Science.gov

Sample records for acid biosynthesis cell

  1. Biosynthesis of pulcherriminic acid

    PubMed Central

    MacDonald, J. C.

    1965-01-01

    1. Candida pulcherrima was grown on a complex medium to which various compounds had been added to determine their effect on the biosynthesis of pulcherriminic acid. Most of the pulcherriminic acid synthesized by C. pulcherrima PRL2019 was derived from the l-[1-14C]leucine added to the medium. 2. The cyclic dipeptide of l-leucine (cyclo-l-leucyl-l-leucyl) was shown, by trapping experiments involving cycloleucyl-leucyl isomers, to be synthesized by strain PRL2019. Cyclo-l-leucyl-l-leucyl was derived from l-leucine and was converted into pulcherriminic acid. Cyclo-l-leucyl-l-leucyl was a precursor of pulcherriminic acid in strain PRL2007 also. 3. The results supported the hypothesis that pulcherriminic acid is derived from l-leucine and that cyclo-l-leucyl-l-leucyl is an intermediate in the biosynthesis. PMID:5837792

  2. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  3. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production.

    PubMed

    Ratledge, Colin

    2004-11-01

    Single cell oils (SCOs) are now produced by various microorganisms as commercial sources of arachidonic acid (ARA) and docosahexaenoic acid (DHA). These oils are now used extensively as dietary supplements in infant formulas. An understanding of the underlying biochemistry and genetics of oil accumulation in such microorganisms is therefore essential if lipid yields are to be improved. Also an understanding of the biosynthetic pathways involved in the production of these polyunsaturated fatty acids (PUFAs) is also highly desirable as a prerequisite to increasing their content in the oils. An account is provided of the biosynthetic machinery that is necessary to achieve oil accumulation in an oleaginous species where it can account for lipid build up in excess of 70% of the cell biomass. Whilst PUFA production in most microorganisms uses a conventional fatty acid synthase (FAS) system followed by a series of desaturases and elongases, in Schizochytrium sp., and probably related thraustochytrid marine protists, PUFA synthesis now appears to be via a polyketide synthase (PKS) route. This route is discussed. It clearly represents a major departure from conventional fatty acid biosynthesis, possibly as a means of decreasing the amount of NADPH that is needed in the overall process.

  4. Stereo and region-selective biosynthesis of two new dihydroartemisinic acid glycosides by suspension-cultured cells of Artemisia annua

    PubMed Central

    Zhu, Jianhua; Zeng, Zihan; Song, Liyan; Hu, Yanshan; Wen, Wei; Yu, Rongming

    2014-01-01

    Background: The system of plant-cultured cells is one of the optimal systems to investigate biosynthesis pathway and their bioactive intermediates. Objective: To study the biosynthesis of dihydroartemisinic acid (1) by suspension-cultured cells of Artemisia annua. Materials and Methods: Substrate (compound 1) was administered into the suspension-cultured cells of A. annua and co-cultured for 2 days. The methanol extract was separated on various column chromatography methods and the structures of two biosynthesis products were elucidated based on the analysis of 1H NMR, 13C NMR, 2D NMR, and ESI-MS. Time-course curve was also established. Furthermore, in vitro antitumor activities of compounds 1-3 against HepG2, K562, and A549 cell lines were evaluated by MTT assay. Results: Two new compounds were obtained, namely 3α-hydroxy-dihydroartemisinic acid-α-D-glucopyranosyl ester (2) and 15-hydroxy-cadin-4-en-12-oic acid-β-d-glucopyranosyl ester (3). The results demonstrated that the cultured cells of A. annua possessed the abilities to stereo-selective hydroxylate and region-selective glycosylate sesquiterpene compounds in a highly efficient manner. Inhibitory effects of compounds 1-3 on proliferation of HepG2, K562, and A549 cell lines in vitro were also investigated. Conclusion: Two new dihydroartemisinic acid glycosides were obtained by stereo- and region-selective biosynthesis with cultured cells of A. annua. PMID:24914289

  5. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia.

    PubMed

    Brose, Stephen A; Marquardt, Amanda L; Golovko, Mikhail Y

    2014-05-01

    Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined incorporation of Gln/Glu and other lipogenic substrates into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0-fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0-fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, triacylglycerols, diacylglycerols, free FA, and phospholipids, with the highest rate of incorporation into triacylglycerols. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. We identified a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid biosynthesis from glutamine and glutamate (Gln/Glu) followed by esterification into lipids. All other non-neuronal cells tested demonstrated decreased or unchanged lipid synthesis from Gln

  6. Stimulatory Effects of Acibenzolar-S-Methyl on Chlorogenic Acids Biosynthesis in Centella asiatica Cells

    PubMed Central

    Ncube, Efficient N.; Steenkamp, Paul A.; Madala, Ntakadzeni E.; Dubery, Ian A.

    2016-01-01

    Centella asiatica is a perrenial herb that grows in tropical regions with numerous medicinal properties mostly attributed to the presence of pentacyclic triterpenoids. Interestingly, this plant also possess a significant amount of phenylpropanoid-derived chlorogenic acids (CGAs) that have recently been reported to confer neuroprotective properties. In a biotechnological attempt to increase the biosynthesis of CGA-derivatives in cultured Centella cells, acibenzolar-S-methyl was applied as a xenobiotic inducer in combination with quinic acid and shikimic acid as precursor molecules. Applying a semi-targeted metabolomics-based approach, time and concentration studies were undertaken to evaluate the effect of the manipulation on cellular metabolism leading to CGA production. Phytochemical extracts were prepared using methanol and analyzed using a UHPLC-qTOF-MS platform. Data was processed and analyzed using multivariate data models. A total of four CGA-derivatives, annotated as trans-5-feruloylquinic acid, 3,5 di-caffeoylquinic acid, 3,5-O-dicaffeoyl-4-O-malonylquinic acid (irbic acid) and 3-caffeoyl, 5-feruloylquinic acid, were found to be upregulated by the acibenzolar-S-methyl treatment. To the best of our knowledge, this is the first report on the induction of CGA derivatives in this species. Contrary to expectations, the effects of precursor molecules on the levels of the CGAs were insignificant. However, a total of 16 metabolites, including CGA derivatives, were up-regulated by precursor treatment. Therefore, this study shows potential to biotechnologically manipulate C. asiatica cells to increase the production of these health beneficial CGAs. PMID:27733862

  7. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia

    PubMed Central

    Brose, Stephen A.; Marquardt, Amanda L.; Golovko, Mikhail Y.

    2014-01-01

    Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined total Gln/Glu incorporation into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0- fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0- fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, TAGs, DAGs, free FA, and phospholipids, with the highest rate of incorporation into TAGs. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. PMID:24266789

  8. Biosynthesis of Indoleacetic Acid from Tryptophan-14C in Cell-free Extracts of Pea Shoot Tips 1

    PubMed Central

    Moore, Thomas C.; Shaner, Coralie A.

    1967-01-01

    A 2-step, 1-dimensional thin-layer chromatographic procedure for isolating indoleacetic acid (IAA) was developed and utilized in investigations of the biosynthesis of IAA from tryptophan-14C in cell-free extracts of pea (Pisum sativum L.) shoot tips. Identification of a 14C-product as IAA was by (a) co-chromatography of authentic IAA and 14C-product on thin-layer chromatography, and (b) gas-liquid and thin-layer chromatography of authentic and presumptive IAA methyl esters. Dialysis of enzyme extracts and addition of α-ketoglutaric acid and pyridoxal phosphate to reaction mixtures resulted in approximately 2- to 3-fold increases in net yields of IAA over yields in non-dialyzed reaction mixtures which did not contain additives essential to a transaminase reaction of tryptophan. Addition of thiamine pyrophosphate to reaction mixtures further enhanced net biosynthesis of IAA. It is concluded that the formation of indolepyruvic acid and its subsequent decarboxylation probably are sequential reactions in the major pathway of IAA biosynthesis from tryptophan in cell-free extracts of Pisum shoot tips. Comparison of maximum net IAA biosynthesis in extracts of shoot tips of etiolated and light-grown dwarf and tall pea seedlings revealed an order, on a unit protein N basis, of: light-grown tall > light-grown dwarf > etiolated tall ≅ etiolated dwarf. It is concluded that the different rates of stem elongation among etiolated and light-grown dwarf and tall pea seedlings are correlated, in general, with differences in net IAA biosynthesis and sensitivity of the tissues to IAA. PMID:16656720

  9. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration. PMID:19560175

  10. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration.

  11. Polyunsaturated fatty acid biosynthesis is involved in phenylephrine-mediated calcium release in vascular smooth muscle cells.

    PubMed

    Irvine, Nicola A; Lillycrop, Karen A; Fielding, Barbara; Torrens, Christopher; Hanson, Mark A; Burdge, Graham C

    2015-10-01

    Stimulation of vascular smooth muscle (VSM) α1-adrenoceptors induces myosin phosphorylation and vasoconstriction via mobilisation of intracellular calcium and production of specific eicosanoids. Polyunsaturated fatty acid (PUFA) biosynthesis in VSM cells is involved, although the precise mechanism is not known. To address this, we characterised PUFA biosynthesis in VSM cells and determined its role in intracellular calcium release and eicosanoid production. Murine VSM cells converted 18:2n-6 to longer chain PUFA including 22:5n-6. Δ6 (D6d) and Δ5 (D5d) desaturase, and elongase (Elovl) 5 were expressed. Elovl2 was not detected in human, mouse or rat VSM cells, or in rat or mouse aortae, but tit was not associated with hypermethylation of its promoter. D6d or D5d inhibition reduced 18:3n-6 and 20:4n-6 synthesis, respectively, and induced concentration-related decrease in phenylephrine-mediated calcium release, and in PGE2 and PGF2α secretion. Together these findings suggest that PUFA biosynthesis in VSM cells is involved in calcium release associated with vasoconstriction.

  12. Polyunsaturated fatty acid biosynthesis is involved in phenylephrine-mediated calcium release in vascular smooth muscle cells.

    PubMed

    Irvine, Nicola A; Lillycrop, Karen A; Fielding, Barbara; Torrens, Christopher; Hanson, Mark A; Burdge, Graham C

    2015-10-01

    Stimulation of vascular smooth muscle (VSM) α1-adrenoceptors induces myosin phosphorylation and vasoconstriction via mobilisation of intracellular calcium and production of specific eicosanoids. Polyunsaturated fatty acid (PUFA) biosynthesis in VSM cells is involved, although the precise mechanism is not known. To address this, we characterised PUFA biosynthesis in VSM cells and determined its role in intracellular calcium release and eicosanoid production. Murine VSM cells converted 18:2n-6 to longer chain PUFA including 22:5n-6. Δ6 (D6d) and Δ5 (D5d) desaturase, and elongase (Elovl) 5 were expressed. Elovl2 was not detected in human, mouse or rat VSM cells, or in rat or mouse aortae, but tit was not associated with hypermethylation of its promoter. D6d or D5d inhibition reduced 18:3n-6 and 20:4n-6 synthesis, respectively, and induced concentration-related decrease in phenylephrine-mediated calcium release, and in PGE2 and PGF2α secretion. Together these findings suggest that PUFA biosynthesis in VSM cells is involved in calcium release associated with vasoconstriction. PMID:26324193

  13. The Molecular Genetics of Mycolic Acid Biosynthesis.

    PubMed

    Pawełczyk, Jakub; Kremer, Laurent

    2014-08-01

    Mycolic acids are major and specific long-chain fatty acids that represent essential components of the Mycobacterium tuberculosis cell envelope. They play a crucial role in the cell wall architecture and impermeability, hence the natural resistance of mycobacteria to most antibiotics, and represent key factors in mycobacterial virulence. Biosynthesis of mycolic acid precursors requires two types of fatty acid synthases (FASs), the eukaryotic-like multifunctional enzyme FAS I and the acyl carrier protein (ACP)-dependent FAS II systems, which consists of a series of discrete mono-functional proteins, each catalyzing one reaction in the pathway. Unlike FAS II synthases of other bacteria, the mycobacterial FAS II is incapable of de novo fatty acid synthesis from acetyl-coenzyme A, but instead elongates medium-chain-length fatty acids previously synthesized by FAS I, leading to meromycolic acids. In addition, mycolic acid subspecies with defined biological properties can be distinguished according to the chemical modifications decorating the meromycolate. Nearly all the genetic components involved in both elongation and functionalization of the meromycolic acid have been identified and are generally clustered in distinct transcriptional units. A large body of information has been generated on the enzymology of the mycolic acid biosynthetic pathway and on their genetic and biochemical/structural characterization as targets of several antitubercular drugs. This chapter is a comprehensive overview of mycolic acid structure, function, and biosynthesis. Special emphasis is given to recent work addressing the regulation of mycolic acid biosynthesis, adding new insights to our understanding of how pathogenic mycobacteria adapt their cell wall composition in response to environmental changes.

  14. Fatty acid biosynthesis in actinomycetes

    PubMed Central

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multi-enzyme FAS II system and Corynebacterium species exclusively FAS I. In this review we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with anti-mycobacterial properties. PMID:21204864

  15. Oleic acid biosynthesis in cyanobacteria

    SciTech Connect

    VanDusen, W.J.; Jaworski, J.G.

    1986-05-01

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with /sup 14/CO/sub 2/. None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating /sup 14/CO/sub 2/ into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria.

  16. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis

    PubMed Central

    ZHAO, PENG; MAO, JUN-MIN; ZHANG, SHU-YUN; ZHOU, ZE-QUAN; TAN, YANG; ZHANG, YU

    2014-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a ‘chemopreventer’. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer. PMID:25009654

  17. Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis.

    PubMed

    Bordewick, U; Heese, M; Börchers, T; Robenek, H; Spener, F

    1989-03-01

    Fatty-acid-binding proteins are known to occur in the cytosol of mammalian cells and to bind fatty acids and their CoA-esters. Application of the postembedding protein A-gold labeling method with antibody against the hepatic type fatty-acid-binding protein (hFABP) to cross-sections of liver cells and a newly developed gel-chromatographic immunofluorescence assay established qualitatively (1) that hFABP in mitochondria was confined to outer mitochondrial membranes, (2) the presence of this protein in microsomes and (3) that nuclei were also filled with hFABP. Quantitative data elaborated with a non-competitive ELISA confirmed these results. A significant difference to the distribution of cardiac FABP in heart muscle cells, where this type of protein was found in cytosol, matrix and nuclei, was observed (Börchers et al. (1989) Biochim. Biophys. Acta, in the press). hFABP-containing rat liver microsomes were incubated with long-chain acyl-CoAs in the presence of hFABP (isolated from rat liver cytosol) in a study on the acylation of sn-glycerol-3-phosphate and lysophosphatidic acid. Both acyltransferases were stimulated by addition of hFABP to the incubation medium. The morphological, immunochemical as well as kinetic data infer a direct interaction of hFABP with microsomal membranes in liver cells.

  18. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  19. Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis.

    PubMed

    Bhatt, Apoorva; Kremer, Laurent; Dai, Annie Z; Sacchettini, James C; Jacobs, William R

    2005-11-01

    Inhibition or inactivation of InhA, a fatty acid synthase II (FASII) enzyme, leads to mycobacterial cell lysis. To determine whether inactivation of other enzymes of the mycolic acid-synthesizing FASII complex also leads to lysis, we characterized the essentiality of two beta-ketoacyl-acyl carrier protein synthases, KasA and KasB, in Mycobacterium smegmatis. Using specialized transduction for allelic exchange, null kasB mutants, but not kasA mutants, could be generated in Mycobacterium smegmatis, suggesting that unlike kasB, kasA is essential. To confirm the essentiality of kasA, and to detail the molecular events that occur following depletion of KasA, we developed CESTET (conditional expression specialized transduction essentiality test), a genetic tool that combines conditional gene expression and specialized transduction. Using CESTET, we were able to generate conditional null inhA and kasA mutants. We studied the effects of depletion of KasA in M. smegmatis using the former strain as a reference. Depletion of either InhA or KasA led to cell lysis, but with different biochemical and morphological events prior to lysis. While InhA depletion led to the induction of an 80-kDa complex containing both KasA and AcpM, the mycobacterial acyl carrier protein, KasA depletion did not induce the same complex. Depletion of either InhA or KasA led to inhibition of alpha and epoxy mycolate biosynthesis and to accumulation of alpha'-mycolates. Furthermore, scanning electron micrographs revealed that KasA depletion resulted in the cell surface having a "crumpled" appearance, in contrast to the blebs observed on InhA depletion. Thus, our studies support the further exploration of KasA as a target for mycobacterial-drug development. PMID:16267284

  20. GTP dysregulation in Bacillus subtilis cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshift and regulate biosynthesis genes.

    PubMed

    Kriel, Allison; Brinsmade, Shaun R; Tse, Jessica L; Tehranchi, Ashley K; Bittner, Alycia N; Sonenshein, Abraham L; Wang, Jue D

    2014-01-01

    The nucleotide (p)ppGpp inhibits GTP biosynthesis in the Gram-positive bacterium Bacillus subtilis. Here we examined how this regulation allows cells to grow in the absence of amino acids. We showed that B. subtilis cells lacking (p)ppGpp, due to either deletions or point mutations in all three (p)ppGpp synthetase genes, yjbM, ywaC, and relA, strongly require supplementation of leucine, isoleucine, valine, methionine, and threonine and modestly require three additional amino acids. This polyauxotrophy is rescued by reducing GTP levels. Reduction of GTP levels activates transcription of genes responsible for the biosynthesis of the five strongly required amino acids by inactivating the transcription factor CodY, which represses the ybgE, ilvD, ilvBHC-leuABCD, ilvA, ywaA, and hom-thrCB operons, and by a CodY-independent activation of transcription of the ilvA, ywaA, hom-thrCB, and metE operons. Interestingly, providing the eight required amino acids does not allow for colony formation of (p)ppGpp(0) cells when transitioning from amino acid-replete medium to amino acid-limiting medium, and we found that this is due to an additional role that (p)ppGpp plays in protecting cells during nutrient downshifts. We conclude that (p)ppGpp allows adaptation to amino acid limitation by a combined effect of preventing death during metabolic transitions and sustaining growth by activating amino acid biosynthesis. This ability of (p)ppGpp to integrate a general stress response with a targeted reprogramming of gene regulation allows appropriate adaptation and is likely conserved among diverse bacteria.

  1. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  2. Pantothenic acid biosynthesis in zymomonas

    SciTech Connect

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  3. Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling.

    PubMed

    Dong, Ting; Park, Youngmin; Hwang, Inhwan

    2015-01-01

    The phytohormone abscisic acid (ABA) plays crucial roles in numerous physiological processes during plant growth and abiotic stress responses. The endogenous ABA level is controlled by complex regulatory mechanisms involving biosynthesis, catabolism, transport and signal transduction pathways. This complex regulatory network may target multiple levels, including transcription, translation and post-translational regulation of genes involved in ABA responses. Most of the genes involved in ABA biosynthesis, catabolism and transport have been characterized. The local ABA concentration is critical for initiating ABA-mediated signalling during plant development and in response to environmental changes. In this chapter we discuss the mechanisms that regulate ABA biosynthesis, catabolism, transport and homoeostasis. We also present the findings of recent research on ABA perception by cellular receptors, and ABA signalling in response to cellular and environmental conditions.

  4. Total Biosynthesis of Legionaminic Acid, a Bacterial Sialic Acid Analogue.

    PubMed

    Hassan, Mohamed I; Lundgren, Benjamin R; Chaumun, Michael; Whitfield, Dennis M; Clark, Brady; Schoenhofen, Ian C; Boddy, Christopher N

    2016-09-19

    Legionaminic acid, Leg5,7Ac2 , a nonulosonic acid like 5-acetamido neuraminic acid (Neu5Ac, sialic acid), is found in cell surface glycoconjugates of bacteria including the pathogens Campylobacter jejuni, Acinetobacter baumanii and Legionella pneumophila. The presence of Leg5,7Ac2 has been correlated with virulence in humans by mechanisms that likely involve subversion of the host's immune system or interactions with host cell surfaces due to its similarity to Neu5Ac. Investigation into its role in bacterial physiology and pathogenicity is limited as there are no effective sources of it. Herein, we construct a de novo Leg5,7Ac2 biosynthetic pathway by combining multiple metabolic modules from three different microbial sources (Saccharomyces cerevisiae, C. jejuni, and L. pneumophila). Over-expression of this de novo pathway in Escherichia coli that has been engineered to lack two native catabolic pathways, enables significant quantities of Leg5,7Ac2 (≈120 mg L(-1) of culture broth) to be produced. Pure Leg5,7Ac2 could be isolated and converted into CMP-activated sugar for biochemical applications and a phenyl thioglycoside for chemical synthesis applications. This first total biosynthesis provides an essential source of Leg5,7Ac2 enabling study of its role in prokaryotic and eukaryotic glycobiology. PMID:27538580

  5. Influence of tricarboxylic acid cycle intermediates and related metabolites on the biosynthesis of aflatoxin by resting cells of Aspergillus flavus.

    PubMed

    Shantha, T; Murthy, V S

    1981-11-01

    Resting cells of Aspergillus flavus synthesized aflatoxin from acetate as the sole carbon source after 36 h of incubation. Addition of pyruvate (5.5 mg/m) as cosubstrate to [1-14C]acetate and unlabeled acetate considerably reduced toxin production but increased the radioactivity on the tricarboxylic acid intermediates. This suggests that high tricarboxylic acid activity drastically affected toxin synthesis.

  6. Artemisinic Acid Serves as a Novel ORCA3 Inducer to Enhance Biosynthesis of Terpenoid Indole Alkaloids in Catharanthus roseus Cambial Meristematic Cells.

    PubMed

    Wang, Mingxuan; Zi, Jiachen; Zhu, Jianhua; Chen, Shan; Wang, Pu; Song, Liyan; Yu, Rongmin

    2016-06-01

    To investigate the effect of artemisinic acid (AA) on improving the production of terpenoid indole alkaloids (TIAs) of Catharanthus roseus cambial meristematic cells (CMCs), feeding AA to C. roseus CMCs caused 2.35-fold and 2.51-fold increases in the production of vindoline and catharanthine, respectively, compared with those of the untreated CMCs. qRT-PCR experiments showed that AA resulted in a 1.36-8.52 fold increase in the transcript levels of several related genes, including octadecanoid-derivative responsive Catharanthus AP2-domain protein 3 (ORCA3), tryptophan decarboxylase (TDC), strictosidine synthase (STR) and desacetoxyvindoline 4-hydroxylase (D4H). However, no effect was observed on the concentration of either jasmonic acid (JA), or the octadecanoid-pathway inhibitors block TIA accumulation caused by AA. The results indicated that AA might serve as a novel ORCA3 inducer to manipulate biosynthesis of TIAs in C. roseus CMCs via an unknown mechanism. PMID:27534099

  7. Kinetics of long-chain (sphingoid) base biosynthesis in intact LM cells: effects of varying the extracellular concentrations of serine and fatty acid precursors of this pathway.

    PubMed

    Merrill, A H; Wang, E; Mullins, R E

    1988-01-12

    Serine palmitoyltransferase (EC 2.3.1.50) catalyzes the condensation of L-serine and palmitoyl-CoA to yield 3-ketosphinganine in the first unique reaction of long-chain (sphingoid) base biosynthesis. The kinetic effects of changing the extracellular concentrations of the precursors for this pathway were studied with LM cells by following the incorporation of L-[3-14C]serine into the long-chain base (i.e., sphinganine and sphingenine) backbones of complex sphingolipids. [14C]Serine was taken up by the cells and rapidly reached steady-state concentrations similar to those of the medium. From the cellular [14C]serine concentrations and specific activities, the apparent Vmax [14 pmol min-1 (10(6) cells)-1] and Km (0.23 mM) values for long-chain base synthesis were determined and found to be essentially identical with those for serine palmitoyltransferase assayed in vitro [i.e., 13 pmol min-1 (10(6) cells)-1 and 0.27 mM, respectively]. The other precursor, palmitic acid, was also taken up rapidly and increased long-chain base biosynthesis in a concentration-dependent manner. This effect was limited to palmitic acid and matched the known specificity of serine palmitoyltransferase for saturated fatty acyl-CoA's of 16 +/- 1 carbon atoms. These studies delineate the influence of extracellular precursors on the formation of the sphingolipid backbone and suggest that the kinetic properties of serine palmitoyltransferase govern this behavior of long-chain base synthesis in intact cells. PMID:3126810

  8. Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3'-hydroxylase from carrot (Daucus carota L. ) cell suspension cultures

    SciTech Connect

    Kuehnl, T.K.; Koch, U.; Heller, W.; Wellmann, E.

    1987-10-01

    Microsomal preparations from carrot (Daucus carota L.) cell suspension cultures catalyze the formation of trans-5-O-caffeoyl-D-quinate (chlorogenate) from trans-5-O-(4-coumaroyl)-D-quinate. trans-5-O-(4-Coumaroyl)shikimate is converted to about the same extent to trans-5-O-caffeoylshikimate. trans-4-O-(4-Coumaroyl)-D-quinate, trans-3-O-(4-coumaroyl)-D-quinate, trans-4-coumarate, and cis-5-O-(4-coumaroyl)-D-quinate do not act as substrates. The reaction is strictly dependent on molecular oxygen and on NADPH as reducing cofactor. NADH and ascorbic acid cannot substitute for NADPH. Cytochrome c, Tetcyclacis, and carbon monoxide inhibit the reaction suggesting a cytochrome P-450-dependent mixed-function monooxygenase. Competition experiments as well as induction and inhibition phenomena indicate that there is only one enzyme species which is responsible for the hydroxylation of the 5-O-(4-coumaric) esters of both D-quinate and shikimate. The activity of this enzyme is greatly increased by in vivo irradiation of the cells with blue/uv light. We conclude that the biosynthesis of the predominant caffeic acid conjugates in carrot cells occurs via the corresponding 4-coumaric acid esters. Thus, in this system, 5-O-(4-coumaroyl)-D-quinate can be seen as the final intermediate in the chlorogenic acid pathway.

  9. Fatty acid biosynthesis in pea root plastids

    SciTech Connect

    Stahl, R.J.; Sparace, S.A. )

    1989-04-01

    Fatty acid biosynthesis from (1-{sup 14}C)acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 {mu}M acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl{sub 2}, 1 mM each of the MnCl{sub 2} and glycerol-3-phosphate, 15 mM KHCO{sub 3}, and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 {mu}g/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO{sub 3}, divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg{sup 2+} and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor.

  10. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?

    PubMed

    Cook, Sam D; Nichols, David S; Smith, Jason; Chourey, Prem S; McAdam, Erin L; Quittenden, Laura; Ross, John J

    2016-06-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  11. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis.

    PubMed

    Xiao, Yi; Bowen, Christopher H; Liu, Di; Zhang, Fuzhong

    2016-05-01

    Biosynthesis enables renewable production of manifold compounds, yet often biosynthetic performance must be improved for it to be economically feasible. Nongenetic, cell-to-cell variations in protein and metabolite concentrations are naturally inherent, suggesting the existence of both high- and low-performance variants in all cultures. Although having an intrinsic source of low performers might cause suboptimal ensemble biosynthesis, the existence of high performers suggests an avenue for performance enhancement. Here we develop in vivo population quality control (PopQC) to continuously select for high-performing, nongenetic variants. We apply PopQC to two biosynthetic pathways using two alternative design principles and demonstrate threefold enhanced production of both free fatty acid (FFA) and tyrosine. We confirm that PopQC improves ensemble biosynthesis by selecting for nongenetic high performers. Additionally, we use PopQC in fed-batch FFA production and achieve 21.5 g l(-1) titer and 0.5 g l(-1) h(-1) productivity. Given the ubiquity of nongenetic variation, PopQC should be applicable to a variety of metabolic pathways for enhanced biosynthesis. PMID:26999780

  12. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  13. Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis.

    PubMed

    Fan, Jilian; Yan, Chengshi; Xu, Changcheng

    2013-12-01

    Phospholipid:diacylglycerol acyltransferase (PDAT) and diacylglycerol:acyl CoA acyltransferase play overlapping roles in triacylglycerol (TAG) assembly in Arabidopsis, and are essential for seed and pollen development, but the functional importance of PDAT in vegetative tissues remains largely unknown. Taking advantage of the Arabidopsis tgd1-1 mutant that accumulates oil in vegetative tissues, we demonstrate here that PDAT1 is crucial for TAG biosynthesis in growing tissues. We show that disruption of PDAT1 in the tgd1-1 mutant background causes serious growth retardation, gametophytic defects and premature cell death in developing leaves. Lipid analysis data indicated that knockout of PDAT1 results in increases in the levels of free fatty acids (FFAs) and diacylglycerol. In vivo ¹⁴C-acetate labeling experiments showed that, compared with wild-type, tgd1-1 exhibits a 3.8-fold higher rate of fatty acid synthesis (FAS), which is unaffected by disruption or over-expression of PDAT1, indicating a lack of feedback regulation of FAS in tgd1-1. We also show that detached leaves of both pdat1-2 and tgd1-1 pdat1-2 display increased sensitivity to FFA but not to diacylglycerol. Taken together, our results reveal a critical role for PDAT1 in mediating TAG synthesis and thereby protecting against FFA-induced cell death in fast-growing tissues of plants.

  14. Biosynthesis of the Aromatic Amino Acids.

    PubMed

    Pittard, James; Yang, Ji

    2008-09-01

    This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon. PMID:26443741

  15. Biosynthesis of Indole-3-Acetic Acid by New Klebsiella oxytoca Free and Immobilized Cells on Inorganic Matrices

    PubMed Central

    Celloto, Valéria R.; Oliveira, Arildo J. B.; Gonçalves, José E.; Watanabe, Cecília S. F.; Matioli, Graciette; Gonçalves, Regina A. C.

    2012-01-01

    While many natural and synthetic compounds exhibit auxin-like activity in bioassays, indole-3-acetic acid (IAA) is recognized as the key auxin in most plants. IAA has been implicated in almost all aspects of plant growth and development and a large array of bacteria have been reported to enhance plant growth. Cells of Klebsiella oxytoca isolated from the rhizosphere of Aspidosperma polyneuron and immobilized by adsorption on different inorganic matrices were used for IAA production. The matrices were prepared by the sol-gel method and the silica-titanium was the most suitable matrix for effective immobilization. In operational stability assays, IAA production was maintained after four cycles of production, obtaining 42.80 ± 2.03 μg mL−1 of IAA in the third cycle, which corresponds to a 54% increase in production in relation to the first cycle, whereas free cells began losing activity after the first cycle. After 90 days of storage at 4°C the immobilized cells showed the slight reduction of IAA production without significant loss of activity. PMID:22623901

  16. Biosynthesis, glycosylation, and partial N-terminal amino acid sequence of the T-cell-activating protein TAP.

    PubMed Central

    Reiser, H; Coligan, J; Benacerraf, B; Rock, K L

    1987-01-01

    We have characterized the TAP molecule, an Ly-6 linked T-cell-activating glycoprotein. The three TAP bands that are precipitated from metabolically labeled cells display a common migration pattern in isoelectric focusing/NaDodSO4/PAGE gels and have common N-terminal sequences. This sequence is rich in cysteine and is homologous to that previously reported for the Ly-6.1E antigen. We, therefore, compared TAP and Ly-6.1E biochemically and found them to be structurally distinct. Given the role of TAP in T-cell activation, we further studied whether the molecule was phosphorylated. We have not found evidence for phosphorylation of the TAP protein. The carbohydrates present on the TAP molecule are resistant to peptide N-glycosidase F in vitro and tunicamycin in vivo. The upper band of the TAP triplet is susceptible to treatment with trifluoromethanesulfonic acid and thus seems to be of the O-linked rather than of the N-linked variety. The biosynthetic processing of TAP was studied in pulse-chase experiments. The middle band of the TAP triplet appears to be the earliest detectable species. Its conversion to the O-linked high molecular weight species can be blocked by monensin. Images PMID:3033645

  17. A Second Galacturonic Acid Transferase Is Required for Core Lipopolysaccharide Biosynthesis and Complete Capsule Association with the Cell Surface in Klebsiella pneumoniae▿ †

    PubMed Central

    Fresno, Sandra; Jiménez, Natalia; Canals, Rocío; Merino, Susana; Corsaro, Maria Michela; Lanzetta, Rosa; Parrilli, Michelangelo; Pieretti, Giuseppina; Regué, Miguel; Tomás, Juan M.

    2007-01-01

    The core lipopolysaccharide (LPS) of Klebsiella pneumoniae contains two galacturonic acid (GalA) residues, but only one GalA transferase (WabG) has been identified. Data from chemical and structural analysis of LPS isolated from a wabO mutant show the absence of the inner core β-GalA residue linked to l-glycero-d-manno-heptose III (l,d-Hep III). An in vitro assay demonstrates that the purified WabO is able to catalyze the transfer of GalA from UDP-GalA to the acceptor LPS isolated from the wabO mutant, but not to LPS isolated from waaQ mutant (deficient in l,d-Hep III). The absence of this inner core β-GalA residue results in a decrease in virulence in a capsule-dependent experimental mouse pneumonia model. In addition, this mutation leads to a strong reduction in cell-bound capsule. Interestingly, a K66 Klebsiella strain (natural isolate) without a functional wabO gene shows reduced levels of cell-bound capsule in comparison to those of other K66 strains. Thus, the WabO enzyme plays an important role in core LPS biosynthesis and determines the level of cell-bound capsule in Klebsiella pneumoniae. PMID:17142396

  18. Retinoic acid: its biosynthesis and metabolism.

    PubMed

    Napoli, J L

    1999-01-01

    This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis. PMID:10506831

  19. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy.

    PubMed

    Gao, Lian-Yong; Laval, Francoise; Lawson, Elise H; Groger, Richard K; Woodruff, Andy; Morisaki, J Hiroshi; Cox, Jeffery S; Daffe, Mamadou; Brown, Eric J

    2003-09-01

    Mycobacterium tuberculosis infects one-third of the world's population and causes two million deaths annually. The unusually low permeability of its cell wall contributes to the ability of M. tuberculosis to grow within host macrophages, a property required for pathogenesis of infection. Mycobacterium marinum is an established model for discovering genes involved in mycobacterial infection. Mycobacterium marinum mutants with transposon insertions in the beta-ketoacyl-acyl carrier protein synthase B gene (kasB) grew poorly in macrophages, although growth in vitro was unaffected. Detailed analyses by thin-layer chromatography, nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, infrared spectroscopy, and chemical degradations showed that the kasB mutants synthesize mycolic acids that are 2-4 carbons shorter than wild type; the defect was localized to the proximal portion of the meromycolate chain. In addition, these mutants showed a significant (approximately 30%) reduction in the abundance of keto-mycolates, with a slight compensatory increase of both alpha- and methoxy-mycolates. Despite these small changes in mycolate length and composition, the kasB mutants exhibited strikingly altered cell wall permeability, leading to a marked increase in susceptibility to lipophilic antibiotics and the host antimicrobial molecules defensin and lysozyme. The abnormalities of the kasB mutants were fully complemented by expressing M. tuberculosis kasB, but not by the closely related gene kasA. These studies identify kasB as a novel target for therapeutic intervention in mycobacterial diseases. PMID:12950920

  20. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  1. Ribonucleic acid (RNA) biosynthesis in human cancer.

    PubMed

    Hajjawi, Omar S

    2015-01-01

    In many respects, the most remarkable chemical substances within the genome of eukaryotic cells are remarkable proteins which are the critical structural and functional units of living cells. The specifications for everything that goes in the cell are natural digital-to-digital decoding process in an archive sequence by deoxyribonucleic acid (DNA) and an articulate construction by ribonucleic acid (RNA). The products of DNA transcription are long polymers of ribonucleotides rather than deoxyribonucleotides and are termed ribonucleic acids. Certain deoxyribonucleotide sequences, or genes, give rise to transfer RNA (tRNA) and other ribosomal RNA (rRNA) when transcribed. The ribonucleotide sequences fold extensively and rRNA is associated with specific proteins to yield the essential cell components, ribosomes. Transcription of other special sequences yields messenger RNAs (mRNAs) that contain ribonucleotide sequences that will be ultimately translated into new types of amino acid sequences of functional cellular protein molecules. This switch to a different variety of cellular molecular sequences is complex, but each sequence of the three ribonucleotides specifies the insertion of one particular amino acid into the polypeptide chain under production. Whilst mRNA is considered the vehicle by which genetic information is transmitted from the genome and allocated in the appropriate cytoplasmic sites for translation into protein via cap-dependent mechanism, the actual translation depends also on the presence of other so-called household and luxury protein molecules. Recent evidence suggests RNA species are required at initiation, because treatment of cells with antibiotics or drugs that inhibit RNA synthesis cause a decrease in protein synthesis. The rRNA is necessary as a structural constituent of the ribosomes upon which translation takes place, whereas tRNA is necessary as an adaptor in amino acid activation and elongation protein chains to ribosomes. In this article

  2. Clavulanic acid biosynthesis and genetic manipulation for its overproduction.

    PubMed

    Song, Ju Yeon; Jensen, Susan E; Lee, Kye Joon

    2010-10-01

    Clavulanic acid, a β-lactamase inhibitor, is used together with β-lactam antibiotics to create drug mixtures possessing potent antimicrobial activity. In view of the clinical and industrial importance of clavulanic acid, identification of the clavulanic acid biosynthetic pathway and the associated gene cluster(s) in the main producer species, Streptomyces clavuligerus, has been an intriguing research question. Clavulanic acid biosynthesis was revealed to involve an interesting mechanism common to all of the clavam metabolites produced by the organism, but different from that of other β-lactam compounds. Gene clusters involved in clavulanic acid biosynthesis in S. clavuligerus occupy large regions of nucleotide sequence in three loci of its genome. In this review, clavulanic acid biosynthesis and the associated gene clusters are discussed, and clavulanic acid improvement through genetic manipulation is explained.

  3. Moss cell walls: structure and biosynthesis

    PubMed Central

    Roberts, Alison W.; Roberts, Eric M.; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperms encode the same families of cell wall glycosyl transferases, yet, in many cases these families have diversified independently in each lineage. Our understanding of land plant evolution could be enhanced by more complete knowledge of the relationships among glycosyl transferase functional diversification, cell wall structural and biochemical specialization, and the roles of cell walls in plant adaptation. As a foundation for these studies, we review the features of P. patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis. PMID:22833752

  4. Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii.

    PubMed

    Arous, Fatma; Mechichi, Tahar; Nasri, Moncef; Aggelis, George

    2016-07-01

    Fatty acid biosynthesis during the life cycle of the ascomycetous yeast Debaryomyces etchellsii cultivated on a non-fermentable substrate, i.e. glycerol, in nitrogen rich media (NRM) and nitrogen limited media (NLM) has been studied. Although considerable activities of key lipogenic enzymes, such as ATP citrate lyase (ACL) and malic enzyme (ME), were detected in vegetative cells during asexual proliferation (which occurred in the first growth stages in both NRM and NLM), lipid accumulation was restricted due to the high activities of NAD+-isocitrate dehydrogenase (NAD+-ICDH). A similar enzymatic profile has been found in ascii and free ascospores produced in NRM; thus lipid accumulation was low. On the contrary, very high activities of both ACL and ME and low activities of NAD+-ICDH were detected in ascii and free ascospores produced in NLM resulting in lipid accumulation. Neutral lipids (NL) were the predominant fraction of cellular lipids produced in vegetative cells and ascospores in both NRM and NLM. On the other hand, phospholipids (P) were the major polar lipids while glycolipids (G) were synthesized in low proportions. During transition from asexual to sexual phase, the percentage of NL increased with a significant decrease of P and, to a lesser extent, of G. High quantities of linoleic acid were found esterified in polar lipids, especially in P, during the vegetative stage of growth, while, with a few exceptions, during transition from asexual to sexual stage, linoleic acid concentration decreased markedly, mainly in P, while oleic acid concentration increased. PMID:27129978

  5. A Novel Muconic Acid Biosynthesis Approach by Shunting Tryptophan Biosynthesis via Anthranilate

    PubMed Central

    Sun, Xinxiao; Lin, Yuheng; Huang, Qin; Yuan, Qipeng

    2013-01-01

    Muconic acid is the synthetic precursor of adipic acid, and the latter is an important platform chemical that can be used for the production of nylon-6,6 and polyurethane. Currently, the production of adipic acid relies mainly on chemical processes utilizing petrochemicals, such as benzene, which are generally considered environmentally unfriendly and nonrenewable, as starting materials. Microbial synthesis from renewable carbon sources provides a promising alternative under the circumstance of petroleum depletion and environment deterioration. Here we devised a novel artificial pathway in Escherichia coli for the biosynthesis of muconic acid, in which anthranilate, the first intermediate in the tryptophan biosynthetic branch, was converted to catechol and muconic acid by anthranilate 1,2-dioxygenase (ADO) and catechol 1,2-dioxygenase (CDO), sequentially and respectively. First, screening for efficient ADO and CDO from different microbial species enabled the production of gram-per-liter level muconic acid from supplemented anthranilate in 5 h. To further achieve the biosynthesis of muconic acid from simple carbon sources, anthranilate overproducers were constructed by overexpressing the key enzymes in the shikimate pathway and blocking tryptophan biosynthesis. In addition, we found that introduction of a strengthened glutamine regeneration system by overexpressing glutamine synthase significantly improved anthranilate production. Finally, the engineered E. coli strain carrying the full pathway produced 389.96 ± 12.46 mg/liter muconic acid from simple carbon sources in shake flask experiments, a result which demonstrates scale-up potential for microbial production of muconic acid. PMID:23603682

  6. Inhibitors of amino acids biosynthesis as antifungal agents.

    PubMed

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  7. Biosynthesis of resorcylic acid lactone lasiodiplodin in Lasiodiplodia theobromae.

    PubMed

    Kashima, Takasumi; Takahashi, Kosaku; Matsuura, Hideyuki; Nabeta, Kensuke

    2009-05-01

    The biosynthesis of lasiodiplodin (1) and its (5S)-5-hydroxylated derivative (2) were investigated by the administration of (13)C-labeled acetates to Lasiodiplodia theobromae. The labeling patterns of biosynthetically (13)C-labeled 1 and 2 were determined by (13)C-NMR and INADEQUATE spectra, demonstrating the octaketide origins of 1 and 2. Taking into account the biosynthetic study of resorcylic acid lactones, the involvement of highly reduced acyl intermediates in the biosynthesis of lasiodiplodins was presumed; thus, we synthesized (2)H-labeled hypothetical acyl intermediates of 1, 9-hydroxydecanoic acid (4) and its N-acetylcysteamine thioester (SNAC, 5). When L. theobromae was incubated with 5 mM of a (2)H-labeled intermediate, the (2)H-label from the intermediate was incorporated at the expected position of 1. These incorporation studies revealed that 1 was produced via a pathway which closely resembles that of resorcylic acid lactone biosynthesis. PMID:19420710

  8. Biosynthesis of polyunsaturated fatty acids in lower eukaryotes.

    PubMed

    Uttaro, Antonio D

    2006-10-01

    Polyunsaturated fatty acids have important structural roles in cell membranes. They are also intermediates in the synthesis of biologically active molecules such as eicosanoids, which mediate fever, inflammation, blood pressure and neurotransmission. Arachidonic and docosahexaenoic acids are essential components of brain tissues and, through their involvement in the development of neural and retinal functions, important dietary nutrients for neonatal babies. Lower eukaryotes are particularly rich in C20-22 polyunsaturated fatty acids. Fungi and marine microalgae are currently used to produce nutraceutic oils. Other protists and algae are being studied because of the variability in their enzymes involved in polyunsaturated fatty acid biosynthesis. Such enzymes could be used as source for the production of transgenic organisms able to synthesize designed oils for human diet or, in the case of parasitic protozoa, they might be identified as putative chemotherapeutic targets. Polyunsaturated fatty acids can be synthesized by two different pathways: an anaerobic one, by using polyketide synthase related enzymes, and an aerobic one, which involves the action of elongases and oxygen dependent desaturases. Desaturases can be classified into three main types, depending on which of the consecutive steps of polyunsaturated fatty acid synthesis they are involved with. The enzymes may be specialized to act on: saturated substrates (type I); mono- and di-unsaturated fatty acids by introducing additional double bonds at the methyl-end site of the existing double bonds (type II); or the carboxy half ('front-end') of polyunsaturated ones (type III). Type III desaturases require the alternating action of elongases. A description of the enzymes that have been isolated and functionally characterized is provided, in order to highlight the different pathways found in lower eukaryotes.

  9. Inhibition of Abscisic Acid Biosynthesis in Cercospora rosicola by Inhibitors of Gibberellin Biosynthesis and Plant Growth Retardants

    PubMed Central

    Norman, Shirley M.; Poling, Stephen M.; Maier, Vincent P.; Orme, Edward D.

    1983-01-01

    The fungus Cercospora rosicola produces abscisic acid (ABA) as a secondary metabolite. We developed a convenient system using this fungus to determine the effects of compounds on the biosynthesis of ABA. Inasmuch as ABA and the gibberellins (GAs) both arise via the isoprenoid pathway, it was of interest to determine if inhibitors of GA biosynthesis affect ABA biosynthesis. All five putative inhibitors of GA biosynthesis tested inhibited ABA biosynthesis. Several plant growth retardants with poorly understood actions in plants were also tested; of these, six inhibited ABA biosynthesis to varying degrees and two had no effect. Effects of plant growth retardants on various branches of the isoprenoid biosynthetic pathway may help to explain some of the diverse and unexpected results reported for these compounds. Knowledge that certain inhibitors of GA biosynthesis also have the ability to inhibit ABA biosynthesis in C. rosicola indicates the need for further studies in plants on the mode of action of these compounds. PMID:16662775

  10. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    PubMed Central

    Chang, Perng-Kuang; Ehrlich, Kenneth C.; Fujii, Isao

    2009-01-01

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines what is currently known about the toxicity of CPA to animals and humans, both by itself or in combination with other mycotoxins. The review also discusses CPA biosynthesis and the genetic diversity of CPA production in A. flavus/oryzae populations. PMID:22069533

  11. A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey.

    PubMed

    Liu, Enuo; Zheng, Huajun; Hao, Pei; Konno, Tomonobu; Yu, Yao; Kume, Hisae; Oda, Munehiro; Ji, Zai-Si

    2012-12-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.

  12. Biosynthesis of alkyl lysophosphatidic acid by diacylglycerol kinases.

    PubMed

    Gellett, Amanda M; Kharel, Yugesh; Sunkara, Manjula; Morris, Andrew J; Lynch, Kevin R

    2012-06-15

    Lysophosphatidic acid (LPA) designates a family of bioactive phosphoglycerides that differ in the length and degree of saturation of their radyl chain. Additional diversity is provided by the linkage of the radyl chain to glycerol: acyl, alkyl, or alk-1-enyl. Acyl-LPAs are the predominate species in tissues and biological fluids. Alkyl-LPAs exhibit distinct pharmacodynamics at LPA receptors, potently drive platelet aggregation, and contribute to ovarian cancer aggressiveness. Multiple biosynthetic pathways exist for alkyl-LPA production. Herein we report that diacylglycerol kinases (DGKs) contribute to cell-associated alkyl-LPA production involving phosphorylation of 1-alkyl-2-acetyl glycerol and document the biosynthesis of alkyl-LPA by DGKs in SKOV-3 ovarian cancer cells, specifically identifying the contribution of DGKα. Concurrently, we discovered that treating SKOV-3 ovarian cancer cell with a sphingosine analog stimulates conversion of exogenous 1-alkyl-2-acetyl glycerol to alkyl-LPA, indicating that DGKα contributes significantly to the production of alkyl-LPA in SKOV-3 cells and identifying cross-talk between the sphingolipid and glycerol lipid pathways.

  13. Biosynthesis of Ascorbic Acid in Legume Root Nodules1

    PubMed Central

    Matamoros, Manuel A.; Loscos, Jorge; Coronado, Maria J.; Ramos, Javier; Sato, Shusei; Testillano, Pilar S.; Tabata, Satoshi; Becana, Manuel

    2006-01-01

    Ascorbic acid (vitamin C) is a major antioxidant and redox buffer, but is also involved in other critical processes of plants. Recently, the hypothesis has been proposed that legume nodules are unable to synthesize ascorbate and have to import it from the shoot or root, thus providing a means by which the plant regulates nodule senescence. The last step of ascorbate biosynthesis in plants is catalyzed by l-galactono-1,4-lactone dehydrogenase (GalLDH). The mRNAs encoding GalLDH and three other enzymes involved in ascorbate biosynthesis are clearly detectable in nodules. Furthermore, an active membrane-bound GalLDH enzyme is present in nodule mitochondria. Biochemical assays on dissected nodules reveal that GalLDH activity and ascorbate are correlated in nodule tissues and predominantly localized in the infected zone, with lower levels of both parameters (relative to the infected tissues) in the apex (87%) and senescent region (43%) of indeterminate nodules and in the peripheral tissues (65%) of determinate nodules. In situ RNA hybridization showed that the GalLDH mRNA is particularly abundant in the infected zone of indeterminate and determinate nodules. Thus, our results refute the hypothesis that ascorbate is not synthesized in nodules and lend support to a previous conclusion that ascorbate in the infected zone is primarily involved in the protection of host cells against peroxide damage. Likewise, the high ascorbate and GalLDH activity levels found in the apex of indeterminate nodules strongly suggest a participation of ascorbate in additional functions during symbiosis, possibly related to cell growth and division and to molecular signaling. PMID:16766673

  14. Distribution of carbon isotopes in amino acids of protein fraction of micro-organisms as a means of studying the mechanisms of their biosynthesis in the cell

    SciTech Connect

    Ivlev, A.A.

    1986-04-10

    The intramolecular distribution of carbon isotopes in the amino acids of the protein fraction of a number of photosynthesizing microorganisms was analyzed using the previously proposed model of carbon isotope fractionation in the cell. A correlation was found between the distributions of the isotopes in the amino acids and the pathways and sequence of their synthesis in the cell cycle. The feasibility of using the isotopic distributions of metabolites for a study of the temporal organization of metabolism in the cell is illustrated.

  15. Protein biosynthesis with conformationally restricted amino acids

    SciTech Connect

    Mendel, D. Lawrence Berkeley Lab., CA ); Ellman, J.; Schultz, P.G. )

    1993-05-19

    The incorporation of conformationally constrained amino acids into peptides is a powerful approach for generating structurally defined peptides as conformational probes and bioactive agents. The ability to site-specifically introduce constrained amino acids into large polypeptide chains would provide a similar opportunity to probe the flexibility, conformation, folding and stability of proteins. To this end, we have examined the competence of the Escherichia coli protein biosynthetic machinery to incorporate a number of these unnatural amino acids into the 164 residue protein T4 lysozyme (T4L). Results clearly demonstrate that the protein biosynthetic machinery can accommodate a wide variety of conformationally constrained amino acids. The expansion of structural motifs that can be biosynthetically incorporated into proteins to include a large number of conformationally constrained amino acids significantly increases the power of mutagenesis methods as probes of protein structure and function and provides additional insights into the steric requirements of the translational machinery. 13 refs., 2 figs.

  16. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?1[OPEN

    PubMed Central

    Nichols, David S.; Smith, Jason; Chourey, Prem S.; McAdam, Erin L.; Quittenden, Laura

    2016-01-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA. However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  17. Five Additional Genes Are Involved in Clavulanic Acid Biosynthesis in Streptomyces clavuligerus

    PubMed Central

    Jensen, S. E.; Paradkar, A. S.; Mosher, R. H.; Anders, C.; Beatty, P. H.; Brumlik, M. J.; Griffin, A.; Barton, B.

    2004-01-01

    An approximately 12.5-kbp region of DNA sequence from beyond the end of the previously described clavulanic acid gene cluster was analyzed and found to encode nine possible open reading frames (ORFs). Involvement of these ORFs in clavulanic acid biosynthesis was assessed by creating mutants with defects in each of the ORFs. orf12 and orf14 had been previously reported to be involved in clavulanic acid biosynthesis. Now five additional ORFs are shown to play a role, since their mutation results in a significant decrease or total absence of clavulanic acid production. Most of these newly described ORFs encode proteins with little similarity to others in the databases, and so their roles in clavulanic acid biosynthesis are unclear. Mutation of two of the ORFs, orf15 and orf16, results in the accumulation of a new metabolite, N-acetylglycylclavaminic acid, in place of clavulanic acid. orf18 and orf19 encode apparent penicillin binding proteins, and while mutations in these genes have minimal effects on clavulanic acid production, their normal roles as cell wall biosynthetic enzymes and as targets for β-lactam antibiotics, together with their clustered location, suggest that they are part of the clavulanic acid gene cluster. PMID:14693539

  18. Regulation of fatty acid biosynthesis in Escherichia coli.

    PubMed Central

    Magnuson, K; Jackowski, S; Rock, C O; Cronan, J E

    1993-01-01

    Our understanding of fatty acid biosynthesis in Escherichia coli has increased greatly in recent years. Since the discovery that the intermediates of fatty acid biosynthesis are bound to the heat-stable protein cofactor termed acyl carrier protein, the fatty acid synthesis pathway of E. coli has been studied in some detail. Interestingly, many advances in the field have aided in the discovery of analogous systems in other organisms. In fact, E. coli has provided a paradigm of predictive value for the synthesis of fatty acids in bacteria and plants and the synthesis of bacterial polyketide antibiotics. In this review, we concentrate on four major areas of research. First, the reactions in fatty acid biosynthesis and the proteins catalyzing these reactions are discussed in detail. The genes encoding many of these proteins have been cloned, and characterization of these genes has led to a better understanding of the pathway. Second, the function and role of the two essential cofactors in fatty acid synthesis, coenzyme A and acyl carrier protein, are addressed. Finally, the steps governing the spectrum of products produced in synthesis and alternative destinations, other than membrane phospholipids, for fatty acids in E. coli are described. Throughout the review, the contribution of each portion of the pathway to the global regulation of synthesis is examined. In no other organism is the bulk of knowledge regarding fatty acid metabolism so great; however, questions still remain to be answered. Pursuing such questions should reveal additional regulatory mechanisms of fatty acid synthesis and, hopefully, the role of fatty acid synthesis and other cellular processes in the global control of cellular growth. PMID:8246839

  19. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk

    PubMed Central

    Wu, Qinglong; Law, Yee-Song; Shah, Nagendra P.

    2015-01-01

    Most high γ-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence of genes encoding extracellular proteinases in its genome. In the present study, two glutamic acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis NPS-QW-145. Co-culturing of this organism with conventional dairy starters was carried out to manufacture GABA-rich fermented milk. It was observed that all the selected strains of Streptococcus thermophilus, but not Lactobacillus delbrueckii subsp. bulgaricus, improved the viability of L. brevis NPS-QW-145 in milk. Only certain strains of S. thermophilus improved the gadA mRNA level in L. brevis NPS-QW-145, thus enhanced GABA biosynthesis by the latter. These results suggest that certain S. thermophilus strains are highly recommended to co-culture with high GABA producer for manufacturing GABA-rich fermented milk. PMID:26245488

  20. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk.

    PubMed

    Wu, Qinglong; Law, Yee-Song; Shah, Nagendra P

    2015-08-06

    Most high γ-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence of genes encoding extracellular proteinases in its genome. In the present study, two glutamic acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis NPS-QW-145. Co-culturing of this organism with conventional dairy starters was carried out to manufacture GABA-rich fermented milk. It was observed that all the selected strains of Streptococcus thermophilus, but not Lactobacillus delbrueckii subsp. bulgaricus, improved the viability of L. brevis NPS-QW-145 in milk. Only certain strains of S. thermophilus improved the gadA mRNA level in L. brevis NPS-QW-145, thus enhanced GABA biosynthesis by the latter. These results suggest that certain S. thermophilus strains are highly recommended to co-culture with high GABA producer for manufacturing GABA-rich fermented milk.

  1. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke.

