotypes as well as for allosteric changes in other proteins. PMID:25146482

  8. Arginine 485 of human serum albumin interacts with the benzophenone moiety of ketoprofen in the binding pocket of subdomain III A and III B.

    PubMed

    Kaneko, K; Chuang, V T G; Ito, T; Suenaga, A; Watanabe, H; Maruyama, T; Otagiri, M

    2012-05-01

    Arylpropionic acid nonsteroidal anti-inflammatory drusg (NSAIDs) primarily bind to subdomain III A (site II) of human serum albumin (HSA). Ketoprofen (KP), an arylpropionic acid that contains a photoreactive benzophenone moiety, was used to photolabel the binding region of site II. LC/Q-TOF mass spectrometry determination revealed that R485 was the amino acid residue that formed covalent adduct with the benzophenone moiety of KP. Point mutation of arginine 485 to alanine showed a slight decrease in the overall binding percentage of KP when compared to that of native HSA. The induced circular dichroism spectral data of KP with both R485A and native albumin confirmed the photolabeling findings. Interestingly, an increase in the extent of [14C]KP covalent adduct formation with the 11.6 kDa peptide derived from subdomain IIB-IIIA was observed for R485A. In contrast, mutation of arginine 410 caused a significant reduction of binding percentage, confirming the importance of this residue in high affinity binding of arylpropionic acid derivatives. This may indicate that while KP's carboxylate interacts electrostatically with arginine 410, the benzophenone moiety may have swung away from helix 6 in the absence of arginine 485. In this study, photolabeling of native and mutants albumins, R485A and R410C with [14C]KP confirmed that R485 involved in the non-electrostatic interaction with the benzophenone moiety of KP, but not vital to hold KP in the binding pocket of subdomain IIIA. PMID:22764574

  9. Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface.

    PubMed

    Metz, Alexander; Pfleger, Christopher; Kopitz, Hannes; Pfeiffer-Marek, Stefania; Baringhaus, Karl-Heinz; Gohlke, Holger

    2012-01-23

    Protein-protein interfaces are considered difficult targets for small-molecule protein-protein interaction modulators (PPIMs ). Here, we present for the first time a computational strategy that simultaneously considers aspects of energetics and plasticity in the context of PPIM binding to a protein interface. The strategy aims at identifying the determinants of small-molecule binding, hot spots, and transient pockets, in a protein-protein interface in order to make use of this knowledge for predicting binding modes of and ranking PPIMs with respect to their affinity. When applied to interleukin-2 (IL-2), the computationally inexpensive constrained geometric simulation method FRODA outperforms molecular dynamics simulations in sampling hydrophobic transient pockets. We introduce the PPIAnalyzer approach for identifying transient pockets on the basis of geometrical criteria only. A sequence of docking to identified transient pockets, starting structure selection based on hot spot information, RMSD clustering and intermolecular docking energies, and MM-PBSA calculations allows one to enrich IL-2 PPIMs from a set of decoys and to discriminate between subgroups of IL-2 PPIMs with low and high affinity. Our strategy will be applicable in a prospective manner where nothing else than a protein-protein complex structure is known; hence, it can well be the first step in a structure-based endeavor to identify PPIMs. PMID:22087639

  10. Stabilizing roles of residual structure in the empty heme binding pockets and unfolded states of microsomal and mitochondrial apocytochrome b5

    PubMed Central

    Cowley, Aaron B.; Rivera, Mario; Benson, David R.

    2004-01-01

    The microsomal (Mc) and mitochondrial (OM) isoforms of mammalian cytochrome b5 are the products of different genes, which likely arose via duplication of a primordial gene and subsequent functional divergence. Despite sharing essentially identical folds, heme-polypeptide interactions are stronger in OM b5s than in Mc b5s due to the presence of two conserved patches of hydrophobic amino acid side chains in the OM heme binding pockets. This is of fundamental interest in terms of understanding heme protein structure–function relationships, because stronger heme–polypeptide interactions in OM b5s in comparison to Mc b5s may represent a key source of their more negative reduction potentials. Herein we provide evidence that interactions amongst the amino acid side chains contributing to the hydrophobic patches in rat OM (rOM) b5 persist when heme is removed, rendering the empty heme binding pocket of rOM apo-b5 more compact and less conformationally dynamic than that in bovine Mc (bMc) apo-b5. This may contribute to the stronger heme binding by OM apo-b5 by reducing the entropic penalty associated with polypeptide folding. We also show that when bMc apo-b5 unfolds it adopts a structure that is more compact and contains greater nonrandom secondary structure content than unfolded rOM apo-b5. We propose that a more robust β-sheet in Mc apo-b5s compensates for the absence of the hydrophobic packing interactions that stabilize the heme binding pocket in OM apo-b5s. PMID:15295112

  11. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    SciTech Connect

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  12. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  13. Population shift of binding pocket size and dynamic correlation analysis shed new light on the anticooperative mechanism of PII protein

    PubMed Central

    Ma, Cheng-Wei; Lüddecke, Jan; Forchhammer, Karl; Zeng, An-Ping

    2014-01-01

    PII protein is one of the largest families of signal transduction proteins in archaea, bacteria, and plants, controlling key processes of nitrogen assimilation. An intriguing characteristic for many PII proteins is that the three ligand binding sites exhibit anticooperative allosteric regulation. In this work, PII protein from Synechococcus elongatus, a model for cyanobacteria and plant PII proteins, is utilized to reveal the anticooperative mechanism upon binding of 2-oxoglutarate (2-OG). To this end, a method is proposed to define the binding pocket size by identifying residues that contribute greatly to the binding of 2-OG. It is found that the anticooperativity is realized through population shift of the binding pocket size in an asymmetric manner. Furthermore, a new algorithm based on the dynamic correlation analysis is developed and utilized to discover residues that mediate the anticooperative process with high probability. It is surprising to find that the T-loop, which is believed to be responsible for mediating the binding of PII with its target proteins, also takes part in the intersubunit signal transduction process. Experimental results of PII variants further confirmed the influence of T-loop on the anticooperative regulation, especially on binding of the third 2-OG. These discoveries extend our understanding of the PII T-loop from being essential in versatile binding of target protein to signal-mediating in the anticooperative allosteric regulation. Proteins 2014; 82:1048–1059. PMID:24218085

  14. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  15. Flanking p10 contribution and sequence bias in matrix based epitope prediction: revisiting the assumption of independent binding pockets

    PubMed Central

    Parry, Christian S

    2008-01-01

    Background Eluted natural peptides from major histocompatibility molecules show patterns of conserved residues. Crystallographic structures show that the bound peptide in class II major histocompatibility complex adopts a near uniform polyproline II-like conformation. This way allele-specific favoured residues are able to anchor into pockets in the binding groove leaving other peptide side chains exposed for recognition by T cells. The anchor residues form a motif. This sequence pattern can be used to screen large sequences for potential epitopes. Quantitative matrices extend the motif idea to include the contribution of non-anchor peptide residues. This report examines two new matrices that extend the binding register to incorporate the polymorphic p10 pocket of human leukocyte antigen DR1. Their performance is quantified against experimental binding measurements and against the canonical nine-residue register matrix. Results One new matrix shows significant improvement over the base matrix; the other does not. The new matrices differ in the sequence of the peptide library. Conclusion One of the extended quantitative matrices showed significant improvement in prediction over the original nine residue matrix and over the other extended matrix. Proline in the sequence of the peptide library of the better performing matrix presumably stabilizes the peptide conformation through neighbour interactions. Such interactions may influence epitope prediction in this test of quantitative matrices. This calls into question the assumption of the independent contribution of individual binding pockets. PMID:18925947

  16. Conformational Plasticity of the NNRTI-Binding Pocket in HIV-1 Reverse Transcriptase: A Fluorine Nuclear Magnetic Resonance Study.

    PubMed

    Sharaf, Naima G; Ishima, Rieko; Gronenborn, Angela M

    2016-07-19

    HIV-1 reverse transcriptase (RT) is a major drug target in the treatment of HIV-1 infection. RT inhibitors currently in use include non-nucleoside, allosteric RT inhibitors (NNRTIs), which bind to a hydrophobic pocket, distinct from the enzyme's active site. We investigated RT-NNRTI interactions by solution (19)F nuclear magnetic resonance (NMR), using singly (19)F-labeled RT proteins. Comparison of (19)F chemical shifts of fluorinated RT and drug-resistant variants revealed that the fluorine resonance is a sensitive probe for identifying mutation-induced changes in the enzyme. Our data show that in the unliganded enzyme, the NNRTI-binding pocket is highly plastic and not locked into a single conformation. Upon inhibitor binding, the binding pocket becomes rigidified. In the inhibitor-bound state, the (19)F signal of RT is similar to that of drug-resistant mutant enzymes, distinct from what is observed for the free state. Our results demonstrate the power of (19)F NMR spectroscopy to characterize conformational properties using selectively (19)F-labeled protein. PMID:27163463

  17. Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR

    PubMed Central

    Szöllősi, Dániel; Erdei, Áron; Gyimesi, Gergely; Magyar, Csaba; Hegedűs, Tamás

    2016-01-01

    Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2α and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics. PMID:26727491

  18. Optimization of a Fragment-Based Screening Hit toward Potent DOT1L Inhibitors Interacting in an Induced Binding Pocket.

    PubMed

    Scheufler, Clemens; Möbitz, Henrik; Gaul, Christoph; Ragot, Christian; Be, Céline; Fernández, César; Beyer, Kim S; Tiedt, Ralph; Stauffer, Frédéric

    2016-08-11

    Mixed lineage leukemia (MLL) gene rearrangement induces leukemic transformation by ectopic recruitment of disruptor of telomeric silencing 1-like protein (DOT1L), a lysine histone methyltransferase, leading to local hypermethylation of H3K79 and misexpression of genes (including HoxA), which drive the leukemic phenotype. A weak fragment-based screening hit identified by SPR was cocrystallized with DOT1L and optimized using structure-based ligand optimization to yield compound 8 (IC50 = 14 nM). This series of inhibitors is structurally not related to cofactor SAM and is not interacting within the SAM binding pocket but induces a pocket adjacent to the SAM binding site. PMID:27563394

  19. Pathogenicity of the BRCA1 Missense Variant M1775K is Determined by the Disruption of the BRCT Phosphopeptide-Binding Pocket: a Multi-Modal Approach

    SciTech Connect

    Tischkowitz,M.; Hamel, N.; Carvalho, M.; Birrane, G.; Soni, A.; van Beers, E.; Joosse, S.; Wong, N.; Novak, D.; et al

    2008-01-01

    A number of germ-line mutations in the BRCA1 gene confer susceptibility to breast and ovarian cancer. However, it remains difficult to determine whether many single amino-acid (missense) changes in the BRCA1 protein that are frequently detected in the clinical setting are pathologic or not. Here, we used a combination of functional, crystallographic, biophysical, molecular and evolutionary techniques, and classical genetic segregation analysis to demonstrate that the BRCA1 missense variant M1775K is pathogenic. Functional assays in yeast and mammalian cells showed that the BRCA1 BRCT domains carrying the amino-acid change M1775K displayed markedly reduced transcriptional activity, indicating that this variant represents a deleterious mutation. Importantly, the M1775K mutation disrupted the phosphopeptide-binding pocket of the BRCA1 BRCT domains, thereby inhibiting the BRCA1 interaction with the proteins BRIP1 and CtIP, which are involved in DNA damage-induced checkpoint control. These results indicate that the integrity of the BRCT phosphopeptide-binding pocket is critical for the tumor suppression function of BRCA1. Moreover, this study demonstrates that multiple lines of evidence obtained from a combination of functional, structural, molecular and evolutionary techniques, and classical genetic segregation analysis are required to confirm the pathogenicity of rare variants of disease-susceptibility genes and obtain important insights into the underlying pathogenetic mechanisms.

  20. The phosphocholine-binding pocket on C-reactive protein is necessary for initial protection of mice against pneumococcal infection.

    PubMed

    Gang, Toh B; Hammond, David J; Singh, Sanjay K; Ferguson, Donald A; Mishra, Vinod K; Agrawal, Alok

    2012-12-14

    Human C-reactive protein (CRP) protects mice from lethal Streptococcus pneumoniae infection when injected into mice within the range of 6 h before to 2 h after the administration of pneumococci. Because CRP binds to phosphocholine-containing substances and subsequently activates the complement system, it has been proposed that the antipneumococcal function of CRP requires the binding of CRP to phosphocholine moieties present in pneumococcal cell wall C-polysaccharide. To test this proposal experimentally, in this study, we utilized a new CRP mutant incapable of binding to phosphocholine. Based on the structure of CRP-phosphocholine complexes, which showed that Phe(66), Thr(76), and Glu(81) formed the phosphocholine-binding pocket, we constructed a CRP mutant F66A/T76Y/E81A in which the pocket was blocked by substituting Tyr for Thr(76). When compared with wild-type CRP, mutant CRP bound more avidly to phosphoethanolamine and could be purified by affinity chromatography using phosphoethanolamine-conjugated Sepharose. Mutant CRP did not bind to phosphocholine, C-polysaccharide, or pneumococci. Mutant CRP was free in the mouse serum, and its rate of clearance in vivo was not faster than that of wild-type CRP. When either 25 μg or 150 μg of CRP was administered into mice, unlike wild-type CRP, mutant CRP did not protect mice from lethal pneumococcal infection. Mice injected with mutant CRP had higher mortality rates than mice that received wild-type CRP. Decreased survival was due to the increased bacteremia in mice treated with mutant CRP. We conclude that the phosphocholine-binding pocket on CRP is necessary for CRP-mediated initial protection of mice against lethal pneumococcal infection. PMID:23139417

  1. Crystal and Solution Studies Reveal That the Transcriptional Regulator AcnR of Corynebacterium glutamicum Is Regulated by Citrate-Mg2+ Binding to a Non-canonical Pocket

    PubMed Central

    García-Nafría, Javier; Baumgart, Meike; Turkenburg, Johan P.; Wilkinson, Anthony J.; Bott, Michael; Wilson, Keith S.

    2013-01-01

    Corynebacterium glutamicum is an important industrial bacterium as well as a model organism for the order Corynebacteriales, whose citric acid cycle occupies a central position in energy and precursor supply. Expression of aconitase, which isomerizes citrate into isocitrate, is controlled by several transcriptional regulators, including the dimeric aconitase repressor AcnR, assigned by sequence identity to the TetR family. We report the structures of AcnR in two crystal forms together with ligand binding experiments and in vivo studies. First, there is a citrate-Mg2+ moiety bound in both forms, not in the canonical TetR ligand binding site but rather in a second pocket more distant from the DNA binding domain. Second, the citrate-Mg2+ binds with a KD of 6 mm, within the range of physiological significance. Third, citrate-Mg2+ lowers the affinity of AcnR for its target DNA in vitro. Fourth, analyses of several AcnR point mutations provide evidence for the possible involvement of the corresponding residues in ligand binding, DNA binding, and signal transfer. AcnR derivatives defective in citrate-Mg2+ binding severely inhibit growth of C. glutamicum on citrate. Finally, the structures do have a pocket corresponding to the canonical tetracycline site, and although we have not identified a ligand that binds there, comparison of the two crystal forms suggests differences in the region of the canonical pocket that may indicate a biological significance. PMID:23589369

  2. Mutations in FMN Binding Pocket Diminish Chromate Reduction Rates for Gh-ChrR Isolated from Gluconacetobacter hansenii

    SciTech Connect

    Khaleel, Janin A.; Gong, Chunhong; Zhang, Yanfeng; Tan, Ruimin; Squier, Thomas C.; Jin, Hongjun

    2013-06-01

    A putative chromate ion binding site was identified proximal to a rigidly bound FMN from electron densities in the crystal structure of the quinone reductase from Gluconacetobacter hansenii (Gh-ChrR) (3s2y.pdb). To clarify the location of the chromate binding site, and to understand the role of FMN in the NADPH-dependent reduction of chromate, we have expressed and purified four mutant enzymes involving the site-specific substitution of individual side chains within the FMN binding pocket that form non-covalent bonds with the ribityl phosphate (i.e., S15A and R17A in loop 1 between β1 sheet and α1 helix) or the isoalloxanzine ring (E83A or Y84A in loop 4 between the β3 sheet and α4 helix). Mutations that selectively disrupt hydrogen bonds between either the N3 nitrogen on the isoalloxanzine ring (i.e., E83) or the ribitylphos- phoate (i.e., S15) respectively result in 50% or 70% reductions in catalytic rates of chromate reduction. In comparison, mutations that disrupt π-π ring stacking interactions with the isoal-loxanzine ring (i.e., Y84) or a salt bridge with the ribityl phosphate result in 87% and 97% inhibittion. In all cases there are minimal alterations in chromate binding affinities. Collectively, these results support the hypothesis that chromate binds proximal to FMN, and implicate a structural role for FMN positioning for optimal chromate reduction rates. As side chains proximal to the β3/α4 FMN binding loop 4 contribute to both NADH and metal ion binding, we propose a model in which structural changes around the FMN binding pocket couples to both chromate and NADH binding sites.

  3. Structure of the Toxoplasma gondii ROP18 Kinase Domain Reveals a Second Ligand Binding Pocket Required for Acute Virulence*

    PubMed Central

    Lim, Daniel; Gold, Daniel A.; Julien, Lindsay; Rosowski, Emily E.; Niedelman, Wendy; Yaffe, Michael B.; Saeij, Jeroen P. J.

    2013-01-01

    At least a third of the human population is infected with the intracellular parasite Toxoplasma gondii, which contributes significantly to the disease burden in immunocompromised and neutropenic hosts and causes serious congenital complications when vertically transmitted to the fetus. Genetic analyses have identified the Toxoplasma ROP18 Ser/Thr protein kinase as a major factor mediating acute virulence in mice. ROP18 is secreted into the host cell during the invasion process, and its catalytic activity is required for the acute virulence phenotype. However, its precise molecular function and regulation are not fully understood. We have determined the crystal structure of the ROP18 kinase domain, which is inconsistent with a previously proposed autoinhibitory mechanism of regulation. Furthermore, a sucrose molecule bound to our structure identifies an additional ligand-binding pocket outside of the active site cleft. Mutational analysis confirms an important role for this pocket in virulence. PMID:24129568

  4. Na+ Inhibits the Epithelial Na+ Channel by Binding to a Site in an Extracellular Acidic Cleft*

    PubMed Central

    Kashlan, Ossama B.; Blobner, Brandon M.; Zuzek, Zachary; Tolino, Michael; Kleyman, Thomas R.

    2015-01-01

    The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl−, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. PMID:25389295

  5. Multiple tyrosine residues at the GABA binding pocket influence surface expression and mediate kinetics of the GABAA receptor.

    PubMed

    Laha, Kurt T; Tran, Phu N

    2013-01-01

    The prevalence of aromatic residues in the ligand binding site of the GABA(A) receptor, as with other cys-loop ligand-gated ion channels, is undoubtedly important for the ability of neurotransmitters to bind and trigger channel opening. Here, we have examined three conserved tyrosine residues at the GABA binding pocket (β(2) Tyr97, β(2) Tyr157, and β(2) Tyr205), making mutations to alanine and phenylalanine. We fully characterized the effects each mutation had on receptor function using heterologous expression in HEK-293 cells, which included examining surface expression, kinetics of macroscopic currents, microscopic binding and unbinding rates for an antagonist, and microscopic binding rates for an agonist. The assembly or trafficking of GABA(A) receptors was disrupted when tyrosine mutants were expressed as αβ receptors, but interestingly not when expressed as αβγ receptors. Mutation of each tyrosine accelerated deactivation and slowed GABA binding. This provides strong evidence that these residues influence the binding of GABA. Qualitatively, mutation of each tyrosine has a very similar effect on receptor function; however, mutations at β(2) Tyr157 and β(2) Tyr205 are more detrimental than β(2) Tyr97 mutations, particularly to the GABA binding rate. Overall, the results suggest that interactions involving multiple tyrosine residues are likely during the binding process. PMID:23121119

  6. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  7. Identification of small-molecule binding pockets in the soluble monomeric form of the Aβ42 peptide

    PubMed Central

    Zhu, Maximillian; Simone, Alfonso De; Schenk, Dale; Toth, Gergely; Dobson, Christopher M.; Vendruscolo, Michele

    2016-01-01

    The aggregation of intrinsically disordered peptides and proteins is associated with a wide range of highly debilitating neurological and systemic disorders. In this work we explored the potential of a structure-based drug discovery procedure to target one such system, the soluble monomeric form of the Aβ42 peptide. We utilised for this purpose a set of structures of the Aβ42 peptide selected from clusters of conformations within an ensemble generated by molecular dynamics simulations. Using these structures we carried out fragment mapping calculations to identify binding ‘hot spots’ on the monomeric form of the Aβ42 peptide. This procedure provided a set of hot spots with ligand efficiencies comparable to those observed for structured proteins, and that are clustered into binding pockets. We verified that such pockets exhibit a propensity to bind small molecules known to interact with the Aβ42 peptide. Taken together these results provide an initial indication that fragment-based drug discovery may represent a potential therapeutic strategy for diseases associated with the aggregation of intrinsically disordered proteins. PMID:23883055

  8. DR1001 presents ‘altered-self’ peptides derived from joint associated proteins by accepting citrulline in three of its binding pockets

    PubMed Central

    James, Eddie A.; Moustakas, Antonis K.; Bui, John; Papadopoulos, George K.; Bondinas, George; Buckner, Jane H.; Kwok, William W.

    2010-01-01

    Objective HLA-DRB1*1001 (DR1001) is a shared epitope allele associated with rheumatoid arthritis. The objectives of this study were to assess the capacity of DR1001 to accommodate citrulline in its binding pockets and to identify citrullinated T cell epitopes derived from joint associated proteins. Methods The binding of peptide derivatives containing citrulline, arginine, and other amino acid substitutions was measured. A prediction algorithm was then developed to identify arginine containing sequences from joint associated proteins that preferentially bind to DR1001 upon citrullination. Unmodified and citrullinated versions of these sequences were synthesized and utilized to stimulate CD4+ T cells from healthy subjects and rheumatoid arthritis patients. Responses were measured by MHC class II tetramer staining and confirmed by isolating CD4+ T cell clones. Results DR1001 accepted citrulline, but not arginine in three of its anchoring pockets. The prediction algorithm identified sequences that preferentially bound to DR1001 with arginine replaced by citrulline. Three of these sequences elicited CD4+ T cell responses. T cell clones specific for these sequences proliferated only in response to citrullinated peptides. Conclusions Conversion of arginine to citrulline generates ‘altered-self’ peptides that can be bound and presented by DR1001. Responses to these peptides implicate the corresponding proteins (fibrinogen α, fibrinogen β and cartilage intermediate layer protein) as relevant antigens. Preferential responses to citrullinated sequences suggests that altered peptide binding affinity due to this post-translational modification may be an important factor in the initiation or progression of RA. As such, measuring responsiveness to these peptides may be useful for immune monitoring. PMID:20533291

  9. Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket.

    PubMed

    Sablin, Elena P; Blind, Raymond D; Uthayaruban, Rubatharshini; Chiu, Hsiu-Ju; Deacon, Ashley M; Das, Debanu; Ingraham, Holly A; Fletterick, Robert J

    2015-12-01

    The nuclear receptor LRH-1 (Liver Receptor Homolog-1, NR5A2) is a transcription factor that regulates gene expression programs critical for many aspects of metabolism and reproduction. Although LRH-1 is able to bind phospholipids, it is still considered an orphan nuclear receptor (NR) with an unknown regulatory hormone. Our prior cellular and structural studies demonstrated that the signaling phosphatidylinositols PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind and regulate SF-1 (Steroidogenic Factor-1, NR5A1), a close homolog of LRH-1. Here, we describe the crystal structure of human LRH-1 ligand binding domain (LBD) bound by PIP3 - the first phospholipid with a head group endogenous to mammals. We show that the phospholipid hormone binds LRH-1 with high affinity, stabilizing the receptor LBD. While the hydrophobic PIP3 tails (C16/C16) are buried inside the LRH-1 ligand binding pocket, the negatively charged PIP3 head group is presented on the receptor surface, similar to the phosphatidylinositol binding mode observed in the PIP3-SF-1 structure. Thus, data presented in this work reinforce our earlier findings demonstrating that signaling phosphatidylinositols regulate the NR5A receptors LRH-1 and SF-1. PMID:26416531

  10. Iodination of salicylic acid improves its binding to transthyretin.

    PubMed

    Gales, Luís; Almeida, Maria Rosário; Arsequell, Gemma; Valencia, Gregorio; Saraiva, Maria João; Damas, Ana Margarida

    2008-03-01

    Transthyretin (TTR) is a plasma homotetrameric protein associated with senile systemic amyloidosis and familial amyloidotic polyneuropathy. In theses cases, TTR dissociation and misfolding induces the formation of amyloidogenic intermediates that assemble into toxic oligomeric species and lead to the formation of fibrils present in amyloid deposits. The four TTR monomers associate around a central hydrophobic channel where two thyroxine molecules can bind simultaneously. In each thyroxine binding site there are three pairs of symmetry related halogen binding pockets which can accommodate the four iodine substituents of thyroxine. A number of structurally diverse small molecules that bind to the TTR channel increasing the protein stability and thereafter inhibiting amyloid fibrillogenesis have been tested. In order to take advantage of the high propensity to interactions between iodine substituents and the TTR channel we have identified two iodinated derivatives of salicylic acid, 5-iodosalicylic acid and 3,5-diiodosalicylic acid, available commercially. We report in this paper the relative binding affinities of salicylic acid and the two iodinated derivatives and the crystal structure of TTR complexed with 3,5-diiodosalicylic acid, to elucidate the higher binding affinity of this compound towards TTR. PMID:18155178

  11. eMatchSite: Sequence Order-Independent Structure Alignments of Ligand Binding Pockets in Protein Models

    PubMed Central

    Brylinski, Michal

    2014-01-01

    Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4–9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite. PMID

  12. The E6AP Binding Pocket of the HPV16 E6 Oncoprotein Provides a Docking Site for a Small Inhibitory Peptide Unrelated to E6AP, Indicating Druggability of E6

    PubMed Central

    Kintscher, Susanne; Reinz, Eileen; Sehr, Peter; Bulkescher, Julia; Hoppe-Seyler, Karin; Travé, Gilles; Hoppe-Seyler, Felix

    2014-01-01

    The HPV E6 oncoprotein maintains the malignant phenotype of HPV-positive cancer cells and represents an attractive therapeutic target. E6 forms a complex with the cellular E6AP ubiquitin ligase, ultimately leading to p53 degradation. The recently elucidated x-ray structure of a HPV16 E6/E6AP complex showed that HPV16 E6 forms a distinct binding pocket for E6AP. This discovery raises the question whether the E6AP binding pocket is druggable, i. e. whether it provides a docking site for functional E6 inhibitors. To address these issues, we performed a detailed analysis of the HPV16 E6 interactions with two small peptides: (i) E6APpep, corresponding to the E6 binding domain of E6AP, and (ii) pep11**, a peptide that binds to HPV16 E6 and, in contrast to E6APpep, induces apoptosis, specifically in HPV16-positive cancer cells. Surface plasmon resonance, NMR chemical shift perturbation, and mammalian two-hybrid analyses coupled to mutagenesis indicate that E6APpep contacts HPV16 E6 amino acid residues within the E6AP pocket, both in vitro and intracellularly. Many of these amino acids were also important for binding to pep11**, suggesting that the binding sites for the two peptides on HPV16 E6 overlap. Yet, few E6 amino acids were differentially involved which may contribute to the higher binding affinity of pep11**. Data from the HPV16 E6/pep11** interaction allowed the rational design of single amino acid exchanges in HPV18 and HPV31 E6 that enabled their binding to pep11**. Taken together, these results suggest that E6 molecular surfaces mediating E6APpep binding can also accommodate pro-apoptotic peptides that belong to different sequence families. As proof of concept, this study provides the first experimental evidence that the E6AP binding pocket is druggable, opening new possibilities for rational, structure-based drug design. PMID:25383876

  13. A 5′ cytosine binding pocket in Puf3p specifies regulation of mitochondrial mRNAs

    SciTech Connect

    Zhu, Deyu; Stumpf, Craig R.; Krahn, Joseph M.; Wickens, Marvin; Tanaka Hall, Traci M.

    2010-11-03

    A single regulatory protein can control the fate of many mRNAs with related functions. The Puf3 protein of Saccharomyces cerevisiae is exemplary, as it binds and regulates more than 100 mRNAs that encode proteins with mitochondrial function. Here we elucidate the structural basis of that specificity. To do so, we explore the crystal structures of Puf3p complexes with 2 cognate RNAs. The key determinant of Puf3p specificity is an unusual interaction between a distinctive pocket of the protein with an RNA base outside the 'core' PUF-binding site. That interaction dramatically affects binding affinity in vitro and is required for regulation in vivo. The Puf3p structures, combined with those of Puf4p in the same organism, illuminate the structural basis of natural PUF-RNA networks. Yeast Puf3p binds its own RNAs because they possess a -2C and is excluded from those of Puf4p which contain an additional nucleotide in the core-binding site.

  14. Mutagenesis of Nucleophilic Residues near the Orthosteric Binding Pocket of M1 and M2 Muscarinic receptors: Effect on the Binding of Nitrogen Mustard Analogs of Acetylcholine and McN-A-343

    PubMed Central

    Suga, Hinako; Sawyer, Gregory W.

    2010-01-01

    Investigating how a test drug alters the reaction of a site-directed electrophile with a receptor is a powerful method for determining whether the drug acts competitively or allosterically, provided that the binding site of the electrophile is known. In this study, therefore, we mutated nucleophilic residues near and within the orthosteric pockets of M1 and M2 muscarinic receptors to identify where acetylcholine mustard and 4-[(2-bromoethyl)methyl-amino]-2-butynyl-N-(3-chlorophenyl)carbamate (BR384) bind covalently. BR384 is the nitrogen mustard analog of [4-[[N-(3-chlorophenyl)carbamoyl]oxy]-2-butynyl]trimethylammonium chloride (McN-A-343). Mutation of the highly conserved aspartic acid in M1 (Asp105) and M2 (Asp103) receptors to asparagine largely prevented receptor alkylation by acetylcholine mustard, although modest alkylation still occurred at M2 D103N at high concentrations of the mustard. Receptor alkylation by BR384 was also greatly inhibited in the M1 D105N mutant, but some alkylation still occurred at high concentrations of the compound. In contrast, BR384 rapidly alkylated the M2 D103N mutant. Its affinity was reduced to one tenth, however. The alkylation of M2 D103N by BR384 was competitively inhibited by N-methylscopolamine and allosterically inhibited by gallamine. Mutation of a variety of other nucleophilic residues, some in combination with D103N, had little effect on M2 receptor alkylation by BR384. Our results suggest that BR384 alkylates at least one residue other than the conserved aspartic acid at the ligand-binding site of M1 and M2 receptors. This additional residue seems to be located within or near the orthosteric-binding pocket and is not part of the allosteric site for gallamine. PMID:20643905

  15. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis.

    PubMed

    Goupille, Olivier; Penglong, Tipparat; Kadri, Zahra; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chrétien, Leila; Prost, Stéphane; Leboulch, Philippe; Chrétien, Stany

    2016-04-15

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. PMID:26972250

  16. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A–H2B acidic pocket

    PubMed Central

    Roussel, Lucie; Erard, Monique; Cayrol, Corinne; Girard, Jean-Philippe

    2008-01-01

    Interleukin-33 (IL-33) is an IL-1-like ligand for the ST2 receptor that stimulates the production of Th2-associated cytokines. Recently, we showed that IL-33 is a chromatin-associated factor in the nucleus of endothelial cells in vivo. Here, we report the identification of a short IL-33 chromatin-binding peptide that shares striking similarities with a motif found in Kaposi sarcoma herpesvirus LANA (latency-associated nuclear antigen), which is responsible for the attachment of viral genomes to mitotic chromosomes. Similar to LANA, the IL-33 peptide docks into the acidic pocket formed by the H2A–H2B dimer at the nucleosomal surface and regulates chromatin compaction by promoting nucleosome–nucleosome interactions. Taken together, our data provide important new insights into the nuclear roles of IL-33, and show a unique example of molecular mimicry of a chromatin-associated cytokine by a DNA tumour virus. In addition, the data provide, to the best of our knowledge, the first demonstration of the existence of non-histone cellular factors that bind to the acidic pocket of the nucleosome. PMID:18688256

  17. ATP-Binding Pocket-Targeted Suppression of Src and Syk by Luteolin Contributes to Its Anti-Inflammatory Action

    PubMed Central

    Lee, Jeong-Oog; Jeong, Deok; Kim, Mi-Yeon; Cho, Jae Youl

    2015-01-01

    Luteolin is a flavonoid identified as a major anti-inflammatory component of Artemisia asiatica. Numerous reports have demonstrated the ability of luteolin to suppress inflammation in a variety of inflammatory conditions. However, its exact anti-inflammatory mechanism has not been fully elucidated. In the present study, the anti-inflammatory mode of action in activated macrophages of luteolin from Artemisia asiatica was examined by employing immunoblotting analysis, a luciferase reporter gene assay, enzyme assays, and an overexpression strategy. Luteolin dose-dependently inhibited the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) and diminished the levels of mRNA transcripts of inducible NO synthase (iNOS), tumor necrosis factor- (TNF-) α, and cyclooxygenase-2 (COX-2) in lipopolysaccharide- (LPS-) and pam3CSK-treated macrophage-like RAW264.7 cells without displaying cytotoxicity. Luteolin displayed potent NO-inhibitory activity and also suppressed the nuclear translocation of NF-κB (p65 and p50) via blockade of Src and Syk, but not other mitogen-activated kinases. Overexpression of wild type Src and point mutants thereof, and molecular modelling studies, suggest that the ATP-binding pocket may be the luteolin-binding site in Src. These results strongly suggest that luteolin may exert its anti-inflammatory action by suppressing the NF-κB signaling cascade via blockade of ATP binding in Src and Syk. PMID:26236111

  18. Closing of the nucleotide pocket of kinesin-family motors upon binding to microtubules.

    PubMed

    Naber, Nariman; Minehardt, Todd J; Rice, Sarah; Chen, Xiaoru; Grammer, Jean; Matuska, Marija; Vale, Ronald D; Kollman, Peter A; Car, Roberto; Yount, Ralph G; Cooke, Roger; Pate, Edward

    2003-05-01

    We have used adenosine diphosphate analogs containing electron paramagnetic resonance (EPR) spin moieties and EPR spectroscopy to show that the nucleotide-binding site of kinesin-family motors closes when the motor.diphosphate complex binds to microtubules. Structural analyses demonstrate that a domain movement in the switch 1 region at the nucleotide site, homologous to domain movements in the switch 1 region in the G proteins [heterotrimeric guanine nucleotide-binding proteins], explains the EPR data. The switch movement primes the motor both for the free energy-yielding nucleotide hydrolysis reaction and for subsequent conformational changes that are crucial for the generation of force and directed motion along the microtubule. PMID:12730601

  19. Post-docking virtual screening of diverse binding pockets: comparative study using DOCK, AMMOS, X-Score and FRED scoring functions.

    PubMed

    Pencheva, Tania; Soumana, Oumarou Samna; Pajeva, Ilza; Miteva, Maria A

    2010-06-01

    Most of the benchmark studies on docking-scoring methods reported in the last decade conclude that no single scoring function performs well across different protein targets. In this study a comparison of thirteen commonly used force field and empirical scoring functions as implemented in DOCK, AMMOS, X-Score and FRED is carried out on five proteins with diverse binding pockets. The performance is analyzed in relation to the physicochemical properties of the binding sites. The solvation effects are considered via the Generalized Born/Surface Area (GBSA) solvation method for one of the assessed scoring functions. We examined the ability of these scoring functions to discriminate between active and inactive compounds over receptor-based focused libraries. Our results demonstrated that the employed here empirical scoring functions were more appropriate for the pocket of predominant hydrophobic nature while the force field scoring functions performed better on the mixed or polar pockets. PMID:20227800

  20. A New Method for Navigating Optimal Direction for Pulling Ligand from Binding Pocket: Application to Ranking Binding Affinity by Steered Molecular Dynamics.

    PubMed

    Vuong, Quan Van; Nguyen, Tin Trung; Li, Mai Suan

    2015-12-28

    In this paper we present a new method for finding the optimal path for pulling a ligand from the binding pocket using steered molecular dynamics (SMD). Scoring function is defined as the steric hindrance caused by a receptor to ligand movement. Then the optimal path corresponds to the minimum of this scoring function. We call the new method MSH (Minimal Steric Hindrance). Contrary to existing navigation methods, our approach takes into account the geometry of the ligand while other methods including CAVER only consider the ligand as a sphere with a given radius. Using three different target + receptor sets, we have shown that the rupture force Fmax and nonequilibrium work Wpull obtained based on the MSH method show a much higher correlation with experimental data on binding free energies compared to CAVER. Furthermore, Wpull was found to be a better indicator for binding affinity than Fmax. Thus, the new MSH method is a reliable tool for obtaining the best direction for ligand exiting from the binding site. Its combination with the standard SMD technique can provide reasonable results for ranking binding affinities using Wpull as a scoring function. PMID:26595261

  1. Molecular Dynamic Simulations Reveal the Structural Determinants of Fatty Acid Binding to Oxy-Myoglobin

    PubMed Central

    Chintapalli, Sree V.; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L.; van Rossum, Damian B.; Anishkin, Andriy; Adams, Sean H.

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a “U” shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  2. Molecular dynamic simulations reveal the structural determinants of Fatty Acid binding to oxy-myoglobin.

    PubMed

    Chintapalli, Sree V; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L; van Rossum, Damian B; Anishkin, Andriy; Adams, Sean H

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a "U" shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  3. N,C-capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: Role of S3 and S1 binding pockets

    PubMed Central

    Chidawanyika, Tamutenda; Tsu, Christopher; Warrier, Thulasi; Vaubourgeix, Julien; Blackburn, Christopher; Gigstad, Kenneth; Sintchak, Michael; Dick, Lawrence

    2013-01-01

    We identified N,C-capped dipeptides that are selective for the Mycobacterium tuberculosis proteasome over human constitutive and immunoproteasomes. Differences in S3 and S1 binding pockets appeared to account for species-selectivity. The inhibitors are able to penetrate mycobacteria and kill non-replicating M. tuberculosis under nitrosative stress. PMID:23782398

  4. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    NASA Astrophysics Data System (ADS)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  5. Fluorescence energy-transfer measurements between the calcium binding site and the specificity pocket of bovine trypsin using lanthanide probes.

    PubMed

    Darnall, D W; Abbott, F; Gomez, J E; Birnbaum, E R

    1976-11-16

    Using fluorescence energy-transfer experiments we have measured the distance between the specificity pocket and the calcium ion binding site of bovine pancreatic trypsin. Proflavin and thionine were used to block the specificity site, whereas various lanthanide ions were substituted for the calcium. It was then possible to choose various donor-acceptor pairs which exhibit suitable energy transfer. We have calculated the distance between proflavin and Nd(III), Pr(III), and Ho(III) to be 10.9, and 10.3, and 10.3 A, respectively. This agrees very well with the value of approximately 10 A we obtained between the methyl protons of p-toluamidine (a competitive inhibitor) and Gd(III) using nuclear magnetic resonance techniques (Abbott, F., Gomez, J.E., Birnbaum, E.R., and Darnall, D.W. (1975), Biochemistry 14, 4935). This is strong evidence that, in solution, the calcium binding site is composed of the side chains of Ser-190 and Asp-194. PMID:1032992

  6. The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme

    PubMed Central

    Racki, Lisa R.; Naber, Nariman; Pate, Ed; Leonard, John; Cooke, Roger; Narlikar, Geeta J.

    2014-01-01

    The chromatin remodeling complex ACF helps establish the appropriate nucleosome spacing for generating repressed chromatin states. ACF activity is stimulated by two defining features of the nucleosomal substrate: a basic patch on the histone H4 N-terminal tail and the specific length of flanking DNA. Yet the mechanisms by which these two substrate cues function in the ACF remodeling reaction is not well understood. Using electron paramagnetic resonance spectroscopy with spin-labeled ATP analogs to probe the structure of the ATP active site under physiological solution conditions, we identify a closed state of the ATP-binding pocket that correlates with ATPase activity. We find that the H4 tail promotes pocket closure. We further show that ATPase stimulation by the H4 tail does not require a specific structure connecting the H4 tail and the globular domain. In the case of many DNA helicases, closure of the ATP- binding pocket is regulated by specific DNA substrates. Pocket closure by the H4 tail may analogously provide a mechanism to directly couple substrate recognition to activity. Surprisingly, the flanking DNA, which also stimulates ATP hydrolysis, does not promote pocket closure, suggesting that the H4 tail and flanking DNA may be recognized in different reaction steps. PMID:24607692

  7. The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme.

    PubMed

    Racki, Lisa R; Naber, Nariman; Pate, Ed; Leonard, John D; Cooke, Roger; Narlikar, Geeta J

    2014-05-15

    The chromatin remodeling complex ACF helps establish the appropriate nucleosome spacing for generating repressed chromatin states. ACF activity is stimulated by two defining features of the nucleosomal substrate: a basic patch on the histone H4 N-terminal tail and the specific length of flanking DNA. However, the mechanisms by which these two substrate cues function in the ACF remodeling reaction is not well understood. Using electron paramagnetic resonance spectroscopy with spin-labeled ATP analogs to probe the structure of the ATP active site under physiological solution conditions, we identify a closed state of the ATP-binding pocket that correlates with ATPase activity. We find that the H4 tail promotes pocket closure. We further show that ATPase stimulation by the H4 tail does not require a specific structure connecting the H4 tail and the globular domain. In the case of many DNA helicases, closure of the ATP-binding pocket is regulated by specific DNA substrates. Pocket closure by the H4 tail may analogously provide a mechanism to directly couple substrate recognition to activity. Surprisingly, the flanking DNA, which also stimulates ATP hydrolysis, does not promote pocket closure, suggesting that the H4 tail and flanking DNA may be recognized in different reaction steps. PMID:24607692

  8. Structural studies of neuropilin-2 reveal a zinc ion binding site remote from the vascular endothelial growth factor binding pocket.

    PubMed

    Tsai, Yi-Chun Isabella; Fotinou, Constantina; Rana, Rohini; Yelland, Tamas; Frankel, Paul; Zachary, Ian; Djordjevic, Snezana

    2016-05-01

    Neuropilin-2 is a transmembrane receptor involved in lymphangiogenesis and neuronal development. In adults, neuropilin-2 and its homologous protein neuropilin-1 have been implicated in cancers and infection. Molecular determinants of the ligand selectivity of neuropilins are poorly understood. We have identified and structurally characterized a zinc ion binding site on human neuropilin-2. The neuropilin-2-specific zinc ion binding site is located near the interface between domains b1 and b2 in the ectopic region of the protein, remote from the neuropilin binding site for its physiological ligand, i.e. vascular endothelial growth factor. We also present an X-ray crystal structure of the neuropilin-2 b1 domain in a complex with the C-terminal sub-domain of VEGF-A. Zn(2+) binding to neuropilin-2 destabilizes the protein structure but this effect was counteracted by heparin, suggesting that modifications by glycans and zinc in the extracellular matrix may affect functional neuropilin-2 ligand binding and signalling activity. PMID:26991001

  9. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    PubMed

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  10. The 2.1Å Crystal Structure of an Acyl-CoA Synthetase from Methanosarcina acetivorans reveals an alternate acyl binding pocket for small branched acyl substrates†,‡

    PubMed Central

    Shah, Manish B.; Ingram-Smith, Cheryl; Cooper, Leroy L.; Qu, Jun; Meng, Yu; Smith, Kerry S.; Gulick, Andrew M.

    2009-01-01

    The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl binding pocket. PMID:19544569

  11. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers

    PubMed Central

    Ruthenburg, Alexander J; Allis, C David; Patel, Dinshaw J

    2015-01-01

    Histones comprise the major protein component of chromatin, the scaffold in which the eukaryotic genome is packaged, and are subject to many types of post-translational modifications (PTMs), especially on their flexible tails. These modifications may constitute a ‘histone code’ and could be used to manage epigenetic information that helps extend the genetic message beyond DNA sequences. This proposed code, read in part by histone PTM–binding ‘effector’ modules and their associated complexes, is predicted to define unique functional states of chromatin and/or regulate various chromatin-templated processes. A wealth of structural and functional data show how chromatin effector modules target their cognate covalent histone modifications. Here we summarize key features in molecular recognition of histone PTMs by a diverse family of ‘reader pockets’, highlighting specific readout mechanisms for individual marks, common themes and insights into the downstream functional consequences of the interactions. Changes in these interactions may have far-reaching implications for human biology and disease, notably cancer. PMID:17984965

  12. Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket.

