Science.gov

Sample records for acid bog lake

  1. Nature and origins of acidity in bogs

    SciTech Connect

    Urban, N.R.

    1987-01-01

    To elucidate the causes of acidity in bogs, all of the processes generating and consuming acidity in a small peat bog in northern Minnesota were measured. These processes include ion exchange, plant nutrient uptake, atmospheric deposition, decomposition, organic acid production, sulfate reduction, and denitrification. Organic acid production was found to be the dominant source of acidity, responsible for the low pH of bog waters and the high acidity in the outflow. Net biological uptake (NBU) is the next largest source of acidity. Ion exchange accounts for only about 40% of the NBU-acidity. Plant uptake and ion exchange are much larger sources of acidity on an annual basis, but much of this acidity is neutralized by decomposition. Sulfate reduction and denitrification are quantitatively unimportant at this site because inputs (NO/sub 3//sup -/ and SO/sub 4/=) are low. Bog water samples and peat cores from bogs across northeastern North America were analyzed to determine if geographic trends in the rates of acidity-generating and -consuming processes exist. Rates of organic acid production varied little across the transect. Higher values of NBU-acidity were observed in maritime bogs than in midcontinental bogs. The effects of transformations of sulfur and nitrogen on the hydrogen-ion cycle were examined in detail. Nitrate appears to be taken up by bryophytes and little is lost to denitrification. Alkalinity from nitrate uptake is low. In contrast, there is a dynamic cycle of oxidation and reduction of sulfur within bogs. Inorganic forms of sulfur are not important storage pools in peat; 35% of the total sulfur input is accumulated as organic S.

  2. Influence of selected environmental factors on the abundance of aerobic anoxygenic phototrophs in peat-bog lakes.

    PubMed

    Lew, Sylwia; Lew, Marcin; Koblížek, Michal

    2016-07-01

    Aerobic anoxygenic phototrophs (AAPs) are photoheterotrophic prokaryotes that are widespread in many limnic and marine environments. So far, little is known about their distribution in peat-bog lakes. Seventeen peat-bog lakes were sampled during three summer seasons 2009, 2011, and 2012, and the vertical distribution of AAPs was determined by infrared epifluorescence microscopy. The analysis demonstrated that in the surface layers of the studied lakes, AAP abundance ranged from 0.3 to 12.04 × 10(5) cells mL(-1), which represents <1 to 18.3 % of the total bacteria. The vertical distribution of AAPs confirmed their presence in the upper parts of the water column with minimum numbers in the anoxic bottom waters. We have shown that the AAP abundance was significantly positively correlated with the water pH, and the highest proportion of photoheterotrophs was found in peat-bog lakes with a pH between 6.7 and 7.6. Our results demonstrated an influence of water acidity on the abundance of AAPs, which may reflect a fundamental difference in the microbial composition between acidic and pH neutral peat-bog lakes. PMID:27032635

  3. Properties and structure of raised bog peat humic acids

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-10-01

    Humic substances form most of the organic components of soil, peat and natural waters, and their structure and properties differ very much depending on their source. The aims of this study are to characterize humic acids (HAs) from raised bog peat, to evaluate the homogeneity of peat HAs within peat profiles, and to study peat humification impact on properties of HAs. A major impact on the structure of peat HAs have lignin-free raised bog biota (dominantly represented by bryophytes of different origin). On diagenesis scale, peat HAs have an intermediate position between the living organic matter and coal organic matter, and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, while thermodynamically more stable aromatic and polyaromatic structures emerge as a result of abiotic synthesis. However, in comparison with soil, aquatic and other HAs, aromaticity of peat HAs is much lower. Comparatively, the raised bog peat HAs are at the beginning of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups change depending on the peat age and decomposition degree from where HAs have been isolated, and carboxylic acidity of peat HAs increases with peat depth and humification degree.

  4. Heat transport in the Red Lake Bog, Glacial Lake Agassiz Peatlands

    USGS Publications Warehouse

    McKenzie, J.M.; Siegel, D.I.; Rosenberry, D.O.; Glaser, P.H.; Voss, C.I.

    2007-01-01

    We report the results of an investigation on the processes controlling heat transport in peat under a large bog in the Glacial Lake Agassiz Peatlands. For 2 years, starting in July 1998, we recorded temperature at 12 depth intervals from 0 to 400 cm within a vertical peat profile at the crest of the bog at sub-daily intervals. We also recorded air temperature 1 m above the peat surface. We calculate a peat thermal conductivity of 0.5 W m-1 ??C-1 and model vertical heat transport through the peat using the SUTRA model. The model was calibrated to the first year of data, and then evaluated against the second year of collected heat data. The model results suggest that advective pore-water flow is not necessary to transport heat within the peat profile and most of the heat is transferred by thermal conduction alone in these waterlogged soils. In the spring season, a zero-curtain effect controls the transport of heat through shallow depths of the peat. Changes in local climate and the resulting changes in thermal transport still may cause non-linear feedbacks in methane emissions related to the generation of methane deeper within the peat profile as regional temperatures increase. Copyright ?? 2006 John Wiley & Sons, Ltd.

  5. Bog bodies.

    PubMed

    Lynnerup, Niels

    2015-06-01

    In northern Europe during the Iron Age, many corpses were deposited in bogs. The cold, wet and anaerobic environment leads in many cases to the preservation of soft tissues, so that the bodies, when found and excavated several thousand years later, are remarkably intact. Since the 19th century the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma. Conversely, the preservation of bones is less good, as the mineral component has been leached out by the acidic bog. Together with water-logging of collagenous tissue, this means that if the bog body is simply left to dry out when found, as was the case pre-19th century, the bones may literally warp and shrink, leading to potential pitfalls in paleopathological diagnostics. Bog bodies have in several instances been crucial in determining the last meal, as gut contents may be preserved, and thus augment our knowledge on pre-historic diet by adding to, for example, stable isotope analyses. This article presents an overview of our knowledge about the taphomic processes as well as the methods used in bog body research. PMID:25998635

  6. Lake and bog development at Glimmerglass lake in the Sylvania Wilderness Area, Michigan

    SciTech Connect

    Brugam, R.B.; Owen, B.; McKeever, K.

    1995-06-01

    We used pollen and diatom analysis to reconstruct post-glacial development of Glimmerglass Lake and its adjacent Sphagnum peatland using transacts of cores. Glimmerglass lake has existed since late-glacial times with little or no change in water levels. In contrast the peatland began growing as a floating mat in a pond that was separated from the main lake by a spit of land. Over time, the floating mat became grounded in the pond but continued growing to cover an adjacent low area that had never been underwater. The peatland continues to grow even though it is approximately 2 m above the level of the adjacent lake. It seems that the peat has slowed drainage into the lake and allowed the peatland to grow above the level of the lake. It is unclear whether climatic change or hydrology controls the rate of accumulation of the peat.

  7. Properties and structure of peat humic acids depending on humification and precursor biota in bogs

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-04-01

    Humic substances form most of the organic component of soil, peat and natural waters, but their structure and properties very much differs depending on their source. The aim of this study is to characterize humic acids from raised bog peat profiles to evaluate the homogeneity of humic acids isolated from the bog bodies and study peat humification impact on properties of humic acids. A major impact on the structure of peat humic acids have raised bog biota (dominantly represented by bryophytes of different origin) void of lignin. For characterization of peat humic acids their elemental (CHNOS), functional (-COOH, phenolic OH) analysis, spectroscopic characterization (UV, fluorescence, FTIR, 1H NMR, CP/MAS 13C NMR, ESR) and degradation studies (Py-GC/MS) were done. Peat humic acids (HA) have an intermediate position between the living organic matter and coal organic matter and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, but thermodynamically more stable aromatic and polyaromatic structures emerge. Comparatively, the studied peat HAs are at the start of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups changes depending on the depth of peat from which HAs have been isolated: and carboxylic acidity is increasing with depth of peat location and the humification degree. The ability to influence the surface tension of peat humic acids isolated from a well-characterized bog profile demonstrates dependence on age and humification degree. With increase of the humification degree and age of humic acids, their molecular complexity and ability to influence surface tension decreases; even so, the impact of the biological precursor (peat-forming bryophytes and plants) can be identified.

  8. Lake or bog? Reconstructing baseline ecological conditions for the protected Galápagos Sphagnum peatbogs

    NASA Astrophysics Data System (ADS)

    Coffey, Emily E. D.; Froyd, Cynthia A.; Willis, Katherine J.

    2012-10-01

    This paper documents the first 10,000 year old plant macrofossil record of vegetation changes on the central island of Santa Cruz, providing information on Sphagnum bog vegetation patterns, local extinction of key taxa, and temporal successions in the Galápagos humid highlands. Vegetation change is reconstructed through examination of Holocene sedimentary sequences obtained from three Sphagnum bogs located within volcanic caldera forming the high elevation central ridge system of Santa Cruz Island. Results indicate that these specialized Sphagnum bog ecosystems are dynamic and have undergone considerable changes in vegetation composition, transitioning from diverse hygrophilous herbs and submerged aquatic ecosystems to drier Sphagnum/Pteridium bog systems, during the last 10,000 cal yr BP. Additionally a new aquatic genus previously undocumented on the islands, Elatine, was discovered at two of the study sites, but it is now extinct on the archipelago. Some of the observed vegetation successions may have been driven by climatic shifts occurring within the eastern equatorial Pacific (EEP). Other drivers including anthropogenic change are also considered significant over the last hundred years, placing strain on this naturally dynamic system. This study helps reveal patterns of change in the humid highlands over the last 10,000 cal yr BP regarding vegetation variability, climatic shifts, the historical influence of fire, tortoise disturbance, and recent anthropogenic impacts on the island.

  9. Multi-scale hydroclimate reconstruction using co-located lake and bog records from Maine and comparison with other records from the Northeast US

    NASA Astrophysics Data System (ADS)

    Nolan, C.; Shuman, B. N.; Booth, R.; Jackson, S. T.

    2015-12-01

    Sedimentary lake-level records and ombrotrophic bog water-table depth records both document hydrologic variability over the Holocene. Lake level records have long temporal length (10,000+ years) and fidelity in preserving low-frequency trends and centennial to millennial length events. Hydrologic reconstructions based on peatland testate amoebae assemblage composition are sensitive to moisture variability at interannual to multidecadal time scales and precipitation on the bog surface is the sole moisture input. However, bog records are generally not as long as lake level records and bog development processes can confound centennial to millennial trends. In this study we present and combine new reconstructions from Giles Pond, Aurora, Maine, USA and Caribou Bog, Old Town, ME USA. The lake-level record from Giles Pond extends a network of lake-level records from southern New England that show an orbitally driven long-term trend toward wetter conditions punctuated by low-water phases in the mid- to late-Holocene that each lasted 100 to 400+ years. Some of these low lake level events appear to be synchronous across multiple sites in New England (Newby, et al. 2014 GRL). Preliminary data from Giles Pond suggest that some of these events extended all the way to Maine. Thus, there were New England-wide dry periods within the last 5000 years that lasted more than 100 years. These long low stands are unlike anything observed during the historical period and the interannual to decadal variability during these low stands is poorly understood. This leads to challenges in understanding the modern and future implications of the lake-level record alone. The Caribou Bog record also builds on a network of peatland water-table reconstructions from the Northeast, and contributes higher-resolution hydroclimate information that adds interannual to multidecadal texture to the centennial to millennial variability of the Giles Pond record. Our multiproxy approach allows us to use the

  10. 13C/Palynological evidence of differential residence times of organic carbon prior to its sedimentation in East African Rift Lakes and peat bogs

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, Claude; Aucour, Anne-Marie; Bonnefille, Raymonde; Riollet, Guy; Vincens, Annie; Williamson, David

    Most terrestrial plants producing large amounts of organic matter in the East African Rift follow the Calvin (C3) photosynthetic pathway. Their end products have δ13C values of ca. -27 ± 2‰ (vs. PDB). On the contrary, most Cyperaceae (notably Cyperus papyrus and C. latifolius) are characterized by higher 13C contents ° 13C = -10.5 ± 1‰ ) in relation to their Hatch and Slack (C4) photosynthetic cycle. In consequence, δ13C values in total organic matter (TOM) from peat bog or lake cores essentially responded to the proportion of detritus from C4-Cyperaceae. Immediate evidence of the development or disappearance of Cyperaceae around lake margins or in peat bogs can be found in pollen assemblages. Lag times between pollen signals and correlative ° 13C shifts in TOM from cores are therefore indicative of the residence time of organic matter prior to its sedimentation. Delayed sedimentation of TOM will result in 14C anomalies which depend on several parameters, most of them being site specific as shown by examples from a peat bog in Burundi and from southern Lake Tanganyika. An independent assessment of the chronology by high resolution paleomagnetic correlations indicates a ca. 1.5 ka apparent 14C age of TOM in Lake Tanganyika at the Pleistocene-Holocene transition.

  11. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog.

    PubMed

    Bräuer, Suzanna L; Cadillo-Quiroz, Hinsby; Ward, Rebekah J; Yavitt, Joseph B; Zinder, Stephen H

    2011-01-01

    A novel acidiphilic, hydrogenotrophic methanogen, designated strain 6A8(T), was isolated from an acidic (pH 4.0-4.5) and ombrotrophic (rain-fed) bog located near Ithaca, NY, USA. Cultures were dimorphic, containing thin rods (0.2-0.3 μm in diameter and 0.8-3.0 μm long) and irregular cocci (0.2-0.8 μm in diameter). The culture utilized H(2)/CO(2) to produce methane but did not utilize formate, acetate, methanol, ethanol, 2-propanol, butanol or trimethylamine. Optimal growth conditions were near pH 5.1 and 35 °C. The culture grew in basal medium containing as little as 0.43 mM Na(+) and growth was inhibited completely by 50 mM NaCl. To our knowledge, strain 6A8(T) is one of the most acidiphilic (lowest pH optimum) and salt-sensitive methanogens in pure culture. Acetate, coenzyme M, vitamins and yeast extract were required for growth. It is proposed that a new genus and species be established for this organism, Methanoregula boonei gen. nov., sp. nov. The type strain of Methanoregula boonei is 6A8(T) (=DSM 21154(T) =JCM 14090(T)). PMID:20154331

  12. Microbial Community Structure and Activity Linked to Contrasting Biogeochemical Gradients in Bog and Fen Environments of the Glacial Lake Agassiz Peatland

    PubMed Central

    Lin, X.; Green, S.; Tfaily, M. M.; Prakash, O.; Konstantinidis, K. T.; Corbett, J. E.; Chanton, J. P.; Cooper, W. T.

    2012-01-01

    The abundances, compositions, and activities of microbial communities were investigated at bog and fen sites in the Glacial Lake Agassiz Peatland of northwestern Minnesota. These sites contrast in the reactivity of dissolved organic matter (DOM) and the presence or absence of groundwater inputs. Microbial community composition was characterized using pyrosequencing and clone library construction of phylogenetic marker genes. Microbial distribution patterns were linked to pH, concentrations of dissolved organic carbon and nitrogen, C/N ratios, optical properties of DOM, and activities of laccase and peroxidase enzymes. Both bacterial and archaeal richness and rRNA gene abundance were >2 times higher on average in the fen than in the bog, in agreement with a higher pH, labile DOM content, and enhanced enzyme activities in the fen. Fungi were equivalent to an average of 1.4% of total prokaryotes in gene abundance assayed by quantitative PCR. Results revealed statistically distinct spatial patterns between bacterial and fungal communities. Fungal distribution did not covary with pH and DOM optical properties and was vertically stratified, with a prevalence of Ascomycota and Basidiomycota near the surface and much higher representation of Zygomycota in the subsurface. In contrast, bacterial community composition largely varied between environments, with the bog dominated by Acidobacteria (61% of total sequences), while the Firmicutes (52%) dominated in the fen. Acetoclastic Methanosarcinales showed a much higher relative abundance in the bog, in contrast to the dominance of diverse hydrogenotrophic methanogens in the fen. This is the first quantitative and compositional analysis of three microbial domains in peatlands and demonstrates that the microbial abundance, diversity, and activity parallel with the pronounced differences in environmental variables between bog and fen sites. PMID:22843538

  13. Carbon dioxide fluxes over a raised open bog at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES)

    NASA Astrophysics Data System (ADS)

    Neumann, H. H.; den Hartog, G.; King, K. M.; Chipanshi, A. C.

    1994-01-01

    Measurements of carbon dioxide concentration and flux were made above a raised open bog at Lake Kinosheo in the southern Hudson Bay lowlands during the Northern Wetlands Study (NOWES) experiment in 1990. The flux measurements were made using micrometeorological techniques. They provide the first nondisturbing, larger-scale CO2 flux measurements for this ecosystem and are the first to integrate the exchange over the whole 24 hours of the day. Continuous concentration measurements by infrared gas analyzers (IRGA) and spot flask samples were taken over the period July 1 to July 29. Afternoon CO2 values were only 5 to 7 parts per million by volume (ppmv) lower than measurements over the same period at Canadian background monitoring stations. This suggested that there was little draw-down by local photosynthetic sinks. CO2 fluxes were measured at 8 and 18 m by Bowen ratio and eddy correlation methods, respectively. The methods produced comparable results on averaged data but often diverged considerably on individual half-hour results. Fluxes were small. Daytime values averaged to -0.068 mg/m2/s by eddy correlation and -0.077 mg/m2/s by Bowen ratio over the period June 25 to July 28 (negative denotes downward flux), while at night, flux densities were +0.062 mg/m2/s and +0.085 mg/m2/s. Integration of the mean diurnal curve gave a net flux of -1.7 g/m2/d. Comparable data for this type of ecosystem were not found. However, Coyne and Kelley (1975), measuring near Barrow, Alaska, over wet meadow tundra dominated by sedges and grasses, found net fluxes of -7.2 g/m2/d. Typical net CO2 fluxes from other active temperate ecosystems have been found to be -10 to -20 g/m2/d (Monteith, 1976). Mean half hourly fluxes were almost constant at +0.06 mg/m2/s through the nighttime hours. About one half-hour after sunrise the flux reversed direction. Uptake peaked about 0900 eastern daylight time (EDT) and then gradually declined but remained downward until near sunset. The early peak was

  14. Carbon dioxide fluxes over a raised open bog at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES)

    SciTech Connect

    Neumann, H.H.; Hartog, G. den; King, K.M.; Chipanshi, A.C.

    1994-01-20

    Measurements of carbon dioxide concentration and flux were made above a raised open bog at Lake Kinosheo in the southern Hudson Bay lowlands during the Northern Wetlands Study (NOWES) experiment in 1990. Continuous concentration measurements by infrared gas analyzers (IRGA) and spot flask samples were taken over the period July 1 to July 29. Afternoon CO{sub 2} values were only 5 to 7 parts per million by volume (ppmv) lower than measurements over the same period at Canadian background monitoring stations. This suggested that there was little draw-down by local photosynthetic sinks. CO{sub 2} fluxes were measured at 8 and 18 m by Bowen ratio and eddy correlation methods, respectively. The methods produced comparable results on averaged data but often diverged considerably on individual half-hour results. Fluxes were small. Daytime values averaged to -0.068 mg/m{sup 2}/s by eddy correlation and -0.077 mg/m{sup 2}/s by Bowen ratio over the period June 25 to July 28 (negative denotes downward flux), while at night, flux densities were +0.062 mg/m{sup 2}/s and +0.085 mg/m{sup 2}/s. Integration of the mean diurnal curve gave a net flux of -1.7 g/m{sup 2}/d. Comparable data for this type of ecosystem were not found. However, Coyne and Kelley (1975), measuring near Barrow, Alaska, over wet meadow tundra dominated by sedges and grasses, found net fluxes of -7.2 g/m{sup 2}/d. Typical net CO{sub 2} fluxes from other active temperature ecosystems have been found to be -10 to -20 g/m{sup 2}/d. Mean half hourly fluxes were almost constant at +0.06 mg/m{sup 2}/s through the nighttime hours. About one half-hour after sunrise the flux reversed direction. Uptake peaked about 0900 eastern daylight time (EDT) and then gradually declined but remained downward until near sunset. The early peak was interpreted to signify that the many plants in the bog experienced water stress during the day as evaporative demand increased and nighttime dew was evaporated. 20 refs., 9 figs., 1 tab.

  15. Carbon dioxide fluxes over a raised open bog at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES)

    NASA Technical Reports Server (NTRS)

    Neumann, H. H.; Den Hartog, G.; King, K. M.; Chipanshi, A. C.