    PubMed

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Acquadro, Alberto; de Vos, Ric; Beekwilder, Jules

    2008-09-24

    Leaf extracts from globe artichoke ( Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along with its biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the most abundant molecules. This paper reports the development of an experimental system to induce caffeoylquinic acids. This system may serve to study the regulation of the biosynthesis of (poly)phenolic compounds in globe artichoke and the genetic basis of this metabolic regulation. By means of HPLC-PDA and accurate mass LC-QTOF MS and MS/MS analyses, the major phenolic compounds in globe artichoke leaves were identified: four isomers of dicaffeoylquinic acid, three isomers of caffeoylquinic acid, and the flavone luteolin 7-glucoside. Next, plant material was identified in which the concentration of phenolic compounds was comparable in the absence of particular treatments, with the aim to use this material to test the effect of stress application on the regulation of biosynthesis of caffeoylquinic acids. Using this material, the effect of UV-C, methyl jasmonate, and salicylic acid treatments on (poly)phenolic compounds was tested in different globe artichoke genotypes. UV-C exposure consistently increased the levels of dicaffeoylquinic acids in all genotypes, whereas the effect on compounds from the same biosynthetic pathway, for example, chlorogenic acid and luteolin-7-glucoside, was much less pronounced and was not statistically significant. No effect of methyl jasmonate or salicylic acid was found. Time-response experiments indicated that the level of dicaffeoylquinic acids reached a maximum at 24 h after UV radiation. On the basis of these results a role of dicaffeoylquinic acids in UV protection in globe artichoke is hypothesized.

  2. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke.

    PubMed

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Acquadro, Alberto; de Vos, Ric; Beekwilder, Jules

    2008-09-24

    Leaf extracts from globe artichoke ( Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along with its biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the most abundant molecules. This paper reports the development of an experimental system to induce caffeoylquinic acids. This system may serve to study the regulation of the biosynthesis of (poly)phenolic compounds in globe artichoke and the genetic basis of this metabolic regulation. By means of HPLC-PDA and accurate mass LC-QTOF MS and MS/MS analyses, the major phenolic compounds in globe artichoke leaves were identified: four isomers of dicaffeoylquinic acid, three isomers of caffeoylquinic acid, and the flavone luteolin 7-glucoside. Next, plant material was identified in which the concentration of phenolic compounds was comparable in the absence of particular treatments, with the aim to use this material to test the effect of stress application on the regulation of biosynthesis of caffeoylquinic acids. Using this material, the effect of UV-C, methyl jasmonate, and salicylic acid treatments on (poly)phenolic compounds was tested in different globe artichoke genotypes. UV-C exposure consistently increased the levels of dicaffeoylquinic acids in all genotypes, whereas the effect on compounds from the same biosynthetic pathway, for example, chlorogenic acid and luteolin-7-glucoside, was much less pronounced and was not statistically significant. No effect of methyl jasmonate or salicylic acid was found. Time-response experiments indicated that the level of dicaffeoylquinic acids reached a maximum at 24 h after UV radiation. On the basis of these results a role of dicaffeoylquinic acids in UV protection in globe artichoke is hypothesized. PMID:18710252

  3. The cell and developmental biology of alkaloid biosynthesis.

    PubMed

    De Luca, V; St Pierre, B

    2000-04-01

    Plants produce unique natural products as a result of gene mutation and subsequent adaptation of metabolic pathways to create new secondary metabolites. However, their biosynthesis and accumulation remains remarkably under the control of the biotic and abiotic environments. Alkaloid biosynthesis, which requires the adaptation of cellular activities to perform specialized metabolism without compromising general homeostasis, is accomplished by restricting product biosynthesis and accumulation to particular cells and to defined times of plant development. The cell and developmental biology of alkaloid biosynthesis, which is remarkably complex, evolved in part by recruiting pre-existing enzymes to perform new functions.

  4. Physiological insights into all-trans-retinoic acid biosynthesis

    PubMed Central

    Napoli, Joseph L.

    2011-01-01

    All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data supports a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. PMID:21621639

  5. Gene-Enzyme Relationships of Aromatic Amino Acid Biosynthesis in Higher Plants

    SciTech Connect

    2002-08-12

    Inhibition studies of amino acids in Nicotiana silvestris suspension cells gave clues to the difficulties for obtaining mutants deficient in post prephenate pathway proteins of aromatic amino acid biosynthesis (prephenate aminotransferase, arogenate dehydrogenase and arogenate dehydratase). Such mutants, if successfully obtained, would allow gene-enzyme relationships of aromatic amino acid proteins to be studied. We found that amino acids were inhibitory toward plant cell growth, and thus were unable to rescue analog resistant mutants. Toxicity of all amino acids toward exponentially dividing Nicotiana silvestris suspension cultured cells was monitored by following growth rates. Except for L-glutamine, all 19 protein amino acids inhibited cell growth. Inhibition of growth progressed to cell deterioration. Electron microscopy showed that amino acids triggered a state of cell shrinkage that eventually degenerated to total cellular disorganization. L-glutamine was not only an effective agent for prevention of amino acid toxicity, but enhanced the final growth yield. L-glutamine also was able to completely reverse inhibition effects in cells that had been in the slowed exponential phase. Two types of inhibition occurred and we have proposed that any amino acid inhibition that can be completely antagonized by L-glutamine be called ''general amino acid inhibition''. ''Specific amino acid inhibition'' resulting from particular pathway imbalances caused by certain exogenous amino acids, can be recognized and studied in the presence of L-glutamine which can abolishes the complication effects of general amino acid inhibition.

  6. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    PubMed

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  7. A blueprint of the amino acid biosynthesis network of hemiascomycetes.

    PubMed

    Förster, Jan; Halbfeld, Christoph; Zimmermann, Martin; Blank, Lars M

    2014-11-01

    The structure and regulation of biosynthesis pathways in Saccharomyces cerevisiae have been detailed extensively. For other hemiascomycetes, genomic sequences are primarily available, whereas biochemical information on them is scarce. The resulting biochemical networks that are used for research in basic science and biotechnology are often biased by data from S. cerevisiae, assuming that there are often implicitly conserved structures between species. We examined the structure of the amino acid biosynthesis network in nine hemiascomycetes, spanning the phylogenetic clade. Differences in the genetic inventory included the presence and absence of isoenzymes and compartmentation of the pathways. Notably, no two hemiascomycetes had identical genetic inventories. For example, the lack of the mitochondrial αIPMS isoenzyme and presence of only one copy of the BCAA aminotransferase in Pichia pastoris indicate a disparately compartmented leucine biosynthesis pathway. Our findings suggest that αIPMS and BCAA aminotransferase are solely located in the cytosol of P. pastoris, requiring correction of the leucine biosynthesis pathway layout in this species. Our results argue for careful use of information from S. cerevisiae and for joint efforts to fill the knowledge gaps in other species. Such analysis will lead to contributions in biotechnology disciplines, such as protein production and compartment engineering. PMID:25187056

  8. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid.

    PubMed

    Tivendale, Nathan D; Davidson, Sandra E; Davies, Noel W; Smith, Jason A; Dalmais, Marion; Bendahmane, Abdelhafid I; Quittenden, Laura J; Sutton, Lily; Bala, Raj K; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B; Ross, John J

    2012-07-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  9. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    SciTech Connect

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  10. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses.

    PubMed

    Northey, Julian G B; Liang, Siyu; Jamshed, Muhammad; Deb, Srijani; Foo, Eloise; Reid, James B; McCourt, Peter; Samuel, Marcus A

    2016-01-01

    Protein farnesylation is a post-translational modification involving the addition of a 15-carbon farnesyl isoprenoid to the carboxy terminus of select proteins(1-3). Although the roles of this lipid modification are clear in both fungal and animal signalling, many of the mechanistic functions of farnesylation in plant signalling are still unknown. Here, we show that CYP85A2, the cytochrome P450 enzyme that performs the last step in brassinosteroid biosynthesis (conversion of castasterone to brassinolide)(4), must be farnesylated to function in Arabidopsis. Loss of either CYP85A2 or CYP85A2 farnesylation results in reduced brassinolide accumulation and increased plant responsiveness to the hormone abscisic acid (ABA) and overall drought tolerance, explaining previous observations(5). This result not only directly links farnesylation to brassinosteroid biosynthesis but also suggests new strategies to maintain crop yield under challenging climatic conditions. PMID:27455172

  11. Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells

    PubMed Central

    Qi, Lizhi; Yan, Sumei; Sheng, Ran; Zhao, Yanli; Guo, Xiaoyu

    2014-01-01

    This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of αs1-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 μM) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 μM in a concentration-dependent manner, and the addition of 600 μM was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis. PMID:25049969

  12. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  13. Plant amino acid-derived vitamins: biosynthesis and function.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  14. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis.

    PubMed

    Luo, Xingju; Chen, Zhizhong; Gao, Junping; Gong, Zhizhong

    2014-07-01

    When first discovered in 1963, abscisic acid (ABA) was called abscisin II because it promotes abscission. Later, researchers found that ABA accelerates abscission via ethylene. In Arabidopsis, previous studies have shown that high concentrations of ABA inhibit root growth through ethylene signaling but not ethylene production. In the present study in Arabidopsis, we found that ABA inhibits root growth by promoting ethylene biosynthesis. The ethylene biosynthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine reduces ABA inhibition of root growth, and multiple mutants of ACS (1-aminocyclopropane-1-carboxylate synthase) are more resistant to ABA in terms of root growth than the wild-type is. Two ABA-activated calcium-dependent protein kinases, CPK4 and CPK11, phosphorylate the C-terminus of ACS6 and increase the stability of ACS6 in ethylene biosynthesis. Plants expressing an ACS6 mutant that mimics the phosphorylated form of ACS6 produce more ethylene than the wild-type. Our results reveal an important mechanism by which ABA promotes ethylene production. This mechanism may be highly conserved among higher plants.

  15. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    SciTech Connect

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-05-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate TVSO4 into acid-precipitable material. Some mutants did not incorporate TVSO4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects.

  16. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis.

    PubMed

    Durruty, Ignacio; Aguirrezábal, Luis A N; Echarte, María M

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ') while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way.

  17. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    PubMed Central

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  18. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts.

    PubMed

    Jabłońska-Trypuć, Agata; Pankiewicz, Walentyn; Czerpak, Romuald

    2016-09-01

    Traumatic acid (TA) is a plant hormone (cytokinin) that in terms of chemical structure belongs to the group of fatty acids derivatives. It was isolated from Phaseolus vulgaris. TA activity and its influence on human cells and organism has not previously been the subject of research. The aim of this study was to examine the effects of TA on collagen content and basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione, thiol group content, and lipid peroxidation in physiological conditions. The results show a stimulatory effect of TA on tested parameters. TA caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against ROS production. It also increases protein and collagen biosynthesis and its secretion into the culture medium. The present findings reveal that TA exhibits multiple and complex activity in fibroblast cells in vitro. TA, with its activity similar to unsaturated fatty acids, shows antioxidant and stimulatory effects on collagen biosynthesis. It is a potentially powerful agent with applications in the treatment of many skin diseases connected with oxidative stress and collagen biosynthesis disorders. PMID:27423205

  19. Antibacterial Nitroacridine, Nitroakridin 3582: Binding to Nucleic Acids In Vitro and Effects on Selected Cell-Free Model Systems of Macromolecular Biosynthesis

    PubMed Central

    Wolfe, Alan D.; Cook, Thomas M.; Hahn, Fred E.

    1971-01-01

    Nitroakridin 3582 (NA) formed complexes with native deoxyribonucleic acid (DNA) and with transfer ribonucleic acid (tRNA) species from Escherichia coli. Spectrophotometric titrations of NA with these nucleic acids produced numerical results from which nonlinear adsorption isotherms were derived. These curves indicated the existence of more than one class of binding sites on the polymers to which NA was bound by more than one process. The stoichiometry of strong binding of NA to double helical DNA was in agreement with a conventional value (1 ligand molecule per 4.2 component nucleotides) for complete intercalation binding. NA inhibited the DNA-dependent DNA polymerase I and RNA polymerase reactions, the first strongly and the second appreciably. These inhibitions corresponded to the extents to which NA inhibits DNA and RNA biosyntheses in vivo. Evidently, NA interferes with the template function of DNA. The drug also inhibited the polymerization of phenylalanine in a cell-free E. coli ribosome-polyuridylic acid [poly (U)] system. The effect paralleled an inhibition of the poly (U)-directed binding of phenylalanyl tRNA to ribosomes. Ethidium bromide acted similarly. The antimalarial drug, chloroquine, stimulated polyphenylalanine synthesis, apparently as a result of stimulating the poly (U)-directed binding of phenylalanyl tRNA to ribosomes. PMID:4945180

  20. Construction of a chimeric biosynthetic pathway for the de novo biosynthesis of rosmarinic acid in Escherichia coli.

    PubMed

    Bloch, Sarah E; Schmidt-Dannert, Claudia

    2014-11-01

    Hydroxycinnamic acid esters (HCEs) are widely-distributed phenylpropanoid-derived plant natural products. Rosmarinic acid (RA), the most well-known HCE, shows promise as a treatment for cancer and neurological disorders. In contrast to extraction from plant material or plant cell culture, microbial production of HCEs could be a sustainable, controlled means of production. Through the overexpression of a six-enzyme chimeric bacterial and plant pathway, we show the de novo biosynthesis of RA, and the related HCE isorinic acid (IA), in Escherichia coli. Probing the pathway through precursor supplementation showed several potential pathway bottlenecks. We demonstrated HCE biosynthesis using three plant rosmarinic acid synthase (RAS) orthologues, which exhibited different levels of HCE biosynthesis but produced the same ratio of IA to RA. This work serves as a proof-of-concept for a microbial production platform for HCEs by using a modular biosynthetic approach to access diverse natural and non-natural HCEs.

  1. Screening of Hyaluronic Acid-Poly(ethylene glycol) Composite Hydrogels to Support Intervertebral Disc Cell Biosynthesis using Artificial Neural Network Analysis

    PubMed Central

    Jeong, Claire G.; Francisco, Aubrey T.; Niu, Zhenbin; Mancino, Robert L; Craig, Stephen L.; Setton, Lori A.

    2014-01-01

    Hyaluronic acid (HA) poly(ethylene glycol) (PEG) composite hydrogels have been widely studied for both cell delivery and soft tissue regeneration applications. A very broad range of physical and biological properties have been engineered into HA-PEG hydrogels that may differentially affect cellular “outcomes” of survival, synthesis and metabolism. The objective of this study was to rapidly screen multiple HA-PEG composite hydrogel formulations for an effect on matrix synthesis and behaviors of nucleus pulposus (NP) and anulus fibrosus (AF) cells of the intervertebral disc (IVD). A secondary objective was to apply artificial neural network (ANN) analysis to identify relationships between HA-PEG composite hydrogel formulation parameters and biological outcome measures for each cell type of the IVD. Eight different hydrogels were developed from preparations of thiolated HA (HA-SH) and PEG vinylsulfone (PEG-VS) macromers, and used as substrates for NP and AF cell culture in vitro. Hydrogel mechanical properties ranged from 70-489 kPa depending on HA molecular weight, and measures of matrix synthesis, metabolite consumption and production, and cell morphology were obtained to study relationships to hydrogel parameters. Results showed that NP and AF cell numbers were highest upon the HA-PEG hydrogels formed from the lower molecular weight HA, with evidence of higher sGAG production also upon lower HA molecular weight composite gels. All cells formed more multi-cell clusters upon any HA-PEG composite hydrogel as compared to gelatin substrates. Formulations were clustered into neurons based largely on their HA molecular weight, with few effects of PEG molecular weight observed on any measured parameters. PMID:24859415

  2. Acquisition and biosynthesis of saturated and unsaturated fatty acids by trypanosomatids.

    PubMed

    Uttaro, Antonio D

    2014-08-01

    As components of phospholipids and glycosylphosphatidylinositol anchors, fatty acids are responsible for forming the core of biological membranes and the correct localization of proteins within membranes. They also contribute to anchoring proteins by direct acylation of specific amino acids. Fatty acids can be used as energy sources and serve as signaling molecules or precursors for their synthesis. All these processes highlight the important role of fatty acids in cell physiology, justifying the diverse strategies for their acquisition evolved by different organisms. This review describes several recent findings in the salvage and biosynthesis of fatty acids by parasitic protists belonging to the class Kinetoplastea. They include two biosynthetic routes, the mitochondrial one and a peculiar membrane-associated pathway, the synthesis of polyunsaturated fatty acids, and the scavenging of lysophospholipids and lipoproteins from host plasma. These different processes are also explored as putative targets for chemotherapy.

  3. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    PubMed

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change.

  4. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria.

    PubMed

    Smyth, Kevin M; Marchant, Alan

    2013-10-18

    The increasing prevalence of multi-drug resistant bacteria is driving efforts in the development of new antibacterial agents. This includes a resurgence of interest in the Gram-negative bacteria lipopolysaccharide (LPS) biosynthesis enzymes as drug targets. The six carbon acidic sugar 2-keto-3-deoxymanno-octulosonic acid (Kdo) is a component of the lipid A moiety of the LPS in Gram-negative bacteria. In most cases the lipid A substituted by Kdo is the minimum requirement for cell growth, thus presenting the possibility of targeting either the synthesis or incorporation of Kdo for the development of antibacterial agents. Indeed, potent in vitro inhibitors of Kdo biosynthesis enzymes have been reported but have so far failed to show sufficient in vivo action against Gram-negative bacteria. As part of an effort to design more potent antibacterial agents targeting Kdo biosynthesis, the crystal structures of the key Kdo biosynthesis enzymes from Escherichia coli have been solved and their structure based mechanisms characterized. In eukaryotes, Kdo is found as a component of the pectic polysaccharide rhamnogalacturonan II in the plant primary cell wall. Interestingly, despite incorporating Kdo into very different macromolecules the Kdo biosynthesis and activation pathway is almost completely conserved between plants and bacteria. This raises the possibility for plant research to exploit the increasingly detailed knowledge and resources being generated by the microbiology community. Likewise, insights into Kdo biosynthesis in plants will be potentially useful in efforts to produce new antimicrobial compounds.

  5. Biosynthesis of Branched-Chain Amino Acids in Schizosaccharomyces pombe: Properties of Acetohydroxy Acid Synthetase1

    PubMed Central

    McDonald, Roderick A.; Satyanarayana, T.; Kaplan, J. G.

    1973-01-01

    The regulatory properties of acetohydroxy acid synthetase (AHAS), the first enzyme in the biosynthetic pathway to valine and the second in the isoleucine pathway, were investigated in the fission yeast Schizosaccharomyces pombe. The enzyme was partially purified from crude extracts by protamine sulfate treatment, ammonium sulfate fractionation, and gel filtration through Sephadex G-25. AHAS from S. pombe is unique in that its activity shows a single peak around pH 6.5; high sensitivity to feedback inhibition by valine at this pH (Ki = 0.1 mM) indicates that the enzyme is involved in valine biosynthesis. Pyruvate saturation kinetics of AHAS extracted from cells grown on glycerol as sole carbon and energy source were normal and hyperbolic. In contrast, the enzyme from glucose-grown cells exhibited sigmoidal saturation kinetics, an effect which disappeared when the synthetase from such cells was partially purified. This phenomenon was shown to be due to competition for pyruvate between AHAS and pyruvate decarboxylase; the latter enzyme is present in large amounts in cells fermenting glucose. Valine inhibition is noncompetitive in nature, and this effector exhibits homotropic cooperative effects; isoleucine is a less-potent inhibitor of AHAS activity. Mercurial treatment reversibly desensitized the enzyme to valine inhibition. On the basis of these data, the S. pombe AHAS appears to be an allosteric regulatory enzyme with the properties of a negative V system. PMID:4698210

  6. Inhibitors of fatty acid biosynthesis in sunflower seeds.

    PubMed

    Pleite, Rafael; Martínez-Force, Enrique; Garcés, Rafael

    2006-09-01

    During de novo fatty acid synthesis in sunflower seeds, saturated fatty acid production is influenced by the competition between the enzymes of the principal pathways and the saturated acyl-ACP thioesterases. Genetic backgrounds with more efficient saturated acyl-ACP thioesterase alleles only express their phenotypic effects when the alleles for the enzymes in the main pathway are less efficient. For this reason, we studied the incorporation of [2-(14)C]acetate into the lipids of developing sunflower seeds (Helianthus annuus L.) from several mutant lines in vivo. The labelling of different triacylglycerol fatty acids in different oilseed mutants reflects the fatty acid composition of the seed and supports the channelling theory of fatty acid biosynthesis. Incubation with methyl viologen diminished the conversion of stearoyl-ACP to oleoyl-ACP in vivo through a decrease in the available reductant power. In turn, this led to the accumulation of stearoyl-ACP to the levels detected in seeds from high stearic acid mutants. The concomitant reduction of oleoyl-ACP content inside the plastid allowed us to study the activity of acyl-ACP thioesterases on saturated fatty acids. In these mutants, we verified that the accumulation of saturated fatty acids requires efficient thioesterase activity on saturated-ACPs. By studying the effects of cerulenin on the in vivo incorporation of [2-(14)C]acetate into lipids and on the in vitro activity of beta-ketoacyl-ACP synthase II, we found that elongation to very long chain fatty acids can occur both inside and outside of the plastid in sunflower seeds. PMID:16500723

  7. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis

    PubMed Central

    Nguyen, Chi; Haushalter, Robert W.; Lee, D. John; Markwick, Phineus R. L.; Bruegger, Joel; Caldara-Festin, Grace; Finzel, Kara; Jackson, David R.; Ishikawa, Fumihiro; O’Dowd, Bing; McCammon, J. Andrew; Opella, Stanley J.; Tsai, Shiou-Chuan; Burkart, Michael D.

    2015-01-01

    Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS enzymes operate upon ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain.2 The transient nature of ACP-enzyme interactions imposes a major obstacle to gaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to properly study protein-protein interactions. In this work, we describe the application of a mechanism-based probe that allows site-selective covalent crosslinking of AcpP to FabA, the E. coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase. We report the 1.9 Å crystal structure of the crosslinked AcpP=FabA complex as a homo-dimer, in which AcpP exhibits two different conformations likely representing snapshots of ACP in action: the 4′-phosphopantetheine (PPant) group of AcpP first binds an arginine-rich groove of FabA, followed by an AcpP helical conformational change that locks the AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution NMR techniques, including chemical shift perturbations and RDC measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. Combined with molecular dynamics simulations, we show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies will prove general for fatty acid, polyketide and non-ribosomal biosyntheses. Here the foundation is laid for defining the dynamic action of carrier protein activity in primary and secondary metabolism, providing insight into pathways that can play major roles in the treatment of cancer, obesity and infectious

  8. Intermediates of Salicylic Acid Biosynthesis in Tobacco1

    PubMed Central

    Ribnicky, David M.; Shulaev, Vladimir; Raskin, Ilya

    1998-01-01

    Salicylic acid (SA) is an important component of systemic-acquired resistance in plants. It is synthesized from benzoic acid (BA) as part of the phenylpropanoid pathway. Benzaldehyde (BD), a potential intermediate of this pathway, was found in healthy and tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaf tissue at 100 ng/g fresh weight concentrations as measured by gas chromatography-mass spectrometry. BD was also emitted as a volatile organic compound from tobacco tissues. Application of gaseous BD to plants enclosed in jars caused a 13-fold increase in SA concentration, induced the accumulation of the pathogenesis-related transcript PR-1, and increased the resistance of tobacco to TMV inoculation. [13C6]BD and [2H5]benzyl alcohol were converted to BA and SA. Labeling experiments using [13C1]Phe in temperature-shifted plants inoculated with the TMV showed high enrichment of cinnamic acids (72%), BA (34%), and SA (55%). The endogenous BD, however, contained nondetectable enrichment, suggesting that BD was not the intermediate between cinnamic acid and BA. These results show that BD and benzyl alcohol promote SA accumulation and expression of defense responses in tobacco, and provide insight into the early steps of SA biosynthesis. PMID:9765542

  9. Carnosic acid biosynthesis elucidated by a synthetic biology platform.

    PubMed

    Ignea, Codruta; Athanasakoglou, Anastasia; Ioannou, Efstathia; Georgantea, Panagiota; Trikka, Fotini A; Loupassaki, Sofia; Roussis, Vassilios; Makris, Antonios M; Kampranis, Sotirios C

    2016-03-29

    Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial "chassis" have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis.Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies. PMID:26976595

  10. Suppression of Spermatogenesis by Bisdichloroacetyldiamines Is Mediated by Inhibition of Testicular Retinoic Acid Biosynthesis

    PubMed Central

    Amory, John K.; Muller, Charles H.; Shimshoni, Jakob A.; Isoherranen, Nina; Paik, Jisun; Moreb, Jan S.; Amory, David W.; Evanoff, Ryan; Goldstein, Alex S.; Griswold, Michael D.

    2012-01-01

    The bisdichloroacetyldiamine WIN 18,446 reversibly inhibits spermatogenesis in many species, including humans; however, the mechanism by which WIN 18,446 functions is unknown. As retinoic acid is essential for spermatogenesis, we hypothesized that WIN 18,446 might inhibit retinoic acid biosynthesis from retinol (vitamin A) within the testes by inhibiting the enzyme aldehyde dehydrogenase 1a2 (ALDH1a2). We studied the effect of WIN 18,446 on ALDH1a2 enzyme activity in vitro, and on spermatogenesis and fertility in vivo, in mature male rabbits for 16 weeks. WIN 18,446 markedly inhibited ALDH1a2 enzyme activity in vitro with an IC50 of 0.3 μM. In vivo, the oral administration of 200 mg/kg WIN 18,446 to male rabbits for 16 weeks significantly reduced intratesticular concentrations of retinoic acid, severely impaired spermatogenesis, and caused infertility. Reduced concentrations of intratesticular retinoic acid were apparent after only 4 weeks of treatment and preceded the decrease in sperm counts and the loss of mature germ cells in tissue samples. Sperm counts and fertility recovered after treatment was discontinued. These findings demonstrate that bisdichloroacetyldiamines such as WIN 18,446 reversibly suppress spermatogenesis via inhibition of testicular retinoic acid biosynthesis by ALDH1a2. These findings suggest that ALDH1a2 is a promising target for the development of a reversible, nonhormonal male contraceptive. PMID:20705791

  11. Mechanism of lysergic acid diethylamide interference with rabbit antibody biosynthesis.

    PubMed

    Voss, E W; Winkelhake, J L

    1974-04-01

    Lymphoid cells from hyperimmune rabbits producing antibodies to a hapten, incubated in the presence of d-lysergic acid diethylamide, continued to synthesize protein at a normal rate. Isoelectric focusing analysis of the low-molecular-weight protein secreted by the cells incubated with lysergic acid diethylamide indicated two components, with pI's of 4.9 and 5.2. Immune cells not exposed to lysergic acid diethylamide secreted only 7S IgG molecules with an average pI of approximately 7.0.

  12. Terminal Olefin (1-Alkene) Biosynthesis by a Novel P450 Fatty Acid Decarboxylase from Jeotgalicoccus Species ▿ †

    PubMed Central

    Rude, Mathew A.; Baron, Tarah S.; Brubaker, Shane; Alibhai, Murtaza; Del Cardayre, Stephen B.; Schirmer, Andreas

    2011-01-01

    Terminal olefins (1-alkenes) are natural products that have important industrial applications as both fuels and chemicals. However, their biosynthesis has been largely unexplored. We describe a group of bacteria, Jeotgalicoccus spp., which synthesize terminal olefins, in particular 18-methyl-1-nonadecene and 17-methyl-1-nonadecene. These olefins are derived from intermediates of fatty acid biosynthesis, and the key enzyme in Jeotgalicoccus sp. ATCC 8456 is a terminal olefin-forming fatty acid decarboxylase. This enzyme, Jeotgalicoccus sp. OleT (OleTJE), was identified by purification from cell lysates, and its encoding gene was identified from a draft genome sequence of Jeotgalicoccus sp. ATCC 8456 using reverse genetics. Heterologous expression of the identified gene conferred olefin biosynthesis to Escherichia coli. OleTJE is a P450 from the cyp152 family, which includes bacterial fatty acid hydroxylases. Some cyp152 P450 enzymes have the ability to decarboxylate and to hydroxylate fatty acids (in α- and/or β-position), suggesting a common reaction intermediate in their catalytic mechanism and specific structural determinants that favor one reaction over the other. The discovery of these terminal olefin-forming P450 enzymes represents a third biosynthetic pathway (in addition to alkane and long-chain olefin biosynthesis) to convert fatty acid intermediates into hydrocarbons. Olefin-forming fatty acid decarboxylation is a novel reaction that can now be added to the catalytic repertoire of the versatile cytochrome P450 enzyme family. PMID:21216900

  13. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon

    PubMed Central

    2010-01-01

    Nowadays a growing demand for green chemicals and cleantech solutions is motivating the industry to strive for biobased building blocks. We have identified the tertiary carbon atom-containing 2-hydroxyisobutyric acid (2-HIBA) as an interesting building block for polymer synthesis. Starting from this carboxylic acid, practically all compounds possessing the isobutane structure are accessible by simple chemical conversions, e. g. the commodity methacrylic acid as well as isobutylene glycol and oxide. During recent years, biotechnological routes to 2-HIBA acid have been proposed and significant progress in elucidating the underlying biochemistry has been made. Besides biohydrolysis and biooxidation, now a bioisomerization reaction can be employed, converting the common metabolite 3-hydroxybutyric acid to 2-HIBA by a novel cobalamin-dependent CoA-carbonyl mutase. The latter reaction has recently been discovered in the course of elucidating the degradation pathway of the groundwater pollutant methyl tert-butyl ether (MTBE) in the new bacterial species Aquincola tertiaricarbonis. This discovery opens the ground for developing a completely biotechnological process for producing 2-HIBA. The mutase enzyme has to be active in a suitable biological system producing 3-hydroxybutyryl-CoA, which is the precursor of the well-known bacterial bioplastic polyhydroxybutyrate (PHB). This connection to the PHB metabolism is a great advantage as its underlying biochemistry and physiology is well understood and can easily be adopted towards producing 2-HIBA. This review highlights the potential of these discoveries for a large-scale 2-HIBA biosynthesis from renewable carbon, replacing conventional chemistry as synthesis route and petrochemicals as carbon source. PMID:20184738

  14. Comprehensive Profiling of Amino Acid Response Uncovers Unique Methionine-Deprived Response Dependent on Intact Creatine Biosynthesis

    PubMed Central

    Tang, Xiaohu; Keenan, Melissa M.; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J. Will; Freedland, Stephen J.; Murphy, Susan K.; Chi, Jen-Tsan

    2015-01-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine

  15. Comprehensive profiling of amino acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis.

    PubMed

    Tang, Xiaohu; Keenan, Melissa M; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J Will; Freedland, Stephen J; Murphy, Susan K; Chi, Jen-Tsan

    2015-04-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine

  16. Genetic Dissection of Tropodithietic Acid Biosynthesis by Marine Roseobacters▿ ‡

    PubMed Central

    Geng, Haifeng; Bruhn, Jesper Bartholin; Nielsen, Kristian F.; Gram, Lone; Belas, Robert

    2008-01-01

    The symbiotic association between the roseobacter Silicibacter sp. strain TM1040 and the dinoflagellate Pfiesteria piscicida involves bacterial chemotaxis to dinoflagellate-produced dimethylsulfoniopropionate (DMSP), DMSP demethylation, and ultimately a biofilm on the surface of the host. Biofilm formation is coincident with the production of an antibiotic and a yellow-brown pigment. In this report, we demonstrate that the antibiotic is a sulfur-containing compound, tropodithietic acid (TDA). Using random transposon insertion mutagenesis, 12 genes were identified as critical for TDA biosynthesis by the bacteria, and mutation in any one of these results in a loss of antibiotic activity (Tda−) and pigment production. Unexpectedly, six of the genes, referred to as tdaA-F, could not be found on the annotated TM1040 genome and were instead located on a previously unidentified plasmid (ca. 130 kb; pSTM3) that exhibited a low frequency of spontaneous loss. Homologs of tdaA and tdaB from Silicibacter sp. strain TM1040 were identified by mutagenesis in another TDA-producing roseobacter, Phaeobacter sp. strain 27-4, which also possesses two large plasmids (ca. 60 and ca. 70 kb, respectively), and tda genes were found by DNA-DNA hybridization in 88% of a diverse collection of nine roseobacters with known antibiotic activity. These data suggest that roseobacters may use a common pathway for TDA biosynthesis that involves plasmid-encoded proteins. Using metagenomic library databases and a bioinformatics approach, differences in the biogeographical distribution between the critical TDA synthesis genes were observed. The implications of these results to roseobacter survival and the interaction between TM1040 and its dinoflagellate host are discussed. PMID:18192410

  17. Identification of a Desaturase Involved in Mycolic Acid Biosynthesis in Mycobacterium smegmatis

    PubMed Central

    Singh, Albel; Varela, Cristian; Bhatt, Kiranmai; Veerapen, Natacha; Lee, Oona Y. C.; Wu, Houdini H. T.; Besra, Gurdyal S.; Minnikin, David E.; Fujiwara, Nagatoshi; Teramoto, Kanae; Bhatt, Apoorva

    2016-01-01

    Mycolic acids are unique long chain fatty acids found in the cell walls of mycobacteria including the tubercle bacillus, Mycobacterium tuberculosis. The introduction of double bonds in mycolic acids remains poorly understood, however, genes encoding two potential aerobic desaturases have been proposed to be involved in this process. Here we show that one of these genes, desA1, is essential for growth of the saprophytic Mycobacterium smegmatis. Depletion of desA1 in a M. smegmatis conditional mutant led to reduction of mycolic acid biosynthesis and loss of viability. The DesA1-depleted cells exhibited two other phenotypes: using 14[C]-labelling, we detected the accumulation of minor mycolic acid-related species that migrated faster in a silver TLC plate. Spiral Time of Flight Mass Spectroscopic analysis suggested the presence of species with sizes corresponding to what were likely monoenoic derivatives of α-mycolic acids. Additionally, conditional depletion led to the presence of free fatty acyl species of lengths ~C26-C48 in the lysing cells. Cell viability could be rescued in the conditional mutant by Mycobacterium tuberculosis desA1, highlighting the potential of desA1 as a new drug target in pathogenic mycobacteria. PMID:27741286

  18. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco

    SciTech Connect

    Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. )

    1993-10-01

    Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied Sa biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of Sa accumulation is accompanied by a corresponding increase in the levels of benzoic acid. [sup 14]C-Tracer studies with cell suspensions and mock- or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [[sup 14]C] benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogenesis-related-1 proteins and increased resistance to TMV in benzoic acid but no in 0-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid. 27 refs., 7 figs., 1 tab.

  19. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp.

    PubMed

    Manulis, S; Shafrir, H; Epstein, E; Lichter, A; Barash, I

    1994-05-01

    Various Streptomyces spp. including S. violaceus, S. scabies, S. griseus, S. exfoliatus, S. coelicolor and S. lividans secrete indole-3-acetic acid (IAA) when fed with L-tryptophan (Trp). Production of IAA was detected in Streptomyces strains causing potato scab as well as in non-pathogenic strains. The pathways for IAA synthesis from Trp were investigated in S. violaceus and S. exfoliatus. Indole-3-acetamide (IAM), indole-3-lactic acid (ILA), indole-3-ethanol (IEt) and IAA were identified by HPLC and GC-MS. Streptomyces cells were capable of catabolizing IAM, ILA, IEt and indole-3-acetaldehyde (IAAId) into IAA. Incorporation of radioactivity into IAM, IAA and ILA but not IEt was detected when cells were fed with L-[3-14C]tryptophan. Results indicate the presence of the IAM pathway (Trp-->IAM-->IAA) and the possible presence of additional pathways for IAA biosynthesis in Streptomyces. PMID:8025670

  20. Chlorsulfuron modifies biosynthesis of acyl Acid substituents of sucrose esters secreted by tobacco trichomes.

    PubMed

    Kandra, L; Wagner, G J

    1990-11-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  1. Chlorsulfuron Modifies Biosynthesis of Acyl Acid Substituents of Sucrose Esters Secreted by Tobacco Trichomes

    PubMed Central

    Kandra, Lili; Wagner, George J.

    1990-01-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  2. Transcellular biosynthesis of cysteinyl leukotrienes in rat neuronal and glial cells.

    PubMed

    Farias, Santiago E; Zarini, Simona; Precht, Thomas; Murphy, Robert C; Heidenreich, Kim A

    2007-11-01

    Leukotrienes are mediators of inflammation that belong to a family of lipids derived from arachidonic acid by the action of 5-lipoxygenase. Leukotrienes have been detected in the central nervous system in association with different pathological events, but little is known about their biosynthesis or function in the brain. When rat neurons and glial cells in primary culture were stimulated with the calcium ionophore, no significant biosynthesis of leukotrienes was detected using liquid chromatography/mass spectrometry (LC/MS) techniques. However, when exogenous LTA(4) was added to these cultured cells, both neurons and glia were able to synthesize LTC(4). Activated neutrophils are known to supply LTA(4) to other cells for transcellular biosynthesis of cysteinyl-leukotrienes. Since neutrophils can infiltrate brain tissue after stroke or traumatic brain injury, we examined whether neutrophils play a similar role in the central nervous system. When peripheral blood neutrophils were co-cultured with rat neurons, glia cells, and then stimulated with calcium ionophore, a robust production of LTC(4), LTD(4), and LTE(4) was observed, revealing that neurons and glia can participate in the transcellular mechanism of leukotriene biosynthesis. The formation of LTC(4) through this mechanism may be relevant in the genesis and progression of the inflammatory response as a result of brain injury.

  3. Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins.

    PubMed

    Liu, Zhong; Shi, Ming-Zhu; Xie, De-Yu

    2014-04-01

    Red pap1-D cells of Arabidopsis thaliana have been cloned from production of anthocyanin pigmentation 1-Dominant (pap1-D) plants. The red cells are metabolically programmed to produce high levels of anthocyanins by a WD40-bHLH-MYB complex that is composed of the TTG1, TT8/GL3 and PAP1 transcription factors. Here, we report that indole 3-acetic acid (IAA), naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) regulate anthocyanin biosynthesis in these red cells. Seven concentrations (0, 0.2, 0.4, 2.2, 9, 18 and 27 μM) were tested for the three auxins. IAA and 2,4-D at 2.2-27 μM reduced anthocyanin levels. NAA at 0-0.2 μM or above 9 μM also decreased anthocyanin levels, but from 0.4 to 9 μM, it increased them. HPLC-ESI-MS analysis identified seven cyanin molecules that were produced in red pap1-D cells, and their levels were affected by auxins. The expression levels of ten genes, including six transcription factors (TTG1, EGL3, MYBL2, TT8, GL3 and PAP1) and four pathway genes (PAL1, CHS, DFR and ANS) involved in anthocyanin biosynthesis were analyzed upon various auxin treatments. The resulting data showed that 2,4-D, NAA and IAA control anthocyanin biosynthesis by regulating the expression of TT8, GL3 and PAP1 as well as genes in the anthocyanin biosynthetic pathway, such as DFR and ANS. In addition, the expression of MYBL2, PAL1 and CHS in red pap1-D and wild-type cells differentially respond to the three auxins. Our data demonstrate that the three auxins regulate anthocyanin biosynthesis in metabolically programmed red cells via altering the expression of transcription factor genes and pathway genes. PMID:24370633

  4. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth.

    PubMed

    Saxena, Bhawna; Subramaniyan, Mayavan; Malhotra, Karan; Bhavesh, Neel Sarovar; Potlakayala, Shobha Devi; Kumar, Shashi

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  5. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis

    PubMed Central

    Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many

  6. Cell cycle-dependent regulation of pyrimidine biosynthesis.

    PubMed

    Sigoillot, Frederic D; Berkowski, J Andrew; Sigoillot, Severine M; Kotsis, Damian H; Guy, Hedeel I

    2003-01-31

    De novo pyrimidine biosynthesis is activated in proliferating cells in response to an increased demand for nucleotides needed for DNA synthesis. The pyrimidine biosynthetic pathway in baby hamster kidney cells, synchronized by serum deprivation, was found to be up-regulated 1.9-fold during S phase and subsequently down-regulated as the cells progressed through the cycle. The nucleotide pools were depleted by serum starvation and were not replenished during the first round of cell division, suggesting that the rate of utilization of the newly synthesized nucleotides closely matched their rate of formation. The activation and subsequent down-regulation of the pathway can be attributed to altered allosteric regulation of the carbamoyl-phosphate synthetase activity of CAD (carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase), a multifunctional protein that initiates mammalian pyrimidine biosynthesis. As the culture approached S-phase there was an increased sensitivity to the allosteric activator, 5-phosphoribosyl-1-pyrophosphate, and a loss of UTP inhibition, changes that were reversed when cells emerged from S phase. The allosteric regulation of CAD is known to be modulated by MAP kinase (MAPK) and protein kinase A (PKA)-mediated phosphorylations as well as by autophosphorylation. CAD was found to be fully autophosphorylated in the synchronized cells, but the level remained invariant throughout the cycle. Although the MAPK activity increased early in G(1), the phosphorylation of the CAD MAPK site was delayed until just before the onset of S phase, probably due to antagonistic phosphorylation by PKA that persisted until late G(1). Once activated, pyrimidine biosynthesis remained elevated until rephosphorylation of CAD by PKA and dephosphorylation of the CAD MAPK site late in S phase. Thus, the cell cycle-dependent regulation of pyrimidine biosynthesis results from the sequential phosphorylation and dephosphorylation of CAD under the control of

  7. Biosynthesis of pyruvic acid from glucose by Blastobotrys adeninivorans.

    PubMed

    Kamzolova, Svetlana V; Morgunov, Igor G

    2016-09-01

    The ability of taxonomically different yeasts to synthesize pyruvic acid (PA) from glucose was studied. The study showed that many yeasts are able to produce PA from glucose under the condition of growth limitation by thiamine. This ability was found in the yeast Blastobotrys adeninivorans for the first time. The production (oversynthesis) of PA in this yeast can be explained by disturbance in the function of thiamine-dependent pyruvate dehydrogenase. Namely, the partial inhibition of this enzyme brings about the excretion of PA from the yeast cells. Due to incomplete inhibition of pyruvate dehydrogenase, the formation of acetyl-CoA continues, although at a lower level, maintaining the synthesis of α-ketoglutaric acid (KGA) in the tricarboxylic acid (TCA) cycle. KGA is no longer oxidized in the TCA cycle, because thiamine limitation inhibits α-ketoglutarate dehydrogenase. As a result, KGA is excreted from the yeast cells as a byproduct of PA oversynthesis. Furthermore, the increased level of KGA in the yeast cells inhibits NAD-dependent isocitrate dehydrogenase in the TCA cycle and enhances the production and excretion of citric acid, another byproduct of PA oversynthesis. During cultivation in a fermentor, the strain Blastobotrys adeninivorans VKM Y-2677 produced 43.2 g l(-1) PA from glucose with a product yield (YPA) of 0.77 g PA/g glucose. The proportion of PA to byproducts was 18:1 for KGA and 8:1 for citric acid.

  8. Phorbic Acid Biosynthesis in the Latex Vessel System of Euphorbia

    PubMed Central

    Nordal, Arnold; Benson, A. A.

    1969-01-01

    Evidence is presented that phorbic acid is formed in the latex producing cell system, rather than in photosynthetic or chlorophyll-free tissues of Euphorbia resinifera Berg. When a branch of the plant was kept first in a 14CO2 atmosphere with 12 hr light-dark periods for 2 days and then left under natural conditions in the air outside for at least 2 to 3 days, radioactive phorbic acid was found in the latex. Phorbic acid synthesis appeared to be independent of the photosynthetic and respiratory activities of the plant. Besides phorbic acid 2 other major radioactive compounds were recognized in the latex, a glycoside or oligosaccharide, and a lipid belonging to the group of triterpenoid compounds characteristic of the latex in several species of Euphorbia. Images PMID:16657036

  9. Secondary cell walls: biosynthesis and manipulation.

    PubMed

    Kumar, Manoj; Campbell, Liam; Turner, Simon

    2016-01-01

    Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood.

  10. Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa.

    PubMed

    Flores-Sánchez, Isvett J; Ortega-López, Jaime; del Carmen Montes-Horcasitas, María; Ramos-Valdivia, Ana C

    2002-12-01

    Pectin administered to Uncaria tomentosa cell suspension cultures, was found to increase the production of triterpene acids (ursolic and oleanolic acid), however, neither growth nor sterol accumulation were affected. Cell cultures showed that pectin treatment caused a rapid threefold increase in the activities of enzymes involved in the biosynthesis of C(5) and C(30 )isoprenoid, such as isopentenyl diphosphate isomerase and squalene synthase. The activity of a farnesyl diphosphatase, which could divert the flux of farnesyl diphosphate to farnesol, was two times lower in elicited than in control cells. Elicited cells also transformed more rapidly a higher percentage of [5-(3)H]mevalonic acid into triterpene acids. Interestingly, addition of terbinafine, an inhibitor of squalene epoxidase, to elicited cell cultures inhibited sterol accumulation while triterpene production was not inhibited. These results suggest that in U. tomentosa cells, both the previously mentioned enzymes and those involved in squalene 2,3-oxide formation play an important regulatory role in the biosynthesis of sterols and triterpenes.

  11. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis.

    PubMed

    Holt, Jason A; Luo, Guizhen; Billin, Andrew N; Bisi, John; McNeill, Y Yvette; Kozarsky, Karen F; Donahee, Mary; Wang, Da Yuan; Mansfield, Traci A; Kliewer, Steven A; Goodwin, Bryan; Jones, Stacey A

    2003-07-01

    The nuclear bile acid receptor FXR has been proposed to play a central role in the feedback repression of the gene encoding cholesterol 7 alpha-hydroxylase (CYP7A1), the first and rate-limiting step in the biosynthesis of bile acids. We demonstrate that FXR directly regulates expression of fibroblast growth factor-19 (FGF-19), a secreted growth factor that signals through the FGFR4 cell-surface receptor tyrosine kinase. In turn, FGF-19 strongly suppresses expression of CYP7A1 in primary cultures of human hepatocytes and mouse liver through a c-Jun N-terminal kinase (JNK)-dependent pathway. This signaling cascade defines a novel mechanism for feedback repression of bile acid biosynthesis and underscores the vital role of FXR in the regulation of multiple pathways of cholesterol catabolism in the liver.

  12. Haemoglobin biosynthesis site in rabbit embryo erythroid cells.

    PubMed

    Cianciarullo, Aurora M; Bertho, Alvaro L; Soares, Maurilio J; Hosoda, Tânia M; Nogueira-Silva, Simone; Beçak, Willy

    2003-01-01

    Properly metabolized globin synthesis and iron uptake are indispensable for erythroid cell differentiation and maturation. Mitochondrial participation is crucial in the process of haeme synthesis for cytochromes and haemoglobin. We studied the final biosynthesis site of haemoglobin using an ultrastructural approach, with erythroid cells obtained from rabbit embryos, in order to compare these results with those of animals treated with saponine or phenylhydrazine. Our results are similar to those obtained in assays with adult mammals, birds, amphibians, reptiles and fish, after induction of haemolytic anaemia. Therefore, the treatment did not interfere with the process studied, confirming our previous findings. Immunoelectron microscopy showed no labelling of mitochondria or other cellular organelles supposedly involved in the final biosynthesis of haemoglobin molecules, suggesting instead that it occurs free in the cytoplasm immediately after the liberation of haeme from the mitochondria, by electrostatic attraction between haeme and globin chains. PMID:12972280

  13. One-Step Biosynthesis of α-Keto-γ-Methylthiobutyric Acid from L-Methionine by an Escherichia coli Whole-Cell Biocatalyst Expressing an Engineered L-Amino Acid Deaminase from Proteus vulgaris

    PubMed Central

    Shin, Hyun-dong; Du, Guocheng; Wang, Miao; Liu, Long; Chen, Jian

    2014-01-01

    α-Keto-γ-methylthiobutyric acid (KMTB), a keto derivative of l-methionine, has great potential for use as an alternative to l-methionine in the poultry industry and as an anti-cancer drug. This study developed an environment friendly process for KMTB production from l-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered l-amino acid deaminase (l-AAD) from Proteus vulgaris. We first overexpressed the P. vulgaris l-AAD in E. coli BL21 (DE3) and further optimized the whole-cell transformation process. The maximal molar conversion ratio of l-methionine to KMTB was 71.2% (mol/mol) under the optimal conditions (70 g/L l-methionine, 20 g/L whole-cell biocatalyst, 5 mM CaCl2, 40°C, 50 mM Tris-HCl [pH 8.0]). Then, error-prone polymerase chain reaction was used to construct P. vulgaris l-AAD mutant libraries. Among approximately 104 mutants, two mutants bearing lysine 104 to arginine and alanine 337 to serine substitutions showed 82.2% and 80.8% molar conversion ratios, respectively. Furthermore, the combination of these mutations enhanced the catalytic activity and molar conversion ratio by 1.3-fold and up to 91.4% with a KMTB concentration of 63.6 g/L. Finally, the effect of immobilization on whole-cell transformation was examined, and the immobilized whole-cell biocatalyst with Ca2+ alginate increased reusability by 41.3% compared to that of free cell production. Compared with the traditional multi-step chemical synthesis, our one-step biocatalytic production of KMTB has an advantage in terms of environmental pollution and thus has great potential for industrial KMTB production. PMID:25531756

  14. One-step biosynthesis of α-keto-γ-methylthiobutyric acid from L-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered L-amino acid deaminase from Proteus vulgaris.

    PubMed

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Wang, Miao; Liu, Long; Chen, Jian

    2014-01-01

    α-Keto-γ-methylthiobutyric acid (KMTB), a keto derivative of l-methionine, has great potential for use as an alternative to l-methionine in the poultry industry and as an anti-cancer drug. This study developed an environment friendly process for KMTB production from l-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered l-amino acid deaminase (l-AAD) from Proteus vulgaris. We first overexpressed the P. vulgaris l-AAD in E. coli BL21 (DE3) and further optimized the whole-cell transformation process. The maximal molar conversion ratio of l-methionine to KMTB was 71.2% (mol/mol) under the optimal conditions (70 g/L l-methionine, 20 g/L whole-cell biocatalyst, 5 mM CaCl2, 40°C, 50 mM Tris-HCl [pH 8.0]). Then, error-prone polymerase chain reaction was used to construct P. vulgaris l-AAD mutant libraries. Among approximately 104 mutants, two mutants bearing lysine 104 to arginine and alanine 337 to serine substitutions showed 82.2% and 80.8% molar conversion ratios, respectively. Furthermore, the combination of these mutations enhanced the catalytic activity and molar conversion ratio by 1.3-fold and up to 91.4% with a KMTB concentration of 63.6 g/L. Finally, the effect of immobilization on whole-cell transformation was examined, and the immobilized whole-cell biocatalyst with Ca2+ alginate increased reusability by 41.3% compared to that of free cell production. Compared with the traditional multi-step chemical synthesis, our one-step biocatalytic production of KMTB has an advantage in terms of environmental pollution and thus has great potential for industrial KMTB production.

  15. Biosynthesis of somatostatin in canine fundic D cells.

    PubMed Central

    Chiba, T; Park, J; Yamada, T

    1988-01-01

    The observation that virtually all of the somatostatin-like immunoreactivity in the stomach consists of somatostatin-14 (S14), to the exclusion of somatostatin-28 (S28), suggests a unique pattern of prosomatostatin posttranslational processing. In order to examine the mechanisms by which S14 is produced from its precursor in the stomach, we investigated the biosynthesis of somatostatin in isolated canine fundic D cells. D cells pulse-labeled with [35S]cysteine revealed a cycloheximide inhibitable time-dependent incorporation of radioactivity into S14. A small fraction of radioactivity was incorporated into S28 but not into larger precursors. However, when the cells were incubated with monensin (1 microM), incorporation of radioactivity into a presumed somatostatin precursor was noted. Upon transfer of [35S]cysteine prelabeled cells to radioactivity-free medium, no conversion of S28 to S14 could be detected and the decrease of labeled S14 in cells correlated with a complimentary increase in the culture medium. Exogenous somatostatin inhibited somatostatin biosynthesis in a fashion that could be blocked by pertussis toxin pretreatment. Stimulation of prelabeled D cells with tetradecanoyl phorbol 13-acetate (10(-7) M) or forskolin (10(-4) M) for 2 h resulted in release of 41 and 33% of the newly synthesized radioactive S14, respectively, while only 9 and 6% of the total cell content of radioimmunoassayable somatostatin was secreted. These data suggest that: (a) somatostatin is synthesized in fundic D cells primarily as S14, (b) S14 is produced by rapid processing of a larger precursor but there is little, if any, conversion of S28 to S14, (c) somatostatin biosynthesis is autoregulated, and (d) newly synthesized S14 is preferentially released from D cells in response to stimulation. PMID:2892859

  16. The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae.

    PubMed

    Mohedano, Maria L; Amblar, Mónica; de la Fuente, Alicia; Wells, Jerry M; López, Paloma

    2016-01-01

    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation. PMID:27610104

  17. The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae

    PubMed Central

    Mohedano, Maria L.; Amblar, Mónica; de la Fuente, Alicia; Wells, Jerry M.; López, Paloma

    2016-01-01

    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation. PMID:27610104

  18. The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae

    PubMed Central

    Mohedano, Maria L.; Amblar, Mónica; de la Fuente, Alicia; Wells, Jerry M.; López, Paloma

    2016-01-01

    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation.

  19. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2015-02-01

    Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass.

  20. [Biosynthesis of enniatin by washed cells of Fusarium sambucinum].

    PubMed

    Minasian, A E; Chermenskĭ, D N; Bezborodov, A M

    1979-01-01

    Biosynthesis of the depsipeptide membrane ionophore--enniatin B by the washed mycelium Fusarium sambucinum Fuck 52 377 was studied. Metabolic precursors of enniatin B, alpha-ketovaleric acid, 14C-L-valine, and 14CH3-methionine, were added to the system after starvation. The amino acid content in the metabolic pool increased 1.5 times after addition of alpha-ketovaleric acid, 2.2 times after that of valine, and 2.5 times after addition of methionine. 14C-L-valine and 14CH3-methionine were incorporated into the molecule of enniatin B. Valine methylation in the molecule occurred at the level of synthesized depsipeptide. Amino acids of the metabolic pool performed the regulatory function in the synthesis. PMID:583180

  1. Induction of prodigiosin biosynthesis after shift-down in temperature of nonproliferating cells of Serratia marcescens.

    PubMed

    Qadri, S M; Williams, R P

    1972-04-01

    Nonpigmented bacteria obtained by growth of Serratia marcescens at 38 C synthesized prodigiosin at 25 C if certain individual amino acids were added to cultures of nonproliferating cells. In order of effectiveness, the amino acids were: DL-histidine, L-proline, L-hydroxyproline, DL-alanine, L-alanine, DL-aspartic acid, D-alanine, DL-proline, L-serine, L-ornithine, L-glutamic acid, and D-proline. DL-Histidine at its optimal concentration (20 mg/ml) induced formation of prodigiosin (198 mug of prodigiosin per mg of bacterial protein) after incubation of cultures for 54 hr. Lower concentrations (10 mg/ml) of the other amino acids usually were optimum but less prodigiosin was synthesized, and the maximal amount of pigment occurred between 36 and 48 hr. DL-Methionine was not effective alone but at a low concentration (40 mug/ml) enhanced and accelerated biosynthesis of prodigiosin in the presence of other suitable amino acids. Addition of 2 mg of L-proline per ml at 0 hr induced formation of only 30 mug of prodigiosin after incubation for 42 hr, but addition at 36 hr of 5 mg more of L-proline per ml increased synthesis to 120 mug at 42 hr. Again, DL-methionine markedly augmented prodigiosin biosynthesis in these cultures. Synthesis of prodigiosin ceased if cultures were shifted from 25 to 38 C. Prodigiosin biosynthesis by the nonproliferating cells was maximum when cultures were aerated, the amount of bacterial protein was about 2.0 mg/ml, and amino acids were added at 0 hr. Bacteria synthesized prodigiosin most efficiently when they were harvested from aerated cultures grown at 38 C for 24 hr in a complete medium in a fermentor.