    PubMed

    Chen, Wenmin; Zhan, Peng; Daelemans, Dirk; Yang, Jiapei; Huang, Boshi; De Clercq, Erik; Pannecouque, Christophe; Liu, Xinyong

    2016-10-01

    Based on the crystallographic studies of diarylpyrimidines (DAPYs), we embarked on incorporating the hydrophilic piperidyl or morpholinyl group into the known DAPY derivatives bearing the pyridine moiety as a core structure, with the double aim to exploit additional interactions with the HIV-1 NNRTI binding pocket (NNIBP), as well as to improve the compound solubility. The antiviral evaluation result show that the most potent compounds I-8b2, I-8b3, I-8b4 and I-8c3 exhibited anti-HIV-1 (IIIB) strain activity ranging from 7.4 nM to 9.4 nM (SI = 168-1283), superior to FDA-approved drugs of nevirapine (NVP), lamivudine (3TC) and delavirdine (DLV), and comparable to etravirine (ETV), zidovudine (AZT) and efavirenz (EFV). Additionally, compounds I-8c2 and I-8c3 showed moderate activity against NNRTI resistant strains baring mutations K103N and Y181C with EC50 values of 6.2 μM and 6.8 μM, respectively. Preliminary structure-activity relationships (SARs), reverse transcriptase inhibition efficacy and molecular modeling of selected compounds are also presented. These outcomes support our design hypothesis and demonstrate that the piperidyl group modified pyridine-typed DAPY derivatives are highly potent NNRTIs with improved water solubility. PMID:27267005

  13. Structure-Based Design of a Novel SMYD3 Inhibitor that Bridges the SAM-and MEKK2-Binding Pockets.

    PubMed

    Van Aller, Glenn S; Graves, Alan P; Elkins, Patricia A; Bonnette, William G; McDevitt, Patrick J; Zappacosta, Francesca; Annan, Roland S; Dean, Tony W; Su, Dai-Shi; Carpenter, Christopher L; Mohammad, Helai P; Kruger, Ryan G

    2016-05-01

    SMYD3 is a lysine methyltransferase overexpressed in colorectal, breast, prostate, and hepatocellular tumors, and has been implicated as an oncogene in human malignancies. Methylation of MEKK2 by SMYD3 is important for regulation of the MEK/ERK pathway, suggesting the possibility of selectively targeting SMYD3 in RAS-driven cancers. Structural and kinetic characterization of SMYD3 was undertaken leading to a co-crystal structure of SMYD3 with a MEKK2-peptide substrate bound, and the observation that SMYD3 follows a partially processive mechanism. These insights allowed for the design of GSK2807, a potent and selective, SAM-competitive inhibitor of SMYD3 (Ki = 14 nM). A high-resolution crystal structure reveals that GSK2807 bridges the gap between the SAM-binding pocket and the substrate lysine tunnel of SMYD3. Taken together, our data demonstrate that small-molecule inhibitors of SMYD3 can be designed to prevent methylation of MEKK2 and these could have potential use as anticancer therapeutics. PMID:27066749

  14. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans. PMID:25370009

  15. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol.

    PubMed

    Lagakos, William S; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E; Storch, Judith

    2013-07-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  16. Liver Fatty Acid-binding Protein Binds Monoacylglycerol in Vitro and in Mouse Liver Cytosol*

    PubMed Central

    Lagakos, William S.; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E.; Storch, Judith

    2013-01-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  17. Identification of transmembrane domain 1 & 2 residues that contribute to the formation of the ligand-binding pocket of the urotensin-II receptor.

    PubMed

    Sainsily, Xavier; Cabana, Jérôme; Holleran, Brian J; Escher, Emanuel; Lavigne, Pierre; Leduc, Richard

    2014-11-15

    The vasoactive urotensin-II (UII), a cyclic undecapeptide widely distributed in cardiovascular, renal and endocrine systems, specifically binds the UII receptor (UT receptor), a G protein-coupled receptor (GPCR). The involvement of this receptor in numerous pathophysiological conditions including atherosclerosis, heart failure, hypertension, renal impairment and diabetes potentially makes it an interesting therapeutic target. To elucidate how UII binds the UT receptor through the identification of specific residues in transmembrane domains (TM) one (TM1) and two (TM2) that are involved in the formation of the receptor's binding pocket, we used the substituted-cysteine accessibility method (SCAM). Each residue of TM1 (V49((1.30)) to M76((1.57))) and TM2 (V88((2.41)) to H117((2.70))) was mutated, one by one, to a cysteine. The resulting mutants were then expressed in COS-7 cells and subsequently treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA treatment resulted in a significant binding inhibition of (125)I-UII to mutant I54C((1.35)) in TM1 and mutants Y100C((2.53)), S103C((2.56)), F106C((2.59)), I107C((2.60)), T110C((2.63)) and Y111C((2.64)) in TM2. These results identify key structural residues in TM1 and TM2 that participate in the formation of the UT receptor binding pocket. Together with previous SCAM analysis of TM3, TM4, TM5, TM6 and TM7, these results have led us to identify residues within all 7 TMs that participate in UT's binding pocket and have enabled us to propose a model of this receptor's orthosteric binding site. PMID:25175740

  18. Ligand selectivity of soluble guanylyl cyclase: effect of the hydrogen-bonding tyrosine in the distal heme pocket on binding of oxygen, nitric oxide, and carbon monoxide.

    PubMed

    Martin, Emil; Berka, Vladimir; Bogatenkova, Elena; Murad, Ferid; Tsai, Ah-Lim

    2006-09-22

    Although soluble guanylyl cyclase (sGC) functions in an environment in which O(2), NO, and CO are potential ligands for its heme moiety, the enzyme displays a high affinity for only its physiological ligand, NO, but has a limited affinity for CO and no affinity for O(2). Recent studies of a truncated version of the sGC beta(1)-subunit containing the heme-binding domain (Boon, E. M., Huang, S H., and Marletta, M. A. (2005) Nat. Chem. Biol., 1, 53-59) showed that introduction of the hydrogen-bonding tyrosine into the distal heme pocket changes the ligand specificity of the heme moiety and results in an oxygen-binding sGC. The hypothesis that the absence of hydrogen-bonding residues in the distal heme pocket is sufficient to provide oxygen discrimination by sGC was put forward. We tested this hypothesis in a context of a complete sGC heterodimer containing both the intact alpha(1)- and beta(1)-subunits. We found that the I145Y substitution in the full-length beta-subunit of the sGC heterodimer did not produce an oxygen-binding enzyme. However, this substitution impeded the association of NO and destabilized the NO.heme complex. The tyrosine in the distal heme pocket also impeded both the binding and dissociation of the CO ligand. We propose that the mechanism of oxygen exclusion by sGC not only involves the lack of hydrogen bonding in the distal heme pocket, but also depends on structural elements from other domains of sGC. PMID:16864588

  19. Avibactam and Class C β-Lactamases: Mechanism of Inhibition, Conservation of the Binding Pocket, and Implications for Resistance

    PubMed Central

    Johnstone, M. R.; Ross, P. L.; McLaughlin, R. E.; Olivier, N. B.

    2014-01-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that inhibits a wide range of β-lactamases. These include class A, class C, and some class D enzymes, which erode the activity of β-lactam drugs in multidrug-resistant pathogens like Pseudomonas aeruginosa and Enterobacteriaceae spp. Avibactam is currently in clinical development in combination with the β-lactam antibiotics ceftazidime, ceftaroline fosamil, and aztreonam. Avibactam has the potential to be the first β-lactamase inhibitor that might provide activity against class C-mediated resistance, which represents a growing concern in both hospital- and community-acquired infections. Avibactam has an unusual mechanism of action: it is a covalent inhibitor that acts via ring opening, but in contrast to other currently used β-lactamase inhibitors, this reaction is reversible. Here, we present a high-resolution structure of avibactam bound to a class C β-lactamase, AmpC, from P. aeruginosa that provided insight into the mechanism of both acylation and recyclization in this enzyme class and highlighted the differences observed between class A and class C inhibition. Furthermore, variants resistant to avibactam that identified the residues important for inhibition were isolated. Finally, the structural information was used to predict effective inhibition by sequence analysis and functional studies of class C β-lactamases from a large and diverse set of contemporary clinical isolates (P. aeruginosa and several Enterobacteriaceae spp.) obtained from recent infections to understand any preexisting variability in the binding pocket that might affect inhibition by avibactam. PMID:25022578

  20. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region

    SciTech Connect

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L.; Hood, Molly M.; Lord, John W.; Lu, Wei-Ping; Miller, David F.; Patt, William C.; Smith, Bryan D.; Vogeti, Lakshminarayana; Kaufman, Michael D.; Petillo, Peter A.; Wise, Scott C.; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L.

    2012-01-20

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  1. Ondansetron and Granisetron Binding Orientation in the 5-HT3 Receptor Determined by Unnatural Amino Acid Mutagenesis

    PubMed Central

    Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.

    2012-01-01

    The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819

  2. Modulation of FadR binding capacity for acyl-CoA fatty acids through structure-guided mutagenesis.

    PubMed

    Bacik, John-Paul; Yeager, Chris M; Twary, Scott N; Martí-Arbona, Ricardo

    2015-10-01

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is thus of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl-CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology. PMID:26385696

  3. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGESBeta

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  4. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    SciTech Connect

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.

  5. Cationic Amino Acid Uptake Constitutes a Metabolic Regulation Mechanism and Occurs in the Flagellar Pocket of Trypanosoma cruzi

    PubMed Central

    Bouvier, León A.; Cámara, María de los Milagros; Montserrat, Javier; Pereira, Claudio A.

    2012-01-01

    Trypanosomatids' amino acid permeases are key proteins in parasite metabolism since they participate in the adaptation of parasites to different environments. Here, we report that TcAAP3, a member of a Trypanosoma cruzi multigene family of permeases, is a bona fide arginine transporter. Most higher eukaryotic cells incorporate cationic amino acids through a single transporter. In contrast, T. cruzi can recognize and transport cationic amino acids by mono-specific permeases since a 100-fold molar excess of lysine could not affect the arginine transport in parasites that over-express the arginine permease (TcAAP3 epimastigotes). In order to test if the permease activity regulates downstream processes of the arginine metabolism, the expression of the single T. cruzi enzyme that uses arginine as substrate, arginine kinase, was evaluated in TcAAP3 epimastigotes. In this parasite model, intracellular arginine concentration increases 4-folds and ATP level remains constant until cultures reach the stationary phase of growth, with decreases of about 6-folds in respect to the controls. Interestingly, Western Blot analysis demonstrated that arginine kinase is significantly down-regulated during the stationary phase of growth in TcAAP3 epimastigotes. This decrease could represent a compensatory mechanism for the increase in ATP consumption as a consequence of the displacement of the reaction equilibrium of arginine kinase, when the intracellular arginine concentration augments and the glucose from the medium is exhausted. Using immunofluorescence techniques we also determined that TcAAP3 and the specific lysine transporter TcAAP7 co-localize in a specialized region of the plasma membrane named flagellar pocket, staining a single locus close to the flagellar pocket collar. Taken together these data suggest that arginine transport is closely related to arginine metabolism and cell energy balance. The clinical relevance of studying trypanosomatids' permeases relies on the

  6. Probing the Binding Pocket of the Broadly Tuned Human Bitter Taste Receptor TAS2R14 by Chemical Modification of Cognate Agonists.

    PubMed

    Karaman, Rafik; Nowak, Stefanie; Di Pizio, Antonella; Kitaneh, Hothaifa; Abu-Jaish, Alaa; Meyerhof, Wolfgang; Niv, Masha Y; Behrens, Maik

    2016-07-01

    Sensing potentially harmful bitter substances in the oral cavity is achieved by a group of (˜) 25 receptors, named TAS2Rs, which are expressed in specialized sensory cells and recognize individual but overlapping sets of bitter compounds. The receptors differ in their tuning breadths ranging from narrowly to broadly tuned receptors. One of the most broadly tuned human bitter taste receptors is the TAS2R14 recognizing an enormous variety of chemically diverse synthetic and natural bitter compounds, including numerous medicinal drugs. This suggests that this receptor possesses a large readily accessible ligand binding pocket. To allow probing the accessibility and size of the ligand binding pocket, we chemically modified cognate agonists and tested receptor responses in functional assays. The addition of large functional groups to agonists was usually possible without abolishing agonistic activity. The newly synthesized agonist derivatives were modeled in the binding site of the receptor, providing comparison to the mother substances and rationalization of the in vitro activities of this series of compounds. PMID:26825540

  7. Mutagenic analysis of conserved arginine residues in and around the novel sulfate binding pocket of the human Theta class glutathione transferase T2-2.

    PubMed Central

    Flanagan, J. U.; Rossjohn, J.; Parker, M. W.; Board, P. G.; Chelvanayagam, G.

    1999-01-01

    The human Theta class glutathione transferase GSTT2-2 has a novel sulfatase activity that is not dependent on the presence of a conserved hydrogen bond donor in the active site. Initial homology modeling and the crystallographic studies have identified three conserved Arg residues that contribute to the formation of (Arg107 and Arg239), and entry to (Arg242), a sulfate binding pocket. These residues have been individually mutated to Ala to investigate their potential role in substrate binding and catalysis. The mutation of Arg107 had a significant detrimental effect on the sulfatase reaction, while the Arg242 mutation caused only a small reduction in sulfatase activity. Surprisingly, the Arg239 had an increased activity resulting from a reduction in stability. Thus, Arg239 appears to play a role in maintaining the architecture of the active site. Electrostatic calculations performed on the wild-type and mutant forms of the enzyme are in good agreement with the experimental results. These findings, along with docking studies, suggest that prior to conjugation, the location of 1-menaphthyl sulfate, a model substrate for the sulfatase reaction, is approximately midway between the position ultimately occupied by the naphthalene ring of 1-menaphthylglutathione and the free sulfate. It is further proposed that the Arg residues in and around the sulfate binding pocket have a role in electrostatic substrate recognition. PMID:10548067

  8. QSAR studies on benzodiazepine receptor binding of purines and amino acid derivatives.

    PubMed

    Saha, R N; Meera, J; Agrawal, N; Gupta, S P

    1991-01-01

    Quantitative structure-activity relationship (QSAR) studies are reported on the benzodiazepine receptor binding of a series of substituted 9-benzyl-6-dimethylamino-9H-purines and N-(indol-3-ylglyoxylyl)amino acid derivatives. The nitrogen of the five membered heterocyclic ring and the polar substituent in the aromatic ring, present in both series of compounds, form important centres in the binding interaction. We conclude that the receptor must possess a strong nucleophilic centre and a polar site, and that a hydrophobic pocket exists to accommodate hydrophobic moieties. PMID:1654919

  9. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    SciTech Connect

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki

    2015-10-23

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.

  10. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  11. Identification of transmembrane domain 3, 4 & 5 residues that contribute to the formation of the ligand-binding pocket of the urotensin-II receptor.

    PubMed

    Sainsily, Xavier; Cabana, Jérôme; Boulais, Philip E; Holleran, Brian J; Escher, Emanuel; Lavigne, Pierre; Leduc, Richard

    2013-12-01

    Urotensin-II (UII), a cyclic undecapeptide, selectively binds the urotensin-II receptor (UT receptor), a G protein-coupled receptor (GPCR) involved in cardiovascular effects and associated with numerous pathophysiological conditions including hypertension, atherosclerosis, heart failure, pulmonary hypertension and others. In order to identify specific residues in transmembrane domains (TM) three (TM3), four (TM4) and five (TM5) that are involved in the formation of the UT receptor binding pocket, we used the substituted-cysteine accessibility method (SCAM). Each residue in the F118((3.20)) to S146((3.48)) fragment of TM3, the L168((4.44)) to G194((4.70)) fragment of TM4 and the W203((5.30)) to V232((5.59)) fragment of TM5, was mutated, individually, to a cysteine. The resulting mutants were then expressed in COS-7 cells and subsequently treated with the positively charged sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA treatment resulted in a significant reduction in the binding of (125)I-UII to TM3 mutants L126C((3.28)), F127C((3.29)), F131C((3.33)) and M134C((3.36)) and TM4 mutants M184C((4.60)) and I188C((4.64)). No loss of binding was detected following treatment by MTSEA for all TM5 mutants tested. In absence of a crystal structure of UT receptor, these results identify key determinants in TM3, TM4 and TM5 that participate in the formation of the UT receptor binding pocket and has led us to propose a homology model of the UT receptor. PMID:24084430

  12. Ligand-binding pocket shape differences between S1P1 and S1P3 determine efficiency of chemical probe identification by uHTS

    PubMed Central

    Schürer, Stephan C.; Brown, Steven J.; Cabrera, Pedro Gonzales; Schaeffer, Marie-Therese; Chapman, Jacqueline; Jo, Euijung; Chase, Peter; Spicer, Tim; Hodder, Peter; Rosen, Hugh

    2008-01-01

    We have studied the Sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonists chemotypes for each of the S1P1 and S1P3 receptors. uHTS for S1P1 was more effective than for S1P3, with many selective, low nanomolar hits of proven mechanism emerging for. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for sub-type selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of head-group interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 vs. S1P3 in this closely related receptor family. PMID:18590333

  13. Biophysical changes of ATP binding pocket may explain loss of kinase activity in mutant DAPK3 in cancer: A molecular dynamic simulation analysis.

    PubMed

    Agarwal, Tarun; Annamalai, Nithyanan; Maiti, Tapas Kumar; Arsad, Hasni

    2016-04-10

    DAPK3 belongs to family of DAPK (death-associated protein kinases) and is involved in the regulation of progression of the cell cycle, cell proliferation, apoptosis and autophagy. It is considered as a tumor suppressor kinase, suggesting the loss of its function in case of certain specific mutations. The T112M, D161N and P216S mutations in DAPK3 have been observed in cancer patients. These DAPK3 mutants have been associated with very low kinase activity, which results in the cellular progression towards cancer. However, a clear understanding of the structural and biophysical variations that occur in DAPK3 with these mutations, resulting in the decreased kinase activity has yet not been deciphered. We performed a molecular dynamic simulation study to investigate such structural variations. Our results revealed that mutations caused a significant structural variation in DAPK3, majorly concentrated in the flexible loops that form part of the ATP binding pocket. Interestingly, D161N and P216S mutations collapsed the ATP binding pocket through flexible loops invasion, hindering ATP binding which resulted in very low kinase activity. On the contrary, T112M mutant DAPK3 reduces ATP binding potential through outward distortion of flexible loops. In addition, the mutant lacked characteristic features of the active protein kinase including proper interaction between HR/FD and DFG motifs, well structured hydrophobic spine and Lys42-Glu64 salt bridge interaction. These observations could possibly explain the underlying mechanism associated with the loss of kinase activity with T112M, D161N and P216S mutation in DAPK3. PMID:26748242

  14. Iodine binding to humic acid.

    PubMed

    Bowley, H E; Young, S D; Ander, E L; Crout, N M J; Watts, M J; Bailey, E H

    2016-08-01

    The rate of reactions between humic acid (HA) and iodide (I(-)) and iodate (IO3(-)) have been investigated in suspensions spiked with (129)I at concentrations of 22, 44 and 88 μg L(-1) and stored at 10 °C. Changes in the speciation of (129)I(-), (129)IO3(-) and mixed ((129)I(-) + (129)IO3(-)) spikes were monitored over 77 days using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). In suspensions spiked with (129)I(-) 25% of the added I(-) was transformed into organic iodine (Org-(129)I) within 77 days and there was no evidence of (129)IO3(-) formation. By contrast, rapid loss of (129)IO3(-) and increase in both (129)I(-) and Org-(129)I was observed in (129)IO3(-)-spiked suspensions. However, the rate of Org-(129)I production was greater in mixed systems compared to (129)IO3(-)-spiked suspensions with the same total (129)I concentration, possibly indicating IO3(-)I(-) redox coupling. Size exclusion chromatography (SEC) demonstrated that Org-(129)I was present in both high and low molecular weight fractions of the HA although a slight preference to bond with the lower molecular weight fractions was observed indicating that, after 77 days, the spiked isotope had not fully mixed with the native (127)I pool. Iodine transformations were modelled using first order rate equations and fitted rate coefficients determined. However, extrapolation of the model to 250 days indicated that a pseudo-steady state would be attained after ∼200 days but that the proportion of (129)I incorporated into HA was less than that of (127)I indicating the presence of a recalcitrant pool of (127)I that was unavailable for isotopic mixing. PMID:27231879

  15. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; Boulton, Stephen; Zanzoni, Serena; Melacini, Giuseppe; Molinari, Henriette; Ragona, Laura

    2015-11-01

    Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off. PMID:26260520

  16. Novel drug design for Chagas disease via targeting Trypanosoma cruzi tubulin: Homology modeling and binding pocket prediction on Trypanosoma cruzi tubulin polymerization inhibition by naphthoquinone derivatives.

    PubMed

    Ogindo, Charles O; Khraiwesh, Mozna H; George, Matthew; Brandy, Yakini; Brandy, Nailah; Gugssa, Ayele; Ashraf, Mohammad; Abbas, Muneer; Southerland, William M; Lee, Clarence M; Bakare, Oladapo; Fang, Yayin

    2016-08-15

    Chagas disease, also called American trypanosomiasis, is a parasitic disease caused by Trypanosoma cruzi (T. cruzi). Recent findings have underscored the abundance of the causative organism, (T. cruzi), especially in the southern tier states of the US and the risk burden for the rural farming communities there. Due to a lack of safe and effective drugs, there is an urgent need for novel therapeutic options for treating Chagas disease. We report here our first scientific effort to pursue a novel drug design for treating Chagas disease via the targeting of T. cruzi tubulin. First, the anti T. cruzi tubulin activities of five naphthoquinone derivatives were determined and correlated to their anti-trypanosomal activities. The correlation between the ligand activities against the T. cruzi organism and their tubulin inhibitory activities was very strong with a Pearson's r value of 0.88 (P value <0.05), indicating that this class of compounds could inhibit the activity of the trypanosome organism via T. cruzi tubulin polymerization inhibition. Subsequent molecular modeling studies were carried out to understand the mechanisms of the anti-tubulin activities, wherein, the homology model of T. cruzi tubulin dimer was generated and the putative binding site of naphthoquinone derivatives was predicted. The correlation coefficient for ligand anti-tubulin activities and their binding energies at the putative pocket was found to be r=0.79, a high correlation efficiency that was not replicated in contiguous candidate pockets. The homology model of T. cruzi tubulin and the identification of its putative binding site lay a solid ground for further structure based drug design, including molecular docking and pharmacophore analysis. This study presents a new opportunity for designing potent and selective drugs for Chagas disease. PMID:27345756

  17. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    NASA Astrophysics Data System (ADS)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  18. Structure-Activity Based Study of the Smac-Binding Pocket Within the DIR3 Domain of XIAP

    SciTech Connect

    Wist,A.; Gu, L.; Riedl, S.; Shi, Y.; McLendon, G.

    2007-01-01

    A small series of peptide mimics was designed and synthesized to contain a heterocyclic ring in place of the potentially labile N-terminal peptide bond of the tetrapeptide containing the Smac-XIAP-binding motif. Two Smac mimics were shown to bind to the BIR3 domain of XIAP with moderate affinity and one displayed increased activity in cells relative to the Smac peptides. The structures of BIR3-XIAP in complex with a Smac peptide and a peptide mimic were solved and analyzed to elucidate the structure-activity relationship surrounding the Smac-binding domain within BIR3-XIAP.

  19. Molecular dynamics simulations of metalloproteinases types 2 and 3 reveal differences in the dynamic behavior of the S1' binding pocket.

    PubMed

    de Oliveira, Cesar Augusto F; Zissen, Maurice; Mongon, John; McCammon, J Andrew

    2007-01-01

    Matrix Metalloproteinases (MMPs) are zinc-containing proteinases that are responsible for the metabolism of extracellular matrix proteins. Overexpression of MMPs has been associated with a wide range of pathological diseases such as arthritis, cancer, multiple sclerosis and Alzheimer's disease. The excessive and unregulated activity of Matrix Metalloproteinases type 2 (MMP-2), also known as gelatinase A, has been identified in a numbers of cancer metastases. Several MMP inhibitors (MMPi) have been proposed in the literature aiming to interfere in the MMPs activity. In this work we performed long MD simulations in order to study the dynamical behavior of the binding pocket S1' in the apo forms of MMP type 2 and 3, and identify, at the molecular level, the structural properties relevant for the designing of specific inhibitor of MMP-2. PMID:18220784

  20. Mapping the binding pocket of a novel, high-affinity, slow dissociating tachykinin NK3 receptor antagonist: biochemical and electrophysiological characterization.

    PubMed

    Malherbe, Pari; Knoflach, Frédéric; Marcuz, Anne; Bohnert, Claudia; Weber, Michael; Knust, Henner; Ratni, Hasane; Spooren, Will; Ballard, Theresa M; Bissantz, Caterina

    2014-11-01

    The NK3 receptor is a GPCR that is prominently expressed in limbic areas of the brain, many of which have been implicated in schizophrenia. Phase II clinical trials in schizophrenia with two selective NK3 antagonists (osanetant and talnetant) have demonstrated significant improvement in positive symptoms. The objective of this study was to characterize the properties of a novel dual NK2/NK3 antagonist, RO5328673. [(3)H]RO5328673 bound to a single saturable site on hNK2, hNK3 and gpNK3 with high-affinity. RO5328673 acted as an insurmountable antagonist at both human and guinea-pig NK3 receptors in the [(3)H]IP accumulation assay. In binding kinetic analyses, [(3)H]RO5328673 had fast association and dissociation rates at hNK2 while it had a fast association rate and a remarkably slow dissociation rate at gp and hNK3. In electrophysiological recordings of gp SNpc, RO5328673 inhibited the senktide-induced potentiation of spontaneous activity of dopaminergic neurons with an insurmountable mechanism of action. RO5328673 exhibited in-vivo activity in gerbils, robustly reversing the senktide-induced locomotor activity. The TM2 residue gpNK3-A114(2.58) (threonine in all other species) was identified as the critical residue for the RO5328673's slower dissociation kinetics and stronger insurmountable mode of antagonism in the guinea-pig as compared to hNK3-T139(2.58). Using site-directed mutagenesis, [(3)H]RO5328673 binding and rhodopsin-based modeling, the important molecular determinants of the RO5328673-binding pocket of hNK3 were determined. A comparison of the RO5328673-binding pocket with that of osanetant showed that two antagonists have similar contact sides on hNK3 binding crevice except for three mutations V95L(1.42), Y247W(5.38), V255I(5.46), which behaved differently between interacting modes of two antagonists in hNK3. PMID:25107588

  1. Structural Asymmetry of Phosphodiesterase-9A and a Unique Pocket for Selective Binding of a Potent Enantiomeric Inhibitor.

    PubMed

    Huang, Manna; Shao, Yongxian; Hou, Jianying; Cui, Wenjun; Liang, Beibei; Huang, Yingchun; Li, Zhe; Wu, Yinuo; Zhu, Xinhai; Liu, Peiqing; Wan, Yiqian; Ke, Hengming; Luo, Hai-Bin

    2015-11-01

    Phosphodiesterase-9 (PDE9) inhibitors have been studied as potential therapeutics for treatment of central nervous system diseases and diabetes. Here, we report the discovery of a new category of PDE9 inhibitors by rational design on the basis of the crystal structures. The best compound, (S)-6-((1-(4-chlorophenyl)ethyl)amino)-1-cyclopentyl-1,5,6,7-tetrahydro-4H-pyrazolo[3,4-day]pyrimidin-4-one [(S)-C33], has an IC50 value of 11 nM against PDE9 and the racemic C33 has bioavailability of 56.5% in the rat pharmacokinetic model. The crystal structures of PDE9 in the complex with racemic C33, (R)-C33, and (S)-C33 reveal subtle conformational asymmetry of two M-loops in the PDE9 dimer and different conformations of two C33 enantiomers. The structures also identified a small hydrophobic pocket that interacts with the tyrosyl tail of (S)-C33 but not with (R)-C33, and is thus possibly useful for improvement of selectivity of PDE9 inhibitors. The asymmetry of the M-loop and the different interactions of the C33 enantiomers imply the necessity to consider the whole PDE9 dimer in the design of inhibitors. PMID:26316540

  2. Azurin as a protein scaffold for a low-coordinate non-heme iron site with a small-molecule binding pocket

    PubMed Central

    McLaughlin, Matthew P.; Retegan, Marius; Bill, Eckhard; Payne, Thomas M.; Shafaat, Hannah S.; Peña, Salvador; Sudhamsu, Jawahar; Ensign, Amy A.; Crane, Brian R.; Neese, Frank; Holland, Patrick L.

    2012-01-01

    The apo-protein of Pseudomonas aeruginosa azurin binds iron(II) to give a 1:1 complex, which has been characterized by electronic absorption, Mössbauer, and NMR spectroscopies, as well as X-ray crystallography and quantum-chemical computations. Despite potential competition by water and other coordinating residues, iron(II) binds tightly to the low-coordinate site. The iron(II) complex does not react with chemical redox agents to undergo oxidation or reduction. Spectroscopically-calibrated quantum-chemical computations show that the complex has high-spin iron(II) in a pseudotetrahedral coordination environment, which features interactions with side chains of two histidines and a cysteine, as well as the C=O of Gly45. In the 5A1 ground state, the dz2 orbital is doubly occupied. Mutation of Met121 to Ala leaves the metal site in a similar environment, but creates a pocket for reversible binding of small anions to the iron(II) center. Specifically, azide forms a high-spin iron(II) complex and cyanide forms a low-spin iron(II) complex. PMID:23167247

  3. Probing pH and pressure effects on the apomyoglobin heme pocket with the 2'-(N,N-dimethylamino)-6-naphthoyl-4-trans-cyclohexanoic acid fluorophore.

    PubMed Central

    Sire, O; Alpert, B; Royer, C A

    1996-01-01

    The environmentally sensitive fluorophore 2'-(N,N-dimethylamino)-6-naphthoyl-4-trans-cyclohexanoic acid (DANCA) has been used to probe the apomyoglobin heme pocket. The unexpected polarity of this domain is generally interpreted as arising from dynamic dipolar relaxation of the peptide dipoles surrounding the heme pocket. In the present work we reexamine the photophysical properties of DANCA in a variety of solvents and complexed with apomyoglobin (apoMb) to further probe the heme pocket environment as a function of external solvent conditions. Absorption and excitation spectra in a number of solvents are consistent with the well-known pi*<--pi (LE) and pi*<--n (CT) electronic absorption transitions observed for naphthylamine derivatives. Dual emission is also a well-documented property of such derivatives. Based on the time scale of the heterogeneity in the decay of the DANCA fluorophore observed in a series of solvents, we propose that the emission properties of DANCA in apoMb are not uniquely attributable to dynamic relaxation events, but also reflect dual emission from both a long-lived, red CT state and the shorter-lived, blue LE state. The pH studies in the range of pH 5-9 of the emission properties of DANCA in apoMb support this hypothesis. They also suggest a specific interaction of DANCA with one or both of the pocket histidyl residues, which leads to a drastic static quenching and red shift of the bound DANCA fluorescence upon protonation. Similar effects are observed with increasing pressure, indicating that these two perturbations alter the DANCA-apoMb complex in a similar fashion. The pressure-induced form of the protein is distinct both energetically and structurally from the previously characterized acid intermediate, in that it is populated above pH 5 and retains a significant degree of integrity of the heme pocket. PMID:8744328

  4. Standardized diagnosis and treatment of fluid, acid-base and electrolyte disorders in the surgical patient with the aid of a programmable pocket calculator.

    PubMed

    Kievit, J

    1983-05-01

    The approach to fluid, acid-base and electrolyte disorders in the surgical patient has been standardized in a pocket calculator program that categorizes these disorders into formal diagnoses and subsequently uses these diagnoses to determine the appropriate therapy. The program was tested in 80 infusion regimens of patients in the intensive care and surgical wards. The advantages of a standardized approach to these disorders, using diagnostic and therapeutic algorithms, are briefly discussed. PMID:6342704

  5. Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m6A methyltransferase ErmC'.

    PubMed

    Maravić, Gordana; Feder, Marcin; Pongor, Sándor; Flögel, Mirna; Bujnicki, Janusz M

    2003-09-01

    Methyltransferases (MTases) from the Erm family catalyze S-adenosyl-L-methionine-dependent modification of a specific adenine residue in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B antibiotics. Despite the available structural data and functional analyses on the level of the RNA substrate, still very little is known about the mechanism of rRNA:adenine-N(6) methylation. Only predictions regarding various aspects of this reaction have been made based on the analysis of the crystal structures of methyltransferase ErmC' (without the RNA) and their comparison with the crystallographic and biochemical data for better studied DNA:m(6)A MTases. To validate the structure-based predictions of presumably essential residues in the catalytic pocket of ErmC', we carried out the site-directed mutagenesis and studied the function of the mutants in vitro and in vivo. Our results indicate that the active site of rRNA:m(6)A MTases is much more tolerant to amino acid substitutions than the active site of DNA:m(6)A MTases. Only the Y104 residue implicated in stabilization of the target base was found to be indispensable. Remarkably, the N101 residue from the "catalytic" motif IV and two conserved residues that form the floor (F163) and one of the walls (N11) of the base-binding site are not essential for catalysis in ErmC'. This somewhat surprising result is discussed in the light of the available structural data and in the phylogenetic context of the Erm family. PMID:12946350

  6. 5'-Substituted Amiloride Derivatives as Allosteric Modulators Binding in the Sodium Ion Pocket of the Adenosine A2A Receptor.

    PubMed

    Massink, Arnault; Louvel, Julien; Adlere, Ilze; van Veen, Corine; Huisman, Berend J H; Dijksteel, Gabrielle S; Guo, Dong; Lenselink, Eelke B; Buckley, Benjamin J; Matthews, Hayden; Ranson, Marie; Kelso, Michael; IJzerman, Adriaan P

    2016-05-26

    The sodium ion site is an allosteric site conserved among many G protein-coupled receptors (GPCRs). Amiloride 1 and 5-(N,N-hexamethylene)amiloride 2 (HMA) supposedly bind in this sodium ion site and can influence orthosteric ligand binding. The availability of a high-resolution X-ray crystal structure of the human adenosine A2A receptor (hA2AAR), in which the allosteric sodium ion site was elucidated, makes it an appropriate model receptor for investigating the allosteric site. In this study, we report the synthesis and evaluation of novel 5'-substituted amiloride derivatives as hA2AAR allosteric antagonists. The potency of the amiloride derivatives was assessed by their ability to displace orthosteric radioligand [(3)H]4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol ([(3)H]ZM-241,385) from both the wild-type and sodium ion site W246A mutant hA2AAR. 4-Ethoxyphenethyl-substituted amiloride 12l was found to be more potent than both amiloride and HMA, and the shift in potency between the wild-type and mutated receptor confirmed its likely binding to the sodium ion site. PMID:27124340

  7. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies

    PubMed Central

    Bornholdt, Zachary A.; Ndungo, Esther; Fusco, Marnie L.; Bale, Shridhar; Flyak, Andrew I.; Crowe, James E.

    2016-01-01

    ABSTRACT The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. PMID:26908579

  8. Characterization of ERM transactivation domain binding to the ACID/PTOV domain of the Mediator subunit MED25

    PubMed Central

    Landrieu, Isabelle; Verger, Alexis; Baert, Jean-Luc; Rucktooa, Prakash; Cantrelle, François-Xavier; Dewitte, Frédérique; Ferreira, Elisabeth; Lens, Zoé; Villeret, Vincent; Monté, Didier

    2015-01-01

    The N-terminal acidic transactivation domain (TAD) of ERM/ETV5 (ERM38–68), a PEA3 group member of Ets-related transcription factors, directly interacts with the ACID/PTOV domain of the Mediator complex subunit MED25. Molecular details of this interaction were investigated using nuclear magnetic resonance (NMR) spectroscopy. The TAD is disordered in solution but has a propensity to adopt local transient secondary structure. We show that it folds upon binding to MED25 and that the resulting ERM–MED25 complex displays characteristics of a fuzzy complex. Mutational analysis further reveals that two aromatic residues in the ERM TAD (F47 and W57) are involved in the binding to MED25 and participate in the ability of ERM TAD to activate transcription. Mutation of a key residue Q451 in the VP16 H1 binding pocket of MED25 affects the binding of ERM. Furthermore, competition experiments show that ERM and VP16 H1 share a common binding interface on MED25. NMR data confirms the occupancy of this binding pocket by ERM TAD. Based on these experimental data, a structural model of a functional interaction is proposed. This study provides mechanistic insights into the Mediator–transactivator interactions. PMID:26130716

  9. The Crystal Structure of Escherichia coli Spermidine Synthase SpeE Reveals a Unique Substrate-binding Pocket

    SciTech Connect

    Zhou, X.; Chua, T; Tkaczuk, K; Bujnicki, J; Sivaraman, J

    2010-01-01

    Polyamines are essential in all branches of life. Biosynthesis of spermidine, one of the most ubiquitous polyamines, is catalyzed by spermidine synthase (SpeE). Although the function of this enzyme from Escherichia coli has been thoroughly characterized, its structural details remain unknown. Here, we report the crystal structure of E. coli SpeE and study its interaction with the ligands by isothermal titration calorimetry and computational modelling. SpeE consists of two domains - a small N-terminal {beta}-strand domain, and a C-terminal catalytic domain that adopts a canonical methyltransferase (MTase) Rossmann fold. The protein forms a dimer in the crystal and in solution. Structural comparison of E. coli SpeE to its homologs reveals that it has a large and unique substrate-binding cleft that may account for its lower amine substrate specificity.

  10. Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5.

    PubMed

    Létourneau, Danny; Lorin, Aurélien; Lefebvre, Andrée; Cabana, Jérôme; Lavigne, Pierre; LeHoux, Jean-Guy

    2013-11-01

    STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7α-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA>LCA>CDCA>GDCA>TDCA>CA>UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligand chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role. PMID:23872533

  11. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent.

    PubMed

    Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase-ligand interaction space in the PDB. PMID:26229444

  12. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent

    PubMed Central

    Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase–ligand interaction space in the PDB. PMID:26229444

  13. Residues contributing to the Na(+)-binding pocket of the SLC24 Na(+)/Ca(2+)-K(+) Exchanger NCKX2.

    PubMed

    Altimimi, Haider F; Fung, Eric H; Winkfein, Robert J; Schnetkamp, Paul P M

    2010-05-14

    Na(+)/Ca(2+)-K(+) exchangers (NCKX; gene family SLC24) are plasma membrane Ca(2+) transporters that mediate the extrusion of one Ca(2+) ion and one K(+) ion in exchange for four Na(+) ions. NCKX is modeled to have two sets of five transmembrane segments separated by a large cytosolic loop; within each set of transmembrane segments are regions of internal symmetry termed alpha(1) and alpha(2) repeats. The central residues that are important for Ca(2+) and K(+) liganding and transport have been identified in NCKX2, and they comprise three central acidic residues, Glu(188) in alpha(1) and Asp(548) and Asp(575) in alpha(2), as well as Ser/Thr residues one-helical turn away from these residues. In this study, we have scanned through more than 100 single-residue substitutions of NCKX2 for shifts in Na(+) affinity using a fluorescence assay to monitor changes in free Ca(2+) in HEK293 cells treated with gramicidin to control intracellular Na(+). We have identified 31 residues that, when substituted, result in shifts in Na(+) affinity, either toward higher or lower K(m) values when compared with wild type NCKX2 (K(m) for Na(+) 58 mm). These residues include the central acidic residues Glu(188), Asp(548), and Asp(575), and their neighboring residues in alpha(1) and alpha(2), in addition to a number of newly investigated residues in transmembrane segment 3. Our results relate the identification of residues important for Na(+) transport in this study to those previously identified as important in the counter-transport of Ca(2+) and K(+), lending support to the alternating access model of transmembrane transport. PMID:20231282

  14. Quantum Hall conductance and de Haas-van Alphen oscillation in a tight-binding model with electron and hole pockets for (TMTSF) 2NO3

    NASA Astrophysics Data System (ADS)

    Kishigi, Keita; Hasegawa, Yasumasa

    2016-08-01

    Quantized Hall conductance and de Haas-van Alphen (dHvA) oscillation are studied theoretically in the tight-binding model for (TMTSF) 2NO3 , in which there are small pockets of electrons and holes due to the periodic potentials of anion ordering in the a direction. The magnetic field is treated by hoppings as complex numbers due to the phase caused by the vector potential, i.e., Peierls substitution. In realistic values of parameters and the magnetic field, the energy as a function of the magnetic field (Hofstadter butterfly diagram) is obtained. It is shown that the energy levels are broadened and the gaps are closed or almost closed periodically as a function of the inverse magnetic field, which is not seen in the semiclassical theory of the magnetic breakdown. The Hall conductance is quantized with an integer obtained by the Diophantine equation when the chemical potential lies in an energy gap. When electrons or holes are doped in this system, the Hall conductance is quantized in some regions of a magnetic field but it is not quantized in other regions of a magnetic field due to the broadening of the Landau levels. The amplitude of the dHvA oscillation at zero temperature decreases as the magnetic field increases, while it is constant in the semiclassical Lifshitz Kosevich formula.

  15. FadA5 a thiolase from Mycobacterium tuberculosis - a unique steroid-binding pocket reveals the potential for drug development against tuberculosis

    PubMed Central

    Schaefer, Christin M.; Lu, Rui; Nesbitt, Natasha M.; Schiebel, Johannes; Sampson, Nicole S.; Kisker, Caroline

    2014-01-01

    Summary With the exception of HIV, tuberculosis (TB) is the leading cause of mortality among infectious diseases. The urgent need to develop new anti-tubercular drugs is apparent due to the increasing number of drug resistant Mycobacterium tuberculosis (Mtb) strains. Proteins involved in cholesterol import and metabolism have recently been discovered as potent targets against TB. FadA5, a thiolase from Mtb, is catalyzing the last step of the β-oxidation reaction of the cholesterol side-chain degradation under release of critical metabolites and was shown to be of importance during the chronic stage of TB infections. To gain structural and mechanistic insight on FadA5 we characterized the enzyme in different stages of the cleavage reaction and with a steroid bound to the binding pocket. Structural comparisons to human thiolases revealed that it should be possible to target FadA5 specifically and the steroid-bound structure provides a solid basis for the development of inhibitors against FadA5. PMID:25482540

  16. Design, synthesis and evaluation of novel HIV-1 NNRTIs with dual structural conformations targeting the entrance channel of the NNRTI binding pocket.

    PubMed

    Meng, Qing; Chen, Xuwang; Kang, Dongwei; Huang, Boshi; Li, Wenxin; Zhan, Peng; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Liu, Xinyong

    2016-06-10

    On the basis of structure-based bioisosteric replacement and molecular hybridization strategy, a series of novel dual structural-conformation inhibitors targeting the "entrance channel" of HIV-1 NNRTIs binding pocket (NNIBP) were designed and synthesized. All of the new compounds were evaluated for their anti-HIV activities in MT-4 cells using the MTT method. Five compounds exhibited moderate to excellent potencies inhibiting wild-type (wt) HIV-1 replication with EC50 values ranging from 31.36 μM to 0.11 μM. Among them, compound 15b was identified as the most potent inhibitor with EC50 values of 0.11 μM and 2.18 μM against wt and K103N/Y181C double mutant HIV-1 strain (RES056), respectively. In addition, preliminary structure-activity relationships (SARs) and molecular simulation studies were discussed, which may provide valuable insights for further optimization. PMID:26994843

  17. CNDOL: A fast and reliable method for the calculation of electronic properties of very large systems. Applications to retinal binding pocket in rhodopsin and gas phase porphine

    NASA Astrophysics Data System (ADS)

    Montero-Cabrera, Luis Alberto; Röhrig, Ute; Padrón-Garcia, Juan A.; Crespo-Otero, Rachel; Montero-Alejo, Ana L.; Garcia de la Vega, José M.; Chergui, Majed; Rothlisberger, Ursula

    2007-10-01

    Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian. Tests with some unequivocal gas phase maxima of simple molecules (benzene, furfural, acetaldehyde, hexyl alcohol, methyl amine, 2,5 dimethyl 2,4 hexadiene, and ethyl sulfide) ratify the general quality of this approach in comparison with other methods. The calculation of large systems as porphine in gas phase and a model of the complete retinal binding pocket in rhodopsin with 622 basis functions on 280 atoms at the quantum mechanical level show reliability leading to a resulting first allowed transition in 483nm, very similar to the known experimental value of 500nm of "dark state." In this very important case, our model gives a central role in this excitation to a charge transfer from the neighboring Glu- counterion to the retinaldehyde polyene chain. Tests with gas phase maxima of some important molecules corroborate the reliability of CNDOL/2 Hamiltonians.

  18. An effective and effecient peptide binding prediction approach for a broad set of HLA-DR molecules based on ordered weighted averaging of binding pocket profiles

    PubMed Central

    2013-01-01

    Background The immune system must detect a wide variety of microbial pathogens, such as viruses, bacteria, fungi and parasitic worms, to protect the host against disease. Antigenic peptides displayed by MHC II (class II Major Histocompatibility Complex) molecules is a pivotal process to activate CD4+ TH cells (Helper T cells). The activated TH cells can differentiate into effector cells which assist various cells in activating against pathogen invasion. Each MHC locus encodes a great number of allele variants. Yet this limited number of MHC molecules are required to display enormous number of antigenic peptides. Since the peptide binding measurements of MHC molecules by biochemical experiments are expensive, only a few of the MHC molecules have suffecient measured peptides. To perform accurate binding prediction for those MHC alleles without suffecient measured peptides, a number of computational algorithms were proposed in the last decades. Results Here, we propose a new MHC II binding prediction approach, OWA-PSSM, which is a significantly extended version of a well known method called TEPITOPE. The TEPITOPE method is able to perform prediction for only 50 MHC alleles, while OWA-PSSM is able to perform prediction for much more, up to 879 HLA-DR molecules. We evaluate the method on five benchmark datasets. The method is demonstrated to be the best one in identifying binding cores compared with several other popular state-of-the-art approaches. Meanwhile, the method performs comparably to the TEPITOPE and NetMHCIIpan2.0 approaches in identifying HLA-DR epitopes and ligands, and it performs significantly better than TEPITOPEpan in the identification of HLA-DR ligands and MultiRTA in identifying HLA-DR T cell epitopes. Conclusions The proposed approach OWA-PSSM is fast and robust in identifying ligands, epitopes and binding cores for up to 879 MHC II molecules. PMID:24565049

  19. Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling.