    1994-01-01

    Measurements of carbon dioxide concentration and flux were made above a raised open bog at Lake Kinosheo in the southern Hudson Bay lowlands during the Northern Wetlands Study (NOWES) experiment in 1990. The flux measurements were made using micrometeorological techniques. They provide the first nondisturbing, larger-scale CO2 flux measurements for this ecosystem and are the first to integrate the exchange over the whole 24 hours of the day. Continuous concentration measurements by infrared gas analyzers (IRGA) and spot flask samples were taken over the period July 1 to July 29. Afternoon CO2 values were only 5 to 7 parts per million by volume (ppmv) lower than measurements over the same period at Canadian background monitoring stations. This suggested that there was little draw-down by local photosynthetic sinks. CO2 fluxes were measured at 8 and 18 m by Bowen ratio and eddy correlation methods, respectively. The methods produced comparable results on averaged data but often diverged considerably on individual half-hour results. Fluxes were small. Daytime values averaged to -0.068 mg/sq m/s by eddy correlation and -0.077 mg/sq m/s by Bowen ratio over the period June 25 to July 28 (negative denotes downward flux), while at night, flux densities were +0.062 mg/sq m/s and +0.085 mg/sq m/s. Integration of the mean diurnal curve gave a net flux of -1.7 g/sq m/d. Comparable data for this type of ecosystem were not found. However, Coyne and Kelley (1975), measuring near Barrow, Alaska, over wet meadow tundra dominated by sedges and grasses, found net fluxes of -7.2 g/sq m/d. Typical net CO2 fluxes from other active temperature ecosystems have been found to be -10 to -20 g/sq m/d (Monteith, 1976). Mean half hourly fluxes were almost constant at +0.06 mg/sq m/s through the nighttime hours. About one half-hour after sunrise the flux reversed direction. Uptake peaked about 0900 eastern daylight time (EDT) and then gradually declined but remained downward until near sunset

  16. Lake sensitivity to acid rain

    SciTech Connect

    Shurkin, J.; Goldstein, R.

    1985-06-01

    Research in the Adirondacks suggests that watershed dynamics are the key to a lake's vulnerability to acidification. The Electric Power Research Institute's Integrated Lake-Watershed Acidification Study (ILWAS) produced a computer model that successfully integrated the physical and chemical factors that determine these dynamics. The research required an unprecedented level of awareness of how watersheds work and how rain, soil, forests, and rocks interact. One outcome of the field and laboratory studies was the finding that some soils act as buffers, taking certain ions out of the water, while some added ions. While the ability of the watershed as a whole to neutralize acid is the main determinant of a lake's vulnerability, seasonal changes demonstrate that time is a factor. The model is in demand to test water in other locations and to explore buffering agents. 2 figures.

  17. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition

    NASA Astrophysics Data System (ADS)

    Gauci, Vincent; Dise, Nancy; Fowler, David

    2002-01-01

    The effect of acid rain SO42- deposition on peatland CH4 emissions was examined by manipulating SO42- inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha-1 yr-1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m-2 from the controls and (in order of increasing SO42- dose size) 10.7, 13.2, and 9.8 g m-2 from the three SO42- treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42- at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42- from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.

  18. Amino acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Kminek, G.; Botta, O.; Glavin, D. P.; Bada, J. L.

    2002-01-01

    High-performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated fiom a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P- or D-type asteroids. If the Tagish Lake meteorite was indeed derived fiom these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.

  19. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.

    PubMed

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-05-01

    Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. PMID:25752706

  20. Acid lakes from natural and anthropogenic causes

    SciTech Connect

    Patrick, R.; Binetti, V.P.; Halterman, S.G.

    1981-01-30

    Lakes may be acid because of natural ecological conditions or because of anthropogenic activities. Apparently there has been a recent increase in acidity of many lakes in the northeastern United States. Factors that may be contributing to this increase include the use by utilities of precipitators, sulfur scrubbers, and tall stacks; the use of petroleum; and methods of combustion of fossil fuels.

  1. Acid Raindrops Keep Fallin' in My Lake.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2003

    2003-01-01

    Demonstrates acid rain falling into lakes using vinegar and explores the effects on different types of solids such as chalk, sand, and lime. Includes instructor information and student worksheets. (YDS)

  2. From Leaf Synthesis to Senescence: n-Alkyl Lipid Abundance and D/H Composition Among Plant Species in a Temperate Deciduous Forest at Brown's Lake Bog, Ohio, USA

    NASA Astrophysics Data System (ADS)

    Freimuth, E. J.; Diefendorf, A. F.; Lowell, T. V.

    2014-12-01

    The hydrogen isotope composition (D/H, δD) of terrestrial plant leaf waxes is a promising paleohydrology proxy because meteoric water (e.g., precipitation) is the primary hydrogen source for wax synthesis. However, secondary environmental and biological factors modify the net apparent fractionation between precipitation δD and leaf wax δD, limiting quantitative reconstruction of paleohydrology. These secondary factors include soil evaporation, leaf transpiration, biosynthetic fractionation, and the seasonal timing of lipid synthesis. Here, we investigate the influence of each of these factors on n-alkyl lipid δD in five dominant deciduous angiosperm tree species as well as shrubs, ferns and grasses in the watershed surrounding Brown's Lake Bog, Ohio, USA. We quantified n-alkane and n-alkanoic acid concentrations and δD in replicate individuals of each species at weekly to monthly intervals from March to October 2014 to assess inter- and intraspecific isotope variability throughout the growing season. We present soil, xylem and leaf water δD from each individual, and precipitation and atmospheric water vapor δD throughout the season to directly examine the relationship between source water and lipid isotope composition. These data allow us to assess the relative influence of soil evaporation and leaf transpiration among plant types, within species, and along a soil moisture gradient throughout the catchment. We use leaf water δD to approximate biosynthetic fractionation for each individual and test whether this is a species-specific and seasonal constant, and to evaluate variation among plant types with identical growth conditions. Our high frequency sampling approach provides new insights into the seasonal timing of n-alkane and n-alkanoic acid synthesis and subsequent fluctuations in concentration and δD in a temperate deciduous forest. These results will advance understanding of the magnitude and timing of secondary influences on the modern leaf wax

  3. The microbial impact on the sorption behaviour of selenite in an acidic, nutrient-poor boreal bog.

    PubMed

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-09-01

    (79)Se is among the most important long lived radionuclides in spent nuclear fuel and selenite, SeO3(2-), is its typical form in intermediate redox potential. The sorption behaviour of selenite and the bacterial impact on the selenite sorption in a 7-m-deep profile of a nutrient-poor boreal bog was studied using batch sorption experiments. The batch distribution coefficient (Kd) values of selenite decreased as a function of sampling depth and highest Kd values, 6600 L/kg dry weight (DW), were observed in the surface moss and the lowest in the bottom clay at 1700 L/kg DW. The overall maximum sorption was observed at pH between 3 and 4 and the Kd values were significantly higher in unsterilized compared to sterilized samples. The removal of selenite from solution by Pseudomonas sp., Burkholderia sp., Rhodococcus sp. and Paenibacillus sp. strains isolated from the bog was affected by incubation temperature and time. In addition, the incubation of sterilized surface moss, subsurface peat and gyttja samples with added bacteria effectively removed selenite from the solution and on average 65% of selenite was removed when Pseudomonas sp. or Burkholderia sp. strains were used. Our results demonstrate the important role of bacteria for the removal of selenite from the solution phase in the bog environment, having a high organic matter content and a low pH. PMID:26048060

  4. Spatial characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1986-01-01

    The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern United States and on the Canadian Shield is though to be enormous. The principle objective is to examine how seasonal changes in lake water transparency are related to annual acidic load. Further, the relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations to measure seasonal changes in the optical transparency in acid lakes is being investigated.

  5. The Vanishing Bog.

    ERIC Educational Resources Information Center

    Hanif, Muhammad

    1990-01-01

    Directions for the construction of a model bog habitat are provided including examples of plants and animals which may be suitable. Activities that use this model are suggested. Background information on the ecology and chemistry of the bog is included. (CW)

  6. Spatial characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1986-01-01

    A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forests. The number of lakes affected in northeastern United States and on the Canadian Shield is thought to be enormous. Seasonal changes in lake transparency are examined relative to annual acidic load. The relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations is being used to measure seasonal changes in the optical transparency in acid lakes.

  7. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    USGS Publications Warehouse

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  8. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Marshall, E. M.

    1989-01-01

    The lake acidification in Northern Ontario was investigated using LANDSAT TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of LANDSAT to assess water quality characteristics associated with lake acidification. Results demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon present. Seasonal changes in the optical transparency of lakes can potentially provide an indication of the stress due to acid deposition and loading.

  9. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget- derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  10. Chemical hazards from acid crater lakes

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pH<0.5) sulphate, chloride and fluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from <1 to 2.5-4 is largely due to dilution with moderately acid springs (pH= ca. 4) and neutral tributaries (pH= ca. 7) inside the Ijen caldera. Geochemical controls that regulate element transport are subject to seasonal fluctuations in rainfall. Long-term monitoring has shown that fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where

  11. ORGANIC ACIDITY IN MAINE (U.S.A.) LAKES AND IN HUMEX LAKE SKJERVATJERN (NORWAY)

    EPA Science Inventory

    Organic acids, a component of dissolved organic carbon can be a major factor in the acidity of many lakes and streams. n order to evaluate the importance of organic acidity, we fractionated (hydrophobic acids and neutrals, hydrophilic acids, bases, and neutrals) and isolated hydr...

  12. Investigating Bogs: An Interdisciplinary Adventure.

    ERIC Educational Resources Information Center

    Pankiewicz, Philip R.; Schneider, Lois

    1995-01-01

    Presents the case for the use of bogs as ideal sites for hundreds of interdisciplinary lessons that combine chemistry, geology, various branches of biology, and wetlands archaeology. Includes general guidelines to aid in the design of interdisciplinary bog studies. (DDR)

  13. Acid rain stimulation of Lake Michigan phytoplankton growth

    USGS Publications Warehouse

    Manny, Bruce A.; Fahnenstiel, G.L.; Gardner, W.S.

    1987-01-01

    Three laboratory experiments demonstrated that additions of rainwater to epilimnetic lake water collected in southeastern Lake Michigan stimulated chlorophyll a production more than did additions of reagent-grade water during incubations of 12 to 20 d. Chlorophyll a production did not begin until 3–5 d after the rain and lake water were mixed. The stimulation caused by additions of rain acidified to pH 3.0 was greater than that caused by additions of untreated rain (pH 4.0–4.5). Our results support the following hypotheses: (1) Acid rain stimulates the growth of phytoplankton in lake water; (2) phosphorus in rain appears to be the factor causing this stimulation. We conclude that acid rain may accelerate the growth of epilimnetic phytoplankton in Lake Michigan (and other similar lakes) during stratification when other sources of bioavailable phosphorus to the epilimnion are limited

  14. Features of water chemical composition of oligotrophic and eutrophic bogs in the South of the Tomsk region

    NASA Astrophysics Data System (ADS)

    Naymushina, O.

    2016-03-01

    On the basis of the actual material the analysis of chemical composition of bog waters in the territory of the South of the Tomsk region is carried out. The data on average concentration of macro and trace components, organic matter, pH of bog waters are obtained. Significant distinctions in a chemical composition of surface water for different types of bogs are revealed. The composition and macrostructure of humic acids by the example of eutrophic bogs is studied.

  15. Geochemical changes during biotechnological remediation of an acidic mining lake

    NASA Astrophysics Data System (ADS)

    Bozau, E.; Frömmichen, R.; Koschorreck, M.; Wendt-Potthoff, K.

    2003-04-01

    Due to lignite mining and pyrite oxidation there are about 100 acidic mining lakes in Lower Lusatia (Germany). Research projects are dealing with the examination of the chemical and ecological state of such mining lakes to assess the possibilities for a natural or an artificial restoration. A biotechnological remediation which accelerates the microbial sulphate and iron reduction (tested by column-experiments) at the water-sediment interface started by addition of lime and straw (enclosure tests) in one of these lakes. Parameters like TRIS (Total reduced inorganic sulphide) and d34S-values indicate first changes in the treated lake sediments. The time dependent development and the stability of reaction products, as well as the interaction between the acidic lake water and the anoxic sediment layer are investigated. Neutralisation rates can be calculated by the amount of accumulated mineral sulphur species. A hydrogeochemical model (based on the code PHREEQC) combined with limnophysical characteristics of the lake is used to understand the geochemical behaviour in more detail and to predict the further development. But there are still some uncertainties (behaviour of littoral lake sediments, groundwater inflow, erosion of acidic dump sediments) in the remediation model.

  16. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1987-01-01

    The acidification of lake waters from airborne pollution is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern U.S. and on the Canadian Shield is though to be enormous. How seasonal changes in lake transparency are related to annual acidic load was examined. The relationship between variations in lake acidification and ecophysical units was also examined. The utility of Thematic Mapper based observations to measure seasonal changes in the optical transparency in acid lakes was investigated. The potential for this optical response is related to a number of local ecophysical factors with bedrock geology being, perhaps, the most important. Other factors include sulfate deposition, vegetative cover, and terrain drainage/relief. The area of southern Ontario contains a wide variety of geologies from the most acid rain sensitive granite quartzite types to the least sensitive limestone dolomite sediments. Annual sulfate deposition ranges from 1.0 to 4.0 grams/sq m.

  17. Extremely acid Permian lakes and ground waters in North America

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.; Wopenka, B.; Burruss, R.C.; Pasteris, J.D.

    1998-01-01

    Evaporites hosted by red beds (red shales and sandstones), some 275-265 million years old, extend over a large area of the North American mid- continent. They were deposited in non-marine saline lakes, pans and mud- flats, settings that are typically assumed to have been alkaline. Here we use laser Raman microprobe analyses of fluid inclusions trapped in halites from these Permian deposits to argue for the existence of highly acidic (pH < 1) lakes and ground waters. These extremely acidic systems may have extended over an area of 200,000 km2. Modern analogues of such systems may be natural acid lake and groundwater systems (pH ~2-4) in southern Australia. Both the ancient and modern acid systems are characterized by closed drainage, arid climate, low acid-neutralizing capacity, and the oxidation of minerals such as pyrite to generate acidity. The discovery of widespread ancient acid lake and groundwater systems demands a re-evaluation of reconstructions of surface conditions of the past, and further investigations of the geochemistry and ecology of acid systems in general.

  18. Analysis of the mineral acid-base components of acid-neutralizing capacity in Adirondack Lakes

    NASA Astrophysics Data System (ADS)

    Munson, R. K.; Gherini, S. A.

    1993-04-01

    Mineral acids and bases influence pH largely through their effects on acid-neutralizing capacity (ANC). This influence becomes particularly significant as ANC approaches zero. Analysis of data collected by the Adirondack Lakes Survey Corporation (ALSC) from 1469 lakes throughout the Adirondack region indicates that variations in ANC in these lakes correlate well with base cation concentrations (CB), but not with the sum of mineral acid anion concentrations (CA). This is because (CA) is relatively constant across the Adirondacks, whereas CB varies widely. Processes that supply base cations to solution are ion-specific. Sodium and silica concentrations are well correlated, indicating a common source, mineral weathering. Calcium and magnesium also covary but do not correlate well with silica. This indicates that ion exchange is a significant source of these cations in the absence of carbonate minerals. Iron and manganese concentrations are elevated in the lower waters of some lakes due to reducing conditions. This leads to an ephemeral increase in CB and ANC. When the lakes mix and oxic conditions are restored, these ions largely precipitate from solution. Sulfate is the dominant mineral acid anion in ALSC lakes. Sulfate concentrations are lowest in seepage lakes, commonly about 40 μeq/L less than in drainage lakes. This is due in part to the longer hydraulic detention time in seepage lakes, which allows slow sulfate reduction reactions more time to decrease lake sulfate concentration. Nitrate typically influences ANC during events such as snowmelt. Chloride concentrations are generally low, except in lakes impacted by road salt.

  19. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  20. Microbial Fe cycling and mineralization in sediments of an acidic, hypersaline lake (Lake Tyrell, Victoria, Australia)

    NASA Astrophysics Data System (ADS)

    Roden, E. E.; Blöthe, M.; Shelobolina, E.

    2009-12-01

    Lake Tyrrell is a variably acidic, hypersaline, Fe-rich lake located in Victoria, Australia. Terrestrial acid saline lakes like Lake Tyrrell may be analogs for ancient Martian surface environments, as well as possible extant subsurface environments. To investigate the potential for microbial Fe cycling under acidic conditions and high salt concentration, we collected sediment core samples during three field trips between 2006 and 2008 from the southern, acidic edge of the lake. Materials from the cores were used for chemical and mineralogical analyses, as well as for molecular (16S rRNA genes) and culture-based microbiological studies. Near-surface (< 1 m depth) pore fluids contained low but detectable dissolved oxygen (ca. 50 uM), significant dissolved Fe(II) (ca. 500 uM), and nearly constant pH of around 4 - conditions conducive to enzymatic Fe(II) oxidation. High concentrations of Fe(III) oxides begin accumulate at a depth of ca. 10 cm, and may reflect the starting point for formation of massive iron concretions that are evident at and beneath the sediment surface. MPN analyses revealed low (10-100 cells/mL) but detectable populations of aerobic, halophilic Fe(II)-oxidizing organisms on the sediment surface and in the near-surface ground water. With culture-dependent methods at least three different halotolerant lithoautotrophic cultures growing on Fe(II), thiosulfate, or tetrathionate from different acidic sites were obtained. Analysis of 16S rRNA gene sequences revealed that these organisms are similar to previous described gamma proteobacteria Thiobacillus prosperus (95%), Halothiobacillus kellyi (99%), Salinisphaera shabanense (95%) and a Marinobacter species. (98%). 16S rRNA gene pyrosequencing data from two different sites with a pH range between 3 and 4.5 revealed a dominance of gamma proteobacteria. 16S rRNA gene pyrosequencing libraries from both cores were dominated by sequences related to the Ectothiorhodospiraceae family, which includes the taxa

  1. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.

    PubMed

    Blodau, Christian

    2006-10-01

    Lakes developing in former coal mine pits are often characterized by high concentrations of sulfate and iron and low pH. The review focuses on the causes for and fate of acidity in these lakes and their watersheds. Acidification is primarily caused by the generation of ferrous iron bearing and mineralized groundwater, transport through the groundwater-surface water interface, and subsequent iron oxidation and precipitation. Rates of acidity generation in mine tailings and dumps, and surface water are often similar (1 to >10 mol m(-2) yr(-1)). Weathering processes, however, often suffice to buffer groundwaters to only moderately acidic or neutral pH, depending on the suite of minerals present. In mine lakes, the acidity balance is further influenced by proton release from transformation of metastable iron hydroxysulfate minerals to goethite, and proton and ferrous iron sequestration by burial of iron sulfides and carbonates in sediments. These processes mostly cannot compensate acidity loading from the watershed, though. A master variable for almost all processes is the pH: rates of pyrite oxidation, ferrous iron oxidation, mineral dissolution, iron precipitation, iron hydroxide transformation, and iron and sulfate reduction are strongly pH dependent. While the principle mechanism of acidity generation and consumption and several controls are mostly understood, this cannot be said about the fate of acidity on larger spatial and temporal scales. Little is also known about critical loads and the internal regulation of biogeochemical iron, sulfur, and carbon cycling in acidic mine lakes. PMID:16806405

  2. Spatial and spectral characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Marshall, Elizabeth J.; Tanis, Frederick J.

    1989-01-01

    Results from this study demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis was that seasonal and multiyear changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon (DOC) present. DOC is a strong absorbing, nonscattering material which has the greatest impact at short visible wavelengths, including Thematic Mapper band 1. Acid-sensitive lakes have high concentrations of aluminum which have been mobilized by acidic components contained in the runoff. Aluminum complexing with DOC is considered to be the primary mechanism to account for observed increases in lake transparency in acid-sensitive lakes. Thus seasonal changes in the optical transparency of lakes should provide an indication of the stress due to acid deposition and loading.

  3. Bog bilberry phenolics, antioxidant capacity and nutrient profile.

    PubMed

    Colak, Nesrin; Torun, Hülya; Gruz, Jiri; Strnad, Miroslav; Hermosín-Gutiérrez, Isidro; Hayirlioglu-Ayaz, Sema; Ayaz, Faik Ahmet

    2016-06-15

    Phenolics and nutrient profiles of bog bilberry (Vaccinium uliginosum L.) collected from high mountain pastures in northeast Anatolia (Turkey) were examined for the first time in this study. The major soluble sugar identified in the berry was fructose, following by glucose, and the main organic acid identified was citric acid, followed by malic acid. Eleven phenolic acids and 17 anthocyanin 3-glycosides were identified and quantified. Caffeic acid in the free and glycoside forms and syringic acid in the ester form were the major phenolic acids, and the major individual anthocyanin present in the berry was malvidin 3-glucoside (24%). The highest total phenolics and anthocyanin contents were obtained from the anthocyanin fraction in conjunction with the highest antioxidant capacity, followed by the polyphenolic and aqueous fractions, FRAP, ORAC and DPPH, in that order. Our findings can be used to compare bog bilberry with other Vaccinium berries and to help clarify the relative potential health benefits of different berries. PMID:26868586

  4. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  5. Acid lake in N.Y. gets relief

    NASA Astrophysics Data System (ADS)

    A pond in the Adirondack Mountains of New York State has received a second soothing dose of baking soda. The 21 tons of sodium bicarbonate should moderate the pond's acidic conditions, lethal to fish and other forms of life.Wolf Pond, 25 miles (40 km) north of Saranac Lake, has developed an extremely low pH (4.5) because of acid rain and the runoff of acidic surface water, combined with very little outflow. The pond was first treated with sodium bicarbonate by t h e New York Department of Environmental Conservation in 1984; afterward the pH rose to about 6.2. Fish stocked by local residents have continued to live in the pond, despite the eventual rebound in its acidity.

  6. Australian Acid Brine Lake as a Mars Analog: An Analysis of Preserved Lipids in Shore and Lake Sediments

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Stern, J. C.; Baldridge, A. M.; Thomsen, B. J.