  2. Retinol oxidation to retinoic acid in human thyroid glandular cells.

    PubMed

    Taibi, Gennaro; Gueli, Maria Concetta; Nicotra, Concetta M A; Cocciadiferro, Letizia; Carruba, Giuseppe

    2014-12-01

    Abstract Retinoic acid is regarded as the retinol metabolite that controls proliferation and differentiation of epithelial cells. In the present study, we investigated the potential role of xanthine dehydrogenase (XDH) in retinoic acid biosynthesis in human thyroid glandular cells (HTGC). In particular, we observed that cellular retinoids binding proteins (CRBPs) are also implicated in the biosynthetic pathway leading to retinoic acid formation in primary cultures of HTGC, as we have already reported for human mammary epithelial cells (HMEC). After partial protein purification, the enzyme responsible for retinoic acid biosynthesis was identified and quantified as XDH by immunoassay, by its ability to oxidize xanthine to uric acid and its sensitivity to the inhibitory effect of oxypurinol. The evidence of XDH-driven formation of retinoic acid in HTGC cultures further corroborates the potential role of XDH in retinoic acid biosynthesis in the epithelia. PMID:24506204

  3. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    PubMed

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (<15% carbon) was directly condensed with acetyl-CoA for 3-hydroxyvalerate. The ratio of glyoxylate shunt to TCA cycle varies from 0 to 0.25, depending on the intracellular acetyl-CoA level and acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  4. Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation[W

    PubMed Central

    Swarup, Ranjan; Perry, Paula; Hagenbeek, Dik; Van Der Straeten, Dominique; Beemster, Gerrit T.S.; Sandberg, Göran; Bhalerao, Rishikesh; Ljung, Karin; Bennett, Malcolm J.

    2007-01-01

    Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion. PMID:17630275

  5. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    PubMed

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA. PMID:27004948

  6. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    PubMed

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA.

  7. Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge.

    PubMed

    Ma, Pengda; Liu, Jingling; Zhang, Chenlu; Liang, Zongsuo

    2013-07-01

    Salvia miltiorrhiza Bunge (Lamiaceae) root, generally called Danshen, is an important herb in Chinese medicine widely used for treatment of various diseases. Phenolic acids in S. miltiorrhiza, as important effective compounds, have become a new research focus in plant secondary metabolism in recent years. This review summarizes the recent advances in the regulation of water-soluble phenolic acid biosynthesis in S. miltiorrhiza via regulators at molecular level, such as the phenylalanine ammonia-lyase gene (PAL), cinnamic acid 4-hydroxylase gene (C4H), 4-coumarate-CoA ligase gene (4CL), tyrosine aminotransferase gene (TAT), 4-hydroxyphenylpyruvate reductase gene (HPPR), 4-hydroxyphenylpyruvated dioxygenase gene (HPPD), hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyl transferase-like gene (RAS-like), and v-myb avian myeloblastosis viral oncogene homolog 4 gene (MYB4), and production of anthocyanin pigmentation 1 gene (AtPAP1), and via regulators at cell level, such as methyl jasmonate, salicylic acid, abscisic acid, polyamines, metal ions, hydrogen peroxide (H₂O₂), ultraviolet-B radiation, and yeast elicitor.

  8. Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast

    NASA Astrophysics Data System (ADS)

    Scheler, Ulschan; Brandt, Wolfgang; Porzel, Andrea; Rothe, Kathleen; Manzano, David; Božić, Dragana; Papaefthimiou, Dimitra; Balcke, Gerd Ulrich; Henning, Anja; Lohse, Swanhild; Marillonnet, Sylvestre; Kanellis, Angelos K.; Ferrer, Albert; Tissier, Alain

    2016-10-01

    Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.

  9. Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast

    PubMed Central

    Scheler, Ulschan; Brandt, Wolfgang; Porzel, Andrea; Rothe, Kathleen; Manzano, David; Božić, Dragana; Papaefthimiou, Dimitra; Balcke, Gerd Ulrich; Henning, Anja; Lohse, Swanhild; Marillonnet, Sylvestre; Kanellis, Angelos K.; Ferrer, Albert; Tissier, Alain

    2016-01-01

    Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities. PMID:27703160

  10. Genetic dissection of the polyoxin building block-carbamoylpolyoxamic acid biosynthesis revealing the “pathway redundancy” in metabolic networks

    PubMed Central

    2013-01-01

    Background Polyoxin, a peptidyl nucleoside antibiotic, consists of three building blocks including a nucleoside skeleton, polyoximic acid (POIA), and carbamoylpolyoxamic acid (CPOAA), however, little is known about the “pathway redundancy” of the metabolic networks directing the CPOAA biosynthesis in the cell factories of the polyoxin producer. Results Here we report the genetic characterization of CPOAA biosynthesis with revealing a “pathway redundancy” in metabolic networks. Independent mutation of the four genes (polL-N and polP) directly resulted in the accumulation of polyoxin I, suggesting their positive roles for CPOAA biosynthesis. Moreover, the individual mutant of polN and polP also partially retains polyoxin production, suggesting the existence of the alternative homologs substituting their functional roles. Conclusions It is unveiled that argA and argB in L-arginine biosynthetic pathway contributed to the “pathway redundancy”, more interestingly, argB in S. cacaoi is indispensible for both polyoxin production and L-arginine biosynthesis. These data should provide an example for the research on the “pathway redundancy” in metabolic networks, and lay a solid foundation for targeted enhancement of polyoxin production with synthetic biology strategies. PMID:24314013

  11. Evolution of the biosynthesis of the branched-chain amino acids

    NASA Astrophysics Data System (ADS)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-06-01

    The origin of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threonine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from α-ketoisovaleric acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use of the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  12. Evolution of the biosynthesis of the branched-chain amino acids

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-01-01

    The origins of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threomine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from alpha-ketoisovalerc acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use fo the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  13. Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli

    PubMed Central

    Rehm, Bernd H. A.; Mitsky, Timothy A.; Steinbüchel, Alexander

    2001-01-01

    Since Pseudomonas aeruginosa is capable of biosynthesis of polyhydroxyalkanoic acid (PHA) and rhamnolipids, which contain lipid moieties that are derived from fatty acid biosynthesis, we investigated various fab mutants from P. aeruginosa with respect to biosynthesis of PHAs and rhamnolipids. All isogenic fabA, fabB, fabI, rhlG, and phaG mutants from P. aeruginosa showed decreased PHA accumulation and rhamnolipid production. In the phaG (encoding transacylase) mutant rhamnolipid production was only slightly decreased. Expression of phaG from Pseudomonas putida and expression of the β-ketoacyl reductase gene rhlG from P. aeruginosa in these mutants indicated that PhaG catalyzes diversion of intermediates of fatty acid de novo biosynthesis towards PHA biosynthesis, whereas RhlG catalyzes diversion towards rhamnolipid biosynthesis. These data suggested that both biosynthesis pathways are competitive. In order to investigate whether PhaG is the only linking enzyme between fatty acid de novo biosynthesis and PHA biosynthesis, we generated five Tn5 mutants of P. putida strongly impaired in PHA production from gluconate. All mutants were complemented by the phaG gene from P. putida, indicating that the transacylase-mediated PHA biosynthesis route represents the only metabolic link between fatty acid de novo biosynthesis and PHA biosynthesis in this bacterium. The transacylase-mediated PHA biosynthesis route from gluconate was established in recombinant E. coli, coexpressing the class II PHA synthase gene phaC1 together with the phaG gene from P. putida, only when fatty acid de novo biosynthesis was partially inhibited by triclosan. The accumulated PHA contributed to 2 to 3% of cellular dry weight. PMID:11425728

  14. Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination.

    PubMed

    Marcucci, Hebe; Paoletti, Luciana; Jackowski, Suzanne; Banchio, Claudia

    2010-08-13

    Neuronal differentiation is characterized by neuritogenesis and neurite outgrowth, processes that are dependent on membrane biosynthesis. Thus, the production of phosphatidylcholine (PtdCho), the major membrane phospholipid, should be stimulated during neuronal differentiation. We demonstrate that during retinoic acid (RA)-induced differentiation of Neuro-2a cells, PtdCho synthesis was promoted by an ordered and sequential activation of choline kinase alpha (CK(alpha)) and choline cytidylyltransferase alpha (CCT(alpha)). Early after RA stimulation, the increase in PtdCho synthesis is mainly governed by the biochemical activation of CCT(alpha). Later, the transcription of CK(alpha)- and CCT(alpha)-encoding genes was induced. Both PtdCho biosynthesis and neuronal differentiation are dependent on ERK activation. A novel mechanism is proposed by which PtdCho biosynthesis is coordinated during neuronal differentiation. Enforced expression of either CK(alpha) or CCTalpha increased the rate of synthesis and the amount of PtdCho, and these cells initiated differentiation without RA stimulation, as evidenced by cell morphology and the expression of genes associated with neuritogenesis. The differentiation resulting from enforced expression of CCT(alpha) or CK(alpha) was dependent on persistent ERK activation. These results indicate that elevated PtdCho synthesis could mimic the RA signals and thus determine neuronal cell fate. Moreover, they could explain the key role that PtdCho plays during neuronal regeneration. PMID:20525991

  15. Metabolomics Analysis and Biosynthesis of Rosmarinic Acid in Agastache rugosa Kuntze Treated with Methyl Jasmonate

    PubMed Central

    Uddin, Md. Romij; Xu, Hui; Park, Woo Tae; Tuan, Pham Anh; Li, Xiaohua; Chung, Eunsook; Lee, Jai-Heon; Park, Sang Un

    2013-01-01

    This study investigated the effect of methyl jasmonate (MeJA) on metabolic profiles and rosmarinic acid (RA) biosynthesis in cell cultures of Agastache rugosa Kuntze. Transcript levels of phenylpropanoid biosynthetic genes, i.e., ArPAL, Ar4CL, and ArC4H, maximally increased 4.5-fold, 3.4-fold, and 3.5-fold, respectively, compared with the untreated controls, and the culture contained relatively high amounts of RA after exposure of cells to 50 µM MeJA. RA levels were 2.1-, 4.7-, and 3.9-fold higher after exposure to 10, 50, and 100 µM MeJA, respectively, than those in untreated controls. In addition, the transcript levels of genes attained maximum levels at different time points after the initial exposure. The transcript levels of ArC4H and Ar4CL were transiently induced by MeJA, and reached a maximum of up to 8-fold at 3 hr and 6 hr, respectively. The relationships between primary metabolites and phenolic acids in cell cultures of A. rugosa treated with MeJA were analyzed by gas chromatography coupled with time-of-flight mass spectrometry. In total, 45 metabolites, including 41 primary metabolites and 4 phenolic acids, were identified from A. rugosa. Metabolite profiles were subjected to partial least square-discriminate analysis to evaluate the effects of MeJA. The results indicate that both phenolic acids and precursors for the phenylpropanoid biosynthetic pathway, such as aromatic amino acids and shikimate, were induced as a response to MeJA treatment. Therefore, MeJA appears to have an important impact on RA accumulation, and the increased RA accumulation in the treated cells might be due to activation of the phenylpropanoid genes ArPAL, ArC4H, and Ar4CL. PMID:23724034

  16. A Revised Pathway Proposed for Staphylococcus aureus Wall Teichoic Acid Biosynthesis Based on In Vitro Reconstitution of the Intracellular Steps

    PubMed Central

    Brown, Stephanie; Zhang, Yu-Hui; Walker*, Suzanne

    2008-01-01

    Summary Resistance has emerged to every family of clinically used antibiotics, and there is a pressing need to explore novel antibacterial targets. Wall teichoic acids (WTAs) are anionic polymers that coat the cell walls of many Gram-positive bacteria. Because WTAs play an essential role in Staphylococcus aureus colonization and infection, the enzymes involved in WTA biosynthesis are proposed to be targets for antibiotic development. To facilitate the discovery of WTA inhibitors, we have reconstituted the intracellular steps of S. aureus WTA biosynthesis. We show that two intracellular steps in the biosynthetic pathway are different from what was proposed. The work reported here lays the foundation for the discovery and characterization of inhibitors of wall teichoic acid biosynthetic enzymes to assess their potential for treating bacterial infections. PMID:18215769

  17. Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis.

    PubMed Central

    Elkins, Jonathan M; Clifton, Ian J; Hernández, Helena; Doan, Linh X; Robinson, Carol V; Schofield, Christopher J; Hewitson, Kirsty S

    2002-01-01

    During biosynthesis of the clinically used beta-lactamase inhibitor clavulanic acid, one of the three steps catalysed by clavaminic acid synthase is separated from the other two by a step catalysed by proclavaminic acid amidino hydrolase (PAH), in which the guanidino group of an intermediate is hydrolysed to give proclavaminic acid and urea. PAH shows considerable sequence homology with the primary metabolic arginases, which hydrolyse arginine to ornithine and urea, but does not accept arginine as a substrate. Like other members of the bacterial sub-family of arginases, PAH is hexameric in solution and requires Mn2+ ions for activity. Other metal ions, including Co2+, can substitute for Mn2+. Two new substrates for PAH were identified, N-acetyl-(L)-arginine and (3R)-hydroxy-N-acetyl-(L)-arginine. Crystal structures of PAH from Streptomyces clavuligerus (at 1.75 A and 2.45 A resolution, where 1 A=0.1 nm) imply how it binds beta-lactams rather than the amino acid substrate of the arginases from which it evolved. The structures also suggest how PAH selects for a particular alcohol intermediate in the clavam biosynthesis pathway. As observed for the arginases, each PAH monomer consists of a core of beta-strands surrounded by alpha-helices, and its active site contains a di-Mn2+ centre with a bridging water molecule responsible for hydrolytic attack on to the guanidino group of the substrate. Comparison of structures obtained under different conditions reveals different conformations of a flexible loop, which must move to allow substrate binding. PMID:12020346

  18. Proteomic Signature of Fatty Acid Biosynthesis Inhibition Available for In Vivo Mechanism-of-Action Studies▿

    PubMed Central

    Wenzel, Michaela; Patra, Malay; Albrecht, Dirk; Chen, David Y.-K.; Nicolaou, K. C.; Metzler-Nolte, Nils; Bandow, Julia E.

    2011-01-01

    Fatty acid biosynthesis is a promising novel antibiotic target. Two inhibitors of fatty acid biosynthesis, platencin and platensimycin, were recently discovered and their molecular targets identified. Numerous structure-activity relationship studies for both platencin and platensimycin are currently being undertaken. We established a proteomic signature for fatty acid biosynthesis inhibition in Bacillus subtilis using platencin, platensimycin, cerulenin, and triclosan. The induced proteins, FabHA, FabHB, FabF, FabI, PlsX, and PanB, are enzymes involved in fatty acid biosynthesis and thus linked directly to the target pathway. The proteomic signature can now be used to assess the in vivo mechanisms of action of compounds derived from structure-activity relationship programs, as demonstrated for the platensimycin-inspired chromium bioorganometallic PM47. It will further serve as a reference signature for structurally novel natural and synthetic antimicrobial compounds with unknown mechanisms of action. In summary, we described a proteomic signature in B. subtilis consisting of six upregulated proteins that is diagnostic of fatty acid biosynthesis inhibition and thus can be applied to advance antibacterial drug discovery programs. PMID:21383089

  19. Increased sesquiterpenoid biosynthesis and an apparent decrease in sterol biosynthesis in elicitor-treated tobacco cell suspension cultures

    SciTech Connect

    Voegeli, U.; Bhatt, P.N.; Chappell, J.

    1987-04-01

    Addition of fungel elicitor prepared from Phytophthora parasitica to tobacco cell suspension cultures leads to an increased production of the phytoalexin capsidiol. Capsidiol is a sesquiterpenoid which is most likely synthesized from farnesylpyrophosphat (FPP) by a bicyclic cyclase reaction. Because FPP is also a substrate for squalene synthetase and therefore a precursor of sterol biosynthesis, the question arises whether or not the accumulation of capsidiol in elicitor-treated cells occurs at the expense of sterol biosynthesis. (/sup 14/C)-acetate was given to elicitor-treated and control (no treatment) cell cultures and incorporation into sterols and capsidiol determined. No labeled capsidiol was detected in control cells. In elicitor-treated cells about 12-15% of the radioactivity taken up by the cells was incorporated into capsidiol. In contrast, control cells incorporated 4 times more radioactivity into sterols than elicitor-treated cells. Similar results were obtained using (/sup 3/H)-mevalonate as a precursor of capsidiol and sterol biosynthesis. Likely explanations for the apparently decline in sterol biosynthesis in elicitor-treated cells include: (1) inhibition of squalene synthetase; (2) induction of capsidiol synthesizing enzymes; and (3) metabolic channeling of FPP into capsidiol versus sterols. These possibilities will be discussed further together with other results.

  20. Oxalic acid biosynthesis is encoded by an operon in Burkholderia glumae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the biosynthesis of oxalic acid is known to occur in a number of bacteria, the mechanism(s) regulating its production remains largely unknown. To date, there is no report on the identification of an oxalic acid biosynthetic pathway gene from bacteria. In an attempt to identify such a gene...

  1. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  2. Structure, function, and biosynthesis of plant cell walls: proceedings of the seventh annual symposium in botany

    SciTech Connect

    Dugger, W.M.; Bartnicki-Garcia, S.

    1984-01-01

    Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)

  3. On-off switches for secondary cell wall biosynthesis.

    PubMed

    Wang, Huan-Zhong; Dixon, Richard A

    2012-03-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport. They also provide textiles, timber, and potentially second-generation biofuels for human use. Genes responsible for synthesis of the different cell wall components, namely cellulose, hemicelluloses, and lignin, are coordinately expressed and under transcriptional regulation. In the past several years, cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis. Positive and negative regulators, which function upstream of NAC master switches, have also been identified in different plant tissues. Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production. PMID:22138968

  4. Identification of prenol intermediates of wall biosynthesis in growing cells of Lactobacillus plantarum.

    PubMed

    Thorne, K J

    1973-10-01

    The incorporation of (14)C-mevalonic acid by Lactobacillus plantarum predominantly into C(55) prenol made it possible to determine the distribution of (14)C-prenol between all its derivatives. In logarithmic-phase cells, 25% of the prenol was free, 31% was as monophosphate, 4% as pyrophosphate, 12% as peptidoglycan precursor, and 28% as glyco-phospho-prenol. The glyco-phospho-prenol contained rhamnose, and probably glucose, galactose, and ribitol phosphate, and it may, therefore, be involved in polysaccharide and teichoic acid biosynthesis. The proportion of free prenol increased, up to 73%, as the cell culture aged. Free prenol was also formed when cells were incubated in buffer. The free prenol was readily reutilized when cells were returned to growth medium.

  5. Biosynthesis of a Fully Functional Cyclotide inside Living Bacterial Cells

    SciTech Connect

    Camarero, J A; Kimura, R H; Woo, Y; Cantor, J; Shekhtman, A

    2007-04-05

    The cyclotide MCoTI-II is a powerful trypsin inhibitor recently isolated from the seeds of Momordica cochinchinensis, a plant member of cucurbitaceae family. We report for the first time the in vivo biosynthesis of natively-folded MCoTI-II inside live E. coli cells. Our biomimetic approach involves the intracellular backbone cyclization of a linear cyclotide-intein fusion precursor mediated by a modified protein splicing domain. The cyclized peptide then spontaneously folds into its native conformation. The use of genetically engineered E. coli cells containing mutations in the glutathione and thioredoxin reductase genes considerably improves the production of folded MCoTI-II in vivo. Biochemical and structural characterization of the recombinant MCoTI-II confirmed its identity. Biosynthetic access to correctly-folded cyclotides allows the possibility of generating cell-based combinatorial libraries that can be screened inside living cells for their ability to modulate or inhibit cellular processes.

  6. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase.

    PubMed

    Austin, Michael B; Saito, Tamao; Bowman, Marianne E; Haydock, Stephen; Kato, Atsushi; Moore, Bradley S; Kay, Robert R; Noel, Joseph P

    2006-09-01

    Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two approximately 3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis. PMID:16906151

  7. Wound-Inducible Biosynthesis of Phytoalexin Hydroxycinnamic Acid Amides of Tyramine in Tryptophan and Tyrosine Decarboxylase Transgenic Tobacco Lines1

    PubMed Central

    Guillet, Gabriel; De Luca, Vincenzo

    2005-01-01

    The wound-activated biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine was compared in untransformed and transgenic tobacco (Nicotiana tabacum) lines that express tryptophan decarboxylase (TDC), tyrosine decarboxylase (TYDC), or both activities. Transgenic in vitro-grown tobacco lines expressing TDC activity accumulated high levels of tryptamine but not hydroxycinnamic amides of tryptamine. In contrast, transgenic tobacco lines expressing TYDC accumulated tyramine as well as p-coumaroyltyramine and feruloyltyramine. The MeOH-soluble and cell wall fractions showed higher concentrations of wound-inducible p-coumaroyltyramine and feruloyltyramine, especially at and around wound sites, in TYDC and TDC ×TYDC tobacco lines compared to wild-type or TDC lines. All the enzymes involved in the biosynthesis of hydroxycinnamic acid amides of tyramine were found to be similarly wound inducible in all tobacco genotypes investigated. These results provide experimental evidence that, under some circumstances, TYDC activity can exert a rate-limiting control over the carbon flux allocated to the biosynthesis of hydroxycinnamic acid amides of tyramine. PMID:15665252

  8. Identification, Biosynthesis, and Function of 1,3,4,6-Hexanetetracarboxylic Acid in Methanobacterium thermoautotrophicum ΔH

    PubMed Central

    Gorkovenko, Alexander; Roberts, Mary F.; White, Robert H.

    1994-01-01

    An unusual compound, 1,3,4,6-hexanetetracarboxylic acid, was identified by 1H and 13C two-dimensional nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry as one of the major components of the small-molecule pool in Methanobacterium thermoautotrophicum ΔH under optimal conditions of cell growth. Incorporation of 13C- and 2H-labeled acetates was consistent with the biosynthesis of this tetracarboxylic acid from α-ketoglutarate, two molecules of acetyl-coenzyme A, and one molecule of CO2, as established for the tetracarboxylic acid moiety of methanofuran. 13CO2 pulse- 12CO2 chase methodology was used to establish the turnover rate for this compound. In contrast to the two other major solutes in this bacterium, cyclic 2,3-diphosphoglycerate and glutamate, which are key metabolic intermediates, this free tetracarboxylic acid was metabolically inactive, with a half-life that exceeded the cell doubling time. Hence, this molecular pool cannot serve as a metabolic intermediate in cell biosynthesis. The functional role of free tetracarboxylate as a conservative part of a system that maintains high positive internal osmotic pressure in this bacterium is proposed. PMID:16349232

  9. Analysis of putative nonulosonic acid biosynthesis pathways in Archaea reveals a complex evolutionary history.

    PubMed

    Kandiba, Lina; Eichler, Jerry

    2013-08-01

    Sialic acids and the other nonulosonic acid sugars, legionaminic acid and pseudaminic acid, are nine carbon-containing sugars that can be detected as components of the glycans decorating proteins and other molecules in Eukarya and Bacteria. Yet, despite the prevalence of N-glycosylation in Archaea and the variety of sugars recruited for the archaeal version of this post-translational modification, only a single report of a nonulosonic acid sugar in an archaeal N-linked glycan has appeared. Hence, to obtain a clearer picture of nonulosonic acid sugar biosynthesis capability in Archaea, 122 sequenced genomes were scanned for the presence of genes involved in the biogenesis of these sugars. The results reveal that while Archaea and Bacteria share a common route of sialic acid biosynthesis, numerous archaeal nonulosonic acid sugar biosynthesis pathway components were acquired from elsewhere via various routes. Still, the limited number of Archaea encoding components involved in the synthesis of nonulosonic acid sugars implies that such saccharides are not major components of glycans in this domain.

  10. Polyunsaturated fatty acids influence differential biosynthesis of oxylipids and other lipid mediators during bovine coliform mastitis.

    PubMed

    Mavangira, Vengai; Gandy, Jeffery C; Zhang, Chen; Ryman, Valerie E; Daniel Jones, A; Sordillo, Lorraine M

    2015-09-01

    Coliform mastitis is a severe and sometimes fatal disease characterized by an unregulated inflammatory response. The initiation, progression, and resolution of inflammatory responses are regulated, in part, by potent oxylipid metabolites derived from polyunsaturated fatty acids. The purpose of this study was to characterize the biosynthesis and diversity of oxylipid metabolites during acute bovine coliform mastitis. Eleven cows diagnosed with naturally occurring acute systemic coliform mastitis and 13 healthy control cows, matched for lactation number and days in milk, were selected for comparison of oxylipid and free fatty acid concentrations in both milk and plasma. Oxylipids and free fatty acids were quantified using liquid chromatography-tandem mass spectrometry. All polyunsaturated fatty acids quantified in milk were elevated during coliform mastitis with linoleic acid being the most abundant. Oxylipids synthesized through the lipoxygenase and cytochrome P450 pathways accounted for the majority of the oxylipid biosynthesis. This study demonstrated a complex and diverse oxylipid network, most pronounced at the level of the mammary gland. Substrate availability, biosynthetic pathways, and degree of metabolism influence the biosynthesis of oxylipids during bovine coliform mastitis. Further studies are required to identify targets for novel interventions that modulate oxylipid biosynthesis during coliform mastitis to optimize inflammation.

  11. Isolated etioplasts as test system for inhibitors of fatty acid biosynthesis

    SciTech Connect

    Lichtenthaler, H.K.; Kobek, K. )

    1989-04-01

    Isolated intact chloroplasts of mono- and dicotyledonous plants possess the capacity for de novo fatty acid biosynthesis, starting from {sup 14}C-acetate. These can be taken as test system for herbicides affecting fatty acid biosynthesis as shown earlier in our laboratory. The incorporation rates of acetate into the total fatty acids depend on the photosynthetic cofactors ATP and NADPH and amount in the light to 33 kBq (oat) and 39 kBq (pea) per mg chlorophyll x h, whereas in the dark only ca. 10% of these rates are obtained. In order to establish a test system, which is fully independent of light, we isolated and characterized etioplast fractions from oat and pea seedlings with a very high capacity of de novo fatty acid biosynthesis (500 and 400 kBq per mg carotenoids in a 20 min period). This activity was blocked by herbicides such as cycloxydim, sethoxydim and diclofop in a dose-dependent manner. This new test system has the great advantage that one can verify whether inhibitors of photosynthesis affect fatty acid biosynthesis.

  12. Elucidation of the Biosynthesis of Eicosapentaenoic Acid in the Microalga Porphyridium cruentum (II. Studies with Radiolabeled Precursors).

    PubMed

    Khozin, I.; Adlerstein, D.; Bigongo, C.; Heimer, Y. M.; Cohen, Z.

    1997-05-01

    In the course of the study of the biosynthesis of the fatty acid eicosapentaenoic acid (EPA) in the microalga Porphyridium cruentum, cells were pulse-labeled with various radiolabeled fatty acid precursors. Our data show that the major end products of the biosynthesis are EPA-containing galactolipids of a eukaryotic and prokaryotic nature. The prokaryotic molecular species contain EPA and arachidonic acid at the sn-1 position and C16 fatty acids, mainly 16:0, at the sn-2 positions, whereas in the eukaryotic species both positions are occupied by EPA or arachidonic acid. However, we suggest that both the eukaryotic and prokaryotic molecular species are formed in two pathways, [omega]6 and [omega]3, which involve cytoplasmic and chloroplastic lipids. In the [omega]6 pathway, cytoplasmic 18:2-phosphatidylcholine (PC) is converted to 20:4[omega]6-PC by a sequence that includes a [delta]6 desaturase, an elongation step, and a [delta]5 desaturase. In the minor [omega]3 pathway, 18:2-PC is presumably desaturated to 18:3[omega]3, which is sequentially converted by the enzymatic sequence of the [omega]6 pathway to 20:5[omega]3-PC. The products of both pathways are exported, as their diacylglycerol moieties, to the chloroplast to be galactosylated into their respective monogalactosyldiacylglycerol molecular species. The 20:4[omega]6 in both eukaryotic and prokaryotic monogalactosyldiacylglycerol can be further desaturated to EPA by a chloroplastic [delta]17 ([omega]3) desaturase.

  13. Retinoic Acid Biosynthesis Is Impaired in Human and Murine Endometriosis1

    PubMed Central

    Pierzchalski, Keely; Taylor, Robert N.; Nezhat, Ceana; Jones, Jace W.; Napoli, Joseph L.; Yang, Guixiang; Kane, Maureen A.; Sidell, Neil

    2014-01-01

    ABSTRACT Endometriosis is characterized by the presence of endometrial glands and stroma in extrauterine sites. Our objective was to determine whether endometriotic lesions (ELs) from women with endometriosis have altered retinoid levels compared with their eutopic endometrium, and to test the hypothesis that defects in all-trans retinoic acid (ATRA) biosynthesis in EL is related to reduced expression of cellular retinol-binding protein type 1 (RBP1). Retinoids were evaluated by liquid chromatography-tandem mass spectrometry and high-performance liquid chromatography in eutopic endometrial biopsies (EBs) and ELs from 42 patients with pathologically confirmed endometriosis. The ATRA levels were reduced, whereas the retinol and retinyl ester concentrations were elevated in EL compared with EB tissue. Similar results were found in a mouse model of endometriosis that used green fluorescent protein-positive endometrial tissue injected into the peritoneum of syngeneic hosts to mimic retrograde menses. The ATRA biosynthesis in vitro in retinol-treated primary human endometrial stromal cell (ESC) cultures derived from ELs was reduced compared with that of ESCs derived from patient-matched EBs. Correspondingly, RBP1 expression was reduced in tissue and ESCs derived from EL versus EB. Rbp1−/− mice showed reduced endometrial ATRA concentrations compared with wild type, associated with loss of tissue organization and hypercellularity. These findings provide the first quantitative measurements of ATRA in human endometrium and endometriosis, demonstrating reduced ATRA in ectopic tissue and corresponding ESC cultures. Quantitation of retinoids in murine endometriosis and in Rbp1−/− mice supports the contention that impaired ATRA synthesis caused by reduced RBP1 promotes an “endometriosis phenotype” that enables cells to implant and grow at ectopic sites. PMID:25143356

  14. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.

    PubMed

    de la Torre, Fernando; Cañas, Rafael A; Pascual, M Belén; Avila, Concepción; Cánovas, Francisco M

    2014-10-01

    In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.

  15. Precursor Amino Acids Inhibit Polymyxin E Biosynthesis in Paenibacillus polymyxa, Probably by Affecting the Expression of Polymyxin E Biosynthesis-Associated Genes

    PubMed Central

    Guo, Chenglin; Qiu, Juanping

    2015-01-01

    Polymyxin E belongs to cationic polypeptide antibiotic bearing four types of direct precursor amino acids including L-2,4-diaminobutyric acid (L-Dab), L-Leu, D-Leu, and L-Thr. The objective of this study is to evaluate the effect of addition of precursor amino acids during fermentation on polymyxin E biosynthesis in Paenibacillus polymyxa. The results showed that, after 35 h fermentation, addition of direct precursor amino acids to certain concentration significantly inhibited polymyxin E production and affected the expression of genes involved in its biosynthesis. L-Dab repressed the expression of polymyxin synthetase genes pmxA and pmxE, as well as 2,4-diaminobutyrate aminotransferase gene ectB; both L-Leu and D-Leu repressed the pmxA expression. In addition, L-Thr affected the expression of not only pmxA, but also regulatory genes spo0A and abrB. As L-Dab precursor, L-Asp repressed the expression of ectB, pmxA, and pmxE. Moreover, it affected the expression of spo0A and abrB. In contrast, L-Phe, a nonprecursor amino acid, had no obvious effect on polymyxin E biosynthesis and those biosynthesis-related genes expression. Taken together, our data demonstrated that addition of precursor amino acids during fermentation will inhibit polymyxin E production probably by affecting the expression of its biosynthesis-related genes. PMID:26078961

  16. The biosynthesis of alginic acid by Azotobacter vinelandii.

    PubMed Central

    Pindar, D F; Bucke, C

    1975-01-01

    The sequence of reactions by which alginic acid is biosynthesized from sucrose in Azotobacter vinelandii was determined both by feeding radioactive individual enzymes involved. Results indicate that the first polymeric substance formed in the synthesis is polymannuronic acid and that mannuronic acid units are epimerized to guluronic acid at the polymer level. Guluronic acid does not appear to be formed at the monomer level, either free or in combination with GDP. PMID:179528

  17. The biosynthesis of alginic acid by Azotobacter vinelandii.

    PubMed

    Pindar, D F; Bucke, C

    1975-12-01

    The sequence of reactions by which alginic acid is biosynthesized from sucrose in Azotobacter vinelandii was determined both by feeding radioactive individual enzymes involved. Results indicate that the first polymeric substance formed in the synthesis is polymannuronic acid and that mannuronic acid units are epimerized to guluronic acid at the polymer level. Guluronic acid does not appear to be formed at the monomer level, either free or in combination with GDP.

  18. Effect of Enzyme Inhibitors on Terpene Trilactones Biosynthesis and Gene Expression Profiling in Ginkgo biloba Cultured Cells.

    PubMed

    Chen, Lijia; Tong, Hui; Wang, Mingxuan; Zhu, Jianhua; Zi, Jiachen; Song, Liyan; Yu, Rongmin

    2015-12-01

    The biosynthetic pathway of terpene trilactones of Ginkgo biloba is unclear. In this present study, suspension cultured cells of G. biloba were used to explore the regulation of the mevalonic acid (MVA) and methylerythritol 4-phosphate (MEP) pathways in response to specific enzyme inhibitors (lovastatin and clomazone). The results showed that the biosynthesis of bilobalide was more highly correlated with the MVA pathway, and the biosynthesis of ginkgolides was more highly correlated with the MEP pathway. Meanwhile, according to the results, it could be speculated that bilobalide might be a product of ginkgolide metabolism. PMID:26882658

  19. Effect of Enzyme Inhibitors on Terpene Trilactones Biosynthesis and Gene Expression Profiling in Ginkgo biloba Cultured Cells.

    PubMed

    Chen, Lijia; Tong, Hui; Wang, Mingxuan; Zhu, Jianhua; Zi, Jiachen; Song, Liyan; Yu, Rongmin

    2015-12-01

    The biosynthetic pathway of terpene trilactones of Ginkgo biloba is unclear. In this present study, suspension cultured cells of G. biloba were used to explore the regulation of the mevalonic acid (MVA) and methylerythritol 4-phosphate (MEP) pathways in response to specific enzyme inhibitors (lovastatin and clomazone). The results showed that the biosynthesis of bilobalide was more highly correlated with the MVA pathway, and the biosynthesis of ginkgolides was more highly correlated with the MEP pathway. Meanwhile, according to the results, it could be speculated that bilobalide might be a product of ginkgolide metabolism.

  20. The Utilization of Glycolytic Intermediates as Precursors for Fatty Acid Biosynthesis by Pea Root Plastids.

    PubMed Central

    Qi, Q.; Kleppinger-Sparace, K. F.; Sparace, S. A.

    1995-01-01

    Radiolabeled pyruvate, glucose, glucose-6-phosphate, acetate, and malate are all variously utilized for fatty acid and glycerolipid biosynthesis by isolated pea (Pisum sativum L.) root plastids. At the highest concentrations tested (3-5mM), the rates of incorporation of these precursors into fatty acids were 183, 154, 125, 99 and 57 nmol h-1 mg-1 protein, respectively. In all cases, cold pyruvate consistently caused the greatest reduction, whereas cold acetate consistently caused the least reduction, in the amounts of each of the other radioactive precursors utilized for fatty acid biosynthesis. Acetate incorporation into fatty acids was approximately 55% dependent on exogenously supplied reduced nucleotides (NADH and NADPH), whereas the utilization of the remaining precursors was only approximately 10 and 20% dependent on added NAD(P)H. In contrast, the utilization of all precursors was greatly dependent (85-95%) on exogenously supplied ATP. Palmitate, stearate, and oleate were the only fatty acids synthesized from radioactive precursors. Higher concentrations of each precursor caused increased proportions of oleate and decreased proportions of palmitate synthesized. Radioactive fatty acids from all precursors were incorporated into glycerolipids. The data presented indicate that the entire pathway from glucose, including glycolysis, to fatty acids and glycerolipids is operating in pea root plastids. This pathway can supply both carbon and reduced nucleotides required for fatty acid biosynthesis but only a small portion of the ATP required PMID:12228367

  1. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    PubMed Central

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369

  2. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Chen, Guanqun; Wang, Baobei; Han, Danxiang; Sommerfeld, Milton; Lu, Yinghua; Chen, Feng; Hu, Qiang

    2015-01-01

    Astaxanthin, a red ketocarotenoid with strong antioxidant activity and high commercial value, possesses important physiological functions in astaxanthin-producing microalgae. The green microalga Haematococcus pluvialis accumulates up to 4% fatty acid-esterified astaxanthin (by dry weight), and is used as a model species for exploring astaxanthin biosynthesis in unicellular photosynthetic organisms. Although coordination of astaxanthin and fatty acid biosynthesis in a stoichiometric fashion was observed in H. pluvialis, the interaction mechanism is unclear. Here we dissected the molecular mechanism underlying coordination between the two pathways in H. pluvialis. Our results eliminated possible coordination of this inter-dependence at the transcriptional level, and showed that this interaction was feedback-coordinated at the metabolite level. In vivo and in vitro experiments indicated that astaxanthin esterification drove the formation and accumulation of astaxanthin. We further showed that both free astaxanthin biosynthesis and esterification occurred in the endoplasmic reticulum, and that certain diacylglycerol acyltransferases may be the candidate enzymes catalyzing astaxanthin esterification. A model of astaxanthin biosynthesis in H. pluvialis was subsequently proposed. These findings provide further insights into astaxanthin biosynthesis in H. pluvialis.

  3. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    SciTech Connect

    Hayashi, H.; Miwa, A. )

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  4. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  5. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  6. The Regulation of Coenzyme Q Biosynthesis in Eukaryotic Cells: All That Yeast Can Tell Us

    PubMed Central

    González-Mariscal, Isabel; García-Testón, Elena; Padilla, Sergio; Martín-Montalvo, Alejandro; Pomares Viciana, Teresa; Vazquez-Fonseca, Luis; Gandolfo Domínguez, Pablo; Santos-Ocaña, Carlos

    2014-01-01

    Coenzyme Q (CoQ) is a mitochondrial lipid, which functions mainly as an electron carrier from complex I or II to complex III at the mitochondrial inner membrane, and also as antioxidant in cell membranes. CoQ is needed as electron acceptor in β-oxidation of fatty acids and pyridine nucleotide biosynthesis, and it is responsible for opening the mitochondrial permeability transition pore. The yeast model has been very useful to analyze the synthesis of CoQ, and therefore, most of the knowledge about its regulation was obtained from the Saccharomyces cerevisiae model. CoQ biosynthesis is regulated to support 2 processes: the bioenergetic metabolism and the antioxidant defense. Alterations of the carbon source in yeast, or in nutrient availability in yeasts or mammalian cells, upregulate genes encoding proteins involved in CoQ synthesis. Oxidative stress, generated by chemical or physical agents or by serum deprivation, modifies specifically the expression of some COQ genes by means of stress transcription factors such as Msn2/4p, Yap1p or Hsf1p. In general, the induction of COQ gene expression produced by metabolic changes or stress is modulated downstream by other regulatory mechanisms such as the protein import to mitochondria, the assembly of a multi-enzymatic complex composed by Coq proteins and also the existence of a phosphorylation cycle that regulates the last steps of CoQ biosynthesis. The CoQ biosynthetic complex assembly starts with the production of a nucleating lipid such as HHB by the action of the Coq2 protein. Then, the Coq4 protein recognizes the precursor HHB acting as the nucleus of the complex. The activity of Coq8p, probably as kinase, allows the formation of an initial pre-complex containing all Coq proteins with the exception of Coq7p. This pre-complex leads to the synthesis of 5-demethoxy-Q6 (DMQ6), the Coq7p substrate. When de novo CoQ biosynthesis is required, Coq7p becomes dephosphorylated by the action of Ptc7p increasing the synthesis

  7. Biosynthesis of 'essential' amino acids by scleractinian corals.

    PubMed Central

    Fitzgerald, L M; Szmant, A M

    1997-01-01

    Animals rely on their diet for amino acids that they are incapable either of synthesizing or of synthesizing in sufficient quantities to meet metabolic needs. These are the so-called 'essential amino acids'. This set of amino acids is similar among the vertebrates and many of the invertebrates. Previously, no information was available for amino acid synthesis by the most primitive invertebrates, the Cnidaria. The purpose of this study was to examine amino acid synthesis by representative cnidarians within the Order Scleractinia. Three species of zooxanthellate reef coral, Montastraea faveolata, Acropora cervicornis and Porites divaricata, and two species of non-zooxanthellate coral, Tubastrea coccinea and Astrangia poculata, were incubated with 14C-labelled glucose or with the 14C-labelled amino acids glutamic acid, lysine or valine. Radiolabel tracer was followed into protein amino acids. A total of 17 amino acids, including hydroxyproline, were distinguishable by the techniques used. Of these, only threonine was not found radiolabelled in any of the samples. We could not detect tryptophan or cysteine, nor distinguish between the amino acid pairs glutamic acid and glutamine, or aspartic acid and asparagine. Eight amino acids normally considered essential for animals were made by the five corals tested, although some of them were made only in small quantities. These eight amino acids are valine, isoleucine, leucine, tyrosine, phenylalanine histidine, methionine and lysine. The ability of cnidarians to synthesize these amino acids could be yet another indicator of a separate evolutionary history of the cnidarians from the rest of the Metazoa. PMID:9078264

  8. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  9. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper. PMID:24066142

  10. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    PubMed

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation.

  11. l-Ascorbic Acid Biosynthesis in Ochromonas danica1

    PubMed Central

    Helsper, Johannes P.; Kagan, Lea; Hilby, Coral L.; Maynard, Tracy M.; Loewus, Frank A.

    1982-01-01

    Ochromonas danica Pringsheim, a freshwater chrysomonad, converts d-glucose into l-ascorbic acid over a metabolic pathway that `inverts' the carbon chain of the sugar. In this respect, l-ascorbic acid formation resembles that found in ascorbic acid-synthesizing animals. It differs from this process in that d-galacturonate and l-galactono-1,4-lactone, rather than d-glucuronate and l-gulono-1,4-lactone, enhance production of ascorbic acid and repress the incorporation of 14C from d-[1-14C]glucose into ascorbic acid. PMID:16662230

  12. Precursor directed biosynthesis of odd-numbered fatty acids by different yeasts.

    PubMed

    Řezanka, Tomáš; Kolouchová, Irena; Sigler, Karel

    2015-09-01

    Precursor-directed biosynthesis was used for directed preparation of positional isomers of heptadecanoic acid (17:1), which have convenient pharmacological properties. Cultivation of Candida sp., Kluyveromyces polysporus, Rhodotorula glutinis, Saccharomyces cerevisiae, Torulaspora delbrueckii, Trichosporon cutaneum, and Yarrowia lipolytica on 20 g/L glucose, 4 g/L acetic, or 4 g/L propionic acids yielded different proportions of 17:1. Cultivation on carbon sources with even numbers of carbon atoms (glucose and acetic acid) produced preferentially 8Z- and 10Z-heptadecenoic acids in about equal amounts, in agreement with the proposed biosynthesis of fatty acids, whereas cultivation on propionic acid as the only carbon source produced over 90 % of total fatty acids of 9-17:1 out of all possible positional isomers. The structures of positional isomers of 17:1 acid were determined using dimethyl disulfides of fatty acid methyl esters. In cultivation of Candida sp. on propionic acid, the yield of heptadecenoic acid reached 111 mg/L cultivation medium. Principal component analysis was used for identifying the effect of cultivation conditions on the production of the 17:1 acid by individual yeast strains. PMID:25813199

  13. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid

    PubMed Central

    Zheng, Xiao-yu; Zhou, Mian; Yoo, Heejin; Pruneda-Paz, Jose L.; Spivey, Natalie Weaver; Kay, Steve A.; Dong, Xinnian

    2015-01-01

    The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-LIKE 9 (NTL9) and CCA1 HIKING EXPEDITION (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, PHYTOALEXIN-DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production. PMID:26139525

  14. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid.

    PubMed

    Zheng, Xiao-Yu; Zhou, Mian; Yoo, Heejin; Pruneda-Paz, Jose L; Spivey, Natalie Weaver; Kay, Steve A; Dong, Xinnian

    2015-07-28

    The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-like 9 (NTL9) and CCA1 hiking expedition (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, phytoalexin-deficient 4 (PAD4) and enhanced disease susceptibility 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators calmodulin binding protein 60g (CBP60g) and systemic acquired resistance deficient 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production.

  15. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    PubMed Central

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  16. Biosynthesis of vanillin via ferulic acid in Vanilla planifolia.

    PubMed

    Negishi, Osamu; Sugiura, Kenji; Negishi, Yukiko

    2009-11-11

    (14)C-Labeled phenylalanine, 4-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzyl alcohol, ferulic acid, and methionine were applied to disks of green vanilla pods 3 and 6 months after pollination (immature and mature pods), and the conversion of these compounds to vanillin or glucovanillin was investigated. In mature green vanilla pods, radioactivities of 11, 15, 29, and 24% from (14)C-labeled phenylalanine, 4-coumaric acid, ferulic acid, and methionine, respectively, were incorporated into glucovanillin within 24 h. In the incorporation processes of methionine and phenylalanine into glucovanillin, some of the (14)C labels were also trapped by the unlabeled ferulic acid. However, (14)C-labeled 4-hydroxybenzaldehyde and 4-hydroxybenzyl alcohol were not converted to glucovanillin. On the other hand, in immature green vanilla pods radioactivities of the above six compounds were not incorporated into glucovanillin. Although 4-coumaric acid, ferulic acid, 4-hydroxybenzaldehyde, and 4-hydroxybenzyl alcohol were converted to the respective glucose esters or glucosides and vanillin was converted to glucovanillin, their conversions were believed to be from the detoxication of the aglycones. These results suggest that the biosynthetic pathway for vanillin is 4-coumaric acid --> --> ferulic acid --> --> vanillin --> glucovanillin in mature vanilla pods.

  17. Biotechnological enhancement of capsaicin biosynthesis in cell suspension cultures of Naga King Chili (Capsicum chinense Jacq.).

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2016-01-01

    Cell suspension cultures were initiated from hypocotyl derived callus to induce capsaicin biosynthesis in suspension cultures of Naga King Chili (Capsicum chinense Jacq.). Efficient capsaicin production with high growth index (GI) was obtained by exposing cells to salicylic acid (SA) and calcium channel modulators in suspension cultures. The time course of capsaicin formation is related to the cell growth profile in a batch culture. Cells cultivated in the standard medium (SM) initially showed low level of capsaicin yield during active growth. When the cells approached stationary phase, cell growth and cell viability decreased whereas capsaicin production increased continuously. In the fed-batch cultures, the highest capsaicin yield (567.4 ± 8.1 μgg(1) fresh weight) (f.wt) was obtained by feeding the cells with 1 mM SA. However, SA feeding during cultivation repressed the cell growth. Enhanced cell growth (3.1 ± 0.1 GI/culture) and capsaicin yield (534 ± 7.8 μgg(-1)f.wt) were obtained when the cells were fed with calcium ionophore A23187 (0.5 mM) on day 25 as compared to the control. Addition of the calcium channel blocker verapamil hydrochloride (100 mM) inhibited cell growth and capsaicin production in Naga King Chili suspension cell cultures. PMID:26578343

  18. Biotechnological enhancement of capsaicin biosynthesis in cell suspension cultures of Naga King Chili (Capsicum chinense Jacq.).

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2016-01-01

    Cell suspension cultures were initiated from hypocotyl derived callus to induce capsaicin biosynthesis in suspension cultures of Naga King Chili (Capsicum chinense Jacq.). Efficient capsaicin production with high growth index (GI) was obtained by exposing cells to salicylic acid (SA) and calcium channel modulators in suspension cultures. The time course of capsaicin formation is related to the cell growth profile in a batch culture. Cells cultivated in the standard medium (SM) initially showed low level of capsaicin yield during active growth. When the cells approached stationary phase, cell growth and cell viability decreased whereas capsaicin production increased continuously. In the fed-batch cultures, the highest capsaicin yield (567.4 ± 8.1 μgg(1) fresh weight) (f.wt) was obtained by feeding the cells with 1 mM SA. However, SA feeding during cultivation repressed the cell growth. Enhanced cell growth (3.1 ± 0.1 GI/culture) and capsaicin yield (534 ± 7.8 μgg(-1)f.wt) were obtained when the cells were fed with calcium ionophore A23187 (0.5 mM) on day 25 as compared to the control. Addition of the calcium channel blocker verapamil hydrochloride (100 mM) inhibited cell growth and capsaicin production in Naga King Chili suspension cell cultures.

  19. Studies on the site of biosynthesis of acidic glycoproteins of guinea-pig serum

    PubMed Central

    Simkin, J. L.; Jamieson, J. C.

    1967-01-01

    1. Studies were carried out to determine the cellular and subcellular site of biosynthesis of components of fraction I, an α-globulin fraction containing acidic glycoproteins isolated from guinea-pig serum. l-[U-14C]Leucine or -valine and d-[1-14C]glucosamine were used as precursors. 2. A lag of about 10min. occurred before appreciable label appeared in fraction I of serum after injection of leucine or glucosamine. Label in fraction I after 60min. labelling with glucosamine was present almost entirely in hexosamine and sialic acid. 3. Site of synthesis was investigated by studies in vivo up to 17min. after injection of precursor. Particulate subcellular fractions isolated from liver, spleen and kidney or homogenates of the latter two tissues were extracted with Lubrol. Extracts were allowed to react by double diffusion with antisera to fraction I or to subfractions isolated from it, and gels were subsequently subjected to radioautography. With either amino acid or glucosamine as precursor, only extracts of the microsome fraction of liver formed precipitin lines that were appreciably radioactive. 4. The role of the microsome fraction of liver in the synthesis of these glycoproteins was confirmed by immunological studies after incubation of liver slices with leucine or glucosamine. Incorporation of leucine was also investigated in a cell-free microsome system. 5. Material was also precipitated from certain Lubrol extracts of liver microsomes by direct addition of antiserum and its radioactivity measured. Degradation of material thus precipitated and use of heterologous immune systems showed that labelling of precipitin lines represented biosynthesis. 6. A study of extraction procedures suggested that the substances present in the microsome fraction of liver that react with specific antisera are associated with membranous structures. 7. Most or all precipitin lines formed by Lubrol extracts of liver microsomes interacted with precipitin lines given by guinea

  20. Ursolic acid from Plantago major, a selective inhibitor of cyclooxygenase-2 catalyzed prostaglandin biosynthesis.

    PubMed

    Ringbom, T; Segura, L; Noreen, Y; Perera, P; Bohlin, L

    1998-10-01

    A hexane extract of Plantago major was investigated by bioactivity-directed fractionation, using an in vitro cyclooxygenase-2 (COX-2) catalyzed prostaglandin biosynthesis inhibition assay, and resulted in the isolation of ursolic acid (1). This triterpenoid showed a significant COX-2 inhibitory effect, directly on the enzyme activity, with an IC50 value of 130 microM and a COX-2/COX-1 selectivity ratio of 0.6. The structural isomer oleanolic acid (2) was found to be less active than 1, with an IC50 value of 295 microM, but showed a similar selectivity ratio (0.8). Furthermore, no significant inhibition on COX-2 or COX-1 was observed by the triterpenoid, 18beta-glycyrrhetinic acid (3). The direct inhibitory effect of 1 and 2 on COX-2 catalyzed prostaglandin biosynthesis increased with preincubation, indicating a time-dependent inhibition, while the effect on COX-1 was found to be independent of preincubation time.

  1. Biosynthesis and assembly of cell wall polysaccharides in cereal grasses

    SciTech Connect

    Carpita, N.C.

    1991-04-01

    We have just completed the second year of a three-year project entitled Biosynthesis assembly of cell wall polysaccharides in cereal grasses.'' We made significant progress on two aspects of cell wall synthesis in grasses and greatly refined gas-liquid and high- performance liquid chromatographic techniques necessary to identify the products of synthesis in vitro and in vivo. First, Dr. David Gibeaut, a post-doctoral associate, devised a convenient procedure for the enrichment of Golgi membranes by flotation centrifugation following initial downward rate-zonal separation. Based on comparison of the IDPase marker enzyme, flotation centrifugation enriched the Golgi apparatus almost 7-fold after the initial downward separation. This system is now used in our studies of the synthesis in vitro of the mixed-linkage {beta}-D-glucan. Second, Gibeaut and I have devised a simple technique to feed radioactive sugars into intact growing seedlings and follow incorporation of radioactivity into and turnover from specific cell wall polysaccharides. The project has also provided a few spin-off projects that have been productive as well. First, in collaboration with the group of Prof. Peter Kaufman, University of Michigan, we examined changes in cell wall structure concomitant with reaction to gravistimulation in the gravisensing oat pulvinus. Second, Dr. Gibeaut developed a simple clean-up procedure for partially methylated alditol derivatives to remove a large amount of undesirable interfering compounds that confound separation of the derivatives by gas-liquid chromatography. 5 refs.

  2. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells

    SciTech Connect

    Jacobsson, K.G.; Riesenfeld, J.; Lindahl, U.

    1985-10-05

    Murine mastocytoma cells were incubated in vitro with inorganic (TVS)sulfate, in the absence or presence of 2.5 mM n-butyrate, and labeled heparin was isolated. The polysaccharide produced in the presence of butyrate showed a lower charge density on anion exchange chromatography than did the control material and a 3-fold increased proportion of components with high affinity for antithrombin. Structural analysis of heparin labeled with (TH) glucosamine in the presence of butyrate showed that approximately 35% of the glucosamine units were N-acetylated, as compared to approximately 10% in the control material; the nonacetylated glucosamine residues were N-sulfated. The presence of butyrate thus leads to an inhibition of the N-deacetylation/N-sulfation process in heparin biosynthesis, along with an augmented formation of molecules with high affinity for antithrombin. Preincubation of the mastocytoma cells with butyrate was required for manifestation of either effect; when the preincubation period was reduced from 24 to 10 h the effects of butyrate were no longer observed. A polysaccharide formed on incubating mastocytoma microsomal fraction with UDP-(TH)glucuronic acid, UDP-N-acetylglucosamine, and 3'-phosphoadenylylsulfate in the presence of 5 mM butyrate showed the same N-acetyl/N-sulfate ratio as did the corresponding control polysaccharide, produced in the absence of butyrate. These findings suggest that the effect of butyrate on heparin biosynthesis depends on the integrity of the cell.

  3. The biosynthesis of erucic acid in developing embryos of brassica rapa

    PubMed

    Bao; Pollard; Ohlrogge

    1998-09-01

    The prevailing hypothesis on the biosynthesis of erucic acid in developing seeds is that oleic acid, produced in the plastid, is activated to oleoyl-coenzyme A (CoA) for malonyl-CoA-dependent elongation to erucic acid in the cytosol. Several in vivo-labeling experiments designed to probe and extend this hypothesis are reported here. To examine whether newly synthesized oleic acid is directly elongated to erucic acid in developing seeds of Brassica rapa L., embryos were labeled with [14C]acetate, and the ratio of radioactivity of carbon atoms C-5 to C-22 (de novo fatty acid synthesis portion) to carbon atoms C-1 to C-4 (elongated portion) of erucic acid was monitored with time. If newly synthesized 18:1 (oleate) immediately becomes a substrate for elongation to erucic acid, this ratio would be expected to remain constant with incubation time. However, if erucic acid is produced from a pool of preexisting oleic acid, the ratio of 14C in the 4 elongation carbons to 14C in the methyl-terminal 18 carbons would be expected to decrease with time. This labeling ratio decreased with time and, therefore, suggests the existence of an intermediate pool of 18:1, which contributes at least part of the oleoyl precursor for the production of erucic acid. The addition of 2-[3-chloro-5-(trifluromethyl)-2-pyridinyloxyphenoxy] propanoic acid, which inhibits the homodimeric acetyl-CoA carboxylase, severely inhibited the synthesis of [14C]erucic acid, indicating that essentially all malonyl-CoA for elongation of 18:1 to erucate was produced by homodimeric acetyl-CoA carboxylase. Both light and 2-[3-chloro-5-(trifluromethyl)-2-pyridinyloxyphenoxy]-propanoic acid increased the accumulation of [14C]18:1 and the parallel accumulation of [14C]phosphatidylcholine. Taken together, these results show an additional level of complexity in the biosynthesis of erucic acid.