    PubMed

    Keune, Willem-Jan; Hausmann, Jens; Bolier, Ruth; Tolenaars, Dagmar; Kremer, Andreas; Heidebrecht, Tatjana; Joosten, Robbie P; Sunkara, Manjula; Morris, Andrew J; Matas-Rico, Elisa; Moolenaar, Wouter H; Oude Elferink, Ronald P; Perrakis, Anastassis

    2016-01-01

    Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs. PMID:27075612

  20. Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling

    PubMed Central

    Keune, Willem-Jan; Hausmann, Jens; Bolier, Ruth; Tolenaars, Dagmar; Kremer, Andreas; Heidebrecht, Tatjana; Joosten, Robbie P.; Sunkara, Manjula; Morris, Andrew J.; Matas-Rico, Elisa; Moolenaar, Wouter H.; Oude Elferink, Ronald P.; Perrakis, Anastassis

    2016-01-01

    Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs. PMID:27075612

  1. Crystal structures of complexes of vitamin D receptor ligand-binding domain with lithocholic acid derivatives

    PubMed Central

    Masuno, Hiroyuki; Ikura, Teikichi; Morizono, Daisuke; Orita, Isamu; Yamada, Sachiko; Shimizu, Masato; Ito, Nobutoshi

    2013-01-01

    The secondary bile acid lithocholic acid (LCA) and its derivatives act as selective modulators of the vitamin D receptor (VDR), although their structures fundamentally differ from that of the natural hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3)]. Here, we have determined the crystal structures of the ligand-binding domain of rat VDR (VDR-LBD) in ternary complexes with a synthetic partial peptide of the coactivator MED1 (mediator of RNA polymerase II transcription subunit 1) and four ligands, LCA, 3-keto LCA, LCA acetate, and LCA propionate, with the goal of elucidating their agonistic mechanism. LCA and its derivatives bind to the same ligand-binding pocket (LBP) of VDR-LBD that 1,25(OH)2D3 binds to, but in the opposite orientation; their A-ring is positioned at the top of the LBP, whereas their acyclic tail is located at the bottom of the LBP. However, most of the hydrophobic and hydrophilic interactions observed in the complex with 1,25(OH)2D3 are reproduced in the complexes with LCA and its derivatives. Additional interactions between VDR-LBD and the C-3 substituents of the A-ring are also observed in the complexes with LCA and its derivatives. These may result in the observed difference in the potency among the LCA-type ligands. PMID:23723390

  2. EPR SPECTRA AND MOLECULAR DYNAMICS AGREE THAT THE NUCLEOTIDE POCKET OF MYOSIN V IS CLOSED AND THAT IT OPENS ON BINDING ACTIN

    PubMed Central

    Purcell, Thomas J.; Naber, Nariman; Sutton, Shirley; Cooke, Roger; Pate, Edward

    2011-01-01

    We have used EPR spectroscopy and computational modeling of nucleotide-analog spin probes to investigate conformational changes at the nucleotide site of myosin V (MV). We find that in the absence of actin, the mobility of a spin-labeled diphosphate analog (SLADP) bound at the active site is strongly hindered, suggesting a closed nucleotide pocket. The mobility of the analog increases when the MV•SLADP complex binds to actin (A), implying an opening of the active site in the A•MV•SLADP complex. The probe mobilities are similar to those seen with myosin II, despite the fact that myosin V has dramatically altered kinetics. Molecular dynamics simulation was used to understand the EPR spectra in terms of the X-ray database. The X-ray structure of MV•ADP•BeFx shows a closed nucleotide site and has been proposed to be the detached state. The MV•ADP structure shows an open nucleotide site and has been proposed to be the A•MV•ADP state at the end of the working powerstroke. Molecular dynamics simulation of SLADP docked in the closed conformation gave a probe mobility comparable to that seen in EPR spectra of the MV•SLADP complex. The simulation of the open conformation gave a probe mobility that was 35°-40° greater than that observed experimentally for the A•MV•SLADP state. Thus EPR, X-ray diffraction and computational analysis support the closed conformation as a myosin V state that is detached from actin. The MD results indicate that the MV•ADP crystal structure is super-opened, which may correspond to the strained actin-bound post-powerstroke conformation resulting from head-head interaction in the dimeric, processive motor. PMID:21640122

  3. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. PMID:26873273

  4. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    PubMed

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  5. Spectrofluorimetric study of the binding of codeine to nucleic acids

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Huang, Wei; Su, Liang; Dong, Zijia; Zhang, Shuai

    2009-06-01

    The characteristics of the interaction between codeine (CD) and nucleic acids were studied by ultraviolet-visible spectra and fluorescent spectra. It shows that there is a powerful ability in nucleic acids to quench the fluorescence intensity of codeine. The fluorescence quenching data were analyzed according to Stern-Volmer equation and Förster's nonradiative energy transfer mechanism. Thus the binding constant and the thermodynamic parameters between codeine and nucleic acids were obtained. The results show that codeine interacts with nucleic acids in a mode of groove binding and -OCH 3 of the codeine molecular combines with the groove of nucleic acids through hydrogen bond or van der Waals force.

  6. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  7. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    PubMed

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. PMID:26206084

  8. Photoaffinity labeling of retinoic acid-binding proteins.

    PubMed Central

    Bernstein, P S; Choi, S Y; Ho, Y C; Rando, R R

    1995-01-01

    Retinoid-binding proteins are essential mediators of vitamin A function in vertebrate organisms. They solubilize and stabilize retinoids, and they direct the intercellular and intracellular trafficking, transport, and metabolic function of vitamin A compounds in vision and in growth and development. Although many soluble retinoid-binding proteins and receptors have been purified and extensively characterized, relatively few membrane-associated enzymes and other proteins that interact with retinoids have been isolated and studied, due primarily to their inherent instabilities during purification. In an effort to identify and purify previously uncharacterized retinoid-binding proteins, it is shown that radioactively labeled all-trans-retinoic acid can be used as a photoaffinity labeling reagent to specifically tag two known retinoic acid-binding proteins, cellular retinoic acid-binding protein and albumin, in complex mixtures of cytosolic proteins. Additionally, a number of other soluble and membrane-associated proteins that bind all-trans-[11,12-3H]retinoic acid with high specificity are labeled utilizing the same photoaffinity techniques. Most of these labeled proteins have molecular weights that do not correspond to any known retinoid-binding proteins. Thus, photoaffinity labeling with all-trans-retinoic acid and related photoactivatable retinoids is a method that should prove extremely useful in the identification and purification of novel soluble and membrane-associated retinoid-binding proteins from ocular and nonocular tissues. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7846032

  9. Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered through X-ray Fragment Screening.

    PubMed

    Woolford, Alison J-A; Pero, Joseph E; Aravapalli, Sridhar; Berdini, Valerio; Coyle, Joseph E; Day, Philip J; Dodson, Andrew M; Grondin, Pascal; Holding, Finn P; Lee, Lydia Y W; Li, Peng; Manas, Eric S; Marino, Joseph; Martin, Agnes C L; McCleland, Brent W; McMenamin, Rachel L; Murray, Christopher W; Neipp, Christopher E; Page, Lee W; Patel, Vipulkumar K; Potvain, Florent; Rich, Sharna; Rivero, Ralph A; Smith, Kirsten; Somers, Donald O; Trottet, Lionel; Velagaleti, Ranganadh; Williams, Glyn; Xie, Ren

    2016-06-01

    Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues. PMID:27167608

  10. Cleavage of peptide bonds bearing ionizable amino acids at P{sub 1} by serine proteases with hydrophobic S{sub 1} pocket

    SciTech Connect

    Qasim, Mohammad A.; Song, Jikui; Markley, John L.; Laskowski, Michael

    2010-10-01

    Research highlights: {yields} Large pK shifts in ionizable groups when buried in the protein interior. {yields} Substrate dependent shifts in pH optimum for serine proteases. {yields} Lys side chain is a stronger acid in serine protease S{sub 1} pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and {approx}10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S{sub 1} pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.

  11. Detection of multiscale pockets on protein surfaces using mathematical morphology.

    PubMed

    Kawabata, Takeshi

    2010-04-01

    Detection of pockets on protein surfaces is an important step toward finding the binding sites of small molecules. In a previous study, we defined a pocket as a space into which a small spherical probe can enter, but a large probe cannot. The radius of the large probes corresponds to the shallowness of pockets. We showed that each type of binding molecule has a characteristic shallowness distribution. In this study, we introduced fundamental changes to our previous algorithm by using a 3D grid representation of proteins and probes, and the theory of mathematical morphology. We invented an efficient algorithm for calculating deep and shallow pockets (multiscale pockets) simultaneously, using several different sizes of spherical probes (multiscale probes). We implemented our algorithm as a new program, ghecom (grid-based HECOMi finder). The statistics of calculated pockets for the structural dataset showed that our program had a higher performance of detecting binding pockets, than four other popular pocket-finding programs proposed previously. The ghecom also calculates the shallowness of binding ligands, R(inaccess) (minimum radius of inaccessible spherical probes) that can be obtained from the multiscale molecular volume. We showed that each part of the binding molecule had a bias toward a specific range of shallowness. These findings will be useful for predicting the types of molecules that will be most likely to bind putative binding pockets, as well as the configurations of binding molecules. The program ghecom is available through the Web server (http://biunit.naist.jp/ghecom). PMID:19938154

  12. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  13. A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W.; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M.; Castro, L. Filipe C.; Bourguet, William

    2014-01-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  14. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  16. Structure of an Odorant-Vinding Protein form the Mosquito Aedes aegypti Suggests a Binding Pocket Covered by a pH-Sensitive

    SciTech Connect

    N Leite; R Krogh; W Xu; Y Ishida; J Iulek; W Leal; G Oliva

    2011-12-31

    The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 {angstrom} resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six {alpha}-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this 'lid' may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.

  17. Binding of oligosaccharides of hyaluronic acid to proteoglycans (Short Communication)

    PubMed Central

    Hardingham, Timothy E.; Muir, Helen

    1973-01-01

    Oligosaccharides derived from hyaluronic acid were shown to inhibit proteoglycan–hyaluronic acid interaction, as measured in a viscometer. The relative inhibition increased with the size of the oligosaccharide and the results suggested that decasaccharides were the smallest fragments able to bind strongly to the proteoglycan. PMID:4273187

  18. Folic acid binds DNA and RNA at different locations.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2015-03-01

    We located multiple binding sites for folic acid on DNA and tRNA at physiological conditions, using FTIR, CD, fluorescence spectroscopic methods and molecular modeling. Structural analysis revealed that folic acid binds DNA and tRNA at multiple sites via hydrophilic, hydrophobic and H-bonding contacts with overall binding constants of Kfolic acid-DNA=1.1 (±0.3)×10(4) M(-1) and Kfolic acid-tRNA=6.4 (±0.5)×10(3) M(-1). Molecular modeling showed the participation of several nucleobases in folic acid complexes with DNA and tRNA, stabilized by H-bonding network. Two types of complexes were located for folic acid-tRNA adducts, one at the major groove and the other with TΨC loop, while acid binding occurs at major and minor grooves of DNA duplex. Folic acid complexation induced more alterations of DNA structure than tRNA. PMID:25555838

  19. H/ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification

    PubMed Central

    Wu, Haihong; Feigon, Juli

    2007-01-01

    During the biogenesis of eukaryotic ribosomal RNA (rRNA) and spliceosomal small nuclear RNA (snRNA), uridines at specific sites are converted to pseudouridines by H/ACA ribonucleoprotein particles (RNPs). Each H/ACA RNP contains a substrate-specific H/ACA RNA and four common proteins, the pseudouridine synthase Cbf5, Nop10, Gar1, and Nhp2. The H/ACA RNA contains at least one pseudouridylation (ψ) pocket, which is complementary to the sequences flanking the target uridine. In this article, we show structural evidence that the ψ pocket can form the predicted base pairs with substrate RNA in the absence of protein components. We report the solution structure of the complex between an RNA hairpin derived from the 3′ ψ pocket of human U65 H/ACA small nucleolar RNA (snoRNA) and the substrate rRNA. The snoRNA–rRNA substrate complex has a unique structure with two offset parallel pairs of stacked helices and two unusual intermolecular three-way junctions, which together organize the substrate for docking into the active site of Cbf5. The substrate RNA interacts on one face of the snoRNA in the complex, forming a structure that easily could be accommodated in the H/ACA RNP, and explains how successive substrate RNAs could be loaded onto and unloaded from the H/ACA RNA in the RNP. PMID:17412831

  20. Crystal Structure of the Mp1p Ligand Binding Domain 2 Reveals Its Function as a Fatty Acid-binding Protein*

    PubMed Central

    Liao, Shuang; Tung, Edward T. K.; Zheng, Wei; Chong, Ken; Xu, Yuanyuan; Dai, Peng; Guo, Yingying; Bartlam, Mark; Yuen, Kwok-Yung; Rao, Zihe

    2010-01-01

    Penicillium marneffei is a dimorphic, pathogenic fungus in Southeast Asia that mostly afflicts immunocompromised individuals. As the only dimorphic member of the genus, it goes through a phase transition from a mold to yeast form, which is believed to be a requisite for its pathogenicity. Mp1p, a cell wall antigenic mannoprotein existing widely in yeast, hyphae, and conidia of the fungus, plays a vital role in host immune response during infection. To understand the function of Mp1p, we have determined the x-ray crystal structure of its ligand binding domain 2 (LBD2) to 1.3 Å. The structure reveals a dimer between the two molecules. The dimer interface forms a ligand binding cavity, in which electron density was observed for a palmitic acid molecule interacting with LBD2 indirectly through hydrogen bonding networks via two structural water molecules. Isothermal titration calorimetry experiments measured the ligand binding affinity (Kd) of Mp1p at the micromolar level. Mutations of ligand-binding residues, namely S313A and S332A, resulted in a 9-fold suppression of ligand binding affinity. Analytical ultracentrifugation assays demonstrated that both LBD2 and Mp1p are mostly monomeric in vitro, no matter with or without ligand, and our dimeric crystal structure of LBD2 might be the result of crystal packing. Based on the conformation of the ligand-binding pocket in the dimer structure, a model for the closed, monomeric form of LBD2 is proposed. Further structural analysis indicated the biological importance of fatty acid binding of Mp1p for the survival and pathogenicity of the conditional pathogen. PMID:20053994

  1. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    PubMed Central

    2011-01-01

    Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA). It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin. PMID:21501503

  2. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2

    PubMed Central

    Lavik, Andrew R.; Greenberg, Edward; Choudhary, Yuvraj; Smith, Mitchell R.; McColl, Karen S.; Pink, John; Reu, Frederic J.; Matsuyama, Shigemi; Distelhorst, Clark W.

    2015-01-01

    Bcl-2 inhibits apoptosis by two distinct mechanisms but only one is targeted to treat Bcl-2-positive malignancies. In this mechanism, the BH1-3 domains of Bcl-2 form a hydrophobic pocket, binding and inhibiting pro-apoptotic proteins, including Bim. In the other mechanism, the BH4 domain mediates interaction of Bcl-2 with inositol 1,4, 5-trisphosphate receptors (IP3Rs), inhibiting pro-apoptotic Ca2+ signals. The current anti-Bcl-2 agents, ABT-263 (Navitoclax) and ABT-199 (Venetoclax), induce apoptosis by displacing pro-apoptotic proteins from the hydrophobic pocket, but do not inhibit Bcl-2-IP3R interaction. Therefore, to target this interaction we developed BIRD-2 (Bcl-2 IP3 Receptor Disruptor-2), a decoy peptide that binds to the BH4 domain, blocking Bcl-2-IP3R interaction and thus inducing Ca2+-mediated apoptosis in chronic lymphocytic leukemia, multiple myeloma, and follicular lymphoma cells, including cells resistant to ABT-263, ABT-199, or the Bruton’s tyrosine kinase inhibitor Ibrutinib. Moreover, combining BIRD-2 with ABT-263 or ABT-199 enhances apoptosis induction compared to single agent treatment. Overall, these findings provide strong rationale for developing novel therapeutic agents that mimic the action of BIRD-2 in targeting the BH4 domain of Bcl-2 and disrupting Bcl-2-IP3R interaction. PMID:26317541

  3. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2.

    PubMed

    Lavik, Andrew R; Zhong, Fei; Chang, Ming-Jin; Greenberg, Edward; Choudhary, Yuvraj; Smith, Mitchell R; McColl, Karen S; Pink, John; Reu, Frederic J; Matsuyama, Shigemi; Distelhorst, Clark W

    2015-09-29

    Bcl-2 inhibits apoptosis by two distinct mechanisms but only one is targeted to treat Bcl-2-positive malignancies. In this mechanism, the BH1-3 domains of Bcl-2 form a hydrophobic pocket, binding and inhibiting pro-apoptotic proteins, including Bim. In the other mechanism, the BH4 domain mediates interaction of Bcl-2 with inositol 1,4, 5-trisphosphate receptors (IP3Rs), inhibiting pro-apoptotic Ca2+ signals. The current anti-Bcl-2 agents, ABT-263 (Navitoclax) and ABT-199 (Venetoclax), induce apoptosis by displacing pro-apoptotic proteins from the hydrophobic pocket, but do not inhibit Bcl-2-IP3R interaction. Therefore, to target this interaction we developed BIRD-2 (Bcl-2 IP3 Receptor Disruptor-2), a decoy peptide that binds to the BH4 domain, blocking Bcl-2-IP3R interaction and thus inducing Ca2+-mediated apoptosis in chronic lymphocytic leukemia, multiple myeloma, and follicular lymphoma cells, including cells resistant to ABT-263, ABT-199, or the Bruton's tyrosine kinase inhibitor Ibrutinib. Moreover, combining BIRD-2 with ABT-263 or ABT-199 enhances apoptosis induction compared to single agent treatment. Overall, these findings provide strong rationale for developing novel therapeutic agents that mimic the action of BIRD-2 in targeting the BH4 domain of Bcl-2 and disrupting Bcl-2-IP3R interaction. PMID:26317541

  4. Structural Basis of Fatty Acid Substrate Binding to Cyclooxygenase-2*

    PubMed Central

    Vecchio, Alex J.; Simmons, Danielle M.; Malkowski, Michael G.

    2010-01-01

    The cyclooxygenases (COX-1 and COX-2) are membrane-associated heme-containing homodimers that generate prostaglandin H2 from arachidonic acid (AA). Although AA is the preferred substrate, other fatty acids are oxygenated by these enzymes with varying efficiencies. We determined the crystal structures of AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) bound to Co3+-protoporphyrin IX-reconstituted murine COX-2 to 2.1, 2.4, and 2.65 Å, respectively. AA, EPA, and docosahexaenoic acid bind in different conformations in each monomer constituting the homodimer in their respective structures such that one monomer exhibits nonproductive binding and the other productive binding of the substrate in the cyclooxygenase channel. The interactions identified between protein and substrate when bound to COX-1 are conserved in our COX-2 structures, with the only notable difference being the lack of interaction of the carboxylate of AA and EPA with the side chain of Arg-120. Leu-531 exhibits a different side chain conformation when the nonproductive and productive binding modes of AA are compared. Unlike COX-1, mutating this residue to Ala, Phe, Pro, or Thr did not result in a significant loss of activity or substrate binding affinity. Determination of the L531F:AA crystal structure resulted in AA binding in the same global conformation in each monomer. We speculate that the mobility of the Leu-531 side chain increases the volume available at the opening of the cyclooxygenase channel and contributes to the observed ability of COX-2 to oxygenate a broad spectrum of fatty acid and fatty ester substrates. PMID:20463020

  5. Probing the Binding Site of Bile Acids in TGR5.

    PubMed

    Macchiarulo, Antonio; Gioiello, Antimo; Thomas, Charles; Pols, Thijs W H; Nuti, Roberto; Ferrari, Cristina; Giacchè, Nicola; De Franco, Francesca; Pruzanski, Mark; Auwerx, Johan; Schoonjans, Kristina; Pellicciari, Roberto

    2013-12-12

    TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists. PMID:24900622

  6. Structural Insights Into Amino Acid Binding and Gene Control by a Lysine Riboswitch

    SciTech Connect

    Serganov, A.; Huang, L; Patel, D

    2008-01-01

    In bacteria, the intracellular concentration of several amino acids is controlled by riboswitches1, 2, 3, 4. One of the important regulatory circuits involves lysine-specific riboswitches, which direct the biosynthesis and transport of lysine and precursors common for lysine and other amino acids. To understand the molecular basis of amino acid recognition by riboswitches, here we present the crystal structure of the 174-nucleotide sensing domain of the Thermotoga maritima lysine riboswitch in the lysine-bound (1.9 A) and free (3.1 A) states. The riboswitch features an unusual and intricate architecture, involving three-helical and two-helical bundles connected by a compact five-helical junction and stabilized by various long-range tertiary interactions. Lysine interacts with the junctional core of the riboswitch and is specifically recognized through shape-complementarity within the elongated binding pocket and through several direct and K+-mediated hydrogen bonds to its charged ends. Our structural and biochemical studies indicate preformation of the riboswitch scaffold and identify conformational changes associated with the formation of a stable lysine-bound state, which prevents alternative folding of the riboswitch and facilitates formation of downstream regulatory elements. We have also determined several structures of the riboswitch bound to different lysine analogues5, including antibiotics, in an effort to understand the ligand-binding capabilities of the lysine riboswitch and understand the nature of antibiotic resistance. Our results provide insights into a mechanism of lysine-riboswitch-dependent gene control at the molecular level, thereby contributing to continuing efforts at exploration of the pharmaceutical and biotechnological potential of riboswitches.

  7. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket

    SciTech Connect

    Debler, Erik W.; Müller, Roger; Hilvert, Donald; Wilson, Ian A.

    2009-12-01

    Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes Asp{sup H35} and Glu{sup L34} to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the Glu{sup L34} to alanine mutant, leads to an impressive 10{sup 9}-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations.

  8. CD36 Binds Oxidized Low Density Lipoprotein (LDL) in a Mechanism Dependent upon Fatty Acid Binding*

    PubMed Central

    Jay, Anthony G.; Chen, Alexander N.; Paz, Miguel A.; Hung, Justin P.; Hamilton, James A.

    2015-01-01

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes. PMID:25555908

  9. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  10. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4)

    PubMed Central

    González, Javier M.; Fisher, S. Zoë

    2015-01-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments. PMID:25664790

  11. Heavy metal binding to heparin disaccharides. I. Iduronic acid is the main binding site.

    PubMed

    Whitfield, D M; Choay, J; Sarkar, B

    1992-06-01

    As model compounds for Ni(II)-binding heparin-like compounds isolated from human kidneys (Templeton, D.M. & Sarkar, B. (1985) Biochem. J. 230 35-42.), we investigated two disaccharides--4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-2,5-anhydro- D-mannitol, disodium salt (1a), and 4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-6-O- sulfo-2,5-anhydro-D-mannitol, trisodium salt (1b)--that were isolated from heparin after nitrous acid hydrolysis and reduction. The monosulfate (1a) was active whereas the disulfate (1b) was inactive in a high-performance liquid chromatography (HPLC) binding assay with the tracer ions 63Ni(II) 54Mn(II), 65Zn(II), and 109Cd(II). This result is in accord with the isolation of two 67Cu(II) and 63Ni(II) binding fractions from a complete pool of nitrous-acid-derived heparin disaccharides using sulfate gradients and a MonoQ anion exchange column on an FPLC system. One was identified as compound (1a) and the other as a tetrasulfated trisaccharide by high resolution FAB-MS, NMR and HPLC-PAD. Similarly, two synthetic disaccharides-methyl, 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-alpha-D-glucosamine, trisodium salt [IdopA2S(alpha 1,4)GlcNS alpha Me, 2a], and 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-6-O-sulfo- alpha-D-glucosamine, tetrasodium salt [IdopA2S (alpha 1,4)GlcNS6S alpha Me, 2b]--were shown to bind tracer amounts of 63Ni and 67Cu using chromatographic assays. Subsequently, 1H NMR titrations of 1a, 1b, 2a, and 2b with Zn (OAc)2 were analyzed to yield 1:1 Zn(II)-binding constants of 472 +/- 59, 698 +/- 120, 8,758 +/- 2,237 and 20,100 +/- 5,598 M-1, respectively. The values for 2a and 2b suggest chelation. It is suggested that the idopyranosiduronic acid residue is the major metal binding site. NMR evidence for this hypothesis comes from marked 1H and 13C chemical shift changes to the iduronic acid resonances after addition of diamagnetic Zn(II) ions. PMID:1643264

  12. Apolar distal pocket mutants of yeast cytochrome c peroxidase: Binding of imidazole, 1-methylimidazole and 4-nitroimidazole to the triAla, triVal, and triLeu variants

    PubMed Central

    Bidwai, Anil; Ayala, Caitlan; Vitello, Lidia B.; Erman, James E.

    2015-01-01

    Imidazole binding to three apolar distal heme pocket mutants of yeast cytochrome c peroxidase (CcP) has been investigated between pH 4 and 8. The three CcP variants have Arg-48, Trp-51, and His-52 mutated to either all alanine, CcP(triAla), all valine, CcP(triVal), or all leucine residues, CcP(triLeu). The imidazole binding curves for all three mutants are biphasic indicating that each of the mutants exist in at least two conformational states with different affinities for imidazole. At pH 7, the high-affinity conformations of the three CcP mutants bind imidazole between 3.8 and 4.7 orders of magnitude stronger than that of wild-type CcP while the low-affinity conformations have binding affinities about 2.5 orders of magnitude larger than wild-type CcP. Imidazole binding to the three CcP mutants is pH dependent with the strongest binding observed at high pH. Apparent pKa values for the transition in binding vary between 5.6 and 7.5 for the high-affinity conformations and between 6.2 and 6.8 for the low-affinity conformations of the CcP triple mutants. The kinetics of imidazole binding are also biphasic. The fast phase of imidazole binding to CcP(triAla) and CcP(triLeu) is linearly dependent on the imidazole concentration while the slow phase is independent of imidazole concentration. Both phases of imidazole binding to CcP(triVal) have a hyperbolic dependence on the imidazole concentration. The apparent association rate constants vary between 30 and 170 M−1s−1 while the apparent dissociation rate constants vary between 0.05 and 0.43 s−1. The CcP triple mutants have higher binding affinities for 1-methylimidazole and 4-nitroimidazole than does wild-type CcP. PMID:25900360

  13. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy

    PubMed Central

    Simard, J. R.; Zunszain, P. A.; Ha, C.-E.; Yang, J. S.; Bhagavan, N. V.; Petitpas, I.; Curry, S.; Hamilton, J. A.

    2005-01-01

    Human serum albumin (HSA) is a versatile transport protein for endogenous compounds and drugs. To evaluate physiologically relevant interactions between ligands for the protein, it is necessary to determine the locations and relative affinities of different ligands for their binding site(s). We present a site-specific investigation of the relative affinities of binding sites on HSA for fatty acids (FA), the primary physiological ligand for the protein. Titration of HSA with [13C]carboxyl-labeled FA was used initially to identify three NMR chemical shifts that are associated with high-affinity binding pockets on the protein. To correlate these peaks with FA-binding sites identified from the crystal structures of FA–HSA complexes, HSA mutants were engineered with substitutions of amino acids involved in coordination of the bound FA carboxyl. Titration of [13C]palmitate into solutions of HSA mutants for either FA site four (R410A/Y411A) or site five (K525A) within domain III of HSA each revealed loss of a specific NMR peak that was present in spectra of wild-type protein. Because these peaks are among the first three to be observed on titration of HSA with palmitate, sites four and five represent two of the three high-affinity long-chain FA-binding sites on HSA. These assignments were confirmed by titration of [13C]palmitate into recombinant domain III of HSA, which contains only sites four and five. These results establish a protocol for direct probing of the relative affinities of FA-binding sites, one that may be extended to examine competition between FA and other ligands for specific binding sites. PMID:16330771

  14. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy.

    PubMed

    Simard, J R; Zunszain, P A; Ha, C-E; Yang, J S; Bhagavan, N V; Petitpas, I; Curry, S; Hamilton, J A

    2005-12-13

    Human serum albumin (HSA) is a versatile transport protein for endogenous compounds and drugs. To evaluate physiologically relevant interactions between ligands for the protein, it is necessary to determine the locations and relative affinities of different ligands for their binding site(s). We present a site-specific investigation of the relative affinities of binding sites on HSA for fatty acids (FA), the primary physiological ligand for the protein. Titration of HSA with [(13)C]carboxyl-labeled FA was used initially to identify three NMR chemical shifts that are associated with high-affinity binding pockets on the protein. To correlate these peaks with FA-binding sites identified from the crystal structures of FA-HSA complexes, HSA mutants were engineered with substitutions of amino acids involved in coordination of the bound FA carboxyl. Titration of [(13)C]palmitate into solutions of HSA mutants for either FA site four (R410A/Y411A) or site five (K525A) within domain III of HSA each revealed loss of a specific NMR peak that was present in spectra of wild-type protein. Because these peaks are among the first three to be observed on titration of HSA with palmitate, sites four and five represent two of the three high-affinity long-chain FA-binding sites on HSA. These assignments were confirmed by titration of [(13)C]palmitate into recombinant domain III of HSA, which contains only sites four and five. These results establish a protocol for direct probing of the relative affinities of FA-binding sites, one that may be extended to examine competition between FA and other ligands for specific binding sites. PMID:16330771

  15. Relationship between binding affinities to cellular retinoic acid-binding protein and biological potency of a new series of retinoids.

    PubMed

    Sani, B P; Dawson, M I; Hobbs, P D; Chan, R L; Schiff, L J

    1984-01-01

    Binding affinities of a new and unusual series of retinoic acid analogues to cellular retinoic acid-binding protein, a possible mediator of their biological function in the control of differentiation and tumorigenesis, and to serum albumin, their plasma transport protein, were determined. Also, biological activity of these retinoids in the reversal of keratinization in hamster tracheal organ cultures was assessed and compared with their binding affinities. Analogues that possessed high biological activity showed high binding efficiency to cellular retinoic acid-binding protein. Those that were biologically less active were poor binders to the binding protein. Three retinoids, 4657-57, 3920-59, and 4445-75, which showed 90 to 100% binding efficiency of that of retinoic acid for cellular retinoic acid-binding protein expressed high biological activity detectable in the range of 10(-10) M as against 10(-11) M for retinoic acid. The correlation noticed in these two activities not only enhances the confidence in the two assay procedures but also paves the way for design and development of potential chemopreventive agents. No apparent differences were observed in the binding affinities of the retinoids to binding proteins of a normal tissue or a tumor tissue. No correlation existed between the binding affinities of these retinoids to serum albumin and their biological activity. Structure-activity relationships of the retinoids in relation to their binding affinities and biological activities have been discussed. PMID:6317169

  16. Mapping the X(+1) binding site of the Grb2-SH2 domain with alpha,alpha-disubstituted cyclic alpha-amino acids.

    PubMed

    García-Echeverría, C; Gay, B; Rahuel, J; Furet, P

    1999-10-18

    A series of phosphopeptides containing alpha,alpha-disubstituted cyclic alpha-amino acids (Ac(n)c, 3 < or = n < or = 7; n refers to the number of carbons in the ring) at the X(+1) position of Ac-Tyr(PO3H2)-X(+1)-Asn-NH2 has been synthesised and their inhibitory activity as antagonists of the Grb2-SH2 domain has been determined in competitive binding assays. The SAR data obtained have been interpreted by using models constructed from the X-ray structure of the ligand-bound Grb2-SH2 domain. The used of alpha,alpha-disubstituted cyclic alpha-amino acids to map the binding pockets of proteins expands the classical alanine scan concept and takes advantage of the known conformational preferences of these amino acids. PMID:10571147

  17. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. PMID:17661353

  18. Structural and biochemical analyses reveal how ornithine acetyl transferase binds acidic and basic amino acid substrates.

    PubMed

    Iqbal, Aman; Clifton, Ian J; Chowdhury, Rasheduzzaman; Ivison, David; Domene, Carmen; Schofield, Christopher J

    2011-09-21

    Structural and biochemical analyses reveal how ornithine acetyl-transferases catalyse the reversible transfer of an acetyl-group from a basic (ornithine) to an acidic (glutamate) amino acid by employing a common mechanism involving an acetyl-enzyme intermediate but using different side chain binding modes. PMID:21796301

  19. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  20. Optical property of iron binding to Suwannee River fulvic acid.

    PubMed

    Yan, Mingquan; Li, Mingyang; Wang, Dongsheng; Xiao, Feng

    2013-05-01

    In this work, absorbance and fluorescence spectra were used to study iron binding to standard Suwannee River fulvic acid (SRFA). The differential logarithm-transformed absorbance and fluorescence spectra of SRFA induced by iron binding were processed to examine the nature of the observed phenomena and to investigate the contributions of discrete binding sites present in SRFA. Both the Fe-differential log-transformed absorbance and fluorescence were well correlated to the bound iron concentrations predicted based on the Non-ideal Competitive Adsorption (NICA-Donnan) model at iron concentrations below 10.0μM (R(2)>0.99 for absorbance and R(2)>0.97 for fluorescence) and over a wide pH range of 3.5-8.0. At pH3.5, both the Fe-differential log-transformed absorbance and fluorescence vs. iron bound spectra exhibited significantly lower slopes than those at pH5.0, 7.0, and 8.0. These results suggest that a different set of complexation-active chromophores and fluorophores are responsible for iron binding at low pH values or that the NICA-Donnan model is limited at low pH. Because phenolic and carboxylic complex sites of different fluorophores respond to iron quenching, the fluorescence data indicate three stages of iron binding to phenolic, carboxylic, and Donnan gels (electrostatic interactions) in SRFA (with R(2)>0.99 at each stage). The agreement between observations from spectroscopic indices and established metal-binding models shows that the absorbance and fluorescence spectra provide important information about the involvement of metal complexation of specific functional groups typical for fulvic acids. PMID:23499223

  1. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  2. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation. PMID:6283503

  3. Characterization of phosphonic acid binding to zinc oxide

    SciTech Connect

    Hotchkiss, Peter J.; Malicki, Michał; Giordano, Anthony J.; Armstrong, Neal R.; Marder, Seth R.

    2011-01-24

    Radio Frequency (RF) sputter-deposited zinc oxide (ZnO) films have been modified with alkylphosphonic acids in order to study both the binding of the phosphonic acid (PA) group to the ZnO surface and the packing of the alkyl chain. The characterization of these PA-modified ZnO substrates by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM) and contact angle measurements is presented herein. The surface modification procedure is straightforward and was adapted from earlier work. XPS analysis shows that oxygen plasma (OP) treatment creates reactive oxygen species on the surface of ZnO, allowing for a more robust binding of PAs to the ZnO surface. IRRAS analysis indicates that octadecylphosphonic acid binds to the ZnO surface in a predominantly tridentate fashion, forming dense, well-packed monolayers with alkyl chains in a fully anti-conformation. AFM and contact angle measurements indicate good surface coverage of the PAs with little to no multilayer formation.

  4. Effects of microgravity on the binding of acetylsalicylic acid by Rhizobium leguminosarum bv. trifolii

    NASA Astrophysics Data System (ADS)

    Urban, James E.; Gerren, Richard; Zoelle, Jeffery

    1995-07-01

    Bacteroids can be induced in vitro by treating growing Rhizobium leguminosarum bv. trifolii with succinic acid or succinic acid structural analogs like acetylsalicylic acid. Quantitating bacteroid induction by measuring acetylsalicylic binding under normal (1 g) conditions showed two forms of binding to occur. In one form of binding cells immediately bound comparatively high levels of acetylsalicylic acid, but the binding was quickly reversed. The second form of binding increased with time by first-order kinetics, and reached saturation in 40 s. Similar experiments performed in the microgravity environment aboard the NASA 930 aircraft showed only one form of binding and total acetylsalicylic acid bound was 32% higher than at 1 g.

  5. Effects of macromolecular crowding on a small lipid binding protein probed at the single-amino acid level.

    PubMed

    Pérez Santero, Silvia; Favretto, Filippo; Zanzoni, Serena; Chignola, Roberto; Assfalg, Michael; D'Onofrio, Mariapina

    2016-09-15

    Macromolecular crowding is a distinctive feature of the cellular interior, influencing the behaviour of biomacromolecules. Despite significant advancements in the description of the effects of crowding on global protein properties, the influence of cellular components on local protein attributes has received limited attention. Here, we describe a residue-level systematic interrogation of the structural, dynamic, and binding properties of the liver fatty acid binding protein (LFABP) in crowded solutions. Two-dimensional NMR spectral fingerprints and relaxation data were collected on LFABP in the presence of polymeric and biomolecular crowders. Non-interacting crowders produced minimal site-specific spectral perturbations on ligand-free and lipid-bound LFABP. Conformational adaptations upon ligand binding reproduced those observed in dilute solution, but a perturbation of the free oleate state resulted in less favorable uptake. When LFABP engaged in direct interactions with background molecules, changes in local chemical environments were detected for residues of the internal binding pocket and of the external surface. Enhanced complexity was introduced by investigating LFABP in cell lysates, and in membrane-bounded compartments. LFABP was able to capture ligands from prokaryotic and eukaryotic cell lysates, and from artificial cells (water-in-oil emulsion droplets). The data suggest that promiscuous interactions are a major factor influencing protein function in the cell. PMID:27457417

  6. Binding to retinoblastoma pocket domain does not alter the inter-domain flexibility of the J domain of SV40 large T antigen.

    PubMed

    Williams, Christina K; Vaithiyalingam, Sivaraja; Hammel, Michal; Pipas, James; Chazin, Walter J

    2012-02-15

    Simian Virus 40 uses the large T antigen (Tag) to bind and inactivate retinoblastoma tumor suppressor proteins (Rb), which can result in cellular transformation. Tag is a modular protein with four domains connected by flexible linkers. The N-terminal J domain of Tag is necessary for Rb inactivation. Binding of Rb is mediated by an LXCXE consensus motif immediately C-terminal to the J domain. Nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) were used to study the structural dynamics and interaction of Rb with the LXCXE motif, the J domain and a construct (N(260)) extending from the J domain through the origin binding domain (OBD). NMR and SAXS data revealed substantial flexibility between the domains in N(260). Binding of pRb to a construct containing the LXCXE motif and the J domain revealed weak interactions between pRb and the J domain. Analysis of the complex of pRb and N(260) indicated that the OBD is not involved and retains its dynamic independence from the remainder of Tag. These results support a 'chaperone' model in which the J domain of Tag changes its orientation as it acts upon different protein complexes. PMID:22227098

  7. Local Unfolding of Fatty Acid Binding Protein to Allow Ligand Entry for Binding.

    PubMed

    Xiao, Tianshu; Fan, Jing-Song; Zhou, Hu; Lin, Qingsong; Yang, Daiwen

    2016-06-01

    Fatty acid binding proteins are responsible for the transportation of fatty acids in biology. Despite intensive studies, the molecular mechanism of fatty acid entry to and exit from the protein cavity is still unclear. Here a cap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the helical cap is locked to the β-barrel by a disulfide linkage. Structure determination shows that this variant adopts a closed conformation, but still uptakes fatty acids. Stopped-flow experiments indicate that a rate-limiting step exists before the ligand association and this step corresponds to the conversion of the closed form to the open one. NMR relaxation dispersion and H-D exchange data demonstrate the presence of two excited states: one is native-like, but the other adopts a locally unfolded structure. Local unfolding of helix 2 generates an opening for ligands to enter the protein cavity, and thus controls the ligand association rate. PMID:27105780

  8. Studies on fatty acid-binding proteins. The diurnal variation shown by rat liver fatty acid-binding protein.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1987-01-01

    The concentration of fatty acid-binding protein in rat liver was examined by SDS/polyacrylamide-gel electrophoresis, by Western blotting and by quantifying the fluorescence enhancement achieved on the binding of the fluorescent probe 11-(dansylamino)undecanoic acid. A 2-3-fold increase in the concentration of this protein produced by treatment of rats with the peroxisome proliferator tiadenol was readily detected; however, only a small variation in the concentration of the protein due to a diurnal rhythm was observed. This result contradicts the 7-10-fold variation previously reported for this protein [Hargis, Olson, Clarke & Dempsey (1986) J. Biol. Chem. 261, 1988-1991]. Images Fig. 1. Fig. 3. PMID:3593284

  9. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    SciTech Connect

    Raza, H.; Chung, W.L.; Mukhtar, H. )

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  10. Characteristics of the binding of tacrine to acidic phospholipids.

    PubMed Central

    Lehtonen, J Y; Rytömaa, M; Kinnunen, P K

    1996-01-01

    Tacrine (1,2,3,4-tetrahydro-9-acridinamine monohydrate) is an inhibitor of acetylcholinesterase currently used in the treatment of the symptoms of Alzheimer's disease. The present study demonstrates preferential binding of this drug to acidic phospholipids, as revealed by fluorescence polarization, penetration into lipid monolayers, and effects on the thermal phase behavior of dimyristoyl phosphatidic acid (DMPA). A fivefold enhancement in the polarization of tacrine emission is evident above the main phase transition temperature (T(m)) of DMPA vesicles, whereas below T(m) only a 0.75-fold increase is observed. In contrast, the binding of tacrine to another acidic phospholipid, dimyristoylphosphatidylglycerol, did not exhibit strong dependence on T(m). In accordance with the electrostatic nature of the membrane association of tacrine, the extent of binding was augmented with increasing contents of egg PG in phosphatidylcholine liposomes. Furthermore, [NaCl] > 50 mM dissociates tacrine (albeit incompletely) from the liposomes composed of acidic phospholipids. Inclusion of the cationic amphiphile sphingosine in egg PG vesicles decreased the membrane association of tacrine until at 1:1 sphingosine: egg PG stoichiometry binding was no longer evident. Tacrine also penetrated into egg PG but not into egg PC monolayers. Together with broadening of the main transition and causing a shoulder on its high temperature side, the binding of tacrine to DMPA liposomes results in a concentration-dependent reduction both in the combined enthalpy delta H of the above overlapping endotherms and the main transition temperature T(m). Interestingly, these changes in the thermal phase behavior of DMPA as a function of the content of the drug in vesicles were strongly nonlinear. More specifically, upon increasing [tacrine], T(m) exhibited stepwise decrements. Simultaneously, sharp minima in delta H were observed at drug:lipid stoichiometries of approximately 2:100 and 25:100, whereas a

  11. DNA binding proteins that alter nucleic acid flexibility

    NASA Astrophysics Data System (ADS)

    McCauley, Micah; Hardwidge, Philip R.; Maher, L. J., III; Williams, Mark C.

    2007-09-01

    Dual - beam optical tweezers experiments subject single molecules of DNA to high forces (~ 300 pN) with 0.1 pN accuracy, probing the energy and specificity of nucleic acid - ligand structures. Stretching phage λ-DNA reveals an increase in the applied force up to a critical force known as the overstretching transition. In this region, base pairing and stacking are disrupted as double stranded DNA (dsDNA) is melted. Proteins that bind to the double strand will tend to stabilize dsDNA, and melting will occur at higher forces. Proteins that bind to single stranded DNA (ssDNA) destabilize melting, provided that the rate of association is comparable to the pulling rate of the experiment. Many proteins, however, exhibit some affinity for both dsDNA and ssDNA. We describe experiments upon DNA + HMGB2 (box A), a nuclear protein that is believed to facilitate transcription. By characterizing changes in the structure of dsDNA with a polymer model of elasticity, we have determined the equilibrium association constant for HMGB2 to be K ds = 0.15 +/- 0.7 10 9 M -1 for dsDNA binding. Analysis of the melting transition reveals an equilibrium association constant for HMGB2 to ssDNA to be K ss = 0.039 +/- 0.019 10 9 M -1 for ssDNA binding.

  12. Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital interfragment interaction energy analysis

    NASA Astrophysics Data System (ADS)

    Yamagishi, Kenji; Yamamoto, Keiko; Yamada, Sachiko; Tokiwa, Hiroaki

    2006-03-01

    Fragment molecular orbital-interfragment interaction energy calculations of the vitamin D receptor (VDR)/1α,25-dihydroxyvitamin D 3 complex were utilized to assign functions of key residues of the VDR. Only one residue forms a significant interaction with the corresponding hydroxy group of the ligand, although two residues are located around each hydroxy group. The degradation of binding affinity for derivatives upon removal of a hydroxy group is closely related to the trend in the strength of the hydrogen bonds. Type II hereditary rickets due to an Arg274 point mutation is caused by the lack of the strongest hydrogen bond.

  13. The alpha-helical domain of liver fatty acid binding protein is responsible for the diffusion-mediated transfer of fatty acids to phospholipid membranes.