    2016-05-01

    This study investigates organic molecules preserved in sediment cores from an acid brine lake. We explore the distribution and stable isotopic composition of lipids in order to understand preservation potential in similar martian environments.

  7. Metals in crayfish from neutralized acidic and non-acidic lakes

    SciTech Connect

    Bagatto, G.; Alikhan, M.A.

    1987-09-01

    Large amounts of acid forming SO/sub 2/, as well as Cu, Ni and other metals are being continuously released into the environment by mining and smelting activities at Sudbury, Ontario, Canada. Consequently, a number of lakes in this region has become both acid and metal stressed. The addition of basic calcium compounds to acidic ponds and lakes has long been recognized as beneficial, as it contributes to increased fish production and water quality. In addition to increases in pH and alkalinity, such additions may reduce water-dissolved metal concentrations, change water transparency and bring about alterations in species diversity. Neutralization experiments have shown that an increase in water alkalinity and DOC may reduce the acute toxicity of Cu to fish. However, the influence of water quality on metal availability and accumulation has received scant attention. Earlier work showed that tissue metal concentrations in crayfish were related to the distance from the emission site. The purpose of the present study is to compare concentrations of six metals in freshwater crayfish from a neutralized acidic lake and a closely situated non-acidic lake. Various tissue concentrations in crayfish are also examined to determine specific tissue sites for these accumulations.

  8. A screening procedure for identifying acid-sensitive lakes from catchment characteristics.

    PubMed

    Berg, N H; Gallegos, A; Dell, T; Frazier, J; Procter, T; Sickman, J; Grant, S; Blett, T; Arbaugh, M

    2005-06-01

    Monitoring of Wilderness lakes for potential acidification requires information on lake sensitivity to acidification. Catchment properties can be used to estimate the acid neutralizing capacity (ANC) of lakes. Conceptual and general linear models were developed to predict the ANC of lakes in high-elevation (> or = 2170 m) Wilderness Areas in California's Sierra Nevada mountains. Catchment-to-lake area ratio, lake perimeter-to-area ratio, bedrock lithology, vegetation cover, and lake headwater location are significant variables explaining ANC. The general linear models were validated against independently collected water chemistry data and were used as part of a first stage screen to identify Wilderness lakes with low ANC. Expanded monitoring of atmospheric deposition is essential for improving the predictability of lake ANC. PMID:15952524

  9. Spatial characterization of acid rain stress in Canadian Shield Lakes. Final report

    SciTech Connect

    Tanis, F.J.; Marshall, E.M.

    1989-03-01

    The lake acidification in Northern Ontario was investigated using LANDSAT TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of LANDSAT to assess water quality characteristics associated with lake acidification. Results demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon present. Seasonal changes in the optical transparency of lakes can potentially provide an indication of the stress due to acid deposition and loading.

  10. Sodium bicarbonate treatment extends life of formerly acid lake

    SciTech Connect

    Not Available

    1988-02-01

    For the second time, researchers have used a familiar home remedy to restore the balance of a once acid lake. On September 29, Wolf Pond, in New York's Adirondack State Park, was treated with sodium bicarbonate to adjust alkalinity and keep pH at normal levels at least into the 1990's. Since it was first treated with bicarbonate in 1984, Wolf Pond has recovered and stabilized enough to sustain fish life once again. Repeated dosing is necessary because acid rain and runoff gradually deplete alkalinity in the lake over a period of years. Wolf Pond was selected for study because it has very little outflow and its major source of replenishment is rain. As the 1986 study explained, sodium bicarbonate was chosen for this application because it provides four advantages: (1) it is very soluble; (2) it cannot raise pH above 8.5; (3) it is easy to handle and apply; and (4) it is safe enough to be a common ingredient of many pharmaceuticals and foods.

  11. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-01

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations. PMID:25660534

  12. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  13. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide

    NASA Astrophysics Data System (ADS)

    Goss, Lisa M.

    2003-01-01

    A demonstration showing acid rain and lake acidification is described. In this demonstration, SO2 gas is generated in a large graduated cylinder and then dissolved in water droplets from a simple spray bottle. The droplets carry the acid into simulated lakes, one of which includes solid CaCO3 to mimic limestone's natural buffering capacity.

  14. Thermal and trophic stability of deeper Maine lakes in granite waterhsheds implacted by acid deposition

    SciTech Connect

    Stauffer, R.E.; Wittchen, B.D. )

    1990-09-01

    Acid deposition can lead to lake and watershed acidification, increases in lake transparency, and reduction in thermal stability and hypolimnetic oxygen deficits. On the basis of lake surveys during August-September 1985, we determined to what extent the deeper (maximum depth z{sub m}{gt}17 m) Maine lakes in acid-sensitive granitic watersheds have registered changes in temperature and oxygen stratification, as compared to 1938-1942, when G.P. Cooper performed the earliest scientific surveys of the state's lakes. After correcting for small but geographically consistent interannual differences in summer hypolimnetic temperatures related to spring turnover, and weather-dependent differences in mixed layer depth, there has been no significant change in thermal stratification in these Maine lakes over approximately 43 years. On the basis of specific historical contrasts in the late summer metalimnetic, hypolimnetic, and bathylimnetic oxygen concentrations there has been no significant change in lake trophic state or transparency.

  15. Composition of Humic Acids of the Lake Baikal Sediments

    NASA Astrophysics Data System (ADS)

    Vishnyakova, O.; Chimitdorzhieva, G.; Andreeva, D.

    2012-04-01

    Humic substances are the final stage of the biogeochemical transformation of organic matter in the biosphere. Its natural compounds are found not only in soil, peat, coal, and sediments of basins. Chemical composition and properties of humic substances are determined by the functioning of the ecosystem as a whole. Therefore the study of the unique Lake Baikal sediments can provide information about their genesis, as well as the processes of organic matter transformation. For this purpose, preparations of humic acids (HA) were isolated by alkaline extraction method. The composition of HA was investigated by the elemental analyzer CHNS/O PerkinElmer Series II. Various located sediments of the Lake Baikal were the objects of the study: 1 - Chivyrkuisky Bay, 2 - Kotovo Bay, 3 - Selenga river delta near Dubinino village, 4 - Selenga river delta near Murzino village. Data on the elemental composition of HA in terms of ash-free portion show that the carbon content (CC) is of 50-53% with a maximum value in a sample 3, and minimum - in a sample 2. Such values are characteristic also for the soils with low biochemical activity. The hydrogen content is of 4,2-5,3%, a maximum value is in a sample 1. Data recalculation to the atomic percentages identified following regularities. The CC of HA is of 35-39 at. %. Hydrogen content is of 37-43 at. %. According to the content of these elements investigated substances are clearly divided into two groups: HA of the sediments of the Lake Baikal and river Selenga delta. The magnitude of the atomic ratio H/C can be seen varying degrees of condensation of the molecules of humic acids. The high atomic ratio H/C in HA of the former group indicates the predominance of aliphatic structures in the molecules. Humic acids of the later group are characterized by a low value H/C (<1), suggesting a large proportion of aromatic components in HA composition. In sediments of the Selenga river delta there is an addition of organic matter of terrigenous

  16. Physical and chemical limnological study of an acid mine lake in Sullivan County, Indiana

    SciTech Connect

    Broomall, P.A.

    1992-01-01

    Southwestern Indiana has numerous lakes developed in abandoned coal mine spoils which support recreational sports fisheries. Some lakes, due to exposure to acid mine drainage from coal wastes and pyritic spoils, are unsuitable habitats for fisheries development. This study examines a publicly owned acid mine lake with an area of approximately 51 ha, following reclamation and elimination of acid producing areas in its drainage basin. Fifteen physico-chemical sample collections were made over a thirteen month period (1991--1992). Parameters sampled included pH, total acidity, iron, manganese, and aluminum. Comparisons were made to historic pre-reclamation water quality data and to established models of acid mine lake recovery. Due to the local topography and exposure to prevailing winds, the lake was generally well mixed throughout the study. Virtually no summer stratification was found, but typical winter season stratification occurred. The water column was well oxygenated throughout the study. Secchi disk transparency varied from 2.5 m to clear to lake bottom (6 m). This study found no significant change in lake water pH (2.9--3.0 to 3.0--3.2 s.u.) since reclamation activities in 1988. However, changes in total acidity and total metal concentrations had occurred since reclamation which suggested that the lake was in early recovery stages. No trends in water quality improvement were determined which could assist in planning toward the eventual establishment of a sports fishery.

  17. Factors contributing to differences in acid-neutralizing capacity among lakes in the western United States

    SciTech Connect

    Eilers, J.M.; Landers, D.H.; Brakke, D.F.; Linthurst, R.A.

    1987-09-01

    A survey of lakes in mountainous areas of the Western United States was conducted in fall 1985 by the US Environmental Protection Agency (EPA) in cooperation with the USDA - Forest Service. Of the 719 probability sample lakes, only one was acidic; 99% of the lakes were estimated to have pH>6.0. However, acid-neutralizing capacity (ANC) was < or = 50 microeq L-1 for an estimated 16.8% of the lakes in the study area. Of the five subregions in the West, California had the highest proportion of lakes with ANC < or = 50 microeq L-1 (36.7%) and the Southern Rocky Mountains had the lowest proportion (4.6%). The lakes in the West were post-stratified into geomorphic units corresponding to major mountain ranges. Watershed factors, including watershed area, lake area, watershed area: lake area ratio, lake depth, watershed slope, percent exposed bedrock, elevation, and hydraulic residence time, were examined within six geomorphic units in order to evaluate their relationship to lake ANC. These watershed variables had poor predictive capability with respect to ANC. The results suggest that higher-resolution information for factors such as mineralogy and hydrology are required for prediction of lake ANC within a given geomorphic unit.

  18. Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites

    USGS Publications Warehouse

    Allen, C.D.; Anderson, R. Scott; Jass, R.B.; Toney, J.L.; Baisan, C.H.

    2008-01-01

    Two primary methods for reconstructing paleofire occurrence include dendrochronological dating of fire scars and stand ages from live or dead trees (extending back centuries into the past) and sedimentary records of charcoal particles from lakes and bogs, providing perspectives on fire history that can extend back for many thousands of years. Studies using both proxies have become more common in regions where lakes are present and fire frequencies are low, but are rare where high-frequency surface fires dominate and sedimentary deposits are primarily bogs and wetlands. Here we investigate sedimentary and fire-scar records of fire in two small watersheds in northern New Mexico, in settings recently characterised by relatively high-frequency fire where bogs and wetlands (Chihuahuen??os Bog and Alamo Bog) are more common than lakes. Our research demonstrates that: (1) essential features of the sedimentary charcoal record can be reproduced between multiple cores within a bog deposit; (2) evidence from both fire-scarred trees and charcoal deposits documents an anomalous lack of fire since ???1900, compared with the remainder of the Holocene; (3) sedimentary charcoal records probably underestimate the recurrence of fire events at these high-frequency fire sites; and (4) the sedimentary records from these bogs are complicated by factors such as burning and oxidation of these organic deposits, diversity of vegetation patterns within watersheds, and potential bioturbation by ungulates. We consider a suite of particular challenges in developing and interpreting fire histories from bog and wetland settings in the Southwest. The identification of these issues and constraints with interpretation of sedimentary charcoal fire records does not diminish their essential utility in assessing millennial-scale patterns of fire activity in this dry part of North America. ?? IAWF 2008.

  19. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    SciTech Connect

    Furlong, E.T.; Cessar, L.R.; Hites, R.A. )

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in {sup 210}Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S, and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States, and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion production deposition.

  20. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    NASA Astrophysics Data System (ADS)

    Furlong, Edward T.; Cessar, Linda Roll; Hites, Ronald A.

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in 210Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion product deposition.

  1. Parent Body Influences on Amino Acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.; Elsila, J. E.; Herd, C. D. K.

    2010-01-01

    The Tagish Lake meteorite is a primitive C2 carbonaceous chondrite with a mineralogy, oxygen isotope, and bulk chemical. However, in contrast to many CI and CM carbonaceous chondrites, the Tagish Lake meteorite was reported to have only trace levels of indigenous amino acids, with evidence for terrestrial L-amino acid contamination from the Tagish Lake meltwater. The lack of indigenous amino acids in Tagish Lake suggested that they were either destroyed during parent body alteration processes and/or the Tagish Lake meteorite originated on a chemically distinct parent body from CI and CM meteorites where formation of amino acids was less favorable. We recently measured the amino acid composition of three different lithologies (11h, 5b, and 11i) of pristine Tagish Lake meteorite fragments that represent a range of progressive aqueous alteration in order 11h < 5b < 11i as inferred from the mineralogy, petrology, bulk isotopes, and insoluble organic matter structure. The distribution and enantiomeric abundances of the one- to six-carbon aliphatic amino acids found in hot-water extracts of the Tagish Lake fragments were determined by ultra performance liquid chromatography fluorescence detection and time of flight mass spectrometry coupled with OPA/NAC derivatization. Stable carbon isotope analyses of the most abundant amino acids in 11h were measured with gas chromatography coupled with quadrupole mass spectrometry and isotope ratio mass spectrometry.

  2. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Bernard, Alain

    1994-06-01

    The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative

  3. Spatial characterization of acid rain stress in Canadian Shield lakes. Progress report, 1 August 1985-1 February 1986

    SciTech Connect

    Tanis, F.J.

    1986-01-01

    The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern United States and on the Canadian Shield is though to be enormous. The principle objective is to examine how seasonal changes in lake water transparency are related to annual acidic load. Further, the relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations to measure seasonal changes in the optical transparency in acid lakes is being investigated.

  4. Effect of atmospheric sulfur pollutants derived from acid precipitation on the benthic dynamics of lakes

    SciTech Connect

    Mitchell, M.J.

    1982-11-01

    Sulfuric acid is a major contributor to acid precipitation in the United States. The relationship of acid precipitation to the sulfur dynamics of three lakes in New York was studied. For South Lake, which has probably been acidified, the sulfur profile in the sediment corresponded to historical changes in anthropogenic sulfur inputs. In all three study lakes, the organic sulfur constituents, which generally have been ignored in limnological investigations, played a major role in sulfur dynamics. The transformations and fluxes of inorganic and organic sulfur differed among the lakes and reflected characteristic abiotic and biotic properties, including productivity parameters. The community structure and secondary production of the invertebrate benthos were ascertained and, for South Lake, were similar to other acidified lakes. The importance of benthic insects on sulfur dynamics was demonstrated. Further studies on sulfur in lakes will enhance the understanding of the role of these anthropogenic inputs on lake systems and permit a more accurate appraisal of the present and future impacts of acidic deposition on water quality. 10 references.

  5. Hydrogeologic comparison of an acidic-lake basin with a neutral-lake basin in the West-Central Adirondack Mountains, New York

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.

    1985-01-01

    Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4.7 to 7; that at Woods Lake (acidic) ranges from about 4.3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that differences in lakewater pH can be attributed to differences in the ground-water contribution to the lakes. A larger percentage of the water discharged from the neutral lake is derived from ground water than that from the acidic lake. Ground water has a higher pH resulting from a sufficiently long residence time for neutralizing chemical reactions to occur with the till. The difference in ground-water contribution is attributed to a more extensive distribution of thick till (<3m) in the neutral-lake basin than in the acidic-lake basin; average thickness of till in the neutral-lake basin is 24m whereas that in the other is 2.3m. During the snowmelt period, as much as three months of accumulated precipitation may be released within two weeks causing the lateral flow capacity of the deeper mineral soil to be exceeded in the neutral-lake basin. This excess water moves over and through the shallow acidic soil horizons and causes the lakewater pH to decrease during snowmelt.Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4. 7 to 7; that at Woods Lake (acidic) ranges from about 4. 3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that

  6. The evolution of a mining lake - From acidity to natural neutralization.

    PubMed

    Sienkiewicz, Elwira; Gąsiorowski, Michał

    2016-07-01

    Along the border of Poland and Germany (central Europe), many of the post-mining lakes have formed "an anthropogenic lake district". This study presents the evolution of a mining lake ecosystem (TR-33) based on subfossil phyto- and zooplankton, isotopic data (δ(13)C, δ(15)N), elemental analyses of organic carbon and nitrogen (C/N ratio and TOC) and sedimentological analyses. Recently, lake TR-33 became completely neutralized from acidification and an increase in eutrophication began a few years ago. However, the lake has never been neutralized by humans; only natural processes have influenced the present water quality. From the beginning of the existence of the lake (1920s) to the present, we can distinguish four stages of lake development: 1) very shallow reservoir without typical lake sediments but with a sand layer containing fine lignite particles and very poor diatom and cladoceran communities; 2) very acidic, deeper water body with increasing frequencies of phyto- and zooplankton; 3) transitional period (rebuilding communities of diatoms and Cladocera), meaning a deep lake with benthic and planktonic fauna and flora with wide ecological tolerances; and 4) a shift to circumneutral conditions with an essential increase in planktonic taxa that prefer more fertile waters (eutrophication). In the case of lake TR-33, this process of natural neutralization lasted approximately 23years. PMID:27016682

  7. Aquatic fulvic acids in microbially based ecosystems: results from two desert lakes in Antarctica

    USGS Publications Warehouse

    McKnight, Diane M.; Aiken, G.R.; Smith, R.L.

    1991-01-01

    These lakes receive very limited input of organic material from the surrounding barren desert, but they sustain algal and bacterial populations under permanent ice cover. One lake has an extensive anoxic zone and high salinities; the other is oxic and has low salinities. Despite these differences, fulvic acids from both lakes had similar elemental compositions, carbon distributions, and amino acid contents, indicating that the chemistry of microbially derived fulvic acvids is not strongly influenced by chemical conditions in the water column. Compared to fulvic acids from other natural waters, these fulvic acids have low C:N atomic ratios (19-25) and low contents of aromatic carbons (5-7% of total carbon atoms); they are most similar to marine fulvic acids. -from Authors

  8. Fish population losses from Adirondack lakes: The role of surface water acidity and acidification

    SciTech Connect

    Baker, J.P. ); Warren-Hicks, W.J. ); Gallagher, J. ); Christensen, S.W. )

    1993-04-01

    Within the United States, the Adirondack region of New York State has the largest percentage of waters that are acidic and classified as deposition dominated. Thus, the Adirondacks have been the focus of much of the debate regarding the extent and magnitude of effects to date from acidic deposition. Completion of the Adirondack Lakes Survey in 1987, a survey of 1,469 lakes, in combination with the relatively extensive historical record on fish communities in the region, provided the opportunity for a thorough evaluation of changes in Adirondack fish communities over the last 50-60 years, and the degree to which these changes may have resulted from changes in surface water acid-base chemistry. Results indicate that 16-19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnows had experienced the most widespread effects, with losses in 11-19% of the lakes. Fish species occurring in lower elevation and larger lakes such as bass and brown trout, experienced little or no effects. Lakes judged to have lost fish populations to acidification had significantly lower pH and higher concentrations of inorganic aluminum and occurred at higher elevations than other lakes. No other lake characteristics showed consistent associations with fish population losses. Acidification is not the only factor, nor even the dominant factor affecting Adirondack fish communities, however. Other causes of fish loses include lake reclamation, changes in stocking policy, and the introduction (or invasion) of competitors or predators.

  9. Unusual Nonterrestrial L-proteinogenic Amino Acid excesses in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Hilts, Robert W.; Herd, D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approximately 43-59%) of the alpha-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha hydrogen protein amino acid, was found to be nearly racemic (D much approximately L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and 1)- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the L-excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial L-enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large L-enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of non terrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.

  10. CHEMICAL AND BIOLOGICAL STATUS OF LAKES AND STREAMS IN THE UPPER MIDWEST: ASSESSMENT OF ACIDIC DEPOSITION EFFECTS

    EPA Science Inventory

    Many lakes in three areas in the Upper Midwest--northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan--have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. These acidic lakes are precipitation-dominated, clearw...

  11. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation.

    PubMed

    France, R L

    1996-01-01

    Population biomass and production of the amphipod Hyalella azteca (Saussure) were found to be related to alkalinity (ranging from 0.2 to 58.1 mg liter(-1)) in 10 Canadian Shield lakes in south-central Ontario. Biomass and production of amphipods in the two lakes characterized by spring depressions of pH below 5.0 were found to be lower than those for populations inhabiting lakes that did not experience such acid pulses. The proportional biomass of amphipods in relation to the total littoral zoobenthos community was lower in lakes of low alkalinity than in circumneutral or hardwater lakes. Because production in these amphipod populations is known to depend closely on population abundance, the labour-intensive derivation of production rates yields relatively little information for biomonitoring that cannot be obtained from abundance data alone. PMID:15093505

  12. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes.