  4. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development.

    PubMed

    Bhatt, Apoorva; Molle, Virginie; Besra, Gurdyal S; Jacobs, William R; Kremer, Laurent

    2007-06-01

    Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development. PMID:17555433

  5. Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus.

    PubMed

    Guo, Dekun; Zhao, Youbao; Yang, Keqian

    2013-07-01

    The glycerol utilization (gyl) operon is involved in clavulanic acid (CA) production by Streptomyces clavuligerus, and possibly supplies the glyceraldehyde-3-phosphate (G3P) precursor for CA biosynthesis. The gyl operon is regulated by GylR and is induced by glycerol. To enhance CA production in S. clavuligerus, an extra copy of ccaR expressed from Pgyl (the gyl promoter) was integrated into the chromosome of S. clavuligerus NRRL 3585. This construct coordinated the transcription of CA biosynthetic pathway genes with expression of the gyl operon. In the transformants carrying the Pgyl-controlled regulatory gene ccaR, CA production was enhanced 3.19-fold in glycerol-enriched batch cultures, relative to the control strain carrying an extra copy of ccaR controlled by its own promoter (PccaR). Consistent with enhanced CA production, the transcription levels of ccaR, ceas2 and claR were significantly up-regulated in the transformants containing Pgyl-controlled ccaR.

  6. Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures.

    PubMed

    Ferri, Maura; Righetti, Laura; Tassoni, Annalisa

    2011-02-15

    Vitis vinifera cell suspensions are a suitable model system to study the metabolic regulation of a large range of high valuable polyphenols that are important in understanding the physiology of the plant and for nutraceutical, pharmaceutical and medical purposes. Increasing sucrose concentrations were found to promote cell growth and phenylpropanoid biosynthesis in grape cell cultures obtained from cv. Barbera immature berries. This led to an intracellular accumulation and/or release into the media of specific polyphenol families (in particular, anthocyanins, catechins and stilbenes). This effect was partially correlated with a sucrose modulation of the transcription of some key biosynthetic enzymes, such as phenylalanine ammonia lyase, chalcone synthase, chalcone-flavanone isomerase and stilbene synthase. Total catechin amounts, both endogenous and released in the media, were increased in proportion to the sugar concentration, as were anthocyanin and stilbene production. Sugar treatment notably improved the endogenous accumulation and release in the culture media of resveratroloside, a resveratrol mono-glycoside, which is the most abundant stilbene found in grape cultures, especially in cv. Barbera. We hypothesize that high sucrose concentrations (exceeding those naturally-occurring in ripe berries) could play a role in plant defense via the induction of secondary metabolites, such as stilbenes.

  7. Biosynthesis and Elongation of Short- and Medium-Chain-Length Fatty Acids

    PubMed Central

    van der Hoeven, Rutger S.; Steffens, John C.

    2000-01-01

    Short- and medium-chain-length fatty acids (FAs) are important constituents of a wide array of natural products. Branched and straight short-chain-length FAs originate from branched chain amino acid metabolism, and serve as primers for elongation in FA synthase-like reactions. However, a recent model proposes that the one-carbon extension reactions that utilize 2-oxo-3-methylbutyric acid in leucine biosynthesis also catalyze a repetitive one-carbon elongation of short-chain primers to medium-chain-length FAs. The existence of such a mechanism would require a novel form of regulation to control carbon flux between amino acid and FA biosynthesis. A critical re-analysis of the data used to support this pathway fails to support the hypothesis for FA elongation by one-carbon extension cycles of α-ketoacids. Therefore, we tested the hypothesis experimentally using criteria that distinguish between one- and two-carbon elongation mechanisms: (a) isotopomer patterns in terminal carbon atom pairs of branched and straight FAs resulting from differential labeling with [13C]acetate; (b) [13C]threonine labeling patterns in odd- and even chain length FAs; and (c) differential sensitivity of elongation reactions to inhibition by cerulenin. All three criteria indicated that biosynthesis of medium-chain length FAs is mediated primarily by FA synthase-like reactions. PMID:10631271

  8. Biosynthesis of jasmonic acid in a plant pathogenic fungus, Lasiodiplodia theobromae.

    PubMed

    Tsukada, Kohei; Takahashi, Kosaku; Nabeta, Kensuke

    2010-12-01

    Jasmonic acid (JA) is a plant hormone that plays an important role in a wide variety of plant physiological processes. The plant pathogenic fungus, Lasiodiplodia theobromae also produces JA; however, its biosynthesis in this fungus has yet to be explored. Administration of [1-(13)C] and [2-(13)C] NaOAc into L. theobromae established that JA in this fungus originates from a fatty acid synthetic pathway. The methyl ester of 12-oxo-phytodienoic acid (OPDA) was detected in the culture extracts of L. theobromae by GC-MS analysis. This finding indicates the presence of OPDA (a known intermediate of JA biosynthesis in plants) in L. theobromae. (2)H NMR spectroscopic data of JA produced by L. theobromae with the incorporation of [9,10,12,13,15,16-(2)H(6)] linolenic acid showed that five deuterium atoms remained intact. In plants, this is speculated to arise from JA being produced by the octadecanoid pathway. However, the observed stereoselectivity of the cyclopentenone olefin reduction in L. theobromae was opposite to that observed in plants. These data suggest that JA biosynthesis in L. theobromae is similar to that in plants, but differing in the facial selectivity of the enone reduction. PMID:20952041

  9. Branched Chain Amino Acid Metabolism in the Biosynthesis of Lycopersicon pennellii Glucose Esters 1

    PubMed Central

    Walters, Donald S.; Steffens, John C.

    1990-01-01

    Lycopersicon pennellii Corr. (D'Arcy) an insect-resistant, wild tomato possesses high densities of glandular trichomes which exude a mixture of 2,3,4-tri-O-acylated glucose esters that function as a physical impediment and feeding deterrent to small arthropod pests. The acyl moieties are branched C4 and C5 acids, and branched and straight chain C10, C11, and C12 acids. The structure of the branched acyl constituents suggests that the branched chain amino acid biosynthetic pathway participates in their biosynthesis. [14C]Valine and deuterated branched chain amino acids (and their oxo-acid derivatives) were incorporated into branched C4 and C5 acid groups of glucose esters by a process of transamination, oxidative decarboxylation and subsequent acylation. C4 and C5 branched acids were elongated by two carbon units to produce the branched C10-C12 groups. Norvaline, norleucine, allylglycine, and methionine also were processed into acyl moieties and secreted from the trichomes as glucose esters. Changes in the acyl composition of the glucose esters following sulfonylurea herbicide administration support the participation of acetohydroxyacid synthetase and the other enzymes of branched amino acid biosynthesis in the production of glucose esters. PMID:16667654

  10. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.

    PubMed

    Muñoz-Espinoza, Valeria A; López-Climent, María F; Casaretto, José A; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  11. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions

    PubMed Central

    Muñoz-Espinoza, Valeria A.; López-Climent, María F.; Casaretto, José A.; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  12. Crystal structure of Streptococcus pneumoniae acyl carrier protein synthase: an essential enzyme in bacterial fatty acid biosynthesis

    PubMed Central

    Chirgadze, Nickolay Y.; Briggs, Steven L.; McAllister, Kelly A.; Fischl, Anthony S.; Zhao, Genshi

    2000-01-01

    Acyl carrier protein synthase (AcpS) catalyzes the formation of holo-ACP, which mediates the essential transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and lipids in the cell. Thus, AcpS plays an important role in bacterial fatty acid and lipid biosynthesis, making it an attractive target for therapeutic intervention. We have determined, for the first time, the crystal structure of the Streptococcus pneumoniae AcpS and AcpS complexed with 3′5′-ADP, a product of AcpS, at 2.0 and 1.9 Å resolution, respectively. The crystal structure reveals an α/β fold and shows that AcpS assembles as a tightly packed functional trimer, with a non-crystallographic pseudo-symmetric 3-fold axis, which contains three active sites at the interface between protomers. Only two active sites are occupied by the ligand molecules. Although there is virtually no sequence similarity between the S.pneumoniae AcpS and the Bacillus subtilis Sfp transferase, a striking structural similarity between both enzymes was observed. These data provide a starting point for structure-based drug design efforts towards the identification of AcpS inhibitors with potent antibacterial activity. PMID:11032795

  13. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.

    PubMed

    Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N

    2011-02-01

    The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation.

  14. Biosynthesis of non-cellulosic polysaccharides of plant cell walls.

    PubMed

    Dhugga, Kanwarpal S

    2012-02-01

    Enzymes that make the polymer backbones of plant cell wall polysaccharides have proven to be recalcitrant to biochemical purification. Availability of mutational genetics and genomic tools paved the way for rapid progress in identifying genes encoding various cell wall glycan synthases. Mutational genetics, the primary tool used in unraveling cellulose biosynthesis, was ineffective in assigning function to any of the hemicellulosic, polymerizing glycan synthases. A combination of comparative genomics and functional expression in a heterologous system allowed identification of various cellulose synthase-like (Csl) sequences as being involved in the formation of β-1,4-mannan, β-1,4-glucan, and mixed-linked glucan. A number of xylose-deficient mutants have led to a variety of genes, none of which thus far possesses the motifs known to be conserved among polymerizing β-glycan synthases. Except for xylan synthase, which appears to be an agglomerate of proteins just like cellulose synthase, Golgi glycan synthases already identified suggest that the catalytic polypeptide by itself is sufficient for enzyme activity, most likely as a homodimer. Several of the Csl genes remain to be assigned a function. The possibility of the involvement of various Csl genes in making more than one product remains.

  15. Effects of Nandrolone Stimulation on Testosterone Biosynthesis in Leydig Cells

    PubMed Central

    Barone, Rosario; Marino Gammazza, Antonella; Sangiorgi, Claudia; Barone, Fulvio; Pitruzzella, Alessandro; Locorotondo, Nicola; Di Gaudio, Francesca; Salerno, Monica; Maglietta, Francesca; Sarni, Antonio Luciano; Di Felice, Valentina; Cappello, Francesco; Turillazzi, Emanuela

    2015-01-01

    Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin‐releasing hormone, luteinizing hormone, and follicle‐stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real‐time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone‐induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a‐hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down‐regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects. J. Cell. Physiol. 231: 1385–1391, 2016. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:26626779

  16. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    NASA Astrophysics Data System (ADS)

    Larios-Rodriguez, E.; Rangel-Ayon, C.; Castillo, S. J.; Zavala, G.; Herrera-Urbina, R.

    2011-09-01

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  17. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo.

    PubMed

    Larios-Rodriguez, E; Rangel-Ayon, C; Castillo, S J; Zavala, G; Herrera-Urbina, R

    2011-09-01

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron. PMID:21817787

  18. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals.

    PubMed

    Tashiro, Yohei; Rodriguez, Gabriel M; Atsumi, Shota

    2015-03-01

    Global energy and environmental concerns have driven the development of biological chemical production from renewable sources. Biological processes using microorganisms are efficient and have been traditionally utilized to convert biomass (i.e., glucose) to useful chemicals such as amino acids. To produce desired fuels and chemicals with high yield and rate, metabolic pathways have been enhanced and expanded with metabolic engineering and synthetic biology approaches. 2-Keto acids, which are key intermediates in amino acid biosynthesis, can be converted to a wide range of chemicals. 2-Keto acid pathways were engineered in previous research efforts and these studies demonstrated that 2-keto acid pathways have high potential for novel metabolic routes with high productivity. In this review, we discuss recently developed 2-keto acid-based pathways.

  19. Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis.

    PubMed

    Joo, Hyoe-Jin; Yim, Yong-Hyeon; Jeong, Pan-Young; Jin, You-Xun; Lee, Jeong-Eui; Kim, Heekyeong; Jeong, Seul-Ki; Chitwood, David J; Paik, Young-Ki

    2009-07-29

    Caenorhabditis elegans excretes a dauer pheromone or daumone composed of ascarylose and a fatty acid side chain, the perception of which enables worms to enter the dauer state for long-term survival in an adverse environment. During the course of elucidation of the daumone biosynthetic pathway in which DHS-28 and DAF-22 are involved in peroxisomal beta-oxidation of VLCFAs (very long-chain fatty acids), we sought to investigate the physiological consequences of a deficiency in daumone biosynthesis in C. elegans. Our results revealed that two mutants, dhs-28(tm2581) and daf-22(ok693), lacked daumones and thus were dauer defective; this coincided with massive accumulation of fatty acyl-CoAs (up to 100-fold) inside worm bodies compared with levels in wild-type N2 worms. Furthermore, the deficiency in daumone biosynthesis and the massive accumulation of fatty acids and their acyl-CoAs caused severe developmental defects with reduced life spans (up to 30%), suggesting that daumone biosynthesis is be an essential part of C. elegans homoeostasis, affecting survival and maintenance of optimal physiological conditions by metabolizing some of the toxic non-permissible peroxisomal VLCFAs from the worm body in the form of readily excretable daumones.

  20. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

    PubMed

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M; Liu, Jie; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2011-12-27

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.

  1. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.

    PubMed

    Wu, Xue-Long; Liu, Zhi-Hong; Hu, Zhang-Hua; Huang, Rui-Zhi

    2014-06-01

    Photosynthesis in "green" seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mechanism underpinning the coordinated expression of fatty acid (FA) biosynthesis- and photosynthesis-related genes in such developing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyll content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Overexpression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes.

  2. Enzymes Catalyzing the Early Steps of Clavulanic Acid Biosynthesis Are Encoded by Two Sets of Paralogous Genes in Streptomyces clavuligerus

    PubMed Central

    Jensen, Susan E.; Elder, Kenneth J.; Aidoo, Kwamena A.; Paradkar, Ashish S.

    2000-01-01

    Genes encoding the proteins required for clavulanic acid biosynthesis and for cephamycin biosynthesis are grouped into a “supercluster” in Streptomyces clavuligerus. Nine open reading frames (ORFs) associated with clavulanic acid biosynthesis were located in a 15-kb segment of the supercluster, including six ORFs encoding known biosynthetic enzymes or regulatory proteins, two ORFs that have been reported previously but whose involvement in clavulanic acid biosynthesis is unclear, and one ORF not previously reported. Evidence for the involvement of these ORFs in clavulanic acid production was obtained by generating mutants and showing that all were defective for clavulanic acid production when grown on starch asparagine medium. However, when five of the nine mutants, including mutants defective in known clavulanic acid biosynthetic enzymes, were grown in a soy-based medium, clavulanic acid-producing ability was restored. This ability to produce clavulanic acid when seemingly essential biosynthetic enzymes have been mutated suggests that paralogous genes encoding functionally equivalent proteins exist for each of the five genes but that these paralogues are expressed only in the soy-based medium. The five genes that have paralogues encode proteins involved in the early steps of the pathway common to the biosynthesis of both clavulanic acid and the other clavam metabolites produced by this organism. No evidence was seen for paralogues of the four remaining genes involved in late, clavulanic acid-specific steps in the pathway. PMID:10681345

  3. Biosynthesis of car1ssol and carissic Acid.

    PubMed

    Nizami, S S; Khan, M A; Naim, Z; Islam, M N; Azeem, S W

    1993-01-01

    Carissa carandas belongs to family apocynaceae which consists of 300 genera and 1000 species. It is a large shrub with simple thorn and commonly cultivated throughout Pakistan for hedges and is called "Kakronda". The different parts of this plant have been used for various systems of medicine (Kirtikar et al., 1993). Cardiotonic activity was found in root of this plant (Rastogi et al., 1966; Rastogi et al., 1967; Vohra et al., 1963). This plant has been mentioned in the old chemical literature as purgative, stomachic, antihelmintics and antidote for snake-bite (Kirtikar., 1933). The physical characteristics of oil from the fruits of Carissa carandas were determined by using standard methods. In addition to this a study of sugars and amino acids from the fruits of this plant was also undertaken by the present authors (Naim et al., 1986). Our studies in the chemical investigation on this plant had led to the isolation of two new triterpene carissol Ia (Naim et al., 1985) and carissic acid lb (Naim et al., 1988).

  4. Biosynthetic mechanism for L-Gulose in main polar lipids of Thermoplasma acidophilum and possible resemblance to plant ascorbic acid biosynthesis.

    PubMed

    Yamauchi, Noriaki; Nakayama, Yusuke

    2013-01-01

    L-Gulose is a very rare sugar, but appears as a sugar component of the main polar lipids characteristic in such a thermophilic archaeon as Thermoplasma acidophilum that lives without cell walls in a highly acidic environment. The biosynthesis of L-gulose in this thermophilic organism was investigated with deuterium-labeling experiments. L-Gulose was found to be biosynthesized from D-glucose via stepwise stereochemical inversion at C-2 and C-5. The involvement of an epimerase related to GDP-mannose 3,5-epimerase, the key enzyme of plant ascorbate biosynthesis, was also suggested in this C-5 inversion. The resemblance of L-gulose biosynthesis in archaea and plants might be suggested from these results.

  5. Regulation of polyunsaturated fatty acid biosynthesis by seaweed fucoxanthin and its metabolite in cultured hepatocytes.

    PubMed

    Aki, Tsunehiro; Yamamoto, Masaya; Takahashi, Toshiaki; Tomita, Kohki; Toyoura, Rieko; Iwashita, Kazuhiro; Kawamoto, Seiji; Hosokawa, Masashi; Miyashita, Kazuo; Ono, Kazuhisa

    2014-02-01

    The effects of a seaweed carotenoid, fucoxanthin, and its physiological metabolite, fucoxanthinol, on the biosynthesis of polyunsaturated fatty acids (PUFA) were investigated using cultured rat hepatoma BRL-3A. The metabolism of α-linolenic acid (18:3n-3) was suppressed by the addition of these carotenoids, resulting in a decrease in the content of eicosapentaenoic acid (20:5n-3), which suggested a down-regulation of metabolic enzymes such as fatty acid desaturase and elongase. An increase in the content of docosahexaenoic acid (22:6n-3), as observed in previous studies in vivo, might be a buffering action to maintain the membrane fluidity. The suppressive effect of fucoxanthinol on ∆6 fatty acid desaturase was not at the level of gene expression but due to specific modifications of the protein via a ubiquitin-proteasome system. A proteomic analysis revealed several factors such as phosphatidylethanolamine-binding protein that might be involved in the observed action of fucoxanthin. These findings will contribute to studies on the elucidation of the precise molecular mechanisms underlying the regulation of PUFA biosynthesis by fucoxanthin. PMID:24174374

  6. Regulation of polyunsaturated fatty acid biosynthesis by seaweed fucoxanthin and its metabolite in cultured hepatocytes.

    PubMed

    Aki, Tsunehiro; Yamamoto, Masaya; Takahashi, Toshiaki; Tomita, Kohki; Toyoura, Rieko; Iwashita, Kazuhiro; Kawamoto, Seiji; Hosokawa, Masashi; Miyashita, Kazuo; Ono, Kazuhisa

    2014-02-01

    The effects of a seaweed carotenoid, fucoxanthin, and its physiological metabolite, fucoxanthinol, on the biosynthesis of polyunsaturated fatty acids (PUFA) were investigated using cultured rat hepatoma BRL-3A. The metabolism of α-linolenic acid (18:3n-3) was suppressed by the addition of these carotenoids, resulting in a decrease in the content of eicosapentaenoic acid (20:5n-3), which suggested a down-regulation of metabolic enzymes such as fatty acid desaturase and elongase. An increase in the content of docosahexaenoic acid (22:6n-3), as observed in previous studies in vivo, might be a buffering action to maintain the membrane fluidity. The suppressive effect of fucoxanthinol on ∆6 fatty acid desaturase was not at the level of gene expression but due to specific modifications of the protein via a ubiquitin-proteasome system. A proteomic analysis revealed several factors such as phosphatidylethanolamine-binding protein that might be involved in the observed action of fucoxanthin. These findings will contribute to studies on the elucidation of the precise molecular mechanisms underlying the regulation of PUFA biosynthesis by fucoxanthin.

  7. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures.

    PubMed

    Boutigny, Anne-Laure; Barreau, Christian; Atanasova-Penichon, Vessela; Verdal-Bonnin, Marie-Noëlle; Pinson-Gadais, Laëtitia; Richard-Forget, Florence

    2009-01-01

    The effect of ferulic acid, the most abundant phenolic acid in wheat bran, was studied in vitro on type B trichothecene biosynthesis by Fusarium. It was demonstrated that ferulic acid is an efficient inhibitor of mycotoxin production by all strains of Fusarium tested, including different chemotypes and species. To analyse the mechanism of toxin biosynthesis inhibition by ferulic acid, expression of representative Tri genes, involved in the trichothecene biosynthesis pathway, was monitored by real-time RT-PCR. A decrease in the level of Tri gene expression was measured, suggesting that inhibition of toxin synthesis by ferulic acid could be regulated at the transcriptional level. Moreover, toxin production was shown to be reduced proportionally to the initial amount of ferulic acid added in the culture medium. Addition of ferulic acid either at the spore germination step or to a mycelial culture resulted in the same final inhibitory effect on mycotoxin accumulation. A cumulative inhibitory effect on trichothecene biosynthesis was even observed with successive supplementation of ferulic acid. Ferulic acid, which content varies among wheat varieties, could then play an important role in modulating trichothecene biosynthesis by Fusarium in some wheat varieties.

  8. Effects of Nandrolone Stimulation on Testosterone Biosynthesis in Leydig Cells.

    PubMed

    Pomara, Cristoforo; Barone, Rosario; Marino Gammazza, Antonella; Sangiorgi, Claudia; Barone, Fulvio; Pitruzzella, Alessandro; Locorotondo, Nicola; Di Gaudio, Francesca; Salerno, Monica; Maglietta, Francesca; Sarni, Antonio Luciano; Di Felice, Valentina; Cappello, Francesco; Turillazzi, Emanuela

    2016-06-01

    Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real-time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone-induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a-hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down-regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects. PMID:26626779

  9. Effects of Nandrolone Stimulation on Testosterone Biosynthesis in Leydig Cells.

    PubMed

    Pomara, Cristoforo; Barone, Rosario; Marino Gammazza, Antonella; Sangiorgi, Claudia; Barone, Fulvio; Pitruzzella, Alessandro; Locorotondo, Nicola; Di Gaudio, Francesca; Salerno, Monica; Maglietta, Francesca; Sarni, Antonio Luciano; Di Felice, Valentina; Cappello, Francesco; Turillazzi, Emanuela

    2016-06-01

    Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real-time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone-induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a-hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down-regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects.

  10. Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid1[W][OA

    PubMed Central

    Tivendale, Nathan D.; Davidson, Sandra E.; Davies, Noel W.; Smith, Jason A.; Dalmais, Marion; Bendahmane, Abdelhafid I.; Quittenden, Laura J.; Sutton, Lily; Bala, Raj K.; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B.; Ross, John J.

    2012-01-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  11. Abscisic acid biosynthesis in water-stressed leaves

    SciTech Connect

    Li, Yi.

    1989-01-01

    Although abscisic acid (ABA) was discovered 30 years ago, very little is known about its biosynthetic pathway in higher plants. Two hypotheses have been proposed: (i) a direct pathway involving only C-15 intermediates like farnesyl pyrophosphate, (ii) an indirect pathway involving C-40 intermediates like the xanthophylls. When {sup 14}CO{sub 2} was fed into greened bean plants, the {sup 14}C specific activity of ABA was always lower than those in xanthophylls, such as violaxanthin and lutein, regardless of {sup 12}CO{sub 2} chase periods. The ABA accumulation in green leaves was not affected by fluridone when plants were stressed once, but the {sup 14}C incorporation into ABA was inhibited to the same extent as those of xanthophylls. The incorporation of {sup 18}O into the ABA ring when violaxanthin was labeled by {sup 18}O in vivo via the violaxanthin cycle indicates that at least a portion of ABA was derived from {sup 18}O-labeled violaxanthin during water stress.

  12. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots.

    PubMed

    Yamauchi, Takaki; Shiono, Katsuhiro; Nagano, Minoru; Fukazawa, Aya; Ando, Miho; Takamure, Itsuro; Mori, Hitoshi; Nishizawa, Naoko K; Kawai-Yamada, Maki; Tsutsumi, Nobuhiro; Kato, Kiyoaki; Nakazono, Mikio

    2015-09-01

    In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.

  13. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots1

    PubMed Central

    Yamauchi, Takaki; Shiono, Katsuhiro; Nagano, Minoru; Fukazawa, Aya; Ando, Miho; Takamure, Itsuro; Mori, Hitoshi; Nishizawa, Naoko K.; Kawai-Yamada, Maki; Tsutsumi, Nobuhiro; Kato, Kiyoaki; Nakazono, Mikio

    2015-01-01

    In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex. PMID:26036614

  14. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2013-12-01

    Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly L-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-L and D-lactic acid and has a higher melting temperature. To date, several studies have explored the production of L-lactic acid, but information on biosynthesis of D-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of D-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to D-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L(-1) of D-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g(-1) and 1.01 g L(-1) h(-1), respectively. Luedeking-Piret model described the mixed growth-associated production of D-lactic acid with a maximum specific growth rate 0.2 h(-1) and product formation rate 0.026 h(-1), obtained for this strain. The efficient synthesis of D-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.

  15. Biosynthesis of very long chain fatty acids in Trypanosoma cruzi.

    PubMed

    Livore, Verónica I; Uttaro, Antonio D

    2015-01-01

    Trypanosoma brucei and Trypanosoma cruzi showed similar fatty acid (FA) compositions, having a high proportion of unsaturated FAs, mainly 18:2Δ9,12 (23-39%) and 18:1Δ9 (11-17%). C22 polyunsaturated FAs are in significant amounts only in T. brucei (12-20%) but represent a mere 2% of total FAs in T. cruzi. Both species have also similar profiles of medium- and long-chain saturated FAs, from 14:0 to 20:0. Interestingly, procyclic and bloodstream forms of T. brucei lack very long chain FAs (VLCFAs), whereas epimastigotes and trypomastigotes of T. cruzi contain 22:0 (0.1-0.2%), 24:0 (1.5-2%), and 26:0 (0.1-0.2%). This is in agreement with the presence of an additional FA elongase gene (TcELO4) in T. cruzi. TcELO4 was expressed in a Saccharomyces cerevisiae mutant lacking the endogenous ScELO3, rescuing the synthesis of saturated and hydroxylated C26 FAs in the yeast. Expression of TcELO4 also rescued the synthetic lethality of a ScELO2, ScELO3 double mutation, and the VLCFA profile of the transformed yeast was similar to that found in T. cruzi. By identifying TcELO4 as the enzyme responsible for the elongation of FA from 16:0 and 18:0 up to 26:0, with 24:0 being the preferred product, this work completed the characterization of FA elongases in Trypanosoma spp. PMID:25339514

  16. Biosynthesis of very long chain fatty acids in Trypanosoma cruzi.

    PubMed

    Livore, Verónica I; Uttaro, Antonio D

    2015-01-01

    Trypanosoma brucei and Trypanosoma cruzi showed similar fatty acid (FA) compositions, having a high proportion of unsaturated FAs, mainly 18:2Δ9,12 (23-39%) and 18:1Δ9 (11-17%). C22 polyunsaturated FAs are in significant amounts only in T. brucei (12-20%) but represent a mere 2% of total FAs in T. cruzi. Both species have also similar profiles of medium- and long-chain saturated FAs, from 14:0 to 20:0. Interestingly, procyclic and bloodstream forms of T. brucei lack very long chain FAs (VLCFAs), whereas epimastigotes and trypomastigotes of T. cruzi contain 22:0 (0.1-0.2%), 24:0 (1.5-2%), and 26:0 (0.1-0.2%). This is in agreement with the presence of an additional FA elongase gene (TcELO4) in T. cruzi. TcELO4 was expressed in a Saccharomyces cerevisiae mutant lacking the endogenous ScELO3, rescuing the synthesis of saturated and hydroxylated C26 FAs in the yeast. Expression of TcELO4 also rescued the synthetic lethality of a ScELO2, ScELO3 double mutation, and the VLCFA profile of the transformed yeast was similar to that found in T. cruzi. By identifying TcELO4 as the enzyme responsible for the elongation of FA from 16:0 and 18:0 up to 26:0, with 24:0 being the preferred product, this work completed the characterization of FA elongases in Trypanosoma spp.

  17. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway.

    PubMed

    Valegård, Karin; Iqbal, Aman; Kershaw, Nadia J; Ivison, David; Généreux, Catherine; Dubus, Alain; Blikstad, Cecilia; Demetriades, Marina; Hopkinson, Richard J; Lloyd, Adrian J; Roper, David I; Schofield, Christopher J; Andersson, Inger; McDonough, Michael A

    2013-08-01

    Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate. Mutagenesis studies imply that Ser173, which is present in a conserved SXXK motif, acts as a nucleophile in catalysis, consistent with studies of related esterases, β-lactamases and D-Ala carboxypeptidases. Structures of wild-type ORF12 and of catalytic residue variants were obtained in complex with and in the absence of clavulanic acid. The role of ORF12 in clavulanic acid biosynthesis is unknown, but it may be involved in the epimerization of (3S,5S)-clavaminic acid to (3R,5R)-clavulanic acid.

  18. [Gene cloning and bioinformatics analysis of new gene for chlorogenic acid biosynthesis of Lonicera hypoglauca].

    PubMed

    Yu, Shu-lin; Huang, Lu-qi; Yuan, Yuan; Qi, Lin-jie; Liu, Da-hui

    2015-03-01

    To obtain the key genes for chlorogenic acid biosynthesis of Lonicera hypoglauca, four new genes ware obtained from the our dataset of L. hypoglauca. And we also predicted the structure and function of LHPAL4, LHHCT1 , LHHCT2 and LHHCT3 proteins. The phylogenetic tree showed that LHPAL4 was closely related with LHPAL1, LHHCT1 was closely related with LHHCT3, LHHCT2 clustered into a single group. By Real-time PCR to detect the gene expressed level in different organs of L. hypoglauca, we found that the transcripted level of LHPAL4, LHHCT1 and LHHCT3 was the highest in defeat flowers, and the transcripted level of LHHCT2 was the highest in leaves. These result provided a basis to further analysis the mechanism of active ingredients in different organs, as well as the element for in vitro biosynthesis of active ingredients.

  19. [Gene cloning and bioinformatics analysis of new gene for chlorogenic acid biosynthesis of Lonicera hypoglauca].

    PubMed

    Yu, Shu-lin; Huang, Lu-qi; Yuan, Yuan; Qi, Lin-jie; Liu, Da-hui

    2015-03-01

    To obtain the key genes for chlorogenic acid biosynthesis of Lonicera hypoglauca, four new genes ware obtained from the our dataset of L. hypoglauca. And we also predicted the structure and function of LHPAL4, LHHCT1 , LHHCT2 and LHHCT3 proteins. The phylogenetic tree showed that LHPAL4 was closely related with LHPAL1, LHHCT1 was closely related with LHHCT3, LHHCT2 clustered into a single group. By Real-time PCR to detect the gene expressed level in different organs of L. hypoglauca, we found that the transcripted level of LHPAL4, LHHCT1 and LHHCT3 was the highest in defeat flowers, and the transcripted level of LHHCT2 was the highest in leaves. These result provided a basis to further analysis the mechanism of active ingredients in different organs, as well as the element for in vitro biosynthesis of active ingredients. PMID:26087546

  20. Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium

    SciTech Connect

    Wada, M.; Fukunaga, N.; Sasaki, S. )

    1989-08-01

    Biosynthesis of palmitic, palmitoleic, and cis-vaccenic acids in Pseudomonas sp. strain E-3 was investigated with in vitro and in vivo systems. (1-{sup 14}C)palmitic acid was aerobically converted to palmitoleate and cis-vaccenate, and the radioactivities on their carboxyl carbons were 100 and 43%, respectively, of the total radioactivity in the fatty acids. Palmitoyl coenzyme A desaturase activity was found in the membrane fraction. (1-{sup 14}C)stearic acid was converted to octadecenoate and C16 fatty acids. The octadecenoate contained oleate and cis-vaccenate, but only oleate was produced in the presence of cerulenin. (1-{sup 14}C)lauric acid was aerobically converted to palmitate, palmitoleate, and cis-vaccenate. Under anaerobic conditions, palmitate (62%), palmitoleate (4%), and cis-vaccenate (34%) were produced from (1-{sup 14}C)acetic acid, while they amounted to 48, 39, and 14%, respectively, under aerobic conditions. In these incorporation experiments, 3 to 19% of the added radioactivity was detected in released {sup 14}CO{sub 2}, indicating that part of the added fatty acids were oxidatively decomposed. Partially purified fatty acid synthetase produced saturated and unsaturated fatty acids with chain lengths of C10 to C18. These results indicated that both aerobic and anaerobic mechanisms for the synthesis of unsaturated fatty acid are operating in this bacterium.

  1. [Effect of organic acids on the biosynthesis of macrotetralide antibiotics by an Actinomyces chrysomallus var. carotenoides strain].

    PubMed

    Nefelova, M V; Sverdlova, A N; Silaev, A B

    1978-07-01

    The biosynthesis of macrotetrolides by Actinomyces chrysomalus var. carotenoides was stimulated by acetic, succinic, propionic, oxalic, malic, tartaric, citric, pyruvic, alpha-ketoglutaric and fumaric acids. Incorporation of 14C-acetate into the molecule of the antibiotic and the data on dependence of the stimulating effect upon the quantitative ratio and time of the organic acid addition were indicative of the role of acetic, succinic and propionic acids as precursors of macrotetrolides. The other organic acids increased the biosynthesis of macrotetolides when added to the culture within wide time ranges of the culture development and prolonged the period of the mycelium productive state.

  2. Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica

    PubMed Central

    2014-01-01

    Background Sterols are vital structural and regulatory components in eukaryotic cells; however, their biosynthetic pathways and functional roles in microalgae remain poorly understood. Results In the oleaginous microalga Nannochloropsis oceanica, the sterol biosynthetic pathway produces phytosterols as minor products and cholesterol as the major product. The evidence together with their deduced biosynthetic pathways suggests that N. oceanica exhibits features of both higher plants and mammals. Temporal tracking of sterol profiles and sterol-biosynthetic transcripts in response to changes in light intensity and nitrogen supply reveal that sterols play roles in cell proliferation, chloroplast differentiation, and photosynthesis. Furthermore, the dynamics of fatty acid (FA) and FA-biosynthetic transcripts upon chemical inhibitor-induced sterol depletion reveal possible co-regulation of sterol production and FA synthesis, in that the squalene epoxidase inhibitor terbinafine reduces sterol content yet significantly elevates free FA production. Thus, a feedback regulation of sterol and FA homeostasis is proposed, with the 1-deoxy-D-xylulose 5-phosphate synthase (DXS, the committed enzyme in isoprenoid and sterol biosynthesis) gene potentially subject to feedback regulation by sterols. Conclusion These findings reveal features of sterol function and biosynthesis in microalgae and suggest new genetic engineering or chemical biology approaches for enhanced oil production in microalgae. PMID:24920959

  3. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation.

    PubMed

    Murphy, Lynea A; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  4. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  5. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.

    PubMed

    Sheng, Juzheng; Ling, Peixue; Wang, Fengshan

    2015-02-01

    Hyaluronic acid (HA), a natural high molecular weight polysaccharide, is produced by Streptococcus zooepidemicus. However, Streptococcus has several drawbacks including its potential to produce exotoxins, so there is demand for an alternative HA source. Here, a recombinant HA biosynthesis operon, as well as the HA biosynthesis operon of S. zooepidemicus were introduced into L. lactis using the nisin-controlled expression system, respectively. HA was successfully synthesized by recombinant L. lactis. Furthermore, overexpression of the endogenous enzymes directing the synthesis of precursor sugars was effective at increasing HA production, and increasing the supply of UDP-activated monosaccharide donors aided synthesis of monodisperse HA polysaccharides. Besides GRAS host strain (L. lactis) and NICE system, the selecting marker (lacF gene) of the recombinant strain is also food grade. Therefore, HA produced by recombinant L. lactis overcomes the problems associated with Streptococcus and provides a source of food-grading HA appropriate for widespread biotechnological applications. PMID:25447786

  6. Peptidoglycan biosynthesis in stationary-phase cells of Escherichia coli.

    PubMed Central

    Blasco, B; Pisabarro, A G; de Pedro, M A

    1988-01-01

    The ability of stationary-phase cells of Escherichia coli W7 to incorporate radioactive precursors into macromolecular murein has been studied. During the initial 6 h of the stationary phase, resting cells incorporated meso-[3H]diaminopimelic acid at a rate corresponding to the insertion of 1.3 X 10(4) disaccharide units min-1 cell-1. Afterwards, the rate of incorporation dropped drastically (90%) to a low but still detectable level. Incorporation during stationary phase did not result in an increased amount of total murein in the culture, suggesting that it was related to a turnover process. Analysis of the effects of a number of beta-lactam antibiotics indicated that incorporation of murein precursors in stationary-phase cells was mediated by penicillin-binding proteins, suggesting that the activity of penicillin-binding protein 2 was particularly relevant to this process. PMID:3141382

  7. Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937.

    PubMed

    Yang, Shihui; Zhang, Qiu; Guo, Jianhua; Charkowski, Amy O; Glick, Bernard R; Ibekwe, A Mark; Cooksey, Donald A; Yang, Ching-Hong

    2007-02-01

    Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138 was reduced in M9 minimal medium supplemented with l-tryptophan. Compared with wild-type Ech3937, Ech138 exhibited reduced ability to produce local maceration, but its multiplication in Saintpaulia ionantha was unaffected. The pectate lyase production of Ech138 was diminished. Compared with wild-type Ech3937, the expression levels of an oligogalacturonate lyase gene, ogl, and three endopectate lyase genes, pelD, pelI, and pelL, were reduced in Ech138 as determined by a green fluorescent protein-based fluorescence-activated cell sorting promoter activity assay. In addition, the transcription of type III secretion system (T3SS) genes, dspE (a putative T3SS effector) and hrpN (T3SS harpin), was found to be diminished in the iaaM mutant Ech138. Compared with Ech3937, reduced expression of hrpL (a T3SS alternative sigma factor) and gacA but increased expression of rsmA in Ech138 was also observed, suggesting that the regulation of T3SS and pectate lyase genes by IAA biosynthesis might be partially due to the posttranscriptional regulation of the Gac-Rsm regulatory pathway. PMID:17189441

  8. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis.

    PubMed

    Kinzel, J J; Bhattacharjee, J K

    1979-05-01

    The role of pipecolic acid in the biosynthesis of lysine was investigated in Rhodotorula glutinis, an aerobic red yeast. Supplementation of pipecolic acid in the minimal medium supported the growth of mutants lys2, lys3, and lys5; alpha-aminoadipic acid supported the growth of lys5; but neither alpha-aminoadipic acid nor pipecolic acid supported the growth of mutants MNNG42 and MNNG37. During the growth of the appropriate mutants, pipecolic acid was removed from the growth medium and the intracellular pool. In tracer experiments, radioactivity from [(14)C]pipecolic acid was selectively incorporated into the cellular lysine of lys5 and the wild-type strain. l-Pipecolic acid-dependent enzyme activity did not require any cofactor and was inhibited by mercuric chloride and potassium cyanide. This activity was present in the wild-type strain and all of the mutants tested and was repressed in mutant lys5 when grown in the presence of higher concentration of lysine. The reaction product of pipecolic acid was converted to saccharopine by lys5 enzyme in the presence of glutamate and reduced nicotin-amide adenine dinucleotide phosphate. Mutant MNNG37 lacked the saccharopine dehydrogenase activity, indicating that this step is involved in the conversion of alpha-aminoadipic acid and pipecolic acid to lysine. Mutants MNNG37 and MNNG42 accumulated a p-dimethylaminobenzaldehyde-reacting product in the culture supernatant and in the intracellular pool. Chromatographic properties of the p-dimethylaminobenzaldehyde adduct and that of the pipecolic acid-dependent reaction product were similar. The reaction product and the accumulation product were characterized on the basis of mass and absorption spectra as alpha-aminoadipic-semialdehyde, which in solution remains in equilibrium with Delta(1)-piperideine-6-carboxylic acid. Since alpha-aminoadipic-semialdehyde is a known intermediate of the alpha-aminoadipic acid pathway for the biosynthesis of lysine, it is concluded that pipecolic

  9. Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis

    PubMed Central

    Ye, Jie; Hu, Tixu; Yang, Congmei; Li, Hanxia; Yang, Mingze; Ijaz, Raina; Ye, Zhibiao; Zhang, Yuyang

    2015-01-01

    Tomato (Solanum lycopersicum) serves as a research model for fruit development; however, while it is an important dietary source of antioxidant nutrients, the transcriptional regulation of genes that determine nutrient levels remains poorly understood. Here, the transcriptomes of fruit at seven developmental stages (7, 14, 21, 28, 35, 42 and 49 days after flowering) from two tomato cultivars (Ailsa Craig and HG6-61) were evaluated using the Illumina sequencing platform. A total of 26,397 genes, which were expressed in at least one developmental stage, were detected in the two cultivars, and the expression patterns of those genes could be divided into 20 groups using a K-mean cluster analysis. Gene Ontology term enrichment analysis indicated that genes involved in RNA regulation, secondary metabolism, hormone metabolism and cell wall metabolism were the most highly differentially expressed genes during fruit development and ripening. A co-expression analysis revealed several transcription factors whose expression patterns correlated with those of genes associated with ascorbic acid, carotenoid and flavonoid biosynthesis. This transcriptional correlation was confirmed by agroinfiltration mediated transient expression, which showed that most of the enzymatic genes in the ascorbic acid biosynthesis were regulated by the overexpression of each of the three transcription factors that were tested. The metabolic dynamics of ascorbic acid, carotenoid and flavonoid were investigated during fruit development and ripening, and some selected transcription factors showed transcriptional correlation with the accumulation of ascorbic acid, carotenoid and flavonoid. This transcriptome study provides insight into the regulatory mechanism of fruit development and presents candidate transcription factors involved in secondary metabolism. PMID:26133783

  10. Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis.

    PubMed

    Ye, Jie; Hu, Tixu; Yang, Congmei; Li, Hanxia; Yang, Mingze; Ijaz, Raina; Ye, Zhibiao; Zhang, Yuyang

    2015-01-01

    Tomato (Solanum lycopersicum) serves as a research model for fruit development; however, while it is an important dietary source of antioxidant nutrients, the transcriptional regulation of genes that determine nutrient levels remains poorly understood. Here, the transcriptomes of fruit at seven developmental stages (7, 14, 21, 28, 35, 42 and 49 days after flowering) from two tomato cultivars (Ailsa Craig and HG6-61) were evaluated using the Illumina sequencing platform. A total of 26,397 genes, which were expressed in at least one developmental stage, were detected in the two cultivars, and the expression patterns of those genes could be divided into 20 groups using a K-mean cluster analysis. Gene Ontology term enrichment analysis indicated that genes involved in RNA regulation, secondary metabolism, hormone metabolism and cell wall metabolism were the most highly differentially expressed genes during fruit development and ripening. A co-expression analysis revealed several transcription factors whose expression patterns correlated with those of genes associated with ascorbic acid, carotenoid and flavonoid biosynthesis. This transcriptional correlation was confirmed by agroinfiltration mediated transient expression, which showed that most of the enzymatic genes in the ascorbic acid biosynthesis were regulated by the overexpression of each of the three transcription factors that were tested. The metabolic dynamics of ascorbic acid, carotenoid and flavonoid were investigated during fruit development and ripening, and some selected transcription factors showed transcriptional correlation with the accumulation of ascorbic acid, carotenoid and flavonoid. This transcriptome study provides insight into the regulatory mechanism of fruit development and presents candidate transcription factors involved in secondary metabolism.

  11. Hyaluronic acid abrogates ethanol-dependent inhibition of collagen biosynthesis in cultured human fibroblasts

    PubMed Central

    Donejko, Magdalena; Przylipiak, Andrzej; Rysiak, Edyta; Miltyk, Wojciech; Galicka, Elżbieta; Przylipiak, Jerzy; Zaręba, Ilona; Surazynski, Arkadiusz

    2015-01-01

    Introduction The aim of the study was to evaluate the effect of ethanol on collagen biosynthesis in cultured human skin fibroblasts, and the role of hyaluronic acid (HA) in this process. Regarding the mechanism of ethanol action on human skin fibroblasts we investigated: expression of β1 integrin and insulin-like growth factor 1 receptor (IGF-IR), signaling pathway protein expression: mitogen-activated protein kinases (MAPKs), protein kinase B (Akt), nuclear factor kappa B (NF-κB) transcription factor, cytotoxicity assay and apoptosis, metalloproteinase activity, as well as the influence of HA on these processes. Materials and methods Collagen biosynthesis, activity of prolidase, DNA biosynthesis, and cytotoxicity were measured in confluent human skin fibroblast cultures that have been treated with 25, 50, and 100 mM ethanol and with ethanol and 500 µg/mL HA. Western blot analysis and zymography were performed to evaluate expression of collagen type I, β1 integrin receptor, IGF-IR, NF-κB protein, phospho-Akt protein, kinase MAPK, caspase 9 activity, and matrix metalloproteinases (MMP-9 and MMP-2). Results Ethanol in a dose-dependent manner lead to the impairment of collagen biosynthesis in fibroblast cultures through decreasing prolidase activity and expression of β1 integrin and IGF-IR. This was accompanied by an increased cytotoxicity, apoptosis and lowered expression of the signaling pathway proteins induced by β1 integrin and IGF-IR, that is, MAPK (ERK1/2) kinases. The lowered amount of synthesized collagen and prolidase activity disturbance may also be due to the activation of NF-κB transcription factor, which inhibits collagen gene expression. It suggests that the decrease in fibroblast collagen production may be caused by the disturbance in its biosynthesis but not degradation. The application of HA has a protective effect on disturbances caused by the examined substances. It seems that regulatory mechanism of ethanol-induced collagen aberration take

  12. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms.

    PubMed

    Monroig, Óscar; Tocher, Douglas R; Navarro, Juan C

    2013-10-21

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs.

  13. Regulation of Branched-Chain Amino Acid Biosynthesis in Salmonella typhimurium: Isolation of Regulatory Mutants

    PubMed Central

    Calvo, J. M.; Freundlich, M.; Umbarger, H. E.

    1969-01-01

    5′,5′,5′-Trifluoro-dl-leucine inhibited the activity of α-isopropylmalate synthetase (the initial enzyme unique to leucine biosynthesis) as well as the growth of Salmonella typhimurium. Mutants of S. typhimurium resistant to the analogue were isolated and characterized. In most cases, they overproduced and excreted leucine or leucine, valine, and isoleucine as a result of an alteration in the regulation of branched-chain amino acid biosynthesis. Biochemical and genetic tests allowed the mutants to be grouped into three classes: I, a moderately large group (13%) which had high, constitutive leucine biosynthetic enzyme levels and mutant sites linked to the leucine operon (operator constitutive); II, a single mutant in which the mutant site was linked to the leucine operon and in which α-isopropylmalate synthetase was not inhibited by leucine (feedback negative); III, a majority type which had constitutive levels of leucine, valine, and isoleucine biosynthetic enzymes and mutant sites unlinked to the leucine operon. Mutants of class I provide important evidence for the concept of an operon organization of genes involved in leucine biosynthesis. The properties of class III mutants indicate that there is some element involved in regulation which is common to the three pathways. Images PMID:4887507

  14. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    PubMed

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators.

  15. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms

    PubMed Central

    Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

    2013-01-01

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

  16. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli

    PubMed Central

    Zhang, Junli; Kang, Zhen; Chen, Jian; Du, Guocheng

    2015-01-01

    5-Aminolevulinic acid (ALA), the committed intermediate of the heme biosynthesis pathway, shows significant promise for cancer treatment. Here, we identified that in addition to hemA and hemL, hemB, hemD, hemF, hemG and hemH are also the major regulatory targets of the heme biosynthesis pathway. Interestingly, up-regulation of hemD and hemF benefited ALA accumulation whereas overexpression of hemB, hemG and hemH diminished ALA accumulation. Accordingly, by combinatorial overexpression of the hemA, hemL, hemD and hemF with different copy-number plasmids, the titer of ALA was improved to 3.25 g l−1. Furthermore, in combination with transcriptional and enzymatic analysis, we demonstrated that ALA dehydratase (HemB) encoded by hemB is feedback inhibited by the downstream intermediate protoporphyrinogen IX. This work has great potential to be scaled-up for microbial production of ALA and provides new important insights into the regulatory mechanism of the heme biosynthesis pathway. PMID:25716896

  17. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    PubMed

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production. PMID:26820137

  18. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    PubMed

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production.

  19. Biosynthesis of Polyunsaturated Fatty Acids in the Oleaginous Marine Diatom Fistulifera sp. Strain JPCC DA0580

    PubMed Central

    Liang, Yue; Maeda, Yoshiaki; Sunaga, Yoshihiko; Muto, Masaki; Matsumoto, Mitsufumi; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2013-01-01

    Studies of polyunsaturated fatty acid (PUFA) biosynthesis in microalgae are of great importance for many reasons, including the production of biofuel and variable omega 3-long chain PUFAs. The elucidation of the PUFA biosynthesis pathway is necessary for bioengineering to increase or decrease PUFA content in certain microalgae. In this study, we identified the PUFA synthesis pathway in the oleaginous marine diatom, Fistulifera sp. strain JPCC DA0580, a promising candidate for biodiesel production. The data revealed not only the presence of the desaturases and elongases involved in eicosapentaenoic acid (EPA) synthesis, but also the unexpected localization of ω3-desaturase expression in the chloroplast. This suggests that this microalga might perform the final step of EPA synthesis in the chloroplast and not in the endoplasmic reticulum (ER) like other diatoms. The detailed fatty acid profile suggests that the EPA was synthesized only through the ω6-pathway in this strain, which was also different from other diatoms. Finally, the transcriptome analysis demonstrated an overall down-regulation of desaturases and elongases over incubation time. These genetic features might explain the decrease of PUFA percentage over incubation time in this strain. The important insights into metabolite synthesis acquired here will be useful for future metabolic engineering to control PUFA content in this diatom. PMID:24335525

  20. Systematic unravelling of the biosynthesis of poly (L-diaminopropionic acid) in Streptomyces albulus PD-1

    PubMed Central

    Xu, Zhaoxian; Sun, Zhuzhen; Li, Sha; Xu, Zheng; Cao, Changhong; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2015-01-01

    Poly(L-diaminopropionic acid) (PDAP) is one of the four homopoly(amino acid)s that have been discovered in nature. However, the molecular mechanism of PDAP biosynthesis has yet to be described. In this work, the general layout of the PDAP biosynthetic pathway is characterised in Streptomyces albulus PD-1 by genome mining, gene disruption, heterologous expression and in vitro feeding experiments. As a result, L-diaminopropionic acid (L-DAP), which is the monomer of PDAP, is shown to be jointly synthesised by two protein homologues of cysteine synthetase and ornithine cyclodeaminase. Then, L-DAP is assembled into PDAP by a novel nonribosomal peptide synthetase (NRPS) with classical adenylation and peptidyl carrier protein domains. However, instead of the traditional condensation or thioesterase domain of NRPSs, this NRPS has seven transmembrane domains surrounding three tandem soluble domains at the C-terminus. As far as we know, this novel single-module NRPS structure has only been reported in poly(ε-L-lysine) synthetase. The similar NRPS structure of PDAP synthetase and poly(ε-L-lysine) synthetase may be a common characteristic of homopoly(amino acid)s synthetases. In this case, we may discover and/or design more homopoly(amino acid)s by mining this kind of novel NRPS structure in the future. PMID:26632244

  1. On the biosynthesis of free and covalently bound PQQ. Glutamic acid decarboxylase from Escherichia coli is a pyridoxo-quinoprotein.

    PubMed

    van der Meer, R A; Groen, B W; Duine, J A

    1989-03-27

    Analysis of glutamic acid decarboxylase (GDC) (EC 4.1.1.15) from Escherichia coli ATCC 11246 revealed the presence of six pyridoxal phosphates (PLPs) as well as six covalently bound pyrroloquinoline quinones (PQQs) per hexameric enzyme molecule. This is the second example of a pyridoxo-quinoprotein, suggesting that other atypical pyridoxoproteins (PLP-containing enzymes) have similar cofactor composition. Since the organism did not produce free PQQ and its quinoprotein glucose dehydrogenase was present in the apo form, free PQQ is not used in the assemblage of GDC. Most probably, biosynthesis of covalently bound cofactor occurs in situ via a route which is different from that of free PQQ. Thus, organisms previously believed to be unable to synthesize (free) PQQ could in fact be able to produce quinoproteins with covalently bound cofactor. Implications for the role of PQQ in eukaryotic cells are discussed.

  2. Crystal structures of Mycobacterium tuberculosis KasA show mode of action within cell wall biosynthesis and its inhibition by thiolactomycin.

    PubMed

    Luckner, Sylvia R; Machutta, Carl A; Tonge, Peter J; Kisker, Caroline

    2009-07-15

    Mycobacteria have a unique cell wall consisting of mycolic acids, very-long-chain lipids that provide protection and allow the bacteria to persist within human macrophages. Inhibition of cell wall biosynthesis is fatal for the organism and a starting point for the discovery and development of novel antibiotics. We determined the crystal structures of KasA, a key enzyme involved in the biosynthesis of long-chain fatty acids, in its apo-form and bound to the natural product inhibitor thiolactomycin. Detailed insights into the interaction of the inhibitor with KasA and the identification of a polyethylene glycol molecule that mimics a fatty acid substrate of approximately 40 carbon atoms length, represent the first atomic view of a mycobacterial enzyme involved in the synthesis of long-chain fatty acids and provide a robust platform for the development of novel thiolactomycin analogs with high affinity for KasA. PMID:19604480

  3. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells.

    PubMed

    Grozio, Alessia; Sociali, Giovanna; Sturla, Laura; Caffa, Irene; Soncini, Debora; Salis, Annalisa; Raffaelli, Nadia; De Flora, Antonio; Nencioni, Alessio; Bruzzone, Santina

    2013-09-01

    NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors. PMID:23880765

  4. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds.

  5. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  6. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis1[OPEN

    PubMed Central

    Wang, Zhen-Yu; Gehring, Chris; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2015-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1. PMID:25416474

  7. IKKbeta mediates cell shape-induced aromatase expression and estrogen biosynthesis in adipose stromal cells.

    PubMed

    Ghosh, Sagar; Choudary, Ahsan; Ghosh, Sangeeta; Musi, Nicolas; Hu, Yanfen; Li, Rong

    2009-05-01

    Aromatase (Cyp19) is a key enzyme in estrogen biosynthesis and an important target in breast cancer therapy. Within tumor microenvironment, tumor cells stimulate aromatase expression in adipose stromal cells (ASCs), which in turn promotes estrogen-dependent growth of estrogen receptor (ER)-positive tumor cells. However, it is not clear how aromatase transcription and estrogen biosynthesis are regulated in ASCs under a precancerous condition. Here we demonstrate that cell shape change alone is sufficient to induce aromatase expression in primary ASCs from cancer-free individuals. The activation of aromatase transcription is mediated by IkappaB kinase-beta (IKKbeta), a kinase previously known for its cancer-promoting activity in tumor cells. Activation of IKKbeta leads to elevated expression of transcription factor CCAAT/enhancer-binding protein-beta (C/EBPbeta), which binds to and stimulates two breast cancer-associated promoters of the aromatase gene. We also show that shape-induced estrogen production in ASCs can stimulate estrogen-dependent transcription in ER-positive breast tumor cells. We suggest that IKKbeta-dependent aromatase induction due to changes in cellular architecture in adipose tissue may contribute to the breast cancer risks associated with high mammagraphic density and obesity.

  8. Analysis of the pmsCEAB Gene Cluster Involved in Biosynthesis of Salicylic Acid and the Siderophore Pseudomonine in the Biocontrol Strain Pseudomonas fluorescens WCS374

    PubMed Central

    Mercado-Blanco, Jesús; van der Drift, Koen M. G. M.; Olsson, Per E.; Thomas-Oates, Jane E.; van Loon, Leendert C.; Bakker, Peter A. H. M.