    PubMed

    Córsico, Betina; Liou, Heng Ling; Storch, Judith

    2004-03-30

    Intestinal fatty acid binding protein (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms for the transfer of fatty acids (FAs) to acceptor membranes. Transfer from IFABP occurs during protein-membrane collisional interactions, while for LFABP, transfer occurs by diffusion through the aqueous phase. Earlier, we had shown that the helical domain of IFABP is critical in determining its collisional FA transfer mechanism. In the study presented here, we have engineered a pair of chimeric proteins, one with the "body" (ligand binding domain) of IFABP and the alpha-helical region of LFABP (alphaLbetaIFABP) and the other with the ligand binding pocket of LFABP and the helical domain of IFABP (alphaIbetaLFABP). The objective of this work was to determine whether the change in the alpha-helical domain of each FABP would alter the rate and mechanism of transfer of FA from the chimeric proteins in comparison with those of the wild-type proteins. The fatty acid transfer properties of the FABP chimeras were examined using a fluorescence resonance transfer assay. The results showed a significant modification of the absolute rate of FA transfer from the chimeric proteins compared to that of the wild type, indicating that the slower rate of FA transfer observed for wild-type LFABP relative to that of wild-type IFABP is, in part, determined by the helical domain of the proteins. In addition to these quantitative changes, it was of great interest to observe that the apparent mechanism of FA transfer also changed when the alpha-helical domain was exchanged, with transfer from alphaLbetaIFABP occurring by aqueous diffusion and transfer from alphaIbetaLFABP occurring via protein-membrane collisional interactions. These results demonstrate that the alpha-helical region of LFABP is responsible for its diffusional mechanism of fatty acid transfer to membranes. PMID:15035630

  14. Synthesis of Nanoporous Iminodiacetic Acid Sorbents for Binding Transition Metals

    PubMed Central

    Busche, Brad; Wiacek, Robert; Davidson, Joseph; Koonsiripaiboon, View; Yantasee, Wassana; Addleman, R. Shane; Fryxell, Glen E.

    2009-01-01

    Iminodiacetic acid (IDAA) forms strong complexes with a wide variety of metal ions. Using self-assembled monolayers in mesoporous supports (SAMMS) to present the IDAA ligand potentially allows for multiple metal-ligand interactions to enhance the metal binding affinity relative to that of randomly oriented polymer-based supports. This manuscript describes the synthesis of a novel nanostructured sorbent material built using self-assembly of a IDAA ligand inside a nanoporous silica, and demonstrates its use for capturing transition metal cations, and anionic metal complexes, such as PdCl4−2. PMID:22068901

  15. Two Distinctive Binding Modes of Endonuclease Inhibitors to the N-Terminal Region of Influenza Virus Polymerase Acidic Subunit.

    PubMed

    Fudo, Satoshi; Yamamoto, Norio; Nukaga, Michiyoshi; Odagiri, Takato; Tashiro, Masato; Hoshino, Tyuji

    2016-05-10

    Influenza viruses are global threat to humans, and the development of new antiviral agents are still demanded to prepare for pandemics and to overcome the emerging resistance to the current drugs. Influenza polymerase acidic protein N-terminal domain (PAN) has endonuclease activity and is one of the appropriate targets for novel antiviral agents. First, we performed X-ray cocrystal analysis on the complex structures of PAN with two endonuclease inhibitors. The protein crystallization and the inhibitor soaking were done at pH 5.8. The binding modes of the two inhibitors were different from a common binding mode previously reported for the other influenza virus endonuclease inhibitors. We additionally clarified the complex structures of PAN with the same two endonuclease inhibitors at pH 7.0. In one of the crystal structures, an additional inhibitor molecule, which chelated to the two metal ions in the active site, was observed. On the basis of the crystal structures at pH 7.0, we carried out 100 ns molecular dynamics (MD) simulations for both of the complexes. The analysis of simulation results suggested that the binding mode of each inhibitor to PAN was stable in spite of the partial deviation of the simulation structure from the crystal one. Furthermore, crystal structure analysis and MD simulation were performed for PAN in complex with an inhibitor, which was already reported to have a high compound potency for comparison. The findings on the presence of multiple binding sites at around the PAN substrate-binding pocket will provide a hint for enhancing the binding affinity of inhibitors. PMID:27088785

  16. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    PubMed

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  17. Structural insights into differences in drug-binding selectivity between two forms of human alpha1-acid glycoprotein genetic variants, the A and F1*S forms.

    PubMed

    Nishi, Koji; Ono, Tomomi; Nakamura, Teruya; Fukunaga, Naoko; Izumi, Miyoko; Watanabe, Hiroshi; Suenaga, Ayaka; Maruyama, Toru; Yamagata, Yuriko; Curry, Stephen; Otagiri, Masaki

    2011-04-22

    Human α(1)-acid glycoprotein (hAGP) in serum functions as a carrier of basic drugs. In most individuals, hAGP exists as a mixture of two genetic variants, the F1*S and A variants, which bind drugs with different selectivities. We prepared a mutant of the A variant, C149R, and showed that its drug-binding properties were indistinguishable from those of the wild type. In this study, we determined the crystal structures of this mutant hAGP alone and complexed with disopyramide (DSP), amitriptyline (AMT), and the nonspecific drug chlorpromazine (CPZ). The crystal structures revealed that the drug-binding pocket on the A variant is located within an eight-stranded β-barrel, similar to that found in the F1*S variant and other lipocalin family proteins. However, the binding region of the A variant is narrower than that of the F1*S variant. In the crystal structures of complexes with DSP and AMT, the two aromatic rings of each drug interact with Phe-49 and Phe-112 at the bottom of the binding pocket. Although the structure of CPZ is similar to those of DSP and AMT, its fused aromatic ring system, which is extended in length by the addition of a chlorine atom, appears to dictate an alternative mode of binding, which explains its nonselective binding to the F1*S and A variant hAGPs. Modeling experiments based on the co-crystal structures suggest that, in complexes of DSP, AMT, or CPZ with the F1*S variant, Phe-114 sterically hinders interactions with DSP and AMT, but not CPZ. PMID:21349832

  18. Characterization and amino acid sequence of a fatty acid-binding protein from human heart.

    PubMed

    Offner, G D; Brecher, P; Sawlivich, W B; Costello, C E; Troxler, R F

    1988-05-15

    The complete amino acid sequence of a fatty acid-binding protein from human heart was determined by automated Edman degradation of CNBr, BNPS-skatole [3'-bromo-3-methyl-2-(2-nitrobenzenesulphenyl)indolenine], hydroxylamine, Staphylococcus aureus V8 proteinase, tryptic and chymotryptic peptides, and by digestion of the protein with carboxypeptidase A. The sequence of the blocked N-terminal tryptic peptide from citraconylated protein was determined by collisionally induced decomposition mass spectrometry. The protein contains 132 amino acid residues, is enriched with respect to threonine and lysine, lacks cysteine, has an acetylated valine residue at the N-terminus, and has an Mr of 14768 and an isoelectric point of 5.25. This protein contains two short internal repeated sequences from residues 48-54 and from residues 114-119 located within regions of predicted beta-structure and decreasing hydrophobicity. These short repeats are contained within two longer repeated regions from residues 48-60 and residues 114-125, which display 62% sequence similarity. These regions could accommodate the charged and uncharged moieties of long-chain fatty acids and may represent fatty acid-binding domains consistent with the finding that human heart fatty acid-binding protein binds 2 mol of oleate or palmitate/mol of protein. Detailed evidence for the amino acid sequences of the peptides has been deposited as Supplementary Publication SUP 50143 (23 pages) at the British Library Lending Division, Boston Spa, Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5. PMID:3421901

  19. Conformation-Specific Infrared and Ultraviolet Spectroscopy of DIBENZO-15-CROWN-5-(H2O)1-CLUSTER: Reshaping a Binding Pocket

    NASA Astrophysics Data System (ADS)

    Buchanan, Evan G.; Rodrigo, Chirantha P.; Gutberlet, Anna K.; Zwier, Timothy S.

    2010-06-01

    Crown ethers are oxygen containing macrocycles noted for their ability to preferentially bind substrates such as ions and water. Despite the high symmetry inherent to the chemical structure, crown ethers are remarkably flexible, adapting their conformation to the substrate to which they are bound. Here, we present the conformational preferences of the singly hydrated dibenzo-15-crown-5 ether (DB15C) complex formed and cooled in a supersonic jet. The resonance enhanced two-photon ionization, UV-UV Hole-burning, and resonant ion-dip infrared spectra lead to the identification of a single DB15C-(H2O)1 conformer with the water doubly hydrogen bonded to the crown. Single vibronic level dispersed fluorescence identified both electronic origins and the coupling between the two chromophores. Finally, infrared population transfer spectroscopy is used to study the monomer conformer populations formed by infrared photodissocation of the complex via the water OH stretch transitions, providing unique insight to the energy flow between water and crown.

  20. Total Syntheses and Initial Evaluation of [Ψ[C(=S)NH]Tpg4]vancomycin, [Ψ[C(=NH)NH]Tpg4]vancomycin, [Ψ[CH2NH]Tpg4]vancomycin and their (4-Chlorobiphenyl)methyl Derivatives: Synergistic Binding Pocket and Peripheral Modifications for the Glycopeptide Antibiotics

    PubMed Central

    Okano, Akinori; Nakayama, Atsushi; Wu, Kejia; Lindsey, Erick A.; Schammel, Alex W.; Feng, Yiqing; Collins, Karen C.

    2015-01-01

    Full details of studies are disclosed on the total synthesis of binding pocket analogues of vancomycin, bearing the peripheral L-vancosaminyl-1,2-D-glucosyl disaccharide, that contain changes to a key single atom in the residue 4 amide (residue 4 carbonyl O → S, NH, H2) designed to directly address the underlying molecular basis of resistance to vancomycin. Also disclosed are studies piloting the late stage transformations conducted on the synthetically more accessible C-terminus hydroxymethyl aglycon derivatives and full details of the peripheral chlorobiphenyl functionalization of all the binding pocket modified vancomycin analogues designed for dual D-Ala-D-Ala/D-Ala-D-Lac binding are reported. Their collective assessment indicate that combined binding pocket and chlorobiphenyl peripherally modified analogues exhibit a remarkable spectrum of antimicrobial activity (VSSA, MRSA, VanA and VanB VRE) and impressive potencies against both vancomycin-sensitive and vancomycin-resistant bacteria (MICs = 0.06–0.005 μg/mL and 0.5–0.06 μg/mL for the amidine and methylene analogues, respectively) and likely benefit from two independent and synergistic mechanisms of action, only one of which is dependent on D-Ala-D-Ala/D-Ala-D-Lac binding. Such analogues are likely to display especially durable antibiotic activity not prone to rapidly acquired clinical resistance. PMID:25750995

  1. Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: a spiral fold defines the CoA-binding pocket.

    PubMed Central

    Engel, C K; Mathieu, M; Zeelen, J P; Hiltunen, J K; Wierenga, R K

    1996-01-01

    The crystal structure of rat liver mitochondrial enoyl-coenzyme A (CoA) hydratase complexed with the potent inhibitor acetoacetyl-CoA has been refined at 2.5 angstroms resolution. This enzyme catalyses the reversible addition of water to alpha,beta-unsaturated enoyl-CoA thioesters, with nearly diffusion-controlled reaction rates for the best substrates. Enoyl-CoA hydratase is a hexamer of six identical subunits of 161 kDa molecular mass for the complex. The hexamer is a dimer of trimers. The monomer is folded into a right-handed spiral of four turns, followed by two small domains which are involved in trimerization. Each turn of the spiral consists of two beta-strands and an alpha-helix. The mechanism for the hydratase/dehydratase reaction follows a syn-stereochemistry, a preference that is opposite to the nonenzymatic reaction. The active-site architecture agrees with this stereochemistry. It confirms the importance of Glu164 as the catalytic acid for providing the alpha-proton during the hydratase reaction. It also shows the importance of Glu144 as the catalytic base for the activation of a water molecule in the hydratase reaction. The comparison of an unliganded and a liganded active site within the same crystal form shows a water molecule in the unliganded subunit. This water molecule is bound between the two catalytic glutamates and could serve as the activated water during catalysis. Images PMID:8895557

  2. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  3. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  4. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A low noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free ranging subject is described. The electrode comprises a pocket shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member, remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  5. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  6. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  7. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This booklet of pocket statistics includes the 1996 NASA Major Launch Record, NASA Procurement, Financial, and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Luanch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  8. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  9. Structure of the RNA-Binding Domain of Telomerase: Implications For RNA Recognition and Binding

    SciTech Connect

    Rouda,S.; Skordalakes, E.

    2007-01-01

    Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the 'end of replication problem.' TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.

  10. Influence of the conserved disulphide bond, exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like molecular chaperone Caf1M of Yersinia pestis.

    PubMed Central

    Zav'yalov, V P; Chernovskaya, T V; Chapman, D A; Karlyshev, A V; MacIntyre, S; Zavialov, A V; Vasiliev, A M; Denesyuk, A I; Zav'yalova, G A; Dudich, I V; Korpela, T; Abramov, V M

    1997-01-01

    The Yersinia pestis protein Caf1M is a typical representative of a subfamily of periplasmic molecular chaperones with characteristic structural and functional features, one of which is the location of two conserved cysteine residues close to the putative binding pocket. We show that these residues form a disulphide bond, the reduction and alkylation of which significantly increases the dissociation constant of the Caf1M-Caf1 (where Caf 1 is a polypeptide subunit of the capsule) complex [from a Kd of (4.77+/-0.50)x10(-9) M for the intact protein to one of (3.68+/-0.68)x10(-8) M for the modified protein]. The importance of the disulphide bond for the formation of functional Caf1M in vivo was demonstrated using an Escherichia coli dsbA mutant carrying the Y. pestis f1 operon. In accordance with the CD and fluorescence measurements, the disulphide bond is not important for maintenance of the overall structure of the Caf1M molecule, but would appear to affect the fine structural properties of the subunit binding site. A three-dimensional model of the Caf1M-Caf1 complex was designed based on the published crystal structure of PapD (a chaperone required for Pap pili assembly) complexed with a peptide corresponding to the C-terminus of the papG subunit. In the model the disulphide bond is in close proximity to the invariant Caf1M Arg-23 and Lys-142 residues that are assumed to anchor the C-terminal group of the subunit. The importance of this characteristic disulphide bond for the orchestration of the binding site and subunit binding, as well as for the folding of the protein in vivo, is likely to be a common feature of this subfamily of Caf1M-like chaperones. A possible model for the role of the disulphide bond in Caf1 assembly is discussed. PMID:9182720

  11. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy.

    PubMed

    Pobbati, Ajaybabu V; Han, Xiao; Hung, Alvin W; Weiguang, Seetoh; Huda, Nur; Chen, Guo-Ying; Kang, CongBao; Chia, Cheng San Brian; Luo, Xuelian; Hong, Wanjin; Poulsen, Anders

    2015-11-01

    The human TEAD family of transcription factors (TEAD1-4) is required for YAP-mediated transcription in the Hippo pathway. Hyperactivation of TEAD's co-activator YAP contributes to tissue overgrowth and human cancers, suggesting that pharmacological interference of TEAD-YAP activity may be an effective strategy for anticancer therapy. Here we report the discovery of a central pocket in the YAP-binding domain (YBD) of TEAD that is targetable by small-molecule inhibitors. Our X-ray crystallography studies reveal that flufenamic acid, a non-steroidal anti-inflammatory drug (NSAID), binds to the central pocket of TEAD2 YBD. Our biochemical and functional analyses further demonstrate that binding of NSAIDs to TEAD inhibits TEAD-YAP-dependent transcription, cell migration, and proliferation, indicating that the central pocket is important for TEAD function. Therefore, our studies discover a novel way of targeting TEAD transcription factors and set the stage for therapeutic development of specific TEAD-YAP inhibitors against human cancers. PMID:26592798

  12. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted. PMID:19836400

  13. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53

    PubMed Central

    Wassman, Christopher D.; Baronio, Roberta; Demir, Özlem; Wallentine, Brad D.; Chen, Chiung-Kuang; Hall, Linda V.; Salehi, Faezeh; Lin, Da-Wei; Chung, Benjamin P.; Wesley Hatfield, G.; Richard Chamberlin, A.; Luecke, Hartmut; Lathrop, Richard H.; Kaiser, Peter; Amaro, Rommie E.

    2013-01-01

    The tumour suppressor p53 is the most frequently mutated gene in human cancer. Reactivation of mutant p53 by small molecules is an exciting potential cancer therapy. Although several compounds restore wild-type function to mutant p53, their binding sites and mechanisms of action are elusive. Here computational methods identify a transiently open binding pocket between loop L1 and sheet S3 of the p53 core domain. Mutation of residue Cys124, located at the centre of the pocket, abolishes p53 reactivation of mutant R175H by PRIMA-1, a known reactivation compound. Ensemble-based virtual screening against this newly revealed pocket selects stictic acid as a potential p53 reactivation compound. In human osteosarcoma cells, stictic acid exhibits dose-dependent reactivation of p21 expression for mutant R175H more strongly than does PRIMA-1. These results indicate the L1/S3 pocket as a target for pharmaceutical reactivation of p53 mutants. PMID:23360998

  14. A Back-to-Front Fragment-Based Drug Design Search Strategy Targeting the DFG-Out Pocket of Protein Tyrosine Kinases.

    PubMed

    Iwata, Hidehisa; Oki, Hideyuki; Okada, Kengo; Takagi, Terufumi; Tawada, Michiko; Miyazaki, Yasushi; Imamura, Shinichi; Hori, Akira; Lawson, J David; Hixon, Mark S; Kimura, Hiroyuki; Miki, Hiroshi

    2012-04-12

    We present a straightforward process for the discovery of novel back pocket-binding fragment molecules against protein tyrosine kinases. The approach begins by screening against the nonphosphorylated target kinase with subsequent counterscreening of hits against the phosphorylated enzyme. Back pocket-binding fragments are inactive against the phosphorylated kinase. Fragment molecules are of insufficient size to span both regions of the ATP binding pocket; thus, the outcome is binary (back pocket-binding or hinge-binding). Next, fragments with the appropriate binding profile are assayed in combination with a known hinge-binding fragment and subsequently with a known back pocket-binding fragment. Confirmation of back pocket-binding by Yonetani-Theorell plot analysis progresses candidate fragments to crystallization trials. The method is exemplified by a fragment screening campaign against vascular endothelial growth factor receptor 2, and a novel back pocket-binding fragment is presented. PMID:24900475

  15. A Back-to-Front Fragment-Based Drug Design Search Strategy Targeting the DFG-Out Pocket of Protein Tyrosine Kinases

    PubMed Central

    2012-01-01

    We present a straightforward process for the discovery of novel back pocket-binding fragment molecules against protein tyrosine kinases. The approach begins by screening against the nonphosphorylated target kinase with subsequent counterscreening of hits against the phosphorylated enzyme. Back pocket-binding fragments are inactive against the phosphorylated kinase. Fragment molecules are of insufficient size to span both regions of the ATP binding pocket; thus, the outcome is binary (back pocket-binding or hinge-binding). Next, fragments with the appropriate binding profile are assayed in combination with a known hinge-binding fragment and subsequently with a known back pocket-binding fragment. Confirmation of back pocket-binding by Yonetani–Theorell plot analysis progresses candidate fragments to crystallization trials. The method is exemplified by a fragment screening campaign against vascular endothelial growth factor receptor 2, and a novel back pocket-binding fragment is presented. PMID:24900475

  16. Cation binding of antimicrobial sulfathiazole to leonardite humic acid.

    PubMed

    Richter, Merle K; Sander, Michael; Krauss, Martin; Christl, Iso; Dahinden, Manuel G; Schneider, Manuel K; Schwarzenbach, René P

    2009-09-01

    Sorption of sulfathiazole (STA) and three structural analogs to Leonardite humic acid (LHA) was investigated in single- and binary-solute systems to elucidate the sorption mechanism of sulfonamides to soil organic matter (SOM). Cation binding of STA+ to anionic sites A- in LHA governed sorption up to circumneutral pH, based on the following findings: (i) From pH 7.7 to 3.3, the increase in extent and nonlinearity (i.e., concentration dependence) of STA sorption paralleled the increase in STA+. (ii) From pH 3.3 to 1.7, sorption decreased and nonlinearity increased, consistent with strong competition of STA+ and H+ for A-. (iii) Replacement of the protonable aniline group in STA by an apolar methylbenzene group resulted in much weaker, linear, and pH-independent sorption. (iv) Only analogs with aniline moieties displaced STA from LHA in binary-solute systems. Displacement occurred up to pH 5.4, at which <1% of STA in solution was cationic. (v) STA sorption was well-described (R2 = 0.98) by the NICA-Donnan cation-binding model, yielding high median affinities for STA+ to carboxylic and phenolic A- (log K(STA+,1) = 3.25 +/- 0.08 log (L mol(-1)) and log K(STA+,2) = 8.76 +/- 0.11 log (L mol(-1)), respectively). High affinity cation binding explains sorption of polar sulfonamides in agricultural soils and the strong dependence of sorption on SOM content and pH. PMID:19764228

  17. A Sialic Acid Binding Site in a Human Picornavirus

    PubMed Central

    Frank, Martin; Hähnlein-Schick, Irmgard; Ekström, Jens-Ola; Arnberg, Niklas; Stehle, Thilo

    2014-01-01

    The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC. PMID:25329320

  18. Cellular retinol-binding protein and retinoic acid-binding protein in rat testes: effect of retinol depletion.

    PubMed

    Ong, D E; Tsai, C H; Chytil, F

    1976-02-01

    Testes of rats contain two cellular binding proteins of interest in vitamin A metabolism. One protein binds retinoic acid with high specificity; the other binds retinol with high specificity. When the cellular retinol-binding protein was partially purified from rat testes, it exhibited fluorescence excitation and emission spectra similar to that of all-trans-retinol in hexane. Exposure of this preparation to UV light destroyed this fluorescence but spectra identical to the original were obtained after addition of retinol. Hexane extracts of the binding protein had fluorescence spectra identical to all-trans-retinol, suggesting that this compound is bound to the protein in vivo. Extracts of testes from retinol depleted rats were submitted to gel filtration but failed to show a retinol-like fluorescence at the elution position of retinol binding protein. This fluorescence was observed in the preparations from pair fed control animals. However, after addition of all-trans-retinol to the extracts from the depleted rats, fluorescence at that elution position was observed. This indicates that in testes of retinol depleted rats the cellular retinol binding protein is present but without bound retinol, in contrast to the non-depleted rats where 30-43% of the binding protein had bound retinol. The amounts of cellular retinol binding protein and retinoic acid binding protein in testes, as determined by sucrose gradient centrifugation, were found to be similar for retinol depleted and pair fed control rats. PMID:942996

  19. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: A computational study

    PubMed Central

    Di Marino, Daniele; D'Annessa, Ilda; Coletta, Andrea; Via, Allegra; Tramontano, Anna

    2015-01-01

    Despite the investments in malaria research, an effective vaccine has not yet been developed and the causative parasites are becoming increasingly resistant to most of the available drugs. PfATP6, the sarco/endoplasmic reticulum Ca2+ pump (SERCA) of P. falciparum, has been recently genetically validated as a potential antimalarial target and cyclopiazonic acid (CPA) has been found to be a potent inhibitor of SERCAs in several organisms, including P. falciparum. In position 263, PfATP6 displays a leucine residue, whilst the corresponding position in the mammalian SERCA is occupied by a glutamic acid. The PfATP6 L263E mutation has been studied in relation to the artemisinin inhibitory effect on P. falciparum and recent studies have provided evidence that the parasite with this mutation is more susceptible to CPA. Here, we characterized, for the first time, the interaction of CPA with PfATP6 and its mammalian counterpart to understand similarities and differences in the mode of binding of the inhibitor to the two Ca2+ pumps. We found that, even though CPA does not directly interact with the residue in position 263, the presence of a hydrophobic residue in this position in PfATP6 rather than a negatively charged one, as in the mammalian SERCA, entails a conformational arrangement of the binding pocket which, in turn, determines a relaxation of CPA leading to a different binding mode of the compound. Our findings highlight differences between the plasmodial and human SERCA CPA-binding pockets that may be exploited to design CPA derivatives more selective toward PfATP6. Proteins 2015; 83:564–574. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:25581715

  20. Three-dimensional structural model analysis of the binding site of lithocholic acid, an inhibitor of DNA polymerase beta and DNA topoisomerase II.

    PubMed

    Mizushina, Y; Kasai, N; Sugawara, F; Iida, A; Yoshida, H; Sakaguchi, K

    2001-11-01

    The molecular action of lithocholic acid (LCA), a selective inhibitor of mammalian DNA polymerase beta (pol beta), was investigated. We found that LCA could also strongly inhibit the activity of human DNA topoisomerase II (topo II). No other DNA metabolic enzymes tested were affected by LCA. Therefore, LCA should be classified as an inhibitor of both pol beta and topo II. Here, we report the molecular interaction of LCA with pol beta and topo II. By three-dimensional structural model analysis and by comparison with the spatial positioning of specific amino acids binding to LCA on pol beta (Lys60, Leu77, and Thr79), we obtained supplementary information that allowed us to build a structural model of topo II. Modeling analysis revealed that the LCA-interaction interface in both enzymes has a pocket comprised of three amino acids in common, which binds to the LCA molecule. In topo II, the three amino acid residues were Lys720, Leu760, and Thr791. These results suggested that the LCA binding domains of pol beta and topo II are three-dimensionally very similar. PMID:11686928

  1. The liver fatty acid binding protein--comparison of cavity properties of intracellular lipid-binding proteins.

    PubMed

    Thompson, J; Ory, J; Reese-Wagoner, A; Banaszak, L

    1999-02-01

    The crystal and solution structures of all of the intracellular lipid binding proteins (iLBPs) reveal a common beta-barrel framework with only small local perturbations. All existing evidence points to the binding cavity and a poorly delimited 'portal' region as defining the function of each family member. The importance of local structure within the cavity appears to be its influence on binding affinity and specificity for the lipid. The portal region appears to be involved in the regulation of ligand exchange. Within the iLBP family, liver fatty acid binding protein or LFABP, has the unique property of binding two fatty acids within its internalized binding cavity rather than the commonly observed stoichiometry of one. Furthermore, LFABP will bind hydrophobic molecules larger than the ligands which will associate with other iLBPs. The crystal structure of LFABP contains two bound oleate molecules and provides the explanation for its unusual stoichiometry. One of the bound fatty acids is completely internalized and has its carboxylate interacting with an arginine and two serines. The second oleate represents an entirely new binding mode with the carboxylate on the surface of LFABP. The two oleates also interact with each other. Because of this interaction and its inner location, it appears the first oleate must be present before the second more external molecule is bound. PMID:10331654

  2. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4.

    PubMed

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V

    2010-04-01

    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM. PMID:19911253

  3. Bile acid salt binding with colesevelam HCl is not affected by suspension in common beverages.

    PubMed

    Hanus, Martin; Zhorov, Eugene

    2006-12-01

    It has been previously reported that anions in common beverages may bind to bile acid sequestrants (BAS), reducing their capacity for binding bile acid salts. This study examined the ability of the novel BAS colesevelam hydrochloride (HCl), in vitro, to bind bile acid sodium salts following suspension in common beverages. Equilibrium binding was evaluated under conditions of constant time and varying concentrations of bile acid salts in simulated intestinal fluid (SIF). A stock solution of sodium salts of glycochenodeoxycholic acid (GCDC), taurodeoxycholic acid (TDC), and glycocholic acid (GC), was added to each prepared sample of colesevelam HCl. Bile acid salt binding was calculated by high-performance liquid chromatography (HPLC) analysis. Kinetics experiments were conducted using constant initial bile acid salt concentrations and varying binding times. The affinity, capacity, and kinetics of colesevelam HCl binding for GCDC, TDC, and GC were not significantly altered after suspension in water, carbonated water, Coca-Cola, Sprite, grape juice, orange juice, tomato juice, or Gatorade. The amount of bile acid sodium salt bound as a function of time was unchanged by pretreatment with any beverage tested. The in vitro binding characteristics of colesevelam HCl are unchanged by suspension in common beverages. PMID:16937334

  4. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  5. A refined model of the thyrotropin-releasing hormone (TRH) receptor binding pocket. Novel mixed mode Monte Carlo/stochastic dynamics simulations of the complex between TRH and TRH receptor.

    PubMed

    Laakkonen, L J; Guarnieri, F; Perlman, J H; Gershengorn, M C; Osman, R

    1996-06-18

    Previous mutational and computational studies of the thyrotropin-releasing hormone (TRH) receptor identified several residues in its binding pocket [see accompanying paper, Perlman et al. (1996) Biochemistry 35, 7643-7650]. On the basis of the initial model constructed with standard energy minimization techniques, we have conducted 15 mixed mode Monte Carlo/stochastic dynamics (MC-SD) simulations to allow for extended sampling of the conformational states of the ligand and the receptor in the complex. A simulated annealing protocol was adopted in which the complex was cooled from 600 to 310 K in segments of 30 ps of the MC-SD simulations for each change of 100 K. Analysis of the simulation results demonstrated that the mixed mode MC-SD protocol maintained the desired temperature in the constant temperature simulation segments. The elevated temperature and the repeating simulations allowed for adequate sampling of the torsional space of the complex with successful conservation of the general structure and good helicity of the receptor. For the analysis of the interaction between TRH and the binding pocket, TRH was divided into four groups consisting of pyroGlu, His, ProNH2, and the backbone. The pairwise interaction energies of the four separate portions of TRH with the corresponding residues in the receptor provide a physicochemical basis for the understanding of ligand-receptor complexes. The interaction of pyroGlu with Tyr106 shows a bimodal distribution that represents two populations: one with a H-bond and another without it. Asp195 was shown to compete with pyroGlu for the H-bond to Tyr106. Simulations in which Asp195 was interacting with Arg283, thus removing it from the vicinity of Tyr106, resulted in a stable H-bond to pyroGlu. In all simulations His showed a van der Waals attraction to Tyr282 and a weak electrostatic repulsion from Arg 306. The ProNH2 had a strong and frequent H-bonding interaction with Arg306. The backbone carbonyls show a frequent H

  6. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    SciTech Connect

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  7. Modeling nucleic acid structure in the presence of single-stranded binding proteins

    NASA Astrophysics Data System (ADS)

    Forties, Robert; Bundschuh, Ralf

    2009-03-01

    There are many important proteins which bind single-stranded nucleic acids, such as the nucleocapsid protein in HIV, the RecA DNA repair protein in bacteria, and all proteins involved in mRNA splicing and translation. We extend the Vienna Package for quantitatively modeling the secondary structure of nucleic acids to include proteins which bind to unpaired portions of the nucleic acid. All parameters needed to model nucleic acid secondary structures in the absence of proteins have been previously measured. This leaves the footprint and sequence dependent binding affinity of the protein as adjustable parameters of our model. Using this model we are able to predict the probability of the protein binding at any position in the nucleic acid sequence, the impact of the protein on nucleic acid base pairing, the end-to-end distance distribution for the nucleic acid, and FRET distributions for fluorophores attached to the nucleic acid.

  8. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1∙Nup98)

    SciTech Connect

    Quan, Beili; Seo, Hyuk-Soo; Blobel, Günter; Ren, Yi

    2014-07-01

    mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the β-propeller of Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore.

  9. APoc: large-scale identification of similar protein pockets

    PubMed Central

    Gao, Mu; Skolnick, Jeffrey

    2013-01-01

    Motivation: Most proteins interact with small-molecule ligands such as metabolites or drug compounds. Over the past several decades, many of these interactions have been captured in high-resolution atomic structures. From a geometric point of view, most interaction sites for grasping these small-molecule ligands, as revealed in these structures, form concave shapes, or ‘pockets’, on the protein’s surface. An efficient method for comparing these pockets could greatly assist the classification of ligand-binding sites, prediction of protein molecular function and design of novel drug compounds. Results: We introduce a computational method, APoc (Alignment of Pockets), for the large-scale, sequence order-independent, structural comparison of protein pockets. A scoring function, the Pocket Similarity Score (PS-score), is derived to measure the level of similarity between pockets. Statistical models are used to estimate the significance of the PS-score based on millions of comparisons of randomly related pockets. APoc is a general robust method that may be applied to pockets identified by various approaches, such as ligand-binding sites as observed in experimental complex structures, or predicted pockets identified by a pocket-detection method. Finally, we curate large benchmark datasets to evaluate the performance of APoc and present interesting examples to demonstrate the usefulness of the method. We also demonstrate that APoc has better performance than the geometric hashing-based method SiteEngine. Availability and implementation: The APoc software package including the source code is freely available at http://cssb.biology.gatech.edu/APoc. Contact: skolnick@gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23335017

  10. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content

  11. Retinoic acid-binding protein, rhombomeres and the neural crest.

    PubMed

    Maden, M; Hunt, P; Eriksson, U; Kuroiwa, A; Krumlauf, R; Summerbell, D

    1991-01-01

    We have investigated by immunocytochemistry the spatial and temporal distribution of cellular retinoic acid-binding protein (CRABP) in the developing nervous system of the chick embryo in order to answer two specific questions: do neural crest cells contain CRABP and where and when do CRABP-positive neuroblasts first arise in the neural tube? With regard to the neural crest, we have compared CRABP staining with HNK-1 staining (a marker of migrating neural crest) and found that they do indeed co-localise, but cephalic and trunk crest behave slightly differently. In the cephalic region in tissues such as the frontonasal mass and branchial arches, HNK-1 immunoreactivity is intense at early stages, but it disappears as CRABP immunoreactivity appears. Thus the two staining patterns do not overlap, but are complementary. In the trunk, HNK-1 and CRABP stain the same cell populations at the same time, such as those migrating through the anterior halves of the somites. In the neural tube, CRABP-positive neuroblasts first appear in the rhombencephalon just after the neural folds close and then a particular pattern of immunoreactivity appears within the rhombomeres of the hindbrain. Labelled cells are present in the future spinal cord, the posterior rhombencephalon up to rhombomere 6 and in rhombomere 4 thus producing a single stripe pattern. This pattern is dynamic and gradually changes as anterior rhombomeres begin to label. The similarity of this initial pattern to the arrangement of certain homeobox genes in the mouse stimulated us to examine the expression of the chicken Hox-2.9 gene. We show that at stage 15 the pattern of expression of this gene is closely related to that of CRABP. The relationship between retinoic acid, CRABP and homeobox genes is discussed. PMID:1707786

  12. Identification and Characterization of Linoleic Acid as an Endogenous Modulator of in Vitro N-1-Naphthylphthalamic Acid Binding.

    PubMed Central

    Suttle, J. C.

    1997-01-01

    An endogenous inhibitor of the in vitro binding of the phytotropin N-1-naphthylphthalamic acid to microsomal membranes was detected in extracts prepared from etiolated pea (Pisum sativum L.) epicotyls. Following extensive purification, the inhibitor was identified as linoleic acid. Authentic linoleic acid inhibited N-1-naphthylphthalamic acid binding noncompetitively in a dose-dependent manner, exhibiting a 50% inhibitory concentration of approximately 24 ([mu]M. Using a variety of fatty acids and their derivatives, this inhibition was found to exhibit strict structural requirements, with both linoleic and linolenic acids being the most inhibitory. A variety of membrane-solubilizing detergents elicited no such inhibitory activity when tested at equivalent concentrations. The possible physiological significance of this interaction is discussed and it is proposed that linoleic acid serves as an intracellular modulator of phytotropin binding and therefore polar auxin transport. PMID:12223622

  13. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  14. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  15. Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors.

    PubMed

    Vallette, G; Vanet, A; Sumida, C; Nunez, E A

    1991-09-01

    Binding of the synthetic glucocorticoid dexamethasone to the rat liver cytosol glucocorticoid receptor was inhibited by physiological concentrations of nonesterified fatty acids as a function of increasing dose, degree of unsaturation, and chain length of the fatty acid. Polyunsaturated fatty acids were the most potent inhibitors. Scatchard analysis and Line-weaver-Burk plots of the binding data revealed that both the association constants and number of binding sites decreased and that polyunsaturated fatty acids inhibition was of a mixed non-competitive type. The dissociation rate constant of [3H]dexamethasone from glucocorticoid receptors was increased by up to 10 times in the presence of docosahexaenoic acid, whereas a competitive inhibitor like the glucocorticoid antagonist RU 38486 had no effect. Moreover, sucrose density gradient analysis showed that docosahexaenoic acid inhibited the binding of [3H] dexamethasone to both the 8.8S and 4S forms. The results strongly suggest that unsaturated fatty acids are interacting at a site on the receptor different from the hormone binding site and the heat shock protein and that by binding to a second site unsaturated fatty acids greatly change the conformation of the hormone binding site to reduce its affinity for the hormone, either partially or completely depending on the concentration and the class of the fatty acid. PMID:1874175

  16. A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity

    PubMed Central

    Glaser, Laurel; Stevens, James; Zamarin, Dmitriy; Wilson, Ian A.; García-Sastre, Adolfo; Tumpey, Terrence M.; Basler, Christopher F.; Taubenberger, Jeffery K.; Palese, Peter

    2005-01-01

    The receptor binding specificity of influenza viruses may be important for host restriction of human and avian viruses. Here, we show that the hemagglutinin (HA) of the virus that caused the 1918 influenza pandemic has strain-specific differences in its receptor binding specificity. The A/South Carolina/1/18 HA preferentially binds the α2,6 sialic acid (human) cellular receptor, whereas the A/New York/1/18 HA, which differs by only one amino acid, binds both the α2,6 and the α2,3 sialic acid (avian) cellular receptors. Compared to the conserved consensus sequence in the receptor binding site of avian HAs, only a single amino acid at position 190 was changed in the A/New York/1/18 HA. Mutation of this single amino acid back to the avian consensus resulted in a preference for the avian receptor. PMID:16103207

  17. Side pocket mandrel

    SciTech Connect

    Crawford, D.W.; Crawford, M.S.; Crawford, W.B.

    1987-12-29

    A side pocket mandrel is described comprising: a tubular body section having a hollow interior that defines a main bore to one side thereof and another bore to the other side thereof; and a short-length seating section welded to one end of the body section. The seating section has a main bore formed to one side thereof aligned with the main bore in the body section, and a valve seating bore formed on the other side thereof generally aligned with the other bore. The seating bore has a polish section adjacent its outer end. The outer end opening through an exterior end surface of the mandrel. The seating bore has a recessed section adjacent the polish section. That provides an inwardly facing stop shoulder at one end thereof and a latch shoulder at the other end thereof facing the stop shoulder; and a tubular member welded to the seating section in axial alignment with the main bores. The axis of the polish section of the seating bore is inclined toward the axes of the main bores at a small angle.

  18. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins

    PubMed Central

    Hussein, Hiba Abi; Borrel, Alexandre; Geneix, Colette; Petitjean, Michel; Regad, Leslie; Camproux, Anne-Claude

    2015-01-01

    Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose ‘PockDrug-Server’ to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. PMID:25956651

  19. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.

    PubMed

    Hussein, Hiba Abi; Borrel, Alexandre; Geneix, Colette; Petitjean, Michel; Regad, Leslie; Camproux, Anne-Claude

    2015-07-01

    Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose 'PockDrug-Server' to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. PMID:25956651

  20. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    SciTech Connect

    Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E.; MacCarthy, P.

    1998-08-15

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  1. Binding and Inactivation Mechanism of a Humanized Fatty Acid Amide Hydrolase by [alpha]-Ketoheterocycle Inhibitors Revealed from Cocrystal Structures

    SciTech Connect

    Mileni, Mauro; Garfunkle, Joie; DeMartino, Jessica K.; Cravatt, Benjamin F.; Boger, Dale L.; Stevens, Raymond C.

    2010-08-17

    The cocrystal X-ray structures of two isomeric {alpha}-ketooxazole inhibitors (1 (OL-135) and 2) bound to fatty acid amide hydrolase (FAAH), a key enzymatic regulator of endocannabinoid signaling, are disclosed. The active site catalytic Ser241 is covalently bound to the inhibitors electrophilic carbonyl groups, providing the first structures of FAAH bound to an inhibitor as a deprotonated hemiketal mimicking the enzymatic tetrahedral intermediate. The work also offers a detailed view of the oxyanion hole and an exceptional 'in-action' depiction of the unusual Ser-Ser-Lys catalytic triad. These structures capture the first picture of inhibitors that span the active site into the cytosolic port providing new insights that help to explain FAAH's interaction with substrate leaving groups and their role in modulating inhibitor potency and selectivity. The role for the activating central heterocycle is clearly defined and distinguished from that observed in prior applications with serine proteases, reconciling the large electronic effect of attached substituents found unique to this class of inhibitors with FAAH. Additional striking active site flexibility is seen upon binding of the inhibitors, providing insights into the existence of a now well-defined membrane access channel with the disappearance of a spatially independent portion of the acyl chain-binding pocket. Finally, comparison of the structures of OL-135 (1) and its isomer 2 indicates that they bind identically to FAAH, albeit with reversed orientations of the central activating heterocycle, revealing that the terminal 2-pyridyl substituent and the acyl chain phenyl group provide key anchoring interactions and confirming the distinguishing role of the activating oxazole.

  2. Expression of liver fatty acid binding protein in hepatocellular carcinoma.

    PubMed

    Cho, Soo-Jin; Ferrell, Linda D; Gill, Ryan M

    2016-04-01

    Loss of expression of liver fatty acid binding protein (LFABP) by immunohistochemistry has been shown to be characteristic of a subset of hepatocellular adenomas (HCAs) in which HNF1A is inactivated. Transformation to hepatocellular carcinoma is thought to be a very rare phenomenon in the HNF1A-inactivated variant of HCA. However, we recently observed 2 cases at our institution, 1 definite hepatocellular carcinoma and 1 possible hepatocellular carcinoma, with loss of LFABP staining, raising the possibility that LFABP down-regulation may be associated with hepatocellular carcinogenesis. Our aim was to evaluate hepatocellular carcinomas arising in various backgrounds and with varying degrees of differentiation for loss of LFABP staining. Twenty total cases of hepatocellular carcinoma were examined. Thirteen cases arose in a background of cirrhosis due to hepatitis C (n = 8) or steatohepatitis (n = 5); 7 cases arose in a noncirrhotic background, with 2 cases arising within HNF1A-inactivated variant HCA and 2 cases arising within inflammatory variant HCA. Complete loss of expression of LFABP was seen in 6 of 20 cases, including 2 cases of hepatocellular carcinoma arising within HNF1A-inactivated variant HCA. Thus, loss of staining for LFABP appears to be common in hepatocellular carcinoma and may be seen in well-differentiated hepatocellular carcinoma. Therefore, LFABP loss should not be interpreted as evidence for hepatocellular adenoma over carcinoma, when other features support a diagnosis of hepatocellular carcinoma. The findings raise consideration for a role of HNF1A inactivation in hepatocellular carcinogenesis, particularly in less differentiated tumors. PMID:26997447

  3. Amino acid composition of cadmium-binding protein induced in a marine diatom

    SciTech Connect

    Maita, Y.; Kawaguchi, S. )

    1989-09-01

    Organisms living in environments polluted with heavy metals develop tolerance against these contaminants. The tolerance has been attributed to the ability to synthesize metal binding substances. These recent findings imply metal binding complexes from animals and plants, although having very similar functional properties, may have entirely different amino acid compositions. Researchers reported that cadystin from fission yeast, Schizosaccharomyces pombe was composed of only glutamic acid, cysteine, and glycine. A year later, a heavy metal binding substance was isolated from Rauwolfia serpetina which contains only Glu, Cys, and Gly. Heavy metal binding complexes isolated from the water hyacinth and morning glory Datura innoxia also showed an amino acid composition similar to cadystin or phytochelatin. In this study, the cadmium binding protein induced in the marine diatom, Phaeodactylum tricornutum, was isolated and purified and its amino acid composition determined.

  4. Characterization of Naphthaleneacetic Acid Binding to Receptor Sites on Cellular Membranes of Maize Coleoptile Tissue 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Characteristics of and optimum conditions for saturable (“specific”) binding of [14C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a KD of 5 to 7 × 10−7m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg2+ or Ca2+ above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor (“supernatant factor”) found in maize tissue. PMID:16659851

  5. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-01

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  6. Expression of gastric antisecretory and prostaglandin E receptor binding activity of misoprostol by misoprostol free acid.

    PubMed

    Tsai, B S; Kessler, L K; Stolzenbach, J; Schoenhard, G; Bauer, R F

    1991-05-01

    In enriched canine parietal cell preparations, misoprostol, an analog of prostaglandin E1 methyl ester, was rapidly deesterified to misoprostol free acid. Under this circumstance, misoprostol and misoprostol free acid exhibited equal antisecretory potency against histamine-stimulated acid secretion and bound equally well to prostaglandin E receptors. When the deesterification of misoprostol was inhibited by paraoxon, an esterase inhibitor, the antisecretory and receptor binding activity of misoprostol was markedly reduced, with potency much less than misoprostol free acid. These results indicate that misoprostol free acid is the active biological form of misoprostol that binds to prostaglandin E receptors and mediates the antisecretory action of misoprostol. PMID:1850690

  7. Effect of d-amino acids on IgE binding to peanut allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    D-amino acids are formed when L-amino acids are exposed to heat. The objective was to determine the existence of D-amino acids in roasted peanut and their effect on IgE binding. Raw and roasted peanut protein extracts were hydrolyzed in 6 N HCL under vacuum. The hydrolysates were then analyzed for D...

  8. Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes N-glycan phosphorylation in a branch-specific manner†.