    PubMed

    Strandberg, Ursula; Hiltunen, Minna; Jelkänen, Elli; Taipale, Sami J; Kainz, Martin J; Brett, Michael T; Kankaala, Paula

    2015-12-01

    Lake size influences various hydrological parameters, such as water retention time, circulation patterns and thermal stratification that can consequently affect the plankton community composition, benthic-pelagic coupling and the function of aquatic food webs. Although the socio-economical (particularly commercial fisheries) and ecological importance of large lakes has been widely acknowledged, little is known about the availability and trophic transfer of polyunsaturated fatty (PUFA) in large lakes. The objective of this study was to investigate trophic trajectories of PUFA in the pelagic food web (seston, zooplankton, and planktivorous fish) of six large boreal lakes in the Finnish Lake District. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and α-linolenic acid (ALA) were the most abundant PUFA in pelagic organisms, particularly in the zooplanktivorous fish. Our results show that PUFA from the n-3 family (PUFAn-3), often associated with marine food webs, are also abundant in large lakes. The proportion of DHA increased from ~4±3% in seston to ~32±6% in vendace (Coregonus albula) and smelt (Osmerus eperlanus), whereas ALA showed the opposite trophic transfer pattern with the highest values observed in seston (~11±2%) and the lowest in the opossum shrimp (Mysis relicta) and fish (~2±1%). The dominance of diatoms and cryptophytes at the base of the food web in the study lakes accounted for the high amount of PUFAn-3 in the planktonic consumers. Furthermore, the abundance of copepods in the large lakes explains the effective transfer of DHA to planktivorous fish. The plankton community composition in these lakes supports a fishery resource (vendace) that is very high nutritional quality (in terms of EPA and DHA contents) to humans. PMID:26282609

  13. Chemical and biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA.

    PubMed

    Josephson, Daniel C; Robinson, Jason M; Chiotti, Justin; Jirka, Kurt J; Kraft, Clifford E

    2014-07-01

    Honnedaga Lake in the Adirondack region of New York has sustained a heritage brook trout population despite decades of atmospheric acid deposition. Detrimental impacts from acid deposition were observed from 1920 to 1960 with the sequential loss of acid-sensitive fishes, leaving only brook trout extant in the lake. Open-lake trap net catches of brook trout declined for two decades into the late 1970s, when brook trout were considered extirpated from the lake but persisted in tributary refuges. Amendments to the Clean Air Act in 1990 mandated reductions in sulfate and nitrogen oxide emissions. By 2000, brook trout had re-colonized the lake coincident with reductions in surface-water sulfate, nitrate, and inorganic monomeric aluminum. No changes have been observed in surface-water acid-neutralizing capacity (ANC) or calcium concentration. Observed increases in chlorophyll a and decreases in water clarity reflect an increase in phytoplankton abundance. The zooplankton community exhibits low species richness, with a scarcity of acid-sensitive Daphnia and dominance by acid-tolerant copepods. Trap net surveys indicate that relative abundance of adult brook trout population has significantly increased since the 1970s. Brook trout are absent in 65 % of tributaries that are chronically acidified with ANC of <0 μeq/L and toxic aluminum levels (>2 μmol/L). Given the current conditions, a slow recovery of chemistry and biota is expected in Honnedaga Lake and its tributaries. We are exploring the potential to accelerate the recovery of brook trout abundance in Honnedaga Lake through lime applications to chronically and episodically acidified tributaries. PMID:24671614

  14. Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification

    NASA Astrophysics Data System (ADS)

    Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.

    1993-04-01

    Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish

  15. Acid-induced changes in DOC quality in an experimental whole-lake manipulation

    SciTech Connect

    Donahue, W.F.; Schindler, D.W.; Page, S.J.; Stainton, M.P.

    1998-10-01

    Fluorescence analyses of archived water samples were used to typify dissolved organic carbon (DOC) quality in experimentally acidified lakes and reference lakes at the Experimental Lakes Area, in northwestern Ontario. Carbon-specific DOC fluorescence (CSF) during peak acidification was 40--50% of that for a high-DOC reference lake and similar to a low-DOC reference lake. Reference lakes showed similar but smaller decreases in CSF during several years of prolonged drought in the late 1980s. During the 1990s, recovery from acidification resulted in increased CSF, whereas reference lakes remained unchanged during the same time period. In addition to causing decreased [DOC], acidification causes changes in fluorescence-peak geometry that indicate a switch in DOC quality from allochthonous to autochthonous-like during acidification. The acid-induced change in DOC quality was likely due to increased chemical oxidation or precipitation of the UV-absorbent aromatic portions of allochthonous DOC molecules, leaving more UV-transparent aliphatic chains. The change in the nature of DOC following acidification and drought may have an important role in physical, biological, and chemical processes within these lakes. With recovery from acidification, DOC quality has also recovered.

  16. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey.

    PubMed

    Sanliyuksel Yucel, Deniz; Balci, Nurgul; Baba, Alper

    2016-05-01

    A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59-3.79) and high electrical conductivity values (1040-6430 μS/cm), in addition to high sulfate (594-5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ(34) [Formula: see text] and δ(34) [Formula: see text] values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development. PMID:26987541

  17. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    USGS Publications Warehouse

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  18. Development of a high resolution modeling tool for prediction of waterflows through complex mires: Example of the Mukhrino bog complex in West Siberian middle Taiga Zone

    NASA Astrophysics Data System (ADS)

    Zarov, Evgeny A.; Schmitz, Oliver; Bleuten, Wladimir

    2015-04-01

    of a satellite image (QuickBird). For modeling open water type was split into shallow lakes and deep "primary" lakes. From the model output of water level heads and flows in three dimensions it was concluded that 95% occurs by superficial flow through the Catotelm layers. Water flow through the Catotelm occurs bit was of minor importance. With the modeling tool a virtual dam was created through the modeling area and the accumulated water-flow across this dam calculated. The tool proved to be suitable for calculation of optimization of permeability of road constructions through mires avoiding damaging the high valuable bog ecosystems.

  19. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  20. Variation in Lake Michigan alewife (Alosa pseudoharengus) thiaminase and fatty acids composition

    USGS Publications Warehouse

    Honeyfield, D.C.; Tillitt, D.E.; Fitzsimons, J.D.; Brown, S.B.

    2010-01-01

    Thiaminase activity of alewife (Alosa pseudoharengus) is variable across Lake Michigan, yet factors that contribute to the variability in alewife thiaminase activity are unknown. The fatty acid content of Lake Michigan alewife has not been previously reported. Analysis of 53 Lake Michigan alewives found a positive correlation between thiaminase activity and the following fatty acid: C22:ln9, sum of omega-6 fatty acids (Sw6), and sum of the polyunsaturated fatty acids. Thiaminase activity was negatively correlated with C15:0, C16:0, C17:0, C18:0, C20:0, C22:0, C24:0, C18:ln9t, C20:3n3, C22:2, and the sum of all saturated fatty acids (SAFA). Multi-variant regression analysis resulted in three variables (C18:ln9t, Sw6, SAFA) that explained 71% (R2=0.71, P<0.0001) of the variation in thiaminase activity. Because the fatty acid content of an organism is related is food source, diet may be an important factor modulating alewife thiaminase activity. These data suggest there is an association between fatty acids and thiaminase activity in Lake Michigan alewife.

  1. Authigenic phyllosilicates in modern acid saline lake sediments and implications for Mars

    NASA Astrophysics Data System (ADS)

    Story, Stacy; Bowen, Brenda Beitler; Benison, Kathleen Counter; Schulze, Darrell G.

    2010-12-01

    Aluminum- and Fe/Mg-phyllosilicates are considered important geochemical indicators in terrestrial and Martian sedimentary systems. Traditionally, Al-phyllosilicates are characterized as forming and remaining stable under conditions of low to moderate pH, while Fe/Mg-phyllosilicates are considered representative of only dilute and moderate to high pH conditions. However, we have observed Al- and Fe/Mg-phyllosilicates in acid saline lake sediments in Western Australia. Phyllosilicate formation mechanisms in these lake systems include direct precipitation from lake waters, early diagenetic precipitation from shallow groundwaters, and deposition/alteration of detrital grains. X-ray diffraction analysis of silt- and clay-size sediments from two acid saline lakes in Western Australia indicates the presence of several complex mineral assemblages with extreme spatial heterogeneity that reflects the complex geochemistry of these lakes. These assemblages include unique combinations of authigenic and/or detrital phyllosilicates (e.g., kaolinite, smectite, and palygorskite-sepiolite), sulfates (e.g., alunite, jarosite, and gypsum), Fe-oxides (e.g., hematite and goethite), and other silicates (e.g., mullite and heulandite-clinoptilolite). Observations of Fe/Mg-phyllosilicates found in acid saline sediments in southern Western Australia suggest their degradation under conditions of low pH (2.5-5.4) is slowed by the high salinity (5-25%) of the lake and shallow groundwaters. The occurrence of both Al- and Fe/Mg-phyllosilicates in these acid saline lake sediments suggests that environmental interpretations based on the occurrence of phyllosilicates require additional consideration of their spatial distribution and association with other minerals. Moreover, the similarity between the diverse mineral assemblages in these terrestrial acid saline systems and those on Mars indicates similar conditions may have existed on Mars.

  2. Chemical and biological status of lakes and streams in the upper midwest: assessment of acidic deposition effects

    USGS Publications Warehouse

    Wiener, J.G.; Eilers, J.M.

    1987-01-01

    Many lakes in three areas in the Upper Midwest - northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan - have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. Northcentral Wisconsin and the Upper Peninsula of Michigan together contain about 150-300 acidic lakes (ANC ≤ 0), whereas none have been found in Minnesota. These acidic lakes are precipitation-dominated, Clearwater seepage lakes having small surface area, shallow depth, and low concentrations of dissolved organic carbon. The spatial distribution of these acidic lakes parallels a west to east gradient of increasing sulfate and hydrogen ion deposition. Several of these acidic lakes exhibit chemical characteristics and biological changes consistent with those observed elsewhere in waters reported to be acidified by acidic deposition. However, an hypothesis of recent lake acidification is not supported by analyses of either historical chemical data or diatom remains in lake sediments, and natural sources of acidity and alternative ecological processes have not been conclusively eliminated as causative factors. Streams in this three-state region have high ANC and appear to be insensitive to acidic deposition. The species richness and composition of lacustrine fish communities in the region are partly related to pH and associated chemical factors. Sport fishes considered acid-sensitive and of primary concern with regard to acidification include walleye, smallmouth bass, and black crappie. The fishery in at least one lake, Morgan Lake in Wisconsin (pH 4.6), may have declined because of acidification. Given the general lack of quantitative fishery data for acidic Wisconsin and Michigan lakes, however, more general conclusions concerning impacts or the absence of impacts of acidification on the region's fishery resources are not possible.

  3. Integrated Lake-Watershed Acidification Study (ILWAS): contributions to the international conference on the ecological impact of acid precipitation

    SciTech Connect

    Not Available

    1981-05-01

    The Integrated Lake-Watershed Acidification Study (ILWAS) was initiated to study and detail lake acidification processes for three lake watershed basins in the Adirondack Park region of New York. The three basins (Woods, Sagamore, and Panther), receive similar amounts of acid deposition yet observable pH values for the lakes are very dissimilar indicating unequal acid neutralizing capacities among the watersheds. This volume contains a compilation of seven papers. Relevant topics include: a characterization of the geology, hydrology, limnology and vegetation of the three study sites, an analysis of acid precipitation quality and quantity, the effects of vegetative canopy, the effects of snowmelt, the effects of winter lake stratification, comparison of heavy metal transport, examination of acidic sources other than direct precipitation, assessment of lake acidification during spring thaw and integration of all acidification components with a mathematical model.

  4. Evaluating long-term trends in littoral benthic macroinvertebrate communities of lakes recovering from acid deposition.

    PubMed

    Lento, Jennifer; Dillon, Peter J; Somers, Keith M

    2012-12-01

    The Mann-Kendall test has been proposed as a nonparametric method to evaluate trends in long-term water quality datasets with missing values, serial correlation, and non-normality. However, this test has rarely been used to evaluate long-term trends in biological data. In this study, we used the Mann-Kendall test to evaluate trends in 15 years of data on benthic macroinvertebrate communities from 17 Precambrian Shield lakes. We also used the van Belle and Hughes test of trend homogeneity to assess whether common among-lake temporal trends existed. We assumed that evidence of a common regional trend among lakes would support the hypothesis of long-term biological recovery from past acidification. We found decreasing proportions of Chironomidae and increasing proportions of Ephemeroptera, Plecoptera, and Trichoptera (EPT) in both single-lake and multi-lake trend analysis. Moreover, six of the nine lakes with significant trends in more than one benthos metric displayed a significant decrease in Chironomidae and increase in EPT concurrently, indicating a shift towards more acid-sensitive taxa. Weak trends in several of the biological metrics indicated that recovery in these lakes has been impeded. Results of this study indicate that the Mann-Kendall and van Belle and Hughes trend tests are useful statistical tools to evaluate long-term patterns in biological data. PMID:22193633

  5. Stable carbon and nitrogen isotopes and amino acids in Holocene sediments of Lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, Philip; Gaye, Birgit; Wiesner, Martin; Basavaiah, Nathani; Prasad, Sushma; Stebich, Martina; Anoop, Ambili; Riedel, Nils

    2013-04-01

    Investigations on surface sediments and a sediment core from Lake Lonar in central India were carried out within the framework of the HIMPAC (Himalaya: Modern and Past Climate) programme. The aim was to understand recent productivity, sedimentation, and degradation processes and to reconstruct variations in Holocene lake conditions on the basis of biogeochemical analysis on a 10 m long sediment core retrieved from the centre of Lake Lonar. Located in India's core monsoon zone, Lake Lonar offers valuable information about the climate development of the whole region. The lake is situated at the floor of a meteorite impact structure on the Deccan plateau basalt. The modern lake is characterised by brackish water, high alkalinity, severe eutrophication, and bottom water anoxia. The lake is about 6 m deep and fed by rainfall during the SW monsoon season and three perennial streams. Since no out-flowing stream is present and no seepage loss occurs, the lake level is highly sensitive to the balance of precipitation and evaporation. Here we present C/N, carbon and nitrogen isotope, and amino acid data of bulk organic matter from modern lake and Holocene core sediments. Modern conditions are mainly related to human activity which started to have persistent influence on the biological and chemical lake properties at ~1200 cal a BP. The distribution of δ13C in the modern sediments is driven by the ratio between terrestrial and aquatic organic matter, while δ15N seems to be influenced by redox conditions at the sediment-water-interface with elevated values at shallow oxic stations. Differences in the amino acid assemblages of oxic and anoxic surface sediment samples were used to calculate an Ox/Anox ratio indicating the redox conditions during organic matter degradation. The onset of the monsoon reconstructed from the sediment core occurred at ca. 11450 cal a BP. The early Holocene core sediments are characterised by low sedimentation rate, low aquatic productivity, and

  6. Atmospheric carbonyl sulfide exchange in bog microcosms

    SciTech Connect

    Fried, A.; Klinger, L.F.; Erickson, D.J. III )

    1993-01-22

    Measurements of Carbonyl sulfide (OCS) fluxes were carried out on bog microcosms using chamber sampling and tunable diode laser analysis. Intact bog microcosms (vascular plants, mosses, and peat) removed ambient levels of OCS in the light and dark with rates from [minus]2.4 to [minus]8.1 ng S min[sup [minus]1] m[sup [minus]2]. Peat and peat plus mosses emitted OCS in the light with rates of 17.4 and 10.9 ng S min[sup [minus]1] m[sup [minus]2], respectively. In the dark, the mosses apparently removed OCS at a rate equivalent to the peat emissions. A 3-D numerical tracer model using this data indicated that boreal bog ecosystems remove at most 1% of ambient OCS, not sufficient to account for an observed OCS depletion in boreal air masses. 13 refs., 1 fig., 1 tab.

  7. Analysis of southeastern Canada lake-water chemistry data in relation to acidic deposition

    SciTech Connect

    Olson, R.J.; Cook, R.B.; Ross-Todd, B.M.; Beauchamp, J.J.

    1990-05-01

    Lake-water chemistry data were obtained for lakes in southeastern Canada to study relationships between atmospheric deposition and acid-base chemistry as part of the National Acid Precipitation Assessment Program State of Science and Technology reports. Quality assurance checks were made to ensure that the data used were of sufficient quality and were comparable to data from the United States. Ninety-eight percent of the 8506 sampled lakes had pH, ANC, and SO{sub 4}{sup 2 {minus}} data and were used in our analyses. Of these, we created a subset of 4017 lakes having data for more variable (Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}, DOC, and conductivity) to analyze potential sources of lake-water acidity. The objectives of this work were to determine the geographical extent and number of potentially affected systems and to infer causes of acidification based on ion ratios. 35 refs., 28 figs., 12 tabs.

  8. Extreme carbon dioxide concentrations in acidic pit lakes provoked by water/rock interaction.

    PubMed

    Sánchez-España, Javier; Boehrer, Bertram; Yusta, Iñaki

    2014-04-15

    We quantify the gas pressure and concentration of a gas-charged acidic pit lake in SW Spain. We measured total dissolved gas pressure, carbon dioxide (CO2) concentration, major ion concentration, isotopic composition of dissolved inorganic carbon (δ(13)C(DIC)), and other physicochemical parameters. CO2 is the dominant dissolved gas in this lake and results mainly from carbonate dissolution during the interaction of acidic water with wall rocks, followed by diffusive and advective transport through the water column. The δ(13)C(DIC) values suggest that the biological contribution is comparatively small. Maximum CO2 concentrations higher than 0.1 M (∼5000 mg/L) have been measured, which are only comparable to those found in volcanic crater lakes. The corresponding gas pressures of CO2 alone (pCO2 ∼3.6 bar) imply 60% saturation relative to local pressure at 50 m depth. High CO2 concentrations have been observed in other pit lakes of the region. We recommend gas-specific monitoring in acidic pit lakes and, if necessary, the design of feasible degassing strategies. PMID:24628479

  9. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1987-01-01

    An analysis was performed to interpret the spatial aspects of lake acidification. Three types of relationships were investigated based upon the August to May seasonal scene pairing. In the first type of analysis ANOVA was used to examine the mean Thematic Mapper band one count by ecophysical strata. The primary difference in the two ecophysical strata is the soil type and depth over the underlying bedrock. Examination of the August to May difference values for TM band one produced similar results. Group A and B strata were the same as above. The third type of analysis examined the relationship between values of the August to May difference from polygons which have similar ecophysical properties with the exception of sulfate deposition. For this case lakes were selected from units with sandy soils over granitic rock types and the sulfate deposition was 1.5 or 2.5 g/sq m/yr.

  10. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stanley E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  11. Influence of organic acids on the pH and acid-neutralizing capacity of Adirondack Lakes

    NASA Astrophysics Data System (ADS)

    Munson, R. K.; Gherini, S. A.

    1993-04-01

    Past approaches for evaluating the effects of organic acids on the acid-base characteristics of surface waters have typically treated them solely as weak acids. Analysis of data collected by the Adirondack Lakes Survey Corporation (ALSC) from 1469 lakes throughout the Adirondack region shows that this approach is not valid. While the data indicate that natural organics contain a continuum of acid functional groups, many of which display weak acid characteristics, a significant fraction of the organic acid is strong (pKa < 3). Dissolved organic carbon (DOC) contributes 4.5-5 μeq/mg DOC of strong acid to solution. The associated anions make a negative contribution to Gran acid-neutralizing capacity (ANC). Because organic anions can produce negative Gran ANC values, the common practice of considering negative values of Gran ANC evidence of acidification solely by mineral acids is not valid. The strength of organic acids also influences the observed deviation between Gran ANC values and ANC values calculated as the difference between base cation and mineral acid anion concentrations (CB - CA). Ninety percent of the deviation is due to the presence of strong organics while the remaining 10% is due to DOC-induced curvature in the F1 Gran function. Organic acids can also strongly influence pH. Their largest effects were found in the 0-50 μeq/L Gran ANC range where they depressed pH by up to 1.5 units. In addition, a method for predicting changes in pH in response to changes in mineral acidity, DOC, or both without having to rely on inferred thermodynamic constants and the uncertainties associated with them has been developed. Using the predictive method, the response of representative lakes from four sensitive lake classes to a 15-μeq/L decrease in mineral acidity ranged from +0.17 to +0.38 pH units. If concurrent increases in DOC are considered, the pH changes would be even smaller.

  12. Fate of silicate minerals in a peat bog

    NASA Astrophysics Data System (ADS)

    Bennett, Philip C.; Siegel, Donald I.; Hill, Barbara M.; Glaser, Paul H.

    1991-04-01

    An investigation of silicate weathering in a Minnesota mire indicates that quartz and aluminosilicates rapidly dissolve in anoxic, organic-rich, neutral- pH environments. Vertical profiles of pH, dissolved silicon, and major cations were obtained at a raised bog and a spring fen and compared. Profiles of readily extractable silicon, diatom abundance, ash mineralogy, and silicate surface texture were determined from peat cores collected at each site. In the bog, normally a recharge mound, dissolved silicon increases with depth as pH increases, exceeding the background silicon concentration by a factor of two. Silicate grain surfaces, including quartz, are chemically etched at this location, despite being in contact with pore water at neutral pH with dissolved silicon well above the equilibrium solubility of quartz. The increasing silica concentrations at circum-neutral pH are consistent with a system where silicate solubility is influenced by silica-organic-acid complexes. Silica-organic-acid complexes therefore may be the cause of the almost complete absence of diatoms in decomposed peat and contribute to the formation of silica-depleted underclays commonly found beneath coal.

  13. IONIC COMPOSITION OF ACID LAKES IN RELATION TO AIRBORNE INPUTS AND WATERSHED CHARACTERISTICS

    EPA Science Inventory

    Present acid forming emissions to the atmosphere have the potential to alter significantly the chemistry of rain, snow, and surface water of weakly buffered lakes in the Upper Midwest. Average precipitation pH from field measurements during 1979-1983 declined from west to east fr...