    2001-01-01

    Mutants of Pseudomonas fluorescens WCS374 defective in biosynthesis of the fluorescent siderophore pseudobactin still display siderophore activity, indicating the production of a second siderophore. A recombinant cosmid clone (pMB374-07) of a WCS374 gene library harboring loci necessary for the biosynthesis of salicylic acid (SA) and this second siderophore pseudomonine was isolated. The salicylate biosynthesis region of WCS374 was localized in a 5-kb EcoRI fragment of pMB374-07. The SA and pseudomonine biosynthesis region was identified by transfer of cosmid pMB374-07 to a pseudobactin-deficient strain of P. putida. Sequence analysis of the 5-kb subclone revealed the presence of four open reading frames (ORFs). Products of two ORFs (pmsC and pmsB) showed homologies with chorismate-utilizing enzymes; a third ORF (pmsE) encoded a protein with strong similarity with enzymes involved in the biosynthesis of siderophores in other bacterial species. The region also contained a putative histidine decarboxylase gene (pmsA). A putative promoter region and two predicted iron boxes were localized upstream of pmsC. We determined by reverse transcriptase-mediated PCR that the pmsCEAB genes are cotranscribed and that expression is iron regulated. In vivo expression of SA genes was achieved in P. putida and Escherichia coli cells. In E. coli, deletions affecting the first ORF (pmsC) diminished SA production, whereas deletion of pmsB abolished it completely. The pmsB gene induced low levels of SA production in E. coli when expressed under control of the lacZ promoter. Several lines of evidence indicate that SA and pseudomonine biosynthesis are related. Moreover, we isolated a Tn5 mutant (374-05) that is simultaneously impaired in SA and pseudomonine production. PMID:11222588

  9. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    PubMed

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  10. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    PubMed

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  11. Metazoan remaining genes for essential amino acid biosynthesis: sequence conservation and evolutionary analyses.

    PubMed

    Costa, Igor R; Thompson, Julie D; Ortega, José Miguel; Prosdocimi, Francisco

    2014-12-24

    Essential amino acids (EAA) consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS) and betaine-homocysteine S-methyltransferase (BHMT) diverged from the expected Tree of Life (ToL) relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.

  12. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis

    PubMed Central

    Wilson, Regina; Kumar, Pradeep; Parashar, Vijay; Vilchèze, Catherine; Veyron-Churlet, Romain; Freundlich, Joel S.; Barnes, S. Whitney; Walker, John R.; Szymonifka, Michael J.; Marchiano, Emily; Shenai, Shubhada; Colangeli, Roberto; Jacobs, William R.; Neiditch, Matthew B.; Kremer, Laurent

    2013-01-01

    We report a new class of thiophene (TP) compounds that kill Mycobacterium tuberculosis (Mtb) by the novel mechanism of Pks13 inhibition. An F79S mutation near the catalytic Ser-55 site in Pks13 conferred TP-resistance in Mtb. Over-expression of wild-type pks13 resulted in TP-resistance and over-expression of the F79S pks13 mutant conferred high-level resistance. In vitro, TP inhibited fatty acyl-AMP loading onto Pks13. TP inhibited mycolic acid biosynthesis in wild-type Mtb, but to a much lesser extent in TP-resistant Mtb. TP treatment was bactericidal and equivalent to the first-line drug isoniazid, but it was less likely to permit emergent resistance. Combined isoniazid and TP treatment exhibited sterilizing activity. Computational-docking identified a possible TP-binding groove within the Pks13 ACP domain. This study confirms that Mtb Pks13 is required for mycolic acid biosynthesis, validates it as a druggable target and demonstrates the therapeutic potential of simultaneously inhibiting multiple targets in the same biosynthetic pathway. PMID:23770708

  13. One-step biosynthesis of α-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris

    PubMed Central

    Song, Yang; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-01-01

    This work aimed to develop a whole-cell biotransformation process for the production of α-ketoisocaproate from L-leucine. A recombinant Escherichia coli strain was constructed by expressing an L-amino acid deaminase from Proteus vulgaris. To enhance α-ketoisocaproate production, the reaction conditions were optimized as follows: whole-cell biocatalyst 0.8 g/L, leucine concentration 13.1 g/L, temperature 35 °C, pH 7.5, and reaction time 20 h. Under the above conditions, the α-ketoisocaproate titer reached 12.7 g/L with a leucine conversion rate of 97.8%. In addition, different leucine feeding strategies were examined to increase the α-ketoisocaproate titer. When 13.1 g/L leucine was added at 2-h intervals (from 0 to 22 h, 12 addition times), the α-ketoisocaproate titer reached 69.1 g/L, while the leucine conversion rate decreased to 50.3%. We have developed an effective process for the biotechnological production of α-ketoisocaproate that is more environmentally friendly than the traditional petrochemical synthesis approach. PMID:26217895

  14. The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis

    SciTech Connect

    Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G.

    2013-02-28

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate {beta}-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes.

  15. Intertissue signal transfer of abscisic acid from vascular cells to guard cells.

    PubMed

    Kuromori, Takashi; Sugimoto, Eriko; Shinozaki, Kazuo

    2014-04-01

    Abscisic acid (ABA) is a phytohormone that responds to environmental stresses, such as water deficiency. Recent studies have shown that ABA biosynthetic enzymes are expressed in the vascular area under both nonstressed and water-stressed growth conditions. However, specific cells in the vasculature involved in ABA biosynthesis have not been identified. Here, we detected the expression of two genes encoding ABA biosynthetic enzymes, ABSCISIC ACID DEFICIENT2 and ABSCISIC ALDEHYDE OXIDASE3, in phloem companion cells in vascular tissues. Furthermore, we identified an ATP-binding cassette transporter, Arabidopsis thaliana ABCG25 (AtABCG25), expressed in the same cells. Additionally, AtABCG25-expressing Spodoptera frugiperda9 culture cells showed an ABA efflux function. Finally, we observed that enhancement of ABA biosynthesis in phloem companion cells induced guard cell responses, even under normal growth conditions. These results show that ABA is synthesized in specific cells and can be transported to target cells in different tissues.

  16. Heme biosynthesis modulation via δ-aminolevulinic acid administration attenuates chronic hypoxia-induced pulmonary hypertension

    PubMed Central

    Alhawaj, Raed; Patel, Dhara; Kelly, Melissa R.; Sun, Dong

    2015-01-01

    This study examines how heme biosynthesis modulation with δ-aminolevulinic acid (ALA) potentially functions to prevent 21-day hypoxia (10% oxygen)-induced pulmonary hypertension in mice and the effects of 24-h organoid culture with bovine pulmonary arteries (BPA) with the hypoxia and pulmonary hypertension mediator endothelin-1 (ET-1), with a focus on changes in superoxide and regulation of micro-RNA 204 (miR204) expression by src kinase phosphorylation of signal transducer and activator of transcription-3 (STAT3). The treatment of mice with ALA attenuated pulmonary hypertension (assessed through echo Doppler flow of the pulmonary valve, and direct measurements of right ventricular systolic pressure and right ventricular hypertrophy), increases in pulmonary arterial superoxide (detected by lucigenin), and decreases in lung miR204 and mitochondrial superoxide dismutase (SOD2) expression. ALA treatment of BPA attenuated ET-1-induced increases in mitochondrial superoxide (detected by MitoSox), STAT3 phosphorylation, and decreases in miR204 and SOD2 expression. Because ALA increases BPA protoporphyrin IX (a stimulator of guanylate cyclase) and cGMP-mediated protein kinase G (PKG) activity, the effects of the PKG activator 8-bromo-cGMP were examined and found to also attenuate the ET-1-induced increase in superoxide. ET-1 increased superoxide production and the detection of protoporphyrin IX fluorescence, suggesting oxidant conditions might impair heme biosynthesis by ferrochelatase. However, chronic hypoxia actually increased ferrochelatase activity in mouse pulmonary arteries. Thus, a reversal of factors increasing mitochondrial superoxide and oxidant effects that potentially influence remodeling signaling related to miR204 expression and perhaps iron availability needed for the biosynthesis of heme by the ferrochelatase reaction could be factors in the beneficial actions of ALA in pulmonary hypertension. PMID:25659899

  17. Insights into the Biosynthesis of 12-Membered Resorcylic Acid Lactones from Heterologous Production in Saccharomyces cerevisiae

    PubMed Central

    2015-01-01

    The phytotoxic fungal polyketides lasiodiplodin and resorcylide inhibit human blood coagulation factor XIIIa, mineralocorticoid receptors, and prostaglandin biosynthesis. These secondary metabolites belong to the 12-membered resorcylic acid lactone (RAL12) subclass of the benzenediol lactone (BDL) family. Identification of genomic loci for the biosynthesis of lasiodiplodin from Lasiodiplodia theobromae and resorcylide from Acremonium zeae revealed collaborating iterative polyketide synthase (iPKS) pairs whose efficient heterologous expression in Saccharomyces cerevisiae provided a convenient access to the RAL12 scaffolds desmethyl-lasiodiplodin and trans-resorcylide, respectively. Lasiodiplodin production was reconstituted in the heterologous host by co-expressing an O-methyltransferase also encoded in the lasiodiplodin cluster, while a glutathione-S-transferase was found not to be necessary for heterologous production. Clarification of the biogenesis of known resorcylide congeners in the heterologous host helped to disentangle the roles that biosynthetic irregularities and chemical interconversions play in generating chemical diversity. Observation of 14-membered RAL homologues during in vivo heterologous biosynthesis of RAL12 metabolites revealed “stuttering” by fungal iPKSs. The close global and domain-level sequence similarities of the orthologous BDL synthases across different structural subclasses implicate repeated horizontal gene transfers and/or cluster losses in different fungal lineages. The absence of straightforward correlations between enzyme sequences and product structural features (the size of the macrocycle, the conformation of the exocyclic methyl group, or the extent of reduction by the hrPKS) suggest that BDL structural variety is the result of a select few mutations in key active site cavity positions. PMID:24597618

  18. Insights into the biosynthesis of 12-membered resorcylic acid lactones from heterologous production in Saccharomyces cerevisiae.

    PubMed

    Xu, Yuquan; Zhou, Tong; Espinosa-Artiles, Patricia; Tang, Ying; Zhan, Jixun; Molnár, István

    2014-05-16

    The phytotoxic fungal polyketides lasiodiplodin and resorcylide inhibit human blood coagulation factor XIIIa, mineralocorticoid receptors, and prostaglandin biosynthesis. These secondary metabolites belong to the 12-membered resorcylic acid lactone (RAL12) subclass of the benzenediol lactone (BDL) family. Identification of genomic loci for the biosynthesis of lasiodiplodin from Lasiodiplodia theobromae and resorcylide from Acremonium zeae revealed collaborating iterative polyketide synthase (iPKS) pairs whose efficient heterologous expression in Saccharomyces cerevisiae provided a convenient access to the RAL12 scaffolds desmethyl-lasiodiplodin and trans-resorcylide, respectively. Lasiodiplodin production was reconstituted in the heterologous host by co-expressing an O-methyltransferase also encoded in the lasiodiplodin cluster, while a glutathione-S-transferase was found not to be necessary for heterologous production. Clarification of the biogenesis of known resorcylide congeners in the heterologous host helped to disentangle the roles that biosynthetic irregularities and chemical interconversions play in generating chemical diversity. Observation of 14-membered RAL homologues during in vivo heterologous biosynthesis of RAL12 metabolites revealed "stuttering" by fungal iPKSs. The close global and domain-level sequence similarities of the orthologous BDL synthases across different structural subclasses implicate repeated horizontal gene transfers and/or cluster losses in different fungal lineages. The absence of straightforward correlations between enzyme sequences and product structural features (the size of the macrocycle, the conformation of the exocyclic methyl group, or the extent of reduction by the hrPKS) suggest that BDL structural variety is the result of a select few mutations in key active site cavity positions. PMID:24597618

  19. Azospirillum brasilense Produces the Auxin-Like Phenylacetic Acid by Using the Key Enzyme for Indole-3-Acetic Acid Biosynthesis

    PubMed Central

    Somers, E.; Ptacek, D.; Gysegom, P.; Srinivasan, M.; Vanderleyden, J.

    2005-01-01

    An antimicrobial compound was isolated from Azospirillum brasilense culture extracts by high-performance liquid chromatography and further identified by gas chromatography-mass spectrometry as the auxin-like molecule, phenylacetic acid (PAA). PAA synthesis was found to be mediated by the indole-3-pyruvate decarboxylase, previously identified as a key enzyme in indole-3-acetic acid (IAA) production in A. brasilense. In minimal growth medium, PAA biosynthesis by A. brasilense was only observed in the presence of phenylalanine (or precursors thereof). This observation suggests deamination of phenylalanine, decarboxylation of phenylpyruvate, and subsequent oxidation of phenylacetaldehyde as the most likely pathway for PAA synthesis. Expression analysis revealed that transcription of the ipdC gene is upregulated by PAA, as was previously described for IAA and synthetic auxins, indicating a positive feedback regulation. The synthesis of PAA by A. brasilense is discussed in relation to previously reported biocontrol properties of A. brasilense. PMID:15812004

  20. Developmental changes in aspartate-family amino acid biosynthesis in pea chloroplasts

    SciTech Connect

    Mills, W.R.; Cato, L.W.; Stephens, B.W.; Reeves, M. )

    1990-05-01

    Isolated chloroplasts are known to synthesize the asp-derived amino acids (ile, hse, lys and thr) from ({sup 14}C)asp (Mills et al, 1980, Plant Physiol. 65, 1166). Now, we have studied the influence of tissue age on essential amino acid biosynthesis in pea (Pisum sativum) plastids. Chloroplasts from the younger (third and fourth) leaves of 12 day old plants, were 2-3 times more active in synthesizing lys and thr from ({sup 14}C)asp than those from older (first or second) leaves. We also examined two key pathway enzymes (aspartate kinase and homoserine dehydrogenase); with each enzyme,a activity in younger leaves was about 2 times that in plastids from older tissue. Both lys- and thr-sensitive forms of aspartate kinase are known in plants; in agreement with earlier work, we found that lys-sensitive activity was about 4 times higher in the younger tissues, while the thr-sensitive activity changed little during development (Davies and Miflin, 1977, Plant Sci. Lett. 9, 323). Recently the role of aspartate kinase and homoserine dehydrogenase in controlling asp-family amino acid synthesis has been questioned (Giovanelli et al, 1989, Plant Physiol. 90, 1584); we hope that measurements of amino acid levels in chloroplasts as well as further enzyme studies will help us to better understand the regulation of asp-family amino acid synthesis.

  1. Local and Systemic Biosynthesis of Salicylic Acid in Infected Cucumber Plants.

    PubMed Central

    Meuwly, P.; Molders, W.; Buchala, A.; Metraux, J. P.

    1995-01-01

    Radiolabeling studies showed that salicylic acid (SA), an essential component in the signal transduction pathway leading to systemic acquired resistance, is synthesized from phenylalanine (Phe) and benzoic acid in cucumber (Cucumis sativus L.) plants inoculated with pathogens. Leaf discs from plants inoculated with either tobacco necrosis virus or Pseudomonas lachrymans incorporated more [14C]Phe into [14C]SA than mock-inoculated controls. The identity of SA was confirmed by gas chromatography-mass spectrometry. No reduction in specific activity of [14C]SA was observed for either free or bound SA between control and infected plants after feeding [14C]Phe. A specific inhibitor of Phe ammonia-lyase, 2-aminoindan-2-phosphonic acid, completely inhibited the incorporation of [14C]Phe into [14C]SA, although plants treated with 2-aminoindan-2-phosphonic acid could still produce [14C]SA from [14C]benzoic acid. Biosynthesis of SA in tissue inoculated with tobacco necrosis virus followed a transient pattern with the highest induction occurring 72 h postinoculation. Uninfected tissues from an infected plant synthesized de novo more SA than did controls. This suggests the involvement of a systemic signal triggering SA synthesis in tissue distant from the site of infection that display systemic acquired resistance. PMID:12228656

  2. Expression of Genes Involved in Porphyrin Biosynthesis Pathway in the Human Renal Cell Carcinoma.

    PubMed

    da Rocha Filho, Hugo Nóbrega; da Silva, Evelin Caroline; Silva, Flávia R O; Courrol, Lilia Coronato; de Mesquita, Carlos Henrique; Bellini, Maria Helena

    2015-09-01

    Renal cell carcinoma (RCC) remains one of the greatest challenges of urological oncology and is the third leading cause of death in genitourinary cancers. Surgery may be curative when patients present with localized disease. Our previous results demonstrated the autofluorescence of blood PpIX in primary RCC mouse model and an increase in fluorescence intensity as a function of growth of the subcutaneous tumor mass. In another work, a nice correlation between the growth of the tumor mass and tissue fluorescence intensity was found. The aim of this study was to evaluate the expression profile of porphyrin biosynthesis pathway-related genes of human kidney cells. We used two kidney cell lines, one normal (HK2) and another malignant (Caki-1). Endogenous and 5-aminolevolinic acid (ALA) induced protoporphyrin IX (PpIX) HK2 and Caki-1 cells were analyzed by fluorescence spectroscopy. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to measure mRNA of those genes. Emission spectra were obtained by exciting the samples at 405 nm. For ALA untreated cells the maximum fluorescence intensity was detected at 635 nm. The mean peak area of emission spectra in both cells types increased linearly in function of cell number. Besides, basal levels of PpIX autofluorescence of each cell concentration of HK2 samples were significantly lower than those of Caki-1 samples. For ALA-treated cells the mean PpIX spectra shows PpIX emission peak at 635 nm with a shoulder at 700 nm. Analysis of PpIX fluorescence intensity ratio between tumor cells and HK2 cells showed that fluorescence intensity was, on average, 26 times greater in tumor cells than in healthy cells. qRT-PCR revealed that in Caki-1 ALA-treated cells, PEPT gene was significantly up-regulated and FECH and HO-1 genes were significantly down regulated in comparison with HK2 ALA-treated cells. In conclusion, our results demonstrate the preferential accumulation of ALA-induced PpIX in human RCC and also indicate that

  3. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    SciTech Connect

    Sifontes, Ángela B.; González, Gema; Tovar, Leidy M.; Méndez, Franklin J.; Gomes, Maria E.; Cañizales, Edgar; Niño-Vega, Gustavo; Villalobos, Hector; Brito, Joaquin L.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity, respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.

  4. Docosahexaenoic acid biosynthesis via fatty acyl elongase and Δ4-desaturase and its modulation by dietary lipid level and fatty acid composition in a marine vertebrate.

    PubMed

    Morais, Sofia; Mourente, Gabriel; Martínez, Almudena; Gras, Noélia; Tocher, Douglas R

    2015-05-01

    The present study presents the first "in vivo" evidence of enzymatic activity and nutritional regulation of a Δ4-desaturase-dependent DHA synthesis pathway in the teleost Solea senegalensis. Juvenile fish were fed diets containing 2 lipid levels (8 and 18%, LL and HL) with either 100% fish oil (FO) or 75% of the FO replaced by vegetable oils (VOs). Fatty acyl elongation (Elovl5) and desaturation (Δ4Fad) activities were measured in isolated enterocytes and hepatocytes incubated with radiolabeled α-linolenic acid (ALA; 18:3n-3) and eicosapentaenoic acid (EPA; 20:5n-3). Tissue distributions of elovl5 and Δ4fad transcripts were also determined, and the transcriptional regulation of these genes in liver and intestine was assessed at fasting and postprandially. DHA biosynthesis from EPA occurred in both cell types, although Elovl5 and Δ4Fad activities tended to be higher in hepatocytes. In contrast, no Δ6Fad activity was detected on (14)C-ALA, which was only elongated to 20:3n-3. Enzymatic activities and gene transcription were modulated by dietary lipid level (LL>HL) and fatty acid (FA) composition (VO>FO), more significantly in the liver than in the intestine, which was reflected in tissue FA compositions. Dietary VO induced a significant up-regulation of Δ4fad transcripts in the liver 6h after feeding, whereas in fasting conditions the effect of lipid level possibly prevailed over or interacted with FA composition in regulating the expression of elovl5 and Δ4fad, which were down-regulated in the liver of fish fed the HL diets. Results indicated functionality and biological relevance of the Δ4 LC-PUFA biosynthesis pathway in S. senegalensis.

  5. Identification of a Δ12 fatty acid desaturase from oil palm (Elaeis guineensis Jacq.) involved in the biosynthesis of linoleic acid by heterologous expression in Saccharomyces cerevisiae.

    PubMed

    Sun, Ruhao; Gao, Lingchao; Yu, Xiaoping; Zheng, Yusheng; Li, Dongdong; Wang, Xinguang

    2016-10-10

    Oil palm (Elaeis guineensis Jacq.) is one of the highest oil-yield crops in the world. A Δ12-desaturases associated with the primary steps of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis were successfully cloned from oil palm and their functions identified. The open reading frames (ORFs) of egFAD2 (GenBank accession: KT023602) consisted of 1176bp and code for 391 amino acids. Their deduced polypeptides showed 75-93% identity to microsomal Δ12-desaturases from other higher plants, and each contained the three histidine clusters typical of the catalytic domains of such enzymes. RT-PCR experiment indicated that the egFAD2 gene exhibited the highest accumulation in the mesocarp of fruits at 120-140 DAP (i.e. the fourth period of fruit development) and, despite having different expression levels, the other four stages were at significantly lower levels compared with the fourth stage. Plasmid pYES2-egFAD2 was transformed into Saccharomyces cerevisiae strain INVSc1 using lithium acetate method for expression under the induction of galactose. Yeast cells transformed with plasmid constructs containing egFAD12 produced an appreciable amount of linoleic acids (18:2(Δ9,)(12)), not normally present in wild-type yeast cells, indicating that the genes encoded functional Δ12-desaturase enzymes. PMID:27370696

  6. Identification of a Δ12 fatty acid desaturase from oil palm (Elaeis guineensis Jacq.) involved in the biosynthesis of linoleic acid by heterologous expression in Saccharomyces cerevisiae.

    PubMed

    Sun, Ruhao; Gao, Lingchao; Yu, Xiaoping; Zheng, Yusheng; Li, Dongdong; Wang, Xinguang

    2016-10-10

    Oil palm (Elaeis guineensis Jacq.) is one of the highest oil-yield crops in the world. A Δ12-desaturases associated with the primary steps of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis were successfully cloned from oil palm and their functions identified. The open reading frames (ORFs) of egFAD2 (GenBank accession: KT023602) consisted of 1176bp and code for 391 amino acids. Their deduced polypeptides showed 75-93% identity to microsomal Δ12-desaturases from other higher plants, and each contained the three histidine clusters typical of the catalytic domains of such enzymes. RT-PCR experiment indicated that the egFAD2 gene exhibited the highest accumulation in the mesocarp of fruits at 120-140 DAP (i.e. the fourth period of fruit development) and, despite having different expression levels, the other four stages were at significantly lower levels compared with the fourth stage. Plasmid pYES2-egFAD2 was transformed into Saccharomyces cerevisiae strain INVSc1 using lithium acetate method for expression under the induction of galactose. Yeast cells transformed with plasmid constructs containing egFAD12 produced an appreciable amount of linoleic acids (18:2(Δ9,)(12)), not normally present in wild-type yeast cells, indicating that the genes encoded functional Δ12-desaturase enzymes.

  7. Improvement of clavulanic acid production in Streptomyces clavuligerus by genetic manipulation of structural biosynthesis genes.

    PubMed

    Jnawali, Hum Nath; Yoo, Jin Cheol; Sohng, Jae Kyung

    2011-06-01

    To enhance clavulanic acid production, four structural clavulanic acid biosynthesis genes, carboxyethylarginine synthase (ceas2), β-lactam synthetase (bls2), clavaminate synthase (cas2) and proclavaminate amidinohydrolase (pah2), were amplified from Streptomyces clavuligerus genomic DNA. They were cloned in the pSET152 integration and pIBR25 expression vectors containing the strong ermE* promoter to generate pHN18 and pHN19, respectively, and both plasmids were introduced into S. clavuligerus by protoplast transformation. Clavulanic acid production was increased by 8.7-fold (to ~310 mg/l) in integrative pHN18 transformants and by 5.1-fold in pHN19 transformants compared to controls. Transcriptional analyses showed that the expression levels of ceas2, bls2, cas2 and pah2 were markedly increased in both transformants as compared with wild-type. The elevation of the ceas2, bls2, cas2 and pah2 transcripts was consistent with the enhanced production of clavulanic acid.

  8. Reinvestigation of the biosynthesis of 2-aminoethylphosphonic acid in Tetrahymena pyriformis

    SciTech Connect

    Barry, R.J.; Dunaway-Mariano, D.; Mariano, P.S.

    1986-05-01

    The initial step in the proposed biosynthetic pathway of 2-aminoethylphosphonate involves an intramolecular rearrangement of phosphoenolpyruvate to form the C-P compound, 3-phosphonopyruvate. A radioisotopic assay with authentic phosphonopyruvate as a cold carrier results in the formation of material chromatographically identical to phosphonopyruvate. NMR and degradation studies reveal that the assayed product is not p-pyr, but rather phosphoglyceric acid. Herein they report results from a reinvestigation of the biosynthesis of AEP in T. pyriformis. Recent study indicates that AEP is formed when radiolabeled Pi or PEP are used as precursors. P-pyr formation has yet to be demonstrated. Results from studies aimed at the direct verification or exclusion of p-pyr as an intermediate in the biosynthetic pathway leading to AEP formation is presented.

  9. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    PubMed

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  10. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid.

    PubMed

    Powell, William S; Rokach, Joshua

    2015-04-01

    Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".

  11. Activation of TRPC6 channels promotes endocannabinoid biosynthesis in neuronal CAD cells

    PubMed Central

    Bardell, Tamera K.; Barker, Eric L.

    2010-01-01

    Calcium influx activates biosynthesis of the endogenous cannabinoids 2-arachidonyl glycerol (2-AG) and anandamide (AEA). The calcium channel involved with endocannabinoid synthesis and release in neurons is still unknown. The canonical TRP (TRPC) channels are calcium-permeable channels that are a homology-based subdivision of the broader class of TRP channels. TRPC3, 6, and 7 are G-protein-gated nonselective cation channels that have been localized to lipid rafts and shown to colocalize with caveolin 1. Because endocannabinoid synthesis has been found to occur “on demand” in a calcium-dependent manner and has been linked to lipid rafts, we explored the potential role of transient receptor potential (TRP) channels in this process. Previously, we observed that after metabolism AEA and arachidonic acid (ArA) can be recycled into new endocannabinoid molecules. Consistent with these previous findings, we found that Cath.a differentiated (CAD) cells pretreated with radiolabeled ArA exhibited a robust increase in 2-AG release in response to TRPC stimulation with the diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG). Furthermore, cells pretreated with [3H]AEA produced a significant amount of AEA and 2-AG upon stimulation of TRPC channels. This process was not mediated through protein kinase C activation. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that only TRPC6 was present in the CAD cells. siRNA-induced knockdown of TRPC6 in the CAD cells abolished OAG-stimulated production of the endocannabionids. This evidence suggests that TRPC6 may be capable of promoting endocannabinoid synthesis in neuronal cells. PMID:20466028

  12. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci.

    PubMed

    Lee, Sang Ho; Wang, Hao; Labroli, Marc; Koseoglu, Sandra; Zuck, Paul; Mayhood, Todd; Gill, Charles; Mann, Paul; Sher, Xinwei; Ha, Sookhee; Yang, Shu-Wei; Mandal, Mihir; Yang, Christine; Liang, Lianzhu; Tan, Zheng; Tawa, Paul; Hou, Yan; Kuvelkar, Reshma; DeVito, Kristine; Wen, Xiujuan; Xiao, Jing; Batchlett, Michelle; Balibar, Carl J; Liu, Jenny; Xiao, Jianying; Murgolo, Nicholas; Garlisi, Charles G; Sheth, Payal R; Flattery, Amy; Su, Jing; Tan, Christopher; Roemer, Terry

    2016-03-01

    The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current β-lactam antibiotics and created an urgent need for new treatment options. We report an S. aureus phenotypic screening strategy involving chemical suppression of the growth inhibitory consequences of depleting late-stage wall teichoic acid biosynthesis. This enabled us to identify early-stage pathway-specific inhibitors of wall teichoic acid biosynthesis predicted to be chemically synergistic with β-lactams. We demonstrated by genetic and biochemical means that each of the new chemical series discovered, herein named tarocin A and tarocin B, inhibited the first step in wall teichoic acid biosynthesis (TarO). Tarocins do not have intrinsic bioactivity but rather demonstrated potent bactericidal synergy in combination with broad-spectrum β-lactam antibiotics against diverse clinical isolates of methicillin-resistant staphylococci as well as robust efficacy in a murine infection model of MRSA. Tarocins and other inhibitors of wall teichoic acid biosynthesis may provide a rational strategy to develop Gram-positive bactericidal β-lactam combination agents active against methicillin-resistant staphylococci.

  13. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci.

    PubMed

    Lee, Sang Ho; Wang, Hao; Labroli, Marc; Koseoglu, Sandra; Zuck, Paul; Mayhood, Todd; Gill, Charles; Mann, Paul; Sher, Xinwei; Ha, Sookhee; Yang, Shu-Wei; Mandal, Mihir; Yang, Christine; Liang, Lianzhu; Tan, Zheng; Tawa, Paul; Hou, Yan; Kuvelkar, Reshma; DeVito, Kristine; Wen, Xiujuan; Xiao, Jing; Batchlett, Michelle; Balibar, Carl J; Liu, Jenny; Xiao, Jianying; Murgolo, Nicholas; Garlisi, Charles G; Sheth, Payal R; Flattery, Amy; Su, Jing; Tan, Christopher; Roemer, Terry

    2016-03-01

    The widespread emergence of methicillin-resistant Staphylococcus aureus (MRSA) has dramatically eroded the efficacy of current β-lactam antibiotics and created an urgent need for new treatment options. We report an S. aureus phenotypic screening strategy involving chemical suppression of the growth inhibitory consequences of depleting late-stage wall teichoic acid biosynthesis. This enabled us to identify early-stage pathway-specific inhibitors of wall teichoic acid biosynthesis predicted to be chemically synergistic with β-lactams. We demonstrated by genetic and biochemical means that each of the new chemical series discovered, herein named tarocin A and tarocin B, inhibited the first step in wall teichoic acid biosynthesis (TarO). Tarocins do not have intrinsic bioactivity but rather demonstrated potent bactericidal synergy in combination with broad-spectrum β-lactam antibiotics against diverse clinical isolates of methicillin-resistant staphylococci as well as robust efficacy in a murine infection model of MRSA. Tarocins and other inhibitors of wall teichoic acid biosynthesis may provide a rational strategy to develop Gram-positive bactericidal β-lactam combination agents active against methicillin-resistant staphylococci. PMID:26962156

  14. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    PubMed

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. PMID:27214242

  15. An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis

    NASA Astrophysics Data System (ADS)

    Scott, James H.; O'Brien, Diane M.; Emerson, David; Sun, Henry; McDonald, Gene D.; Salgado, Antonio; Fogel, Marilyn L.

    2006-12-01

    Stable carbon isotope ratios (δ13C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of δ13C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the δ13C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.

  16. Evidence that the Essential Response Regulator YycF in Streptococcus pneumoniae Modulates Expression of Fatty Acid Biosynthesis Genes and Alters Membrane Composition†

    PubMed Central

    Mohedano, M. Luz; Overweg, Karin; de la Fuente, Alicia; Reuter, Mark; Altabe, Silvia; Mulholland, Francis; de Mendoza, Diego; López, Paloma; Wells, Jerry M.

    2005-01-01

    The YycFG two-component system, originally identified in Bacillus subtilis, is highly conserved among gram-positive bacteria with low G+C contents. In Streptococcus pneumoniae, the YycF response regulator has been reported to be essential for cell growth, but the signal to which it responds and the gene members of the regulon remain unclear. In order to investigate the role of YycFG in S. pneumoniae, we increased the expression of yycF by using a maltose-inducible vector and analyzed the genome-wide effects on transcription and protein expression during the course of yycF expression. The induction of yycF expression increased histidine kinase yycG transcript levels, suggesting an autoregulation of the yycFG operon. Evidence from both proteomic and microarray transcriptome studies as well as analyses of membrane fatty acid composition indicated that YycFG is involved in the regulation of fatty acid biosynthesis pathways and in determining fatty acid chain lengths in membrane lipids. In agreement with recent transcriptome data on pneumococcal cells depleted of YycFG, we also identified several other potential members of the YycFG regulon that are required for virulence and cell wall biosynthesis and metabolism. PMID:15774879

  17. A Novel Class of Plant Type III Polyketide Synthase Involved in Orsellinic Acid Biosynthesis from Rhododendron dauricum

    PubMed Central

    Taura, Futoshi; Iijima, Miu; Yamanaka, Eriko; Takahashi, Hironobu; Kenmoku, Hiromichi; Saeki, Haruna; Morimoto, Satoshi; Asakawa, Yoshinori; Kurosaki, Fumiya; Morita, Hiroyuki

    2016-01-01

    Rhododendron dauricum L. produces daurichromenic acid, the anti-HIV meroterpenoid consisting of sesquiterpene and orsellinic acid (OSA) moieties. To characterize the enzyme responsible for OSA biosynthesis, a cDNA encoding a novel polyketide synthase (PKS), orcinol synthase (ORS), was cloned from young leaves of R. dauricum. The primary structure of ORS shared relatively low identities to those of PKSs from other plants, and the active site of ORS had a unique amino acid composition. The bacterially expressed, recombinant ORS accepted acetyl-CoA as the preferable starter substrate, and produced orcinol as the major reaction product, along with four minor products including OSA. The ORS identified in this study is the first plant PKS that generates acetate-derived aromatic tetraketides, such as orcinol and OSA. Interestingly, OSA production was clearly enhanced in the presence of Cannabis sativa olivetolic acid cyclase, suggesting that the ORS is involved in OSA biosynthesis together with an unidentified cyclase in R. dauricum. PMID:27729920

  18. Discovery of a new family of Dieckmann cyclases essential to tetramic acid and pyridone-based natural products biosynthesis.

    PubMed

    Gui, Chun; Li, Qinglian; Mo, Xuhua; Qin, Xiangjing; Ma, Junying; Ju, Jianhua

    2015-02-01

    Bioinformatic analyses indicate that TrdC, SlgL, LipX2, KirHI, and FacHI belong to a group of highly homologous proteins involved in biosynthesis of actinomycete-derived tirandamycin B, streptolydigin, α-lipomycin, kirromycin, and factumycin, respectively. However, assignment of their biosynthetic roles has remained elusive. Gene inactivation and complementation, in vitro biochemical assays with synthetic analogues, point mutations, and phylogenetic tree analyses reveal that these proteins represent a new family of Dieckmann cyclases that drive tetramic acid and pyridone scaffold biosynthesis.

  19. Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid.

    PubMed

    Paterson, John R; Baxter, Gwendoline; Dreyer, Jacob S; Halket, John M; Flynn, Robert; Lawrence, James R

    2008-12-24

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A (13)C(6) benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology. PMID:19053387

  20. Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid.

    PubMed

    Paterson, John R; Baxter, Gwendoline; Dreyer, Jacob S; Halket, John M; Flynn, Robert; Lawrence, James R

    2008-12-24

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A (13)C(6) benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology.

  1. Salicylic Acid sans Aspirin in Animals and Man: Persistence in Fasting and Biosynthesis from Benzoic Acid

    PubMed Central

    2008-01-01

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A 13C6 benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology. PMID:19053387

  2. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress.

    PubMed

    Horváth, Edit; Csiszár, Jolán; Gallé, Ágnes; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2015-07-01

    The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.

  3. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

    PubMed

    Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina

    2015-05-20

    Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin. PMID:25921651

  4. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

    PubMed

    Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina

    2015-05-20

    Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin.

  5. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides

    PubMed Central

    Liu, Wei; Hancock, Chad N.; Fischer, Joseph W.; Harman, Meredith; Phang, James M.

    2015-01-01

    The metabolism of the nonessential amino acid proline contributes to tumor metabolic reprogramming. Previously we showed that MYC increases proline biosynthesis (PB) from glutamine. Here we show MYC increases the expression of the enzymes in PB at both protein and mRNA levels. Blockade of PB decreases tumor cell growth and energy production. Addition of Δ1-pyrroline-5-carboxylate (P5C) or proline reverses the effects of P5C synthase knockdown but not P5C reductases knockdown. Importantly, the reversal effect of proline was blocked by concomitant proline dehydrogenase/oxidase (PRODH/POX) knockdown. These findings suggest that the important regulatory contribution of PB to tumor growth derives from metabolic cycling between proline and P5C rather than product proline or intermediate P5C. We further document the critical role of PB in maintaining pyridine nucleotide levels by connecting the proline cycle to glycolysis and to the oxidative arm of the pentose phosphate pathway. These findings establish a novel function of PB in tumorigenesis, linking the reprogramming of glucose, glutamine and pyridine nucleotides, and may provide a novel target for antitumor therapy. PMID:26598224

  6. Water-soluble compounds in the herbal preparation Abana inhibit lipid biosynthesis and enhance cholesterol efflux in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Godavarthi, Ashok; Varma, R Sandeep; Nandakumar, Krishna S

    2010-04-01

    Higher concentrations of circulating lipids (cholesterol and triglycerides) and their decreased catabolism pose a major risk in the development of atherosclerosis and coronary heart disease (CHD). Although statins are widely used for treatment of hyperlipidemia, side effects associated with their use have prompted the search for a safer alternative for treating hyperlipidemia. The present study investigated the effect of water-soluble compounds in Abana (WSCA), a polyherbal drug formulation traditionally used in India for the treatment of hyperlipidemia, on lipid metabolism in HepG2 cells. WSCA reduced cholesterol and triglyceride content in the cells and their supernatant. WSCA inhibited the incorporation of [2-14C]acetate into cellular cholesterol and fatty acids, suggesting the inhibition of lipid synthesis. In addition, WSCA inhibited HMG-CoA reductase, a key metabolic enzyme involved in the biosynthesis of cholesterol. WSCA also increased cholesterol and fatty acid secretion into the cell supernatant, suggesting the enhanced removal of cholesterol and fatty acids. Furthermore, WSCA showed decreased linoleic acid (18:2) and arachidonic acid (20:4) content in HepG2 cells. The present study is the first to show that WSCA simultaneously inhibited cellular cholesterol biosynthesis and increased cholesterol secretion into the cell supernatant in HepG2 cells.

  7. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity

    PubMed Central

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-01-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  8. A Single Amino Acid Change Is Responsible for Evolution of Acyltransferase Specificity in Bacterial Methionine Biosynthesis

    SciTech Connect

    Zubieta, C.; Arkus, K.A.J.; Cahoon, R.E.; Jez, J.M.

    2009-05-28

    Bacteria and yeast rely on either homoserine transsuccinylase (HTS, metA) or homoserine transacetylase (HTA; met2) for the biosynthesis of methionine. Although HTS and HTA catalyze similar chemical reactions, these proteins are typically unrelated in both sequence and three-dimensional structure. Here we present the 2.0 {angstrom} resolution x-ray crystal structure of the Bacillus cereus metA protein in complex with homoserine, which provides the first view of a ligand bound to either HTA or HTS. Surprisingly, functional analysis of the B. cereus metA protein shows that it does not use succinyl-CoA as a substrate. Instead, the protein catalyzes the transacetylation of homoserine using acetyl-CoA. Therefore, the B. cereus metA protein functions as an HTA despite greater than 50% sequence identity with bona fide HTS proteins. This result emphasizes the need for functional confirmation of annotations of enzyme function based on either sequence or structural comparisons. Kinetic analysis of site-directed mutants reveals that the B. cereus metA protein and the E. coli HTS share a common catalytic mechanism. Structural and functional examination of the B. cereus metA protein reveals that a single amino acid in the active site determines acetyl-CoA (Glu-111) versus succinyl-CoA (Gly-111) specificity in the metA-like of acyltransferases. Switching of this residue provides a mechanism for evolving substrate specificity in bacterial methionine biosynthesis. Within this enzyme family, HTS and HTA activity likely arises from divergent evolution in a common structural scaffold with conserved catalytic machinery and homoserine binding sites.

  9. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    SciTech Connect

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  10. Qualitative and quantitative aspects of the biosynthesis of ribonucleic acid and of protein in the liver and the lung of the Syrian golden hamster

    PubMed Central

    Witschi, Hanspeter

    1973-01-01

    1. The incorporation of orotic acid and of uridine into total RNA was measured in vivo in liver and lung of the Syrian golden hamster. Specific activities of total acid-soluble UMP were measured in both organs. An estimation of the rate of RNA biosynthesis showed that hamster lung synthesizes RNA at about one-half of the rate of that of hamster liver. 2. The apparent Km and Vmax. values of a few enzymes involved in pyrimidine biosynthesis were measured in the 100000g supernatants of liver and lung. The apparent Km values were very similar in both organs. From the estimated Vmax., it was concluded that hamster lung cells have less capacity to metabolize orotic acid than have liver cells. 3. A time–response and a dose–response study showed that actinomycin D inhibits pulmonary RNA synthesis as efficiently as hepatic RNA synthesis. 4. Protein synthesis, measured as the incorporation of leucine, was inhibited in both organs 30min after a dose of 2mg of cycloheximide/kg. The dose–response patterns were similar in both liver and lung 3h after cycloheximide. 5. It is concluded that RNA and protein synthesis in vivo in hamster lung are very similar to the corresponding reactions in liver. Alterations of RNA and protein synthesis by toxic agents can therefore be evaluated in lung with a similar approach to that used to study the pathological biochemistry of liver. PMID:4780700

  11. Breakdown of the regulatory control of pyrimidine biosynthesis in human breast cancer cells.

    PubMed

    Sigoillot, Frederic D; Sigoillot, Severine M; Guy, Hedeel I

    2004-04-20

    The activity of the de novo pyrimidine biosynthetic pathway in the MCF7 breast cancer cells was 4.4-fold higher than that in normal MCF10A breast cells. Moreover, while pyrimidine biosynthesis in MCF10A was tightly regulated, increasing as the culture matured and subsequently down-regulated in confluency, the biosynthetic rate in MCF7 cells remained elevated and invariant in all growth phases. The flux through the pathway is regulated by carbamoyl phosphate synthetase, a component of the multifunctional protein, CAD. The intracellular CAD concentration was 3.5- to 4-fold higher in MCF7 cells, an observation that explains the high rate of pyrimidine biosynthesis but cannot account for the lack of growth-dependent regulation. In MCF10A cells, up-regulation of the pathway in the exponential growth phase resulted from MAP kinase phosphorylation of CAD Thr456. The pathway was subsequently down-regulated by dephosphorylation of P approximately Thr456 and the phosphorylation of CAD by PKA. In contrast, the CAD P approximately Thr456 was persistently phosphorylated in MCF7 cells, while the PKA site remained unphosphorylated and consequently the activity of the pathway was elevated in all growth phases. In support of this interpretation, inhibition of MAP kinase in MCF7 cells decreased CAD P approximately Thr456, increased PKA phosphorylation and decreased pyrimidine biosynthesis. Conversely, transfection of MCF10A with constructs that elevated MAP kinase activity increased CAD P approximately Thr456 and the pyrimidine biosynthetic rate. The differences in the CAD phosphorylation state responsible for unregulated pyrimidine biosynthesis in MCF7 cells are likely to be a consequence of the elevated MAP kinase activity and the antagonism between MAP kinase- and PKA-mediated phosphorylations. PMID:14991569

  12. Structure, functions, and biosynthesis of glycoconjugates of Leishmania spp. cell surface.

    PubMed

    Novozhilova, N M; Bovin, N V

    2010-06-01

    Cell surface of leishmaniasis causal agent, a parasitic member of Protozoa of Leishmania genus, is covered by thick glycocalix consisting of various phosphatidylinositol-anchored molecules. This review deals with the structure and biosynthesis of the main phosphoglycans and glycoproteins of Leishmania cell surface, many of which incorporate the rare natural D-arabinopyranose, and the problem concerning the involvement of these molecules in support of Leishmania survival during their intricate life cycle is discussed.

  13. Breakdown of the regulatory control of pyrimidine biosynthesis in human breast cancer cells.

    PubMed

    Sigoillot, Frederic D; Sigoillot, Severine M; Guy, Hedeel I

    2004-04-20

    The activity of the de novo pyrimidine biosynthetic pathway in the MCF7 breast cancer cells was 4.4-fold higher than that in normal MCF10A breast cells. Moreover, while pyrimidine biosynthesis in MCF10A was tightly regulated, increasing as the culture matured and subsequently down-regulated in confluency, the biosynthetic rate in MCF7 cells remained elevated and invariant in all growth phases. The flux through the pathway is regulated by carbamoyl phosphate synthetase, a component of the multifunctional protein, CAD. The intracellular CAD concentration was 3.5- to 4-fold higher in MCF7 cells, an observation that explains the high rate of pyrimidine biosynthesis but cannot account for the lack of growth-dependent regulation. In MCF10A cells, up-regulation of the pathway in the exponential growth phase resulted from MAP kinase phosphorylation of CAD Thr456. The pathway was subsequently down-regulated by dephosphorylation of P approximately Thr456 and the phosphorylation of CAD by PKA. In contrast, the CAD P approximately Thr456 was persistently phosphorylated in MCF7 cells, while the PKA site remained unphosphorylated and consequently the activity of the pathway was elevated in all growth phases. In support of this interpretation, inhibition of MAP kinase in MCF7 cells decreased CAD P approximately Thr456, increased PKA phosphorylation and decreased pyrimidine biosynthesis. Conversely, transfection of MCF10A with constructs that elevated MAP kinase activity increased CAD P approximately Thr456 and the pyrimidine biosynthetic rate. The differences in the CAD phosphorylation state responsible for unregulated pyrimidine biosynthesis in MCF7 cells are likely to be a consequence of the elevated MAP kinase activity and the antagonism between MAP kinase- and PKA-mediated phosphorylations.

  14. (p)ppGpp modulates cell size and the initiation of DNA replication in Caulobacter crescentus in response to a block in lipid biosynthesis.

    PubMed

    Stott, Kristina V; Wood, Shannon M; Blair, Jimmy A; Nguyen, Bao T; Herrera, Anabel; Mora, Yannet G Perez; Cuajungco, Math P; Murray, Sean R

    2015-03-01

    Stress conditions, such as a block in fatty acid synthesis, signal bacterial cells to exit the cell cycle. Caulobacter crescentus FabH is a cell-cycle-regulated β-ketoacyl-acyl carrier protein synthase that initiates lipid biosynthesis and is essential for growth in rich media. To explore how C. crescentus responds to a block in lipid biosynthesis, we created a FabH-depletion strain. We found that FabH depletion blocks lipid biosynthesis in rich media and causes a cell cycle arrest that requires the alarmone (p)ppGpp for adaptation. Notably, basal levels of (p)ppGpp coordinate both a reduction in cell volume and a block in the over-initiation of DNA replication in response to FabH depletion. The gene ctrA encodes a master transcription factor that directly regulates 95 cell-cycle-controlled genes while also functioning to inhibit the initiation of DNA replication. Here, we demonstrate that ctrA transcription is (p)ppGpp-dependent during fatty acid starvation. CtrA fails to accumulate when FabH is depleted in the absence of (p)ppGpp due to a substantial reduction in ctrA transcription. The (p)ppGpp-dependent maintenance of ctrA transcription during fatty acid starvation initiated from only one of the two ctrA promoters. In the absence of (p)ppGpp, the majority of FabH-depleted cells enter a viable but non-culturable state, with multiple chromosomes, and are unable to recover from the miscoordination of cell cycle events. Thus, basal levels of (p)ppGpp facilitate C. crescentus' re-entry into the cell cycle after termination of fatty acid starvation.

  15. (p)ppGpp modulates cell size and the initiation of DNA replication in Caulobacter crescentus in response to a block in lipid biosynthesis.

    PubMed

    Stott, Kristina V; Wood, Shannon M; Blair, Jimmy A; Nguyen, Bao T; Herrera, Anabel; Mora, Yannet G Perez; Cuajungco, Math P; Murray, Sean R

    2015-03-01

    Stress conditions, such as a block in fatty acid synthesis, signal bacterial cells to exit the cell cycle. Caulobacter crescentus FabH is a cell-cycle-regulated β-ketoacyl-acyl carrier protein synthase that initiates lipid biosynthesis and is essential for growth in rich media. To explore how C. crescentus responds to a block in lipid biosynthesis, we created a FabH-depletion strain. We found that FabH depletion blocks lipid biosynthesis in rich media and causes a cell cycle arrest that requires the alarmone (p)ppGpp for adaptation. Notably, basal levels of (p)ppGpp coordinate both a reduction in cell volume and a block in the over-initiation of DNA replication in response to FabH depletion. The gene ctrA encodes a master transcription factor that directly regulates 95 cell-cycle-controlled genes while also functioning to inhibit the initiation of DNA replication. Here, we demonstrate that ctrA transcription is (p)ppGpp-dependent during fatty acid starvation. CtrA fails to accumulate when FabH is depleted in the absence of (p)ppGpp due to a substantial reduction in ctrA transcription. The (p)ppGpp-dependent maintenance of ctrA transcription during fatty acid starvation initiated from only one of the two ctrA promoters. In the absence of (p)ppGpp, the majority of FabH-depleted cells enter a viable but non-culturable state, with multiple chromosomes, and are unable to recover from the miscoordination of cell cycle events. Thus, basal levels of (p)ppGpp facilitate C. crescentus' re-entry into the cell cycle after termination of fatty acid starvation. PMID:25573769

  16. Retroconversion of docosapentaenoic acid (n-6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna.

    PubMed

    Strandberg, Ursula; Taipale, Sami J; Kainz, Martin J; Brett, Michael T

    2014-06-01

    The aim of this study was to assess metabolic pathways for arachidonic acid (20:4n-6) biosynthesis in Daphnia magna. Neonates of D. magna were maintained on [(13)C] enriched Scenedesmus obliquus and supplemented with liposomes that contained separate treatments of unlabeled docosapentaenoic acid (22:5n-6), 20:4n-6, linoleic acid (18:2n-6) or oleic acid (18:1n-9). Daphnia in the control treatment, without any supplementary fatty acids (FA) containing only trace amounts of 20:4n-6 (~0.3% of all FA). As expected, the highest proportion of 20:4n-6 (~6.3%) was detected in Daphnia that received liposomes supplemented with this FA. Higher availability of 18:2n-6 in the diet increased the proportion of 18:2n-6 in Daphnia, but the proportion of 20:4n-6 was not affected. Daphnia supplemented with 22:5n-6 contained ~3.5% 20:4n-6 in the lipids and FA specific stable isotope analyses validated that the increase in the proportion of 20:4n-6 was due to retroconversion of unlabeled 22:5n-6. These results suggest that chain shortening of 22:5n-6 is a more efficient pathway to synthesize 20:4n-6 in D. magna than elongation and desaturation of 18:2n-6. These results may at least partially explain the discrepancies noticed between phytoplankton FA composition and the expected FA composition in freshwater cladocerans. Finally, retroconversion of dietary 22:5n-6 to 20:4n-6 indicates Daphnia efficiently retain long chain n-6 FA in lake food webs, which might be important for the nutritional ecology of fish.

  17. How do background ozone concentrations affect the biosynthesis of rosmarinic acid in Melissa officinalis?

    PubMed

    Döring, Anne S; Pellegrini, Elisa; Della Batola, Michele; Nali, Cristina; Lorenzini, Giacomo; Petersen, Maike

    2014-03-01

    Lemon balm (Melissa officinalis; Lamiaceae) plants were exposed to background ozone (O3) dosages (80ppb for 5h), because high background levels of O3 are considered to be as harmful as episodic O3 peaks. Immediately at the end of fumigation the plants appeared visually symptomless, but necrotic lesions were observed later. The biosynthesis of rosmarinic acid (RA) comprises eight enzymes, among them phenylalanine ammonia-lyase (PAL), 4-coumarate:coenzyme A ligase (4CL), tyrosine aminotransferase (TAT) and rosmarinic acid synthase (RAS). The transcript levels of these genes have been investigated by quantitative RT-PCR. There was a quick up-regulation of all genes at 3h of O3 exposure, but at 24h from beginning of exposure (FBE) only RAS and PAL were up-regulated. The specific activity of RAS was closely correlated with a decrease of RA concentration in lemon balm leaves. The specific activity of PAL increased at 12h FBE to 163% in comparison to control levels. This work provides insight into the effect of O3 stress on the formation of the main phenolic ingredient of the pharmaceutically important plant M. officinalis. PMID:24484956

  18. Atomic-Level Characterization of the Chain-Flipping Mechanism in Fatty-Acids Biosynthesis.

    PubMed

    Colizzi, Francesco; Masetti, Matteo; Recanatini, Maurizio; Cavalli, Andrea

    2016-08-01

    During fatty acids biosynthesis the elongating acyl chain is sequestered within the core of the highly conserved acyl carrier protein (ACP). At each catalytic step, the acyl intermediates are transiently delivered from ACP to the active site of the enzymatic counterparts and, at the same time, are protected from the solvent to prevent nonselective reactivity. Yet, the molecular determinants of such a universal transition-termed chain flipping-remain poorly understood. Here we capture the atomic-level details of the chain-flipping mechanism by using metadynamics simulations. We observe the fatty-acid chain gliding through the protein-protein interface with barely 30% of its surface exposed to water molecules. The small ACP's helix III acts as gatekeeper of the process, and we find its conformational plasticity critical for a successful substrate transfer. The results are in agreement with a wide range of experimental observations and provide unprecedented insight on the molecular determinants and driving forces of the chain-flipping process. PMID:27409360

  19. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice

    PubMed Central

    Byeon, Yeong; Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2015-01-01

    Caffeic acid O-methyltransferase (COMT) methylates N-acetylserotonin into melatonin; that is, it has N-acetylserotonin O-methyltransferase (ASMT) activity. The ASMT activity of COMT was first detected in Arabidopsis thaliana COMT (AtCOMT). To confirm the involvement of COMT on melatonin synthesis in other plant species, the ASMT activity of a COMT from rice (Oryza sativa) (OsCOMT) was evaluated. Purified recombinant OsCOMT protein from Escherichia coli was used to validate the high ASMT activity of OsCOMT, similar to that of AtCOMT. The K m and V max values for the ASMT activity of OsCOMT were 243 µM and 2400 pmol min−1 mg protein−1, which were similar to those of AtCOMT. Similar to AtCOMT, OsCOMT was localized in the cytoplasm. In vitro ASMT activity was significantly inhibited by either caffeic acid or quercetin in a dose-dependent manner. Analogously, in vivo production of melatonin was significantly inhibited by quercetin in 4-week-old detached rice leaves. Lastly, the transgenic rice plants overexpressing rice COMT showed an increase in melatonin levels whereas transgenic rice plants suppressing the rice COMT had a significant decrease on melatonin levels, suggestive of the direct role of COMT in melatonin biosynthesis in plants. PMID:26276868

  20. How do background ozone concentrations affect the biosynthesis of rosmarinic acid in Melissa officinalis?

    PubMed

    Döring, Anne S; Pellegrini, Elisa; Della Batola, Michele; Nali, Cristina; Lorenzini, Giacomo; Petersen, Maike

    2014-03-01

    Lemon balm (Melissa officinalis; Lamiaceae) plants were exposed to background ozone (O3) dosages (80ppb for 5h), because high background levels of O3 are considered to be as harmful as episodic O3 peaks. Immediately at the end of fumigation the plants appeared visually symptomless, but necrotic lesions were observed later. The biosynthesis of rosmarinic acid (RA) comprises eight enzymes, among them phenylalanine ammonia-lyase (PAL), 4-coumarate:coenzyme A ligase (4CL), tyrosine aminotransferase (TAT) and rosmarinic acid synthase (RAS). The transcript levels of these genes have been investigated by quantitative RT-PCR. There was a quick up-regulation of all genes at 3h of O3 exposure, but at 24h from beginning of exposure (FBE) only RAS and PAL were up-regulated. The specific activity of RAS was closely correlated with a decrease of RA concentration in lemon balm leaves. The specific activity of PAL increased at 12h FBE to 163% in comparison to control levels. This work provides insight into the effect of O3 stress on the formation of the main phenolic ingredient of the pharmaceutically important plant M. officinalis.