    PubMed

    Blackler, Ryan J; Evans, Dylan W; Smith, David F; Cummings, Richard D; Brooks, Cory L; Braulke, Thomas; Liu, Xinyu; Evans, Stephen V; Müller-Loennies, Sven

    2016-02-01

    The acquisition of mannose 6-phosphate (Man6P) on N-linked glycans of lysosomal enzymes is a structural requirement for their transport from the Golgi apparatus to lysosomes mediated by the mannose 6-phosphate receptors, 300 kDa cation-independent mannose 6-phosphate receptor (MPR300) and 46 kDa cation-dependent mannose 6-phosphate receptor (MPR46). Here we report that the single-chain variable domain (scFv) M6P-1 is a unique antibody fragment with specificity for Man6P monosaccharide that, through an array-screening approach against a number of phosphorylated N-glycans, is shown to bind mono- and diphosphorylated Man6 and Man7 glycans that contain terminal αMan6P(1 → 2)αMan(1 → 3)αMan. In contrast to MPR300, scFv M6P-1 does not bind phosphodiesters, monophosphorylated Man8 or mono- or diphosphorylated Man9 structures. Single crystal X-ray diffraction analysis to 2.7 Å resolution of Fv M6P-1 in complex with Man6P reveals that specificity and affinity is achieved via multiple hydrogen bonds to the mannose ring and two salt bridges to the phosphate moiety. In common with both MPRs, loss of binding was observed for scFv M6P-1 at pH values below the second pKa of Man6P (pKa = 6.1). The structures of Fv M6P-1 and the MPRs suggest that the change of the ionization state of Man6P is the main driving force for the loss of binding at acidic lysosomal pH (e.g. lysosome pH ∼ 4.6), which provides justification for the evolution of a lysosomal enzyme transport pathway based on Man6P recognition. PMID:26503547

  9. NMR-based modeling and binding studies of a ternary complex between chicken liver bile acid binding protein and bile acids.

    PubMed

    Tomaselli, Simona; Ragona, Laura; Zetta, Lucia; Assfalg, Michael; Ferranti, Pasquale; Longhi, Renato; Bonvin, Alexandre M J J; Molinari, Henriette

    2007-10-01

    Chicken liver bile acid binding protein (cL-BABP) is involved in bile acid transport in the liver cytosol. A detailed study of the mechanism of binding and selectivity of bile acids binding proteins towards the physiological pool of bile salts is a key issue for the complete understanding of the role of these proteins and their involvement in cholesterol homeostasis. In the present study, we modeled the ternary complex of cL-BABP with two molecules of bile salts using the data driven docking program HADDOCK on the basis of NMR and mass spectrometry data. Docking resulted in good 3D models, satisfying the majority of experimental restraints. The docking procedure represents a necessary step to help in the structure determination and in functional analysis of such systems, in view of the high complexity of the 3D structure determination of a ternary complex with two identical ligands. HADDOCK models show that residues involved in binding are mainly located in the C-terminal end of the protein, with two loops, CD and EF, playing a major role in ligand binding. A spine, comprising polarresidues pointing toward the protein interior and involved in motion communication, has a prominent role in ligand interaction. The modeling approach has been complemented with NMR interaction and competition studies of cL-BABP with chenodeoxycholic and cholic acids. A higher affinity for chenodeoxycholic acid was observed and a Kd upper limit estimate was obtained. The binding is highly cooperative and no site selectivity was detected for the different bile salts, thus indicating that site selectivity and cooperativity are not correlated. Differences in physiological pathways and bile salt pools in different species is discussed in light of the binding results thus enlarging the body of knowledge of BABPs biological functions. PMID:17607743

  10. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  11. A Hydrophobic Pocket in the Active Site of Glycolytic Aldolase Mediates Interactions with Wiskott-Aldrich Syndrome Protein

    SciTech Connect

    St-Jean,M.; Izard, T.; Sygusch, J.

    2007-01-01

    Aldolase plays essential catalytic roles in glycolysis and gluconeogenesis. However, aldolase is a highly abundant protein that is remarkably promiscuous in its interactions with other cellular proteins. In particular, aldolase binds to highly acidic amino acid sequences, including the C-terminus of the Wiskott-Aldrich syndrome protein, an actin nucleation promoting factor. Here we report the crystal structure of tetrameric rabbit muscle aldolase in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein. Aldolase recognizes a short, 4-residue DEWD motif (residues 498-501), which adopts a loose hairpin turn that folds about the central aromatic residue, enabling its tryptophan side chain to fit into a hydrophobic pocket in the active site of aldolase. The flanking acidic residues in this binding motif provide further interactions with conserved aldolase active site residues, Arg-42 and Arg-303, aligning their side chains and forming the sides of the hydrophobic pocket. The binding of Wiskott-Aldrich syndrome protein to aldolase precludes intramolecular interactions of its C-terminus with its active site, and is competitive with substrate as well as with binding by actin and cortactin. Finally, based on this structure a novel naphthol phosphate-based inhibitor of aldolase was identified and its structure in complex with aldolase demonstrated mimicry of the Wiskott-Aldrich syndrome protein-aldolase interaction. The data support a model whereby aldolase exists in distinct forms that regulate glycolysis or actin dynamics.

  12. BILE ACIDS REGULATE THE ONTOGENIC EXPRESSION OF ILEAL BILE ACID BINDING PROTEIN IN THE RAT VIA THE FARNESOID X RECEPTOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the rat, an increase in ileal bile acid binding protein (IBABP) expression occurs during the third postnatal week. In vitro studies suggest that bile acids (BAs) increase IBABP transcription by activating the BA receptor, farnesoid X receptor (FXR). Thus, we investigated the role of BAs on the on...

  13. Evaluating Healthful Properties of Cereals and Cereal Fractions by Their Bile-Acid-Binding Potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The healthful, cholesterol-lowering (atherosclerosis amelioration) or detoxification of harmful metabolites (cancer prevention) potential of cereals and cereal fractions could be predicted by evaluating their in vitro bile acid binding under physiological conditions. Using equal dry matter per incu...

  14. Possible involvement of lipoic acid in binding protein-dependent transport systems in Escherichia coli.

    PubMed

    Richarme, G

    1985-04-01

    We describe the properties of the binding protein dependent-transport of ribose, galactose, and maltose and of the lactose permease, and the phosphoenolpyruvate-glucose phosphotransferase transport systems in a strain of Escherichia coli which is deficient in the synthesis of lipoic acid, a cofactor involved in alpha-keto acid dehydrogenation. Such a strain can grow in the absence of lipoic acid in minimal medium supplemented with acetate and succinate. Although the lactose permease and the phosphoenolypyruvate-glucose phosphotransferase are not affected by lipoic acid deprivation, the binding protein-dependent transports are reduced by 70% in conditions of lipoic acid deprivation when compared with their activity in conditions of lipoic acid supply. The remaining transport is not affected by arsenate but is inhibited by the uncoupler carbonylcyanide-m-chlorophenylhydrazone; however the lipoic acid-dependent transport is completely inhibited by arsenate and only weakly inhibited by carbonylcyanide-m-chlorophenylhydrazone. The known inhibitor of alpha-keto acid dehydrogenases, 5-methoxyindole-2-carboxylic acid, completely inhibits all binding protein-dependent transports whether in conditions of lipoic supply or deprivation; the results suggest a possible relation between binding protein-dependent transport and alpha-keto acid dehydrogenases and shed light on the inhibition of these transports by arsenicals and uncouplers. PMID:3920206

  15. Treatment with oleic acid reduces IgE binding to peanut and cashew allergens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid (OA) is known to bind and change the bioactivities of proteins, such as a-lactalbumin and ß-lactoglobulin in vitro. The objective of this study was to determine if OA binds to allergens from a peanut extract or cashew allergen and changes their allergenic properties. Peanut extract or c...

  16. Water properties inside nanoscopic hydrophobic pocket studied by computer simulations

    NASA Astrophysics Data System (ADS)

    Setny, Piotr; Geller, Maciej

    2006-10-01

    The structure and dynamics of water in the vicinity of the hemispherical hydrophobic pocket of 8Å radius were examined via molecular dynamics simulations in NVT ensemble. Density, hydrogen bonding properties, and residence times of water molecules were projected on two-dimensional planes providing a spatial description of water behavior. We found that the average water density is significantly depleted relative to bulk value. A detailed analysis of pocket occupancy revealed fluctuations between states of completely empty pocket and a pocket filled with a bulklike fluid, which seem to result from collective behavior of water molecules. Free energy differences accompanying these fluctuations are rather small, suggesting that the given pocket radius is close to the critical one for transition between gas and liquid phases in the considered system. We show that the situation is different in the case of a simple Lennard-Jones fluid. These results indicate that changing the surface curvature from flat to concave may lead to qualitative difference in water behavior in its vicinity. We think that our studies may also put some light on binding site desolvation process which is necessary to understand to make correct predictions of binding energies.

  17. Quest for the binding mode of malachite green with humic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Yin, Mingxing; Shi, Jinghua; Wang, Yanqing

    2015-02-01

    The association of malachite green (MG) with humic acid (HA) was investigated by using fluorescence, UV-vis spectroscopy and molecular Modelling method. The fluorescence spectral results indicated that the binding between MG and HA occurred by mainly hydrophobic and electrostatic forces with association constants of KA (298 K) = 6.24 × 105 L/mol and KA (310 K) = 10.20 × 105 L/mol. There were more than one binding sites on HA to bind with MG. The binding sites of MG with HA primarily located at the aromatic rings of HA. MG could enter into the hydrophobic cavities of HA to quench the fluorescence of HA. On the contrary, HA binding caused MG to a coplanar conformation with more extended π bond distribution by π-π stacking interactions. The experiment and calculation data both showed that the hydrophobic binding cavities in HA played a key role in its binding with MG.

  18. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  19. Capture and release of mixed acid gasses with binding organic liquids

    DOEpatents

    Heldebrant, David J.; Yonker, Clement R.

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  20. VOLTAMMETRIC METHODS FOR DETERMINATION OF METAL BINDING BY FULVIC ACID

    EPA Science Inventory

    The use of anodic stripping voltammetry (ASV) and differential pulse polarography (DPP) for the measurement of the concentrations of aquo ions in the presence of fulvic acid, and the subsequent use of these data for estimation of the metal--fulvic acid conditional stability const...

  1. Endogenous fatty acids in olfactory hairs influence pheromone binding protein structure and function in Lymantria dispar.

    PubMed

    Nardella, Jason; Terrado, Mailyn; Honson, Nicolette S; Plettner, Erika

    2015-08-01

    The gypsy moth utilizes a pheromone, (7R,8S)-2-methyl-7,8-epoxyoctadecane, for mate location. The pheromone is detected by sensory hairs (sensilla) on the antennae of adult males. Sensilla contain the dendrites of olfactory neurons bathed in lymph, which contains pheromone binding proteins (PBPs). We have extracted and identified free fatty acids from lymph of sensory hairs, and we demonstrate that these function as endogenous ligands for gypsy moth PBP1 and PBP2. Homology modeling of both PBPs, and docking of fatty acids reveal multiple binding sites: one internal, the others external. Pheromone binding assays suggest that these fatty acids increase PBP-pheromone binding affinity. We show that fatty acid binding causes an increase in α-helix content in the N-terminal domain, but not in the C-terminal peptide of both proteins. The C-terminal peptide was shown to form a α-helix in a hydrophobic, homogeneous environment, but not in the presence of fatty acid micelles. Through partition assays we show that the fatty acids prevent adsorption of the pheromone on hydrophobic surfaces and facilitate pheromone partition into an aqueous phase. We propose that lymph is an emulsion of fatty acids and PBP that influence each other and thereby control the partition equilibria of hydrophobic odorants. PMID:26032337

  2. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades

    USGS Publications Warehouse

    Reddy, M.M.; Aiken, G.R.

    2001-01-01

    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  3. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content

  4. In vitro bile acid binding and short-chain fatty acid profile of flax fiber and ethanol co-products.

    PubMed

    Fodje, Adele M L; Chang, Peter R; Leterme, Pascal

    2009-10-01

    Fibers from flaxseed and co-products from ethanol production could be potential sources of dietary fiber in human diet. In vitro fermentation and bile acid binding models were used to investigate the metabolic effects of lignaMax (Bioriginal Food and Science Corp., Saskatoon, SK, Canada) flax meal, spent flax meal, soluble flax gum, wheat insoluble fiber (WIF), and rye insoluble fiber (RIF). Wheat and rye bran were used as reference samples. Bile acid binding of substrates was analysed at taurocholate ([(14)C]taurocholate) concentration of 12.5 mM. Soluble flax gum showed the highest bile acid binding (0.57 micromol/mg of fiber) (P acid binding between wheat bran (0.2 micromol/mg of fiber) and WIF (0.26 micromol/mg of fiber). RIF had higher (P acid binding (0.20 micromol/mg of fiber) than rye bran (0.13 micromol/mg of fiber). Substrates were hydrolyzed and incubated with pig fecal samples. Short-chain fatty acid (SCFA) profile and gas accumulation (G(f)) were compared. Soluble flax gum generated the highest amount of acetic and propionic acids. SCFA profiles of wheat/rye brans and WIF/RIF were similar (except for butyric acid). G(f) for soluble flax gum was greater (P < .001) than that of spent flax meal. G(f) values of the wheat samples were similar, whereas the G(f) of the rye bran was higher (P < .001) than that of RIF. Fractional degradation rate (micro(t = T/2)) (P < .001) was also recorded. The highest mu(t = T/2) was observed for the soluble flax gum. Oil-depleted flaxseed fractions and WIF/RIF (co-products from ethanol production) could be potential sources of dietary fiber in human nutrition. PMID:19857071

  5. Chemical composition and bile acid binding activity of products obtained from amaranth (Amaranthus cruentus) seeds.

    PubMed

    Tiengo, Andréa; Motta, Eliana Maria Pettirossi; Netto, Flavia Maria

    2011-11-01

    Cardiovascular diseases are currently the greatest cause of mortality in the world, and dislipidemia is appearing as one of the most important risk factors. The binding of bile acids (BAs) has been hypothesized as a possible mechanism by which dietary fibers lower blood cholesterol levels. Besides the fibers, other components in the amaranth seeds may be related to this hypocholesterolemic effect. The objective of the present study was to evaluate the BA binding capacity of some products obtained from defatted amaranth flour (DAF) and from the amaranth protein concentrate (APC). The alkaline residue, rich in fibers (8.6%), presented the lowest binding activity for the BAs tested, with the exception of glycocholic acid. The DAF showed intermediary binding activity for all the BAs tested, although similar to that of the APC for deoxycholic acid, and to that of the amaranth protein hydrolysate (APH) for taurocholic acid. The DAF and APC showed binding activity for secondary bile acids toxic to the intestinal mucus. From the results, amaranth products were shown to have the ability to bind BAs, but it was not possible to affirm whether the main component responsible for this activity was the proteins, fibers or eventually some other non-evaluated component. PMID:21901402

  6. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    PubMed Central

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    SUMMARY Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have difference functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. PMID:25458898

  7. Distinct binding determinants for 9-cis retinoic acid are located within AF-2 of retinoic acid receptor alpha.

    PubMed Central

    Tate, B F; Allenby, G; Janocha, R; Kazmer, S; Speck, J; Sturzenbecker, L J; Abarzúa, P; Levin, A A; Grippo, J F

    1994-01-01

    Retinoids exert their physiological action by interacting with two families of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs), which regulate gene expression by forming transcriptionally active heterodimeric RAR/RXR or homodimeric RXR/RXR complexes on DNA. Retinoid receptor activity resides in several regions, including the DNA and ligand binding domains, a dimerization interface, and both a ligand-independent (AF-1) and a ligand-dependent (AF-2) transactivation function. While 9-cis retinoic acid (RA) alone is the cognate ligand for the RXRs, both 9-cis RA and all-trans RA (t-RA) compete for binding with high affinity to the RARs. This latter observation suggested to us that the two isomers may interact with a common binding site. Here we report that RAR alpha has two distinct but overlapping binding sites for 9-cis RA and t-RA. Truncation of a human RAR alpha to 419 amino acids yields a receptor that binds both t-RA and 9-cis RA with high affinity, but truncation to amino acid 404 yields a mutant receptor that binds only t-RA with high affinity. Remarkably, this region also defines a C-terminal boundary for AF-2, as addition of amino acids 405 to 419 restores receptor-mediated gene activity to a truncated human RAR alpha lacking this region. It is interesting to speculate that binding of retinoid stereoisomers to unique sites within an RAR may function with AF-2 to cause differential activation of retinoid-responsive gene pathways. Images PMID:8139538

  8. Molecular Orbital Study of the Formation of Intramolecular Hydrogen Bonding of a Ligand Molecule in a Protein Aromatic Hydrophobic Pocket.

    PubMed

    Koseki, Jun; Gouda, Hiroaki; Hirono, Shuichi

    2016-01-01

    The natural product argadin is a cyclopentapeptide chitinase inhibitor that binds to chitinase B (ChiB) from the pathogenic bacteria Serratia marcescens. N(ω)-Acetyl-L-arginine and L-aminoadipic acid of argadin form intramolecular ionic hydrogen bonds in the aromatic hydrophobic pocket of ChiB. We performed ab initio molecular orbital and density functional theory calculations to elucidate the role of this intramolecular hydrogen bonding on intermolecular interactions between argadin and ChiB. We found that argadin accrues large stabilization energies from the van der Waals dispersion interactions, such as CH-π, π-π, and π-lone pair interactions, in the aromatic hydrophobic pocket of ChiB, although intramolecular hydrogen bonding within argadin might result in loss of entropy. The intramolecular ionic hydrogen bonding formation canceled local molecular charges and provided good van der Waals interactions with surrounding aromatic residues. PMID:27373666

  9. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  10. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  11. Inhibitors of Foot and Mouth Disease Virus Targeting a Novel Pocket of the RNA-Dependent RNA Polymerase

    PubMed Central

    Cornelison, Ceili A.; Rai, Devendra K.; Matzek, Kayla B.; Leslie, Maxwell D.; Schafer, Elizabeth; Marchand, Bruno; Adedeji, Adeyemi; Michailidis, Eleftherios; Dorst, Christopher A.; Moran, Jennifer; Pautler, Christie; Rodriguez, Luis L.; McIntosh, Mark A.; Rieder, Elizabeth; Sarafianos, Stefan G.

    2010-01-01

    Background Foot-and-Mouth Disease Virus (FMDV) is a picornavirus that infects cloven-hoofed animals and leads to severe losses in livestock production. In the case of an FMD outbreak, emergency vaccination requires at least 7 days to trigger an effective immune response. There are currently no approved inhibitors for the treatment or prevention of FMDV infections. Methodology/Principal Findings Using a luciferase-based assay we screened a library of compounds and identified seven novel inhibitors of 3Dpol, the RNA-dependent RNA polymerase of FMDV. The compounds inhibited specifically 3Dpol (IC50s from 2-17 µM) and not other viral or bacterial polymerases. Enzyme kinetic studies on the inhibition mechanism by compounds 5D9 and 7F8 showed that they are non-competitive inhibitors with respect to NTP and nucleic acid substrates. Molecular modeling and docking studies into the 3Dpol structure revealed an inhibitor binding pocket proximal to, but distinct from the 3Dpol catalytic site. Residues surrounding this pocket are conserved among all 60 FMDV subtypes. Site directed mutagenesis of two residues located at either side of the pocket caused distinct resistance to the compounds, demonstrating that they indeed bind at this site. Several compounds inhibited viral replication with 5D9 suppressing virus production in FMDV-infected cells with EC50 = 12 µM and EC90 = 20 µM). Significance We identified several non-competitive inhibitors of FMDV 3Dpol that target a novel binding pocket, which can be used for future structure-based drug design studies. Such studies can lead to the discovery of even more potent antivirals that could provide alternative or supplementary options to contain future outbreaks of FMD. PMID:21203539

  12. DBBP: database of binding pairs in protein-nucleic acid interactions

    PubMed Central

    2014-01-01

    Background Interaction of proteins with other molecules plays an important role in many biological activities. As many structures of protein-DNA complexes and protein-RNA complexes have been determined in the past years, several databases have been constructed to provide structure data of the complexes. However, the information on the binding sites between proteins and nucleic acids is not readily available from the structure data since the data consists mostly of the three-dimensional coordinates of the atoms in the complexes. Results We analyzed the huge amount of structure data for the hydrogen bonding interactions between proteins and nucleic acids and developed a database called DBBP (DataBase of Binding Pairs in protein-nucleic acid interactions, http://bclab.inha.ac.kr/dbbp). DBBP contains 44,955 hydrogen bonds (H-bonds) of protein-DNA interactions and 77,947 H-bonds of protein-RNA interactions. Conclusions Analysis of the huge amount of structure data of protein-nucleic acid complexes is labor-intensive, yet provides useful information for studying protein-nucleic acid interactions. DBBP provides the detailed information of hydrogen-bonding interactions between proteins and nucleic acids at various levels from the atomic level to the residue level. The binding information can be used as a valuable resource for developing a computational method aiming at predicting new binding sites in proteins or nucleic acids. PMID:25474259

  13. Binding of Ca2+ to Glutamic Acid-Rich Polypeptides from the Rod Outer Segment

    PubMed Central

    Haber-Pohlmeier, S.; Abarca-Heidemann, K.; Körschen, H. G.; Dhiman, H. Kaur; Heberle, J.; Schwalbe, H.; Klein-Seetharaman, J.; Kaupp, U. B.; Pohlmeier, A.

    2007-01-01

    Rod photoreceptors contain three different glutamic acid-rich proteins (GARPs) that have been proposed to control the propagation of Ca2+ from the site of its entry at the cyclic nucleotide-gated channel to the cytosol of the outer segment. We tested this hypothesis by measuring the binding of Ca2+ to the following five constructs related to GARPs of rod photoreceptors: a 32-mer peptide containing 22 carboxylate groups, polyglutamic acid, a recombinant segment comprising 73 carboxylate groups (GLU), GARP1, and GARP2. Ca2+ binding was investigated by means of a Ca2+-sensitive electrode. In all cases, Ca2+ binds with low affinity; the half-maximum binding constant K1/2 ranges from 6 to 16 mM. The binding stoichiometry between Ca2+ ions and carboxylic groups is ∼1:1; an exception is GARP2, where a binding stoichiometry of ∼1:2 was found. Hydrodynamic radii of 1.6, 2.8, 3.3, 5.7, and 6.7 nm were determined by dynamic light scattering for the 32-mer, polyglutamic acid, GLU, GARP2, and GARP1 constructs, respectively. These results suggest that the peptides as well as GARP1 and GARP2 do not adopt compact globular structures. We conclude that the structures should be regarded as loose coils with low-affinity, high-capacity Ca2+ binding. PMID:17218469

  14. An analysis of [3H]gamma-aminobutyric acid (GABA) binding in the human brain.

    PubMed

    Lloyd, K G; Dreksler, S

    1979-03-01

    The binding of [3H]GABA to membranes prepared from human brains obtained post morten was examined. This binding was independent of patient sex, age (16--80 years), postmortem interval (4--33 h) or storage time when frozen (0-64 months). In preparations from cerebellar cortex various compounds displaced [3H]GABA binding with the following order of potency: muscimol greater than 3-aminopropanesulfonic acid greater than GABA greater than imidazoleacet acid greater than delta-amino-n-valeric acid greater than 3-hydroxyGABA greater than bicuculline. Other compounds active 'in vitro' included strychnine, homocarnosine and some (e.g. clozapine, thioridazine, pimozide) but not all (chlorpromazine, haloperiodol) neuroleptics. Compounds inactive 'in vitro' included aminooxyacetic acid, baclofen, picrotoxin, anticholinergics, metrazole, anticonvulsants and naloxone. Triton X-100 augmented the [3H]GABA binding (25 nM) by about 10--20-fold in most brain regions. [3H]GABA binding (IC50) was altered in Huntington's chorea and Reye's syndrome, but not in schizophrenics (4-neuroleptic-treated patients) or sudden infant death syndrome. The data presented strongly support the proposal that the measurement of [3H]GABA binding in postmortem human brain offers a reflection of the state of the physiologically relevant GABA receptor. PMID:218679

  15. Cu(II) binding by a pH-fractionated fulvic acid

    USGS Publications Warehouse

    Brown, G.K.; Cabaniss, S.E.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The relationship between acidity, Cu(II) binding and sorption to XAD resin was examined using Suwannee River fulvic acid (SRFA). The work was based on the hypothesis that fractions of SRFA eluted from an XAD column at various pH's from 1.0 to 12.0 would show systematic variations in acidity and possibly aromaticity which in turn would lead to different Cu(II) binding properties. We measured equilibrium Cu(II) binding to these fractions using Cu2+ ion-selective electrode (ISE) potentiometry at pH 6.0. Several model ligands were also examined, including cyclopentane-1,2,3,4-tetracarboxylic acid (CP-TCA) and tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THF-TCA), the latter binding Cu(II) much more strongly as a consequence of the ether linkage. The SRFA Cu(II) binding properties agreed with previous work at high ionic strength, and binding was enhanced substantially at lower ionic strength, in agreement with Poisson-Boltzmann predictions for small spheres. Determining Cu binding constants (K(i)) by non-linear regression with total ligand concentrations (L(Ti)) taken from previous work, the fractions eluted at varying pH had K(i) similar to the unfractionated SRFA, with a maximum enhancement of 0.50 log units. We conclude that variable-pH elution from XAD does not isolate significantly strong (or weak) Cu(II)-binding components from the SRFA mixture. Copyright (C) 1999 Elsevier Science B.V.

  16. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs. PMID:26487699

  17. The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family.

    PubMed

    Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M

    1992-02-01

    The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs

  18. A glycoprotein binding retinoids and fatty acids is present in Drosophila.

    PubMed

    Duncan, T; Kutty, G; Chader, G J; Wiggert, B

    1994-07-01

    In the search for a possible Drosophila melanogaster homolog of interphotoreceptor retinoid-binding protein (IRBP), a approximately 140-kDa retinoid- and fatty acid-binding glycoprotein found in vertebrates, the 110,000 g supernatant fraction prepared from homogenates of fly heads was analyzed for the presence of proteins capable of binding radiolabeled retinol and palmitic acid. A soluble protein, which binds concanavalin A and has a retention time on size-exclusion high-performance liquid chromatography identical to that of purified bovine IRBP, was identified as binding both ligands. As assessed by fluorescence titration, the protein fraction obtained by concanavalin A-Sepharose affinity chromatography and size-exclusion chromatography of fly head supernatant had apparent dissociation constants of 2.9 x 10(-7) +/- 0.6 M for all-trans retinol, with the number (n) of independent ligand binding sites per protein molecule = 2, and 3.5 x 10(-7) +/- 0.1 M for 16-[9-anthroyloxy] palmitic acid with n = 7. High-performance liquid chromatography of hexane extracts of this protein fraction resolved several peaks with polarity and relative retention times similar, but not identical to all-trans retinol and retinal and their 9-, 11-, and 13-cis isomers. Gas chromatography/mass spectrometry analysis of fatty acid methyl esters prepared following lipid extraction of the protein identified lauric, myristic, palmitic, palmitoleic, and oleic acids as being covalently bound. Laurate, myristate, palmitate, and stearate were noncovalently bound. The apparent molecular mass of the Drosophila protein as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the retinoid- and fatty acid-binding peak obtained by hydrophobic interaction chromatography of the size-exclusion fraction was approximately 70 kDa. PMID:8031123

  19. Binding of ascorbic acid and α-tocopherol to bovine serum albumin: a comparative study.

    PubMed

    Li, Xiangrong; Wang, Gongke; Chen, Dejun; Lu, Yan

    2014-02-01

    Binding of ascorbic acid (water-soluble antioxidant) and α-tocopherol (lipid-soluble antioxidant) to bovine serum albumin (BSA) has been studied using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Thermodynamic investigations reveal that ascorbic acid/α-tocopherol binding to BSA is driven by favorable enthalpy and unfavorable entropy, and the major driving forces are hydrogen bonding and van der Waals forces. For ascorbic acid, the interaction is characterized by a high number of binding sites, which suggests that binding occurs by a surface adsorption mechanism that leads to coating of the protein surface. For α-tocopherol, one molecule of α-tocopherol combines with one molecule of BSA and no more α-tocopherol binding to BSA occurs at concentration ranges used in this study. Fluorescence experiments suggest that ascorbic acid has predominantly a "sphere of action" quenching mechanism, whereas, for α-tocopherol, the quenching mechanism is "static quenching" and due to the formation of a ground state complex. Additionally, as shown by the UV-vis absorption, synchronous fluorescence spectroscopy, and FT-IR, ascorbic acid and α-tocopherol may induce conformational and microenvironmental changes of BSA. PMID:24310979

  20. Affinity regression predicts the recognition code of nucleic acid binding proteins

    PubMed Central

    Pelossof, Raphael; Singh, Irtisha; Yang, Julie L.; Weirauch, Matthew T.; Hughes, Timothy R.; Leslie, Christina S.

    2016-01-01

    Predicting the affinity profiles of nucleic acid-binding proteins directly from the protein sequence is a major unsolved problem. We present a statistical approach for learning the recognition code of a family of transcription factors (TFs) or RNA-binding proteins (RBPs) from high-throughput binding assays. Our method, called affinity regression, trains on protein binding microarray (PBM) or RNA compete experiments to learn an interaction model between proteins and nucleic acids, using only protein domain and probe sequences as inputs. By training on mouse homeodomain PBM profiles, our model correctly identifies residues that confer DNA-binding specificity and accurately predicts binding motifs for an independent set of divergent homeodomains. Similarly, learning from RNA compete profiles for diverse RBPs, our model can predict the binding affinities of held-out proteins and identify key RNA-binding residues. More broadly, we envision applying our method to model and predict biological interactions in any setting where there is a high-throughput ‘affinity’ readout. PMID:26571099

  1. Binding and cleavage of nucleic acids by the "hairpin" ribozyme.

    PubMed

    Chowrira, B M; Burke, J M

    1991-09-01

    The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+. PMID:1909564

  2. Molecular Switch Controlling the Binding of Anionic Bile Acid Conjugates to Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Rais, Rana; Acharya, Chayan; Tririya, Gasirat; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium-dependent bile acid transporter (hASBT) may serve as a prodrug target for oral drug absorption. Synthetic, biological, NMR and computational approaches identified the structure-activity relationships of mono- and dianionic bile acid conjugates for hASBT binding. Experimental data combined with a conformationally-sampled pharmacophore/QSAR modeling approach (CSP-SAR) predicted that dianionic substituents with intramolecular hydrogen bonding between hydroxyls on the cholane skeleton and the acid group on the conjugate's aromatic ring increased conjugate hydrophobicity and improved binding affinity. Notably, the model predicted the presence of a conformational molecular switch, where shifting the carboxylate substituent on an aromatic ring by a single position controlled binding affinity. Model validation was performed by effectively shifting the spatial location of the carboxylate by inserting a methylene adjacent to the aromatic ring, resulting in the predicted alteration in binding affinity. This work illustrates conformation as a determinant of ligand binding affinity to a biological transporter. PMID:20504026

  3. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2016-08-01

    Interaction of the food colorant acid red 27 with double stranded DNA was investigated using spectroscopic and calorimetric methods. Absorbance and fluorescence studies suggested an intimate binding interaction between the dye and DNA. The quantum efficiency value testified an effective energy transfer from the DNA base pairs to the dye molecules. Minor groove displacement assay with Hoechst 33258 revealed that the binding occurs in the minor groove of DNA. Circular dichroism studies revealed that acid red 27 induces moderate conformational perturbations in DNA. Results of calorimetric studies suggested that the complexation process was driven largely by positive entropic contribution with a smaller favorable enthalpy contribution. The equilibrium constant of the binding was calculated to be (3.04 ± 0.09) × 10(4)  M(-1) at 298.15 K. Negative heat capacity value along with the enthalpy-entropy compensation phenomenon established the involvement of dominant hydrophobic forces in the binding process. Differential scanning calorimetry studies presented evidence for an increased thermal stability of DNA on binding of acid red 27. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26846192

  4. Analysis of a nucleotide-binding site of 5-lipoxygenase by affinity labelling: binding characteristics and amino acid sequences.

    PubMed Central

    Zhang, Y Y; Hammarberg, T; Radmark, O; Samuelsson, B; Ng, C F; Funk, C D; Loscalzo, J

    2000-01-01

    5-Lipoxygenase (5LO) catalyses the first two steps in the biosynthesis of leukotrienes, which are inflammatory mediators derived from arachidonic acid. 5LO activity is stimulated by ATP; however, a consensus ATP-binding site or nucleotide-binding site has not been found in its protein sequence. In the present study, affinity and photoaffinity labelling of 5LO with 5'-p-fluorosulphonylbenzoyladenosine (FSBA) and 2-azido-ATP showed that 5LO bound to the ATP analogues quantitatively and specifically and that the incorporation of either analogue inhibited ATP stimulation of 5LO activity. The stoichiometry of the labelling was 1.4 mol of FSBA/mol of 5LO (of which ATP competed with 1 mol/mol) or 0.94 mol of 2-azido-ATP/mol of 5LO (of which ATP competed with 0.77 mol/mol). Labelling with FSBA prevented further labelling with 2-azido-ATP, indicating that the same binding site was occupied by both analogues. Other nucleotides (ADP, AMP, GTP, CTP and UTP) also competed with 2-azido-ATP labelling, suggesting that the site was a general nucleotide-binding site rather than a strict ATP-binding site. Ca(2+), which also stimulates 5LO activity, had no effect on the labelling of the nucleotide-binding site. Digestion with trypsin and peptide sequencing showed that two fragments of 5LO were labelled by 2-azido-ATP. These fragments correspond to residues 73-83 (KYWLNDDWYLK, in single-letter amino acid code) and 193-209 (FMHMFQSSWNDFADFEK) in the 5LO sequence. Trp-75 and Trp-201 in these peptides were modified by the labelling, suggesting that they were immediately adjacent to the C-2 position of the adenine ring of ATP. Given the stoichiometry of the labelling, the two peptide sequences of 5LO were probably near each other in the enzyme's tertiary structure, composing or surrounding the ATP-binding site of 5LO. PMID:11042125

  5. Identification and Pharmacological Characterization of Multiple Allosteric Binding Sites on the Free Fatty Acid 1 Receptor

    PubMed Central

    Lin, Daniel C.-H.; Guo, Qi; Luo, Jian; Zhang, Jane; Nguyen, Kathy; Chen, Michael; Tran, Thanh; Dransfield, Paul J.; Brown, Sean P.; Houze, Jonathan; Vimolratana, Marc; Jiao, Xian Yun; Wang, Yingcai; Birdsall, Nigel J. M.

    2012-01-01

    Activation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium- and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity. Analysis of functional data reveals positive functional cooperativity between the full agonists and partial agonists in various functional assays (in vitro and ex vivo) and also in vivo. Furthermore, the endogenous fatty acid docosahexaenoic acid (DHA) shows negative or neutral cooperativity with members of both series of agonists in binding assays but displays positive cooperativity in functional assays. Another synthetic agonist is allosteric with members of both agonist series, but apparently competitive with DHA. Therefore, there appear to be three allosterically linked binding sites on FFA1 with agonists specific for each of these sites. Activation of free fatty acid 1 receptor (FFAR1) by each of these agonists is differentially affected by mutations of two arginine residues, previously found to be important for FFAR1 binding and activation. These ligands with their high potencies and strong positive functional cooperativity with endogenous fatty acids, demonstrated in vitro and in vivo, have the potential to deliver therapeutic benefits. PMID:22859723

  6. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor.

    PubMed

    Lin, Daniel C-H; Guo, Qi; Luo, Jian; Zhang, Jane; Nguyen, Kathy; Chen, Michael; Tran, Thanh; Dransfield, Paul J; Brown, Sean P; Houze, Jonathan; Vimolratana, Marc; Jiao, Xian Yun; Wang, Yingcai; Birdsall, Nigel J M; Swaminath, Gayathri

    2012-11-01

    Activation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium- and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity. Analysis of functional data reveals positive functional cooperativity between the full agonists and partial agonists in various functional assays (in vitro and ex vivo) and also in vivo. Furthermore, the endogenous fatty acid docosahexaenoic acid (DHA) shows negative or neutral cooperativity with members of both series of agonists in binding assays but displays positive cooperativity in functional assays. Another synthetic agonist is allosteric with members of both agonist series, but apparently competitive with DHA. Therefore, there appear to be three allosterically linked binding sites on FFA1 with agonists specific for each of these sites. Activation of free fatty acid 1 receptor (FFAR1) by each of these agonists is differentially affected by mutations of two arginine residues, previously found to be important for FFAR1 binding and activation. These ligands with their high potencies and strong positive functional cooperativity with endogenous fatty acids, demonstrated in vitro and in vivo, have the potential to deliver therapeutic benefits. PMID:22859723

  7. Saturated fatty-acids regulate retinoic acid signaling and suppress tumorigenesis by targeting fatty-acid-binding protein 5

    PubMed Central

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L.; Noy, Noa

    2015-01-01

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes, and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5 which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer. PMID:26592976

  8. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5.

    PubMed

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L; Noy, Noa

    2015-01-01

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5, which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting the activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer. PMID:26592976

  9. Direct photoaffinity labeling of cellular retinoic acid-binding protein I (CRABP-I) with all-trans-retinoic acid: identification of amino acids in the ligand binding site.

    PubMed

    Chen, G; Radominska-Pandya, A

    2000-10-17

    Cellular retinoic acid-binding proteins I and II (CRABP-I and -II, respectively) are transport proteins for all-trans-retinoic acid (RA), an active metabolite of vitamin A (retinol), and have been reported to be directly involved in the metabolism of RA. In this study, direct photoaffinity labeling with [11,12-(3)H]RA was used to identify amino acids comprising the ligand binding site of CRABP-I. Photoaffinity labeling of CRABP-I with [(3)H]RA was light- and concentration-dependent and was protected by unlabeled RA and various retinoids, indicating that the labeling was directed to the RA-binding site. Photolabeled CRABP-I was hydrolyzed with endoproteinase Lys-C to yield radioactive peptides, which were separated by reversed-phase HPLC for analysis by Edman degradation peptide sequencing. This method identified five modified amino acids from five separate HPLC fractions: Trp7, Lys20, Arg29, Lys38, and Trp109. All five amino acids are located within one side of the "barrel" structure in the area indicated by the reported crystal structure as the ligand binding site. This is the first direct identification of specific amino acids in the RA-binding site of CRABPs by photoaffinity labeling. These results provide significant information about the ligand binding site of the CRABP-I molecule in solution. PMID:11027136

  10. Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding

    SciTech Connect

    Maurer, F.; Christl, I; Kretzschmar, R

    2010-01-01

    Previous studies on proton and metal binding to humic substances have not considered a potential influence of reduction and oxidation of functional groups. Therefore, we investigated how proton binding of a purified soil humic acid was affected by reduction. Reduction of the humic acid was carried out using an electrochemical cell that allowed us to measure the amounts of electrons and protons involved in reduction reactions. We further applied spectroscopic methods (UV-vis, fluorescence, FT-IR, C-1s NEXAFS) to detect possible chemical changes in the humic acid induced by reduction and reoxidation. The effect of reduction on proton binding was determined with acid-base titrations in the pH range 4-10 under controlled redox conditions. During reduction, 0.54 mol kg{sup -1} protons and 0.55 mol kg{sup -1} electrons were transferred to humic acid. NICA-Donnan modeling revealed an equivalent increase in proton-reactive sites (0.52 mol kg{sup -1}) in the alkaline pH-range. Our results indicate that reduction of humic acid increased the amount of proton-reactive sites by 15% compared to the untreated state. Spectroscopic differences between the untreated and reduced humic acid were minor, apart from a lower UV-vis absorption of the reduced humic acid between 400 and 700 nm.

  11. Impact of Dry Solids and Bile Acid Concentrations on Bile Acid Binding Capacity of Extruded Oat Cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extruded breakfast cereals (EBC), processed from two oat lines, N979-5-2-4 (N979) and ‘Jim’, with beta-glucan concentrations of 8.7 and 4.9%, respectively, were used to determine the impact of dry solids (DS) and bile acid (BA) concentrations on in vitro BA binding efficiency. A full fractional fact...

  12. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1986-01-01

    Fatty acid-binding protein from rat liver is shown to bind the fluorescent fatty acid probe dansyl undecanoic acid. Binding is accompanied by a shift in the fluorescence emission maximum from 550 nm to 500 nm and a 60-fold fluorescence enhancement at 500 nm. These spectral properties have allowed the use of this probe to detect and quantify microgram amounts of liver fatty acid-binding protein during purification procedures. In conjunction with h.p.l.c. the method allows the rapid estimation of liver fatty acid-binding protein in biological samples. The validity of the method is demonstrated by measuring the concentration of fatty acid-binding protein in livers from control and hypolipidaemic-drug-treated rats. The dramatic diurnal rhythm previously reported for this protein [Dempsey (1984) Curr. Top. Cell. Regul. 24, 63-86] was not observed with this method. Images Fig. 1. PMID:3800946

  13. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue.

    PubMed Central

    Hauschka, P V; Lian, J B; Gallop, P M

    1975-01-01

    A direct approach has been developed for quantitative identification of the calcium-binding amino acid, gamma-carboxyglutamate, in proteins. This should be advantageous for the study of numerous systems where specific roles for the binding of calcium or other divalent cations are suspected. Investigation of mineralized tissue, where calcium-binding proteins are implicated in the mineralization process, revealed that gamma-carboxyglutamate was present in proteins solubilized from chicken bone with neutral aqueous ethylenediamine tetraacetic acid. This was established by direct isolation of the amino acid from alkaline hydrolysates and its quantitative conversion to glutamic acid by decarboxylation in 0.05 M HCl at 100 degrees. The kinetics of decarboxylation and chromatographic behavior are identical to those of gamma-carboxyglutamate from human prothrombin. After resolution of the soluble bone proteins by phosphate gradient elution from hydroxyapatite, gamma-carboxyglutamate was found to be concentrated primarily in one BaSO4-adsorbable anionic protein species; bone collagen was devoid of the amino acid. In view of the recently discovered requirement of vitamin K for generation of calcium binding sites (gamma-carboxyglutamate) by gamma-carboxylation of specific glutamic acid residues in prothrombin, our findings may implicate vitamin K metabolism in normal bone development and suggest a role for the gamma-carboxyglutamate-rich protein in regulation of calcium salt deposition in mineralized tissues. PMID:1060074

  14. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  15. The effect of charge reversal mutations in the alpha-helical region of liver fatty acid binding protein on the binding of fatty-acyl CoAs, lysophospholipids and bile acids.

    PubMed

    Hagan, Robert M; Davies, Joanna K; Wilton, David C

    2002-10-01

    Liver fatty acid binding protein (LFABP) is unique among the various types of FABPs in that it can bind a variety of ligands in addition to fatty acids. LFABP is able to bind long chain fatty acids with a 2:1 stoichiometry and the crystal structure has identified two fatty acid binding sites in the binding cavity. The presumed primary site (site 1) involves the fatty acid binding with the carboxylate group buried in the cavity whereas the fatty acid at site 2 has the carboxylate group solvent-exposed within the ligand portal region and in the vicinity of alpha-helix II. The alpha-helical region contains three cationic residues, K20, K31, K33 and modelling studies suggest that K31 on alpha-helix II could make an electrostatic contribution to anionic ligands binding to site 2. The preparation of three charge reversal mutants of LFABP, K20E, K31E and K33E has allowed an investigation of the role of site 2 in ligand binding, particularly those ligands with a bulky anionic head group. The binding of oleoyl CoA, lysophosphatidic acid, lysophosphatidylcholine, lithocholic acid and taurolithocholate 3-sulphate to LFABP has been studied using the alpha-helical mutants. The results support the concept that such ligands bind at site 2 of LFABP where solvent exposure allows the accommodation of their bulky anionic group. PMID:12479568

  16. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results.

    PubMed Central

    Ben-Tal, N; Honig, B; Peitzsch, R M; Denisov, G; McLaughlin, S

    1996-01-01

    We measured directly the binding of Lys3, Lys5, and Lys7 to vesicles containing acidic phospholipids. When the vesicles contain 33% acidic lipids and the aqueous solution contains 100 mM monovalent salt, the standard Gibbs free energy for the binding of these peptides is 3, 5, and 7 kcal/mol, respectively. The binding energies decrease as the mol% of acidic lipids in the membrane decreases and/or as the salt concentration increases. Several lines of evidence suggest that these hydrophilic peptides do not penetrate the polar headgroup region of the membrane and that the binding is mainly due to electrostatic interactions. To calculate the binding energies from classical electrostatics, we applied the nonlinear Poisson-Boltzmann equation to atomic models of the phospholipid bilayers and the basic peptides in aqueous solution. The electrostatic free energy of interaction, which arises from both a long-range coulombic attraction between the positively charged peptide and the negatively charged lipid bilayer, and a short-range Born or image charge repulsion, is a minimum when approximately 2.5 A (i.e., one layer of water) exists between the van der Waals surfaces of the peptide and the lipid bilayer. The calculated molar association constants, K, agree well with the measured values: K is typically about 10-fold smaller than the experimental value (i.e., a difference of about 1.5 kcal/mol in the free energy of binding). The predicted dependence of K (or the binding free energies) on the ionic strength of the solution, the mol% of acidic lipids in the membrane, and the number of basic residues in the peptide agree very well with the experimental measurements. These calculations are relevant to the membrane binding of a number of important proteins that contain clusters of basic residues. Images FIGURE 2 FIGURE 3 PMID:8842196

  17. The C-Terminal Acidic Region of Calreticulin Mediates Phosphatidylserine Binding and Apoptotic Cell Phagocytosis.

    PubMed

    Wijeyesakere, Sanjeeva Joseph; Bedi, Sukhmani Kaur; Huynh, David; Raghavan, Malini

    2016-05-01

    Calreticulin is a calcium-binding chaperone that is normally localized in the endoplasmic reticulum. Calreticulin is detectable on the surface of apoptotic cells under some apoptosis-inducing conditions, where it promotes the phagocytosis and immunogenicity of dying cells. However, the precise mechanism by which calreticulin, a soluble protein, localizes to the outer surface of the plasma membrane of dying cells is unknown, as are the molecular mechanisms that are relevant to calreticulin-induced cellular phagocytosis. Calreticulin comprises three distinct structural domains: a globular domain, an extended arm-like P-domain, and a C-terminal acidic region containing multiple low-affinity calcium binding sites. We show that calreticulin, via its C-terminal acidic region, preferentially interacts with phosphatidylserine (PS) compared with other phospholipids and that this interaction is calcium dependent. Additionally, exogenous calreticulin binds apoptotic cells via a higher-affinity calcium-dependent mode that is acidic region dependent. Exogenous calreticulin also binds live cells, including macrophages, via a second, lower-affinity P-domain and globular domain-dependent, but calcium-independent binding mode that likely involves its generic polypeptide binding site. Truncation constructs lacking the acidic region or arm-like P-domain of calreticulin are impaired in their abilities to induce apoptotic cell phagocytosis by murine peritoneal macrophages. Taken together, the results of this investigation provide the first molecular insights into the phospholipid binding site of calreticulin as a key anchor point for the cell surface expression of calreticulin on apoptotic cells. These findings also support a role for calreticulin as a PS-bridging molecule that cooperates with other PS-binding factors to promote the phagocytosis of apoptotic cells. PMID:27036911

  18. Hybridoma antibodies to the lipid-binding site(s) in the amino-terminal region of fibronectin inhibits binding of streptococcal lipoteichoic acid.