  14. ATMOSPHERIC ACIDITY MEASUREMENTS DURING THE LAKE MICHIGAN URBAN AIR TOXICS STUDY

    EPA Science Inventory

    During the summer of 1991, as part of the Lake Michigan Urban Air Toxics Study (LMUATS), measurements of reactive gases and fine fraction and size-fractionated acidic aerosols were taken at two sites (South Haven, MI and aboard the research vessel, R/V Laurentian). he fine fracti...

  15. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  16. Neutralisation of an acidic pit lake by alkaline waste products.

    PubMed

    Allard, Bert; Bäckström, Mattias; Karlsson, Stefan; Grawunder, Anja

    2014-01-01

    A former open pit where black shale (alum shale) was excavated during 1942-1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2-3.4 until 1997-1998, when pH was gradually increasing. This was due to the intrusion of leachates from alkaline cement waste deposited close to the lake. A stable pH of around 7.5 was obtained after 6-7 years. The chemistry of the pit lake has changed due to the neutralisation. Concentrations of some dissolved metals, notably zinc and nickel, have gone down, as a result of adsorption/co-precipitation on solid phases (most likely iron and aluminium hydroxides), while other metals, notably uranium and molybdenum, are present at elevated levels. Uranium concentration is reaching a minimum of around pH 6.5 and is increasing at higher pH, which may indicate a formation of neutral and anionic uranyl carbonate species at high pH (and total carbonate levels around 1 mM). Weathering of the water-exposed shale is still in progress. PMID:23913161

  17. Neutralization of an acidic surface mine lake using organic additives. Final research report, 1 July 1991-1 October 1993

    SciTech Connect

    Brugam, R.B.

    1993-10-01

    We added 9.1 metric tons of manure to a pH 2.9 acid coal mine lake in Southern Illinois to test whether the added organic matter would support sulfate and iron reduction by anaerobic bacteria resulting in the production of alkalinity and a rise in pH. The added organic matter did cause a rise in pH in the deep water of the lake, but the effect did not increase the pH of the whole lake. Experiments in laboratory microcosms at 23 C show that lake sediment treated with manure can permanently raise the pH of acid mine drainage. In the open lake diffusion of oxygen into the anaerobic zones of the water column and low water temperatures in the winter limited the effects of sulfate and iron reduction to the deep water of the lake during summer thermal stratification.

  18. Hydrologic conditions in Connors Bog Area, Anchorage, Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1986-01-01

    Connors Bog is a wetland in Anchorage, Alaska, which provides a habitat for many wildlife species and is a popular area for driving off-road vehicles. A landfill, and residential and commercial developments are present in areas which were once wetland. The main source of water is precipitation, which averages about 15 in/yr. Estimates of evapotranspiration, which is the main component of water outflow, range from 10 to 20 in/yr. Minor amounts of groundwater and surface runoff flow into the area from the northeast and southwest and flow out of the area to the northwest and south. Within the wetland, water in peat and sand is unconfined and becomes more mineralized with depth. A leachate beneath and near an abandoned landfill is characterized by concentrations of dissolved solids, dissolved chloride, and total organics that are higher than those of the area 's natural water. The maximum lateral extent of detectable contamination in 1984 was < 500 ft from the landfill 's edge. Water in glacial deposits that underlie a poorly permeable layer of silt and clay is confined. A well completed in this confined aquifer yielded water that had a low concentration of dissolved solids, 150 mg/L. The potentiometric surface of this aquifer was about 20 ft lower than the water table during 1984. Connors Lake occupies a depression that extends below adjacent groundwater levels. The 40-acre lake has a maximum depth of about 9 ft and a low rate of biological production. The quality of water in the lake has not been adversely impacted by nearby residential development or landfill operations. Lake levels appear to be influenced by precipitation and adjacent groundwater levels. (Author 's abstract)

  19. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    PubMed

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible. PMID:25973580

  20. Geochemistry of the acid Kawah Putih lake, Patuha Volcano, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Sriwana, T.; van Bergen, M. J.; Varekamp, J. C.; Sumarti, S.; Takano, B.; van Os, B. J. H.; Leng, M. J.

    2000-04-01

    Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, ˜300 m-wide lake with strongly mineralized acid-sulfate-chloride water. The lake water has a temperature of 26-34°C, pH=<0.5-1.3, S tot=2500-4600 ppm and Cl=5300-12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62-+ S5O62-+ S6O62-=2400 - 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO 2/H 2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO 4-S e of ⩾20‰), probably the result of SO 2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well. Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake

  1. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Crowley, J. K.; Thomson, B. J.; Kargel, J. S.; Bridges, N. T.; Hook, S. J.; Baldridge, A.; Brown, A. J.; Ribeiro da Luz, B.; de Souza Filho, C. R.

    2009-06-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 °C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 °C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  2. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    USGS Publications Warehouse

    Marion, G.M.; Crowley, J.K.; Thomson, B.J.; Kargel, J.S.; Bridges, N.T.; Hook, S.J.; Baldridge, A.; Brown, A.J.; Ribeiro da Luz, B.; de Souza, Filho C.R.

    2009-01-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 ??C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 ??C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  3. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling.

    PubMed

    Shipp, William G; Zierenberg, Robert A

    2008-12-01

    Pore fluids from Clear Lake sediments collected near the abandoned Sulphur Bank Mercury Mine have low pH (locally <4) and elevated sulfate (> or =197 mmol/L), aluminum (> or =52 mmol/L), and iron (> or =28 mmol/L) contents derived from oxidation of sulfide minerals at the mine site. Acid mine drainage (AMD) is entering Clear Lake by advective subsurface flow nearest the mine and by diffusion at greater distances. Oxygen and hydrogen isotope ratios, combined with pore fluid compositions, constrain the sources and pathways of contaminated fluids. Sediment cores taken nearest the mine have the highest concentrations of dissolved sulfate, aluminum, and iron, which are contributed by direct subsurface flow of AMD from sulfide-bearing waste rock. Sediment cores as far as 100 m west of the Clear Lake shoreline show the presence of AMD that originated in the acidic lake that occupies the abandoned Herman Pit at the mine site. High sulfate content in the AMD has the potential to promote the activity of sulfate-reducing bacteria in the organic-rich lake sediments, which leads to methylation of Hg+2, making it both more toxic and bioavailable. Quantitative depletion of pore water sulfate at depth and sulfur isotope values of diagenetic pyrite near 0 per thousand indicate that sulfate availability limits the extent of sulfate reduction in the lake sediments away from the mine. Profiles of pore water sulfate in the sediments near the mine show that excess sulfate is available to support the activity of sulfate-reducing bacteria near the mine site. Enriched isotope values of dissolved sulfate (as high as 17.1 per thousand) and highly depleted isotope values for diagenetic pyrite (as low as -22.6 per thousand) indicate active bacterial sulfate reduction in the AMD-contaminated sediments. Sulfate- and iron-rich acid mine drainage entering Clear Lake by shallow subsurface flow likely needs to be controlled in order to lower the environmental impacts of Hg in the Clear Lake

  4. 2005 Crater Lake Formation, Lahar, Acidic Flood, and Gas Emission From Chiginagak Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Schaefer, J. R.; Scott, W. E.; McGimsey, R. G.; Jorgenson, J.

    2005-12-01

    A 400-m-wide crater lake developed in the formerly snow-and-ice-filled crater of Mount Chiginagak volcano sometime between August 2004 and June 2005, presumably due to increased heat flux from the hydrothermal system. We are also evaluating the possible role of magma intrusion and degassing. In early summer 2005, clay-rich debris and an estimated 5.6 million cubic meters of acidic water from the crater exited through tunnels in the base of a glacier that breaches the south crater rim. Over 27 kilometers downstream, the acidic waters of the flood reached approximately 1.5 meters above current water levels and inundated an important salmon spawning drainage, acidifying at least the surface water of Mother Goose Lake (approximately 1 cubic kilometer in volume) and preventing the annual salmon run. No measurements of pH were taken until late August 2005. At that time the pH of water sampled from the Mother Goose Lake inlet, lake surface, and outlet stream (King Salmon River) was 3.2. Defoliation and leaf damage of vegetation along affected streams, in areas to heights of over 70 meters in elevation above flood level, indicates that a cloud of detrimental gas or aerosol accompanied the flood waters. Analysis of stream water, lake water, and vegetation samples is underway to better determine the agent responsible for the plant damage. This intriguing pattern of gas-damaged vegetation concentrated along and above the flood channels is cause for further investigation into potential hazards associated with Chiginagak's active crater lake. Anecdotal evidence from local lodge owners and aerial photographs from 1953 suggest that similar releases occurred in the mid-1970s and early 1950s.

  5. Response of DOC in Acid-Sensitive Maine Lakes to Decreasing Sulfur Deposition (1993 - 2009)

    NASA Astrophysics Data System (ADS)

    Oelsner, G. P.; Sanclements, M.; McKnight, D. M.; Stoddard, J. L.

    2010-12-01

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, there has been a concurrent increase in dissolved organic carbon (DOC) concentrations in many lakes and streams which has been difficult to interpret. To assess the biogeochemical processes driving increasing DOC concentrations we analyzed archived samples from 9 acid-sensitive lakes in Maine collected between 1993 and 2009 using UV-Vis and fluorescence spectroscopy. The fluorescence index (FI) was calculated for all samples. The FI represents the ratio of the emission intensity at 450 nm to 550 nm at an excitation wavelength of 370 nm and provides information regarding the source of dissolved organic matter (DOM). This index has a value of approximately 1.9 for microbially derived fluvic acids and a value of approximately 1.4 for terrestrially (higher-plant) derived fluvic acids. All four lakes with increasing DOC trends had concomitant decreases in the FI index. Two of five lakes with no significant DOC trend also demonstrated no trend in FI values over time, while three lakes revealed a decrease in FI values. To confirm that the FI measured in whole water was primarily reflective of fulvic acids (FA), XAD-resin was used to isolate FA from a subset of samples. Analysis of the FA indicates that the FI values for the humic substances are slightly higher, yet well correlated with whole water samples. This suggests that despite prolonged storage in plastic, the FI trends are meaningful. The FI trends suggest a terrestrial source for the increasing DOC and may be driven by increased DOM production from soils experiencing decreased acid loading. Decreases in sulfate deposition can increase soil pH and soil organic matter solubility, as well as decrease the ionic strength of the soil solution, and

  6. MERCURY LEVELS IN FISH FROM THE UPPER PENINSULA OF MICHIGAN (ELS SUBREGION 2B) IN RELATION TO LAKE ACIDITY

    EPA Science Inventory

    The accumulation of mercury by fish and the potential human health effects of eating mercury-contaminated fish have been well documented. owever, elevated mercury concentrations in fish from dilute, low-pH lakes have only recently been associated with increased lake acidity. ever...

  7. Could Poor Fens BE More Sensitive than Bogs to Elevated N Deposition in the Oil Sands Region of Northern Alberta?

    NASA Astrophysics Data System (ADS)

    Wieder, R. K.; Vile, M. A.; Scott, K. D.

    2015-12-01

    Bogs and fens cover 29% of the 140,000 km2 Oil Sands Administrative Area (OSAA) in northern Alberta, a region characterized by quite low background N deposition (1-2 kg/ha/yr). However, development of the oil sands resource has led to increasing emission of nitrogen oxides, which are then returned to regional ecosystems as elevated atmospheric N deposition. Given the nutrient deficient nature of bogs and poor fens, elevated N deposition from oil sands development could potentially affect peatland ecosystem structure and function. To evaluate the ecosystem-level effects of N deposition, since 2011, we have experimentally applied N to a bog and a poor fen near Mariana Lakes, Alberta, located far enough from the OSAA to be unaffected by oil sands emissions. Treatments include simulated rainfall equivalent to N deposition of 0, 5, 10, 15, 20, and 25 kg/ha/yr, plus control plots receiving no added water (3 replicate plots per site per N treatment). Concentrations of NH4+-N, NO3- N, and DON at the top of the peatland water table did not increase with increasing N deposition, averaging 0.61, 0.09, and 1.07 mg/L, respectively, in the bog, and 0.53, 0.10, and 0.81 mg/L, respectively, in the poor fen. Ericaceous shrub abundance increased with increasing N deposition in both the bog and the poor fen, although plot-scale greenness (hand-held spectral measurement of the Normalized Difference Red Edge (NDRE) index) increased with N deposition in the poor fen, but not in the bog. Segmented regression indicated that in the poor fen, at N deposition above 14-16 kg/ha/yr, total microbial, bacterial, and fungal biomass in the top 5 cm of peat increased with N deposition, with no effect at lower N deposition. No effect of N deposition on microbial, bacterial, or fungal biomass was observed at 5-10 cm in the poor fen, or at either 0-5 or 5-10 cm in the bog. In the poor fen, microbial, bacterial, and fungal biomass increased with NDRE, but the effect was not significant in the bog

  8. Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains.

    PubMed

    Tang, J; Li, Y; Ma, J; Cheng, J J

    2015-09-01

    Lemnaceae (duckweeds) are widely distributed aquatic flowering plants. Their high growth rate, starch content and suitability for bioremediation make them potential feedstock for biofuels. However, few natural duckweed resources have been investigated in China, and there is no information about total fatty acid (TFA) and triacylglycerol (TAG) composition of duckweeds from China. Here, the genetic diversity of a natural duckweed population collected from Lake Chao, China, was investigated using multilocus sequence typing (MLST). The 54 strains were categorised into four species in four genera, representing 12 distinct sequence types. Strains representing Lemna aequinoctialis and Spirodela polyrhiza were predominant. Interestingly, a surprisingly high degree of genetic diversification within L. aequinoctialis was observed. The four duckweed species revealed a uniform fatty acid composition, with three fatty acids, palmitic acid, linoleic acid and linolenic acid, accounting for more than 80% of the TFA. The TFA in biomass varied among species, ranging from 1.05% (of dry weight, DW) for L. punctata and S. polyrhiza to 1.62% for Wolffia globosa. The four duckweed species contained similar TAG contents, 0.02% mg · DW(-1). The fatty acid profiles of TAG were different from those of TFA, and also varied among the four species. The survey investigated the genetic diversity of duckweeds from Lake Chao, and provides an initial insight into TFA and TAG of four duckweed species, indicating that intraspecific and interspecific variations exist in the content and composition of both TFA and TAG in comparison with other studies. PMID:25950142

  9. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  10. Australian Acid Playa Lake as a Mars Analog: Results from Sediment Lipid Analysis

    NASA Astrophysics Data System (ADS)

    Graham, H.; Baldridge, A. M.; Stern, J. C.

    2015-12-01

    The ephemeral saline acidic lakes on the Yilgarn Craton of Western Australia have been suggested as geochemical analogues to martian terrains. Both are characterized by interbedded phyllosilicates and hydrated sulfates. On Mars, these areas indicate shifting environmental conditions, from the neutral/alkaline and wet conditions that dominated during the Noachian era to the more familiar dry, acidic conditions that began in the Hesperian. The habitability of such a dynamic environment can be informed by investigation of the Yilgarn Lake system. Previous work has found phospholipid fatty acids (PLFA) evidence of microbial communities in sections of sediment cores taken from Lake Gilmore. These communities include both Gram-positive and -negative bacteria, Actinomycetes, and even methanotrophs. Given recurring detection of methane on the martian surface, evidence of a methane cycling community in an analogous environment is of particular interest. In this study we analyze the carbon isotope composition of bulk organic material as well as extracted lipids from the Lake Gilmore sediment cores at both a near-shore and mid-lake location. These analyses reveal very low accumulations of organic carbon, concentrated primarily in the gypsum-rich near-shore core. The near-shore sediments show a down-core decrease in abundance of organic carbon as well as depletion in the carbon isotope composition (δ13C) with depth. Bulk carbon did not exhibit the unique, highly depleted, diagnostic signature associated with methanotrophic biomass. Compound-specific isotope analysis (CSIA) of carbon in extracted methanotroph PFLAs can confirm the presence of a methane cycling metabolism at depth. Also, additional extractions have isolated lipids associated with lake-edge grasses. These analyses consider both the chain-length distribution and carbon CSIA of these lipids in order to understand the effect of terrestrial detritus on any preserved methanotroph carbon signal, given the very low

  11. Assessing the effectiveness of federal acid rain policy using remote and high elevation lakes in northern New England

    NASA Astrophysics Data System (ADS)

    Baumann, Adam J.

    The 1990 U.S. Clean Air Act Amendments (CAAA) set target reductions for both sulfur and nitrogen emissions to reduce acidic deposition and improve the biologically-relevant chemistry of low ANC surface waters in the United States. The Maine High Elevation Lake Monitoring (HELM) project was designed to complement other acid rain status and trend assessments in the northeast that were known to have underestimated the number of acidic lakes. HELM lakes are more susceptible to the effects of acid deposition than lowland lakes typically included in other surveys because they receive higher amounts of precipitation, and the watersheds are less able to neutralize acidic inputs because of steep slopes, shallow soils, and resistant bedrock. Furthermore, development impacts that affect water quality and cloud our interpretation of recovery from deposition in many lowland lakes are absent in the HELM lakes. Since 1986, HELM surface water SO4-2 concentration has decreased at a rate of 1.6mueq/L/yr.. HELM lake ANC has increased at a rate of 0.58 mueq/L/yr. and hydrogen ion has decreased at a rate of 0.05 mueq/L/yr. since 1986, highlighting the positive effect the CAAA is having on HELM acidity. Over the same time period, HELM DOC has increased at rate of 0.03 mg/L/yr., raising the median DOC in HELM lakes by 21%. Furthermore, we calculate that organic anions (OA-) now contribute 10% to 15% more to total anionic charge while at the same time, the lakes have become 23% more dilute. The increase in DOC has led to a shift in the source of acidity from anthropogenic inorganic (acid rain), to natural organic DOC sources. While this shift appears to complicate the interpretation of acid-base data coming from acid-sensitive lakes, in reality it highlights recovery to a more natural state for these surface waters. A comparison of HELM recovery data to recent data from the New Hampshire Remote Pond (NHRP) project serves to put the NHRP in regional perspective as well as enabling us to

  12. Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acidic deposition.

    PubMed

    Rosfjord, Catherine H; Webster, Katherine E; Kahl, Jeffrey S; Norton, Stephen A; Fernandez, Ivan J; Herlihy, Alan T

    2007-11-15

    Declines in Ca and Mg in low ANC lakes recovering from acidic deposition are widespread across the northern hemisphere. We report overall increases between 1984 and 2004 in the concentrations of Ca + Mg and Cl in lakes representing the statistical population of nearly 4000 low ANC lakes in the northeast U.S. Increases in Cl occurred in nearly all lakes in urbanized southern New England, but only 18% of lakes in more remote Maine had Cl increases. This spatial pattern implicates road salt application as the major source of the increased Cl salts. Among the 48% of the lake population classified as salt-affected, the median changes in Cl (+133 microeq/L) and Ca + Mg (+47 microeq/ L) were large and positive in direction over the 20 years. However, in the unaffected lakes, Cl remained stable and Ca + Mg decreased (-3 microeq/L), consistent with reported long-term trends in base cations of acid-sensitive lakes. This discrepancy between the Cl groups suggests that changes in ion exchange processes in salt-affected watersheds have altered the geochemical cycling of Ca and Mg. One policy-relevant implication is that waters influenced by Cl salts complicate regional assessments of surface water recovery from "acid rain" related to the passage of the Clean Air Act. PMID:18075075

  13. Alterations in the distribution and bioaccumulation of trace elements in six acidic and non-acidic clearwater lakes in New Jersey

    SciTech Connect

    Sprenger, M.D.

    1986-01-01

    Six study lakes were selected in an area geologically sensitive to acid deposition atop the Kittatinny Ridge in northwestern New Jersey. The study lakes were sampled seasonally for the determination of general water quality parameters and trace element concentrations in the water and aquatic flora. Sediment cores were collected from these lakes for the determination of the depositional patterns of aluminum (Al), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), lead (Pb) and zinc (Zn) for use in assessment of historical elemental loadings and the acidification process in these lakes. It was found that significant differences in pH and trace element distribution in water, biota and sediment existed between the study lakes. A transplant experiment performed in three of the study lakes using a rooted and a non-rooted macrophyte, demonstrated that while uptake of Pb in the most acidic lakes increased, accumulation of Zn decreased. It is postulated that the competitive effects of hydrogen ions were responsible for the observed decrease in Zn availability in the most acidic lakes.

  14. Effects of bryophytes on succession from alkaline marsh to Sphagnum bog

    SciTech Connect

    Glime, J.M.; Wetzel, R.G.; Kennedy, B.J.

    1982-10-01

    The alkaline eastern marsh of Lawrence Lake, a marl lake in southwestern Michigan, was sampled by randomly placed line transects to determine the bryophyte cover and corresponding vascular plant zones. Cluster analysis indicated three distinct bryophyte zones which correspond with the recognized vascular plant zones. Mosses occupied over 50% of the surface in some areas. Invasion of Sphagnum, vertical zonation of the mosses on hummocks, zonation with distance from the lake, the abundance of non-Sphagnum moss hummocks, and the ability of the non-Sphagnum species to lower the pH of marsh water during laboratory incubations are evidence that non-Sphagnum mosses facilitate succession from alkaline marsh to Sphagnum bog.

  15. Bog iron formation in the Nassawango Creek watershed, Maryland, USA

    USGS Publications Warehouse

    Bricker, O.P.; Newell, W.L.; Simon, N.S.