  1. Atomic-Level Characterization of the Chain-Flipping Mechanism in Fatty-Acids Biosynthesis.

    PubMed

    Colizzi, Francesco; Masetti, Matteo; Recanatini, Maurizio; Cavalli, Andrea

    2016-08-01

    During fatty acids biosynthesis the elongating acyl chain is sequestered within the core of the highly conserved acyl carrier protein (ACP). At each catalytic step, the acyl intermediates are transiently delivered from ACP to the active site of the enzymatic counterparts and, at the same time, are protected from the solvent to prevent nonselective reactivity. Yet, the molecular determinants of such a universal transition-termed chain flipping-remain poorly understood. Here we capture the atomic-level details of the chain-flipping mechanism by using metadynamics simulations. We observe the fatty-acid chain gliding through the protein-protein interface with barely 30% of its surface exposed to water molecules. The small ACP's helix III acts as gatekeeper of the process, and we find its conformational plasticity critical for a successful substrate transfer. The results are in agreement with a wide range of experimental observations and provide unprecedented insight on the molecular determinants and driving forces of the chain-flipping process.

  2. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice.

    PubMed

    Byeon, Yeong; Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2015-11-01

    Caffeic acid O-methyltransferase (COMT) methylates N-acetylserotonin into melatonin; that is, it has N-acetylserotonin O-methyltransferase (ASMT) activity. The ASMT activity of COMT was first detected in Arabidopsis thaliana COMT (AtCOMT). To confirm the involvement of COMT on melatonin synthesis in other plant species, the ASMT activity of a COMT from rice (Oryza sativa) (OsCOMT) was evaluated. Purified recombinant OsCOMT protein from Escherichia coli was used to validate the high ASMT activity of OsCOMT, similar to that of AtCOMT. The K m and V max values for the ASMT activity of OsCOMT were 243 µM and 2400 pmol min(-1) mg protein(-1), which were similar to those of AtCOMT. Similar to AtCOMT, OsCOMT was localized in the cytoplasm. In vitro ASMT activity was significantly inhibited by either caffeic acid or quercetin in a dose-dependent manner. Analogously, in vivo production of melatonin was significantly inhibited by quercetin in 4-week-old detached rice leaves. Lastly, the transgenic rice plants overexpressing rice COMT showed an increase in melatonin levels whereas transgenic rice plants suppressing the rice COMT had a significant decrease on melatonin levels, suggestive of the direct role of COMT in melatonin biosynthesis in plants.

  3. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants.

    PubMed

    Qualley, Anthony V; Widhalm, Joshua R; Adebesin, Funmilayo; Kish, Christine M; Dudareva, Natalia

    2012-10-01

    Despite the importance of benzoic acid (BA) as a precursor for a wide array of primary and secondary metabolites, its biosynthesis in plants has not been fully elucidated. BA formation from phenylalanine requires shortening of the C(3) side chain by two carbon units, which can occur by a non-β-oxidative route and/or a β-oxidative pathway analogous to the catabolism of fatty acids. Enzymes responsible for the first and last reactions of the core BA β-oxidative pathway (cinnamic acid → cinnamoyl-CoA → 3-hydroxy-3-phenylpropanoyl-CoA → 3-oxo-3-phenylpropanoyl-CoA → BA-CoA) have previously been characterized in petunia, a plant with flowers rich in phenylpropanoid/benzenoid volatile compounds. Using a functional genomics approach, we have identified a petunia gene encoding cinnamoyl-CoA hydratase-dehydrogenase (PhCHD), a bifunctional peroxisomal enzyme responsible for two consecutively occurring unexplored intermediate steps in the core BA β-oxidative pathway. PhCHD spatially, developmentally, and temporally coexpresses with known genes in the BA β-oxidative pathway, and correlates with emission of benzenoid volatiles. Kinetic analysis of recombinant PhCHD revealed it most efficiently converts cinnamoyl-CoA to 3-oxo-3-phenylpropanoyl-CoA, thus forming the substrate for the final step in the pathway. Down-regulation of PhCHD expression in petunia flowers resulted in reduced CHD enzyme activity, as well as decreased formation of BA-CoA, BA and their derived volatiles. Moreover, transgenic lines accumulated the PhCHD substrate cinnamoyl-CoA and the upstream pathway intermediate cinnamic acid. Discovery of PhCHD completes the elucidation of the core BA β-oxidative route in plants, and together with the previously characterized CoA-ligase and thiolase enzymes, provides evidence that the whole pathway occurs in peroxisomes.

  4. A structural basis for the biosynthesis of the major chlorogenic acids found in coffee.

    PubMed

    Lallemand, Laura A; Zubieta, Chloe; Lee, Soon Goo; Wang, Yechun; Acajjaoui, Samira; Timmins, Joanna; McSweeney, Sean; Jez, Joseph M; McCarthy, James G; McCarthy, Andrew A

    2012-09-01

    Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.

  5. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli

    PubMed Central

    Sengupta, Sudeshna; Goonewardena, Lakshani; Juturu, Veeresh

    2015-01-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  6. Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli.

    PubMed

    Sengupta, Sudeshna; Jonnalagadda, Sudhakar; Goonewardena, Lakshani; Juturu, Veeresh

    2015-12-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroF(FBR), aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  7. Characterization of the formation of branched short-chain fatty acid:CoAs for bitter acid biosynthesis in hop glandular trichomes.

    PubMed

    Xu, Haiyang; Zhang, Fengxia; Liu, Baoxiu; Huhman, David V; Sumner, Lloyd W; Dixon, Richard A; Wang, Guodong

    2013-07-01

    Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyl-CoAs (e.g. isobutyryl-CoA, isovaleryl-CoA and 2-methylbutyryl-CoA), derived from the degradation of branched-chain amino acids (BCAAs), are essential building blocks for the biosynthesis of bitter acids in hops. However, little is known regarding what components are needed to produce and maintain the pool of branched short-chain acyl-CoAs in hop trichomes. Here, we present several lines of evidence that both CoA ligases and thioesterases are likely involved in bitter acid biosynthesis. Recombinant HlCCL2 (carboxyl CoA ligase) protein had high specific activity for isovaleric acid as a substrate (K cat /K m = 4100 s(-1) M(-1)), whereas recombinant HlCCL4 specifically utilized isobutyric acid (Kcat/K m = 1800 s(-1) M(-1)) and 2-methylbutyric acid (Kcat/K m = 6900 s(-1) M(-1)) as substrates. Both HlCCLs, like hop valerophenone synthase (HlVPS), were expressed strongly in glandular trichomes and localized to the cytoplasm. Co-expression of HlCCL2 and HlCCL4 with HlVPS in yeast led to significant production of acylphloroglucinols (the direct precursors for bitter acid biosynthesis), which further confirmed the biochemical function of these two HlCCLs in vivo. Functional identification of a thioesterase that catalyzed the reverse reaction of CCLs in mitochondria, together with the comprehensive analysis of genes involved BCAA catabolism, supported the idea that cytosolic CoA ligases are required for linking BCAA degradation and bitter acid biosynthesis in glandular trichomes. The evolution and other possible physiological roles of branched short-chain fatty acid:CoA ligases in planta are also discussed.

  8. Genomic Analysis of Genes Involved in the Biosynthesis of Very Long Chain Polyunsaturated Fatty Acids in Thraustochytrium sp. 26185.

    PubMed

    Zhao, Xianming; Dauenpen, Meesapyodsuk; Qu, Cunmin; Qiu, Xiao

    2016-09-01

    Thraustochytrium sp. 26185 is a marine protist that can produce a large amount of docosahexaenoic acid (DHA, 22:6n-3), an ω3 very long chain polyunsaturated fatty acid (VLCPUFA) of nutritional importance. However, the mechanism of how this fatty acid is synthesized and assembled into the storage lipid triacylglycerol is unclear. Here we report sequencing of the whole genome and genomic analysis of genes involved in the biosynthesis and assembly of the fatty acids in this species. Genome sequencing produced a total of 2,418,734,139 bp clean sequences with about 62 fold genome coverage. Annotation of the genome sequences revealed 10,797 coding genes. Among them, 10,216 genes could be assigned into 25 KOG classes where 451 genes were specifically assigned to the group of lipid transport and metabolism. Detailed analysis of these genes revealed co-existence of both aerobic pathway and anaerobic pathways for the biosynthesis of DHA in this species. However, in the aerobic pathway, a key gene encoding stearate Δ9 desaturase introducing the first double bond to long chain saturated fatty acid 18:0 was missing from the genome. Genomic survey of genes involved in the acyl trafficking among glycerolipids showed that, unlike plants, this protist did not possess phosphatidylcholine:diacylglycerol cholinephosphotransferase, an important enzyme in bridging two types of glycerolipids, diacylglycerols (DAG) and phosphatidylcholines (PtdCho). These results shed new insight on the biosynthesis and assembly of VLCPUFA in the Thraustochytrium. PMID:27514858

  9. Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana)

    PubMed Central

    2012-01-01

    Background Protoplast technologies offer unique opportunities for fundamental research and to develop novel germplasm through somatic hybridization, organelle transfer, protoclonal variation, and direct insertion of DNA. Applying protoplast technologies to develop Dutch elm disease resistant American elms (Ulmus americana L.) was proposed over 30 years ago, but has not been achieved. A primary factor restricting protoplast technology to American elm is the resistance of the cell walls to enzymatic degradation and a long lag phase prior to cell wall re-synthesis and cell division. Results This study suggests that resistance to enzymatic degradation in American elm was due to water soluble phenylpropanoids. Incubating tobacco (Nicotiana tabacum L.) leaf tissue, an easily digestible species, in aqueous elm extract inhibits cell wall digestion in a dose dependent manner. This can be mimicked by p-coumaric or ferulic acid, phenylpropanoids known to re-enforce cell walls. Culturing American elm tissue in the presence of 2-aminoindane-2-phosphonic acid (AIP; 10-150 μM), an inhibitor of phenylalanine ammonia lyase (PAL), reduced flavonoid content, decreased tissue browning, and increased isolation rates significantly from 11.8% (±3.27) in controls to 65.3% (±4.60). Protoplasts isolated from callus grown in 100 μM AIP developed cell walls by day 2, had a division rate of 28.5% (±3.59) by day 6, and proliferated into callus by day 14. Heterokaryons were successfully produced using electrofusion and fused protoplasts remained viable when embedded in agarose. Conclusions This study describes a novel approach of modifying phenylpropanoid biosynthesis to facilitate efficient protoplast isolation which has historically been problematic for American elm. This isolation system has facilitated recovery of viable protoplasts capable of rapid cell wall re-synthesis and sustained cell division to form callus. Further, isolated protoplasts survived electrofusion and viable

  10. Auxin Biosynthesis

    PubMed Central

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then undergoes oxidative decarboxylation catalyzed by the YUCCA (YUC) family of flavin monooxygenases to produce IAA. This two-step auxin biosynthesis pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. The successful elucidation of a complete auxin biosynthesis pathway provides the necessary tools for effectively modulating auxin concentrations in plants with temporal and spatial precision. The progress in auxin biosynthesis also lays a foundation for understanding polar auxin transport and for dissecting auxin signaling mechanisms during plant development. PMID:24955076

  11. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development

    PubMed Central

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-01-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. PMID:27382114

  12. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development.

    PubMed

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-08-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. PMID:27382114

  13. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development.

    PubMed

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-08-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues.

  14. Temperature-Sensitive Mutants of a Chinese Hamster Cell Line. I. Selection of Clones with Defective Macromolecular Biosynthesis

    PubMed Central

    Roufa, Donald J.; Reed, Susan J.

    1975-01-01

    Temperature-sensitive clones have been selected from a mutagenized culture of Chinese hamster lung cells by a procedure involving bromodeoxy-uridine (BrdU) incorporation and irradiation with black light. The selection procedure used in these studies was adapted from methods developed by others to yield mutants that cease DNA replication within a short time after they are transferred to nonpermissive temperature. After mutagenesis with ethyl methanosulfonate ten clones survived the selection procedure. Three of the clones (mutants) were temperature-sensitive as measured by growth properties. Two mutants ceased DNA synthesis within six hours of being shifted to 39° and the third mutant continued to synthesize DNA at nonpermissive temperature at a reduced rate for at least 24 hours. Thus, all three mutants survived the selection procedure for understandable reasons, since each was unable to incorporate sufficient BrdU at 39° to lethally protosensitize its DNA during the standard exposure period. The two mutants that cease DNA synthesis at high temperature (clones 115–47 and 115–53) also stop incorporating radioactive amino acids and uridine within six hours at 39°. Their complex phenotype, i.e. defective DNA, RNA and protein biosynthesis, is reversible. When these mutants were returned to 33° after 8 hours at 39°, both resumed DNA synthesis immediately (< 1 hour). Reversal of defective DNA synthesis in both mutants was sensitive to drugs that inhibit protein biosynthesis specifically. Those same drugs, as well as toxic amino acids analogs, also effected a striking mutant phenocopy in wild-type cells. The phenocopy produced by amino acid analogs that are incorporated into mammalian proteins suggested that one or more proteins must be synthesized continuously to support mammalian cells engaged in programmed DNA replication. PMID:1232024

  15. Cellular and Subcellular Localization of S-Adenosyl-l-Methionine:Benzoic Acid Carboxyl Methyltransferase, the Enzyme Responsible for Biosynthesis of the Volatile Ester Methylbenzoate in Snapdragon Flowers1

    PubMed Central

    Kolosova, Natalia; Sherman, Debra; Karlson, Dale; Dudareva, Natalia

    2001-01-01

    The benzenoid ester, methylbenzoate is one of the most abundant scent compounds detected in the majority of snapdragon (Antirrhinum majus) varieties. It is produced in upper and lower lobes of petals by enzymatic methylation of benzoic acid in the reaction catalyzed by S-adenosyl-l-methionine:benzoic acid carboxyl methyltransferase (BAMT). To identify the location of methylbenzoate biosynthesis, we conducted an extensive immunolocalization study by light and electron microscopy at cellular and subcellular levels using antibodies against BAMT protein. BAMT was immunolocalized predominantly in the conical cells of the inner epidermal layer and, to a much lesser extent, in the cells of the outer epidermis of snapdragon flower petal lobes. It was also located in the inner epidermis of the corolla tube with little BAMT protein detected in the outer epidermis and in the yellow hairs within the tube on the bee's way to the nectar. These results strongly suggest that scent biosynthetic genes are expressed almost exclusively in the epidermal cells of floral organs. Immunogold labeling studies reveal that BAMT is a cytosolic enzyme, suggesting cytosolic location of methylbenzoate biosynthesis. The concentration of scent production on flower surfaces that face the pollinators during landing may increase pollination efficiency and also help to minimize the biosynthetic cost of advertising for pollinators. PMID:11457946

  16. Two distinct intracellular Ca2+-release components act in opposite ways in the regulation of the auxin-dependent MIA biosynthesis in Catharanthus roseus cells.

    PubMed

    Poutrain, Pierre; Mazars, Christian; Thiersault, Martine; Rideau, Marc; Pichon, Olivier

    2009-01-01

    Calcium-mediated signalling is ubiquitous in both animals and plants. Changes in cytoplasmic free Ca(2+) concentration couple diverse arrays of stimuli to their specific responses, the specificity of the stimulus being determined by integrated actions between multiple Ca(2+) mobilization pathways. In this work, a pharmacological approach is reported, aimed at deciphering the role of calcium as a second messenger in the transduction pathway leading to the inhibitory effect of 2,4-dichlorophenoxyacetic acid (2,4-D), in regulating monoterpene indole alkaloid (MIA) biosynthesis in Catharanthus roseus cells. It is demonstrated here that auxin-dependent MIA biosynthesis is differentially regulated by two distinct calcium release components from internal stores in C. roseus showing pharmacological profiles similar to those displayed by animal RyR and IP3 channels. MIA biosynthesis is stimulated by caffeine (Ca(2+)-release activator through RyR channels) and by heparin and TMB8 (Ca(2+)-release inhibitors of IP3 channels) whereas MIA biosynthesis is inhibited by mastoparan (Ca(2+)-release activator of IP3 channels) and by ruthenium red and DHBP (Ca(2+)-release inhibitors of RyR channels). Furthermore, calcium, as 2,4-D, acts on MIA biosynthesis by regulating the monoterpene moiety of the MIA biosynthesis pathway since calcium channel modulators preferentially modulate g10h expression, the gene encoding the enzyme of the secoiridoid monoterpene pathway, that is the major target of 2,4-D action. In addition, the simultaneous use of caffeine (an activator of RyR channel in animals) and TMB8 (an inhibitor of the IP3 channel) in 2,4-D treated cells triggers a synergistic effect on MIA accumulation. This finding suggests an opposite and co-ordinated action of multiple Ca(2+)-release pathways in 2,4-D signal transduction, adding a new level of complexity to calcium signalling in plants and questioning the existence of RyR and IP3 channels in plants.

  17. Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing.

    PubMed

    Azoulay-Shemer, Tamar; Bagheri, Andisheh; Wang, Cun; Palomares, Axxell; Stephan, Aaron B; Kunz, Hans-Henning; Schroeder, Julian I

    2016-06-01

    Starch metabolism is involved in stomatal movement regulation. However, it remains unknown whether starch-deficient mutants affect CO2-induced stomatal closing and whether starch biosynthesis in guard cells and/or mesophyll cells is rate limiting for high CO2-induced stomatal closing. Stomatal responses to [CO2] shifts and CO2 assimilation rates were compared in Arabidopsis (Arabidopsis thaliana) mutants that were either starch deficient in all plant tissues (ADP-Glc-pyrophosphorylase [ADGase]) or retain starch accumulation in guard cells but are starch deficient in mesophyll cells (plastidial phosphoglucose isomerase [pPGI]). ADGase mutants exhibited impaired CO2-induced stomatal closure, but pPGI mutants did not, showing that starch biosynthesis in guard cells but not mesophyll functions in CO2-induced stomatal closing. Nevertheless, starch-deficient ADGase mutant alleles exhibited partial CO2 responses, pointing toward a starch biosynthesis-independent component of the response that is likely mediated by anion channels. Furthermore, whole-leaf CO2 assimilation rates of both ADGase and pPGI mutants were lower upon shifts to high [CO2], but only ADGase mutants caused impairments in CO2-induced stomatal closing. These genetic analyses determine the roles of starch biosynthesis for high CO2-induced stomatal closing.

  18. Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing1[OPEN

    PubMed Central

    Stephan, Aaron B.; Schroeder, Julian I.

    2016-01-01

    Starch metabolism is involved in stomatal movement regulation. However, it remains unknown whether starch-deficient mutants affect CO2-induced stomatal closing and whether starch biosynthesis in guard cells and/or mesophyll cells is rate limiting for high CO2-induced stomatal closing. Stomatal responses to [CO2] shifts and CO2 assimilation rates were compared in Arabidopsis (Arabidopsis thaliana) mutants that were either starch deficient in all plant tissues (ADP-Glc-pyrophosphorylase [ADGase]) or retain starch accumulation in guard cells but are starch deficient in mesophyll cells (plastidial phosphoglucose isomerase [pPGI]). ADGase mutants exhibited impaired CO2-induced stomatal closure, but pPGI mutants did not, showing that starch biosynthesis in guard cells but not mesophyll functions in CO2-induced stomatal closing. Nevertheless, starch-deficient ADGase mutant alleles exhibited partial CO2 responses, pointing toward a starch biosynthesis-independent component of the response that is likely mediated by anion channels. Furthermore, whole-leaf CO2 assimilation rates of both ADGase and pPGI mutants were lower upon shifts to high [CO2], but only ADGase mutants caused impairments in CO2-induced stomatal closing. These genetic analyses determine the roles of starch biosynthesis for high CO2-induced stomatal closing. PMID:27208296

  19. Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing.

    PubMed

    Azoulay-Shemer, Tamar; Bagheri, Andisheh; Wang, Cun; Palomares, Axxell; Stephan, Aaron B; Kunz, Hans-Henning; Schroeder, Julian I

    2016-06-01

    Starch metabolism is involved in stomatal movement regulation. However, it remains unknown whether starch-deficient mutants affect CO2-induced stomatal closing and whether starch biosynthesis in guard cells and/or mesophyll cells is rate limiting for high CO2-induced stomatal closing. Stomatal responses to [CO2] shifts and CO2 assimilation rates were compared in Arabidopsis (Arabidopsis thaliana) mutants that were either starch deficient in all plant tissues (ADP-Glc-pyrophosphorylase [ADGase]) or retain starch accumulation in guard cells but are starch deficient in mesophyll cells (plastidial phosphoglucose isomerase [pPGI]). ADGase mutants exhibited impaired CO2-induced stomatal closure, but pPGI mutants did not, showing that starch biosynthesis in guard cells but not mesophyll functions in CO2-induced stomatal closing. Nevertheless, starch-deficient ADGase mutant alleles exhibited partial CO2 responses, pointing toward a starch biosynthesis-independent component of the response that is likely mediated by anion channels. Furthermore, whole-leaf CO2 assimilation rates of both ADGase and pPGI mutants were lower upon shifts to high [CO2], but only ADGase mutants caused impairments in CO2-induced stomatal closing. These genetic analyses determine the roles of starch biosynthesis for high CO2-induced stomatal closing. PMID:27208296

  20. Mutations in the Prokaryotic Pathway Rescue the fatty acid biosynthesis1 Mutant in the Cold.

    PubMed

    Gao, Jinpeng; Wallis, James G; Browse, John

    2015-09-01

    The Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis1 (fab1) mutant has increased levels of the saturated fatty acid 16:0 due to decreased activity of 3-ketoacyl-acyl carrier protein (ACP) synthase II. In fab1 leaves, phosphatidylglycerol, the major chloroplast phospholipid, contains up to 45% high-melting-point molecular species (molecules that contain only 16:0, 16:1-trans, and 18:0), a trait associated with chilling-sensitive plants, compared with less than 10% in wild-type Arabidopsis. Although they do not exhibit typical chilling sensitivity, when exposed to low temperatures (2°C-6°C) for long periods, fab1 plants do suffer collapse of photosynthesis, degradation of chloroplasts, and eventually death. A screen for suppressors of this low-temperature phenotype has identified 11 lines, some of which contain additional alterations in leaf-lipid composition relative to fab1. Here, we report the identification of two suppressor mutations, one in act1, which encodes the chloroplast acyl-ACP:glycerol-3-phosphate acyltransferase, and one in lpat1, which encodes the chloroplast acyl-ACP:lysophosphatidic acid acyltransferase. These enzymes catalyze the first two steps of the prokaryotic pathway for glycerolipid synthesis, so we investigated whether other mutations in this pathway would rescue the fab1 phenotype. Both the gly1 mutation, which reduces glycerol-3-phosphate supply to the prokaryotic pathway, and fad6, which is deficient in the chloroplast 16:1/18:1 fatty acyl desaturase, were discovered to be suppressors. Analyses of leaf-lipid compositions revealed that mutations at all four of the suppressor loci result in reductions in the proportion of high-melting-point molecular species of phosphatidylglycerol relative to fab1. We conclude that these reductions are likely the basis for the suppressor phenotypes.

  1. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function.

    PubMed

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewis(a) substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  2. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function

    PubMed Central

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  3. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function.

    PubMed

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewis(a) substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.

  4. Biosynthesis and biodegradation of wood components

    SciTech Connect

    Higuchi, T.

    1985-01-01

    A textbook containing 22 chapters by various authors covers the structure of wood, the localization of polysaccharides and lignins in wood cell walls, metabolism and synthetic function of cambial tissue, cell organelles and their function in the biosynthesis of cell wall components, biosynthesis of plant cell wall polysaccharides, lignin, cutin, suberin and associated waxes, phenolic acids and monolignols, quinones, flavonoids, tannins, stilbenes and terpenoid wood extractives, the occurrence of extractives, the metabolism of phenolic acids, wood degradation by micro-organisms and fungi, and biodegradation of cellulose, hemicelluloses, lignin, and aromatic extractives of wood. An index is included.

  5. Zilpaterol hydrochloride alters abundance of β-adrenergic receptors in bovine muscle cells but has little effect on de novo fatty acid biosynthesis in bovine subcutaneous adipose tissue explants.

    PubMed

    Miller, E K; Chung, K Y; Hutcheson, J P; Yates, D A; Smith, S B; Johnson, B J

    2012-04-01

    We predicted that zilpaterol hydrochloride (ZH), a β-adrenergic receptor (AR) agonist, would depress mRNA and protein abundance of β-AR in bovine satellite cells. We also predicted that ZH would decrease total lipid synthesis in bovine adipose tissue. Bovine satellite cells isolated from the semimembranosus muscle were plated on tissue culture plates coated with reduced growth factor matrigel or collagen. Real-time quantitative PCR was used to measure specific gene expression after 48 h of ZH exposure in proliferating satellite cells and fused myoblasts. There was no effect of ZH dose on [(3)H]thymidine incorporation into DNA in proliferating myoblasts. Zilpaterol hydrochloride at 1 µM decreased (P < 0.05) β1-AR mRNA, and 0.01 and 1 µM ZH decreased (P < 0.05) β2-AR and β3-AR mRNA in myoblasts. The expression of IGF-I mRNA tended to increase (P = 0.07) with 1 µM ZH. There was no effect (P > 0.10) of ZH on the β-AR or IGF-I gene expression in fused myotube cultures at 192 h or on fusion percentage. The β2-AR antagonist ICI-118, 551 at 0.1 µM attenuated (P < 0.05) the effect of 0.1 µM ZH to reduce expression of β1- and β2-AR mRNA. The combination of 0.01 µM ZH and 0.1 µM ICI-118, 551 caused an increase (P < 0.05) in β1-AR gene expression. There was no effect (P > 0.10) of ICI-118, 551 or ZH on β3-AR or IGF-I. Western blot analysis revealed that the protein content of β2-AR in ZH-treated myotube cultures decreased (P < 0.05) relative to control. Total lipid synthesis from acetate was increased by ZH in bovine subcutaneous adipose tissue explants in the absence of theophylline but was decreased by ZH when theophylline was included in the incubation medium. These data indicate that ZH alters mRNA and protein concentrations of β-AR in satellite cell cultures, which in turn could affect responsiveness of cells to prolonged ZH exposure in vivo. Similar to other β-adrenergic agonists, ZH had only modest effects on lipid metabolism in adipose tissue

  6. Biosynthesis of the Escherichia coli K1 group 2 polysialic acid capsule occurs within a protected cytoplasmic compartment.

    PubMed

    Steenbergen, Susan M; Vimr, Eric R

    2008-06-01

    Capsular polysaccharides are important virulence determinants in a wide range of invasive infectious diseases. Although capsule synthesis has been extensively investigated, understanding polysaccharide export from the cytoplasm to the external environment has been more difficult. Here we present the results of a novel protection assay indicating that synthesis and export of the Escherichia coli K1 group 2 capsular polysialic acid (K1 antigen) occur within a protected subcellular compartment designated the sialisome. In addition to the polymerase encoded by neuS, localization and complementation analyses indicated that the sialisome includes the accessory membrane protein NeuE. The requirement for NeuE was suppressed by overproducing NeuS, suggesting that NeuE functions by stabilizing the polymerase or facilitating its assembly in the sialisome. Although an interaction between NeuE and NeuS could not be demonstrated with a bacterial two-hybrid system that reconstitutes an intracellular cell-signalling pathway, interactions between NeuS and KpsC as well as other sialisome components were detected. The combined results provide direct evidence for specific protein-protein interactions in the synthesis and export of group 2 capsular polysaccharides under in vivo conditions. The approaches developed here will facilitate further dissection of the sialisome, suggesting similar methodology for understanding the biosynthesis of other group 2 capsules.

  7. Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis

    PubMed Central

    Chen, Sheng-Chia; Huang, Chi-Hung; Lai, Shu-Jung; Yang, Chia Shin; Hsiao, Tzu-Hung; Lin, Ching-Heng; Fu, Pin-Kuei; Ko, Tzu-Ping; Chen, Yeh

    2016-01-01

    The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme. PMID:26980148

  8. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed.

    PubMed

    Lai, Zee-Wei; Rahim, Raha Abdul; Ariff, Arbakariya B; Mohamad, Rosfarizan

    2012-09-01

    The potential use of n-dodecane and n-hexadecane as oxygen vectors for enhancing hyaluronic acid (HA) biosynthesis by Streptococcus zooepidemicus ATCC 39920 was investigated using a 2-L stirred-tank bioreactor equipped with helical ribbon or Rushton turbine impellers. The volumetric fraction of the oxygen vector influenced the gas-liquid volumetric oxygen transfer coefficient (K(L)a) positively. Batch HA fermentation with 1% (v/v) n-dodecane or 0.5% (v/v) n-hexadecane addition was carried out at different impeller tip speeds. Even though cell growth was lower in the fermentation with oxygen vector addition, the HA productivity and molecular weight were higher when compared to the fermentation without oxygen vector at low impeller tip speed. The highest HA concentration (4.25 gHA/l) and molecular weight (1.54 × 10(7) Da) were obtained when 0.5% (v/v) n-hexadecane and 0.785 m/s impeller tip speed of helical ribbon were used.

  9. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed.

    PubMed

    Lai, Zee-Wei; Rahim, Raha Abdul; Ariff, Arbakariya B; Mohamad, Rosfarizan

    2012-09-01

    The potential use of n-dodecane and n-hexadecane as oxygen vectors for enhancing hyaluronic acid (HA) biosynthesis by Streptococcus zooepidemicus ATCC 39920 was investigated using a 2-L stirred-tank bioreactor equipped with helical ribbon or Rushton turbine impellers. The volumetric fraction of the oxygen vector influenced the gas-liquid volumetric oxygen transfer coefficient (K(L)a) positively. Batch HA fermentation with 1% (v/v) n-dodecane or 0.5% (v/v) n-hexadecane addition was carried out at different impeller tip speeds. Even though cell growth was lower in the fermentation with oxygen vector addition, the HA productivity and molecular weight were higher when compared to the fermentation without oxygen vector at low impeller tip speed. The highest HA concentration (4.25 gHA/l) and molecular weight (1.54 × 10(7) Da) were obtained when 0.5% (v/v) n-hexadecane and 0.785 m/s impeller tip speed of helical ribbon were used. PMID:22608992

  10. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis.

    PubMed

    Sievert, Christian; Beuerle, Till; Hollmann, Julien; Ober, Dietrich

    2015-09-01

    Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis. PMID:26057225

  11. Cloning and transcriptional analysis of Crepis alpina fatty acid desaturases affecting the biosynthesis of crepenynic acid.

    PubMed

    Nam, Jeong-Won; Kappock, T Joseph

    2007-01-01

    Crepis alpina acetylenase is a variant FAD2 desaturase that catalyses the insertion of a triple bond at the Delta12 position of linoleic acid, forming crepenynic acid in developing seeds. Seeds contain a high level of crepenynic acid but other tissues contain none. Using reverse transcriptase-coupled PCR (RT-PCR), acetylenase transcripts were identified in non-seed C. alpina tissues, which were highest in flower heads. To understand why functional expression of the acetylenase is limited to seeds, genes that affect acetylenase activity by providing substrate (FAD2) or electrons (cytochrome b5), or that compete for substrate (FAD3), were cloned. RT-PCR analysis indicated that the availability of a preferred cytochrome b5 isoform is not a limiting factor. Developing seeds co-express acetylenase and FAD2 isoform 2 (FAD2-2) at high levels. Flower heads co-express FAD2-3 and FAD3 at high levels, and FAD2-2 and acetylenase at moderate levels. FAD2-3 was not expressed in developing seed. Real-time RT-PCR absolute transcript quantitation showed 10(4)-fold higher acetylenase expression in developing seeds than in flower heads. Collectively, the results show that both the acetylenase expression level and the co-expression of other desaturases may contribute to the tissue specificity of crepenynate production. Helianthus annuus contains a Delta12 acetylenase in a polyacetylene biosynthetic pathway, so does not accumulate crepenynate. Real-time RT-PCR analysis showed relatively strong acetylenase expression in young sunflowers. Acetylenase transcription is observed in both species without accumulation of the enzymatic product, crepenynate. Functional expression of acetylenase appears to be affected by competition and collaboration with other enzymes. PMID:17329262

  12. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms.

    PubMed

    Yu, Huatao; Wang, Tai

    2016-01-01

    Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms.

  13. Dissociation of cephamycin C and clavulanic acid biosynthesis by 1,3-diaminopropane in Streptomyces clavuligerus.

    PubMed

    Leite, Carla A; Cavallieri, André P; Baptista, Amanda S; Araujo, Maria L G C

    2016-01-01

    Streptomyces clavuligerus produces simultaneously cephamycin C (CephC) and clavulanic acid (CA). Adding 1,3-diaminopropane to culture medium stimulates production of beta-lactam antibiotics. However, there are no studies on the influence of this diamine on coordinated production of CephC and CA. This study indicates that 1,3-diaminopropane can dissociate CephC and CA productions. Results indicated that low diamine concentrations (below 1.25 g l(-1)) in culture medium increased CA production by 200%, but not that of CephC. Conversely, CephC production increased by 300% when 10 g l(-1) 1,3-diaminopropane was added to culture medium. Addition of just L-lysine (18.3 g l(-1)) to culture medium increased both biocompounds. On the other hand, while L-lysine plus 7.5 g l(-1) 1,3-diaminopropane increased volumetric production of CephC by 1100%, its impact on CA production was insignificant. The combined results suggest that extracellular concentration of 1,3-diaminopropane may trigger the dissociation of CephC and CA biosynthesis in S. clavuligerus.

  14. Regulation of ascorbic acid biosynthesis and recycling during root development in carrot (Daucus carota L.).

    PubMed

    Wang, Guang-Long; Xu, Zhi-Sheng; Wang, Feng; Li, Meng-Yao; Tan, Guo-Fei; Xiong, Ai-Sheng

    2015-09-01

    Ascorbic acid (AsA), also known as vitamin C, is an essential nutrient in fruits and vegetables. The fleshy root of carrot (Daucus carota L.) is a good source of AsA for humans. However, the metabolic pathways and molecular mechanisms involved in the control of AsA content during root development in carrot have not been elucidated. To gain insights into the regulation of AsA accumulation and to identify the key genes involved in the AsA metabolism, we cloned and analyzed the expression of 21 related genes during carrot root development. The results indicate that AsA accumulation in the carrot root is regulated by intricate pathways, of which the l-galactose pathway may be the major pathway for AsA biosynthesis. Transcript levels of the genes encoding l-galactose-1-phosphate phosphatase and l-galactono-1,4-lactone dehydrogenase were strongly correlated with AsA levels during root development. Data from this research may be used to assist breeding for improved nutrition, quality, and stress tolerance in carrots.

  15. Promotion by gibberellic Acid of polyamine biosynthesis in internodes of light-grown dwarf peas.

    PubMed

    Dai, Y R; Kaur-Sawhney, R; Galston, A W

    1982-01-01

    When gibberellic acid (GA(3); 5-35 micrograms per milliliter) is sprayed on 9-day-old light-grown dwarf Progress pea (Pisum sativum) seedlings, it causes a marked increase in the activity of arginine decarboxylase (ADC; EC 4.1.1.9) in the fourth internodes. The titer of putrescine and spermidine, polyamines produced indirectly as a result of ADC action, also rises markedly, paralleling the effect of GA(3) on internode growth. Ammonium (5-hydroxycarvacryl) trimethyl chloride piperidine carboxylate (AMO-1618; 100-200 micrograms per milliliter) causes changes in the reverse direction for enzyme activity, polyamine content, and growth. GA(3) also reverses the red-light-induced inhibition of ADC activity in etiolated Alaska pea epicotyls; this is additional evidence for gibberellin-light interaction in the control of polyamine biosynthesis. The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17), an alternate source of putrescine arising from arginine, is not increased by GA(3) or by AMO-1618.The results support the hypothesis that ADC and polyamine content are important regulators of plant growth. PMID:16662137

  16. [Antitoxic properties of pantothenic acid derivatives, precursors of coenzyme A biosynthesis, with regard to kanamycin].

    PubMed

    Moĭseenok, A G; Dorofeev, B F; Sheĭbak, V M; Khomich, T I

    1984-11-01

    The effect of calcium pantothenate (CPN)B 4'-phospho-CPN (PCP), pantetheine (PT) and calcium S-sulfopantetheine (SPN) on acute toxicity of kanamycin sulfate was studied on albino mice. The above derivatives of pantothenic acid except PT lowered the antibiotic toxicity. The coefficient of the antitoxic effect (LD50/ED50) of SPN and PCP was 1.3-1.4 times higher than that of CPN. The combined use of kanamycin (1/5 of the LD50) with CPN, PCP or PT (30 mg/kg bw was equivalent to CPN) for 15 days prevented the increase in the total content of CoA and in the content of the fraction of free CoA and the precursors of its biosynthesis participating in the reaction of N-acetylation in the liver and brain. The contents of these substances were within the normal during the whole experiment. A certain increase in the activity of pantothenate kinase in the liver cytosol due to the use of kanamycin was eliminated by the simultaneous use of PCP and PT. The vitamin-containing compounds PCP and SPN were recommended for the clinical trials as agents preventing complications of kanamycin therapy. PMID:6524887

  17. X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster.

    PubMed

    Elkins, Jonathan M; Kershaw, Nadia J; Schofield, Christopher J

    2005-01-15

    The orf6 gene from the clavulanic acid biosynthesis gene cluster encodes an OAT (ornithine acetyltransferase). Similar to other OATs the enzyme has been shown to catalyse the reversible transfer of an acetyl group from N-acetylornithine to glutamate. OATs are Ntn (N-terminal nucleophile) enzymes, but are distinct from the better-characterized Ntn hydrolase enzymes as they catalyse acetyl transfer rather than a hydrolysis reaction. In the present study, we describe the X-ray crystal structure of the OAT, corresponding to the orf6 gene product, to 2.8 A (1 A=0.1 nm) resolution. The larger domain of the structure consists of an alphabetabetaalpha sandwich as in the structures of Ntn hydrolase enzymes. However, differences in the connectivity reveal that OATs belong to a structural family different from that of other structurally characterized Ntn enzymes, with one exception: unexpectedly, the alphabetabetaalpha sandwich of ORF6 (where ORF stands for open reading frame) displays the same fold as an DmpA (L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi), and so the OATs and DmpA form a new structural subfamily of Ntn enzymes. The structure reveals an alpha2beta2-heterotetrameric oligomerization state in which the intermolecular interface partly defines the active site. Models of the enzyme-substrate complexes suggest a probable oxyanion stabilization mechanism as well as providing insight into how the enzyme binds its two differently charged substrates. PMID:15352873

  18. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance.

    PubMed

    Clé, Carla; Hill, Lionel M; Niggeweg, Ricarda; Martin, Cathie R; Guisez, Yves; Prinsen, Els; Jansen, Marcel A K

    2008-08-01

    Chlorogenic acid (CGA) is one of the most abundant phenolic compounds in tomato (Solanum lycopersicum). Hydroxycinnamoyl CoA quinate transferase (HQT) is the key enzyme catalysing CGA biosynthesis in tomato. We have studied the relationship between phenolic accumulation and UV-susceptibility in transgenic tomato plants with altered HQT expression. Overall, increased CGA accumulation was associated with increased UV-protection. However, the genetic manipulation of HQT expression also resulted in more complex alterations in the profiles of phenolics. Levels of rutin were relatively high in both HQT gene-silenced and HQT-overexpressing plants raised in plant growth tunnels. This suggests plasticity in the flux along different branches of phenylpropanoid metabolism and the existence of regulatory mechanisms that direct the flow of phenolic precursors in response to both metabolic parameters and environmental conditions. These changes in composition of the phenolic pool affected the relative levels of UV-tolerance. We conclude that the capability of the phenolic compounds to protect against potentially harmful UV radiation is determined both by the total levels of phenolics that accumulate in leaves as well as by the specific composition of the phenolic profile.

  19. Pantothenic Acid Biosynthesis in the Parasite Toxoplasma gondii: a Target for Chemotherapy

    PubMed Central

    Mageed, Sarmad N.; Cunningham, Fraser; Hung, Alvin Wei; Silvestre, Hernani Leonardo; Wen, Shijun; Blundell, Tom L.; Abell, Chris

    2014-01-01

    Toxoplasma gondii is a major food pathogen and neglected parasitic infection that causes eye disease, birth defects, and fetal abortion and plays a role as an opportunistic infection in AIDS. In this study, we investigated pantothenic acid (vitamin B5) biosynthesis in T. gondii. Genes encoding the full repertoire of enzymes for pantothenate synthesis and subsequent metabolism to coenzyme A were identified and are expressed in T. gondii. A panel of inhibitors developed to target Mycobacterium tuberculosis pantothenate synthetase were tested and found to exhibit a range of values for inhibition of T. gondii growth. Two inhibitors exhibited lower effective concentrations than the currently used toxoplasmosis drug pyrimethamine. The inhibition was specific for the pantothenate pathway, as the effect of the pantothenate synthetase inhibitors was abrogated by supplementation with pantothenate. Hence, T. gondii encodes and expresses the enzymes for pantothenate synthesis, and this pathway is essential for parasite growth. These promising findings increase our understanding of growth and metabolism in this important parasite and highlight pantothenate synthetase as a new drug target. PMID:25049241

  20. Biosynthesis of the pyrimidinyl amino acid lathyrine by Lathyrus tingitanus L.

    PubMed Central

    Brown, E G; Al-Baldowi, N F

    1977-01-01

    The biosynthesis of the pyrimidinyl amino acid lathyrine by seedlings of Lathyrus tingitanus L. was shown to be stimulated by uracil. [6(-14)C]Orotate, [2(-14)C]uracil and [3(-14)C]serine were incorporated into lathyrine; the incorporation of [6(-14)C]orotate was substantially decreased in the presence of uracil. Chemical degradation to locate the 14C incorporated from labelled precursors showed that 90% of the radioactivity incorporated into lathyrine from [3(-14)C]serine could be recovered in the alanine side chain. Over 80% of the radioactivity incorporated from [2(-14)C]uracil was shown to be located in C-2 of lathyrine. It is concluded that under the conditions studied, lathyrine arises from a preformed pyrimidine arising via the orotate pathway. Paradoxically, it was also possible to confirm previous reports that radioactivity from L-[guanidino-14C]homoarginine is incorporated into lathyrine and gamma-hydroxyhomoarginine. However, as homoarginine and gamma-hydroxyhomoarginine are also both labelled by [2(-14)C]uracil, it is suggested that they are products of the ring-opening of lathyrine and that reversibility of this process accounts, at least in part, for their observed experimental incorporation into lathyrine. PMID:883953

  1. Regulation of ascorbic acid biosynthesis and recycling during root development in carrot (Daucus carota L.).

    PubMed

    Wang, Guang-Long; Xu, Zhi-Sheng; Wang, Feng; Li, Meng-Yao; Tan, Guo-Fei; Xiong, Ai-Sheng

    2015-09-01

    Ascorbic acid (AsA), also known as vitamin C, is an essential nutrient in fruits and vegetables. The fleshy root of carrot (Daucus carota L.) is a good source of AsA for humans. However, the metabolic pathways and molecular mechanisms involved in the control of AsA content during root development in carrot have not been elucidated. To gain insights into the regulation of AsA accumulation and to identify the key genes involved in the AsA metabolism, we cloned and analyzed the expression of 21 related genes during carrot root development. The results indicate that AsA accumulation in the carrot root is regulated by intricate pathways, of which the l-galactose pathway may be the major pathway for AsA biosynthesis. Transcript levels of the genes encoding l-galactose-1-phosphate phosphatase and l-galactono-1,4-lactone dehydrogenase were strongly correlated with AsA levels during root development. Data from this research may be used to assist breeding for improved nutrition, quality, and stress tolerance in carrots. PMID:25956452

  2. The potential role of juvenile hormone acid methyltransferase in methyl farnesoate (MF) biosynthesis in the swimming crab, Portunus trituberculatus.

    PubMed

    Xie, Xi; Tao, Tian; Liu, Mingxin; Zhou, Yanqi; Liu, Zhiye; Zhu, Dongfa

    2016-05-01

    Juvenile hormone (JH) and methyl farnesoate (MF) play essential roles in the development and reproduction of insects and crustaceans respectively. Juvenile hormone acid methyltransferase (JHAMT) catalyzes the methyl esterification in insect JH biosynthesis, while the corresponding step in crustacean MF biosynthesis was long thought to be catalyzed by farnesoic acid O-methyltransferase (FAMeT). However, the new discovery of JHAMT orthologs in crustaceans indicates that JHAMT may also play essential role in the MF biosynthesis in crustaceans. Here we cloned and characterized the full-length cDNA encoding JHAMT in the swimming crab Portunus trituberculatus (PtJHAMT). Sequence and structure analysis of PtJHAMT revealed that it was composed of a 6-stranded β sheet with 9 α helices, and contained a signature Sadenosyl-L-methionine (SAM) binding motif, which is the hallmark in all SAM dependent methyltransferases (SAM-MTs). Several active sites that are critical for the interaction of SAM and JH/FA substrate were also conserved in PtJHAMT. The gene expression of PtJHAMT was highly specific to the mandibular organ, which is the sole site of MF synthesis. PtJHAMT expression significantly increased in the late-vitellogenic stage and mature stage, which suggests a possible role of PtJHAMT in modulating ovarian development. The role of PtJHAMT and PtFAMeT in MF biosynthesis was further investigated by RNA interfering (RNAi). Injection of PtJHAMT and PtFAMeT dsRNA both led to a decrease in hemolymph MF titers. Injection of PtHMGR dsRNA caused the decrease in PtJHAMT expression, but had no effect on mRNA level of PtFAMeT. Together these results suggested that JHAMT and FAMeT are both involved in the MF biosynthesis in crustaceans, while the JHAMT is highly specific to FA substrate, and FAMeT may have more catalytic functions. PMID:26952760

  3. Distribution of colored carotenoids between light-harvesting complexes in the process of recovering carotenoid biosynthesis in Ectothiorhodospira haloalkaliphila cells.

    PubMed

    Ashikhmin, Aleksandr; Makhneva, Zoya; Bolshakov, Maksim; Moskalenko, Andrey

    2014-12-01

    The processes of recovering colored-carotenoid (Car) biosynthesis in Car-less cells of the purple sulfur bacterium Ectothiorhodospira haloalkaliphila grown with diphenylamine (DPA-cells) have been studied. It has been found that (1) the rate of recovering colored-Car biosynthesis in the lag-phase is far ahead of the growth rate of the cells themselves; (2) several Cars (ζ-carotene, neurosporene etc.) act as intermediates in Car biosynthesis; (3) because filling the "empty" Car pockets in the LH1-RC complexes is faster than in LH2, available spirilloxanthin is preferentially incorporated into the nascent LH1-RC core particles; (4) as a consequence of the resulting lack of spirilloxanthin availability, the biosynthetic intermediates (anhydrorhodovibrin, rhodopin and lycopene) fill the empty nascent LH2 Car pockets. In the present report, we further discuss the process of colored Car incorporation into LH complexes during the recovery of Car biosynthesis in the DPA-cells of Ect.haloalkaliphila.

  4. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in sorghum bicolor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phenylpropanoid biosynthesis pathway that generates lignin subunits represents a significant target to alter the abundance and composition of lignin. The major regulators of phenylpropanoid metabolism are myb transcription factors, which have been shown to modulate secondary cell wall compositi...

  5. A natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotics.

    PubMed

    Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2011-11-16

    Macrolactam antibiotics are an important class of macrocyclic polyketides that contain a unique nitrogen-containing starter unit. In the present study, a set of starter biosynthetic enzymes in the macrolactam antibiotic vicenistatin was characterized. We found that the protection-deprotection strategy of the aminoacyl-ACP intermediate was critical in this system. On the basis of bioinformatics, the described pathway is also proposed as a common method for carrying amino acids in the biosynthesis of other macrolactam antibiotics. PMID:22010945

  6. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics.

    PubMed

    North, E Jeffrey; Jackson, Mary; Lee, Richard E

    2014-01-01

    Mycolic acids are the major lipid components of the unique mycobacterial cell wall responsible for the protection of the tuberculosis bacilli from many outside threats. Mycolic acids are synthesized in the cytoplasm and transported to the outer membrane as trehalose- containing glycolipids before being esterified to the arabinogalactan portion of the cell wall and outer membrane glycolipids. The large size of these unique fatty acids is a result of a huge metabolic investment that has been evolutionarily conserved, indicating the importance of these lipids to the mycobacterial cellular survival. There are many key enzymes involved in the mycolic acid biosynthetic pathway, including fatty acid synthesis (KasA, KasB, MabA, InhA, HadABC), mycolic acid modifying enzymes (SAM-dependent methyltransferases, aNAT), fatty acid activating and condensing enzymes (FadD32, Acc, Pks13), transporters (MmpL3) and tranferases (Antigen 85A-C) all of which are excellent potential drug targets. Not surprisingly, in recent years many new compounds have been reported to inhibit specific portions of this pathway, discovered through both phenotypic screening and target enzyme screening. In this review, we analyze the new and emerging inhibitors of this pathway discovered in the post-genomic era of tuberculosis drug discovery, several of which show great promise as selective tuberculosis therapeutics. PMID:24245756

  7. New Approaches to Target the Mycolic Acid Biosynthesis Pathway for the Development of Tuberculosis Therapeutics

    PubMed Central

    North, E. Jeffrey; Jackson, Mary; Lee, Richard E.

    2015-01-01

    Mycolic acids are the major lipid component of the unique mycobacterial cell wall responsible for the protection of the tuberculosis bacilli from many outside threats. Mycolic acids are synthesized in the cytoplasm and transported to the outer membrane as trehalose-containing glycolipids before being esterified to the arabinogalactan portion of the cell wall and outer membrane glycolipids. The large size of these unique fatty acids is a result of a huge metabolic investment that has been evolutionarily conserved, indicating the importance of these lipids to the mycobacterial cellular survival. There are many key enzymes involved in the mycolic acid biosynthetic pathway, including fatty acid synthesis (KasA, KasB, MabA, InhA, HadABC), mycolic acid modifying enzymes (SAM-dependent methyltransferases, aNAT), fatty acid activating and condensing enzymes (FadD32, Acc, Pks13), transporters (MmpL3) and tranferases (Antigen 85A-C) all of which are excellent potential drug targets. Not surprisingly, in recent years many new compounds have been reported to inhibit specific portions of this pathway, discovered through both phenotypic screening and target enzyme screening. In this review, we analyze the new and emerging inhibitors of this pathway discovered in the post-genomic era of tuberculosis drug discovery, several of which show great promise as selective tuberculosis therapeutics. PMID:24245756

  8. Comparison of glycerolipid biosynthesis in non-green plastids from sycamore (Acer pseudoplatanus) cells and cauliflower (Brassica oleracea) buds.

    PubMed

    Alban, C; Joyard, J; Douce, R

    1989-05-01

    The availability of methods to fractionate non-green plastids and to prepare their limiting envelope membranes [Alban, Joyard & Douce (1988) Plant Physiol. 88, 709-717] allowed a detailed analysis of the biosynthesis of lysophosphatidic acid, phosphatidic acid, diacylglycerol and monogalactosyl-diacylglycerol (MGDG) in two different types of non-green starch-containing plastids: plastids isolated from cauliflower buds and amyloplasts isolated from sycamore cells. An enzyme [acyl-ACP (acyl carrier protein):sn-glycerol 3-phosphate acyltransferase) recovered in the soluble fraction of non-green plastids transfers oleic acid from oleoyl-ACP to the sn-1 position of sn-glycerol 3-phosphate to form lysophosphatidic acid. Then a membrane-bound enzyme (acyl-ACP:monoacyl-sn-glycerol 3-phosphate acyltransferase), localized in the envelope membrane, catalyses the acylation of the available sn-2 position of 1-oleoyl-sn-glycerol 3-phosphate by palmitic acid from palmitoyl-ACP. Therefore both the soluble phase and the envelope membranes are necessary for acylation of sn-glycerol 3-phosphate. The major difference between cauliflower (Brassica oleracea) and sycamore (Acer pseudoplatanus) membranes is the very low level of phosphatidate phosphatase activity in sycamore envelope membrane. Therefore, very little diacylglycerol is available for MGDG synthesis in sycamore, compared with cauliflower. These findings are consistent with the similarities and differences described in lipid metabolism of mature chloroplasts from 'C18:3' and 'C16:3' plants (those with MGDG containing C18:3 and C16:3 fatty acids). Sycamore contains only C18 fatty acids in MGDG, and the envelope membranes from sycamore amyloplasts have a low phosphatidate phosphatase activity and therefore the enzymes of the Kornberg-Pricer pathway have a low efficiency of incorporation of sn-glycerol 3-phosphate into MGDG. By contrast, cauliflower contains MGDG with C16:3 fatty acid, and the incorporation of sn-glycerol 3

  9. CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells.

    PubMed

    Yamada, Yasuyuki; Motomura, Yukiya; Sato, Fumihiko

    2015-05-01

    Isoquinoline alkaloids (IQAs), terpenoid indole alkaloid and nicotine are some of the most studied alkaloids. Recently, several groups have reported that the biosynthesis of these alkaloids is regulated by basic helix-loop-helix (bHLH) transcription factors. Whereas the biosyntheses of nicotine and terpenoid indole alkaloid in Nicotiana plants and Catharanthus roseus are directly or indirectly regulated by Arabidopsis thaliana MYC2 homologs, a non-MYC2-type bHLH transcription factor, CjbHLH1, comprehensively regulates berberine biosynthesis in Coptis japonica. Interestingly, CjbHLH1 homologous genes were found in many IQA-producing plant species, which suggests that non-MYC2-type CjbHLH homologs are specifically associated with IQA biosynthesis. To test whether CjbHLH1 homologs are involved in the biosynthesis of IQA in a plant other than C. japonica, we isolated two genes homologous to CjbHLH1, i.e. EcbHLH1-1 and EcbHLH1-2, from Eschscholzia californica (California poppy). Stable transformants in which the expression levels of EcbHLH1 genes were constitutively suppressed by RNA interference (RNAi) showed a reduced expression of some IQA biosynthetic enzyme genes. A metabolite analysis confirmed that the suppression of EcbHLH1, particularly EcbHLH1-2, caused a decrease in sanguinarine accumulation in transgenic cultured cells. These results indicate that non-MYC2-type EcbHLH1s regulate IQA biosynthesis in California poppy like CjbHLH1 in C. japonica.

  10. Polyamines and polyamine biosynthesis in cells exposed to hyperthermia

    SciTech Connect

    Gerner, E.W.; Stickney, D.G.; Herman, T.S.; Fuller, D.J.

    1983-02-01

    The issue of how polyamines act to sensitize cultured cells to the lethal effects of hyperthermia was investigated using Chinese hamster cells which were induced to express thermotolerance. Intracellular levels of these naturally occurring polycations were manipulated in certain situations by treating whole cells with methylglyoxal bis-(guanylhydrazone), an inhibitor of the S-adenosyl-L-methionine decarboxylases. Exogenous spermine as low as 100 ..mu..M in the culture media dramatically sensitized cells expressing thermotolerance to the lethal effects of subsequent 42/sup 0/C exposures. When thermotolerance was differentially induced in cultures exposed to 42.4/sup 0/C by varying the rate of heating from 37 to 42.4/sup 0/C, the most resistant cells and the highest levels of intracellular spermidine and spermine. This finding was explainable in part by the observation that the putrescine-dependent S-adenosyl-L-methionine decarboxylase activity was minimally affected in cells expressng the greatest degree of thermotolerance. When this enzyme activity was inhibited by drug, lowered intracellular polyamine levels did not correspond with subsequent survival responses to heat. Interestingly, cultures treated with methylglyoxal bis-(guanylhydrazone) 24 hr previous to heat exposure showed a reduced capacity to express rate of heating-induced thermotolerance. Together, these results demonstrate that the polyamines, especially spermidine and spermine, enhance hyperthermia-induced cell killing by some mechanism involving the plasma membrane. Further, our data suggest that methylglyoxal bis-(guanylhydrazone) can act to affect thermal responses by a mechanism(s) other than modification of intracellular polyamine levels.

  11. Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha.

    PubMed

    Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku

    2015-09-01

    Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha. PMID:26055979

  12. Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells

    PubMed Central

    Martin, H.L.; Alsaady, I.; Howell, G.; Prandovszky, E.; Peers, C.; Robinson, P.; McConkey, G.A.