    PubMed

    Stanislawski, L; Courtney, H S; Simpson, W A; Hasty, D L; Beachey, E H; Robert, L; Ofek, I

    1987-08-01

    In this report, we present evidence to suggest that streptococci and lipoteichoic acid (LTA) interact with a fatty acid binding site located near the NH2-terminus of fibronectin. The evidence is based on the following observations. Antibodies directed against a synthetic peptide (residues 1-30 of the amino-terminus of fibronectin) reacted with the two thermolysin-generated peptides (24 and 28 kilodaltons [kDa]) that were adsorbed by and eluted from streptococci. The adsorption of the 24- and 28-kDa peptides to streptococci was inhibited by LTA. The two monoclonal antibodies that inhibited the binding of LTA to fibronectin reacted only with the 24- and 28-kDa fragments of fibronectin. Conversely, LTA, as well as lauric acid and oleic acid, blocked the binding of the same monoclonal antibodies to fibronectin. LTA had no effect on the binding of hybridoma antibodies directed against the collagen or cell-binding domain. PMID:3298457

  19. Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers

    SciTech Connect

    Hamilton, J.A. )

    1989-04-01

    Temperature-dependent (5-42{degree}C) {sup 13}C NMR spectra of albumin complexes with 90% isotopically substituted (1-{sup 13}C)octanoic or (1-{sup 13}C)decanoic acids showed a single peak at >30{degree}C but three peaks at lower temperatures. The chemical-shift differences result from different ionic and/or hydrogen-bonding interactions between amino acid side chains and the fatty acid carboxyl carbon. Rapid exchange of fatty acid among binding sites obscures these sites at temperatures >30{degree}C. Rate constants for exchange at 33{degree}C were 350 sec{sup {minus}1} for octanoate and 20 sec {sup {minus}1} for decanoate. Temperature-dependent data for octanoate showed an activation energy of 2 kcal/mol for exchange. Spectra of albumin complexes with the 12-carbon saturated fatty acid, lauric acid, had several narrow laurate carboxyl peaks at 35{degree}C, indicating longer lifetimes in the different binding sites. Fatty acid exchange between albumin and model membranes (phosphatidylcholine bilayers) occurred on a time scale comparable to that for exchange among albumin binding sites, following the order octanoate > decanoate > laurate. The equilibrium distribution of fatty acid between lipid bilayers and protein was measured directly from NMR spectra. Decreasing pH increased the relative affinity of fatty acid for the lipid bilayer. The results predict that the relative affinity of octanoic acid for albumin and membranes will be similar to that of long-chain fatty acids, but the rate of equilibration will be {approx} 10{sup 4} faster for octanoic acid.

  20. Shoreline relaxation at pocket beaches

    NASA Astrophysics Data System (ADS)

    Turki, Imen; Medina, Raul; Kakeh, Nabil; González, Mauricio

    2015-09-01

    A new physical concept of relaxation time is introduced in this research as the time required for the beach to dissipate its initial perturbation. This concept is investigated using a simple beach-evolution model of shoreline rotation at pocket beaches, based on the assumption that the instantaneous change of the shoreline plan-view shape depends on the long-term equilibrium plan-view shape. The expression of relaxation time is developed function of the energy conditions and the physical characteristics of the beach; it increases at longer beaches having coarse sediments and experiencing low-energy conditions. The relaxation time, calculated by the developed model, is validated by the shoreline observations extracted from video images at two artificially embayed beaches of Barcelona (NW Mediterranean) suffering from perturbations of sand movement and a nourishment project. This finding is promising to estimate the shoreline response and useful to improve our understanding of the dynamic of pocket beaches and their stability.

  1. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes.

    PubMed

    Herr, F M; Aronson, J; Storch, J

    1996-01-30

    The structure of heart fatty acid binding protein (HFABP) is a flattened beta-barrel comprising 10 antiparallel beta-sheets capped by two alpha-helical segments. The helical cap region is hypothesized to behave as a portal "lid" for the entry and release of ligand from the binding pocket. The transfer of fatty acid from HFABP is thought to occur via effective collisional interactions with membranes, and these interactions are enhanced when transfer is to membranes of net negative charge, thus implying that specific basic residues on the surface of HFABP may govern the transfer process [Wootan, M. G., & Storch, J. (1994) J. Biol. Chem. 269, 10517-10523]. To directly examine the role of charged lysine residues on the HFABP surface in specific interactions with membranes, chemical modification and selective mutagenesis of HFABP were used. All surface lysine residues were neutralized by acetylation of recombinant HFABP with acetic anhydride. In addition, seven mutant HFABPs were generated that resulted in charge alterations in five distinct sites of HFABP. Modification of the protein did not significantly alter the structural or ligand binding properties of HFABP, as assessed by circular dichroism, fluorescence quantum yield, and ligand binding analyses. By using a resonance energy transfer assay, transfer of 2-(9-anthroyloxy)palmitate (2AP) from acetylated HFABP to membranes was significantly slower than transfer from native HFABP. In addition, in distinct contrast to transfer from native protein, the 2AP transfer rate from acetylated HFABP was not increased to acceptor membranes of increased negative charge. Transfer of 2AP from HFABP mutants involving K22, located on alpha-helix I (alpha-I) of the helical cap region, was 3-fold slower than transfer from wild-type protein, whereas rates from a mutant involving the K59 residue, located on the beta 2-turn of the barrel near the helical cap, were 2-fold faster than those of wild type. A double mutant involving K22 and K

  2. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-12-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  3. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  4. F pocket flexibility influences the tapasin dependence of two differentially disease-associated MHC Class I proteins.

    PubMed

    Abualrous, Esam T; Fritzsche, Susanne; Hein, Zeynep; Al-Balushi, Mohammed S; Reinink, Peter; Boyle, Louise H; Wellbrock, Ursula; Antoniou, Antony N; Springer, Sebastian

    2015-04-01

    The human MHC class I protein HLA-B*27:05 is statistically associated with ankylosing spondylitis, unlike HLA-B*27:09, which differs in a single amino acid in the F pocket of the peptide-binding groove. To understand how this unique amino acid difference leads to a different behavior of the proteins in the cell, we have investigated the conformational stability of both proteins using a combination of in silico and experimental approaches. Here, we show that the binding site of B*27:05 is conformationally disordered in the absence of peptide due to a charge repulsion at the bottom of the F pocket. In agreement with this, B*27:05 requires the chaperone protein tapasin to a greater extent than the conformationally stable B*27:09 in order to remain structured and to bind peptide. Taken together, our data demonstrate a method to predict tapasin dependence and physiological behavior from the sequence and crystal structure of a particular class I allotype. Also watch the Video Abstract. PMID:25615938

  5. Nucleic acid-binding properties of the RRM-containing protein RDM1

    SciTech Connect

    Hamimes, Samia; Bourgeon, Dominique; Stasiak, Alicja Z.; Stasiak, Andrzej; Van Dyck, Eric . E-mail: Vandyck@iarc.fr

    2006-05-26

    RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L{sub 119}GF {sup {yields}} AAA mutation affects the mode of RDM1 binding to single-stranded DNA.

  6. Lead and calcium binding to fulvic acids: Salt effect and competition

    SciTech Connect

    Pinheiro, J.P.; Mota, A.M.; Benedetti, M.F.

    1999-10-01

    Knowledge of the speciation of Pb in natural aquatic systems is important if the authors want to understand the bioavailability and mobility of Pb in polluted and natural environments. The results given in this paper were obtained under conditions as close as possible to natural conditions. These new data show that Pb strongly binds to fulvic acids. The authors also show that the competitive effect of Pb on Ca binding to the same fulvic acid is smaller than the salt effect on Ca binding to fulvic acids as pH varies from 4 to 8. All the data were analyzed with the NICCA-Donnan model developed to describe metal ion binding to natural organic matter. The model predictions of competitive and salt effects are excellent. Comparison of their results with previously published data suggests that metal ion binding strength is similar for fulvic acids from different origins. Thus, all data sets could be interpreted within the framework of a unified modeling approach.

  7. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes.

    PubMed Central

    Stremmel, W; Strohmeyer, G; Borchard, F; Kochwa, S; Berk, P D

    1985-01-01

    When [14C]oleate-bovine serum albumin complexes were incubated in vitro with rat liver plasma membranes (LPM), specific, saturable binding of oleate to the membranes was observed. Maximal heat-sensitive (i.e., specific) binding was 3.2 nmol/mg of membrane protein. Oleate-agarose affinity chromatography of Triton X-100-solubilized LPM was used to isolate a single 40-kDa protein with high affinity for oleate. On gel filtration, the protein comigrated with various fatty acids but not with [14C]bilirubin, [35S]sulfobromophthalein, [14C]taurocholate, [14C]phosphatidylcholine, or [14C]cholesteryloleate. A rabbit antibody to this membrane fatty acid-binding protein gave a single precipitin line with the antigen but no reactivity with concentrated cytosolic proteins, LPM bilirubin/sulfobromophthalein-binding protein, or rat albumin or other rat plasma proteins. The antibody selectively inhibited heat-sensitive binding of [14C]oleate to LPM. Immunofluorescence studies localized the antigen in liver-cell plasma membranes as well as in other major sites of fatty acid transport. These data are compatible with the hypothesis that this protein may act as a receptor in a hepatocellular uptake mechanism for fatty acids. Images PMID:3881757

  8. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor.

    PubMed

    Van Zeebroeck, Griet; Bonini, Beatriz Monge; Versele, Matthias; Thevelein, Johan M

    2009-01-01

    Transporter-related nutrient sensors, called transceptors, mediate nutrient activation of signaling pathways through the plasma membrane. The mechanism of action of transporting and nontransporting transceptors is unknown. We have screened 319 amino acid analogs to identify compounds that act on Gap1, a transporting amino acid transceptor in yeast that triggers activation of the protein kinase A pathway. We identified competitive and noncompetitive inhibitors of transport, either with or without agonist action for signaling, including nontransported agonists. Using substituted cysteine accessibility method (SCAM) analysis, we identified Ser388 and Val389 as being exposed into the amino acid binding site, and we show that agonist action for signaling uses the same binding site as used for transport. Our results provide the first insight, to our knowledge, into the mechanism of action of transceptors. They indicate that signaling requires a ligand-induced specific conformational change that may be part of but does not require the complete transport cycle. PMID:19060912

  9. Dynamics of cellular retinoic acid binding protein I on multiple time scales with implications for ligand binding.

    PubMed

    Krishnan, V V; Sukumar, M; Gierasch, L M; Cosman, M

    2000-08-01

    Cellular retinoic acid binding protein I (CRABPI) belongs to the family of intracellular lipid binding proteins (iLBPs), all of which bind a hydrophobic ligand within an internal cavity. The structures of several iLBPs reveal minimal structural differences between the apo (ligand-free) and holo (ligand-bound) forms, suggesting that dynamics must play an important role in the ligand recognition and binding processes. Here, a variety of nuclear magnetic resonance (NMR) spectroscopy methods were used to systematically study the dynamics of both apo and holo CRABPI at various time scales. Translational and rotational diffusion constant measurements were used to study the overall motions of the proteins. Both apo and holo forms of CRABPI tend to self-associate at high (1.2 mM) concentrations, while at low concentrations (0.2 mM), they are predominantly monomeric. Rapid amide exchange rate and laboratory frame relaxation rate measurements at two spectrometer field strengths (500 and 600 MHz) were used to probe the internal motions of the individual residues. Several residues in the apo form, notably within the ligand recognition region, exhibit millisecond time scale motions that are significantly arrested in the holo form. In contrast, no significant differences in the high-frequency motions were observed between the two forms. These results provide direct experimental evidence for dynamics-induced ligand recognition and binding at a specifically defined time scale. They also exemplify the importance of dynamics in providing a more comprehensive understanding of how a protein functions. PMID:10924105

  10. Effects of iron deficiency on iron binding and internalization into acidic vacuoles in Dunaliella salina.

    PubMed

    Paz, Yakov; Shimoni, Eyal; Weiss, Meira; Pick, Uri

    2007-07-01

    Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein (TTf), which binds and internalizes Fe(3+) ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of iron binding and internalization and identified the site of iron internalization. Iron deficiency induces a 4-fold increase in Fe binding, but only 50% enhancement in the rate of iron uptake and also increases the affinity for iron and bicarbonate, a coligand for iron binding. These results indicate that iron deprivation leads to accumulation and modification of iron-binding sites. Iron uptake in iron-sufficient cells is preceded by an apparent time lag, resulting from prebound iron, which can be eliminated by unloading iron-binding sites. Iron is tightly bound to surface-exposed sites and hardly exchanges with medium iron. All bound iron is subsequently internalized. Accumulation of iron inhibits further iron binding and internalization. The vacuolar inhibitor bafilomycin inhibits iron uptake and internalization. Internalized iron was localized by electron microscopy within vacuolar structures that were identified as acidic vacuoles. Iron internalization is accompanied by endocytosis of surface proteins into these acidic vacuoles. A novel kinetic mechanism for iron uptake is proposed, which includes two pools of bound/compartmentalized iron separated by a rate-limiting internalization stage. The major parameter that is modulated by iron deficiency is the iron-binding capacity. We propose that excessive iron binding in iron-deficient cells serves as a temporary reservoir for iron that is subsequently internalized. This mechanism is particularly suitable for organisms that are exposed to large fluctuations in iron availability. PMID:17513481

  11. fPOP: footprinting functional pockets of proteins by comparative spatial patterns

    PubMed Central

    Tseng, Yan Yuan; Chen, Z. Jeffrey; Li, Wen-Hsiung

    2010-01-01

    fPOP (footprinting Pockets Of Proteins, http://pocket.uchicago.edu/fpop/) is a relational database of the protein functional surfaces identified by analyzing the shapes of binding sites in ∼42 700 structures, including both holo and apo forms. We previously used a purely geometric method to extract the spatial patterns of functional surfaces (split pockets) in ∼19 000 bound structures and constructed a database, SplitPocket (http://pocket.uchicago.edu/). These functional surfaces are now used as spatial templates to predict the binding surfaces of unbound structures. To conduct a shape comparison, we use the Smith–Waterman algorithm to footprint an unbound pocket fragment with those of the functional surfaces in SplitPocket. The pairwise alignment of the unbound and bound pocket fragments is used to evaluate the local structural similarity via geometric matching. The final results of our large-scale computation, including ∼90 000 identified or predicted functional surfaces, are stored in fPOP. This database provides an easily accessible resource for studying functional surfaces, assessing conformational changes between bound and unbound forms and analyzing functional divergence. Moreover, it may facilitate the exploration of the physicochemical textures of molecules and the inference of protein function. Finally, our approach provides a framework for classification of proteins into families on the basis of their functional surfaces. PMID:19880384

  12. Binding characteristics of gamma-hydroxybutyric acid as a weak but selective GABAB receptor agonist.

    PubMed

    Mathivet, P; Bernasconi, R; De Barry, J; Marescaux, C; Bittiger, H

    1997-02-19

    The aim of this study was to reexamine the concept that gamma-hydroxybutyric acid (GHB) is a weak but selective agonist at gamma-aminobutyric acidB (GABAB) receptors, using binding experiments with several radioligands. Ki values of GHB were similar (approximately equal to 100 microM) in three agonist radioligand assays for GABAB receptors, [3H]baclofen (beta-para-chlorophenyl-gamma-aminobutyric acid), [3H]CGP 27492 (3-aminopropyl-phosphinic acid) and [3H]GABA, in the presence of the GABAA receptor agonist isoguvacine with rat cortical, cerebellar and hippocampal membranes. In competition experiments between GHB and the GABAB receptor antagonist, [3H]CGP 54626 (3-N [1-{(S)-3,4-dichlorophenyl}-ethylamino]-2-(S)-hydroxypropyl cyclo-hexylmethyl phosphinic acid), the IC50 values were significantly increased with 300 microM of 5'-guanyl-imidodiphosphate (Gpp(NH)p), which suggested that guanine nucleotide binding proteins (G-proteins) modulate GHB binding on GABAB receptors. The inhibition by GHB of [3H]CGP 27492 binding in cortical membranes was not altered in the presence of 0.3 or 3 mM of the two GHB dehydrogenase inhibitors, valproate and ethosuximide. Thus, GHB is not reconverted into GABA by GHB dehydrogenase. Taken together, the results of this study demonstrated that GHB is an endogenous weak but selective agonist at GABAB receptors. PMID:9083788

  13. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP-oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution.

    PubMed

    Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A

    2016-03-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface. PMID:27006775

  14. Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides

    PubMed Central

    Zervoudi, Efthalia; Papakyriakou, Athanasios; Georgiadou, Dimitra; Evnouchidou, Irini; Gajda, Anna; Poreba, Marcin; Salvesen, Guy S.; Drag, Marcin; Hattori, Akira; Swevers, Luc; Vourloumis, Dionisios; Stratikos, Efstratios

    2014-01-01

    Synopsis ER aminopeptidase 1 (ERAP1), ER aminopeptidase 2 (ERAP2) and Insulin Regulated aminopeptidase (IRAP) are three homologous enzymes that play critical roles in the generation of antigenic peptides. These aminopeptidases excise amino acids from N-terminally extended precursors of antigenic peptides in order to generate the correct length epitopes for binding onto MHC class I molecules. The specificity of these peptidases can affect antigenic peptide selection, but has not yet been investigated in detail. In the present study we utilized a collection of 82 fluorogenic substrates to define a detailed selectivity profile for each of the three enzymes and to probe structural and functional features of the primary specificity (S1) pocket. Molecular modeling of the three S1 pockets reveals substrate-enzyme interactions that are critical determinants for specificity. The substrate selectivity profiles suggest that IRAP largely combines the S1 specificity of ERAP1 and ERAP2, consistent with its proposed biological function. IRAP however, does not achieve this dual specificity by simply combining structural features of ERAP1 and 2, but rather by a unique amino acid change at position 541. Our results provide insights on antigenic peptide selection and may prove valuable in designing selective inhibitors or activity markers for this class of enzymes. PMID:21314638

  15. Carboxylic-Acid-passivated metal oxide nanocrystals: ligand exchange characteristics of a new binding motif.

    PubMed

    De Roo, Jonathan; Justo, Yolanda; De Keukeleere, Katrien; Van den Broeck, Freya; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2015-05-26

    Ligand exchange is central in the processing of inorganic nanocrystals (NCs) and requires understanding of surface chemistry. Studying sterically stabilized HfO2 and ZrO2 NCs using (1) H solution NMR and IR spectroscopy as well as elemental analysis, this paper demonstrates the reversible exchange of initial oleic acid ligands for octylamine and self-adsorption of oleic acid at NC surfaces. Both processes are incompatible with an X-type binding motif of carboxylic acids as reported for sulfide and selenide NCs. We argue that this behavior stems from the dissociative adsorption of carboxylic acids at the oxide surface. Both proton and carboxylate moieties must be regarded as X-type ligands yielding a combined X2 binding motif that allows for self-adsorption and exchange for L-type ligands. PMID:25866095

  16. Role of the glutamic acid 54 residue in transthyretin stability and thyroxine binding.

    PubMed

    Miyata, Masanori; Sato, Takashi; Mizuguchi, Mineyuki; Nakamura, Teruya; Ikemizu, Shinji; Nabeshima, Yuko; Susuki, Seiko; Suwa, Yoshiaki; Morioka, Hiroshi; Ando, Yukio; Suico, Mary Ann; Shuto, Tsuyoshi; Koga, Tomoaki; Yamagata, Yuriko; Kai, Hirofumi

    2010-01-12

    Transthyretin (TTR) is a tetrameric protein associated with amyloidosis caused by tetramer dissociation and monomer misfolding. The structure of two TTR variants (E54G and E54K) with Glu54 point mutation that cause clinically aggressive amyloidosis remains unclear, although amyloidogenicity of artificial triple mutations (residues 53-55) in beta-strand D had been investigated. Here we first analyzed the crystal structures and biochemical and biophysical properties of E54G and E54K TTRs. The direction of the Lys15 side chain in E54K TTR and the surface electrostatic potential in the edge region in both variants were different from those of wild-type TTR. The presence of Lys54 leads to destabilization of tetramer structure due to enhanced electrostatic repulsion between Lys15 of two monomers. Consistent with structural data, the biochemical analyses demonstrated that E54G and E54K TTRs were more unstable than wild-type TTR. Furthermore, the entrance of the thyroxine (T(4)) binding pocket in TTR was markedly narrower in E54K TTR and wider in E54G TTR compared with wild-type TTR. The tetramer stabilization and amyloid fibril formation assays in the presence of T(4) showed lower tetramer stability and more fibril formation in E54K and E54G TTRs than in wild-type TTR, suggesting decreased T(4) binding to the TTR variants. These findings indicate that structural modification by Glu54 point mutation may sufficiently alter tetramer stability and T(4) binding. PMID:19950966

  17. Ligand binding and hexacoordination in synechocystis hemoglobin.

    PubMed

    Hvitved, A N; Trent, J T; Premer, S A; Hargrove, M S

    2001-09-14

    A large and phylogenetically diverse group of organisms contain truncated hemoglobins, including the unicellular cyanobacterium Synechocystis (Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. (2000) EMBO J. 19, 2424-2434). Synechocystis hemoglobin is also hexacoordinate, with a heme pocket histidine that reversibly coordinates the ligand binding site. Hexacoordinate hemoglobins are ubiquitous in plants and are now being identified in a diverse array of organisms including humans (Arredondo-Peter, R., Hargrove, M. S., Moran, J. F., Sarath, G., and Klucas, R. V. (1998) Plant Physiol. 118, 1121-1125; Trent, J. T., III, Watts, R. A., and Hargrove, M. S. (2001) J. Biol. Chem. 276, 30106-30110). Rate constants for association and dissociation of the hexacoordinating amino acid side chain in Synechocystis hemoglobin have been measured along with bimolecular rate constants for association of oxygen and carbon monoxide following laser flash photolysis. These values were compared with ligand binding initiated by rapid mixing. Site-directed mutagenesis was used to determine the roles of several heme pocket amino acids in facilitating hexacoordination and stabilizing bound oxygen. It is demonstrated that Synechocystis hemoglobin contains a very reactive binding site and that ligand migration through the protein is rapid. Rate constants for hexacoordination by His(46) are also large and facilitated by other heme pocket amino acids including Gln(43). PMID:11438545

  18. Binding and solubility of oleic acid to laboratory materials: A possible artifact

    SciTech Connect

    Mailman, D.; Rose, C. )

    1990-01-01

    The possibility that significant amounts of fatty acids were dissolved in or bound to the surfaces of common laboratory materials was examined. The uptake or adsorption of radioisotopically labeled oleic acid and cholic acid by plastic tubing of Tygon{trademark}, Teflon{trademark}, and polyethylene, and Pyrex{trademark}, and borosilicate glass, and steel was measured. {sup 3}H-oleic acid and {sup 14}C-cholic acid were used in the presence of different concentration of unlabeled oleic acid, cholic acid, and/or bovine serum albumin. Concentrations, composition, pH, and perfusion rates were varied. Relatively large amounts of oleic acid were lost by dissolving in plastic and adsorption to glass or metal. The degree of losses decreased in the presence of compounds in the perfusion solution which could bind or dissolve oleic acid. In contrast, cholic acid was not lost to plastic, glass or metal. The magnitude of and influence of perfusion rate, composition, pH, and sequence of perfusion solutions on oleic acid losses were sufficiently large that the results of certain studies, such as those of unstirred water layers or albumin-stimulated fatty acid uptake by hepatocytes may need to be reexamined.

  19. Towards the elucidation of molecular determinants of cooperativity in the liver bile acid binding protein.

    PubMed

    Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael

    2009-11-15

    Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex. PMID:19603488

  20. Group A Streptococci Bind to Mucin and Human Pharyngeal Cells through Sialic Acid-Containing Receptors

    PubMed Central

    Ryan, Patricia A.; Pancholi, Vijaykumar; Fischetti, Vincent A.

    2001-01-01

    The first step in the colonization of group A streptococci (Streptococcus pyogenes) is adherence to pharyngeal epithelial cells. Prior to adherence to their target tissue, the first barrier that the streptococci encounter is the mucous layer of the respiratory tract. The present study was undertaken to characterize the interaction between mucin, the major glycoprotein component of mucus, and streptococci. We report here that S. pyogenes is able to bind to bovine submaxillary mucin in solid-phase microtiter plate assays. Western blots probed with 125I-labeled mucin and a panel of monoclonal antibodies revealed that the streptococcal M protein is one of two cell wall-associated proteins responsible for this binding. The binding was further localized to the N-terminal portion of the M molecule. Further analysis revealed that the M protein binds to the sialic acid moieties on mucin, and this interaction seems to be based on M-protein conformation rather than specific amino acid sequences. We found that sialic acid also plays a critical role in the adherence of an M6 streptococcal strain to the Detroit 562 human pharyngeal cell line and have identified α2-6-linked sialic acid as an important sialylated linkage for M-protein recognition. Western blot analysis of extracted pharyngeal cell membrane proteins identified three potential sialic acid-containing receptors for the M protein. The results are the first to show that sialic acid not only is involved in the binding of the streptococci to mucin but also plays an important role in adherence of group A streptococci to the pharyngeal cell surface. PMID:11705914

  1. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    PubMed

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. PMID:24740818

  2. Biochemical and Structural Characterization of Lysophosphatidic Acid Binding by a Humanized Monoclonal Antibody

    SciTech Connect

    J Fleming; J Wojciak; M Campbell; T Huxford

    2011-12-31

    Lysophosphatidic acid (LPA) is a common product of glycerophospholipid metabolism and an important mediator of signal transduction. Aberrantly high LPA concentrations accompany multiple disease states. One potential approach for treatment of these diseases, therefore, is the therapeutic application of antibodies that recognize and bind LPA as their antigen. We have determined the X-ray crystal structure of an anti-LPA antibody (LT3015) Fab fragment in its antigen-free form to 2.15 {angstrom} resolution and in complex with two LPA isotypes (14:0 and 18:2) to resolutions of 1.98 and 2.51 {angstrom}, respectively. The variable CDR (complementarity-determining region) loops at the antigen binding site adopt nearly identical conformations in the free and antigen-bound crystal structures. The crystallographic models reveal that the LT3015 antibody employs both heavy- and light-chain CDR loops to create a network of eight hydrogen bonds with the glycerophosphate head group of its LPA antigen. The head group is almost completely excluded from contact with solvent, while the hydrocarbon tail is partially solvent-exposed. In general, mutation of amino acid residues at the antigen binding site disrupts LPA binding. However, the introduction of particular mutations chosen strategically on the basis of the structures can positively influence LPA binding affinity. Finally, these structures elucidate the exquisite specificity demonstrated by an anti-lipid antibody for binding a structurally simple and seemingly unconstrained target molecule.

  3. Stacking interaction and its role in kynurenic acid binding to glutamate ionotropic receptors.

    PubMed

    Zhuravlev, Alexander V; Zakharov, Gennady A; Shchegolev, Boris F; Savvateeva-Popova, Elena V

    2012-05-01

    Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation. PMID:21833825

  4. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures. PMID:27159329

  5. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because phenolic compounds can precipitate or complex with proteins, we postulated that interactions of phenolics with IgE antibodies help enhance IgE binding to peanut allergens in Western blots. Three different phenolics, such as, ferulic, caffeic and chlorogenic acids were examined. Each was mixe...

  6. [Chemico-physical property and bile acid binding capacity of several antacids].

    PubMed

    Salvioli, G; Tambara, E; Gaetti, E; Lugli, R

    1989-01-01

    Liquid alginate (Gaviscon) binds small amount of bile acids. At pH 7 its viscosity (at low shear rate) is higher than that of other antiacids. High viscosity reduces the diffusion rate of bile salts and glucose and this property can play a role in the treatment of gastro-esophageal and duodeno-gastric refluxes. PMID:2548124

  7. Sonochemical destruction of free and metal-binding ethylenediaminetetraacetic acid.

    PubMed

    Frim, J Aaron; Rathman, James F; Weavers, Linda K

    2003-07-01

    This study focused on the sonochemical degradation of ethylenediaminetetraacetic acid (EDTA) and chromium-EDTA complexes. Degradation of the copper(II)-EDTA complex was also investigated as a comparison metal complex. A 90% degradation of a 150-microM EDTA solution with continuous O2-bubbling was shown for the 20-kHz system in approximately 3 h (kpseudo-first order = 1.22 x 10(-2) min-1) and less than 1 h for the 354-kHz system (kpseudo-first order = 5.42 x 10(-2) min-1). These results are consistent with the higher concentrations of hydrogen peroxide found in the higher frequency system and an expected oxidation of EDTA in bulk solution. The presence of a chelated metal decreased the rate of degradation at both frequencies. Cr(III)-EDTA degraded the slowest, supporting the theory that the extremely slow ligand exchange rate of chromium is the determining factor in how fast degradation by hydroxyl radical can occur. The 354-kHz system showed a 17% decrease in the original 150-microM Cr(III)-EDTA complex after 3 h of sonication. All of the chromium from the degraded EDTA complex existed as a combination of oxidized Cr(VI) and possibly small amounts of a new Cr(III)-organic complex (Cr(III)-Y). The 20-kHz system showed a similar extent of degradation (16%) after 3 h of sonication, despite lower hydroxyl radical production. Fifty percent of the chromium from the degraded EDTA complex was found as free Cr3+ ion, with the remaining 50% existing as both Cr(III)-Y and Cr(VI). Varying degrees of bulk oxidation, near-bubble thermolysis, and perhaps different degradation pathways at the two frequencies are responsible for these differences. PMID:14509702

  8. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters

    SciTech Connect

    Drosos, M.; Jerzykiewicz, M.; Deligiannakis, Y.

    2009-04-15

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. {sup 13}C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation < 3 (equiv kg{sup -1}) while lignite HAs showed a higher charge variation > 3.5 (equiv kg{sup -1}).

  9. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters.

    PubMed

    Drosos, Marios; Jerzykiewicz, Maria; Deligiannakis, Yiannis

    2009-04-01

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. (13)C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation <3 [equiv kg(-1)] while lignite HAs showed a higher charge variation >3.5 [equiv kg(-1)]. PMID:19144349

  10. The influence of fatty acids on theophylline binding to human serum albumin. Comparative fluorescence study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.

    2012-04-01

    Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).

  11. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A.; Wepasnick, Kevin A.; McDonnell, Peter; Elisseeff, Jennifer H.

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  12. NASA Pocket Statistics: 1997 Edition

    NASA Technical Reports Server (NTRS)

    1997-01-01

    POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  13. Amino acid sequence of a vitamin K-dependent Ca2+-binding peptide from bovine prothrombin.

    PubMed

    Howard, J B; Fausch, M D

    1975-08-10

    The amino acid sequence of a 31-residue peptide from bovine prothrombin has been determined. This peptide has been shown to contain the vitamin K-dependent modification required for Ca2+ binding (Nelsestuen, G. L., and Suttie, J. W. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 3366-3370) and the modified amino acid, gamma-carboxyglutamic acid (Nelsestuen, G. L., Zytkovicz, T., and Howard, J. B. (1974) J. Biol. Chem. 249, 6347-6350). The peptide was shown to correspond to residues 12 to 42 of prothrombin. PMID:807581

  14. Identification of a nucleic acid-binding region within the largest subunit of Drosophila melanogaster RNA polymerase II.

    PubMed Central

    Kontermann, R. E.; Kobor, M.; Bautz, E. K.

    1993-01-01

    The largest and the second-largest subunit of the multisubunit eukaryotic RNA polymerases are involved in interaction with the DNA template and the nascent RNA chain. Using Southwestern DNA-binding techniques and nitrocellulose filter binding assays of bacterially expressed fusion proteins, we have identified a region of the largest, 215-kDa, subunit of Drosophila RNA polymerase II that has the potential to bind nucleic acids nonspecifically. This nucleic acid-binding region is located between amino acid residues 309-384 and is highly conserved within the largest subunits of eukaryotic and bacterial RNA polymerases. A homology to a region of the DNA-binding cleft of Escherichia coli DNA polymerase I involved in binding of the newly synthesized DNA duplex provides indirect evidence that the nucleic acid-binding region of the largest subunit participates in interaction with double-stranded nucleic acids during transcription. The nonspecific DNA-binding behavior of the region is similar to that observed for the native enzyme in nitrocellulose filter binding assays and that of the separated largest subunit in Southwestern assays. A high content of basic amino acid residues is consistent with the electrostatic nature of nonspecific DNA binding by RNA polymerases. PMID:8443600

  15. Aluminium competitive effect on rare earth elements binding to humic acid

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline; Bouhnik-Le Coz, Martine

    2012-07-01

    Competitive mechanisms between rare earth elements (REE) and aluminium for humic acid (HA) binding were investigated by combining laboratory experiments and modeling to evaluate the effect of Al on REE-HA complexation. Results indicates that Al3+ competes more efficiently with heavy REE (HREE) than with light REE (LREE) in acidic (pH = 3) and low REE/HA concentration ratio conditions providing evidence for the Al high affinity for the few HA multidentate sites. Under higher pH - 5 to 6 - and high REE/HA conditions, Al is more competitive for LREE suggesting that Al is bound to HA carboxylic rather than phenolic sites. PHREEQC/Model VI Al-HA binding parameters were optimized to simulate precisely both Al binding to HA and Al competitive effect on REE binding to HA. REE-HA binding pattern is satisfactorily simulated for the whole experimental conditions by the ΔLK1A optimization (i.e. ΔLK1A controls the distribution width of log K around log KMA). The present study provides fundamental knowledge on Al binding mechanisms to HA. Aluminium competitive effect on other cations binding to HA depends clearly on its affinity for carboxylic, phenolic or chelate ligands, which is pH dependent. Under circumneutral pH such as in natural waters, Al should lead to LREE-depleted patterns since Al is expected to be bound to weak HA carboxylic groups. As deduced from the behavior of Al species, other potential competitor cations are expected to have their own competitive effect on REE-HA binding. Therefore, in order to reliably understand and model REE-HA patterns in natural waters, a precise knowledge of the exact behavior of the different REE competitor cations is required. Finally, this study highlights the ability of the REE to be used as a “speciation probe” to precisely describe cation interactions with HA as here evidenced for Al.

  16. Treatment with oleic acid reduces IgE binding to peanut and cashew allergens.

    PubMed

    Chung, Si-Yin; Mattison, Christopher P; Reed, Shawndrika; Wasserman, Richard L; Desormeaux, Wendy A

    2015-08-01

    Oleic acid (OA) is known to bind and change the bioactivities of proteins, such as α-lactalbumin and β-lactoglobulin in vitro. The objective of this study was to determine if OA binds to allergens from a peanut extract or cashew allergen and changes their allergenic properties. Peanut extract or cashew allergen (Ana o 2) was treated with or without 5mM sodium oleate at 70°C for 60 min (T1) or under the same conditions with an additional overnight incubation at 37°C (T2). After treatment, the samples were dialyzed and analyzed by SDS-PAGE and for OA content. IgE binding was evaluated by ELISA and western blot, using a pooled serum or plasma from individuals with peanut or cashew allergies. Results showed that OA at a concentration of 5mM reduced IgE binding to the allergens. Peanut sample T2 exhibited a lower IgE binding and a higher OA content (protein-bound) than T1. Cashew allergen T2 also showed a reduction in IgE binding. We conclude that OA reduces the allergenic properties of peanut extract and cashew allergen by binding to the allergens. Our findings indicate that OA in the form of sodium oleate may be potentially useful as a coating to reduce the allergenic properties of peanut and cashew allergens. PMID:25766831

  17. Receptor binding characteristics of tritiated misoprostol free acid in enriched canine parietal cells

    SciTech Connect

    Tsai, B.S.; Kessler, L.K.; Conway, R.G.; Schoenhard, G.; Stolzenbach, J.; Collins, P.; Kramer, S.; Butchko, G.M.; Bauer, R.F.

    1986-03-01

    Misoprostol (MISO) is a synthetic prostaglandin (PG) E/sub 1/ methyl ester with gastric antisecretory and mucosal protective properties. MISO is rapidly de-esterified to misoprostol free acid (MISO-FA) in enriched (65-80%) canine parietal cell preparations. Both forms appear to possess equivalent antisecretory potency and (/sup 3/H) MISO-FA is stable in these preparations. (/sup 3/H) MISO-FA binding was reversible and saturable with a maximal number of binding sites estimated at 8138 +/- 1893 per cell. The scatchard plot was linear, indicating a single, high affinity receptor population with a dissociation constant of 11 +/- 2.6 x 10/sup -9/ M. Unlabeled MISO-FA and MISO were equally potent inhibitors (IC/sub 50/, approx. 10/sup -8/M) of (/sup 3/H) MISO-FA binding. At 10/sup -5/ M, the dinor and tetranor ..beta..-oxidation metabolites of MISO were weak binding inhibitors. Strict stereospecific binding was shown by MISO stereoisomers, and the 11R, 16S isomer was most active. Both PGE/sub 1/ and 16,16 dimethyl PGE/sub 2/ were potent binding inhibitors, but PGF/sub 1/..cap alpha.. (10/sup -6/ M) and Hoe 892 (10/sup -5/ M), a stable PGI/sub 2/ analog, were weak inhibitors. Neither histamine or cimetidine competed for binding sites. These data indicate the presence of stereospecific E-type prostaglandin receptors in enriched canine parietal cell preparations.

  18. Gallic acid binding to Spatholobus parviflorus lectin provides insight to its quaternary structure forming.

    PubMed

    Surya, Sukumaran; Geethanandan, Krishnan; Sadasivan, Chittalakkottu; Haridas, Madhathilkovilakathu

    2016-10-01

    Therapeutic effects of gallic acid (GA) have already been extensively studied. However, its interaction with lectins has not gained much attention. It is of interest to validate the binding profile of GA with Spatholobus parviflorus seed lectin. A combination of Isothermal Titration Calorimetry (ITC), haemagglutination assay and molecular docking was applied on SPL-GA interaction. ITC results showed four binding sites, stoichiometry, n=4, irrespective of the ratio of SPL:GA taken for titration. Difference among the four binding sites of a single molecule of SPL with regard to GA binding kinetic parameters was consistently varying. Similarly, the glide scores obtained for GA in the four different binding clefts of SPL were also conformed to the ITC. The binding of GA on SPL without affecting its sugar binding property could be considered as a boon for glycobiological research. From the presented studies, it could be proposed that the SPL-GA interactions may facilitate drug delivery by specific targeting/attachment by profiling of cell-surface glycans, followed by controlled release of drugs. PMID:27283232

  19. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-01

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  20. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    SciTech Connect

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  1. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum.

    PubMed

    Fairfax, Keke C; Vermeire, Jon J; Harrison, Lisa M; Bungiro, Richard D; Grant, Wayne; Husain, Sohail Z; Cappello, Michael

    2009-12-01

    Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anaemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesise essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real-time PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant (40-47%) reduction in intestinal worm burden compared with controls immunized with antigen or adjuvant alone. Together, these data suggest a potential role for AceFAR-1 in hookworm biology, making it a potentially valuable target for drug and vaccine development. PMID:19591834

  2. Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution

    NASA Astrophysics Data System (ADS)

    van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter

    2010-02-01

    Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.

  3. Roles played by acidic lipids in HIV-1 Gag membrane binding

    PubMed Central

    Olety, Balaji; Ono, Akira

    2014-01-01

    The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids. PMID:24998886

  4. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein.

    PubMed Central

    Kirk, W R; Kurian, E; Prendergast, F G

    1996-01-01

    1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity. PMID:8770188

  5. In Vitro bile acid binding of kale, mustard greens, broccoli, cabbage and green bell pepper improves with microwave cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acid binding potential of foods and food fractions has been related to lowering the risk of heart disease and that of cancer. Sautéing or steam cooking has been observed to significantly improve bile acid binding of green/leafy vegetables. It was hypothesized that microwave cooking could impr...

  6. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra.

    PubMed

    Xu, Jinling; Tan, Wenfeng; Xiong, Juan; Wang, Mingxia; Fang, Linchuan; Koopal, Luuk K

    2016-07-01

    Binding of Cu(II) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through NICA-Donnan modeling and conditional affinity spectrum (CAS). It is to extend the knowledge of copper binding by soil humic substances (HS) both in respect of enlarging the database of metal ion binding to HS and obtaining a good insight into Cu binding to the functional groups of FA and HA by using the NICA-Donnan model to unravel the intrinsic and conditional affinity spectra. Results showed that Cu binding to HS increased with increasing pH and decreasing ionic strength. The amount of Cu bound to the HAs was larger than the amount bound to JGFA. Milne's generic parameters did not provide satisfactory predictions for the present soil HS samples, while material-specific NICA-Donnan model parameters described and predicted Cu binding to the HS well. Both the 'low' and 'high' concentration fitting procedures indicated a substantial bidentate structure of the Cu complexes with HS. By means of CAS underlying NICA isotherm, which was scarcely used, the nature of the binding at different solution conditions for a given sample and the differences in binding mode were illustrated. It was indicated that carboxylic group played an indispensable role in Cu binding to HS in that the carboxylic CAS had stronger conditional affinity than the phenolic distribution due to its large degree of proton dissociation. The fact was especially true for JGFA and JLHA which contain much larger amount of carboxylic groups, and the occupation of phenolic sites by Cu was negligible. Comparable amounts of carboxylic and phenolic groups on PAHA and JGHA, increased the occupation of phenolic type sites by Cu. The binding strength of PAHA-Cu and JGHA-Cu was stronger than that of JGFA-Cu and JLHA-Cu. The presence of phenolic groups increased the chance of forming more stable complexes, such as the salicylate-Cu or catechol-Cu type structures. PMID:27061366

  7. The Kinesin-1 tail conformationally restricts the nucleotide pocket.

    PubMed

    Wong, Yao Liang; Dietrich, Kristen A; Naber, Nariman; Cooke, Roger; Rice, Sarah E

    2009-04-01

    We have used electron paramagnetic resonance and fluorescence spectroscopy to study the interaction between the kinesin-1 head and its regulatory tail domain. The interaction between the tails and the enzymatically active heads has been shown to inhibit intrinsic and microtubule-stimulated ADP release. Here, we demonstrate that the probe mobility of two different spin-labeled nucleotide analogs in the kinesin-1 nucleotide pocket is restricted upon binding of the tail domain to kinesin-1 heads. This conformational restriction is distinct from the microtubule-induced changes in the nucleotide pocket. Unlike myosin V, this tail-induced restriction occurs independent of nucleotide state. We find that the head-tail interaction that causes the restriction only weakly stabilizes Mg(2+) in the nucleotide pocket. The conformational restriction also occurs when a tail construct containing a K922A point mutation is used. This mutation eliminates the tail's ability to inhibit ADP release, indicating that the tail does not inhibit nucleotide ejection from the pocket by simple steric hindrance. Together, our data suggest that the observed head-tail interaction serves as a scaffold to position K922 to exert its inhibitory effect, possibly by interacting with the nucleotide alpha/beta-phosphates in a manner analogous to the arginine finger regulators of some G proteins. PMID:19348763

  8. The Kinesin-1 Tail Conformationally Restricts the Nucleotide Pocket

    PubMed Central

    Wong, Yao Liang; Dietrich, Kristen A.; Naber, Nariman; Cooke, Roger; Rice, Sarah E.