    2004-01-01

    The Nassawango bog ores in the modern environment for surficial geochemical processes were studied. The formation of Nassawango bog ores was suggested to be due to inorganic oxidation when groundwater rich in ferrous iron emerges into the oxic, surficial environment. It was suggested that the process, providing a phosphorus sink, may be an unrecognized benefit for mitigating nutrient loading from agricultural lands. It is found that without the effect of iron fixing bacteria, bog deposites could not form at significant rates.

  16. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC <0 μeq L -1) decreased from 15.5% (284 lakes) to 8.3% (152 lakes) since the implementation of the Acid Rain Program and the Nitrogen Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery

  17. Responses of 20 lake-watersheds in the Adirondack region of New York to historical and potential future acidic deposition.

    PubMed

    Zhou, Qingtao; Driscoll, Charles T; Sullivan, Timothy J

    2015-04-01

    Critical loads (CLs) and dynamic critical loads (DCLs) are important tools to guide the protection of ecosystems from air pollution. In order to quantify decreases in acidic deposition necessary to protect sensitive aquatic species, we calculated CLs and DCLs of sulfate (SO4(2-))+nitrate (NO3-) for 20 lake-watersheds from the Adirondack region of New York using the dynamic model, PnET-BGC. We evaluated lake water chemistry and fish and total zooplankton species richness in response to historical acidic deposition and under future deposition scenarios. The model performed well in simulating measured chemistry of Adirondack lakes. Current deposition of SO4(2-)+NO3-, calcium (Ca2+) weathering rate and lake acid neutralizing capacity (ANC) in 1850 were related to the extent of historical acidification (1850-2008). Changes in lake Al3+ concentrations since the onset of acidic deposition were also related to Ca2+ weathering rate and ANC in 1850. Lake ANC and fish and total zooplankton species richness were projected to increase under hypothetical decreases in future deposition. However, model projections suggest that lake ecosystems will not achieve complete chemical and biological recovery in the future. PMID:25544337

  18. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    USGS Publications Warehouse

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P < 0.05) and increases in acid-neutralizing capacity (ANC) were found in 12 of the 30 lakes (P < 0.05). Concentrations of both SO 42- and Mg 2+ decreased in 11 lakes (P < 0.05), whereas concentrations of NO 3- decreased in 20 lakes (P < 0.05). Concentrations of NH 4+ decreased in 10 lakes at a significance level of P < 0.05 and in three other lakes based on P < 0.1. Concentrations of inorganic and organic monomeric aluminum generally were below the reporting limit of 1.5 ??mol L-1, but decreases were detected in four and five lakes, respectively (P < 0.1). Concentrations of chlor a increased in seven lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. A significant inverse correlation was also found between chlor a and NO 3- concentrations in nine lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. Results of AEAP analysis of lake chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in

  19. Red herring in acid rain research

    SciTech Connect

    Havas, M.; Hutchinson, T.C.; Likens, G.E.

    1984-06-01

    Five common misconceptions, red herrings, regarding the effects of acid deposition on aquatic ecosystems are described in an attempt to clarify some of the confusion they have created. These misconceptions are the following: Bog lakes have been acidic for thousands of years; thus the acidification of lakes is not a recent phenomenon. The early methods for measuring pH are in error; therfore, no statements can be made regarding historical trends. Acidification of lakes and streams results from changed land use practices (forestry, agriculture, animal husbandry) and not acid deposition. The decrease in fish populations is caused by overfishing, disease, and water pollution, not acidification. Because lakes that receive identical rainfall can have considerable different pHs, regional lake acidification cannot be due to acid precipitation. It is easy to suggest a whole series of alternative, and often unlikely, explanations of the causes and consequences of acid deposition. These keep scientists busy for years assembling and examining data only to conclude that the explanation is not valid. These tactics cause, and perhaps are designed to cause, continuous delay in remedial action. They fail to take into account the large body of information that deals with the sources of the acid deposition and the seriousness of its effects.

  20. Reactive Iron deposition and ground water inflow control neutralization processes in acidic mine lakes

    NASA Astrophysics Data System (ADS)

    Blodau, C.

    2002-12-01

    The controls on the internal neutralization of highly acidified waters by iron sulphide accumulation are yet poorly understood. To elucidate the influence of ground water inflow on neutralization processes, inventories of solid phase iron and sulphur, pore water profiles and rates of ferrous iron and sulphate production and consumption were analyzed in different areas of an acidic mine lake. Ground water inflow had previously been determined by ground water modelling and chamber measurements (Knoll et al., 1999). The investigated sediments adjacent to mine tailings, which were subject to the inflow of groundwater (10-30 L d-1 m-2), were richer in dissolved ferrous iron iron (30 vs. 5 mmol L-1) and sulphate (30 vs. 10 mmol L-1) and showed higher pH values (6 vs. 4) than the sediments in areas of the lake not being influenced by groundwater inflow. Sediments adjacent to the mine tailings also showed higher rates of sulphate reduction and iron sulphide accumulation (Fig. 1). From these data it is suggested that neutralization processes in iron rich, acidic mine lakes neutralization processes primarily occur in areas influenced by the inflow of acid mine groundwater. These waters usually have considerably higher pH values than the surface waters in the lakes due to buffering processes in the tailings. The seepage of this water through the sediment might thus lead to higher pH values and thus to a higher thermodynamic competitiveness of sulfate reduction vs. iron reduction (Blodau and Peiffer 2002). This causes increased neutralization rates. These findings have consequences for remediation measures in highly acidic lakes. In areas influenced by the inflow of mine drainage increases in carbon availability, for example by the deposition of particulate organic matter, should enhance iron sulphide formation rates, whereas in other areas increases in carbon availability would only result in enhanced rates of iron reduction without a lasting gain in alkalinity. Blodau, C

  1. Perfluoroalkyl acids in the egg yolk of birds from Lake Shihwa, Korea.

    PubMed

    Yoo, Hoon; Kannan, Kurunthachalam; Kim, Seong Kyu; Lee, Kyu Tae; Newsted, John L; Giesy, John P

    2008-08-01

    Concentrations of perfluoroalkyl acids (PFAs) were measured in egg yolks of three species of birds, the little egret (Egretta garzetta), little ringed plover (Charadrius dubius), and parrot bill (Paradoxornis webbiana), collected in and around Lake Shihwa, Korea, which receives wastewaters from an adjacent industrial complex. Mean concentrations of perfluorooctanesulfonate (PFOS) ranged from 185 to 314 ng/g ww and were similar to those reported for bird eggs from other urban areas. Long-chain perfluorocarboxylic acids (PFCAs) were also found in egg yolks often at great concentrations. Mean concentrations of perfluoroundecanoic acid (PFUnA) ranged from 95 to 201 ng/g ww. Perfluorooctanoic acid was detected in 32 of 44 egg samples, but concentrations were 100-fold less than those of PFOS. Relative concentrations of PFAs in all three species were similar with the predominance of PFOS (45-50%). There was a statistically significant correlation between PFUnA and perfluorodecanoic acid in egg yolks (p < 0.05), suggesting a common source of PFCAs. Using measured egg concentrations and diet concentrations, the ecological risk of the PFOS and PFA mixture to birds in Lake Shihwa was evaluated using two different approaches. Estimated hazard quotients were similar between the two approaches. The concentration of PFOS associated with 90th centile in bird eggs was 100-fold less than the lowest observable adverse effect level determined for birds, and those concentrations were 4-fold less than the suggested toxicity reference values. On the basis of limited toxicological data, current concentrations of PFOS are less than what would be expected to have an adverse effect on birds in the Lake Shihwa region. PMID:18754515

  2. Bog discharge from different viewpoints: comparison of Ingram's theory with observations from an Estonian raised bog

    NASA Astrophysics Data System (ADS)

    Oosterwoud, Marieke; van der Ploeg, Martine; van der Zee, Sjoerd

    2013-04-01

    Raised bogs are typically dome shaped and have a groundwater level located close to the soil surface. Besides their typical dome shape, these peatlands are often characterized by a pronounced surface topography consisting of pools, wet depressions (hollows), stretches of Sphagnum species (lawns), drier mounds (hummocks) and higher drier areas with terrestrial vegetation (ridges). These peat bodies drain laterally by gravity to adjacent areas with lower groundwater levels. The integrity of these bogs is only ascertained when water is stored in the peat body in periods of precipitation deficit and efficiently removed in wet periods. This is realized by the fact that the bog's top layer, often called acrotelm, has a variable hydraulic conductivity. In response to precipitation its hydraulic conductivity increases, whereas, under evaporative demand the water table lowers and therefore also the hydraulic conductivity decreases. Ingram proposed a model based on the Dupuit-Forchheimer approximation for Darcy's law that assumes vertical flow is negligible, and the slope of the water table is equal to the hydraulic gradient. U- Hm2- K = L2 (1) where U is net recharge (P-ET), K is horizontal hydraulic conductivity, Hm is hydraulic head above a flat bottom at the centre of the bog, L is half the width of the bog along the cross section. This model incorporates the assumption that all net rainfall reaching the water table will be discharged to the stream. Ingram's model does not consider local heterogeneities in surface topography, like pool-ridge patterns. We hypothesize that under drier conditions it is likely that pool-ridge patterning will inhibit water from flowing along the surface gradient. Under wet conditions, however, pools can become connected and water can move through the upper highly permeable layer of ridges. In this study, we investigated the influence of ridge-pool patterning on the horizontal water flow through a raised bog and compared it with Ingram

  3. Common Loon (Gavia immer) eggshell thickness and egg volume vary with acidity of nest lake in northern Wisconsin

    USGS Publications Warehouse

    Pollentier, C.D.; Kenow, K.P.; Meyer, M.W.

    2007-01-01

    Environmental acidification has been associated with factors that may negatively affect reproduction in many waterbirds. Declines in lake pH can lead to reductions in food availability and quality, or result in the altered availability of toxic metals, such as mercury. A recent laboratory study conducted by the U.S. Geological Survey and the Wisconsin Department of Natural Resources indicated that Common Loon (Gavia immer) chicks hatched from eggs collected on acidic lakes in northern Wisconsin may be less responsive to stimuli and exhibit reduced growth compared to chicks from neutral-pH lakes. Here we report on the relation between Common Loon egg characteristics (eggshell thickness and egg volume) and lake pH, as well as eggshell methylmercury content. Eggs (N = 84) and lake pH measurements were obtained from a four county region of northern Wisconsin. Egg-shells were 3-4% thinner on lakes with pH ??? 6.3 than on neutral-pH lakes and this relation was linear across the pH range investigated (P 0.05, n.s.) or lake pH. Results suggest that low lake pH may be associated with thinner eggshells and reduced egg volume in Common Loons. We speculate on the mechanisms that may lead to this phenomeno.

  4. Exploring Variability in Acidic Saline Playa Lakes in WA with HyMAP Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Hook, S. J.; Souza Filho, C. R.; Thomson, B. J.; Bridges, N. T.; Crowley, J. K.

    2009-12-01

    Acid saline lakes in Western Australia have been recognized as useful chemical terrestrial analogs for aqueous mineral formation on Mars [e.g., 1]. In these lake systems, large pH and salinity differences are observed both laterally and vertically over scales of a few tens of meters[2, 3]. The variability in these lakes have been offered as an alternate formation mechanism for some of the phyllosilicates and sulfates on Mars, suggesting that these different mineral types may be separated by chemical gradients rather than by temporal boundaries[4]. To assess the ability to detect this variability remotely and to determine the extent of the surface variability, which may not be easily accessible in the field, spectral mapping for two of the acidic saline playa lakes was performed. HyMAP airborne data were acquired in December, 2008, of Lake Gilmore and Lake Chandler in WA. The HyMAP sensors have 126 bands that cover the wavelength range between 0.45 and 2.5 µm. Hyvista Corporation provided atmospherically corrected surface reflectance data at approximately 3m spatial resolution. Using the methodology described by [5] the HyMAP data were analyzed using ENVI to identify spectrally pure endmembers that can be used to distinguish mineralogy in the scene. Relevant (e.g. not roads, water or vegetation) spectral endmembers derived for each scene were identified visually using spectra from the ASTER spectral library[6]. The processing techniques were applied to all flight lines and ultimately a classification map mosaic was produced for selection of relevant and intriguing field sampling sites. The classification maps will be validated using field spectroscopy and visual inspection of representative samples collected from the field sites in October 2009, and laboratory spectroscopy and X-ray diffraction will be performed for further validation. The classification maps confirm variability in mineralogy across the lakes, validating geochemical modeling. There are also some

  5. Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack region of New York

    NASA Astrophysics Data System (ADS)

    Fakhraei, Habibollah; Driscoll, Charles T.; Selvendiran, Pranesh; DePinto, Joseph V.; Bloomfield, Jay; Quinn, Scott; Rowell, H. Chandler

    2014-10-01

    Acidic deposition has impaired acid-sensitive surface waters in the Adirondack region of New York by decreasing pH and acid neutralizing capacity (ANC). In spite of air quality programs over past decades, 128 lakes in the Adirondacks were classified as “impaired” under Section 303(d) of the Clean Water Act in 2010 due to elevated acidity. The biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric sulfur (S) and nitrogen (N) deposition to changes in lake water chemistry. The model was calibrated and confirmed using observed soil and lake water chemistry data and then was applied to calculate the maximum atmospheric deposition that the impaired lakes can receive while still achieving ANC targets. Two targets of ANC were used to characterize the recovery of acid-impaired lakes: 11 and 20 μeq L-1. Of the 128 acid-impaired lakes, 97 currently have ANC values below the target value of 20 μeq L-1 and 83 are below 11 μeq L-1. This study indicates that a moderate control scenario (i.e., 60% decrease from the current atmospheric S load) is projected to recover the ANC of lakes at a mean rate of 0.18 and 0.05 μeq L-1 yr-1 during the periods 2022-2050 and 2050-2200, respectively. The total maximum daily load (TMDL) of acidity corresponding to this moderate control scenario was estimated to be 7.9 meq S m-2 yr-1 which includes a 10% margin of safety.

  6. Spatial characterization of acid rain stress in Canadian Shield Lakes. Progress report, 1 August 1986-1 February 1987

    SciTech Connect

    Tanis, F.J.

    1987-01-01

    The acidification of lake waters from airborne pollution is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern U.S. and on the Canadian Shield is though to be enormous. How seasonal changes in lake transparency are related to annual acidic load was examined. The relationship between variations in lake acidification and ecophysical units was also examined. The utility of Thematic Mapper based observations to measure seasonal changes in the optical transparency in acid lakes was investigated. The potential for this optical response is related to a number of local ecophysical factors with bedrock geology being, perhaps, the most important. Other factors include sulfate deposition, vegetative cover, and terrain drainage/relief. The area of southern Ontario contains a wide variety of geologies from the most acid rain sensitive granite quartzite types to the least sensitive limestone dolomite sediments. Annual sulfate deposition ranges from 1.0 to 4.0 grams/sq m.

  7. Interrelationships among hydrologic-budget components of a northern Wisconsin seepage lake and implications for acid-deposition modeling

    USGS Publications Warehouse

    Wentz, D.A.; Rose, W.J.

    1989-01-01

    Components of the hydrologic budget for a northern Wisconsin seepage lake were analyzed by applying correlation and regression techniques to monthly data. Analyses for the 1981-83 water years revealed a statistically significant, direct relationship between storage change and precipitation-evaporation balance. Ground-water outflow was negatively correlated with ground-water inflow, and this relationship was influenced by similar relationships for both hydraulic gradients and cross-sectional areas in outflow versus inflow regions of the lake. Neither ground-water outflow nor inflow was significantly related to precipitation, evaporation, storage change, or lake stage; this may reflect a lag in response time of the ground-water system compared to the lake. The results (1) emphasize the complexity of factors that influence ground-water interactions with seepage lakes and (2) suggest the importance of completing detailed hydrologic studies of these systems before mechanistic models, such as those developed to predict effects of acid deposition, are applied.

  8. Bog breath: Sleeper factor in global warming?

    SciTech Connect

    Benyus, J.M.

    1995-04-01

    This artical examines the emission of gases from northern peatlands as plants grow and decay and its implication in the global increase in greenhouse gases, particularly carbon dioxide and methane. Bogs do extract carbon dioxide from the air, incorporating it into green plants which become buried for a long time. However, the cold, wet conditions are ideal for microbes which emit methane. Global climate change models indicate that Minnesota, for example will be 5 degrees warmer and somewhat wetter in future years. As a result bacterial metabolism and methane generation may increase considerably. This paper discusses current research and speculation and looks at possible solutions, both man-created and natural.

  9. Trout Lake, Wisconsin: A water, energy, and biogeochemical budgets program site

    USGS Publications Warehouse

    Walker, John F.; Bullen, Thomas D.

    2000-01-01

    The Trout Lake Watershed is in the Northern Highlands Lake District in north-central Wisconsin. The study area includes four subbasins with five lakes and two bog lakes. The objectives of the Trout Lake WEBB project are to (1) describe processes controlling water and solute fluxes in the Trout Lake watershed, (2) examine interactions among those processes and (3) improve the capability to predict changes in water and solute fluxes for a range of spatial and temporal scales (Elder and others, 1992).

  10. Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-Hypersaline Australian lakes

    USGS Publications Warehouse

    Alpers, C.N.; Rye, R.O.; Nordstrom, D.K.; White, L.D.; King, B.-S.

    1992-01-01

    Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al 0.92Fe0.08)3(SO4)2(OH) 6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe 0.80Al0.20)3(SO4)2(OH) 6. The ??D-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The ??D results are consistent with a fractionation ???60-70??? between alunite and jarosite observed in other areas. However, interpretation of ??D results is complicated by large variability in fluid ??DH2O from evaporation, mixing and possible ion hydration effects in the brine. ??D-values of water derived from jarosite by step-wise heating tend to be smaller at 250??C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550??C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total ??D obtained by conventional, single-step heating methods. ??34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2??? CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8???) are close to the values for modern evaporites (+21.5 ??0.3???) and seawater (+20??0.5???) and are probably typical of seawater-derived aerosols in arid coastal environments. ??34-S-values slightly smaller than that for seawater may

  11. Bacterial Community Structure of Acid-Impacted Lakes: What Controls Diversity?▿ †

    PubMed Central

    Percent, Sascha F.; Frischer, Marc E.; Vescio, Paul A.; Duffy, Ellen B.; Milano, Vincenzo; McLellan, Maggie; Stevens, Brett M.; Boylen, Charles W.; Nierzwicki-Bauer, Sandra A.

    2008-01-01

    Although it is recognized that acidification of freshwater systems results in decreased overall species richness of plants and animals, little is known about the response of aquatic microbial communities to acidification. In this study we examined bacterioplankton community diversity and structure in 18 lakes located in the Adirondack Park (in the state of New York in the United States) that were affected to various degrees by acidic deposition and assessed correlations with 31 physical and chemical parameters. The pH of these lakes ranged from 4.9 to 7.8. These studies were conducted as a component of the Adirondack Effects Assessment Program supported by the U.S. Environmental Protection Agency. Thirty-one independent 16S rRNA gene libraries consisting of 2,135 clones were constructed from epilimnion and hypolimnion water samples. Bacterioplankton community composition was determined by sequencing and amplified ribosomal DNA restriction analysis of the clone libraries. Nineteen bacterial classes representing 95 subclasses were observed, but clone libraries were dominated by representatives of the Actinobacteria and Betaproteobacteria classes. Although the diversity and richness of bacterioplankton communities were positively correlated with pH, the overall community composition assessed by principal component analysis was not. The strongest correlations were observed between bacterioplankton communities and lake depth, hydraulic retention time, dissolved inorganic carbon, and nonlabile monomeric aluminum concentrations. While there was not an overall correlation between bacterioplankton community structure and pH, several bacterial classes, including the Alphaproteobacteria, were directly correlated with acidity. These results indicate that unlike more identifiable correlations between acidity and species richness for higher trophic levels, controls on bacterioplankton community structure are likely more complex, involving both direct and indirect processes. PMID

  12. Geoinformatics meets education for a peat bog information system

    NASA Astrophysics Data System (ADS)

    Michel, Ulrich; Fiene, Christina; Plass, Christian

    2010-10-01

    Within the project "Expedition Bog: Young researchers are experimenting, exploring and discovering" a bog-information- system is developed by the Department of Geography (University of Education Heidelberg, Germany), the Institute for Geoinformatics and Remote Sensing (University of Osnabrueck, Germany; the NABU Umweltpyramide gGmbH. This information system will be available for schools and to the public. It is supplemented by teaching units on various topics around the bog via an online platform. The focus of the project, however, is the original encounter with the bog habitat. This is realized by a GPS scavenger hunt with small research tasks and observations, mapping and experiments. The project areas are the Huvenhoops bog and the Lauenbruecker bog in Rotenburg in Lower Saxony, Germany. Equipped with a researcher backpack, GPS device and a mobile bog book by means of a pocket PC, students can discover different learning stations in the project bogs. In our areas the students can learn more about different topics such as "the historical memory of the bog", "water", "peat moss and other plants" and "animals of the bog". Moreover small inquiry research projects can be executed. Experimenting on site helps students to develop important scientific findings and increases their curiosity and enthusiasm for nature. It also promotes a number of other basic skills such as literacy, language skills, social skills or fine motor skills. Moreover it also fosters the development of a positive attitude to science in general. The main objective of the project is to promote sustainable environmental education, as well as the development of environmental awareness. This will be accomplished through the imparting of knowledge but also through experiencing nature with all senses in the context of original encounters.