    2015-01-01

    Infection by the neurotropic agent Toxoplasma gondii alters rodent behavior and can result in neuropsychiatric symptoms in humans. Little is understood regarding the effects of infection on host neural processes but alterations to dopaminergic neurotransmission are implicated. We have previously reported elevated levels of dopamine (DA) in infected dopaminergic cells however the involvement of the host enzymes and fate of the produced DA were not defined. In order to clarify the effects of infection on host DA biosynthetic enzymes and DA packaging we examined enzyme levels and activity and DA accumulation and release in T. gondii-infected neurosecretory cells. Although the levels of the host tyrosine hydroxylase (TH) and DOPA decarboxylase and AADC (DDC) did not change significantly in infected cultures, DDC was found within the parasitophorous vacuole (PV), the vacuolar compartment where the parasites reside, as well as in the host cytosol in infected dopaminergic cells. Strikingly, DDC was found within the intracellular parasite cysts in infected brain tissue. This finding could provide some explanation for observations of DA within tissue cysts in infected brain as a parasite-encoded enzyme with TH activity was also localized within tissue cysts. In contrast, cellular DA packaging appeared unchanged in single-cell microamperometry experiments and only a fraction of the increased DA was accessible to high potassium-induced release. This study provides some understanding of how this parasite produces elevated DA within dopaminergic cells without the toxic ramifications of free cytosolic DA. The mechanism for synthesis and packaging of DA by T. gondii-infected dopaminergic cells may have important implications for the effects of chronic T. gondii infection on humans and animals. PMID:26297895

  13. Defective triglyceride biosynthesis in CETP-deficient SW872 cells

    PubMed Central

    Greene, Diane J.; Izem, Lahoucine; Morton, Richard E.

    2015-01-01

    We previously reported that reducing the expression of cholesteryl ester transfer protein (CETP) disrupts cholesterol homeostasis in SW872 cells and causes an ∼50% reduction in TG. The causes of this reduced TG content, investigated here, could not be attributed to changes in the differentiation status of CETP-deficient cells, nor was there evidence of endoplasmic reticulum (ER) stress. In short-term studies, the total flux of oleate through the TG biosynthetic pathway was not altered in CETP-deficient cells, although mRNA levels of some pathway enzymes were different. However, the conversion of diglyceride (DG) to TG was impaired. In longer-term studies, newly synthesized TG was not effectively transported to lipid droplets, yet this lipid did not accumulate in the ER, apparently due to elevated lipase activity in this organelle. DG, shown to be a novel CETP substrate, was also inefficiently transferred to lipid droplets. This may reduce TG synthesis on droplets by resident diacylglycerol acyltransferase. Overall, these data suggest that the decreased TG content of CETP-deficient cells arises from the reduced conversion of DG to TG in the ER and/or on the lipid droplet surface, and enhanced TG degradation in the ER due to its ineffective transport from this organelle. PMID:26203075

  14. Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis.

    PubMed

    Napoli, J L

    1993-02-01

    The enzymes that constitute the pathway of retinoic acid biosynthesis and metabolism may recognize retinoid binding proteins as effectors and substrates. Apocellular retinol-binding protein (CRBP) stimulates a bile-salt independent membrane-bound retinyl ester hydrolase resulting in the hydrolysis of endogenous retinyl esters and the formation of holoCRBP. HoloCRBP delivers retinol to a microsomal nicotin-amide-adenine dinucleotide phosphate-dependent dehydrogenase, protects it from artifactual oxidation and denies enzymes that cannot recognize the binding protein access to retinol. The retinal synthesized may be transferred from the microsomes to the cytosol by CRBP. A cytosolic retinal dehydrogenase has been purified that produces retinoic acid from retinal generated by microsomes in the presence of CRBP and from the complex CRBP-retinal itself. Thus, CRBP(type I) seems to channel retinoids through the reactions of retinoic acid synthesis via a series of protein-protein interactions. Cellular retinoic acid-binding protein (type I) facilitates retinoic acid metabolism by sequestering it and by acting as a low Km substrate, thereby also modulating the steady-state concentrations of retinoic acid. PMID:8381481

  15. Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis.

    PubMed

    Lange, B M; Ketchum, R E; Croteau, R B

    2001-09-01

    Two independent pathways operate in plants for the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of all isoprenoids. The mevalonate pathway is present in the cytosol, whereas the recently discovered mevalonate-independent pathway is localized to plastids. We have used isolated peppermint (Mentha piperita) oil gland secretory cells as an experimental model system to study the effects of the herbicides fosmidomycin, phosphonothrixin, methyl viologen, benzyl viologen, clomazone, 2-(dimethylamino)ethyl diphosphate, alendronate, and pamidronate on the pools of metabolites related to monoterpene biosynthesis via the mevalonate-independent pathway. A newly developed isolation protocol for polar metabolites together with an improved separation and detection method based on liquid chromatography-mass spectrometry have allowed assessment of the enzyme targets for a number of these herbicides.

  16. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells.

    PubMed

    Augustin, Megan M; Ruzicka, Dan R; Shukla, Ashutosh K; Augustin, Jörg M; Starks, Courtney M; O'Neil-Johnson, Mark; McKain, Michael R; Evans, Bradley S; Barrett, Matt D; Smithson, Ann; Wong, Gane Ka-Shu; Deyholos, Michael K; Edger, Patrick P; Pires, J Chris; Leebens-Mack, James H; Mann, David A; Kutchan, Toni M

    2015-06-01

    Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA-seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern-matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ-aminobutyrate transaminase; together they produce verazine from cholesterol.

  17. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.

    PubMed

    Soe, Cho Z; Codd, Rachel

    2014-04-18

    To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical

  18. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production.

  19. Novel Type II Fatty Acid Biosynthesis (FAS II) Inhibitors as Multistage Antimalarial Agents

    PubMed Central

    Schrader, Florian C.; Glinca, Serghei; Sattler, Julia M.; Dahse, Hans-Martin; Afanador, Gustavo A.; Prigge, Sean T.; Lanzer, Michael; Mueller, Ann-Kristin; Klebe, Gerhard; Schlitzer, Martin

    2013-01-01

    Malaria is a potentially fatal disease caused by Plasmodium parasites and poses a major medical risk in large parts of the world. The development of new, affordable antimalarial drugs is of vital importance as there are increasing reports of resistance to the currently available therapeutics. In addition, most of the current drugs used for chemoprophylaxis merely act on parasites already replicating in the blood. At this point, a patient might already be suffering from the symptoms associated with the disease and could additionally be infectious to an Anopheles mosquito. These insects act as a vector, subsequently spreading the disease to other humans. In order to cure not only malaria but prevent transmission as well, a drug must target both the blood- and pre-erythrocytic liver stages of the parasite. P. falciparum (Pf) enoyl acyl carrier protein (ACP) reductase (ENR) is a key enzyme of plasmodial type II fatty acid biosynthesis (FAS II). It has been shown to be essential for liver-stage development of Plasmodium berghei and is therefore qualified as a target for true causal chemoprophylaxis. Using virtual screening based on two crystal structures of PfENR, we identified a structurally novel class of FAS inhibitors. Subsequent chemical optimization yielded two compounds that are effective against multiple stages of the malaria parasite. These two most promising derivatives were found to inhibit blood-stage parasite growth with IC50 values of 1.7 and 3.0 µm and lead to a more prominent developmental attenuation of liver-stage parasites than the gold-standard drug, primaquine. PMID:23341167

  20. X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster

    PubMed Central

    2004-01-01

    The orf6 gene from the clavulanic acid biosynthesis gene cluster encodes an OAT (ornithine acetyltransferase). Similar to other OATs the enzyme has been shown to catalyse the reversible transfer of an acetyl group from N-acetylornithine to glutamate. OATs are Ntn (N-terminal nucleophile) enzymes, but are distinct from the better-characterized Ntn hydrolase enzymes as they catalyse acetyl transfer rather than a hydrolysis reaction. In the present study, we describe the X-ray crystal structure of the OAT, corresponding to the orf6 gene product, to 2.8 Å (1 Å=0.1 nm) resolution. The larger domain of the structure consists of an αββα sandwich as in the structures of Ntn hydrolase enzymes. However, differences in the connectivity reveal that OATs belong to a structural family different from that of other structurally characterized Ntn enzymes, with one exception: unexpectedly, the αββα sandwich of ORF6 (where ORF stands for open reading frame) displays the same fold as an DmpA (L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi), and so the OATs and DmpA form a new structural subfamily of Ntn enzymes. The structure reveals an α2β2-heterotetrameric oligomerization state in which the intermolecular interface partly defines the active site. Models of the enzyme–substrate complexes suggest a probable oxyanion stabilization mechanism as well as providing insight into how the enzyme binds its two differently charged substrates. PMID:15352873

  1. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis

    SciTech Connect

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A.; Engle, Nancy L.; Martin, Madhavi Z.; Tschaplinski, Timothy J.; Ding, Shi-You; Ragauskas, Arthur J.; Dixon, Richard A.

    2014-08-05

    In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.

  2. Early evolution of polyisoprenol biosynthesis and the origin of cell walls

    PubMed Central

    2016-01-01

    After being a matter of hot debate for years, the presence of lipid membranes in the last common ancestor of extant organisms (i.e., the cenancestor) now begins to be generally accepted. By contrast, cenancestral cell walls have attracted less attention, probably owing to the large diversity of cell walls that exist in the three domains of life. Many prokaryotic cell walls, however, are synthesized using glycosylation pathways with similar polyisoprenol lipid carriers and topology (i.e., orientation across the cell membranes). Here, we provide the first systematic phylogenomic report on the polyisoprenol biosynthesis pathways in the three domains of life. This study shows that, whereas the last steps of the polyisoprenol biosynthesis are unique to the respective domain of life of which they are characteristic, the enzymes required for basic unsaturated polyisoprenol synthesis can be traced back to the respective last common ancestor of each of the three domains of life. As a result, regardless of the topology of the tree of life that may be considered, the most parsimonious hypothesis is that these enzymes were inherited in modern lineages from the cenancestor. This observation supports the presence of an enzymatic mechanism to synthesize unsaturated polyisoprenols in the cenancestor and, since these molecules are notorious lipid carriers in glycosylation pathways involved in the synthesis of a wide diversity of prokaryotic cell walls, it provides the first indirect evidence of the existence of a hypothetical unknown cell wall synthesis mechanism in the cenancestor. PMID:27812422

  3. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis

    DOE PAGES

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A.; Engle, Nancy L.; Martin, Madhavi Z.; Tschaplinski, Timothy J.; Ding, Shi-You; Ragauskas, Arthur J.; et al

    2014-08-05

    In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutantmore » of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.« less

  4. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis.

    PubMed

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; Pu, Yunqiao; Jackson, Lisa A; Engle, Nancy L; Martin, Madhavi Z; Tschaplinski, Timothy J; Ding, Shi-You; Ragauskas, Arthur J; Dixon, Richard A

    2015-04-01

    Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.

  5. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Yan, Zhengyu; Qian, Jing; Gu, Yueqing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei

    2014-03-01

    A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling.

  6. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.

    PubMed

    Del Rio, Beatriz; Linares, Daniel; Ladero, Victor; Redruello, Begoña; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2016-11-01

    Lactococcus lactis subsp. cremoris CECT 8666 is a lactic acid bacterium that synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The AGDI genes cluster includes aguR. This encodes a transmembrane protein that functions as a one-component signal transduction system, the job of which is to sense the agmatine concentration of the medium and accordingly regulate the transcription of the catabolic operon aguBDAC. The latter encodes the proteins necessary for agmatine uptake and its conversion into putrescine. This work reports the effect of extracellular pH on putrescine biosynthesis and on the genetic regulation of the AGDI pathway. Increased putrescine biosynthesis was detected at acidic pH (pH5) compared to neutral pH. Acidic pH induced the transcription of the catabolic operon via the activation of the aguBDAC promoter PaguB. However, the external pH had no significant effect on the activity of the aguR promoter PaguR, or on the transcription of the aguR gene. The transcriptional activation of the AGDI pathway was also found to require a lower agmatine concentration at pH5 than at neutral pH. Finally, the following of the AGDI pathway counteracted the acidification of the cytoplasm under acidic external conditions, suggesting it to provide protection against acid stress.

  7. Enzymology and molecular biology of cell wall biosynthesis. Progress report

    SciTech Connect

    Ray, P.M.

    1993-03-20

    In order to be able to explore the control of cell wall polysaccharide synthesis at the molecular level, which inter alia might eventually lead to means for useful modification of plant biomass polysaccharide production, the immediate goals of this project are to identify polypeptides responsible for wall polysaccharide synthase activities and to obtain clones of the genes that encode them. We are concentrating on plasma membraneassociated (1,3)-{beta}-glucan synthase (glucan synthase-II or GS-II) and Golgi-associated (1,4)-{beta}-glucan synthase (glucan synthase-I or GS-I), of growing pea stem tissue. Our progress has been much more rapid with respect to GS-II than regarding GS-I.

  8. Interaction between head and neck squamous cell carcinoma cells and fibroblasts in the biosynthesis of PGE2

    PubMed Central

    Alcolea, Sonia; Antón, Rosa; Camacho, Mercedes; Soler, Marta; Alfranca, Arantzazu; Avilés-Jurado, Francesc-Xavier; Redondo, Juan-Miguel; Quer, Miquel; León, Xavier; Vila, Luis

    2012-01-01

    Prostaglandin (PG)E2 is relevant in tumor biology, and interactions between tumor and stroma cells dramatically influence tumor progression. We tested the hypothesis that cross-talk between head and neck squamous cell carcinoma (HNSCC) cells and fibroblasts could substantially enhance PGE2 biosynthesis. We observed an enhanced production of PGE2 in cocultures of HNSCC cell lines and fibroblasts, which was consistent with an upregulation of COX-2 and microsomal PGE-synthase-1 (mPGES-1) in fibroblasts. In cultured endothelial cells, medium from fibroblasts treated with tumor cell-conditioned medium induced in vitro angiogenesis, and in tumor cell induced migration and proliferation, these effects were sensitive to PGs inhibition. Proteomic analysis shows that tumor cells released IL-1, and tumor cell-induced COX-2 and mPGES-1 were suppressed by the IL-1-receptor antagonist. IL-1α levels were higher than those of IL-1β in the tumor cell-conditioning medium and in the secretion from samples obtained from 20 patients with HNSCC. Fractionation of tumor cell-conditioning media indicated that tumor cells secreted mature and unprocessed forms of IL-1. Our results support the concept that tumor-associated fibroblasts are a relevant source of PGE2 in the tumor mass. Because mPGES-1 seems to be essential for a substantial biosynthesis of PGE2, these findings also strengthen the concept that mPGES-1 may be \\a target for therapeutic intervention in patients with HNSCC. PMID:22308510

  9. Effect of L-aspartyl-L-phenylalanine methyl ester on leukotriene biosynthesis in macrophage cells.

    PubMed

    Hardcastle, J E; Bruch, R J

    1997-09-01

    Macrophage cells treated with L-aspartyl-L-phenylalanine methyl ester (aspartame) produced leukotrienes and other arachidonic acid metabolites. Leukotriene C4, leukotriene B4, and 15-hydroxyeicosatetraenoic acid were the major metabolites detected. The aspartame-treated macrophage cell cultures produced three times as much arachidonic acid metabolites as did the untreated control cell cultures. Leukotriene C4 was produced in the largest amount by the aspartame-treated cells.

  10. Biosynthesis of gamma-linolenic acid and beta-carotene by Zygomycetes fungi.

    PubMed

    Klempova, Tatiana; Basil, Eva; Kubatova, Alena; Certik, Milan

    2013-07-01

    Due to increasing demand for natural sources of both polyunsaturated fatty acids (PUFAs) and beta-carotene, 28 Zygomycetes fungal soil isolates were screened for their potential to synthesize these biologically active compounds. Although all fungi produced C18 PUFAs, only nine strains also formed beta-carotene. Although Actinomucor elegans CCF 3218 was the best producer of gamma-linolenic acid (GLA) (251 mg/L), Umbelopsis isabellina CCF 2412 was found to be the most valuable fungus because of the dual production of GLA (217 mg/L) and beta-carotene (40.7 mg/L). The calculated ratio of formed PUFAs provided new insight into activities of individual fatty acid desaturases involved in biosynthetic pathways for various types of PUFAs. The maximal activity of delta-9 desaturase was accompanied by high accumulation of storage lipids in fungal cells. On the other hand, maximal activity of delta-15 desaturase was found in strains synthesizing low amounts of oleic acid due to diminished delta-9 desaturase. Activities of delta-6 desaturase showed competition for fatty acids engaged in n3, n6, and n9 biosynthetic pathways. Such knowledge about fatty acid desaturase activities provides new challenges for the regulation of biotechnological production of PUFAs by Zygomycetes fungi. PMID:23625863

  11. Gluconic acid-producing Pseudomonas sp. prevent γ-actinorhodin biosynthesis by Streptomyces coelicolor A3(2).

    PubMed

    Galet, Justine; Deveau, Aurélie; Hôtel, Laurence; Leblond, Pierre; Frey-Klett, Pascale; Aigle, Bertrand

    2014-09-01

    Streptomyces are ubiquitous soil bacteria well known for their ability to produce a wide range of secondary metabolites including antibiotics. In their natural environments, they co-exist and interact with complex microbial communities and their natural products are assumed to play a major role in mediating these interactions. Reciprocally, their secondary metabolism can be influenced by the surrounding microbial communities. Little is known about these complex interactions and the underlying molecular mechanisms. During pairwise co-culture experiments, a fluorescent Pseudomonas, Pseudomonas fluorescens BBc6R8, was shown to prevent the production of the diffusible blue pigment antibiotic γ-actinorhodin by Streptomyces coelicolor A3(2) M145 without altering the biosynthesis of the intracellular actinorhodin. A mutant of the BBc6R8 strain defective in the production of gluconic acid from glucose and consequently unable to acidify the culture medium did not show any effect on the γ-actinorhodin biosynthesis in contrast to the wild-type strain and the mutant complemented with the wild-type allele. In addition, when glucose was substituted by mannitol in the culture medium, P. fluorescens BBc6R8 was unable to acidify the medium and to prevent the biosynthesis of the antibiotic. All together, the results show that P. fluorescens BBc6R8 impairs the biosynthesis of the lactone form of actinorhodin in S. coelicolor by acidifying the medium through the production of gluconic acid. Other fluorescent Pseudomonas and the opportunistic pathogen Pseudomonas aeruginosa PAO1 also prevented the γ-actinorhodin production in a similar way. We propose some hypotheses on the ecological significance of such interaction.

  12. Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers.

    PubMed

    Onoyovwe, Akpevwe; Hagel, Jillian M; Chen, Xue; Khan, Morgan F; Schriemer, David C; Facchini, Peter J

    2013-10-01

    Immunofluorescence labeling and shotgun proteomics were used to establish the cell type-specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy.

  13. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis.

    PubMed

    Milborrow, B V

    2001-06-01

    The pathway of biosynthesis of abscisic acid (ABA) can be considered to comprise three stages: (i) early reactions in which small phosphorylated intermediates are assembled as precursors of (ii) intermediate reactions which begin with the formation of the uncyclized C40 carotenoid phytoene and end with the cleavage of 9'-cis-neoxanthin (iii) to form xanthoxal, the C15 skeleton of ABA. The final phase comprising C15 intermediates is not yet completely defined, but the evidence suggests that xanthoxal is first oxidized to xanthoxic acid by a molybdenum-containing aldehyde oxidase and this is defective in the aba3 mutant of Arabidopsis and present in a 1-fold acetone precipitate of bean leaf proteins. This oxidation precludes the involvement of AB-aldehyde as an intermediate. The oxidation of the 4'-hydroxyl group to the ketone and the isomerization of the 1',2'-epoxy group to the 1'-hydroxy-2'-ene may be brought about by one enzyme which is defective in the aba2 mutant and is present in the 3-fold acetone fraction of bean leaves. Isopentenyl diphosphate (IPP) is now known to be derived by the pyruvate-triose (Methyl Erythritol Phosphate, MEP) pathway in chloroplasts. (14C)IPP is incorporated into ABA by washed, intact chloroplasts of spinach leaves, but (14C)mevalonate is not, consequently, all three phases of biosynthesis of ABA occur within chloroplasts. The incorporation of labelled mevalonate into ABA by avocado fruit and orange peel is interpreted as uptake of IPP made in the cytoplasm, where it is the normal precursor of sterols, and incorporated into carotenoids after uptake by a carrier in the chloroplast envelope. An alternative bypass pathway becomes more important in aldehyde oxidase mutants, which may explain why so many wilty mutants have been found with this defect. The C-1 alcohol group is oxidized, possibly by a mono-oxygenase, to give the C-1 carboxyl of ABA. The 2-cis double bond of ABA is essential for its biological activity but it is not known

  14. Biochemical and Genetic Engineering of Diatoms for Polyunsaturated Fatty Acid Biosynthesis

    PubMed Central

    Li, Hong-Ye; Lu, Yang; Zheng, Jian-Wei; Yang, Wei-Dong; Liu, Jie-Sheng

    2014-01-01

    The role of diatoms as a source of bioactive compounds has been recently explored. Diatom cells store a high amount of fatty acids, especially certain polyunsaturated fatty acids (PUFAs). However, many aspects of diatom metabolism and the production of PUFAs remain unclear. This review describes a number of technical strategies, such as modulation of environmental factors (temperature, light, chemical composition of culture medium) and culture methods, to influence the content of PUFAs in diatoms. Genetic engineering, a newly emerging field, also plays an important role in controlling the synthesis of fatty acids in marine microalgae. Several key points in the biosynthetic pathway of PUFAs in diatoms as well as recent progresses are also a critical part and are summarized here. PMID:24402175

  15. Visualization of the cellulose biosynthesis and cell integration into cellulose scaffolds.

    PubMed

    Brackmann, Christian; Bodin, Aase; Akeson, Madeleine; Gatenholm, Paul; Enejder, Annika

    2010-03-01

    By controlling the microarchitecture of bioengineered scaffolds for artificial tissues, their material and cell-interaction properties can be designed to mimic native correspondents. Current understanding of this relationship is sparse and based on microscopy requiring harsh sample preparation and labeling, leaving it open to which extent the natural morphology is studied. This work introduces multimodal nonlinear microscopy for label-free imaging of tissue scaffolds, exemplified by bacterial cellulose. Unique three-dimensional images visualizing the formation of nanofiber networks throughout the biosynthesis, revealing that supra-structures (layered structures, cavities) are formed. Cell integration in compact scaffolds was visualized and compared with porous scaffolds. While the former showed distinct boundaries to the native tissue, gradual cell integration was observed for the porous material. Thus, the degree of cell integration can be controlled through scaffold supra-structures. This illustrates the potential of nonlinear microscopy for noninvasive imaging of the intriguing interaction mechanisms between scaffolds and cells.

  16. Methyl jasmonate stimulates biosynthesis of 2-phenylethylamine, phenylacetic acid and 2-phenylethanol in seedlings of common buckwheat.

    PubMed

    Horbowicz, Marcin; Wiczkowski, Wiesław; Sawicki, Tomasz; Szawara-Nowak, Dorota; Sytykiewicz, Hubert; Mitrus, Joanna

    2015-01-01

    Methyl jasmonate has a strong effect on secondary metabolizm in plants, by stimulating the biosynthesis a number of phenolic compounds and alkaloids. Common buckwheat (Fagopyrum esculentum Moench) is an important source of biologically active compounds. This research focuses on the detection and quantification of 2-phenylethylamine and its possible metabolites in the cotyledons, hypocotyl and roots of common buckwheat seedlings treated with methyl jasmonate. In cotyledons of buckwheat sprouts, only traces of 2-phenylethylamine were found, while in the hypocotyl and roots its concentration was about 150 and 1000-times higher, respectively. Treatment with methyl jasmonate resulted in a 4-fold increase of the 2-phenylethylamine level in the cotyledons of 7-day buckwheat seedlings, and an 11-fold and 5-fold increase in hypocotyl and roots, respectively. Methyl jasmonate treatment led also to about 4-fold increase of phenylacetic acid content in all examined seedling organs, but did not affect the 2-phenylethanol level in cotyledons, and slightly enhanced in hypocotyl and roots. It has been suggested that 2-phenylethylamine is a substrate for the biosynthesis of phenylacetic acid and 2-phenylethanol, as well as cinnamoyl 2-phenethylamide. In organs of buckwheat seedling treated with methyl jasmonate, higher amounts of aromatic amino acid transaminase mRNA were found. The enzyme can be involved in the synthesis of phenylpyruvic acid, but the presence of this compound could not be confirmed in any of the examined organs of common buckwheat seedling.

  17. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine.

    PubMed

    Hu, Sherry Shu-Jung; Bradshaw, Heather B; Benton, Valery M; Chen, Jay Shih-Chieh; Huang, Susan M; Minassi, Alberto; Bisogno, Tiziana; Masuda, Kim; Tan, Bo; Roskoski, Robert; Cravatt, Benjamin F; Di Marzo, Vincenzo; Walker, J Michael

    2009-10-01

    N-arachidonoyl dopamine (NADA) is an endogenous ligand that activates the cannabinoid type 1 receptor and the transient receptor potential vanilloid type 1 channel. Two potential biosynthetic pathways for NADA have been proposed, though no conclusive evidence exists for either. The first is the direct conjugation of arachidonic acid with dopamine and the other is via metabolism of a putative N-arachidonoyl tyrosine (NA-tyrosine). In the present study we investigated these biosynthetic mechanisms and report that NADA synthesis requires TH in dopaminergic terminals; however, NA-tyrosine, which we identify here as an endogenous lipid, is not an intermediate. We show that NADA biosynthesis primarily occurs through an enzyme-mediated conjugation of arachidonic acid with dopamine. While this conjugation likely involves a complex of enzymes, our data suggest a direct involvement of fatty acid amide hydrolase in NADA biosynthesis either as a rate-limiting enzyme that liberates arachidonic acid from AEA, or as a conjugation enzyme, or both.

  18. Purine biosynthesis in L1210 leukemia cells is inhibited by 7-hydroxymethotrexate (7-OH-MTX) polyglutamates (PGS)

    SciTech Connect

    Seither, R.L.; Matherly, L.H.; Goldman, I.D.

    1986-05-01

    The biochemical basis for 7-OH-MTX cytotoxicity was examined in L1210 tumor cells. Cells were exposed to 100 ..mu..M 7-OH-MTX (approx. 50% growth inhibition) or 10 ..mu..M methotrexate (MTX) (approx. 95% growth inhibition) for 6 hrs to allow high levels of PGS to accumulate. Dihydrofolate reductase (DHFR) activity was assessed by dihydrofolate (FH/sub 2/) pools labeled with 5-formyl-(/sup 3/H)-tetrahydrofolate (5..mu..M) or /sup 3/H-folic acid (1 ..mu..M). FH/sub 2/ was not elevated above control levels in 7-OH-MTX treated cells, in contrast to MTX treated cells in which FH/sub 2/ increased 4- to 7-fold. /sup 3/H-Deoxyuridine incorporation into DNA was not inhibited in cells containing high levels (11.5 nmol/g dry wt.) of 7-OH-MTX tetraglutamate (7-OH-4-NH/sub 2/-10-CH/sub 3/-PteGlu/sub 4/), well in excess of the DHFR-binding capacity (7.3 +/- 0.9 nmol/g), indicating a normal rate of thymidylate synthesis. Although small amounts of 7-OH-MTX and its PGS were bound to DHFR in L1210 cells, as assessed by gel filtration, there was evidence for the preferential binding of 7-OH-MTX tetraglutamate. In all cases this was well below the DHFR binding capacity, consistent with normal rates of deoxyuridine metabolism and FH/sub 2/ levels in the cell. Incorporation of /sup 14/C-formate (60 min) into thymidylate and amino acids was unaffected by 7-OH-MTX, yet incorporation into purines was inhibited over 50%, supporting a block(s) in de novo purine biosynthesis.

  19. Global Effect of Indole-3-Acetic Acid Biosynthesis on Multiple Virulence Factors of Erwinia chrysanthemi 3937▿

    PubMed Central

    Yang, Shihui; Zhang, Qiu; Guo, Jianhua; Charkowski, Amy O.; Glick, Bernard R.; Ibekwe, A. Mark; Cooksey, Donald A.; Yang, Ching-Hong

    2007-01-01

    Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138 was reduced in M9 minimal medium supplemented with l-tryptophan. Compared with wild-type Ech3937, Ech138 exhibited reduced ability to produce local maceration, but its multiplication in Saintpaulia ionantha was unaffected. The pectate lyase production of Ech138 was diminished. Compared with wild-type Ech3937, the expression levels of an oligogalacturonate lyase gene, ogl, and three endopectate lyase genes, pelD, pelI, and pelL, were reduced in Ech138 as determined by a green fluorescent protein-based fluorescence-activated cell sorting promoter activity assay. In addition, the transcription of type III secretion system (T3SS) genes, dspE (a putative T3SS effector) and hrpN (T3SS harpin), was found to be diminished in the iaaM mutant Ech138. Compared with Ech3937, reduced expression of hrpL (a T3SS alternative sigma factor) and gacA but increased expression of rsmA in Ech138 was also observed, suggesting that the regulation of T3SS and pectate lyase genes by IAA biosynthesis might be partially due to the posttranscriptional regulation of the Gac-Rsm regulatory pathway. PMID:17189441

  20. Mutations in the Lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus.

    PubMed

    Cabeen, Matthew T; Murolo, Michelle A; Briegel, Ariane; Bui, N Khai; Vollmer, Waldemar; Ausmees, Nora; Jensen, Grant J; Jacobs-Wagner, Christine

    2010-07-01

    Bacterial cell morphogenesis requires coordination among multiple cellular systems, including the bacterial cytoskeleton and the cell wall. In the vibrioid bacterium Caulobacter crescentus, the intermediate filament-like protein crescentin forms a cell envelope-associated cytoskeletal structure that controls cell wall growth to generate cell curvature. We undertook a genetic screen to find other cellular components important for cell curvature. Here we report that deletion of a gene (wbqL) involved in the lipopolysaccharide (LPS) biosynthesis pathway abolishes cell curvature. Loss of WbqL function leads to the accumulation of an aberrant O-polysaccharide species and to the release of the S layer in the culture medium. Epistasis and microscopy experiments show that neither S-layer nor O-polysaccharide production is required for curved cell morphology per se but that production of the altered O-polysaccharide species abolishes cell curvature by apparently interfering with the ability of the crescentin structure to associate with the cell envelope. Our data suggest that perturbations in a cellular pathway that is itself fully dispensable for cell curvature can cause a disruption of cell morphogenesis, highlighting the delicate harmony among unrelated cellular systems. Using the wbqL mutant, we also show that the normal assembly and growth properties of the crescentin structure are independent of its association with the cell envelope. However, this envelope association is important for facilitating the local disruption of the stable crescentin structure at the division site during cytokinesis.

  1. Cell-Free Phospholipid Biosynthesis by Gene-Encoded Enzymes Reconstituted in Liposomes

    PubMed Central

    Scott, Andrew; Noga, Marek J.; de Graaf, Paul; Westerlaken, Ilja; Yildirim, Esengul; Danelon, Christophe

    2016-01-01

    The goal of bottom-up synthetic biology culminates in the assembly of an entire cell from separate biological building blocks. One major challenge resides in the in vitro production and implementation of complex genetic and metabolic pathways that can support essential cellular functions. Here, we show that phospholipid biosynthesis, a multiple-step process involved in cell membrane homeostasis, can be reconstituted starting from the genes encoding for all necessary proteins. A total of eight E. coli enzymes for acyl transfer and headgroup modifications were produced in a cell-free gene expression system and were co-translationally reconstituted in liposomes. Acyl-coenzyme A and glycerol-3-phosphate were used as canonical precursors to generate a variety of important bacterial lipids. Moreover, this study demonstrates that two-step acyl transfer can occur from enzymes synthesized inside vesicles. Besides clear implications for growth and potentially division of a synthetic cell, we postulate that gene-based lipid biosynthesis can become instrumental for ex vivo and protein purification-free production of natural and non-natural lipids. PMID:27711229

  2. CHES1/FOXN3 regulates cell proliferation by repressing PIM2 and protein biosynthesis

    PubMed Central

    Huot, Geneviève; Vernier, Mathieu; Bourdeau, Véronique; Doucet, Laurent; Saint-Germain, Emmanuelle; Gaumont-Leclerc, Marie-France; Moro, Alejandro; Ferbeyre, Gerardo

    2014-01-01

    The expression of the forkhead transcription factor checkpoint suppressor 1 (CHES1), also known as FOXN3, is reduced in many types of cancers. We show here that CHES1 decreases protein synthesis and cell proliferation in tumor cell lines but not in normal fibroblasts. Conversely, short hairpin RNA–mediated depletion of CHES1 increases tumor cell proliferation. Growth suppression depends on the CHES1 forkhead DNA-binding domain and correlates with the nuclear localization of CHES1. CHES1 represses the expression of multiple genes, including the kinases PIM2 and DYRK3, which regulate protein biosynthesis, and a number of genes in cilium biogenesis. CHES1 binds directly to the promoter of PIM2, and in cells expressing CHES1 the levels of PIM2 are reduced, as well as the phosphorylation of the PIM2 target 4EBP1. Overexpression of PIM2 or eIF4E partially reverses the antiproliferative effect of CHES1, indicating that PIM2 and protein biosynthesis are important targets of the antiproliferative effect of CHES1. In several human hematopoietic cancers, CHES1 and PIM2 expressions are inversely correlated, suggesting that repression of PIM2 by CHES1 is clinically relevant. PMID:24403608

  3. CHES1/FOXN3 regulates cell proliferation by repressing PIM2 and protein biosynthesis.

    PubMed

    Huot, Geneviève; Vernier, Mathieu; Bourdeau, Véronique; Doucet, Laurent; Saint-Germain, Emmanuelle; Gaumont-Leclerc, Marie-France; Moro, Alejandro; Ferbeyre, Gerardo

    2014-03-01

    The expression of the forkhead transcription factor checkpoint suppressor 1 (CHES1), also known as FOXN3, is reduced in many types of cancers. We show here that CHES1 decreases protein synthesis and cell proliferation in tumor cell lines but not in normal fibroblasts. Conversely, short hairpin RNA-mediated depletion of CHES1 increases tumor cell proliferation. Growth suppression depends on the CHES1 forkhead DNA-binding domain and correlates with the nuclear localization of CHES1. CHES1 represses the expression of multiple genes, including the kinases PIM2 and DYRK3, which regulate protein biosynthesis, and a number of genes in cilium biogenesis. CHES1 binds directly to the promoter of PIM2, and in cells expressing CHES1 the levels of PIM2 are reduced, as well as the phosphorylation of the PIM2 target 4EBP1. Overexpression of PIM2 or eIF4E partially reverses the antiproliferative effect of CHES1, indicating that PIM2 and protein biosynthesis are important targets of the antiproliferative effect of CHES1. In several human hematopoietic cancers, CHES1 and PIM2 expressions are inversely correlated, suggesting that repression of PIM2 by CHES1 is clinically relevant. PMID:24403608

  4. Amino Acid Precursor Supply in the Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin by Streptomyces lydicus▿†

    PubMed Central

    Gómez, Cristina; Horna, Dina H.; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J.; Braña, Alfredo F.; Méndez, Carmen; Salas, José A.

    2011-01-01

    Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glutamate synthase genes have been identified in S. lydicus. The expression of slgE3 is increased up to 9-fold at the onset of streptolydigin biosynthesis and later decreases to ∼2-fold over the basal level. In contrast, the expression of housekeeping glutamate synthases decreases when streptolydigin begins to be synthesized. SlgE1 and SlgE2 are the two subunits of a glutamate mutase that would convert glutamate into 3-methylaspartate. Deletion of slgE1-slgE2 led to the production of two compounds containing a lateral side chain derived from glutamate instead of 3-methylaspartate. Expression of this glutamate mutase also reaches a peak increase of up to 5.5-fold coinciding with the onset of antibiotic production. Overexpression of either slgE3 or slgE1-slgE2 in S. lydicus led to an increase in the yield of streptolydigin. PMID:21665968

  5. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis.

    PubMed

    Neuman, Hadar; Galpaz, Navot; Cunningham, Francis X; Zamir, Dani; Hirschberg, Joseph

    2014-04-01

    Carotenoid pigments are indispensable for plant life. They are synthesized within plastids where they provide essential functions in photosynthesis. Carotenoids serve as precursors for the synthesis of the strigolactone phytohormones, which are made from β-carotene, and of abscisic acid (ABA), which is produced from certain xanthophylls. Despite the significant progress that has been made in our understanding of the carotenoid biosynthesis pathway, the synthesis of the xanthophyll neoxanthin has remained unknown. We report here on the isolation of a tomato (Solanum lycopersicum) mutant, neoxanthin-deficient 1 (nxd1), which lacks neoxanthin, and on the cloning of a gene that is necessary for neoxanthin synthesis in both tomato and Arabidopsis. The locus nxd1 encodes a gene of unknown function that is conserved in all higher plants. The activity of NXD1 is essential but cannot solely support neoxanthin synthesis. Lack of neoxanthin does not significantly reduce the fitness of tomato plants in cultivated field conditions and does not impair the synthesis of ABA, suggesting that in tomato violaxanthin is a sufficient precursor for ABA production in vivo.

  6. Synthesis of arabinose glycosyl sulfamides as potential inhibitors of mycobacterial cell wall biosynthesis.

    PubMed

    Suthagar, Kajitha; Watson, Andrew J A; Wilkinson, Brendan L; Fairbanks, Antony J

    2015-09-18

    A series of arabinose glycosyl sulfamides with varying alkyl chain types and lengths were synthesised as mimics of decaprenolphosphoarabinose (DPA), and as potential inhibitors of mycobacterial cell wall biosynthesis. Unprecedented conversion of the desired furanose to the thermodynamically more stable pyranose form occurred during final de-protection. Biological testing against Mycobacterium smegmatis revealed low to moderate anti-mycobacterial activity with marked dependence on alkyl chain length, which in the case of mono-substituted sulfamides was maximal for a C-10 chain.

  7. The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato1

    PubMed Central

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong

    2015-01-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening. PMID:25637453

  8. The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato.

    PubMed

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong; Xiao, Han

    2015-03-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening.

  9. Biosynthesis of the biphenyl phytoalexin aucuparin in Sorbus aucuparia cell cultures treated with Venturia inaequalis.

    PubMed

    Khalil, Mohammed N A; Beuerle, Till; Müller, Andreas; Ernst, Ludger; Bhavanam, Vijaya B R; Liu, Benye; Beerhues, Ludger

    2013-12-01

    Aucuparin is the most widely distributed biphenyl phytoalexin in the rosaceous subtribe Pyrinae, which includes the economically important fruit trees apple and pear. The biphenyl scaffold is formed by biphenyl synthase, which catalyzes biosynthesis of 3,5-dihydroxybiphenyl. Conversion of this precursor to aucuparin (3,5-dimethoxy-4-hydroxybiphenyl) was studied in cell cultures of Sorbus aucuparia after treatment with an elicitor preparation from the scab-causing fungus Venturia inaequalis. The sequence of the biosynthetic steps detected was O-methylation - 4-hydroxylation - O-methylation. The two alkylation reactions were catalyzed by distinct methyltransferases, which differed in pH and temperature optima as well as stability. Biphenyl 4-hydroxylase was a microsomal cytochrome P450 monooxygenase, whose activity was appreciably decreased by the addition of established P450 inhibitors. When fed to V. inaequalis-treated S. aucuparia cell cultures, radioactively labeled 3,5-dihydroxybiphenyl was not only incorporated into aucuparin but also into the dibenzofuran eriobofuran, the accumulation of which paralleled that of aucuparin. However, biphenyl 2'-hydroxylase activity proposed to be involved in dibenzofuran formation was detected in neither microsomes nor cell-free extracts in the presence of NADPH and 2-oxoglutarate, respectively. Nevertheless, a basis for studying biphenyl biosynthesis at the gene level is provided.

  10. Target-Based Identification of Whole-Cell Active Inhibitors of Biotin Biosynthesis in Mycobacterium tuberculosis

    PubMed Central

    Park, Sae Woong; Casalena, Dominick; Wilson, Daniel; Dai, Ran; Nag, Partha; Liu, Feng; Boyce, Jim P.; Bittker, Joshua; Schreiber, Stuart; Finzel, Barry C.; Schnappinger, Dirk; Aldrich, Courtney C.

    2014-01-01

    SUMMARY Biotin biosynthesis is essential for survival and persistence of Mycobacterium tuberculosis (Mtb) in vivo. The aminotransferase BioA, which catalyzes the antepenultimate step in the biotin pathway, has been established as a promising target due to its vulnerability to chemical inhibition. We performed high-throughput screening (HTS) employing a fluorescence displacement assay and identified a diverse set of potent inhibitors including many diversity-oriented synthesis (DOS) scaffolds. To efficiently select only hits targeting biotin biosynthesis, we then deployed a whole-cell counter-screen in either biotin-free and biotin-containing medium against wild-type Mtb and in parallel with isogenic bioA Mtb strains that possess differential levels of BioA expression. This counter-screen proved crucial to filter out compounds whose whole-cell activity was off-target as well as identify hits with weak, but measurable whole-cell activity in BioA-depleted strains. Several of the most promising hits were co-crystallized with BioA to provide a framework for future structure-based drug design efforts. PMID:25556942

  11. Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis

    PubMed Central

    Rodrigues, Elisete P.; Soares, Cleiton de Paula; Galvão, Patrícia G.; Imada, Eddie L.; Simões-Araújo, Jean L.; Rouws, Luc F. M.; de Oliveira, André L. M.; Vidal, Márcia S.; Baldani, José I.

    2016-01-01

    Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with tryptophan and

  12. The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2.

    PubMed

    George, K M; Yuan, Y; Sherman, D R; Barry, C E

    1995-11-10

    The major mycolic acid produced by Mycobacterium tuberculosis contains two cis-cyclopropanes in the meromycolate chain. The gene whose product cyclopropanates the proximal double bond was cloned by homology to a putative cyclopropane synthase identified from the Mycobacterium leprae genome sequencing project. This gene, named cma2, was sequenced and found to be 52% identical to cma1 (which cyclopropanates the distal double bond) and 73% identical to the gene from M. leprae. Both cma genes were found to be restricted in distribution to pathogenic species of mycobacteria. Expression of cma2 in Mycobacterium smegmatis resulted in the cyclopropanation of the proximal double bond in the alpha 1 series of mycolic acids. Coexpression of both cyclopropane synthases resulted in cyclopropanation of both centers, producing a molecule structurally similar to the M. tuberculosis alpha-dicyclopropyl mycolates. Differential scanning calorimetry of purified cell walls and mycolic acids demonstrated that cyclopropanation of the proximal position raised the observed transition temperature by 3 degrees C. These results suggest that cyclopropanation contributes to the structural integrity of the cell wall complex.

  13. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis

    SciTech Connect

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine; Veyron-Churlet, Romain; Zanella-Cléon, Isabelle; Sacchettini, James C.; Jacobs, Jr, William R.; Kremer, Laurent

    2011-08-24

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA{_}T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development.

  14. Development of an orthogonal fatty acid biosynthesis system in E. coli for oleochemical production.

    PubMed

    Haushalter, Robert W; Groff, Dan; Deutsch, Samuel; The, Lionadi; Chavkin, Ted A; Brunner, Simon F; Katz, Leonard; Keasling, Jay D

    2015-07-01

    Here we report recombinant expression and activity of several type I fatty acid synthases that can function in parallel with the native Escherichia coli fatty acid synthase. Corynebacterium glutamicum FAS1A was the most active in E. coli and this fatty acid synthase was leveraged to produce oleochemicals including fatty alcohols and methyl ketones. Coexpression of FAS1A with the ACP/CoA-reductase Maqu2220 from Marinobacter aquaeolei shifted the chain length distribution of fatty alcohols produced. Coexpression of FAS1A with FadM, FadB, and an acyl-CoA-oxidase from Micrococcus luteus resulted in the production of methyl ketones, although at a lower level than cells using the native FAS. This work, to our knowledge, is the first example of in vivo function of a heterologous fatty acid synthase in E. coli. Using FAS1 enzymes for oleochemical production have several potential advantages, and further optimization of this system could lead to strains with more efficient conversion to desired products. Finally, functional expression of these large enzyme complexes in E. coli will enable their study without culturing the native organisms.

  15. DNA Methylation Perturbations in Genes Involved in Polyunsaturated Fatty Acid Biosynthesis Associated with Depression and Suicide Risk

    PubMed Central

    Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-yu; Cooper, Thomas B.; Burke, Ainsley K.; Oquendo, Maria A.; Mann, J. John; Sublette, M. Elizabeth

    2015-01-01

    Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention. PMID:25972837

  16. Expansion of the Clavulanic Acid Gene Cluster: Identification and In Vivo Functional Analysis of Three New Genes Required for Biosynthesis of Clavulanic Acid by Streptomyces clavuligerus

    PubMed Central

    Li, Rongfeng; Khaleeli, Nusrat; Townsend, Craig A.

    2000-01-01

    Clavulanic acid is a potent inhibitor of β-lactamase enzymes and is of demonstrated value in the treatment of infections by β-lactam-resistant bacteria. Previously, it was thought that eight contiguous genes within the genome of the producing strain Streptomyces clavuligerus were sufficient for clavulanic acid biosynthesis, because they allowed production of the antibiotic in a heterologous host (K. A. Aidoo, A. S. Paradkar, D. C. Alexander, and S. E. Jensen, p. 219–236, In V. P. Gullo et al., ed., Development in industrial microbiology series, 1993). In contrast, we report the identification of three new genes, orf10 (cyp), orf11 (fd), and orf12, that are required for clavulanic acid biosynthesis as indicated by gene replacement and trans-complementation analysis in S. clavuligerus. These genes are contained within a 3.4-kb DNA fragment located directly downstream of orf9 (cad) in the clavulanic acid cluster. While the orf10 (cyp) and orf11 (fd) proteins show homologies to other known CYP-150 cytochrome P-450 and [3Fe-4S] ferredoxin enzymes and may be responsible for an oxidative reaction late in the pathway, the protein encoded by orf12 shows no significant similarity to any known protein. The results of this study extend the biosynthetic gene cluster for clavulanic acid and attest to the importance of analyzing biosynthetic genes in the context of their natural host. Potential functional roles for these proteins are proposed. PMID:10869089

  17. Cinnamate:CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures.

    PubMed

    Gaid, Mariam M; Sircar, Debabrata; Müller, Andreas; Beuerle, Till; Liu, Benye; Ernst, Ludger; Hänsch, Robert; Beerhues, Ludger

    2012-11-01

    Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg²⁺ and K⁺ at optimum concentrations of 2.5 and 100 mM, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages.

  18. Biosynthesis of N,N-dimethyltryptamine (DMT) in a melanoma cell line and its metabolization by peroxidases.

    PubMed

    Gomes, Melissa M; Coimbra, Janine B; Clara, Renan O; Dörr, Felipe A; Moreno, Ana Carolina R; Chagas, Jair R; Tufik, Sérgio; Pinto, Ernani; Catalani, Luiz H; Campa, Ana

    2014-04-01

    Tryptophan (TRP) is essential for many physiological processes, and its metabolism changes in some diseases such as infection and cancer. The most studied aspects of TRP metabolism are the kynurenine and serotonin pathways. A minor metabolic route, tryptamine and N,N-dimethyltryptamine (DMT) biosynthesis, has received far less attention, probably because of the very low amounts of these compounds detected only in some tissues, which has led them to be collectively considered as trace amines. In a previous study, we showed a metabolic interrelationship for TRP in melanoma cell lines. Here, we identified DMT and N,N-dimethyl-N-formyl-kynuramine (DMFK) in the supernatant of cultured SK-Mel-147 cells. Furthermore, when we added DMT to the cell culture, we found hydroxy-DMT (OH-DMT) and indole acetic acid (IAA) in the cell supernatant at 24 h. We found that SK-Mel-147 cells expressed mRNA for myeloperoxidase (MPO) and also had peroxidase activity. We further found that DMT oxidation was catalyzed by peroxidases. DMT oxidation by horseradish peroxidase, H2O2 and MPO from PMA-activated neutrophils produced DMFK, N,N-dimethyl-kynuramine (DMK) and OH-DMT. Oxidation of DMT by peroxidases apparently uses the common peroxidase cycle involving the native enzyme, compound I and compound II. In conclusion, this study describes a possible alternative metabolic pathway for DMT involving peroxidases that has not previously been described in humans and identifies DMT and metabolites in a melanoma cell line. The extension of these findings to other cell types and the biological effects of DMT and its metabolites on cell proliferation and function are key questions for future studies.

  19. Expression of genes involved in heme biosynthesis in the human retinoblastoma cell lines WERI-Rb-1 and Y79: implications for photodynamic therapy.

    PubMed

    Ruiz-Galindo, E; Arenas-Huertero, F; Ramón-Gallegos, E

    2007-06-01

    Photodynamic therapy (PDT), using protoporphyrin IX (PpIX) as a natural photosensitizer, may be a viable alternative therapy of retinoblastoma. In order to evaluate the potential value of PpIX, the expression profiles of genes involved in heme biosynthesis in human retinoblastoma WERI-Rb-1 and Y79 cells were analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). Expression levels were highest in protoporphyrinogen oxidase (PPOX), uroporphyrinogen synthase and aminolevulinic acid synthase. Ferrochelatase expression showed a reduction compared to PPOX. PpIX levels were 15- and 18-fold higher in WERI-Rb-1 and Y79 cells, respectively, following induction by delta-aminolevulinic acid. PDT may thus be a promising treatment in vitro, at least in these two retinoblastoma cell lines. PMID:17725098

  20. Pyrimidine Biosynthesis in Lactobacillus leichmannii

    PubMed Central

    Hutson, Judith Y.; Downing, Mancourt

    1968-01-01

    Tracer studies of pyrimidine biosynthesis in Lactobacillus leichmannii (ATCC 7830) indicated that, while aspartate is utilized in the usual manner, the guanido carbon of arginine, rather than carbon dioxide, is utilized as a pyrimidine precursor. The guanido carbon of arginine also contributes, to some extent, to the carbon dioxide pool utilized for purine biosynthesis. The enzyme of the first reaction leading from arginine to pyrimidines, arginine deiminase, was investigated in crude bacterial extracts. It was inhibited by thymidylic acid and purine ribonucleotides, and to a lesser extent by purine deoxynucleotides and deoxycytidylic acid. Under the assay conditions employed, a number of nucleotides had no effect on the enzyme activity of the aspartate transcarbamylase of L. leichmannii. Growth of the cells in media containing uracil, compared to growth in media without uracil, resulted in a four- to fivefold decrease in the concentrations of aspartate transcar-bamylase and dihydroorotase and a twofold increase in the concentration of arginine deiminase, as estimated from specific enzyme activity in crude extracts of the cells. A small increase in specific enzyme activity of ornithine transcarbamylase and carbamate kinase was also observed in extracts obtained from cells grown on uracil. No appreciable change in concentration of any of the five enzymes studied was detected when the cells were grown in media containing thymidine or guanylic acid. A hypothetical scheme which suggests a relationship between the control of purine and pyrimidine biosynthesis in this bacterium and which is consistent with the experimental results obtained is presented. PMID:5686000

  1. Retinoic acid receptor beta and angiopoietin-like protein 1 are involved in the regulation of human androgen biosynthesis

    PubMed Central

    Udhane, Sameer S.; Pandey, Amit V.; Hofer, Gaby; Mullis, Primus E.; Flück, Christa E.

    2015-01-01

    Androgens are essential for sexual development and reproduction. However, androgen regulation in health and disease is poorly understood. We showed that human adrenocortical H295R cells grown under starvation conditions acquire a hyperandrogenic steroid profile with changes in steroid metabolizing enzymes HSD3B2 and CYP17A1 essential for androgen production. Here we studied the regulatory mechanisms underlying androgen production in starved H295R cells. Microarray expression profiling of normal versus starved H295R cells revealed fourteen differentially expressed genes; HSD3B2, HSD3B1, CYP21A2, RARB, ASS1, CFI, ASCL1 and ENC1 play a role in steroid and energy metabolism and ANGPTL1, PLK2, DUSP6, DUSP10 and FREM2 are involved in signal transduction. We discovered two new gene networks around RARB and ANGPTL1, and show how they regulate androgen biosynthesis. Transcription factor RARB stimulated the promoters of genes involved in androgen production (StAR, CYP17A1 and HSD3B2) and enhanced androstenedione production. For HSD3B2 regulation RARB worked in cooperation with Nur77. Secretory protein ANGPTL1 modulated CYP17A1 and DUSP6 expression by inducing ERK1/2 phosphorylation. By contrast, our studies revealed no evidence for hormones or cell cycle involvement in regulating androgen biosynthesis. In summary, these studies establish a firm role for RARB and ANGPTL1 in the regulation of androgen production in H295R cells. PMID:25970467

  2. Gibberellin biosynthesis in Gibberlla fujikuroi

    SciTech Connect

    Johnson, S.W.; Coolbaugh, R.C. )

    1989-04-01

    Gibberellins (GAs) are a group of plant growth hormones which were first isolated from the fungus Gibberella fujikuori. We have examined the biosynthesis of GAs in this fungus in liquid cultures using HPLC followed by GC-MS. Furthermore we have used cell-free enzyme extracts with {sup 14}C-labeled intermediates to examine the regulation of specific parts of the biosynthetic pathway. GA{sub 3} is the predominant GA in well aerated cultures. GA{sub 4} and GA{sub 7}, intermediates in GA{sub 3} biosynthesis, accumulate in cultures with low levels of dissolved oxygen, but are not detectable in more aerated cultures. Light stimulates GA production in G. fujikuroi cultures grown from young stock. Cell-free enzyme studies indicate that light has no effect on incorporation of mevalonic acid into kaurene, but does significantly stimulate the oxidation of kaurenoic acid.

  3. Control of T Cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis.

    PubMed

    Grigorian, Ani; Lee, Sung-Uk; Tian, Wenqiang; Chen, I-Ju; Gao, Guoyan; Mendelsohn, Richard; Dennis, James W; Demetriou, Michael

    2007-07-01

    Autoimmunity is a complex trait disease where the environment influences susceptibility to disease by unclear mechanisms. T cell receptor clustering and signaling at the immune synapse, T cell proliferation, CTLA-4 endocytosis, T(H)1 differentiation, and autoimmunity are negatively regulated by beta1,6GlcNAc-branched N-glycans attached to cell surface glycoproteins. Beta1,6GlcNAc-branched N-glycan expression in T cells is dependent on metabolite supply to UDP-GlcNAc biosynthesis (hexosamine pathway) and in turn to Golgi N-acetylglucosaminyltransferases Mgat1, -2, -4, and -5. In Jurkat T cells, beta1,6GlcNAc-branching in N-glycans is stimulated by metabolites supplying the hexosamine pathway including glucose, GlcNAc, acetoacetate, glutamine, ammonia, or uridine but not by control metabolites mannosamine, galactose, mannose, succinate, or pyruvate. Hexosamine supplementation in vitro and in vivo also increases beta1,6GlcNAc-branched N-glycans in naïve mouse T cells and suppresses T cell receptor signaling, T cell proliferation, CTLA-4 endocytosis, T(H)1 differentiation, experimental autoimmune encephalomyelitis, and autoimmune diabetes in non-obese diabetic mice. Our results indicate that metabolite flux through the hexosamine and N-glycan pathways conditionally regulates autoimmunity by modulating multiple T cell functionalities downstream of beta1,6GlcNAc-branched N-glycans. This suggests metabolic therapy as a potential treatment for autoimmune disease.