    2009-01-01

    We have used electron paramagnetic resonance and fluorescence spectroscopy to study the interaction between the kinesin-1 head and its regulatory tail domain. The interaction between the tails and the enzymatically active heads has been shown to inhibit intrinsic and microtubule-stimulated ADP release. Here, we demonstrate that the probe mobility of two different spin-labeled nucleotide analogs in the kinesin-1 nucleotide pocket is restricted upon binding of the tail domain to kinesin-1 heads. This conformational restriction is distinct from the microtubule-induced changes in the nucleotide pocket. Unlike myosin V, this tail-induced restriction occurs independent of nucleotide state. We find that the head-tail interaction that causes the restriction only weakly stabilizes Mg2+ in the nucleotide pocket. The conformational restriction also occurs when a tail construct containing a K922A point mutation is used. This mutation eliminates the tail's ability to inhibit ADP release, indicating that the tail does not inhibit nucleotide ejection from the pocket by simple steric hindrance. Together, our data suggest that the observed head-tail interaction serves as a scaffold to position K922 to exert its inhibitory effect, possibly by interacting with the nucleotide α/β-phosphates in a manner analogous to the arginine finger regulators of some G proteins. PMID:19348763

  9. Exploration of electrostatic interaction in the hydrophobic pocket of lysozyme: Importance of ligand-induced perturbation of the secondary structure on the mode of binding of exogenous ligand and possible consequences.

    PubMed

    Panja, Sudipta; Halder, Mintu

    2016-08-01

    Exogenous ligand binding can be adequate to alter the secondary structure of biomolecules besides other external stimuli. In such cases, structural alterations can complicate on the nature of interaction with the exogenous molecules. In order to accommodate the exogenous ligand, the biomolecule has to unfold resulting in a considerable change to its properties. If the bound ligand can be unbound, the biomolecule gets the opportunity to refold back and return to its native state. Keeping this in mind, we have purposely investigated the interaction of tartrazine (TZ), a well abundant azo food colorant, with two homologous lysozymes, namely, human lysozyme (HLZ) and chicken egg white lysozyme (CEWLZ) in physiological pH condition. The binding of TZ with lysozymes has been identified to accompany a ligand-induced secondary structure alteration as indicated by the circular dichroism spectra, and the reduction of α-helical content is more with HLZ than CEWLZ. Interestingly, the binding is identified to occur in the electronic ground state of TZ with lysozyme in its hydrophobic cavity, containing excess of positive charge, predominantly via electrostatic interaction. With increase of salinity of the medium the protein tends to refold back due to wakening of electrostatic forces and consequent reduction of strength of ligand interaction and unbinding. The entropy enthalpy compensation (EEC) has been probed to understand the binding features and it is found that CEWLZ-TZ shows better compensation than HLZ-TZ complex. This is presumably due to the fact that with CEWLZ the binding does not accompany substantial change in the protein secondary structure and hence ineffective to scramble the EEC. The present study initiates the importance of ligand-perturbed structural alteration of biomolecule in controlling the thermodynamics of binding. If there is a considerable alteration of the protein secondary structure due to binding, it is indicative that such changes should bring in

  10. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    D-amino acids (D-aas) are reported to bind to IgE antibodies from people with allergy and asthma. The objectives of this study were to determine if D-aas bind or inhibit IgE binding to peanut allergens, and if they are more effective than L-amino acids (L-aas) in this respect. Several D-aa cocktails...

  11. Determination of the binding properties of the uremic toxin phenylacetic acid to human serum albumin.

    PubMed

    Saldanha, Juliana F; Yi, Dan; Stockler-Pinto, Milena B; Soula, Hédi A; Chambert, Stéphane; Fouque, Denis; Mafra, Denise; Soulage, Christophe O

    2016-06-01

    Uremic toxins are compounds normally excreted in urine that accumulate in patients with chronic kidney disease as a result of decreased renal clearance. Phenylacetic acid (PAA) has been identified as a new protein bound uremic toxin. The purpose of this study was to investigate in vitro the interaction between PAA and human serum albumin (HSA) at physiological and pathological concentrations. We used ultrafiltration to show that there is a single high-affinity binding site for PAA on HSA, with a binding constant on the order of 3.4 × 10(4) M(-1) and a maximal stoichiometry of 1.61 mol per mole. The PAA, at the concentration reported in end-stage renal patients, was 26% bound to albumin. Fluorescent probe competition experiments demonstrated that PAA did not bind to Sudlow's site I (in subdomain IIA) and only weakly bind to Sudlow's site II (in subdomain IIIA). The PAA showed no competition with other protein-bound uremic toxins such as p-cresyl-sulfate or indoxyl sulfate for binding to serum albumin. Our results provide evidence that human serum albumin can act as carrier protein for phenylacetic acid. PMID:26945842

  12. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria.

    PubMed

    Peltonen, K; el-Nezami, H; Haskard, C; Ahokas, J; Salminen, S

    2001-10-01

    Various food commodities including dairy products may be contaminated with aflatoxins, which, even in small quantities, have detrimental effects on human and animal health. Several microorganisms have been reported to bind or degrade aflatoxins in foods and feeds. This study assessed the binding of aflatoxin B1 (AFB1) from contaminated solution by 20 strains of lactic acid bacteria and bifidobacteria. The selected strains are used in the food industry and comprised 12 Lactobacillus, five Bifidobacterium, and three Lactococcus strains. Bacteria and AFB1 were incubated (24 h, +37 degrees C) and the amount of unbound AFB1 was quantitated by HPLC. Between 5.6 and 59.7% AFB1 was bound from solution by these strains. Two Lactobacillus amylovorus strains and one Lactobacillus rhamnosus strain removed more than 50% AFB1 and were selected for further study. Bacterial binding of AFB1 by these strains was rapid, and more than 50% AFB1 was bound throughout a 72-h incubation period. Binding was reversible, and AFB1 was released by repeated aqueous washes. These findings further support the ability of specific strains of lactic acid bacteria to bind selected dietary contaminants. PMID:11699445

  13. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations

    PubMed Central

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-01-01

    Predicting the effect of amino acid substitutions on protein–protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/. PMID:27077847

  14. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    PubMed

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-01-01

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/. PMID:27077847

  15. Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin

    SciTech Connect

    Hamilton, J.A.; Era, S.; Bhamidipati, S.P. ); Reed, R.G. )

    1991-03-15

    Binding of {sup 13}C-enriched oleic acid to bovine serum albumin and to three large proteolytic fragments of albumin - two complementary fragments corresponding to the two halved of albumin and one fragment corresponding to the carboxyl-terminal domain - yielded unique patterns of NMR resonances (chemical shifts and relative intensities) that were used to identify the locations of binding of the first 5 mol of oleic acid to the multidomain albumin molecule. The first 3 mol of oleic acid added to intact albumin generated three distinct NMR resonances as a result of simultaneous binding of oleic acid to three heterogeneous sites (primary sites). This distribution suggests albumin to be a less symmetrical binding molecule than theoretical models predict. This work also demonstrates the power of NMR for the study of microenvironments of individual fatty acid binding sites in specific domain.

  16. Single-Molecule Imaging Reveals That Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides

    PubMed Central

    Salomon, William E.; Jolly, Samson M.; Moore, Melissa J.; Zamore, Phillip D.; Serebrov, Victor

    2015-01-01

    SUMMARY Argonaute proteins repress gene expression and defend against foreign nucleic acids using short RNAs or DNAs to specify the correct target RNA or DNA sequence. We have developed single-molecule methods to analyze target binding and cleavage mediated by the Argonaute:guide complex, RISC. We find that both eukaryotic and prokaryotic Argonaute proteins reshape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization: a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Argonautes distinguish substrates from targets with similar complementarity. Mouse AGO2, for example, binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved product contains more base pairs. By re-writing the rules for nucleic acid hybridization, Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than of RNA or DNA. PMID:26140592

  17. Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides.

    PubMed

    Salomon, William E; Jolly, Samson M; Moore, Melissa J; Zamore, Phillip D; Serebrov, Victor

    2015-07-01

    Argonaute proteins repress gene expression and defend against foreign nucleic acids using short RNAs or DNAs to specify the correct target RNA or DNA sequence. We have developed single-molecule methods to analyze target binding and cleavage mediated by the Argonaute:guide complex, RISC. We find that both eukaryotic and prokaryotic Argonaute proteins reshape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization—a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Argonautes distinguish substrates from targets with similar complementarity. Mouse AGO2, for example, binds tighter to miRNA targets than its RNAi cleavage product, even though the cleaved product contains more base pairs. By re-writing the rules for nucleic acid hybridization, Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than of RNA or DNA. PMID:26140592

  18. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs.

    PubMed Central

    Wang, S; Kool, E T

    1994-01-01

    We report the synthesis and nucleic acid binding properties of two cyclic RNA oligonucleotides designed to bind single-stranded nucleic acids by pyr.pur.pyr-type triple helix formation. The circular RNAs are 34 nucleotides in size and were cyclized using a template-directed nonenzymatic ligation. To ensure isomeric 3'-5' purity in the ligation reaction, one nucleotide at the ligation site is a 2'-deoxyribose. One circle (1) is complementary to the sequence 5'-A12, and the second (2) is complementary to 5'-AAGAAAGAAAAG. Results of thermal denaturation experiments and mixing studies show that both circles bind complementary single-stranded DNA or RNA substrates by triple helix formation, in which two domains in a pyrimidine-rich circle sandwich a central purine-rich substrate. The affinities of these circles with their purine complements are much higher than the affinities of either the linear precursors or simple Watson-Crick DNA complements. For example, circle 1 binds rA12 (pH 7.0, 10 mM MgCl2, 100 mM NaCl) with a Tm of 48 degrees C and a Kd (37 degrees C) of 4.1 x 10(-9) M, while the linear precursor of the circle binds with a Tm of 34 degrees C and a Kd of 1.2 x 10(-6) M. The complexes of circle 2 are pH-dependent, as expected for triple helical complexes involving C(+)G.C triads, and mixing plots for both circles reveal one-to-one stoichiometry of binding either to RNA or DNA substrates. Comparison of circular RNAs with previously synthesized circular DNA oligonucleotides of the same sequence reveals similar behavior in the binding of DNA, but strikingly different behavior in the binding of RNA. The cyclic DNAs show high DNA-binding selectivity, giving relatively weaker duplex-type binding with complementary RNAs. The relative order of thermodynamic stability for the four types of triplex studied here is found to be DDD >> RRR > RDR >> DRD. The results are discussed in the context of recent reports of strong triplex dependence on RNA versus DNA backbones

  19. Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs.

    PubMed

    Wang, S; Kool, E T

    1994-06-25

    We report the synthesis and nucleic acid binding properties of two cyclic RNA oligonucleotides designed to bind single-stranded nucleic acids by pyr.pur.pyr-type triple helix formation. The circular RNAs are 34 nucleotides in size and were cyclized using a template-directed nonenzymatic ligation. To ensure isomeric 3'-5' purity in the ligation reaction, one nucleotide at the ligation site is a 2'-deoxyribose. One circle (1) is complementary to the sequence 5'-A12, and the second (2) is complementary to 5'-AAGAAAGAAAAG. Results of thermal denaturation experiments and mixing studies show that both circles bind complementary single-stranded DNA or RNA substrates by triple helix formation, in which two domains in a pyrimidine-rich circle sandwich a central purine-rich substrate. The affinities of these circles with their purine complements are much higher than the affinities of either the linear precursors or simple Watson-Crick DNA complements. For example, circle 1 binds rA12 (pH 7.0, 10 mM MgCl2, 100 mM NaCl) with a Tm of 48 degrees C and a Kd (37 degrees C) of 4.1 x 10(-9) M, while the linear precursor of the circle binds with a Tm of 34 degrees C and a Kd of 1.2 x 10(-6) M. The complexes of circle 2 are pH-dependent, as expected for triple helical complexes involving C(+)G.C triads, and mixing plots for both circles reveal one-to-one stoichiometry of binding either to RNA or DNA substrates. Comparison of circular RNAs with previously synthesized circular DNA oligonucleotides of the same sequence reveals similar behavior in the binding of DNA, but strikingly different behavior in the binding of RNA. The cyclic DNAs show high DNA-binding selectivity, giving relatively weaker duplex-type binding with complementary RNAs. The relative order of thermodynamic stability for the four types of triplex studied here is found to be DDD > RRR > RDR > DRD. The results are discussed in the context of recent reports of strong triplex dependence on RNA versus DNA backbones. Triplex

  20. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    PubMed Central

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  1. Self-organizing fuzzy graphs for structure-based comparison of protein pockets.

    PubMed

    Reisen, Felix; Weisel, Martin; Kriegl, Jan M; Schneider, Gisbert

    2010-12-01

    Patterns of receptor-ligand interaction can be conserved in functionally equivalent proteins even in the absence of sequence homology. Therefore, structural comparison of ligand-binding pockets and their pharmacophoric features allow for the characterization of so-called "orphan" proteins with known three-dimensional structure but unknown function, and predict ligand promiscuity of binding pockets. We present an algorithm for rapid pocket comparison (PoLiMorph), in which protein pockets are represented by self-organizing graphs that fill the volume of the cavity. Vertices in these three-dimensional frameworks contain information about the local ligand-receptor interaction potential coded by fuzzy property labels. For framework matching, we developed a fast heuristic based on the maximum dispersion problem, as an alternative to techniques utilizing clique detection or geometric hashing algorithms. A sophisticated scoring function was applied that incorporates knowledge about property distributions and ligand-receptor interaction patterns. In an all-against-all virtual screening experiment with 207 pocket frameworks extracted from a subset of PDBbind, PoLiMorph correctly assigned 81% of 69 distinct structural classes and demonstrated sustained ability to group pockets accommodating the same ligand chemotype. We determined a score threshold that indicates "true" pocket similarity with high reliability, which not only supports structure-based drug design but also allows for sequence-independent studies of the proteome. PMID:20883038

  2. SplitPocket: identification of protein functional surfaces and characterization of their spatial patterns.

    PubMed

    Tseng, Yan Yuan; Dupree, Craig; Chen, Z Jeffrey; Li, Wen-Hsiung

    2009-07-01

    SplitPocket (http://pocket.uchicago.edu/) is a web server to identify functional surfaces of protein from structure coordinates. Using the Alpha Shape Theory, we previously developed an analytical approach to identify protein functional surfaces by the geometric concept of a split pocket, which is a pocket split by a binding ligand. Our geometric approach extracts site-specific spatial information from coordinates of structures. To reduce the search space, probe radii are designed according to the physicochemical textures of molecules. The method uses the weighted Delaunay triangulation and the discrete flow algorithm to obtain geometric measurements and spatial patterns for each predicted pocket. It can also measure the hydrophobicity on a surface patch. Furthermore, we quantify the evolutionary conservation of surface patches by an index derived from the entropy scores in HSSP (homology-derived secondary structure of proteins). We have used the method to examine approximately 1.16 million potential pockets and identified the split pockets in >26,000 structures in the Protein Data Bank. This integrated web server of functional surfaces provides a source of spatial patterns to serve as templates for predicting the functional surfaces of unbound structures involved in binding activities. These spatial patterns should also be useful for protein functional inference, structural evolution and drug design. PMID:19406922

  3. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site.

    PubMed

    Kanno, Takeshi; Yamamoto, Hideyuki; Yaguchi, Takahiro; Hi, Rika; Mukasa, Takeshi; Fujikawa, Hirokazu; Nagata, Tetsu; Yamamoto, Satoshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-06-01

    This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation. PMID:16520488

  4. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  5. Regulation of GABA-modulin phosphorylation and GABA receptor binding by excitatory amino acids

    SciTech Connect

    Vaccarino, F.; Guidotti, A.

    1987-05-01

    Primary cultures of cerebellar granule cells phosphorylate numerous proteins including GABA-modulin (GM), which is a putative allosteric modulator of GABA receptors. Cell depolarization and treatment with dicarboxylic excitatory amino acids, which activate PI turnover, Ca/sup 2 +/ influx and guanylate cyclase in granule cells increase the phosphorylation of specific proteins. To determine GM phosphorylation by endogenous protein kinases in living granule cell cultures, GM was isolated by immunoprecipitation and reverse-phase HPLC. High K/sup +/, veratridine, glutamate and NMDA treatment stimulated GM phosphorylation over 2-fold. This increase was abolished by the absence of extracellular Ca/sup 2 +/ and was antagonized by Mg/sup 2 +/ ions and by AVP. The excitatory amino acid action was mimicked by phorbol esters but not by forskolin or by cGMP, and thus may be mediated by an activation of protein kinase C (PKC). Moreover, excitatory amino acids increase /sup 3/H-labelled phorbol ester binding sites in granule cell membrane. The same cultures, treated with glutamate or kainate, showed a 50-fold greater efficacy of muscimol for the stimulation of benzodiazepine (BZ) binding. These data-suggest that excitatory amino acid stimulation of neurons triggers PKC translocation and the activated enzyme phosphorylates GM. The extent of GM phosphorylation may regulate the coupling between GABA and BZ binding sites.

  6. Binding of /sup 14/C-5-aminolevulinic acid to a stromal protein from developing pea chloroplasts

    SciTech Connect

    Thayer, S.S.; Castelfranco, P.A.; Wilkinson, J.; Benson, G.

    1987-04-01

    /sup 14/-5-Aminolevulinic acid (/sup 14/C-ALA) binds to a stromal protein with an apparent molecular weight of 42-43 KD on LDS and non-denaturing gels. The reaction is rapid. Binding is inhibited by sulfhydryl reagents, mM concentrations of levulinic, dihydroxy heptanoic acids and gabaculine, 10 ..mu..M N-methylprotoporphyrin. Dicarboxilic acids, such as deltaKG, Glu, OAA, do not inhibit. Chloramphenicol, ATP, protoporphyrin, anoxia, light, darkness have no effect. The product, once formed, is stable to treatment with 5% conc. HCl in cold acetone. It can be chased in a second incubation with unlabeled ALA, but not with levulinic acid. No activity was detected in the subplastidic membrane fractions. Western blot analysis failed to reveal any homology between the labeled protein and either cytochrome for ALA dehydratase. This ALA-binding protein was not formed in chloroplasts isolated from fully expanded pea leaves. Therefore, it is deemed likely to participate in ALA metabolism during chloroplast development.

  7. Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter.

    PubMed

    Khwaja, Abdul R; Bloom, Paul R; Brezonik, Patrick L

    2006-02-01

    Distribution coefficients (K(OC)) for Hg2+ binding by IHSS Pahokee peat humic acid (PHA) and humic acids separated from O-horizons and peats in a northern temperate forest were determined using a competitive ligand-exchange method. All measurements were made at low ratios of added Hg2+ to reduced S. The commonly used chelating agents, EGTA and DTPA, were found to be ineffective competitive ligands; thus, we used DL-penicillamine, a synthetic amino acid with a thiol group. Calculated free [Hg2+] at equilibrium is very low, ranging from 10(-26.4) at pH 1.9 to 10(-36.9) at pH 5.8. Corresponding log Koc values ranged from 22.6 to 32.8. The slope of the plot of pH versus log K(OC) was 2.68, suggesting that two or more protons are released when each Hg2+ is bound. This is consistent with binding of Hg2+ to bidentate thiol sites with some participation of a third weak-acid group, presumably a thiol. The 1:2 stoichiometry is consistent with X-ray spectroscopy data for Hg2+ bound to HA and with other pH-dependency results showing release of two protons with the binding of each Hg2+. Our K(OC) values are much greater than indicated by the data from most previous studies. PMID:16509327

  8. Investigation of metal binding sites on soil fulvic acid using Eu(III) luminescence spectroscopy

    SciTech Connect

    Yoon, T.H.; Moon, H. ); Park, Y.J.; Park, K.K. )

    1994-11-01

    The [sup 7]F[sub 0] [yields] [sup 5]D[sub 0] excitation spectra of Eu(III) complexed with soil fulvic acid (FA) were acquired over a range of solution pH (2.9-7.8) and FA concentrations (800-3200 mg L[sup [minus]1]) using a pulsed tunable dye laser system. The broad asymmetric excitation spectra were well-fitted to a sum of two conventional Lorentzian-shaped curves, revealing the existence of two types of carboxylate moieties for the binding of metal ions on FA which formed 1:1 (EuL[sup 2+]; L = carboxylate) and 1:2 complexes (EuL[sub 2][sup +]). The weaker binding species, EuL[sup 2+], seemed to be quite abundant and showed a rapid increase as the pH was raised from 2.9 to 6.3, but it was susceptible to hydrolysis at pH higher than 7 while the stronger binding species, EuL[sub 2][sup +], showed only a modest growth with an increase in pH. By contrast, on a more flexible synthetic linear polymer, poly(acrylic acid) (PAA) and poly(vinylbenzoic acid) (PVBA) as model polymers, EuL[sub 2][sup +] was seen as the dominant species except in acidic media. 28 refs., 10 figs., 3 tabs.

  9. Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein.

    PubMed

    Long, Dong; Mu, Yuguang; Yang, Daiwen

    2009-01-01

    The mechanisms of how ligands enter and leave the binding cavity of fatty acid binding proteins (FABPs) have been a puzzling question over decades. Liver fatty acid binding protein (LFABP) is a unique family member which accommodates two molecules of fatty acids in its cavity and exhibits the capability of interacting with a variety of ligands with different chemical structures and properties. Investigating the ligand dissociation processes of LFABP is thus a quite interesting topic, which however is rather difficult for both experimental approaches and ordinary simulation strategies. In the current study, random expulsion molecular dynamics simulation, which accelerates ligand motions for rapid dissociation, was used to explore the potential egress routes of ligands from LFABP. The results showed that the previously hypothesized "portal region" could be readily used for the dissociation of ligands at both the low affinity site and the high affinity site. Besides, one alternative portal was shown to be highly favorable for ligand egress from the high affinity site and be related to the unique structural feature of LFABP. This result lends strong support to the hypothesis from the previous NMR exchange studies, which in turn indicates an important role for this alternative portal. Another less favored potential portal located near the N-terminal end was also identified. Identification of the dissociation pathways will allow further mechanistic understanding of fatty acid uptake and release by computational and/or experimental techniques. PMID:19564911

  10. The endothelial cell binding determinant of human factor IX resides in the. gamma. -carboxyglutamic acid domain

    SciTech Connect

    Toomey, J.R.; Roberts, H.R.; Stafford, D.W. ); Smith, K.J. United Blood Services, Albuquerque, NM )

    1992-02-18

    The blood coagulation factor IX(a) binds specifically to a site on endothelial cells with a K{sub d} of 2.0-3.0 nM. A number of previous studies have attempted to define the region(s) of factor IX(a) that mediate this interaction. These studies suggested that there are two regions of factor IX(a), the {gamma}-carboxyglutamic acid (Gla) domain and the epidermal growth factor like (EGF-like) domains, that mediate high-affinity binding to endothelial cells. Recently, however, the participation of the EGF1 domain has been excluded from the interaction. This indicated that if there was an EGF component of factor IX contributing to the binding affinity, then it must be in the second EGF-like domain. In order to further evaluate this relationship, the authors performed competitive binding experiments between {sup 125}I plasma factor IX and a set of six chimeric proteins composed of portions of factor VII and factor IX. The data suggest that the high-affinity interaction between factor IX and the endothelial cell binding site is mediated by the factor IX Gla domain and that the factor IX EGF domains are not involved in binding specificity.

  11. Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties

    PubMed Central

    Mitra, Mithun; Hercík, Kamil; Byeon, In-Ja L.; Ahn, Jinwoo; Hill, Shawn; Hinchee-Rodriguez, Kathyrn; Singer, Dustin; Byeon, Chang-Hyeock; Charlton, Lisa M.; Nam, Gabriel; Heidecker, Gisela; Gronenborn, Angela M.; Levin, Judith G.

    2014-01-01

    Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A’s deaminase and nucleic acid binding activities. We find that A3A binds ssRNA, but the RNA and DNA binding interfaces differ and no deamination of ssRNA is detected. Surprisingly, with only one exception (G105A), alanine substitution mutants with changes in residues affected by specific ssDNA binding retain deaminase activity. Furthermore, A3A binds and deaminates ssDNA in a length-dependent manner. Using catalytically active and inactive A3A mutants, we show that the determinants of A3A deaminase activity and anti-LINE-1 activity are not the same. Finally, we demonstrate A3A’s potential to mutate genomic DNA during transient strand separation and show that this process could be counteracted by ssDNA binding proteins. Taken together, our studies provide new insights into the molecular properties of A3A and its role in multiple cellular and antiviral functions. PMID:24163103

  12. Sulfate inhibits ( sup 14 C)phosphonoformic acid binding to renal brush-border membranes

    SciTech Connect

    Tenenhouse, H.S.; Lee, J. )

    1990-08-01

    To examine the specificity of the phosphonoformic acid (PFA) interaction with the Na(+)-dependent phosphate transporter of mouse renal brush-border membrane vesicles, we compared the effects of anions on Na(+)-dependent (14C)PFA binding and Na(+)-dependent phosphate transport. Inhibition of PFA binding was achieved by PFA (% control = 0 +/- 1), sulfate (15 +/- 2), arsenate (35 +/- 1), phosphate (59 +/- 2), and nitrate (68 +/- 4), whereas inhibition of phosphate transport was only apparent with phosphate (0 +/- 1), PFA (22 +/- 4), and arsenate (37 +/- 5). Succinate and gluconate had no effect on either Na(+)-dependent process. Under conditions where Na(+)-dependent PFA binding was maximally inhibited by phosphate (% control = 65 +/- 4), further inhibition could be achieved by sulfate (26 +/- 5%). Na(+)-dependent PFA binding was competitively inhibited by phosphate (apparent Ki = 8.9 +/- 1.2 mM) and noncompetitively inhibited by sulfate (apparent Ki = 2.6 +/- 0.5 mM). We found that PFA inhibited Na(+)-dependent sulfate transport (50% inhibition at 9 mM PFA) as well as Na(+)-dependent phosphate transport (50% inhibition at 0.5 mM PFA). We also examined the pH dependence of Na(+)-dependent PFA binding and Na(+)-dependent phosphate and sulfate transport. PFA binding was optimal at pH = 7.4, whereas phosphate transport increased with increasing pH, and sulfate transport increased with decreasing pH.

  13. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer.

    PubMed

    Abney, C W; Das, S; Mayes, R T; Kuo, L-J; Wood, J; Gill, G; Piechowicz, M; Lin, Z; Lin, W; Dai, S

    2016-09-14

    The development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platforms for achieving this separation, yet the design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in the polymer. Samples exposed to seawater also display a feature consistent with a μ(2)-oxo-bridged transition metal, suggesting the formation of an in situ specific binding site. These findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials. PMID:27507226

  14. BEDAM Binding Free Energy Predictions for the SAMPL4 Octa-Acid Host Challenge

    PubMed Central

    Gallicchio, Emilio; Chen, Haoyuan; Chen, He; Fitzgerald, Michael; Gao, Yang; He, Peng; Kalyanikar, Malathi; Kao, Chuan; Lu, Beidi; Niu, Yijie; Pethe, Manasi; Zhu, Jie; Levy, Ronald M.

    2015-01-01

    The Binding Energy Distribution Analysis Method (BEDAM) protocol has been employed as part of the SAMPL4 blind challenge to predict the binding free energies of a set of octa-acid host-guest complexes. The resulting predictions were consistently judged as some of the most accurate predictions in this category of the SAMPL4 challenge in terms of quantitative accuracy and statistical correlation relative to the experimental values, which were not known at the time the predictions were made. The work has been conducted as part of a hands-on graduate class laboratory session. Collectively the students, aided by automated setup and analysis tools, performed the bulk of the calculations and the numerical and structural analysis. The success of the experiment confirms the reliability of the BEDAM methodology and it shows that physics-based atomistic binding free energy estimation models, when properly streamlined and automated, can be successfully employed by non-specialists. PMID:25726024

  15. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    DOE PAGESBeta

    Abney, C. W.; Das, S.; Mayes, R. T.; Kuo, L. -J.; Wood, J.; Gill, G.; Piechowicz, M.; Lin, Z.; Lin, W.; Dai, S.

    2016-08-01

    Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposedmore » to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.« less

  16. Biological characterization of liver fatty acid binding gene from miniature pig liver cDNA library.

    PubMed

    Gao, Y H; Wang, K F; Zhang, S; Fan, Y N; Guan, W J; Ma, Y H

    2015-01-01

    Liver fatty acid binding proteins (L-FABP) are a family of small, highly conserved, cytoplasmic proteins that bind to long-chain fatty acids and other hydrophobic ligands. In this study, a full-length enriched cDNA library was successfully constructed from Wuzhishan miniature pig, and then the L-FABP gene was cloned from this cDNA library and an expression vector (pEGFP-N3-L-FABP) was constructed in vitro. This vector was transfected into hepatocytes to test its function. The results of western blotting analysis demonstrated that the L-FABP gene from our full-length enriched cDNA library regulated downstream genes, including the peroxisome proliferator-activated receptor family in hepatocytes. This study provides a theoretical basis and experimental evidence for the application of L-FABP for the treatment of liver injury. PMID:26345909

  17. Deciphering the binding patterns and conformation changes upon the bovine serum albumin-rosmarinic acid complex.

    PubMed

    Peng, Xin; Wang, Xiangchao; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-08-01

    Rosmarinic acid (RA) is an importantly and naturally occurring polyphenol from plants of the mint family with potent biological activities. Here, the in vitro interaction of RA with bovine serum albumin (BSA) has been investigated using various biophysical approaches as well as molecular modeling methods, to ascertain its binding mechanism and conformational changes. The fluorescence results demonstrated that the fluorescence quenching of BSA by RA was mainly the result of the formation of a ground state BSA-RA complex, and BSA had one high affinity RA binding site with a binding constant of 4.18 × 10(4) mol L(-1) at 298 K. Analysis of thermodynamic parameters revealed that hydrophobic and hydrogen bond interactions were the dominant intermolecular force in the complex formation. The primary binding site of RA in BSA (site I) had been identified by site marker competitive experiments. The distance between RA and the tryptophan residue of BSA was evaluated at 3.12 nm based on Förster's theory of non-radiation energy transfer. The UV-vis absorption, synchronous fluorescence, three-dimensional fluorescence, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectra confirmed that the conformation and structure of BSA were altered in the presence of RA. Moreover, the nuclear magnetic spectroscopy showed that the aromatic groups of RA took part in the binding reaction during the BSA-RA complexation. In addition, the molecular picture of the interaction mechanism between BSA and RA at the atomic level was well examined by molecular docking and dynamics studies. In brief, RA can bind to BSA with noncovalent bonds in a relatively stable way, and these findings will be beneficial to the functional food research of RA. PMID:26146359

  18. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance.

    PubMed

    Li, Ya-Ying; Zhang, Yue-Jiao; Zhou, Yuan; Yang, Jian-Li; Zheng, Shao-Jian

    2009-06-01

    Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major Al resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify Al in the growth medium is frequently questioned. The genotypes of Al-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the Al activities in the solution were 10, 20, and 50 muM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm(2) per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate Al toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of Al adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding Al. These findings suggest that protection of cell walls from binding Al by organic acids may contribute significantly to Al resistance. PMID:19522816

  19. Binding of actin to thioglycolic acid modified superparamagnetic nanoparticles for antibody conjugation.

    PubMed

    Maltas, Esra; Ertekin, Betul

    2015-01-01

    Thioglycolic acid modified superparamagnetic iron oxide nanoparticles (TG-APTS-SPION) were synthesized by using (3-aminopropyl) triethoxysilane (APTS) and thioglycolic acid (TG). Actin was immobilized on the nanoparticle surfaces. Binding amount of the actin (Act) on TG-APTS-SPIONs was determined by using a calibration curve equation that was drawn using fluorescence spectra at 280 and 342 nm of excitation and emission wavelengths. Anti-Actin (anti-Act) was interacted with the actin immobilized TG-APTS-SPIONs as primary antibody. Horse radish peroxidase (HRP) was also interacted with antibody conjugated nanoparticles as secondary antibody. The binding capacity of primary and secondary antibodies was also estimated by fluorescence spectroscopy. Scanning electron microscopy (SEM), Infrared spectroscopy (FTIR) and energy dispersive X-ray (EDX) analysis were also clarified binding of the protein and antibodies to the nanoparticles' surfaces. Western blot analysis was also done for actin conjunction with anti Act antibody to confirm binding of the antibody to the protein. PMID:25451750

  20. Nucleomorphin. A novel, acidic, nuclear calmodulin-binding protein from dictyostelium that regulates nuclear number.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2002-05-31

    Probing of Dictyostelium discoideum cell extracts after SDS-PAGE using (35)S-recombinant calmodulin (CaM) as a probe has revealed approximately three-dozen Ca(2+)-dependent calmodulin binding proteins. Here, we report the molecular cloning, expression, and subcellular localization of a gene encoding a novel calmodulin-binding protein (CaMBP); we have called nucleomorphin, from D. discoideum. A lambdaZAP cDNA expression library of cells from multicellular development was screened using a recombinant calmodulin probe ((35)S-VU1-CaM). The open reading frame of 1119 nucleotides encodes a polypeptide of 340 amino acids with a calculated molecular mass of 38.7 kDa and is constitutively expressed throughout the Dictyostelium life cycle. Nucleomorphin contains a highly acidic glutamic/aspartic acid inverted repeat (DEED) with significant similarity to the conserved nucleoplasmin domain and a putative transmembrane domain in the carboxyl-terminal region. Southern blotting reveals that nucleomorphin exists as a single copy gene. Using gel overlay assays and CaM-agarose we show that bacterially expressed nucleomorphin binds to bovine CaM in a Ca(2+)-dependent manner. Amino-terminal fusion to the green fluorescence protein (GFP) showed that GFP-NumA localized to the nucleus as distinct arc-like patterns similar to heterochromatin regions. GFP-NumA lacking the acidic DEED repeat still showed arc-like accumulations at the nuclear periphery, but the number of nuclei in these cells was increased markedly compared with control cells. Cells expressing GFP-NumA lacking the transmembrane domain localized to the nuclear periphery but did not affect nuclear number or gross morphology. Nucleomorphin is the first nuclear CaMBP to be identified in Dictyostelium. Furthermore, these data present the first identification of a member of the nucleoplasmin family as a calmodulin-binding protein and suggest nucleomorphin has a role in nuclear structure in Dictyostelium. PMID:11919178

  1. Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

    PubMed Central

    2015-01-01

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure–activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines. PMID:25126694

  2. Urinary liver-type fatty acid-binding protein change in gestational diabetes mellitus.

    PubMed

    Fu, Wen-Jin; Wang, Du-Juan; Deng, Ren-Tang; Huang, Zhi-Hong; Chen, Mei-Lian; Jang, You-Ming; Wen, Shu; Yang, Hong-Ling; Huang, Xian-zhang

    2015-09-01

    We compared urinary liver-type fatty acid-binding protein (L-FABP) among non-pregnant and pregnant women with and without gestational diabetes mellitus (GDM). Higher urinary L-FABP was found in pregnant with and without GDM, and considerably higher urinary L-FABP was found in the GDM group compared with the non-GDM group. Hyperglycemia and anemia were related with high urinary L-FABP expression. PMID:26254248

  3. Binding of [alpha, alpha]-Disubstituted Amino Acids to Arginase Suggests New Avenues for Inhibitor Design

    SciTech Connect

    Ilies, Monica; Di Costanzo, Luigi; Dowling, Daniel P.; Thorn, Katherine J.; Christianson, David W.

    2011-10-21

    Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of {alpha},{alpha}-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase I and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional {alpha}-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.

  4. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications.

    PubMed

    Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A

    2014-10-31

    Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. PMID:25263062

  5. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.

    PubMed

    Panja, Subrata; Santiago-Frangos, Andrew; Schu, Daniel J; Gottesman, Susan; Woodson, Sarah A

    2015-11-01

    Hfq facilitates gene regulation by small non-coding RNAs (sRNAs), thereby affecting bacterial attributes such as biofilm formation and virulence. Escherichia coli Hfq recognizes specific U-rich and AAN motifs in sRNAs and target mRNAs, after which an arginine patch on the rim promotes base pairing between their complementary sequences. In the cell, Hfq must discriminate between many similar RNAs. Here, we report that acidic amino acids lining the sRNA binding channel between the inner pore and rim of the Hfq hexamer contribute to the selectivity of Hfq's chaperone activity. RNase footprinting, in vitro binding and stopped-flow fluorescence annealing assays showed that alanine substitution of D9, E18 or E37 strengthened RNA interactions with the rim of Hfq and increased annealing of non-specific or U-tailed RNA oligomers. Although the mutants were less able than wild-type Hfq to anneal sRNAs with wild-type rpoS mRNA, the D9A mutation bypassed recruitment of Hfq to an (AAN)4 motif in rpoS, both in vitro and in vivo. These results suggest that acidic residues normally modulate access of RNAs to the arginine patch. We propose that this selectivity limits indiscriminate target selection by E. coli Hfq and enforces binding modes that favor genuine sRNA and mRNA pairs. PMID:26196441

  6. Liver fatty acid binding protein: species variation and the accommodation of different ligands.

    PubMed

    Thompson, J; Reese-Wagoner, A; Banaszak, L

    1999-11-23

    The crystal structure of rat liver fatty acid binding protein (LFABP) and an alignment of amino acid sequences of all known species have been used to demonstrate two groups or sub-classes. Based on estimates at neutral pH and the electrostatic field calculated using the crystal coordinates, some evidence of changes that occur in going from holo- to apo-forms has been obtained. LFABP belongs to a large family frequently referred to as the intracellular lipid binding proteins or iLBPs. LFABP, unlike other family members, has two fatty acid binding sites. The two cavity sites have been reviewed and arguments for interactions between the sites are presented. Based on the crystal structure of rat LFABP, differences between the A and B groups have been postulated. Last of all, hypothetical models have been built of complexes of LFABP and heme, and LFABP and oleoyl CoA. In both cases, the stoichiometry is one to one and the models show why this is likely. PMID:10570240

  7. Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea.

    PubMed

    Pérez-Gálvez, Raúl; García-Moreno, Pedro J; Morales-Medina, Rocío; Guadix, Antonio; Guadix, Emilia M

    2015-04-01

    Fish protein hydrolysates (FPH), produced from the six main discard species from the West Mediterranean Sea (sardine, horse mackerel, axillary seabream, bogue, small-spotted catshark and blue whiting) were tested for their bile acid binding capacity. This capacity is directly linked to the ability to inhibit bile reabsorption in the ileum and therefore to lower cholesterol levels in the bloodstream. From each species, FPH were obtained by three different enzymatic treatments employing two serine endoproteases (subtilisin and trypsin) sequentially or in combination. The results show statistically significant differences among the fish species, attaining interesting average values of bile acid binding capacity for blue whiting (27.32% relative to cholestyramine on an equal protein basis) and horse mackerel (27.42% relative to cholestyramine on an equal protein basis). The enzymatic treatments did not significantly affect the ability of a given species to bind bile acids. These results are similar to other protein sources, such as soy protein or casein, of proven hypocholesterolemic effect. It can be concluded that fish protein hydrolysates from these discard species are suitable as ingredients in the formulation of cholesterol-lowering supplements. PMID:25756593

  8. Binding Modes of Zaragozic Acid A to Human Squalene Synthase and Staphylococcal Dehydrosqualene Synthase*

    PubMed Central

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H.-J.

    2012-01-01

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr248 in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors. PMID:22474324

  9. Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase.

    PubMed

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H-J

    2012-05-25

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr(248) in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors. PMID:22474324

  10. Identification of gamma-aminobutyric acid and its binding sites in Caenorhabditis elegans

    SciTech Connect

    Schaeffer, J.M.; Bergstrom, A.R.

    1988-01-01

    Gamma-aminobutyric acid (GABA), glutamate decarboxylase and GABA-transaminase were identified in the nematode Caenorhabditis elegans. The concentration of GABA in C. elegans is approximately 10-fold lower than the concentration of GABA in rat brain. Glutamate decarboxylase and GABA-transaminase, the GABA anabolic and catabolic enzymes, are also present in C. elegans. Crude membrane fractions were prepared from C. elegans and used to study specific (/sup 3/H) GABA binding sites. GABA binds to C. elegans membranes with high affinity and low capacity. Muscimol is a competitive inhibitor of specific GABA binding with a K/sub I/ value of 120 nM. None of the other GABA agonists or antagonists inhibited greater than 40% of the specific GABA binding at concentrations up to 10/sup -4/M. Thirteen spider venoms were examined as possible GABA agonists or antagonists, the venom from Calilena agelenidae inhibits specific GABA binding with a K/sub I/ value of 6 nl/ml. These results suggest that GABA has a physiological role as a neurotransmitter in C. elegans.

  11. Hyaluronic acid binding, endocytosis and degradation by sinusoidal liver endothelial cells

    SciTech Connect

    McGary, C.T.

    1988-01-01

    The binding, endocytosis, and degradation of {sup 125}I-hyaluronic acid ({sup 125}I-HA) by liver endothelial cells (LEC) was studied under several conditions. The dissociation of receptor-bound {sup 125}I-HA was rapid, with a half time of {approx}31 min and a K{sub off} of 6.3 {times} 10{sup {minus}4}/sec. A large reversible increase in {sup 125}I-HA binding to LEC at pH 5.0 was due to an increase in the observed affinity of the binding interaction. Pronase digestion suggested the protein nature of the receptor and the intracellular location of the digitonin exposed binding activity. Binding and endocytosis occur in the presence of 10 mM EGTA indicating that divalent cations are not required for receptor function. To study the degradation of {sup 125}I-HA by LEC, a cetylpyridinium chloride (CPC) precipitation assay was characterized. The minimum HA length required for precipitation was elucidated. The fate of the LEC HA receptor after endocytosis was examined.

  12. Health promoting potential of cereals, grain fractions and beans as determined by their in vitro bile acid binding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Health promoting potential (Cholesterol lowering and cancer risk reduction) of foods have been determined by in-vitro bile acid binding under physiological conditions. Lowered bile acids result in reduced fat absorption, conversion of cholesterol to bile acids and reduced cancer causing secondary b...

  13. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed. PMID:19744666

  14. Efficient identification of photolabelled amino acid residues by combining immunoaffinity purification with MS: revealing the semotiadil-binding site and its relevance to binding sites for myristates in domain III of human serum albumin.

    PubMed Central

    Kawahara, Kohichi; Kuniyasu, Akihiko; Masuda, Katsuyoshi; Ishiguro, Masaji; Nakayama, Hitoshi

    2002-01-01

    To identify photoaffinity-labelled amino acid residue(s), we devised an effective method utilizing immunoaffinity purification of photolabelled fragments, followed by matrix-assisted laser-desorption ionization-time of flight (MALDI-TOF) MS and nanoelectrospray ionization tandem MS (nano-ESI-MS/MS) analysis. Human serum albumin (HSA) was photolabelled with an azidophenyl derivative of semotiadil, FNAK [(+)-(R)-3,4-dihydro-2-[5-methoxy-2-[3-[N-methyl-N-[2-(3-azidophenoxy)-ethyl]amino]propoxyl]phenyl]-4-methyl-2H-1,4-benzothiazin-3-(4H)-one], since HSA is a major binding protein for semotiadil in serum. After lysyl endopeptidase digestion, photolabelled HSA fragments were adsorbed selectively on to Sepharose beads on which an anti-semotiadil antibody was immobilized, and fractions were eluted quantitatively by 50% acetonitrile/10 mM HCl. MALDI-TOF MS analysis of the eluted fraction showed that it contained two photolabelled fragments of m/z 2557.54 (major) and 1322.44 (minor), corresponding to Lys-414-Lys-432 and Ala-539-Lys-545, respectively. Further nano-ESI-MS/MS analysis revealed that Lys-414 was the photolabelled amino acid residue in fragment 414-432 and Lys-541 was a likely candidate in fragment 539-545. Based on the photolabelling results, we constructed a three-dimensional model of the FNAK-HSA complex, revealing that FNAK resides in a pocket that overlaps considerably with myristate (Myr)-binding sites, Myr-3 and -4, by comparison with crystallographic data of HSA-Myr complexes described in Curry, Mandelkow, Brick and Franks (1998) Nat. Struct. Biol. 5, 827-835. Moreover, addition of Myr increased photo-incorporation into Lys-414, whereas incorporation into Lys-541 decreased under conditions of [Myr]/[HSA]<1. Further addition of Myr, however, uniformly decreased photo-incorporation into both Lys residues. These results indicate that FNAK labelling can also be used to monitor Myr binding in domain III. An interpretation for the concomitant local

  15. Study of the ATP-binding site of helicase IV from Escherichia coli.

    PubMed

    Dubaele, Sandy; Lourdel, Claude; Chène, Patrick

    2006-03-17

    Helicases contain conserved motifs involved in ATP/magnesium/nucleic acid binding and in the mechanisms coupling nucleotide hydrolysis to duplex unwinding. None of these motifs are located at the adenine-binding pocket of the protein. We show here that the superfamily I helicase, helicase IV from Escherichia coli, utilizes a conserved glutamine and conserved aromatic residue to interact with ATP. Other superfamily I helicases such as, UvrD/Rep/PcrA also possess these residues but in addition they interact with adenine via a conserved arginine, which is replaced by a serine in helicase IV. Mutation of this serine residue in helicase IV into histidine or methionine leads to proteins with unaffected ATPase and DNA-binding activities but with low helicase activity. This suggests that residues located at the adenine-binding pocket, in addition to be involved in ATP-binding, are important for efficient coupling between ATP hydrolysis and DNA unwinding. PMID:16442499

  16. Mutational Insights into the Roles of Amino Acid Residues in Ligand Binding for Two Closely Related Family 16 Carbohydrate Binding Modules

    SciTech Connect

    Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan; Bae, Brian; Mackie, Roderick I.; Nair, Satish K.; Cann, Isaac K.O.

    2010-11-22

    Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues that flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.

  17. Understanding the physical and chemical nature of the warfarin drug binding site in human serum albumin: experimental and theoretical studies.