  13. Experimental study on performance of BOG compressor

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Tao; Peng, Xueyuan; Feng, Jianmei

    2015-08-01

    The boil-off gas (BOG) compressor is widely used for recycling the excessive boil-off gas of liquefied natural gas (LNG), and the extra-low suction temperature brings about great challenges to design of the BOG compressor. In this paper, a test system was built to examine the effects of low suction temperature on the compressor performance, in which the lowest temperature reached -178°C by means of a plate-fin heat exchanger with liquefied nitrogen. The test results showed that, as the suction temperature decreased from 20°C to -150°C, the volumetric efficiency of the compressor dropped by 37.0%, and the power consumption decreased by 10.0%. The preheat of the gas by the pipe through the suction flange to suction valve was larger than 20°C as the suction temperature was -150°C, and this value increased with the decreased suction temperature. The pressure loss through the suction valve at lower suction temperature was larger than that at ambient temperature while the volume flow rate was kept the same.

  14. Influence of copper recovery on the water quality of the acidic Berkeley Pit lake, Montana, U.S.A.

    PubMed

    Tucci, Nicholas J; Gammons, Christopher H

    2015-04-01

    The Berkeley Pit lake in Butte, Montana, formed by flooding of an open-pit copper mine, is one of the world's largest accumulations of acidic, metal-rich water. Between 2003 and 2012, approximately 2 × 10(11) L of pit water, representing 1.3 lake volumes, were pumped from the bottom of the lake to a copper recovery plant, where dissolved Cu(2+) was precipitated on scrap iron, releasing Fe(2+) back to solution and thence back to the pit. Artificial mixing caused by this continuous pumping changed the lake from a meromictic to holomictic state, induced oxidation of dissolved Fe(2+), and caused subsequent precipitation of more than 2 × 10(8) kg of secondary ferric compounds, mainly schwertmannite and jarosite, which settled to the bottom of the lake. A large mass of As, P, and sulfate was also lost from solution. These unforeseen changes in chemistry resulted in a roughly 25-30% reduction in the lake's calculated and measured total acidity, which represents a significant potential savings in the cost of lime treatment, which is not expected to commence until 2023. Future monitoring is needed to verify that schwertmannite and jarosite in the pit sediment do not convert to goethite, a process which would release stored acidity back to the water column. PMID:25723275

  15. Can a bog drained for forestry be a stronger carbon sink than a natural bog forest?

    NASA Astrophysics Data System (ADS)

    Hommeltenberg, J.; Schmid, H. P.; Drösler, M.; Werle, P.

    2014-07-01

    This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-Alpine region of southern Germany. The sites are separated by only 10 km, they share the same soil formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo ssp. rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO2 (NEE) at both sites has been investigated for 2 years (July 2010-June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (-130 ± 31 and -300 ± 66 g C m-2 a-1 in the first and second year, respectively) than the natural bog forest at Schechenfilz (-53 ± 28 and -73 ± 38 g C m-2 a-1). The strong net CO2 uptake can be explained by the high gross primary productivity of the 44-year old spruces that over-compensates the two-times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger plant area index (PAI) of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source when the whole life-cycle since forest planting is considered. It is important to access this result in terms of the long-term biome balance. To do so, we used historical data to estimate the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. This rough estimate indicates a strong carbon release of +134 t C ha-1 within the last 44 years. Thus, the spruces would need to grow for another 100 years at about the current rate, to compensate the potential peat loss of the former years. In

  16. Can a bog drained for forestry be a stronger carbon sink than a natural bog forest?

    NASA Astrophysics Data System (ADS)

    Hommeltenberg, J.; Schmid, H. P.; Droesler, M.; Werle, P.

    2014-02-01

    This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-alpine region of southern Germany. The sites are separated by only ten kilometers, they share the same formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO2 (NEE) at both sites has been investigated for two years (July 2010 to June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (-130 ± 31 and -300 ± 66 g C m-2 a-1 in the first and second year respectively) than the natural bog forest at Schechenfilz (-53 ± 28 and -73±38 g C m-2 a-1). The strong net CO2 uptake can be explained by the high gross primary productivity of the spruces that over-compensates the two times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger LAI of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source, if the whole life-cycle, since forest planting is considered. We determined the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. The estimate resulted in a strong carbon release of +156 t C ha-1 within the last 44 yr, means the spruces would need to grow for another 100 yr, at the current rate, to compensate the peat loss of the former years. In contrast, the natural bog-pine ecosystem has likely been a small but consistent carbon sink for decades, which our results suggest is very robust regarding short

  17. Simulated thaw development of a peat plateau-bog complex in a discontinuous permafrost region, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Kurylyk, Barret; Hayashi, Masaki; Quinton, William; Voss, Clifford

    2015-04-01

    Air temperatures at high latitudes have increased at rates that exceed globally averaged trends, and this warming has produced rapid permafrost degradation in many areas. In discontinuous permafrost regions of the Taiga Plains of northwestern Canada, past climate warming has created a complex landscape mosaic of fully thawed bogs/fens and remnant peat plateaus underlain by thin permafrost. The thawing of peat plateaus can alter the landscape hydrologic connectivity by creating pathways to efficiently convey water from bogs to nearby rivers and lakes. Extensive monitoring of the thermal regime of a peat plateau-bog complex in the Scotty Creek watershed (61.3° N, 121.3° W), Northwest Territories, Canada has identified rapid permafrost degradation in the past decade. In addition, satellite images indicate major landscape evolution due to permafrost thaw since 1970, and these changes have resulted in increased discharge at the watershed outlet. These long term comprehensive data facilitate the numerical modeling of idealized permafrost environments based on observed data. The objective of this research project is to elucidate fundamental processes that contribute to multi-dimensional permafrost thaw and associated hydrological changes in discontinuous permafrost regions. The thaw evolution in this peat plateau-bog complex is simulated using SUTRA, a numerical groundwater flow and coupled heat transport model that has been modified to include dynamic freeze-thaw processes. To accommodate complex surface processes, measured climate data from 1900-2010 are used to drive a separate soil-vegetation-atmosphere energy transfer model. Near-surface temperatures produced by the vertical transfer model for the peat plateau and bog are applied as the upper thermal boundary conditions for the multi-dimensional subsurface heat transport simulations in SUTRA (1900-2010). The simulated thaw development of this peat plateau will be compared to satellite imagery to assess the ability

  18. Gas flushing through hyper-acidic crater lakes: the next steps within a reframed monitoring time window

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri

    2016-04-01

    Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in

  19. A Martian analog in Kansas: Comparing Martian strata with Permian acid saline lake deposits

    NASA Astrophysics Data System (ADS)

    Benison, Kathleen C.

    2006-05-01

    An important result of the Mars Exploration Rover's (MER) mission has been the images of sedimentary structures and diagenetic features in the Burns Formation at Meridiani Planum. Bedding, cross-bedding, ripple marks, mud cracks, displacive evaporite crystal molds, and hematite concretions are contained in these Martian strata. Together, these features are evidence of past saline groundwater and ephemeral shallow surface waters on Mars. Geochemical analyses of these Martian outcrops have established the presence of sulfates, iron oxides, and jarosite, which strongly suggests that these waters were also acidic. The same assemblage of sedimentary structures and diagenetic features is found in the salt-bearing terrestrial red sandstones and shales of the middle Permian (ca. 270 Ma) Nippewalla Group of Kansas, which were deposited in and around acid saline ephemeral lakes. These striking sedimentological and mineralogical similarities make these Permian red beds and evaporites the best-known terrestrial analog for the Martian sedimentary rocks at Meridiani Planum.

  20. Assessment of factors limiting algal growth in acidic pit lakes-a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability. PMID:26593729

  1. High Elevation Lakes of the Western US: Are we Studying Systems Recovering from Excess Atmospheric Deposition of Acids and Nutrients?

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.

    2011-12-01

    Instrumental records and monitoring of high elevation lakes began in most areas of the western US in the early 1980s. Much effort has been devoted to detecting changes in these aquatic ecosystems resulting from increased atmospheric deposition of acids and nutrients. However, there is growing evidence that thresholds for atmospheric pollutants were crossed much earlier in the 20th Century and that some of the subsequent hydrochemical and ecological changes observed in these lakes may be the result of recovery from earlier atmospheric forcing. We examine responses of high elevation lakes to atmospheric deposition on annual to century timescales using data from a 29-year study of Emerald Lake (Sequoia National Park) and paleolimnological analyses of other high elevation lakes incorporating diatom species analyses and geochemical proxies for fossil-fuel burning. At Emerald Lake, we have observed multiple transitions between nitrogen and phosphorus limitation of phytoplankton, the earliest of which occurred in the beginning of the 1980s and may be the result of reduction in N deposition due to the Clean Air Act. Critical loads analyses incorporating diatom species in lake sediments suggest that thresholds for N deposition were crossed in the period of 1950-1980 in the Rocky Mountains and likely much earlier, 1900-1920, in the Sierra Nevada. Diatom species composition is strongly controlled by acid neutralizing capacity (ANC) in the Sierra Nevada and we have observed a pronounced decline and recovery of ANC over the period of 1920-1980 in some Sierra Nevada lakes that coincides with the abundance of spheroidal carbonaceous particles (i.e., a diagnostic tracer of fossil fuel combustion) preserved in lake sediments; these patterns appear to be driven by increased emissions of oxidized N and S in the mid-20th Century and reductions in acid precursor levels caused by the Clean Air Act in the 1970s. Thus, when interpreting observational records from western high elevation

  2. Enrichment of Non-Terrestrial L-Proteinogenic Amino Acids by Aqueous Alteration on the Tagish Lake Meteorite Parent Body

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Herd, Christopher D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography fluorescence detection time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approx. 43 to 59%) of the a-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha-hydrogen protein amino acid, was found to be nearly racemic (D approx. L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and D- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the Lexcesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals.

  3. Influence of bioturbation on the biogeochemistry of littoral sediments of an acidic post-mining pit lake

    NASA Astrophysics Data System (ADS)

    Lagauzère, S.; Moreira, S.; Koschorreck, M.

    2011-02-01

    In the last decades, the mining exploitation of large areas in Lusatia (Eastern Germany) but also in other mining areas worldwide has led to the formation of hundreds of pit lakes. Pyrite oxidation in the surrounding dumps makes many such lakes extremely acidic (pH < 3). The biogeochemical functioning of these lakes is mainly governed by cycling of iron. This represents a relevant ecological problem and intensive research has been conducted to understand the involved biogeochemical processes and develop bioremediation strategies. Despite some studies reporting the presence of living organisms (mostly bacteria, algae, and macro-invertebrates) under such acidic conditions, and their trophic interactions, their potential impact on the ecosystem functioning was poorly investigated. The present study aimed to assess the influence of chironomid larvae on oxygen dynamics and iron cycle in the sediment of acidic pit lakes. In the Mining Lake 111, used as a study case since 1996, Chironomus crassimanus (Insecta, Diptera) is the dominant benthic macro-invertebrate species and occurs at relatively high abundances in shallow water. A 16-day laboratory experiment using microcosms combined with high resolution measurements (DET gel probes and O2 microsensors) was carried out. The burrowing activity of C. crassimanus larvae induced a 3-fold increase of the diffusive oxygen uptake by sediment, indicating a stimulation of the mineralization of organic matter in the upper layers of the sediment. The iron cycle was also impacted (e.g. lower rates of reduction and oxidation, increase of iron-oxidizing bacteria abundance, stimulation of mineral formation) but with no significant effect on the iron flux at the sediment-water interface, and thus on the water acidity budget. This work provides the first assessment of bioturbation in an acidic mining lake and shows that its influence on biogeochemistry cannot be neglected.

  4. Influence of bioturbation on the biogeochemistry of the sediment in the littoral zone of an acidic mine pit lake

    NASA Astrophysics Data System (ADS)

    Lagauzère, S.; Moreira, S.; Koschorreck, M.

    2010-10-01

    In the last decades, the mining exploitation of large areas in Lusatia (South-eastern Germany) but also in other mining areas worldwide has led to the formation of hundreds of pit lakes. Pyrite oxidation in the surrounding dumps makes many such lakes extremely acidic (pH < 3). The biogeochemical functioning of these lakes is mainly governed by cycling of iron. This represents a relevant ecological problem and intensive research has been conducted to understand the involved biogeochemical processes and develop bioremediation strategies. Despite some studies reporting the presence of living organisms (mostly bacteria, algae, and macro-invertebrates) under such acidic conditions, and their trophic interactions, their potential impact on the ecosystem functioning was poorly investigated. The present study aimed to assess the influence of chironomid larvae on oxygen dynamics and iron cycle in the sediment of acidic pit lakes. In the Mining Lake 111, used as a study case since 1996, Chironomus crassimanus (Insecta, Diptera) is the dominant benthic macro-invertebrate species and occurs at relatively high abundances in shallow water. A 16-day laboratory experiment using microcosms combined with high resolution measurements (DET gel probes and O2 microsensors) was carried out. The burrowing activity of C. crassimanus larvae induced a 3-fold increase of the oxygen consumption by sediment, and stimulated the mineralization of organic matter in the upper layers of the sediment. The iron cycle was also impacted (e.g. lower rates of reduction and oxidation, increase of iron-oxidizing bacteria abundance, stimulation of mineral formation) but with no significant effect on the iron flux at the sediment-water interface, and thus on the water acidity budget. This work provides the first assessment of bioturbation in an acidic mining lake and shows that its influence on biogeochemistry cannot be neglected.

  5. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    NASA Astrophysics Data System (ADS)

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Jorgenson, Janet; McGimsey, Robert G.; Wang, Bronwen

    2008-07-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8 × 106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfur content. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetation-damaging acidic aerosols accompanying drainage of an acidic

  6. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    USGS Publications Warehouse

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater

  7. Holocene n-Fatty Acid Δd Records from Lake Hurleg, Northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    He, Y.; Zhao, C.; Liu, Z.; Wang, H.; Liu, W.; Yu, Z.

    2014-12-01

    The interpretation of δD records from the Tibetan Plateau region remains challenging due to multiple climatic factors influencing on the precipitation isotopic values. Here we study the mechanism of δD variation in this region, by reconstructing the past 10.5 ka n-fatty acid (FA) δD records from sediment core taken in Lake Hurleg on the northeastern Tibetan Plateau and comparing them to the previously presented temperature and moisture data from the same core. Comparison of both C16 and C26 n-FA δD with the average carbon length of n-FA suggests that n-FA δD variability was independent of the n-FA distribution. For δD in the C26 n-FA, it serves as an indicator of hydrogen isotopic signals in terrestrial water. During the Holocene, the heavier C26 n-FA δD values corresponded to millennial cold and wet conditions as inferred by the temperature and salinity records. Thus the terrestrial water δD value changes might be caused by factors other than temperature and moisture, such as the vegetation type and the glacial melt water input. As for the C16 n-FA, although it contains both terrestrial and aquatic source, it mainly mimics the lacustrine water isotopic signal. Therefore, the difference between C16 and C26 n-FA δD can be interpreted as the fractionation between terrestrial and aquatic water induced by evaporation on lake surface. Based on the δD records together with temperature and moisture records, we suggest in millennial timescale, not only stronger precipitation but also less evaporation occurred during the cold periods in the Lake Hurleg region.

  8. Characterization of Groundwater Flow Processes in the Cedar Creek Watershed and the Cedarburg Bog in Southeastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Graham, J. P.; Han, W. S.; Feinstein, D.; Hart, D. J.

    2014-12-01

    The purpose of this study is to characterize the geology and groundwater flow of the bog as well as the surrounding area, notably the Cedar Creek Watershed, a HUC (Hydrologic Unit Code) 12 watershed. The watershed is approximately 330 km2, and borders the sub-continental divide separating the Mississippi River Basin from the Great Lakes Basin. The Cedar Creek watershed is composed of mostly agricultural and urban land with a significant stress of groundwater withdrawal for both irrigation and residential use. This watershed has importance due to the contribution to both the Milwaukee River and Lake Michigan, and is integral in the study of regional groundwater flow of Southeastern Wisconsin. Furthermore, the Cedarburg Bog, located in the northeast corner of the Cedar Creek Watershed preserves diverse ecology and is recognized by the U.S. Department of Interior as a National Landmark. Groundwater is the primary driver for the diverse and unique ecology that is contained within the bog. Within the Cedar Creek Watershed, well data and glacial geology maps (Mickelson and Syverson, 1997) were integrated to develop a 3-dimensional subsurface map and watershed-scale groundwater flow model using the LAK3 and the SFR2 package to simulate surface water-aquifer interactions. The model includes 10 zones of the glacial sediments and the weathered and consolidated Silurian Dolomite bedrock. The hydraulic conductivity and storage parameters were calibrated with 203 head targets using universal parameter estimation code (PEST). Then, a series of future climate scenarios, developed by the Wisconsin Initiative on Climate Change Impact, were implemented to the USGS Soil-Water-Balance Code (SWB) to identify variations in recharge. The simulated recharge scenarios were adopted to predict the response of groundwater resources in the watershed and the Cedarburg Bog. Preliminary results produced from the MODFLOW model indicate the bog is acting as a recharge zone under current recharge

  9. Changes in aluminum concentrations and speciation in lakes across the northeastern U.S. following reductions in acidic deposition.

    PubMed

    Warby, Richard A F; Johnson, Chris E; Driscoll, Charles T

    2008-12-01

    We surveyed 113 lakes in the northeastern U.S. in 2001 that had previously been sampled in 1986 to evaluate the effects of reductions in acidic deposition on the concentrations and speciation of aluminum (Al). We found ubiquitous decreases in the concentrations of total Al and inorganic monomeric aluminum (Ali) across the region. Median total Al decreased from 1.45 to 1.01 micromol L(-1) across the region, with the largest decrease in the Adirondacks (4.60 micromol L(-1) to 2.59 micromol L(-1)). Organic monomeric aluminum (Alo) also decreased region-wide and in all the subregions except the Adirondacks. The speciation of Ali shifted from largely Al-F complexes in 1986 to largely Al-OH complexes in 2001 in ponds whose concentrations were above the detection limit (>0.7 micromol L(-1)). In 2001, only seven lakes studied, representing a population of 130 lakes in the region, had Al1 concentrations above a toxic limit of 2 micromol L(-1) compared with 20 sample lakes, representing 449 lakes, in 1986. Thus, we estimate that more than 300 lakes in the northeastern United States no longer have summer Ali concentrations at levels considered harmful to aquatic biota. PMID:19192779

  10. Radioactive waste disposal in simulated peat bog repositories

    SciTech Connect

    Schell, W.R.; Massey, C.D.

    1987-01-01

    The Low Level Radioactive Waste Policy Act of 1980 and the Low Level Radioactive Waste Policy Amendments Act of 1985 have required state governments to be responsible for providing low-level waste (LLW) disposal facilities in their respective areas. Questions are (a) is the technology sufficiently advanced to ensure that radioactive wastes can be stored for 300 to 1000 yr without entering into any uncontrolled area. (b) since actual experience does not exist for nuclear waste disposal over this time period, can the mathematical models developed be tested and verified using unequivocal data. (c) how can the public perception of the problem be addressed and the potential risk assessment of the hazards be communicated. To address the technical problems of nuclear waste disposal in the acid precipitation regions of the Northern Hemisphere, a project was initiated in 1984 to evaluate an alternative method of nuclear waste disposal that may not rely completely on engineered barriers to protect the public. Certain natural biogeochemical systems have been retaining deposited materials since the last Ice Age (12,000 to 15,000 yr). It is the authors belief that the biogeochemical system of wetlands and peat bogs may provide an example of an analogue for a nuclear waste repository system that can be tested and verified over a sufficient time period, at least for the LLW disposal problem.

  11. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  12. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-05-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  13. Decomposition of Alternative Chirality Amino Acids by Alkaliphilic Anaerobe from Owens Lake, California

    NASA Technical Reports Server (NTRS)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Hoover, Richard B.

    2009-01-01

    The study of alkaliphilic microbial communities from anaerobic sediments of Owens and Mono Lakes in California led to the isolation of a bacterial strain capable of metabolizing amino acids with alternative chirality. According to the phylogenetic analysis, the anaerobic strain BK1 belongs to the genus Tindallia; however, despite the characteristics of other described species of this genus, the strain BK1 was able to grow on D-arginine and Dlysine. Cell morphology of this strain showed straight, motile, non-spore-forming rods with sizes 0.45 x 1.2-3 microns. Physiological characteristics of the strain showed that it is catalase negative, obligately anaerobic, mesophilic, and obligately alkaliphilic. This isolate is unable to grow at pH 7 and requires CO3 (2-) ions for growth. The strain has chemo-heterotrophic metabolism and is able to ferment various proteolysis products and some sugars. It plays the role of a primary anaerobe within the trophic chain of an anaerobic microbial community by the degradation of complex protein molecules to smaller and less energetic molecules. The new isolate requires NaCl for growth, and can grow within the range of 0.5-13 %, with the optimum at 1 % NaCl (w/v). The temperature range for the growth of the new isolate is 12-40 C with optimum at 35 C. The pH range for the growth of strain BK1 occurs between 7.8 and 11.0 with optimum at 9.5. This paper presents detailed physiological characteristics of the novel isolate from Owens Lake, a unique relic ecosystem of Astrobiological significance, and makes an accent on the ability of this strain to utilize L-amino acids.