  4. De Novo Transcriptome Analysis of Warburgia ugandensis to Identify Genes Involved in Terpenoids and Unsaturated Fatty Acids Biosynthesis

    PubMed Central

    Wang, Xin; Zhou, Chen; Yang, Xianpeng; Miao, Di; Zhang, Yansheng

    2015-01-01

    The bark of Warburgia ugandensis (Canellaceae family) has been used as a medicinal source for a long history in many African countries. The presence of diverse terpenoids and abundant polyunsaturated fatty acids (PUFAs) in this organ contributes to its broad range of pharmacological properties. Despite its medicinal and economic importance, the knowledge on the biosynthesis of terpenoid and unsaturated fatty acid in W. ugandensis bark remains largely unknown. Therefore, it is necessary to construct a genomic and/or transcriptomic database for the functional genomics study on W. ugandensis. The chemical profiles of terpenoids and fatty acids between the bark and leaves of W. ugandensis were compared by gas chromatography-mass spectrometry (GC-MS) analysis. Meanwhile, the transcriptome database derived from both tissues was created using Illumina sequencing technology. In total, about 17.1 G clean nucleotides were obtained, and de novo assembled into 72,591 unigenes, of which about 38.06% can be aligned to the NCBI non-redundant protein database. Many candidate genes in the biosynthetic pathways of terpenoids and unsaturated fatty acids were identified, including 14 unigenes for terpene synthases. Furthermore, 2,324 unigenes were discovered to be differentially expressed between both tissues; the functions of those differentially expressed genes (DEGs) were predicted by gene ontology enrichment and metabolic pathway enrichment analyses. In addition, the expression of 12 DEGs with putative roles in terpenoid and unsaturated fatty acid metabolic pathways was confirmed by qRT-PCRs, which was consistent with the data of the RNA-sequencing. In conclusion, we constructed a comprehensive transcriptome dataset derived from the bark and leaf of W. ugandensis, which forms the basis for functional genomics studies on this plant species. Particularly, the comparative analysis of the transcriptome data between the bark and leaf will provide critical clues to reveal the regulatory

  5. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa.

    PubMed Central

    Serino, L; Reimmann, C; Visca, P; Beyeler, M; Chiesa, V D; Haas, D

    1997-01-01

    The high-affinity siderophore salicylate is an intermediate in the biosynthetic pathway of pyochelin, another siderophore and chelator of transition metal ions, in Pseudomonas aeruginosa. The 2.5-kb region upstream of the salicylate biosynthetic genes pchBA was sequenced and found to contain two additional, contiguous genes, pchD and pchC, having the same orientation. The deduced amino acid sequence of the 60-kDa PchD protein was similar to those of the EntE protein (2,3-dihydroxybenzoate-AMP ligase) of Escherichia coli and other adenylate-forming enzymes, suggesting that salicylate might be adenylated at the carboxyl group by PchD. The 28-kDa PchC protein showed similarities to thioesterases of prokaryotic and eukaryotic origin and might participate in the release of the product(s) formed from activated salicylate. One potential product, dihydroaeruginoate (Dha), was identified in culture supernatants of iron-limited P. aeruginosa cells. The antifungal antibiotic Dha is thought to arise from the reaction of salicylate with cysteine, followed by cyclization of cysteine. Inactivation of the chromosomal pchD gene by insertion of the transcription and translation stop element omega Sm/Sp abolished the production of Dha and pyochelin, implying that PchD-mediated activation of salicylate may be a common first step in the synthesis of both metabolites. Furthermore, the pchD::omega Sm/Sp mutation had a strong polar effect on the expression of the pchBA genes, i.e., on salicylate synthesis, indicating that the pchDCBA genes constitute a transcriptional unit. A full-length pchDCBA transcript of ca. 4.4 kb could be detected in iron-deprived, growing cells of P. aeruginosa. Transcription of pchD started at tandemly arranged promoters, which overlapped with two Fur boxes (binding sites for the ferric uptake regulator) and the promoter of the divergently transcribed pchR gene encoding an activator of pyochelin biosynthesis. This promoter arrangement allows tight iron

  6. The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89.

    PubMed

    Yuwen, Lei; Zhang, Feng-Li; Chen, Qi-Hua; Lin, Shuang-Jun; Zhao, Yi-Lei; Li, Zhi-Yong

    2013-01-01

    For biosynthesis of bacillamide C by Bacillus atrophaeus C89 associated with South China sea sponge Dysidea avara, it is hypothesized that decarboxylation from L-tryptophan to tryptamine could be performed before amidation by the downstream aromatic L-amino acid decarboxylase (AADC) to the non-ribosomal peptide synthetases (NRPS) gene cluster for biosynthesizing bacillamide C. The structural analysis of decarboxylases' known substrates in KEGG database and alignment analysis of amino acid sequence of AADC have suggested that L-tryptophan and L-phenylalanine are the potential substrates of AADC. The enzymatic kinetic experiment of the recombinant AADC proved that L-tryptophan is a more reactive substrate of AADC than L-phenylalanine. Meanwhile, the AADC-catalyzed conversion of L-tryptophan into tryptamine was confirmed by means of HPLC and LC/MS. Thus during bacillamide C biosynthesis, the decarboxylation of L-tryptophan to tryptamine is likely conducted first under AADC catalysis, followed by the amidation of tryptamine with the carboxylic product of NRPS gene cluster.

  7. Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C

    PubMed Central

    1985-01-01

    The biosynthesis of the neural cell adhesion molecule (N-CAM) was studied in primary cultures of rat cerebral glial cells, cerebellar granule neurons, and skeletal muscle cells. The three cell types produced different N-CAM polypeptide patterns. Glial cells synthesized a 135,000 Mr polypeptide B and a 115,000 Mr polypeptide C, whereas neurons expressed a 200,000 Mr polypeptide A as well as polypeptide B. Skeletal muscle cells produced polypeptide B. The polypeptides synthesized by the three cell types were immunochemically identical. The membrane association of polypeptide C was investigated with methods that distinguish peripheral and integral membrane proteins. Polypeptide C was found to be a peripheral membrane protein, whereas polypeptides A and B were integral membrane proteins with cytoplasmic domains of approximately 50,000 and approximately 25,000 Mr, respectively. The affinity of the membrane binding of polypeptide C increased during postnatal development. The posttranslational modifications of polypeptide C were investigated in glial cell cultures, and it was found to be N-linked glycosylated and sulfated. PMID:4066759

  8. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.

    PubMed

    Mohapatra, Sridev; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash C

    2010-04-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and gamma-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra x maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and gamma-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.

  9. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa.

    PubMed

    Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Chen, Hsi-Chuan; Liu, Jie; Loziuk, Philip; Song, Jina; Williams, Cranos; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2015-01-01

    Downregulation of 4-coumaric acid:coenzyme A ligase (4CL) can reduce lignin content in a number of plant species. In lignin precursor (monolignol) biosynthesis during stem wood formation in Populus trichocarpa, two enzymes, Ptr4CL3 and Ptr4CL5, catalyze the coenzyme A (CoA) ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. CoA ligation of 4-coumaric acid is essential for the 3-hydroxylation of 4-coumaroyl shikimic acid. This hydroxylation results from sequential reactions of 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) and 4-coumaric acid 3-hydroxylase 3 (PtrC3H3). Alternatively, 3-hydroxylation of 4-coumaric acid to caffeic acid may occur through an enzyme complex of cinnamic acid 4-hydroxylase 1 and 2 (PtrC4H1 and PtrC4H2) and PtrC3H3. We found that 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr4CL5. 4-Coumaroyl shikimic acid strongly inhibits the formation of 4-coumaroyl-CoA and caffeoyl-CoA. Caffeoyl shikimic acid inhibits only the formation of 4-coumaroyl-CoA. 4-Coumaroyl and caffeoyl shikimic acids both act as competitive and uncompetitive inhibitors. Metabolic flux in wild-type and PtrC3H3 downregulated P. trichocarpa transgenics has been estimated by absolute protein and metabolite quantification based on liquid chromatography-tandem mass spectrometry, mass action kinetics, and inhibition equations. Inhibition by 4-coumaroyl and caffeoyl shikimic acids may play significant regulatory roles when these inhibitors accumulate.

  10. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    SciTech Connect

    Billestrup, N.; Moeldrup, A.; Serup, P.; Nielsen, J.H. ); Mathews, L.S.; Norstedt, G. )

    1990-09-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, the authors have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and to contain a specific GH receptor mRNA that was not expressed in the parent cell line. The expression of GH receptors in one clone (1.24) selected for detailed analysis was increased 2.6-fold compared to untransfected cells. The increased GH receptor expression was accompanied by an increased responsiveness to GH. Thus, the maximal GH-stimulated increase of insulin biosynthesis was 4.1-fold in 1.24 cells compared to 1.9-fold in the nontransfected RIN5-AH cells. The expression of the transfected receptor was stimulated 1.6- and 2.3-fold when cells were cultured in the presence of 25 or 50 {mu}M Zn{sup 2+} was associated with an increased magnitude of GH-stimulated insulin biosynthesis. A close stoichiometric relationship between the level of receptor expression and the level of GH-stimulated insulin biosynthesis was observed. They conclude from these results that the hepatic GH receptor is able to mediate the effect of GH on insulin biosynthesis in RIN5-AH cells.

  11. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  12. TaOPR2 encodes a 12-oxo-phytodienoic acid reductase involved in the biosynthesis of jasmonic acid in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yukun; Yuan, Guoliang; Yuan, Shaohua; Duan, Wenjing; Wang, Peng; Bai, Jianfang; Zhang, Fengting; Gao, Shiqing; Zhang, Liping; Zhao, Changping

    2016-01-29

    The 12-oxo-phytodienoic acid reductases (OPRs) are involved in the various processes of growth and development in plants, and classified into the OPRⅠ and OPRⅡ subgroups. In higher plants, only OPRⅡ subgroup genes take part in the biosynthesis of endogenous jasmonic acid. In this study, we isolated a novel OPRⅡ subgroup gene named TaOPR2 (GeneBank accession: KM216389) from the thermo-sensitive genic male sterile (TGMS) wheat cultivar BS366. TaOPR2 was predicted to encode a protein with 390 amino acids. The encoded protein contained the typical oxidored_FMN domain, the C-terminus peroxisomal-targeting signal peptide, and conserved FMN-binding sites. TaOPR2 was mapped to wheat chromosome 7B and located on peroxisome. Protein evolution analysis revealed that TaOPR2 belongs to the OPRⅡ subgroup and shares a high degree of identity with other higher plant OPR proteins. The quantitative real-time PCR results indicated that the expression of TaOPR2 is inhibited by abscisic acid (ABA), salicylic acid (SA), gibberellic acid (GA3), low temperatures and high salinity. In contrast, the expression of TaOPR2 can be induced by wounding, drought and methyl jasmonate (MeJA). Furthermore, the transcription level of TaOPR2 increased after infection with Puccinia striiformis f. sp. tritici and Puccinia recondite f. sp. tritici. TaOPR2 has NADPH-dependent oxidoreductase activity. In addition, the constitutive expression of TaOPR2 can rescue the male sterility phenotype of Arabidopsis mutant opr3. These results suggest that TaOPR2 is involved in the biosynthesis of jasmonic acid (JA) in wheat.

  13. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants

    PubMed Central

    Nakano, Yoshimi; Yamaguchi, Masatoshi; Endo, Hitoshi; Rejab, Nur Ardiyana; Ohtani, Misato

    2015-01-01

    Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enzymes that are regulated by SCW-specific transcription factors. In this review, we summarize our current knowledge of the transcriptional regulation of SCW formation in plant cells. Advances in research on SCW biosynthesis during the past decade have expanded our understanding of the transcriptional regulation of SCW formation, particularly the functions of the NAC and MYB transcription factors. Focusing on the NAC-MYB-based transcriptional network, we discuss the regulatory systems that evolved in land plants to modify the cell wall to serve as a key component of structures that conduct water and provide mechanical support. PMID:25999964

  14. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells

    PubMed Central

    Augustin, Megan M.; Ruzicka, Dan R.; Shukla, Ashutosh K.; Augustin, Jörg M.; Starks, Courtney M.; O’Neil-Johnson, Mark; McKain, Michael R.; Evans, Bradley S.; Barrett, Matt D.; Smithson, Ann; Wong, Gane Ka-Shu; Deyholos, Michael K.; Edger, Patrick P.; Pires, J. Chris; Leebens-Mack, James H.; Mann, David A.; Kutchan, Toni M.

    2015-01-01

    Summary Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA-seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern-matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ-aminobutyrate transaminase; together they produce verazine from cholesterol. PMID:25939370

  15. Dietary n-3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus.

    PubMed

    Coyne, G S; Kenny, D A; Childs, S; Sreenan, J M; Waters, S M

    2008-09-15

    Nutrition plays a critical role in the regulation of cow fertility. There is emerging evidence that dietary long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may act as specific regulators of some reproductive processes. In vitro studies suggest that the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may play pivotal roles by suppressing the synthesis of uterine prostaglandin F(2alpha) (PGF(2alpha)) which is centrally involved in the control of the bovine oestrous cycle and in early embryo survival. The objective of the current study was to determine the effect of dietary inclusion of n-3 PUFA on uterine endometrial mRNA expression of key genes regulating PGF(2alpha) biosynthesis. Beef heifers were fed either a low (CON; n=10) or high (HIGH PUFA; n=10) n-3 PUFA diet for 45 days and endometrial tissues were harvested following slaughter. Following analysis, tissues within each dietary group were ranked on the basis of their PUFA concentrations and the highest (n=7) and lowest (n=7) within each of HIGH PUFA and CON, respectively, were used in gene expression studies. Endometrial n-3 PUFA concentrations were more than two-fold higher (P<0.05) and EPA concentrations alone more than seven-fold higher (P<0.01) in the HIGH PUFA than the CON group. Endometrial concentrations of arachidonic acid, were lower (P<0.001) in the tissues from HIGH PUFA than those from the CON group. Total RNA was isolated from all endometrial tissues and real-time reverse transcription (RT) PCR conducted to compare the relative expression of 11 genes with known involvement in uterine biosynthesis of 2-series prostaglandins. Expression of mRNA for prostaglandin E synthase (PGES) and peroxisome proliferator-activated receptors, PPAR alpha and delta was increased (P<0.05) while mRNA expression of phospholipase A(2) (PLA(2)) was decreased (P=0.06) in the HIGH PUFA endometrial tissues. Expression of genes coding for the oxytocin receptor (OTR), phospholipase C (PLC

  16. Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds1

    PubMed Central

    González-Guzmán, Miguel; Abia, David; Salinas, Julio; Serrano, Ramón; Rodríguez, Pedro L.

    2004-01-01

    The abscisic aldehyde oxidase 3 (AAO3) gene product of Arabidopsis catalyzes the final step in abscisic acid (ABA) biosynthesis. An aao3-1 mutant in a Landsberg erecta genetic background exhibited a wilty phenotype in rosette leaves, whereas seed dormancy was not affected (Seo et al., 2000a). Therefore, it was speculated that a different aldehyde oxidase would be the major contributor to ABA biosynthesis in seeds (Seo et al., 2000a). Through a screening based on germination under high-salt concentration, we isolated two mutants in a Columbia genetic background, initially named sre2-1 and sre2-2 (for salt resistant). Complementation tests with different ABA-deficient mutants indicated that sre2-1 and sre2-2 mutants were allelic to aao3-1, and therefore they were renamed as aao3-2 and aao3-3, respectively. Indeed, molecular characterization of the aao3-2 mutant revealed a T-DNA insertional mutation that abolished the transcription of AAO3 gene, while sequence analysis of AAO3 in aao3-3 mutant revealed a deletion of three nucleotides and several missense mutations. Physiological characterization of aao3-2 and aao3-3 mutants revealed a wilty phenotype and osmotolerance in germination assays. In contrast to aao3-1, both aao3-2 and aao3-3 mutants showed a reduced dormancy. Accordingly, ABA levels were reduced in dry seeds and rosette leaves of both aao3-2 and aao3-3. Taken together, these results indicate that AAO3 gene product plays a major role in seed ABA biosynthesis. PMID:15122034

  17. The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei.

    PubMed

    Neuhaus, F C; Heaton, M P; Debabov, D V; Zhang, Q

    1996-01-01

    The D-alanine incorporation system allows Lactobacillus casei to modulate the chemical properties of lipoteichoic acid (LTA) and hence control its proposed functions, i.e., regulation of autolysin action, metal ion binding, and the electromechanical properties of the cell wall. The system requires the D-alanine-D-alanyl carrier protein ligase (Dcl) and the D-alanyl carrier protein (Dcp). Our results indicate that the genes for these proteins are encoded in the dlt operon and that this operon contains at least 2 other genes, dltB and dltD. The aim of this paper is to describe the genetic organization of the operon, the role of the D-alanyl carrier protein, and the function of the putative protein encoded by dltB in the intramembranal translocation of the activated D-alanine. PMID:9158726

  18. Effective Immobilization of Agrobacterium sp. IFO 13140 Cells in Loofa Sponge for Curdlan Biosynthesis.

    PubMed

    Martinez, Camila Ortiz; Ruiz, Suelen Pereira; Nogueira, Marcela Tiemi; Bona, Evandro; Portilho, Márcia; Matioli, Graciette

    2015-05-04

    Curdlan production by Agrobacterium sp. IFO13140 immobilized on loofa sponge, alginate and loofa sponge with alginate was investigated. There was no statistically-significant difference in curdlan production when the microorganism was immobilized in different matrices. The loofa sponge was chosen because of its practical application and economy and because it provides a high stability through its continued use. The best conditions for immobilization on loofa sponge were 50 mg of cell, 200 rpm and 72 h of incubation, which provided a curdlan production 1.50-times higher than that obtained by free cells. The higher volumetric productivity was achieved by immobilized cells (0.09 g/L/h) at 150 rpm. The operating stability was evaluated, and until the fourth cycle, immobilized cells retained 87.40% of the production of the first cycle. The immobilized cells remained active after 300 days of storage at 4 °C. The results of this study demonstrate success in immobilizing cells for curdlan biosynthesis, making the process potentially suitable for industrial scale-up. Additional studies may show a possible contribution to the reduction of operating costs.

  19. DNA Sequence and Expression Variation of Hop (Humulus lupulus) Valerophenone Synthase (VPS), a Key Gene in Bitter Acid Biosynthesis

    PubMed Central

    Castro, Consuelo B.; Whittock, Lucy D.; Whittock, Simon P.; Leggett, Grey; Koutoulis, Anthony

    2008-01-01

    Background The hop plant (Humulus lupulus) is a source of many secondary metabolites, with bitter acids essential in the beer brewing industry and others having potential applications for human health. This study investigated variation in DNA sequence and gene expression of valerophenone synthase (VPS), a key gene in the bitter acid biosynthesis pathway of hop. Methods Sequence variation was studied in 12 varieties, and expression was analysed in four of the 12 varieties in a series across the development of the hop cone. Results Nine single nucleotide polymorphisms (SNPs) were detected in VPS, seven of which were synonymous. The two non-synonymous polymorphisms did not appear to be related to typical bitter acid profiles of the varieties studied. However, real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis of VPS expression during hop cone development showed a clear link with the bitter acid content. The highest levels of VPS expression were observed in two triploid varieties, ‘Symphony’ and ‘Ember’, which typically have high bitter acid levels. Conclusions In all hop varieties studied, VPS expression was lowest in the leaves and an increase in expression was consistently observed during the early stages of cone development. PMID:18519445

  20. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    PubMed

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  1. Neutral Lipid Biosynthesis in Engineered Escherichia coli: Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters

    PubMed Central

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-01-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms. PMID:16461689

  2. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

    PubMed Central

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-01-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  3. The Non-Essential Mycolic Acid Biosynthesis Genes hadA and hadC Contribute to the Physiology and Fitness of Mycobacterium smegmatis

    PubMed Central

    Jamet, Stevie; Slama, Nawel; Domingues, Joana; Laval, Françoise; Texier, Pauline; Eynard, Nathalie; Quémard, Annaik; Peixoto, Antonio; Lemassu, Anne; Daffé, Mamadou; Cam, Kaymeuang

    2015-01-01

    Gram positive mycobacteria with a high GC content, such as the etiological agent of tuberculosis Mycobacterium tuberculosis, possess an outer membrane mainly composed of mycolic acids (MAs), the so-called mycomembrane, which is essential for the cell. About thirty genes are involved in the biosynthesis of MAs, which include the hadA, hadB and hadC genes that encode the dehydratases Fatty Acid Synthase type II (FAS-II) known to function as the heterodimers HadA-HadB and HadB-HadC. The present study shows that M. smegmatis cells remain viable in the absence of either HadA and HadC or both. Inactivation of HadC has a dramatic effect on the physiology and fitness of the mutant strains whereas that of HadA exacerbates the phenotype of a hadC deletion. The hadC mutants exhibit a novel MA profile, display a distinct colony morphology, are less aggregated, are impaired for sliding motility and biofilm development and are more resistant to detergent. Conversely, the hadC mutants are significantly more susceptible to low- and high-temperature and to selective toxic compounds, including several current anti-tubercular drugs. PMID:26701652

  4. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate

    PubMed Central

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction. PMID:26149121

  5. Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate.

    PubMed

    Song, Heng; Hu, Wen; Naowarojna, Nathchar; Her, Ampon Sae; Wang, Shu; Desai, Rushil; Qin, Li; Chen, Xiaoping; Liu, Pinghua

    2015-01-01

    Ergothioneine is a histidine thio-derivative isolated in 1909. In ergothioneine biosynthesis, the combination of a mononuclear non-heme iron enzyme catalyzed oxidative C-S bond formation reaction and a PLP-mediated C-S lyase (EgtE) reaction results in a net sulfur transfer from cysteine to histidine side-chain. This demonstrates a new sulfur transfer strategy in the biosynthesis of sulfur-containing natural products. Due to difficulties associated with the overexpression of Mycobacterium smegmatis EgtE protein, the proposed EgtE functionality remained to be verified biochemically. In this study, we have successfully overexpressed and purified M. smegmatis EgtE enzyme and evaluated its activities under different in vitro conditions: C-S lyase reaction using either thioether or sulfoxide as a substrate in the presence or absence of reductants. Results from our biochemical characterizations support the assignment of sulfoxide 4 as the native EgtE substrate and the involvement of a sulfenic acid intermediate in the ergothioneine C-S lyase reaction.

  6. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP).

    PubMed

    Banoglu, Erden; Çelikoğlu, Erşan; Völker, Susanna; Olgaç, Abdurrahman; Gerstmeier, Jana; Garscha, Ulrike; Çalışkan, Burcu; Schubert, Ulrich S; Carotti, Andrea; Macchiarulo, Antonio; Werz, Oliver

    2016-05-01

    In this article, we report novel leukotriene (LT) biosynthesis inhibitors that may target 5-lipoxygenase-activating protein (FLAP) based on the previously identified isoxazole derivative (8). The design and synthesis was directed towards a subset of 4,5-diaryl-isoxazole-3-carboxylic acid derivatives as LT biosynthesis inhibitors. Biological evaluation disclosed a new skeleton of potential anti-inflammatory agents, exemplified by 39 and 40, which potently inhibit cellular 5-LO product synthesis (IC50 = 0.24 μM, each) seemingly by targeting FLAP with weak inhibition on 5-LO (IC50 ≥ 8 μM). Docking studies and molecular dynamic simulations with 5-LO and FLAP provide valuable insights into potential binding modes of the inhibitors. Together, these diaryl-isoxazol-3-carboxylic acids may possess potential as leads for development of effective anti-inflammatory drugs through inhibition of LT biosynthesis. PMID:26922224

  7. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis.

    PubMed

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J; Anderson, Charles T

    2016-01-01

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.

  8. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    PubMed

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs.

  9. Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics

    SciTech Connect

    Yang, Xiaohan; Ye, Chuyu; Bisaria, Anjali; Tuskan, Gerald A; Kalluri, Udaya C

    2011-01-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.

  10. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    SciTech Connect

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  11. Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis.

    PubMed

    Liu, Chaoyang; Long, Jianmei; Zhu, Kaijie; Liu, Linlin; Yang, Wei; Zhang, Hongyan; Li, Li; Xu, Qiang; Deng, Xiuxin

    2016-01-01

    Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an up-regulation of a series of genes involved in primary metabolism and the phenylpropanoid pathway, and induced a strong accumulation of hydroxycinnamic acid compounds but not the flavonols. The RNAi suppression of CsMYBF1 in citrus callus caused a down-regulation of many phenylpropanoid pathway genes and reduced the contents of hydroxycinnamic acids and flavonols. Transactivation assays indicated that CsMYBF1 activated several promoters of phenylpropanoid pathway genes in tomato and citrus. Interestingly, CsMYBF1 could activate the CHS gene promoter in citrus, but not in tomato. Further examinations revealed that the MYBPLANT cis-elements were essential for CsMYBF1 in activating phenylpropanoid pathway genes. In summary, our data indicated that CsMYBF1 possessed the function in controlling the flavonol and hydroxycinnamic acid biosynthesis, and the regulatory differences in the target metabolite accumulation between two species may be due to the differential activation of CHS promoters by CsMYBF1. Therefore, CsMYBF1 constitutes an important gene source for the engineering of specific phenylpropanoid components. PMID:27162196

  12. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans.

    PubMed

    Zhang, Yuru; Wang, Haizhen; Zhang, Jingjing; Hu, Ying; Zhang, Linqiang; Wu, Xiaoyun; Su, Xiong; Li, Tingting; Zou, Xiaoju; Liang, Bin

    2016-04-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans. PMID:26806391

  13. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans.

    PubMed

    Zhang, Yuru; Wang, Haizhen; Zhang, Jingjing; Hu, Ying; Zhang, Linqiang; Wu, Xiaoyun; Su, Xiong; Li, Tingting; Zou, Xiaoju; Liang, Bin

    2016-04-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans.

  14. Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis

    PubMed Central

    Liu, Chaoyang; Long, Jianmei; Zhu, Kaijie; Liu, Linlin; Yang, Wei; Zhang, Hongyan; Li, Li; Xu, Qiang; Deng, Xiuxin

    2016-01-01

    Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an up-regulation of a series of genes involved in primary metabolism and the phenylpropanoid pathway, and induced a strong accumulation of hydroxycinnamic acid compounds but not the flavonols. The RNAi suppression of CsMYBF1 in citrus callus caused a down-regulation of many phenylpropanoid pathway genes and reduced the contents of hydroxycinnamic acids and flavonols. Transactivation assays indicated that CsMYBF1 activated several promoters of phenylpropanoid pathway genes in tomato and citrus. Interestingly, CsMYBF1 could activate the CHS gene promoter in citrus, but not in tomato. Further examinations revealed that the MYBPLANT cis-elements were essential for CsMYBF1 in activating phenylpropanoid pathway genes. In summary, our data indicated that CsMYBF1 possessed the function in controlling the flavonol and hydroxycinnamic acid biosynthesis, and the regulatory differences in the target metabolite accumulation between two species may be due to the differential activation of CHS promoters by CsMYBF1. Therefore, CsMYBF1 constitutes an important gene source for the engineering of specific phenylpropanoid components. PMID:27162196

  15. Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis.

    PubMed

    Liu, Chaoyang; Long, Jianmei; Zhu, Kaijie; Liu, Linlin; Yang, Wei; Zhang, Hongyan; Li, Li; Xu, Qiang; Deng, Xiuxin

    2016-05-10

    Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an up-regulation of a series of genes involved in primary metabolism and the phenylpropanoid pathway, and induced a strong accumulation of hydroxycinnamic acid compounds but not the flavonols. The RNAi suppression of CsMYBF1 in citrus callus caused a down-regulation of many phenylpropanoid pathway genes and reduced the contents of hydroxycinnamic acids and flavonols. Transactivation assays indicated that CsMYBF1 activated several promoters of phenylpropanoid pathway genes in tomato and citrus. Interestingly, CsMYBF1 could activate the CHS gene promoter in citrus, but not in tomato. Further examinations revealed that the MYBPLANT cis-elements were essential for CsMYBF1 in activating phenylpropanoid pathway genes. In summary, our data indicated that CsMYBF1 possessed the function in controlling the flavonol and hydroxycinnamic acid biosynthesis, and the regulatory differences in the target metabolite accumulation between two species may be due to the differential activation of CHS promoters by CsMYBF1. Therefore, CsMYBF1 constitutes an important gene source for the engineering of specific phenylpropanoid components.

  16. SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme.

    PubMed

    Lewis, C A; Brault, C; Peck, B; Bensaad, K; Griffiths, B; Mitter, R; Chakravarty, P; East, P; Dankworth, B; Alibhai, D; Harris, A L; Schulze, A

    2015-10-01

    Oxygen and nutrient limitation are common features of the tumor microenvironment and are associated with cancer progression and induction of metastasis. The inefficient vascularization of tumor tissue also limits the penetration of other serum-derived factors, such as lipids and lipoproteins, which can be rate limiting for cell proliferation and survival. Here we have investigated the effect of hypoxia and serum deprivation on sterol regulatory element-binding protein (SREBP) activity and the expression of lipid metabolism genes in human glioblastoma multiforme (GBM) cancer cells. We found that SREBP transcriptional activity was induced by serum depletion both in normoxic and hypoxic cells and that activation of SREBP was required to maintain the expression of fatty acid and cholesterol metabolism genes under hypoxic conditions. Moreover, expression of stearoyl-CoA desaturase, the enzyme required for the generation of mono-unsaturated fatty acids, and fatty acid-binding protein 7, a regulator of glioma stem cell function, was strongly dependent on SREBP function. Inhibition of SREBP function blocked lipid biosynthesis in hypoxic cancer cells and impaired cell survival under hypoxia and in a three-dimensional spheroid model. Finally, gene expression analysis revealed that SREBP defines a gene signature that is associated with poor survival in glioblastoma. PMID:25619842

  17. 8th Annual Glycoscience Symposium: Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly

    SciTech Connect

    Azadi, Paratoo

    2015-09-24

    The Complex Carbohydrate Research Center (CCRC) of the University of Georgia holds a symposium yearly that highlights a broad range of carbohydrate research topics. The 8th Annual Georgia Glycoscience Symposium entitled “Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly” was held on April 7, 2014 at the CCRC. The focus of symposium was on the role of glycans in plant cell wall structure and synthesis. The goal was to have world leaders in conjunction with graduate students, postdoctoral fellows and research scientists to propose the newest plant cell wall models. The symposium program closely followed the DOE’s mission and was specifically designed to highlight chemical and biochemical structures and processes important for the formation and modification of renewable plant cell walls which serve as the basis for biomaterial and biofuels. The symposium was attended by both senior investigators in the field as well as students including a total attendance of 103, which included 80 faculty/research scientists, 11 graduate students and 12 Postdoctoral students.

  18. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid

    SciTech Connect

    Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario

    2011-09-06

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  19. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid W

    SciTech Connect

    Messing, S.; Gabelli, S; Echeverria, I; Vogel, J; Guan, J; Tan, B; Klee, H; McCarty, D; Amzela, M

    2010-01-01

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  20. Regulation of collagen biosynthesis in cultured bovine aortic smooth muscle cells

    SciTech Connect

    Stepp, M.A.

    1986-01-01

    Aortic smooth muscles cells have been implicated in the etiology of lesions which occur in atherosclerosis and hypertension. Both diseases involve proliferation of smooth muscle cells and accumulation of excessive amounts of extracellular matrix proteins, including collagen type I and type III produced by the smooth muscle cells. To better understand the sites of regulation of collagen biosynthesis and to correlate these with the growth rate of the cells, cultured bovine aortic smooth muscle cells were studied as a function of the number of days (3 to 14) in second passage. Cells grew rapidly up to day 6 when confluence was reached. The total incorporation of (/sup 3/H)-proline into proteins was highest at day 3 and decreased to a constant level after the cultures reached confluence. In contrast, collagen protein production was lowest before confluence and continued to increase over the entire time course of the experiments. cDNA clones for the ..cap alpha..1 and ..cap alpha..2 chains of type I and the ..cap alpha..1 chain of type III collagen were used to quantitate the steady state level of collagen mRNAs. RNA was tested in a cell-free translation system. Changes in the translational activity of collagen mRNAs parallelled the observed increases in collagen protein production. Thus, at later time points, collagen mRNAs are more active in directing synthesis of preprocollagens, even though less collagen mRNA is present. The conclusion is that the site of regulation of the expression of collagen genes is a function of the growth rate of cultured smooth muscle cells.

  1. Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells.

    PubMed

    Bera, Soumen; Wallimann, Theo; Ray, Subhankar; Ray, Manju

    2008-12-01

    The creatine/creatine kinase system decreases drastically in sarcoma. In the present study, an investigation of catalytic activities, western blot and mRNA expression unambiguously demonstrates the prominent expression of the creatine-synthesizing enzymes l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase in sarcoma, Ehrlich ascites carcinoma and Sarcoma 180 cells, whereas both enzymes were virtually undetectable in normal muscle. Compared to that of normal animals, these enzymes remained unaffected in the kidney or liver of sarcoma-bearing mice. High activity and expression of mitochondrial arginase II in sarcoma indicated increased ornithine formation. Slightly or moderately higher levels of ornithine, guanidinoacetate and creatinine were observed in sarcoma compared to muscle. Despite the intrinsically low level of creatine in Ehrlich ascites carcinoma and Sarcoma 180 cells, these cells could significantly take up and release creatine, suggesting a functional creatine transport, as verified by measuring mRNA levels of creatine transporter. Transcript levels of arginase II, ornithine-decarboxylase, S-adenosyl-homocysteine hydrolase and methionine-synthase were significantly upregulated in sarcoma and in Ehrlich ascites carcinoma and Sarcoma 180 cells. Overall, the enzymes related to creatine and arginine/methionine metabolism were found to be significantly upregulated in malignant cells. However, the low levels of creatine kinase in the same malignant cells do not appear to be sufficient for the building up of an effective creatine/phosphocreatine pool. Instead of supporting creatine biosynthesis, l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase appear to be geared to support cancer cell metabolism in the direction of polyamine and methionine synthesis because both these compounds are in high demand in proliferating cancer cells.

  2. Acyclic monoterpene primary alcohol:NADP+ oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols.

    PubMed

    Ikeda, H; Esaki, N; Nakai, S; Hashimoto, K; Uesato, S; Soda, K; Fujita, T

    1991-02-01

    Acyclic monoterpene primary alcohol:NADP+ oxidoreductase, a key enzyme in the biosynthesis of monoterpene alcohols in plants, is unstable and has been only poorly characterized. However we have established conditions which stabilize the enzyme from Rauwolfia serpentina cells, and then purified it to homogeneity. It is a monomer with a molecular weight of about 44,000 and contains zinc ions. Various branched-chain allylic primary alcohols such as nerol, geraniol, and 10-hydroxygeraniol were substrates, but ethanol was inert. The enzyme exclusively requires NADP+ or NADPH as the cofactor. Steady-state kinetic studies showed that the nerol dehydrogenation proceeds by an ordered Bi-Bi mechanism. NADP+ binds the enzyme first and then NADPH is the second product released from it. Gas chromatography-mass spectrometric analysis of the reaction products showed that 10-hydroxygeraniol undergoes a reversible dehydrogenation to produce 10-oxogeraniol or 10-hydroxygeranial, which are oxidized further to give 10-oxogeranial, the direct precursor of iridodial. The enzyme has been found to exclusively transfer the pro-R hydrogen of NADPH to neral. The N-terminal sequence of the first 21 amino acids revealed no significant homology with those of various other proteins including the NAD(P)(+)-dependent alcohol dehydrogenases registered in a protein data bank. PMID:1864846

  3. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    PubMed

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast.

  4. [Effect of organic acids on the biosynthesis of carotenes by an Actinomyces chrysomallus strain].

    PubMed

    Nefelova, M V; Sverdlova, A N; Alekseeva, L N

    1978-01-01

    Synthesis of carotenes by Actinomyces chrysomallus var. carotenoides was stimulated by citric, acetic, oxalacetic, fumaric, succinic, malic, alpha-ketoglutaric, tartaric, pyruvic, and propionic acids. Acetic acid acts as a precursor of carotene synthesis and also has another stimulating mechanism of action on carotenogenesis of the actinomycete. Acetic, furmaric, malic, succinic, and alpha-ketoglutaric acids stimulate cyclization of lycopene yielding beta-carotene.

  5. Exogenous delta-animolevulinic acid induces the porphyrin biosynthesis in human skin organ cultures with different porphyrin patterns in normal and malignant human tissue

    NASA Astrophysics Data System (ADS)

    Fritsch, Clemens; Batz, Janine; Bolsen, Klaus; Schulte, Klaus; Ruzicka, Thomas; Goerz, Guenter

    1995-03-01

    The carboxylation state of porphyrin metabolites causes their hydrophilic or lipophilic properties and subsequently their distribution in tissues, cells, and subcellular compartments. The profile of porphyrin metabolites either in normal skin or in malignant skin tumors after administration of (delta) -aminolevulinic acid has been studied in detail, yet. Explant cultures of normal skin and neoplastic tissues, e.g., keratoakanthoma and basal cell carcinoma, were incubated with 1 mM ALA for 36 h. Total porphyrin concentration and percentage of porphyrin metabolites were determined quantitatively in tissues and corresponding supernatants. Seventy - ninety percent of total porphyrins could be detected in the supernatants of all samples. The highly carboxylated porphyrins were the prevailing metabolites in the supernatants as well as in the tissues. The basal cell carcinoma produced significantly more protoporphyrin and the keratoakanthoma significantly more coproporphyrin as compared to normal skin. The results show that explant cultures offer an easy approach to examine the enzymatic capacity in porphyrin biosynthesis of various tissues. Benign and malignant human tissues produce different porphyrin metabolites, which may be useful for selective and more effective photodynamic diagnosis or therapy.

  6. Macromolecular syntheses during biosynthesis of prodigiosin by Serratia marcescens.

    PubMed

    Williams, R P; Scott, R H; Lim, D V; Qadri, S M

    1976-01-01

    Amino acids that were utilized as sole sources of carbon and nitrogen for growth of Serratia marcescens Nima resulted in biosynthesis of prodigiosin in non-proliferating bacteria. Addition of alanine, proline, or histidine to non-proliferating cells incubated at 27 C increased the rate of protein synthesis and also caused biosynthesis of prodigiosin. No increase in the rate of protein synthesis was observed upon the addition of amino acids that did not stimulate prodigiosin biosynthesis. Increased rates of synthesis of ribonucleic acid (RNA) and of deoxyribonucleic acid (DNA) (a small amount) also occurred after addition of amino acids that resulted in biosynthesis of prodigiosin. After incubation of 24 h, the total amount of protein in suspensions of bacteria to which alanine or proline was added increased 67 and 98%, respectively. Total amounts of DNA and of RNA also increased before synthesis of prodigiosin. The amounts of these macromolecules did not increase after addition of amino acids that did not induce biosynthesis of progidiosin. However, macromolecular synthesis was not related only to prodigiosin biosynthesis because the rates of DNA, RNA, and protein synthesis also increased in suspensions of bacteria incubated with proline at 39 C, at which temperature no prodigiosin was synthesized. The quantities of DNA, RNA, and protein synthesized were lower in non-proliferating cells than in growing cells. The data indicated that amino acids causing biosynthesis of prodigiosin in non-proliferating cells must be metabolized and serve as sources of carbon and of nitrogen for synthesis of macromolecules and intermediates. Prodigiosin was synthesized secondarily to these primary metabolic events.

  7. Xyloglucan biosynthesis by Golgi membranes from suspension-cultured sycamore (Acer pseudoplatanus) cells

    SciTech Connect

    White, A.R.; Xin, Yi )

    1990-05-01

    Xyloglucan is a major hemicellulose polysaccharide in plant cell walls. Biosynthesis of such cell wall polysaccharides is closely linked to the process of plant cell growth and development. Xyloglucan polysaccharides consist of a {beta}-1,4 glucan backbone synthesized by xyloglucan synthase and sidechains of xylose, galactose, and fucose added by other transferase enzymes. Most plant Golgi and plasma membranes also contain glucan synthases I II, which make {beta}-1,4 and {beta}-1,3 glucans, respectively. All of these enzymes have very similar activities. Cell walls on suspension-cultured cells from Acer pseudoplatanus (sycamore maple) were enzymatically softened prior to cell disruption by passing through a 30 {mu}m nylon screen. Cell membranes from homogenates were separated by ultracentrifugation on top-loaded or flotation sucrose density gradients. Samples were collected by gradient fractionation and assayed for membrane markers and xyloglucan and glucan synthase activities. Standard marker assays (cyt. c reductase for eR, IDPase UDPase for Golgi, and eosin 5{prime}-malelmide binding for plasma membrane) showed partial separation of these three membrane types. Golgi and plasma membrane markers overlapped in most gradients. Incorporation of {sup 14}C-labeled sugars from UDP-glucose and UDP-xylose was used to detect xyloglucan synthase, glucan synthases I II, and xylosyl transferase in Golgi membrane fractions. These activities overlapped, although distinct peaks of xyloglucan synthase and xylosyl transferase were found. Ca{sup ++} had a stimulatory effect on glucan synthases I II, while Mn{sup ++} had an inhibitory effect on glucan synthase I in the presence of Ca{sup ++}. The similarity of these various synthase activities demonstrates the need for careful structural characterization of newly synthesized polysaccharides.

  8. A Peroxygenase Pathway Involved in the Biosynthesis of Epoxy Fatty Acids in Oat[W][OA

    PubMed Central

    Meesapyodsuk, Dauenpen; Qiu, Xiao

    2011-01-01

    While oat (Avena sativa) has long been known to produce epoxy fatty acids in seeds, synthesized by a peroxygenase pathway, the gene encoding the peroxygenase remains to be determined. Here we report identification of a peroxygenase cDNA AsPXG1 from developing seeds of oat. AsPXG1 is a small protein with 249 amino acids in length and contains conserved heme-binding residues and a calcium-binding motif. When expressed in Pichia pastoris and Escherichia coli, AsPXG1 catalyzes the strictly hydroperoxide-dependent epoxidation of unsaturated fatty acids. It prefers hydroperoxy-trienoic acids over hydroperoxy-dienoic acids as oxygen donors to oxidize a wide range of unsaturated fatty acids with cis double bonds. Oleic acid is the most preferred substrate. The acyl carrier substrate specificity assay showed phospholipid and acyl-CoA were not effective substrate forms for AsPXG1 and it could only use free fatty acid or fatty acid methyl esters as substrates. A second gene, AsLOX2, cloned from oat codes for a 9-lipoxygenase catalyzing the synthesis of 9-hydroperoxy-dienoic and 9-hydroperoxy-trienoic acids, respectively, when linoleic (18:2-9c,12c) and linolenic (18:3-9c,12c,15c) acids were used as substrates. The peroxygenase pathway was reconstituted in vitro using a mixture of AsPXG1 and AsLOX2 extracts from E. coli. Incubation of methyl oleate and linoleic acid or linolenic acid with the enzyme mixture produced methyl 9,10-epoxy stearate. Incubation of linoleic acid alone with a mixture of AsPXG1 and AsLOX2 produced two major epoxy fatty acids, 9,10-epoxy-12-cis-octadecenoic acid and 12,13-epoxy-9-cis-octadecenoic acid, and a minor epoxy fatty acid, probably 12,13-epoxy-9-hydroxy-10-transoctadecenoic acid. AsPXG1 predominately catalyzes intermolecular peroxygenation. PMID:21784965

  9. Silencing diacylglycerol kinase-theta expression reduces steroid hormone biosynthesis and cholesterol metabolism in human adrenocortical cells.

    PubMed

    Cai, Kai; Lucki, Natasha C; Sewer, Marion B

    2014-04-01

    Diacylglycerol kinase theta (DGKθ) plays a pivotal role in regulating adrenocortical steroidogenesis by synthesizing the ligand for the nuclear receptor steroidogenic factor 1 (SF1). In response to activation of the cAMP signaling cascade nuclear DGK activity is rapidly increased, facilitating PA-mediated, SF1-dependent transcription of genes required for cortisol and dehydroepiandrosterone (DHEA) biosynthesis. Based on our previous work identifying DGKθ as the enzyme that produces the agonist for SF1, we generated a tetracycline-inducible H295R stable cell line to express a short hairpin RNA (shRNA) against DGKθ and characterized the effect of silencing DGKθ on adrenocortical gene expression. Genome-wide DNA microarray analysis revealed that silencing DGKθ expression alters the expression of multiple genes, including steroidogenic genes, nuclear receptors and genes involved in sphingolipid, phospholipid and cholesterol metabolism. Interestingly, the expression of sterol regulatory element binding proteins (SREBPs) was also suppressed. Consistent with the suppression of SREBPs, we observed a down-regulation of multiple SREBP target genes, including 3-hydroxy-3-methylglutary coenzyme A reductase (HMG-CoA red) and CYP51, concomitant with a decrease in cellular cholesterol. DGKθ knockdown cells exhibited a reduced capacity to metabolize PA, with a down-regulation of lipin and phospholipase D (PLD) isoforms. In contrast, suppression of DGKθ increased the expression of several genes in the sphingolipid metabolic pathway, including acid ceramidase (ASAH1) and sphingosine kinases (SPHK). In summary, these data demonstrate that DGKθ plays an important role in steroid hormone production in human adrenocortical cells.

  10. Amino Acid Pools and Metabolism During the Cell Division Cycle of Arginine-Grown Candida utilis

    PubMed Central

    Nurse, P.; Wiemken, A.

    1974-01-01

    Synchronous cultures obtained by isopycnic density gradient centrifugation are used to investigate amino acid metabolism during the cell division cycle of the food yeast Candida utilis. Isotopic labeling experiments demonstrate that the rates of uptake and catabolism of arginine, the sole source of nitrogen, double abruptly during the first half of the cycle, while the cells undergo bud expansion. This is accompanied by a doubling in rate of amino acid biosynthesis, and an accumulation of amino acids. The accumulation probably occurs within the storage pools of the vacuoles. Amino acids derived from protein degradation contribute little to this accumulation. For the remainder of the cell cycle, during cell separation and until the next bud initiation, the rates of uptake and catabolism of arginine and amino acid biosynthesis remain constant. Despite the abrupt doubling in the rate of formation of amino acid pools, their rate of utilization for macromolecular synthesis increases steadily throughout the cycle. The significance of this temporal organization of nitrogen source uptake and amino acid metabolism during the cell division cycle is discussed. Images PMID:4591945

  11. Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber.

    PubMed

    Matsui, Kenji; Minami, Akari; Hornung, Ellen; Shibata, Hidetoshi; Kishimoto, Kyutaro; Ahnert, Volker; Kindl, Helmut; Kajiwara, Tadahiko; Feussner, Ivo

    2006-04-01

    Fatty acid 9/13-hydroperoxide lyase (9/13-HPL) in cucumber is an enzyme that can cleave either 9- or 13-hydroperoxides of polyunsaturated fatty acids to form C9- or C6-aldehydes, respectively, as products. In order to reveal the physiological function of 9/13-HPL, its expression profiles were analyzed, and it was found that 9/13-HPL expression was developmentally regulated and high in the hypocotyls, female flowers and mature fruits. However, its transcript as well as its activity was only induced by mechanical wounding in mature leaves. To analyze the biosynthesis of HPL-derived aldehydes in more detail we isolated and characterized the yet missing 9-lipoxygenase (LOX) that is mainly expressed in hypocotyls, cotyledons and flowers and that may provide HPL with fatty acid 9-hydroperoxides as substrates. As in the case with C6-aldehydes in most plant species, C9-aldehydes were also formed rapidly after disruption of the tissues. C9-aldehydes had fungicidal activities against fungal pathogens, Botrytis cinerea and Fusarium oxysporum. Because the concentration needed to cause toxic effect on the pathogens was almost equivalent to that found in disrupted tissues, the C9-aldehydes thus formed could be helpful to sterilize the wounds since they are less volatile in comparison to C6-aldehydes. PMID:16497344

  12. Surfactants, aromatic and isoprenoid compounds, and fatty acid biosynthesis inhibitors suppress Staphylococcus aureus production of toxic shock syndrome toxin 1.

    PubMed

    McNamara, Peter J; Syverson, Rae Ellen; Milligan-Myhre, Kathy; Frolova, Olga; Schroeder, Sarah; Kidder, Joshua; Hoang, Thanh; Proctor, Richard A

    2009-05-01

    Menstrual toxic shock syndrome is a rare but potentially life-threatening illness manifest through the actions of Staphylococcus aureus toxic shock syndrome toxin 1 (TSST-1). Previous studies have shown that tampon additives can influence staphylococcal TSST-1 production. We report here on the TSST-1-suppressing activity of 34 compounds that are commonly used additives in the pharmaceutical, food, and perfume industries. Many of the tested chemicals had a minimal impact on the growth of S. aureus and yet were potent inhibitors of TSST-1 production. The TSST-1-reducing compounds included surfactants with an ether, amide, or amine linkage to their fatty acid moiety (e.g., myreth-3-myristate, Laureth-3, disodium lauroamphodiacetate, disodium lauramido monoethanolamido, sodium lauriminodipropionic acid, and triethanolamine laureth sulfate); aromatic compounds (e.g. phenylethyl and benzyl alcohols); and several isoprenoids and related compounds (e.g., terpineol and menthol). The membrane-targeting and -altering effects of the TSST-1-suppressing compounds led us to assess the activity of molecules that are known to inhibit fatty acid biosynthesis (e.g., cerulenin, triclosan, and hexachlorophene). These compounds also reduced S. aureus TSST-1 production. This study suggests that more additives than previously recognized inhibit the production of TSST-1.

  13. Development of a scintillation proximity assay for the Mycobacterium tuberculosis KasA and KasB enzymes involved in mycolic acid biosynthesis.

    PubMed

    Schaeffer, M L Merrill L; Carson, J D Jeffrey D; Kallender, Howard; Lonsdale, J T John T

    2004-01-01

    Tuberculosis remains a global health problem, and programs dedicated to discovery of novel compounds against Mycobacterium tuberculosis require robust assays for high-throughput screening of chemical and natural product libraries. Enzymes involved in the biosynthesis of mycolic acids, vital components of the mycobacterial cell wall, have received much attention as potential drug targets. KasA and KasB, examples of the beta-ketoacyl-acyl carrier protein synthase I/II (KASI/II) class of condensing enzymes of the M. tuberculosis fatty acid synthase II system have been the focus of several studies designed to biochemically characterize these enzymes. Whilst robust methods have been developed for FabH-like proteins, fast and sensitive assays for high-throughput screening of KASI/II enzymes have not been available. Here we report the development of a direct scintillation proximity assay (SPA) for the KASI/II enzymes, KasA and KasB. The SPA was more sensitive than existing assays, as shown by its ability to measure activity using less enzyme than other assay formats, and the SPA was validated using the known KAS inhibitor thiolactomycin. In addition, the KasA and KasB SPA was adapted for use with Staphylococcus aureus FabF to show the versatility of this assay format to KAS enzymes from other pathogenic organisms. PMID:15525558

  14. Inhibition of cholesterol biosynthesis by allicin and ajoene in rat hepatocytes and HepG2 cells.

    PubMed

    Gebhardt, R; Beck, H; Wagner, K G

    1994-06-23

    Exposure of primary rat hepatocytes and human HepG2 cells to allicin and ajoene resulted in the concentration-dependent inhibition of cholesterol biosynthesis at different steps of this metabolic pathway. At low concentrations of ajoene sterol biosynthesis from [14C]acetate in rat hepatocytes was decreased by 18% with an IC50-value of 15 microM, while allicin was almost uneffective. In HepG2 cells, both compounds significantly inhibited sterol biosynthesis by 14% and 19% with IC50-values of 7 and 9 microM for allicin and ajoene, respectively. This inhibition was exerted at the level of HMG-CoA-reductase as revealed by the absence of inhibition, if [14C]acetate was replaced by [14C]mevalonate as a precursor, and by direct determination of enzyme activity. At somewhat higher concentrations inhibition of cholesterol biosynthesis by both, allicin and ajoene, was also observed at late steps resulting in the accumulation of the precursor lanosterol. Alliin instead was completely inactive. In the case of allicin, small amounts of dihydrolanosterol and 7-dehydrocholesterol were formed at intermediate concentrations of 5-10 microM. From these results it is concluded that a major point of inhibition at the late steps occurs at the level of lanosterol 14 alpha-demethylase.

  15. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor.

    PubMed

    Scully, Erin D; Gries, Tammy; Sarath, Gautam; Palmer, Nathan A; Baird, Lisa; Serapiglia, Michelle J; Dien, Bruce S; Boateng, Akwasi A; Ge, Zhengxiang; Funnell-Harris, Deanna L; Twigg, Paul; Clemente, Thomas E; Sattler, Scott E

    2016-02-01

    The phenylpropanoid biosynthetic pathway that generates lignin subunits represents a significant target for altering the abundance and composition of lignin. The global regulators of phenylpropanoid metabolism may include MYB transcription factors, whose expression levels have been correlated with changes in secondary cell wall composition and the levels of several other aromatic compounds, including anthocyanins and flavonoids. While transcription factors correlated with downregulation of the phenylpropanoid biosynthesis pathway have been identified in several grass species, few transcription factors linked to activation of this pathway have been identified in C4 grasses, some of which are being developed as dedicated bioenergy feedstocks. In this study we investigated the role of SbMyb60 in lignin biosynthesis in sorghum (Sorghum bicolor), which is a drought-tolerant, high-yielding biomass crop. Ectopic expression of this transcription factor in sorghum was associated with higher expression levels of genes involved in monolignol biosynthesis, and led to higher abundances of syringyl lignin, significant compositional changes to the lignin polymer and increased lignin concentration in biomass. Moreover, transgenic plants constitutively overexpressing SbMyb60 also displayed ectopic lignification in leaf midribs and elevated concentrations of soluble phenolic compounds in biomass. Results indicate that overexpression of SbMyb60 is associated with activation of monolignol biosynthesis in sorghum. SbMyb60 represents a target for modification of plant cell wall composition, with the potential to improve biomass for renewable uses. PMID:26712107

  16. (+)-Abscisic Acid Metabolism, 3-Ketoacyl-Coenzyme A Synthase Gene Expression, and Very-Long-Chain Monounsaturated Fatty Acid Biosynthesis in Brassica napus Embryos1

    PubMed Central

    Qi, Qungang; Rose, Patricia A.; Abrams, Garth D.; Taylor, David C.; Abrams, Suzanne R.; Cutler, Adrian J.

    1998-01-01

    Microspore-derived embryos of Brassica napus cv Reston were used to examine the effects of exogenous (+)-abscisic acid (ABA) and related compounds on the accumulation of very-long-chain monounsaturated fatty acids (VLCMFAs), VLCMFA elongase complex activity, and induction of the 3-ketoacyl-coenzyme A synthase (KCS) gene encoding the condensing enzyme of the VLCMFA elongation system. Of the concentrations tested, (+)-ABA at 10 μm showed the strongest effect. Maximum activity of the elongase complex, observed 6 h after 10 μm (+)-ABA treatment, was 60% higher than that of the untreated embryos at 24 h. The transcript of the KCS gene was induced by 10 μm (+)-ABA within 1 h and further increased up to 6 h. The VLCMFAs eicosenoic acid (20:1) and erucoic acid (22:1) increased by 1.5- to 2-fold in embryos treated with (+)-ABA for 72 h. Also, (+)-8′-methylene ABA, which is metabolized more slowly than ABA, had a stronger ABA-like effect on the KCS gene transcription, elongase complex activity (28% higher), and level of VLCMFAs (25–30% higher) than ABA. After 24 h approximately 60% of the added (+)-[3H]ABA (10 μm) was metabolized, yielding labeled phaseic and dihydrophaseic acid. This study demonstrates that (+)-ABA promotes VLCMFA biosynthesis via increased expression of the KCS gene and that reducing ABA catabolism would increase VLCMFAs in microspore-derived embryos. PMID:9662540

  17. Isolation and chemical structure of aklanonic acid, an early intermediate in the biosynthesis of anthracyclines.

    PubMed

    Eckardt, K; Tresselt, D; Schumann, G; Ihn, W; Wagner, C

    1985-08-01

    The fermentation, isolation and structure elucidation of aklanonic acid are described. The compound was isolated from fermentations of Streptomyces strain ZIMET 43,717. Aklanonic acid is a yellow-orange crystalline substance, melting at 203-204 degrees C (dec), having the molecular formula C21H16O8, and possessing UV maxima at 258, 282 (sh) and 438 nm (CHCl3). In dimethyl sulfoxide or pyridine aklanonic acid is unstable and a new compound (aklanone) is formed as a conversion product. The elucidation of the structures has shown that aklanonic acid and aklanone are derivatives of 1,8-dihydroxyanthraquinone. PMID:3862658

  18. Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment

    PubMed Central

    Gondor, Orsol