    PubMed

    Abou-Zied, Osama K

    2015-01-01

    Human serum albumin (HSA) is one of the major carrier proteins in the body and constitutes approximately half of the protein found in blood plasma. It plays an important role in lipid metabolism, and its ability to reversibly bind a large variety of pharmaceutical compounds makes it a crucial determinant of drug pharmacokinetics and pharmacodynamics. This review deals with one of the protein's major binding sites "Sudlow I" which includes a binding pocket for the drug warfarin (WAR). The binding nature of this important site can be characterized by measuring the spectroscopic changes when a ligand is bound. Using several drugs, including WAR, and other drug-like molecules as ligands, the results emphasize the nature of Sudlow I as a flexible binding site, capable of binding a variety of ligands by adapting its binding pockets. The high affinity of the WAR pocket for binding versatile molecular structures stems from the flexibility of the amino acids forming the pocket. The binding site is shown to have an ionization ability which is important to consider when using drugs that are known to bind in Sudlow I. Several studies point to the important role of water molecules trapped inside the binding site in molecular recognition and ligand binding. Water inside the protein's cavity is crucial in maintaining the balance between the hydrophobic and hydrophilic nature of the binding site. Upon the unfolding and refolding of HSA, more water molecules are trapped inside the binding site which cause some swelling that prevents a full recovery from the denatured state. Better understanding of the mechanism of binding in macromolecules such as HSA and other proteins can be achieved by combining experimental and theoretical studies which produce significant synergies in studying complex biochemical phenomena. PMID:25738490

  18. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    PubMed

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the

  19. Cholesterol-lowering effect of rice bran protein containing bile acid-binding proteins.

    PubMed

    Wang, Jilite; Shimada, Masaya; Kato, Yukina; Kusada, Mio; Nagaoka, Satoshi

    2015-01-01

    Dietary plant protein is well known to reduce serum cholesterol levels. Rice bran is a by-product of rice milling and is a good source of protein. The present study examined whether feeding rats a high-cholesterol diet containing 10% rice bran protein (RBP) for 10 d affected cholesterol metabolism. Rats fed dietary RBP had lower serum total cholesterol levels and increased excretion of fecal steroids, such as cholesterol and bile acids, than those fed dietary casein. In vitro assays showed that RBP strongly bound to taurocholate, and inhibited the micellar solubility of cholesterol, compared with casein. Moreover, the bile acid-binding proteins of the RBP were eluted by a chromatographic column conjugated with cholic acid, and one of them was identified as hypothetical protein OsJ_13801 (NCBI accession No. EAZ29742) using MALDI-TOF mass spectrometry analysis. These results suggest that the hypocholesterolemic action of the RBP may be caused by the bile acid-binding proteins. PMID:25374002

  20. Electrostatic binding and hydrophobic collapse of peptide-nucleic acid aggregates quantified using force spectroscopy.

    PubMed

    Camunas-Soler, Joan; Frutos, Silvia; Bizarro, Cristiano V; de Lorenzo, Sara; Fuentes-Perez, Maria Eugenia; Ramsch, Roland; Vilchez, Susana; Solans, Conxita; Moreno-Herrero, Fernando; Albericio, Fernando; Eritja, Ramón; Giralt, Ernest; Dev, Sukhendu B; Ritort, Felix

    2013-06-25

    Knowledge of the mechanisms of interaction between self-aggregating peptides and nucleic acids or other polyanions is key to the understanding of many aggregation processes underlying several human diseases (e.g., Alzheimer's and Parkinson's diseases). Determining the affinity and kinetic steps of such interactions is challenging due to the competition between hydrophobic self-aggregating forces and electrostatic binding forces. Kahalalide F (KF) is an anticancer hydrophobic peptide that contains a single positive charge that confers strong aggregative properties with polyanions. This makes KF an ideal model to elucidate the mechanisms by which self-aggregation competes with binding to a strongly charged polyelectrolyte such as DNA. We use optical tweezers to apply mechanical forces to single DNA molecules and show that KF and DNA interact in a two-step kinetic process promoted by the electrostatic binding of DNA to the aggregate surface followed by the stabilization of the complex due to hydrophobic interactions. From the measured pulling curves we determine the spectrum of binding affinities, kinetic barriers, and lengths of DNA segments sequestered within the KF-DNA complex. We find there is a capture distance beyond which the complex collapses into compact aggregates stabilized by strong hydrophobic forces and discuss how the bending rigidity of the nucleic acid affects this process. We hypothesize that within an in vivo context, the enhanced electrostatic interaction of KF due to its aggregation might mediate the binding to other polyanions. The proposed methodology should be useful to quantitatively characterize other compounds or proteins in which the formation of aggregates is relevant. PMID:23706043

  1. Sex Differences in Long Chain Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Burnett, David A.; Lysenko, Nina; Manning, Joan A.

    1979-01-01

    Female sex and estrogen administration are associated with increased hepatic production of triglyceride-rich lipoproteins; the basis for this has not been fully elucidated. Inasmuch as hepatic lipoprotein production is also influenced by FFA availability and triglyceride biosynthesis, we investigated sex differences in FFA utilization in rat hepatocyte suspensions and in the components of the triglyceride biosynthetic pathway. Isolated adult rat hepatocyte suspensions were incubated with albumin-bound [14C]oleate for up to 15 min. At physiological and low oleate concentrations, cells from females incorporated significantly more 14C into glycerolipids, especially triglycerides, and into oxidation products than did male cells, per milligram cell protein. At 0.44 mM oleate, incorporation into triglycerides in female cells was approximately twice that in male cells. Comparable sex differences were observed in cells from fasted animals and when [14C]-glycerol incorporation was measured. At higher oleate concentrations, i.e., fatty acid:albumin mole ratios in excess of 2:1, these sex differences were no longer demonstrable, suggesting that maximal rates of fatty acid esterification and oxidation were similar in female and male cells. In female and male hepatic microsomes, specific activities of long chain acyl coenzyme A synthetase, phosphatidate phosphohydrolase, and diglyceride acyltransferase were similar, but glycerol-3-phosphate acyltransferase activity was slightly greater in females at certain substrate concentrations. Microsomal incorporation of [14C]oleate into total glycerolipids was not significantly greater in females. In further contrast to intact cells, microsomal incorporation of [14C]oleate into triglycerides, although significantly greater in female microsomes, accounted for only a small fraction of the fatty acid esterified. The binding affinity and stoichiometry of partially purified female hepatic fatty acid binding protein (FABP) were similar to

  2. Interaction of LY171883 and other peroxisome proliferators with fatty-acid-binding protein isolated from rat liver.

    PubMed Central

    Cannon, J R; Eacho, P I

    1991-01-01

    Fatty-acid-binding protein (FABP) is a 14 kDa protein found in hepatic cytosol which binds and transports fatty acids and other hydrophobic ligands throughout the cell. The purpose of this investigation was to determine whether LY171883, a leukotriene D4 antagonist, and other peroxisome proliferators bind to FABP and displace an endogenous fatty acid. [3H]Oleic acid was used to monitor the elution of FABP during chromatographic purification. [14C]LY171883 had a similar elution profile when substituted in the purification, indicating a common interaction with FABP. LY171883 and its structural analogue, LY189585, as well as the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate, bezafibrate and WY14,643, displaced [3H]oleic acid binding to FABP. Analogues of LY171883 that do not induce peroxisome proliferation only weakly displaced oleate binding. [3H]Ly171883 bound directly to FABP with a Kd of 10.8 microM, compared with a Kd of 0.96 microM for [3H]oleate. LY171883 binding was inhibited by LY189585, clofibric acid, ciprofibrate and bezafibrate. These findings demonstrate that peroxisome proliferators, presumably due to their structural similarity to fatty acids, are able to bind to FABP and displace an endogenous ligand from its binding site. Interaction of peroxisome proliferators with FABP may be involved in perturbations of fatty acid metabolism caused by these agents as well as in the development of the pleiotropic response of peroxisome proliferation. Images Fig. 2. PMID:1747111

  3. Pharmacokinetics, tissue distribution, and plasma protein binding study of chicoric acid by HPLC-MS/MS.

    PubMed

    Wang, Yutang; Xie, Guo; Liu, Qian; Duan, Xiang; Liu, Zhigang; Liu, Xuebo

    2016-09-15

    Chicoric acid is a major active constituent of Echinacea purpurea and has a variety of biological functions. In this study, a liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) approach was developed and validated for the determination of chicoric acid in rat plasma and various tissues using ferulic acid as an internal standard (IS). This method was successfully applied to pharmacokinetics, tissue distribution, and plasma protein binding (PPB) study of chicoric acid in Sprague-Dawley (SD) rats dosed with 50mg/kg by gastric gavage. The pharmacokinetic parameters were determined and showed a half-life (t1/2) of 4.53±1.44h, an apparent volume of mean residual time (MRT) of 18.58±4.43h, and an area under the curve (AUC) of 26.14 mghL(-1). The tissue distribution of chicoric acid in rats after gavage administration showed a decreasing tendency in different tissues (liver>lung>kidney>heart>spleen>brain). The PPB rates in rat plasma, human plasma, and bovine serum albumin were 98.3, 96.9, and 96.6%, respectively. These results provide insight for the further pharmacological investigation of chicoric acid. PMID:27479684

  4. Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding

    PubMed Central

    Jones, Christopher P.; Datta, Siddhartha A. K.; Rein, Alan; Rouzina, Ioulia; Musier-Forsyth, Karin

    2011-01-01

    Retroviruses replicate by reverse transcribing their single-stranded RNA genomes into double-stranded DNA using specific cellular tRNAs to prime cDNA synthesis. In HIV-1, human tRNA3Lys serves as the primer and is packaged into virions during assembly. The viral Gag protein is believed to chaperone tRNA3Lys placement onto the genomic RNA primer binding site; however, the timing and possible regulation of this event are currently unknown. Composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains, the multifunctional HIV-1 Gag polyprotein orchestrates the highly coordinated process of virion assembly, but the contribution of these domains to tRNA3Lys annealing is unclear. Here, we show that NC is absolutely essential for annealing and that the MA domain inhibits Gag's tRNA annealing capability. During assembly, MA specifically interacts with inositol phosphate (IP)-containing lipids in the plasma membrane (PM). Surprisingly, we find that IPs stimulate Gag-facilitated tRNA annealing but do not stimulate annealing in Gag variants lacking the MA domain or containing point mutations involved in PM binding. Moreover, we find that IPs prevent MA from binding to nucleic acids but have little effect on NC or Gag. We propose that Gag binds to RNA either with both NC and MA domains or with NC alone and that MA-IP interactions alter Gag's binding mode. We propose that MA's interactions with the PM trigger the switch between these two binding modes and stimulate Gag's chaperone function, which may be important for the regulation of events such as tRNA primer annealing. PMID:21123373

  5. Fatty acid binding protein 7 and n-3 poly unsaturated fatty acid supply in early rat brain development.

    PubMed

    Maximin, Elise; Langelier, Bénédicte; Aïoun, Josiane; Al-Gubory, Kaïs H; Bordat, Christian; Lavialle, Monique; Heberden, Christine

    2016-03-01

    Fatty acid binding protein 7 (FABP7), abundant in the embryonic brain, binds with the highest affinity to docosahexaenoic acid (DHA) and is expressed in the early stages of embryogenesis. Here, we have examined the consequences of the exposure to different DHA levels and of the in utero depletion of FABP7 on early rat brain development. Neurodevelopment was evaluated through the contents of two proteins, connexin 43 (Cx43) and cyclin-dependent kinase 5 (CDK5), both involved in neuroblast proliferation, differentiation, and migration. The dams were fed with diets presenting different DHA contents, from deficiency to supplementation. DHA brain embryos contents already differed at embryonic day 11.5 and the differences kept increasing with time. Cx43 and CDK5 contents were positively associated with the brain DHA levels. When FABP7 was depleted in vivo by injections of siRNA in the telencephalon, the enhancement of the contents of both proteins was lost in supplemented animals, but FABP7 depletion did not modify phospholipid compositions regardless of the diets. Thus, FABP7 is a necessary mediator of the effect of DHA on these proteins synthesis, but its role in DHA uptake is not critical, although FABP7 is localized in phospholipid-rich areas. Our study shows that high contents of DHA associated with FABP7 are necessary to promote early brain development, which prompted us to recommend DHA supplementation early in pregnancy. PMID:26037116

  6. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    PubMed

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment. PMID:26852781

  7. Model of β-Sheet of Muscle Fatty Acid Binding Protein of Locusta migratoria Displays Characteristic Topology

    PubMed Central

    Kizilbash, Nadeem A; Hai, Abdul; Alruwaili, Jamal

    2013-01-01

    The β-sheet of muscle fatty acid binding protein of Locusta migratoria (Lm-FABP) was modeled by employing 2-D NMR data and the Rigid Body Assembly method. The model shows the β-sheet to comprise ten β-strands arranged anti-parallel to each other. There is a β-bulge between Ser 13 and Gln 14 which is a difference from the published structure of β-sheet of bovine heart Fatty Acid Binding Protein. Also, a hydrophobic patch consisting of Ile 45, Phe 51, Phe 64 and Phe 66 is present on the surface which is characteristic of most Fatty Acid Binding Proteins. A “gap” is present between βD and βE that provides evidence for the presence of a portal or opening between the polypeptide chains which allows ligand fatty acids to enter the protein cavity and bind to the protein. PMID:24497726

  8. Gas phase acidity measurement of local acidic groups in multifunctional species: controlling the binding sites in hydroxycinnamic acids.

    PubMed

    Guerrero, Andres; Baer, Tomas; Chana, Antonio; González, Javier; Dávalos, Juan Z

    2013-07-01

    The applicability of the extended kinetic method (EKM) to determine the gas phase acidities (GA) of different deprotonable groups within the same molecule was tested by measuring the acidities of cinnamic, coumaric, and caffeic acids. These molecules differ not only in the number of acidic groups but in their nature, intramolecular distances, and calculated GAs. In order to determine independently the GA of groups within the same molecule using the EKM, it is necessary to selectively prepare pure forms of the hydrogen-bound heterodimer. In this work, the selectivity was achieved by the use of solvents of different vapor pressure (water and acetonitrile), as well as by variation of the drying temperature in the ESI source, which affected the production of heterodimers with different solvation energies and gas-phase dissociation energies. A particularly surprising finding is that the calculated solvation enthalpies of water and the aprotic acetonitrile are essentially identical, and that the different gas-phase products generated are apparently the result of their different vapor pressures, which affects the drying mechanism. This approach for the selective preparation of heterodimers, which is based on the energetics, appears to be quite general and should prove useful for other studies that require the selective production of heterodimers in ESI sources. The experimental results were supported by density functional theory (DFT) calculations of both gas-phase and solvated species. The experimental thermochemical parameters (deprotonation ΔG, ΔH, and ΔS) are in good agreement with the calculated values for the monofunctional cinnamic acid, as well as the multifunctional coumaric and caffeic acids. The measured GA for cinnamic acid is 334.5 ± 2.0 kcal/mol. The measured acidities for the COOH and OH groups of coumaric and caffeic acids are 332.7 ± 2.0, 318.7 ± 2.1, 332.2 ± 2.0, and 317.3 ± 2.2 kcal/mol, respectively. PMID:23799241

  9. Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology.

    PubMed

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-07-27

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function. PMID:22661711

  10. Binding-Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids.

    PubMed

    Zhang, Hongquan; Lai, Maode; Zuehlke, Albert; Peng, Hanyong; Li, Xing-Fang; Le, X Chris

    2015-11-23

    We introduce the concept and operation of a binding-induced DNA nanomachine that can be activated by proteins and nucleic acids. This new type of nanomachine harnesses specific target binding to trigger assembly of separate DNA components that are otherwise unable to spontaneously assemble. Three-dimensional DNA tracks of high density are constructed on gold nanoparticles functionalized with hundreds of single-stranded oligonucleotides and tens of an affinity ligand. A DNA swing arm, free in solution, is linked to a second affinity ligand. Binding of a target molecule to the two ligands brings the swing arm to AuNP and initiates autonomous, stepwise movement of the swing arm around the AuNP surface. The movement of the swing arm, powered by enzymatic cleavage of conjugated oligonucleotides, cleaves hundreds of oligonucleotides in response to a single binding event. We demonstrate three nanomachines that are specifically activated by streptavidin, platelet-derived growth factor, and the Smallpox gene. Substituting the ligands enables the nanomachine to respond to other molecules. The new nanomachines have several unique and advantageous features over DNA nanomachines that rely on DNA self-assembly. PMID:26457803

  11. Identification of a Soluble, High-Affinity Salicylic Acid-Binding Protein in Tobacco.

    PubMed Central

    Du, H.; Klessig, D. F.

    1997-01-01

    Salicylic acid (SA) is a key component in the signal transduction pathway(s), leading to the activation of certain defense responses in plants after pathogen attack. Previous studies have identified several proteins, including catalase and ascorbate peroxidase, through which the SA signal might act. Here we describe a new SA-binding protein. This soluble protein is present in low abundance in tobacco (Nicotiana tabacum) leaves and has an apparent molecular weight of approximately 25,000. It reversibly binds SA with an apparent dissociation constant of 90 nM, an affinity that is 150-fold higher than that between SA and catalase. The ability of most analogs of SA to compete with labeled SA for binding to this protein correlated with their ability to induce defense gene expression and enhanced resistance. Strikingly, benzothiadiazole, a recently described chemical activator that induces plant defenses and disease resistance at very low rates of application, was the strongest competitor, being much more effective than unlabeled SA. The possible role of this SA-binding protein in defense signal transduction is discussed. PMID:12223676

  12. Retinoic Acid Receptors Recognize the Mouse Genome through Binding Elements with Diverse Spacing and Topology*

    PubMed Central

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-01-01

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function. PMID:22661711

  13. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    PubMed Central

    Pasternak, Anna; Hernandez, Frank J.; Rasmussen, Lars M.; Vester, Birte; Wengel, Jesper

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation. PMID:20870750

  14. Water-Mediated Differential Binding of Strontium and Cesium Cations in Fulvic Acid.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2015-08-27

    The migration of potentially harmful radionuclides, such as cesium ((137)Cs) and strontium ((90)Sr), in soil is governed by the chemical and biological reactivity of soil components. Soil organic matter (SOM) that can be modeled through fulvic acid (FA) is known to alter the mobility of radionuclide cations, Cs(+) and Sr(2+). Shedding light on the possible interaction mechanisms at the atomic level of these two ions with FA is thus vital to explain their transport behavior and for the design of new ligands for the efficient extraction of radionuclides. Here we have performed molecular dynamics, metadynamics simulations, and density-functional-theory-based calculations to understand the binding mechanism of Sr(2+) and Cs(+) cations with FA. Our studies predict that interaction of Cs(+) to FA is very weak as compared with Sr(2+). While the water-FA interaction is largely responsible for the weak binding of Cs(+) to FA, leading to the outer sphere complexation of the ion with FA, the interaction between Sr(2+) and FA is stronger and thus can surpass the existing secondary nonbonding interaction between coordinated waters and FA, leading to inner sphere complexation of the ion with FA. We also find that entropy plays a dominant role for Cs(+) binding to FA, whereas Sr(2+) binding is an enthalpy-driven process. Our predicted results are found to be in excellent agreement with the available experimental data on complexation of Cs(+) and Sr(2+) with SOM. PMID:25794241

  15. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    PubMed

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-01

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids. PMID:21797258

  16. Thermodynamic characterization of the interaction between the human Y-box binding protein YB-1 and nucleic acids.

    PubMed

    Tanabe, Yumiko; Nagatoishi, Satoru; Tsumoto, Kouhei

    2015-09-01

    Y-box binding protein 1 (YB-1) binds to both RNA and DNA to control transcription and translation for the regulation of various cellular systems. YB-1 is overexpressed in some cancer cells and is a potential target for treatment of cancer. Herein, we describe isothermal titration calorimetry analyses of the interaction between a number of recombinant YB-1 domains and nucleic acids to identify the RNA and DNA binding sites and their binding mechanisms. These results demonstrated that the C-terminal domain of the protein interacts with single-stranded DNA and RNA by exothermic and endothermic reactions, respectively. The highly conserved cold-shock domain (CSD) also bound to single-stranded RNA and DNA by exothermic and endothermic reactions, respectively. The specific binding manner for RNA is in the CSD, whereas DNA binds with the most affinity to the C-terminal region (amino acids 130-219). We found further that the C-terminal region (amino acids 220-324) regulates the binding stoichiometry of RNA. These quantitative thermodynamic results provide a preliminary indication on the molecular mechanism of binding of the multifunctional protein YB-1 to nucleic acids to regulate its biological function. PMID:26126888

  17. Surface lysine residues modulate the collisional transfer of fatty acid from adipocyte fatty acid binding protein to membranes.

    PubMed

    Herr, F M; Matarese, V; Bernlohr, D A; Storch, J

    1995-09-19

    The transfer of unesterified fatty acids (FA) from adipocyte fatty acid binding protein (A-FABP) to phospholipid membranes is proposed to occur via a collisional mechanism involving transient ionic and hydrophobic interactions [Wootan & Storch (1994) J. Biol. Chem. 269, 10517-10523]. In particular, it was suggested that membrane acidic phospholipids might specifically interact with basic residues on the surface of A-FABP. Here we addressed whether lysine residues on the surface of the protein are involved in this collisional transfer mechanism. Recombinant A-FABP was acetylated to neutralize all positively charged surface lysine residues. Protein fluorescence, CD spectra, and chemical denaturant data indicate that acetylation did not substantially alter the conformational integrity of the protein, and nearly identical affinities were obtained for binding of the fluorescently labeled FA [12-(9-anthroyloxy)oleate] to native and acetylated protein. Transfer of 2-(9-anthroyloxy)palmitate (2AP) from acetylated A-FABP to small unilamellar vesicles (SUV) was 35-fold slower than from native protein. In addition, whereas the 2AP transfer rate from native A-FABP was directly dependent on SUV concentration, 2AP transfer from acetylated protein was independent on the concentration of acceptor membranes. Factors which alter aqueous-phase solubility of FA, such as ionic strength and acyl chain length and saturation, affected the AOFA transfer rate from acetylated but not native A-FABP. Finally, an increase in the negative charge density of the acceptor SUV resulted in a marked increase in the rate of transfer from native A-FABP but did not increase the rate from acetylated A-FABP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7547918

  18. Role of surface lysine residues of adipocyte fatty acid-binding protein in fatty acid transfer to phospholipid vesicles.

    PubMed

    Liou, H L; Storch, J

    2001-05-29

    The tertiary structure of murine adipocyte fatty acid-binding protein (AFABP) is a flattened 10-stranded beta-barrel capped by a helix-turn-helix segment. This helical domain is hypothesized to behave as a "lid" or portal for ligand entry into and exit from the binding cavity. Previously, we demonstrated that anthroyloxy-labeled fatty acid (AOFA) transfer from AFABP to phospholipid membranes occurs by a collisional process, in which ionic interactions between positively charged lysine residues on the protein surface and negatively charged phospholipid headgroups are involved. In the present study, the role of specific lysine residues located in the portal and other regions of AFABP was directly examined using site-directed mutagenesis. The results showed that isoleucine replacement for lysine in the portal region, including the alphaI- and alphaII-helices and the beta C-D turn, resulted in much slower 2-(9-anthroyloxy)palmitate (2AP) transfer rates to acidic membranes than those of native AFABP. An additive effect was found for mutant K22,59I, displaying the slowest rates of FA transfer. Rates of 2AP transfer from "nonportal" mutants on the beta-G and I strands were affected only moderately; however, a lysine --> isoleucine mutation in the nonportal beta-A strand decreased the 2AP transfer rate. These studies suggest that lysines in the helical cap domain are important for governing ionic interactions between AFABP and membranes. Furthermore, it appears that more than one distinct region, including the alphaI-helix, alphaII-helix, beta C-D turn, and the beta-A strand, is involved in these charge-charge interactions. PMID:11371211

  19. Proton-Binding Sites of Acid-Sensing Ion Channel 1

    PubMed Central

    Ishikita, Hiroshi

    2011-01-01

    Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission. Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein conformations of the subunits. His74 possessed a pKa of ≈6–7. Conservation of His74 in the proton-sensitive ASIC3 that lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs. PMID:21340031

  20. A comparative study of europium, thorium and uranium binding to an aquatic fulvic acid

    SciTech Connect

    Norden, M.; Ephraim, H.J.; Allard, B.; Albinsson, Y.

    1993-12-31

    Advances in safe management and disposal of radioactive waste have shown that a comprehensive program requires the incorporation of dissolved organics into radwaste and transport effluent models, with respect to their binding of radionuclides. The binding of Eu{sup 3+}, Th{sup 4+} and UO{sub 2}{sup 2+} to a well-characterized aquatic fulvic acid has been studied using an ultrafiltration method at a bulk electrolyte concentration of 0.10 M NaClO{sub 4}, trace amounts of radionuclides and fulvic acid concentrations of 60 and 120 mg/l. The results expressed as the overall complex formation function, {beta}{sub ov}, versus pH show the following order: Th{sup 4+} > Eu{sup 3+} > UO{sub 2}{sup 2+}. The estimated {beta}{sub 0v} values have been discussed by considering the aqueous chemistry of Eu{sup 3+}, Th{sup 4+} and UO{sub 2}{sup 2+} vis-a-vis the solution chemistry of the fulvic acid sample.

  1. Buffer interference with protein dynamics: a case study on human liver fatty acid binding protein.

    PubMed

    Long, Dong; Yang, Daiwen

    2009-02-18

    Selection of suitable buffer types is often a crucial step for generating appropriate protein samples for NMR and x-ray crystallographic studies. Although the possible interaction between MES buffer (2-(N-morpholino)ethanesulfonic acid) and proteins has been discussed previously, the interaction is usually thought to have no significant effects on the structures of proteins. In this study, we demonstrate the direct, albeit weak, interaction between MES and human liver fatty acid binding protein (hLFABP). Rather than affecting the structure of hLFABP, we found that the dynamics of hLFABP, which were previously proposed to be relevant to its functions, were significantly affected by the binding of hLFABP with MES. Buffer interference with protein dynamics was also demonstrated with Bis-Tris buffer, which is quite different from MES and fatty acids in terms of their molecular structures and properties. This result, to our knowledge, is the first published report on buffer interference with protein dynamics on a microsecond to millisecond timescale and could represent a generic problem in the studies of functionally relevant protein dynamics. Although being a fortuity, our finding of buffer-induced changes in protein dynamics offers a clue to how hLFABP accommodates its ligands. PMID:19217864

  2. Pocket ultrasound devices for focused echocardiography

    PubMed Central

    2012-01-01

    Pocket ultrasound devices have recently been developed and may be particularly useful for emergency assessment. These devices can be stored in a pocket but share only some technical features with conventional echocardiographic machines. Two-dimensional imaging and color flow mode are available, with possible adjustments of global gain and depth, but Doppler features are lacking. These devices are particularly fitted for focused echocardiography. In this issue, a trial compares a pocket ultrasound device with a conventional echocardiographic machine for focused echocardiography in patients admitted to the emergency department. This commentary will put these findings into perspective. PMID:22748159

  3. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2010-03-01

    The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10 -4 to 2.7 × 10 -2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK 2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that logKdREE patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the logKdREE atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the logKdREE pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L -1 and 4

  4. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria.

    PubMed

    Fazeli, Mohammad R; Hajimohammadali, M; Moshkani, Azamossadat; Samadi, Nasrin; Jamalifar, Hossein; Khoshayand, Mohammad R; Vaghari, Elham; Pouragahi, Samieh

    2009-01-01

    Some foods are prone to contamination with aflatoxins, with detrimental effect on human health. Lactic acid bacteria have been reported to bind aflatoxins and remove them from foods and feeds. Reduction of aflatoxin B1 (AFB1) from the liquid media by the autochthonous lactic acid bacteria (Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus fermentum) isolated from traditional Iranian sourdough and dairy products is reported in the current study. The effect of incubation time on the binding capacity of the strains to AFB1 was also investigated. Duplicates of individual bacteria with population equivalent to 2 X 10(10) CFU/ml were incubated in the presence of AFB1 at 37 degrees C for a period of 72 h, and the amounts of unbound AFB1 were quantitated by reverse-phase high-performance liquid chromatography. All the strains were capable of removal of AFB1, and the reduction of AFB1 ranged from 25 to 61% throughout the incubation period. Removal of AFB1 was a rapid process, with approximately 61 and 56% of the toxin taken instantly by L. fermentum and L. plantarum, respectively. Binding was of a reversible nature, and some of the bound AFB1 was released into the media by the repeated centrifugation and resuspension of the cell pellets. The stability of the bacteria-toxin complex was strain dependent, and L. casei was a stronger binder of AFB1 compared with the other bacteria. No toxin release was observed after 24 h. These findings tend to suggest that certain novel probiotic bacteria with high aflatoxin binding capacity could be selected for detoxification of foods. PMID:19205485

  5. Uranium Binding Mechanisms of the Acid-Tolerant Fungus Coniochaeta fodinicola.

    PubMed

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Collins, Richard N; Neilan, Brett A; Aoyagi, Noboru; Waite, T David

    2015-07-21

    The uptake and binding of uranium [as (UO2)(2+)] by a moderately acidophilic fungus, Coniochaeta fodinicola, recently isolated from a uranium mine site, is examined in this work in order to better understand the potential impact of organisms such as this on uranium sequestration in hydrometallurgical systems. Our results show that the viability of the fungal biomass is critical to their capacity to remove uranium from solution. Indeed, live biomass (viable cells based on vital staining) were capable of removing ∼16 mg U/g dry weight in contrast with dead biomass (autoclaved) which removed ∼45 mg U/g dry weight after 2 h. Furthermore, the uranium binds with different strength, with a fraction ranging from ∼20-50% being easily leached from the exposed biomass by a 10 min acid wash. Results from X-ray absorption spectroscopy measurements show that the strength of uranium binding is strongly influenced by cell viability, with live cells showing a more well-ordered uranium bonding environment, while the distance to carbon or phosphorus second neighbors is similar in all samples. When coupled with time-resolved laser fluorescence and Fourier transformed infrared measurements, the importance of organic acids, phosphates, and polysaccharides, likely released with fungal cell death, appear to be the primary determinants of uranium binding in this system. These results provide an important progression to our understanding with regard to uranium sequestration in hydrometallurgical applications with implications to the unwanted retention of uranium in biofilms and/or its mobility in a remediation context. PMID:26106944

  6. Influence of ligand binding on structure and thermostability of human α1-acid glycoprotein.

    PubMed

    Kopecký, Vladimír; Ettrich, Rüdiger; Pazderka, Tomáš; Hofbauerová, Kateřina; Řeha, David; Baumruk, Vladimír

    2016-02-01

    Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1-acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β-barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are -18.2, -14.5, and -11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10-95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α-helical content is observed that coincides with an increase in β-sheet content. Above 45 °C, also β-strands tend to unfold, and the observed decrease in β-sheet coincides with an increase of β-turns accompanied by a conformational shift of the nearby disulfide bridge from high-energy trans-gauche-trans to more relaxed gauche-gauche-trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β-sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein-ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone-like function of AGP. PMID:26400697

  7. Binding of the substrate UDP-glucuronic acid induces conformational changes in the xanthan gum glucuronosyltransferase.

    PubMed

    Salinas, S R; Petruk, A A; Brukman, N G; Bianco, M I; Jacobs, M; Marti, M A; Ielpi, L

    2016-06-01

    GumK is a membrane-associated glucuronosyltransferase of Xanthomonas campestris that is involved in xanthan gum biosynthesis. GumK belongs to the inverting GT-B superfamily and catalyzes the transfer of a glucuronic acid (GlcA) residue from uridine diphosphate (UDP)-GlcA (UDP-GlcA) to a lipid-PP-trisaccharide embedded in the membrane of the bacteria. The structure of GumK was previously described in its apo- and UDP-bound forms, with no significant conformational differences being observed. Here, we study the behavior of GumK toward its donor substrate UDP-GlcA. Turbidity measurements revealed that the interaction of GumK with UDP-GlcA produces aggregation of protein molecules under specific conditions. Moreover, limited proteolysis assays demonstrated protection of enzymatic digestion when UDP-GlcA is present, and this protection is promoted by substrate binding. Circular dichroism spectroscopy also revealed changes in the GumK tertiary structure after UDP-GlcA addition. According to the obtained emission fluorescence results, we suggest the possibility of exposure of hydrophobic residues upon UDP-GlcA binding. We present in silico-built models of GumK complexed with UDP-GlcA as well as its analogs UDP-glucose and UDP-galacturonic acid. Through molecular dynamics simulations, we also show that a relative movement between the domains appears to be specific and to be triggered by UDP-GlcA. The results presented here strongly suggest that GumK undergoes a conformational change upon donor substrate binding, likely bringing the two Rossmann fold domains closer together and triggering a change in the N-terminal domain, with consequent generation of the acceptor substrate binding site. PMID:27099353

  8. Kinetic properties of the binding of alpha-lytic protease to peptide boronic acids.

    PubMed

    Kettner, C A; Bone, R; Agard, D A; Bachovchin, W W

    1988-10-01

    The kinetic parameters for peptide boronic acids in their interaction with alpha-lytic protease were determined and found to be similar to those of other serine proteases [Kettner, C., & Shenvi, A. B. (1984) J. Biol. Chem. 259, 15106-15114]. alpha-Lytic protease hydrolyzes substrates with either alanine or valine in the P1 site and has a preference for substrate with a P1 alanine. The most effective inhibitors are tri- and tetrapeptide analogues that have a -boroVal-OH residue in the P1 site. At pH 7.5, MeOSuc-Ala-Ala-Pro-boroVal-OH has a Ki of 6.4 nM and Boc-Ala-Pro-boroVal-OH has a Ki of 0.35 nM. Ac-boroVal-OH and Ac-Pro-boroVal-OH are 220,000- and 500-fold less effective, respectively, than the tetrapeptide analogue. The kinetic properties of the tri- and tetrapeptide analogues are consistent with the mechanism for slow-binding inhibition, E + I in equilibrium EI in equilibrium EI*, while the less effective inhibitors are simple competitive inhibitors. MeO-Suc-Ala-Ala-Pro-boroAla-OH is a simple competitive inhibitor with a Ki of 67 nM at pH 7.5. Other peptide boronic acids, which are analogues of nonsubstrates, are less effective than substrate analogues but still are effective competitive inhibitors. For example, MeOSuc-Ala-Ala-Pro-boroPhe-OH has a Ki of 0.54 microM although substrates with a phenylalanine in the P1 position are not hydrolyzed. Binding for boronic acid analogues of both substrate and nonsubstrate analogues is pH dependent with higher affinity near pH 7.5. Similar binding properties have been observed for pancreatic elastase. Both enzymes have almost identical requirements for an extended peptide inhibitor sequence in order to exhibit highly effective binding and slow-binding characteristics.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3207699

  9. In situ detection of salicylic acid binding sites in plant tissues.

    PubMed

    Liu, Jing-Wen; Deng, Da-Yi; Yu, Ying; Liu, Fang-Fei; Lin, Bi-Xia; Cao, Yu-Juan; Hu, Xiao-Gang; Wu, Jian-Zhong

    2015-02-01

    The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS-CdSe QDs were used to detect SA-binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS-CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS-CdSe QDs on cytosolic Ca(2+) levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS-CdSe QDs had similar effects on the trend in cytosolic-free Ca(2+) concentrations, suggesting that the PAS-CdSe QDs maintained the bioactivity of SA. To summarize, PAS-CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants. PMID:24833131

  10. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis.

    PubMed

    Beck-Fruchter, Ronit; Shalev, Eliezer; Weiss, Amir

    2016-03-01

    The human oocyte is surrounded by hyaluronic acid, which acts as a natural selector of spermatozoa. Human sperm that express hyaluronic acid receptors and bind to hyaluronic acid have normal shape, minimal DNA fragmentation and low frequency of chromosomal aneuploidies. Use of hyaluronic acid binding assays in intracytoplasmic sperm injection (ICSI) cycles to improve clinical outcomes has been studied, although none of these studies had sufficient statistical power. In this systematic review and meta-analysis, electronic databases were searched up to June 2015 to identify studies of ICSI cycles in which spermatozoa able to bind hyaluronic acid was selected. The main outcomes were fertilization rate and clinical pregnancy rate. Secondary outcomes included cleavage rate, embryo quality, implantation rate, spontaneous abortion and live birth rate. Seven studies and 1437 cycles were included. Use of hyaluronic acid binding sperm selection technique yielded no improvement in fertilization and pregnancy rates. A meta-analysis of all available studies showed an improvement in embryo quality and implantation rate; an analysis of prospective studies only showed an improvement in embryo quality. Evidence does not support routine use of hyaluronic acid binding assays in all ICSI cycles. Identification of patients that might benefit from this technique needs further study. PMID:26776822

  11. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues.

    PubMed

    Kelm, S; Brossmer, R; Isecke, R; Gross, H J; Strenge, K; Schauer, R

    1998-08-01

    The siglecs, formerly called sialoadhesins, are a family of I-type lectins binding to sialic acids on the cell surface. Five members of this family have been identified: sialoadhesin, myelin-associated glycoprotein (MAG), Schwann cell myelin protein (SMP), CD22 and CD33. We have investigated the relevance of substituents at position C-9 and in the N-acetyl group of N-acetylneuraminic acid, using a series of synthetic sialic-acid analogues either on resialylated human erythrocytes or as free alpha-glycosides in hapten inhibition. All five siglecs require the hydroxy group at C-9 for binding, suggesting hydrogen bonding of this substituent with the binding site. Remarkable differences were found among the proteins in their specificity for modifications of the N-acetyl group. Whereas sialoadhesin, MAG and SMP do not tolerate a hydroxy group as in N-glycolylneuraminic acid, they bind to halogenated acetyl residues. In the case of MAG, N-fluoroacetylneuraminic acid is bound about 17-fold better than N-acetylneuraminic acid. In contrast, human and murine CD22 both show good affinity for N-glycolylneuraminic acid, but only human CD22 bound the halogenated compounds. In conclusion, our data indicate that interactions of the hydroxy group at position 9 and the N-acyl substituent contribute significantly to the binding strength. PMID:9738906

  12. The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites.

    PubMed

    Strotmeier, Jasmin; Gu, Shenyan; Jutzi, Stephan; Mahrhold, Stefan; Zhou, Jie; Pich, Andreas; Eichner, Timo; Bigalke, Hans; Rummel, Andreas; Jin, Rongsheng; Binz, Thomas

    2011-07-01

    The seven botulinum neurotoxins (BoNT) cause muscle paralysis by selectively cleaving core components of the vesicular fusion machinery. Their extraordinary activity primarily relies on highly specific entry into neurons. Data on BoNT/A, B, E, F and G suggest that entry follows a dual receptor interaction with complex gangliosides via an established ganglioside binding region and a synaptic vesicle protein. Here, we report high resolution crystal structures of the BoNT/C cell binding fragment alone and in complex with sialic acid. The WY-motif characteristic of the established ganglioside binding region was located on an exposed loop. Sialic acid was co-ordinated at a novel position neighbouring the binding pocket for synaptotagmin in BoNT/B and G and the sialic acid binding site in BoNT/D and TeNT respectively. Employing synaptosomes and immobilized gangliosides binding studies with BoNT/C mutants showed that the ganglioside binding WY-loop, the newly identified sialic acid-co-ordinating pocket and the area corresponding to the established ganglioside binding region of other BoNTs are involved in ganglioside interaction. Phrenic nerve hemidiaphragm activity tests employing ganglioside deficient mice furthermore evidenced that the biological activity of BoNT/C depends on ganglioside interaction with at least two binding sites. These data suggest a unique cell binding and entry mechanism for BoNT/C among clostridial neurotoxins. PMID:21542861

  13. Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus

    SciTech Connect

    Reichert, A.; Nagy, J.O.; Spevak, W.; Charych, D. )

    1995-01-18

    In this paper we have demonstrated that polymerized liposomes are biomolecular materials that provide a molecular recognition function (sialic acid) and a detection element (polydiacetylene backbone), all within a single supramolecular assembly. The binding event is transduced to a visible color change, readily seen with the naked eye and quantified by absorption spectroscopy. Specificity of the color change was demonstrated by competitive inhibition studies. In addition, nonspecific adsorption, if it occurs. does not appear to affect the color of the liposome solutions. 28 refs., 2 figs.

  14. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    PubMed Central

    Howard, E. I.; Guillot, B.; Blakeley, M. P.; Haertlein, M.; Moulin, M.; Mitschler, A.; Cousido-Siah, A.; Fadel, F.; Valsecchi, W. M.; Tomizaki, Takashi; Petrova, T.; Claudot, J.; Podjarny, A.

    2016-01-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader’s quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface. PMID:27006775

  15. A novel polymorphism in the chicken adipocyte fatty acid-binding protein gene (FABP4) that alters ligand-binding and correlates with fatness.

    PubMed

    Wang, Qigui; Guan, Tianzhu; Li, Hui; Bernlohr, David A

    2009-11-01

    Similar to the mammalian FABP4 gene, the chicken (Gallus gallus) FABP4 gene consists of four exons separated by three introns and encodes a 132 amino acid protein termed the adipocyte fatty acid-binding protein (AFABP). In the current study, a novel G/A polymorphism in exon 3 of the chicken FABP4 gene was identified associated with different chicken breeds that leads to either Ser or Asn at amino acid 89 of the AFABP protein. The Baier chicken averages 0.89+/-0.12% abdominal fat and expresses the G allele (Ser 89 isoform) while the Broiler chicken typically has 3.74+/-0.23% abdominal fat and expresses the A allele (Asn 89 isoforms). cDNAs corresponding to the two AFABP isoforms were cloned and expressed in Escherichia coli as GST fusions, purified by using glutathione sepharose 4B chromatography and evaluated for lipid binding using the fluorescent surrogate ligand 1-anilinonaphthalene 8-sulphonic acid (1,8-ANS). The results showed that AFABP Ser89 exhibited a lower ligand-binding affinity with apparent dissociation constants (Kd) of 7.31+/-3.75 microM, while the AFABP Asn89 isoform bound 1,8-ANS with an apparent dissociation constant of 2.99+/-1.00 microM (P=0.02). These results suggest that the Ser89Asn polymorphism may influence chicken AFABP function and ultimately lipid deposition through changing the ligand-binding activity of AFABP. PMID:19595785

  16. Water's Role in Reshaping a Macrocycle's Binding Pocket: Conformation-Specific Infrared and Ultraviolet Spectroscopy of BENZO-15-CROWN-5-(H_{2}O)_{n}-CLUSTERS (n = 1, 2)

    NASA Astrophysics Data System (ADS)

    Shubert, V. Alvin; Müller, Christian W.; James, William H. James, III; Zwier, Timothy S.

    2009-06-01

    Crown ethers are well-studied examples of flexible macrocycles with a high binding selectivity for substrates, especially cations. We investigated the conformational preferences of the singly and doubly complexed water clusters of the crown ethers benzo-15-crown-5 (B15C) and its amino-derivative 4'-aminobenzo-15-crown-5 (ABC) cooled in a supersonic jet expansion. The fluorescence excitation, resonance enhanced two-photon ionization (R2PI), UV-UV holeburning (UVHB), fluorescence-dip infrared (FDIR), resonant ion-dip infrared (RIDIR) and novel IR-IR-UV holeburning^{1} spectra allowed for the identification of two B15C-(H_{2}O)_{1} conformers and one ABC-(H_{2}O)_{1} conformer. These conformers are characterized by an all-planar arrangement of the atoms directly bound to the benzene ring in which the crown ether macrocycle opens up to a symmetric structure and accomodates a doubly and triply H-bonded H_{2}O molecule in two distinct ways, respectively. Two B15C-(H_{2}O)_{2} conformers and one ABC-(H_{2}O)_{2} conformer were identified. One of the B15C-(H_{2}O)_{2} conformers contains a macrocycle configuration identical to that found in the monohydrated clusters with an H-bonding topology in which the H_{2}O molecules occupy both available sites simultaneously. The second B15C-(H_{2}O)_{2} conformer is assigned to an H-bond pattern in which the two H_{2}O molecules are concatenated to form an H-bonded bridge involving only three of the four available O-H-bonds (see figure). (1) V. A. Shubert and T. S. Zwier, J. Phys. Chem. A, 2007, 111, 13283.

  17. Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma.

    PubMed

    Liu, S; Baracos, V E; Quinney, H A; Clandinin, M T

    1994-05-01

    Feeding animals with diets high in saturated fat induces insulin resistance, and replacing saturated fat isocalorically with poly-unsaturated fat, especially long-chain omega-3 fatty acids, will prevent the development of insulin resistance in skeletal-muscle tissue. To investigate the mechanism, rats were fed on high-fat (20%, w/w) semipurified diets for 6 weeks. Diets containing ratios of polyunsaturated/saturated (P/S) fatty acid of 0.25 (low-P/S diet) and 1.0 (high-P/S diet) were used to study the effect of the level of saturated fat. To study the effects of omega-3 fatty acids, diets with a low-P/S ratio containing either 0 (low-omega-3 diet) or 3.3% (high-omega-3 diet) long-chain omega-3 fatty acids from fish oil were fed. Plasma membrane from skeletal muscle was purified. The content of fatty acids in sarcolemmal phospholipid was significantly related to the dietary composition. Insulin binding to intact sarcolemmal vesicles prepared from rats fed on diets high in omega-3 fatty acids increased 14