  14. Implications of a gradient in acid and ion deposition across the northern Great Lakes states

    SciTech Connect

    Glass, G.E.; Loucks, O.L.

    1986-01-01

    Average precipitation pH, 1979-1982, declines from west to east from 5.3 to 4.3 along a cross section of sites in Minnesota, Wisconsin, and Michigan. This answers questions about the seasonal and geographic pattern of anthropogenic acid precursor emissions and reaction products (SO/sub 4//sup 2 -/, NO/sub 3//sup -/, H/sup +/, NH/sub 2//sup +/) that increase from west to east. Except for higher concentrations of Ca/sup 2 +/ and Mg/sup 2 +/ observed at one site in the cultivated areas of southwestern Minnesota, the contribution of soil-related metal cations to the total ions in solution is small (17%) and relatively uniform across the region. Significant seasonal and geographic patterns in precipitation chemistry and deposition values are observed. Close correspondence of the sums of strong acid anions with the sums of hydrogen and ammonium ions in precipitation is observed, indicating anthropogenic sources of sulfur and nitrogen oxides. Present atmospheric inputs show close chemical correspondence when precipitation chemistry values are compared to the resulting ionic composition of weakly buffered lakes in north central Wisconsin and northern Michigan. The wet deposition of total acidity in the middle and eastern part of the region is comparable to that of impacted sites in the Adirondacks and in regions of Scandinavia. 39 references, 3 figures, 6 tables.

  15. Influence of in ovo mercury exposure, lake acidity, and other factors on common loon egg and chick quality in Wisconsin

    USGS Publications Warehouse

    Kenow, Kevin P.; Meyer, Michael W.; Rossmann, Ronald; Gray, Brian R.; Arts, Michael T.

    2015-01-01

    A field study was conducted in Wisconsin (USA) to characterize in ovo mercury (Hg) exposure in common loons (Gavia immer). Total Hg mass fractions ranged from 0.17 mg/g to 1.23mg/g wet weight in eggs collected from nests on lakes representing a wide range of pH (5.0–8.1) and were modeled as a function of maternal loon Hg exposure and egg laying order. Blood total Hg mass fractions in a sample of loon chicks ranged from 0.84ug/g to 3.86 ug/g wet weight at hatch. Factors other than mercury exposure that may have persistent consequences on development of chicks from eggs collected on low-pH lakes (i.e., egg selenium, calcium, and fatty acid mass fractions) do not seem to be contributing to reported differences in loon chick quality as a function of lake pH. However, it was observed that adult male loons holding territories on neutral-pH lakes were larger on average than those occupying territories on low-pH lakes. Differences in adult body size of common loons holding territories on neutral-versus low-pH lakes may have genetic implications for differences in lake-source-related quality (i.e., size) in chicks. The tendency for high in ovo Hg exposure and smaller adult male size to co-occur in low-pH lakes complicates the interpretation of the relative contributions of each to resulting chick quality.

  16. Influence of in ovo mercury exposure, lake acidity, and other factors on common loon egg and chick quality in Wisconsin.

    PubMed

    Kenow, Kevin P; Meyer, Michael W; Rossmann, Ronald; Gray, Brian R; Arts, Michael T

    2015-08-01

    A field study was conducted in Wisconsin (USA) to characterize in ovo mercury (Hg) exposure in common loons (Gavia immer). Total Hg mass fractions ranged from 0.17 µg/g to 1.23 µg/g wet weight in eggs collected from nests on lakes representing a wide range of pH (5.0-8.1) and were modeled as a function of maternal loon Hg exposure and egg laying order. Blood total Hg mass fractions in a sample of loon chicks ranged from 0.84 µg/g to 3.86 µg/g wet weight at hatch. Factors other than mercury exposure that may have persistent consequences on development of chicks from eggs collected on low-pH lakes (i.e., egg selenium, calcium, and fatty acid mass fractions) do not seem to be contributing to reported differences in loon chick quality as a function of lake pH. However, it was observed that adult male loons holding territories on neutral-pH lakes were larger on average than those occupying territories on low-pH lakes. Differences in adult body size of common loons holding territories on neutral-versus low-pH lakes may have genetic implications for differences in lake-source-related quality (i.e., size) in chicks. The tendency for high in ovo Hg exposure and smaller adult male size to co-occur in low-pH lakes complicates the interpretation of the relative contributions of each to resulting chick quality. PMID:26096773

  17. Hydrological Evolution and Chemical Structure of the Hyper-acidic Spring-lake System on White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Christenson, B. W.; Britten, K.; Mazot, A.

    2015-12-01

    White Island has a long and varied history of acid spring discharge and shallow ephemeral lake formation on the Main Crater floor. In the 12 months prior to the onset of the 1976-2000 eruptive episode, mass discharge from the spring system increased ca. 10-fold, pointing to a strong coupling of the hydrothermal environment to the evolving magmatic system. However, between 1976-1978 the formation of numerous eruption vents to 200 m depth in the Western Sub-crater abruptly changed the hydrostatic regime of the volcano, resulting in the reversal of groundwater flow in the massif towards the newly-formed crater(s). This affected not only the style of volcanic activity (leading to phreatic-phreatomagmatic-magmatic eruption cycles), but also led to the demise of the spring system, with total flow from the crater declining by a factor > 100 by 1979. Eruptive activity came to a close soon after moderate Strombolian activity in mid-2000, by which time ephemeral lakes had already started to form in the eruption crater complex. Since 2003 there have been two complete lake filling and evaporative cycles, reflecting varying heat flow through the conduit system beneath the lake. Over these cycles, lake water concentrations of Cl and SO4 varied between ca. 35-150 and 5-45 g/L respectively, with pH values ranging between +1.5 and -1. Springs reappeared on the Main Crater floor in 2004, and their discharges varied with lake level, pointing to the lake level being a primary control over the piezometric surface in the crater area. Springs closest to the crater complex show direct evidence of crater lake water infiltration into the crater floor aquifer, whereas distal spring discharges show compositional variations reflecting vertical displacement of the interface between shallow, dilute condensate and an underlying acidic brine fluid. Evidence suggests that this acidic brine presently contains a significant component of altered seawater. Volcanic unrest in 2012, which included

  18. Indications of human activity from amino acid and amino sugar analyses on Holocene sediments from lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Wiesner, M.; Prasad, S.; Basavaiah, N.; Stebich, M.; Anoop, A.; Riedel, N.; Brauer, A.

    2012-04-01

    The DFG funded HIMPAC (Himalaya: Modern and Past Climates) programme aims to reconstruct Holocene Indian Monsoon climate using a multi-proxy and multi-archive approach. First investigations made on sediments from a ca. 10 m long core covering the whole Holocene taken from the lake Lonar in central India's state Maharashtra, Buldhana District, serve to identify changes in sedimentation, lake chemistry, local vegetation and regional to supra-regional climate patterns. Lake Lonar occupies the floor of an impact crater that formed on the ~ 65 Ma old basalt flows of the Deccan Traps. It covers an area of ca. 1 km2 and is situated in India's core monsoon area. The modern lake has a maximum depth of about 5 m, is highly alkaline, and hyposaline, grouped in the Na-Cl-CO3 subtype of saline lakes. No out-flowing stream is present and only three small streams feed the lake, resulting in a lake level highly sensitive to precipitation and evaporation. The lake is eutrophic and stratified throughout most of the year with sub- to anoxic waters below 2 m depth. In this study the core sediments were analysed for their total amino acid (AA) and amino sugar (AS) content, the amino acid bound C and N percentage of organic C and total N in the sediment and the distribution of individual amino acids. The results roughly show three zones within the core separated by distinct changes in their AA content and distribution. (i) The bottom part of the core from ca. 12000 cal a BP to 11400 cal a BP with very low AA and AS percentage indicating high lithogenic contribution, most probably related to dry conditions. (ii) From 11400 cal a BP to 1200 cal a BP the sediments show moderate AA and AS percentages and low values for the ratios of proteinogenic AAs to their non-proteinogenic degradation products (e.g. ASP/β-ALA; GLU/γ-ABA). (iii) The top part of the core (< 1200 cal a BP) is characterised by an intense increase in total AA and AS, AA-C/Corg and AA-N/Ntotas well as in the ratio of

  19. Mictomys borealis (northern bog lemming) and the Wisconsin paleoecology of the east-central Great Basin

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Bell, Christopher J.; Murray, Lyndon K.

    1992-03-01

    Teeth of northern bog lemming, Mictomys borealis, are reported from Cathedral and Smith Creek caves and represent the first Wisconsin remains of the genus from the Great Basin. Specimens from Cathedral Cave, Snake Range, are associated with U-series ages of 24,000 to 15,000 yr B.P. Previous work with pollen and packrat middens, dating to the same age as the Mictomys, indicate that Smith Creek Canyon contained a riparian, locally mesic community, including Picea engelmannii (spruce), Betula sp. (birch), Cercocarpus sp. (mountain mahogany), and Artemisia sp. (sagebrush) among other species. Exposed canyon slopes and the adjacent valley apparently contained a more xeric steppe community including sagebrush and Chenopodiineae species; rocky outcrop permitted Pinus flexilis (limber pine) and P. longaeva (bristlecone pine) to grow adjacent to Lake Bonneville or low in the canyon. The region apparently experienced a dry climate (not necessarily drier than today); however, Smith Creek Canyon was fed by glacial meltwater from Mt. Moriah. The northern bog lemming probably lived only in the riparian community and possibly on the north-facing slope below Cathedral Cave. Few canyons of the Snake Range would have had the unusually mesic conditions found in Smith Creek Canyon.

  20. Influence of Acid Mine Drainage (AMD) on recent phyto- and zooplankton in "the Anthropogenic Lake District" in south-west Poland

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, Elwira; Gasiorowski, Michal

    2015-04-01

    In south-west Poland (central Europe) many the post-mining lakes formed so-called "the Anthropogenic Lake District". Areas, where water comes in contact with lignite beds characterized by high concentration of sulfide minerals are called Acid Mine Drainage (AMD). Pyrite oxidation and other sulfide compounds caused release sulfuric acids and heavy metal ions. These processes caused decline of water pH, sometimes to extremely low pH < 2.8. Presently, pit lakes located in south-west Poland have water pH ranged between 2.7 and 8.9. Differences of water reaction in the mine lakes depend on many factors, such as bedrock buffer capacity, geological structure of carboniferous area, exploitation technique of lignite, methods of filling and water supply of reservoirs and their age. During the evolution of lakes' ecosystems, sulfate-iron-calcium type of waters occurring in acid lakes will transform in alkaline hydrogen-carbonate-calcium type of waters. Due to the different time of the completion of lignite exploitation, lakes' age varied between forty and over one hundred years. Studies showed that younger lakes are more acidic in compare to older. To estimate impact of AMD we analyzed recent diversity of diatoms and Cladocera remains and water chemistry from extremely acidic, relatively young lakes and from alkaline, older water bodies. As we expected, flora and fauna from acidic lakes have shown very low diversity and species richness. Among diatoms, Eunotia exigua (Bréb. ex Kütz.) Rabenhorst and/or E. paludosa Grunow were dominated taxa, while fauna Cladocera did not occurred in lakes with water pH < 3. On this area, exploitation of lignite continued up to 1973. Older lakes were formed in the region where the mine started work in 1880 and lignite mining stopped in 1926. Measurements of pH value in situ point to neutral or alkaline water, but because of the possibility of hysteresis phenomenon, the studies of phyto- and zooplankton have shown if there has already been a

  1. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  2. Indirect effects of UV radiation: Fe{sup 2+} enrichment stimulates picocyanobacterial growth in Clearwater acidic Shield lakes

    SciTech Connect

    Auclair, J.C.

    1995-12-31

    Ozone depletion and associated increases in UVB radiation could increase the photoreduction of iron in Shield lakes of the Boreal forest zone. Since photoreduced iron (I) is more soluble than iron (III), and the re-oxidation rate slower in acidic (pH = 5--6) lakes, phytoplankton growth and/or species composition may be altered where iron is growth limiting. The differential enrichment of UV{sub A+B} transparent herbivore-free (< 65 mu) lakewater enclosures ({approximately}500L) with phosphorus, phosphorus and Fe (II) and phosphorus, ammonium and Fe (II) revealed that the Spring phytoplankton abundance of an oligotrophic Clearwater acidic Canadian Shield lake was limited by herbivore grazing, rather than by a limiting nutrient. However, in the herbivore-free enriched enclosures the addition of Fe{sup 2+} greatly stimulated picocyanobacterial growth and grazing activity by mixotrophic species comprising the microbial food web of this lake. In spite of a 10-fold increase in the mixotrophic chrysophytes, the authors did not discern any strong competitive interactions among the mixotrophic organisms, strongly suggesting that the latter obtain most if not all of their iron quota from their picoplanktonic prey.

  3. Neutralization of acid mine drainage influenced lakes by organic additions. Final research report, 1 October 1987-31 December 1989

    SciTech Connect

    Brugam, R.B.; Gastineau, J.; Ratcliff, E.; Stevens, A.

    1990-02-01

    The authors conducted a series of 5 experiments in which 1 m diameter and 3 to 6 m long cylindrical enclosures were built in an acidic lake on a coal mine site. The enclosures extended from the lake surface to the sediment. Limestone, phosphate, sewage sludge or wheat straw was added to the enclosures to test their neutralizing capabilities. The theory suggests that sewage sludge and wheat straw should be substrates for sulfate reduction by bacteria and that the production of H2S and its precipitation as FeS should remove sulfuric acid from the water column. The limestone additions raised pH as expected. Straw additions supported sulfate reduction. Sulfate reduction was strongest where both lime and straw were added together. Straw additions produced the expected neutralization in the experiments, but neutralization was not permanent.

  4. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): emerging contaminants of increasing concern in fish from Lake Varese, Italy.

    PubMed

    Squadrone, S; Ciccotelli, V; Prearo, M; Favaro, L; Scanzio, T; Foglini, C; Abete, M C

    2015-07-01

    Perfluoroalkylated substances (PFASs) are highly fluorinated aliphatic compounds with high thermal and chemical stability, used in a range of industrial applications. Extensive screening analyses in biota samples from all over the world have shown the bioaccumulation of PFAS into higher trophic levels in the food chain. Perfluorooctane sulfonic acid (PFOS) and perfluoroctanoic acid (PFOA) are potential reproductive and developmental toxicants and are considered to be emerging endocrine disrupters. Ingestion of fish and other seafood is considered the main source of exposure of these contaminants. Here, we quantified PFOS and PFOA by LC-MS/MS in muscle samples of European perch from Lake Varese, Italy. PFOS was detected in all samples with concentrations of up to 17.2 ng g(-1). Although the reported values were lower than the recommended total daily intake (TDI) proposed by the European Food Safety Authority (EFSA), fish from Lake Varese may be a significant source of dietary PFOS exposure. PMID:26085281

  5. Comparative study of cadmium and lead accumulations in Cambarus bartoni (Fab. ) (Decapoda, Crustacea) from an acidic and a neutral lake

    SciTech Connect

    Keenan, S.; Alikhan, M.A. )

    1991-07-01

    The purpose of the study reported in this paper was to compare concentrations of lead and cadmium in the sediment and water, as well as in the crayfish, Cambarus Bartoni (Fab.) (Decapoda - Crustacea) trapped from an acidic and a neutral lake in the Sudbury district of Northeastern Ontario. Hepatopancreatic, alimentary canal, tail muscles and exoskeletal concentrations in the crayfish are also examined to determine specific tissue sites for these accumulations.

  6. Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in Cyprus that generates vanillin and vanillic acid from ferulic acid.

    PubMed

    Vyrides, Ioannis; Agathangelou, Maria; Dimitriou, Rodothea; Souroullas, Konstantinos; Salamex, Anastasia; Ioannou, Aristostodimos; Koutinas, Michalis

    2015-08-01

    Vanillin is a high value added product with many applications in the food, fragrance and pharmaceutical industries. A natural and low-cost method to produce vanillin is by microbial bioconversions through ferulic acid. Until now, limited microorganisms have been found capable of bioconverting ferulic acid to vanillin at high yield. This study aimed to screen halotolerant strains of bacteria from Larnaca Salt Lake which generate vanillin and vanillic acid from ferulic acid. From a total of 50 halotolenant/halophilic strains 8 grew in 1 g/L ferulic acid and only 1 Halomonas sp. B15 and 3 Halomonas elognata strains were capable of bioconverting ferulic acid to vanillic acid at 100 g NaCl/L. The highest vanillic acid (365 mg/L) at these conditions generated by Halomonas sp. B15 which corresponds to ferulic acid bioconversion yield of 36.5%. Using the resting cell technique with an initial ferulic acid concentration of 0.5 g/L at low salinity, the highest production of vanillin (245 mg/L) took place after 48 h, corresponding to a bioconversion yield of 49%. This is the first reported Halomonas sp. with high yield of vanillin production from ferulic acid at low salinity. PMID:26026278

  7. Peatlands and green frogs: A relationship regulated by acidity?

    USGS Publications Warehouse

    Mazerolle, M.J.

    2005-01-01

    The effects of site acidification on amphibian populations have been thoroughly addressed in the last decades. However, amphibians in naturally acidic environments, such as peatlands facing pressure from the peat mining industry, have received little attention. Through two field studies and an experiment, I assessed the use of bog habitats by the green frog (Rana clamitans melanota), a species sensitive to various forestry and peat mining disturbances. First, I compared the occurrence and breeding patterns of frogs in bog and upland ponds. I then evaluated frog movements between forest and bog habitats to determine whether they corresponded to breeding or postbreeding movements. Finally, I investigated, through a field experiment, the value of bogs as rehydrating areas for amphibians by offering living Sphagnum moss and two media associated with uplands (i.e., water with pH ca 6.5 and water-saturated soil) to acutely dehydrated frogs. Green frog reproduction at bog ponds was a rare event, and no net movements occurred between forest and bog habitats. However, acutely dehydrated frogs did not avoid Sphagnum. Results show that although green frogs rarely breed in bogs and do not move en masse between forest and bog habitats, they do not avoid bog substrates for rehydrating, despite their acidity. Thus, bogs offer viable summering habitat to amphibians, which highlights the value of these threatened environments in terrestrial amphibian ecology.

  8. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities. PMID:20614900

  9. Brooktrout Lake case study: biotic recovery from acid deposition 20 years after the 1990 Clean Air Act Amendments.

    PubMed

    Sutherland, James W; Acker, Frank W; Bloomfield, Jay A; Boylen, Charles W; Charles, Donald F; Daniels, Robert A; Eichler, Lawrence W; Farrell, Jeremy L; Feranec, Robert S; Hare, Matthew P; Kanfoush, Sharon L; Preall, Richard J; Quinn, Scott O; Rowell, H Chandler; Schoch, William F; Shaw, William H; Siegfried, Clifford A; Sullivan, Timothy J; Winkler, David A; Nierzwicki-Bauer, Sandra A

    2015-03-01

    The Adirondack Mountain region is an extensive geographic area (26,305 km(2)) in upstate New York where acid deposition has negatively affected water resources for decades and caused the extirpation of local fish populations. The water quality decline and loss of an established brook trout (Salvelinus fontinalis [Mitchill]) population in Brooktrout Lake were reconstructed from historical information dating back to the late 1880s. Water quality and biotic recovery were documented in Brooktrout Lake in response to reductions of S deposition during the 1980s, 1990s, and 2000s and provided a unique scientific opportunity to re-introduce fish in 2005 and examine their critical role in the recovery of food webs affected by acid deposition. Using C and N isotope analysis of fish collagen and state hatchery feed as well as Bayesian assignment tests of microsatellite genotypes, we document in situ brook trout reproduction, which is the initial phase in the restoration of a preacidification food web structure in Brooktrout Lake. Combined with sulfur dioxide emissions reductions promulgated by the 1990 Clean Air Act Amendments, our results suggest that other acid-affected Adirondack waters could benefit from careful fish re-introduction protocols to initiate the ecosystem reconstruction of important components of food web dimensionality and functionality. PMID:25621941

  10. Deciphering the environmental and landscape evolution of Sierra Nevada (S Iberia) from bog archives

    NASA Astrophysics Data System (ADS)

    Garcia Alix, Antonio; Toney, Jaime L.; Jiménez-Moreno, Gonzalo; Ramos-Román, Maria J.; Anderson, R. Scott; Jiménez-Espejo, Francisco; Delgado Huertas, Antonio; Ruano, Patricia

    2016-04-01

    Sierra Nevada is the southernmost mountain range in the Iberian Peninsula and one of the highest in Europe. Its geomorphology was the result of Pleistocene glaciations that carved out depressions, valleys and cirques at high elevations in the metamorphic basement. Depressions gave rise to lakes and wetlands during the Holocene. Geophysical and organic geochemical analyses of biomarkers (n-alkanes) and bulk sediment (C and N ratio and isotopes) from two high elevation bogs (locally called "Borreguiles"): Borreguiles de la Virgen (BdlV) and Borreguiles de la Caldera (BdlC), have allowed us to track the hydrological evolution of the area and its relationship to climatic fluctuations of the western Mediterranean during the Holocene. Most of the bogs of this area resulted from the natural evolution of former small lakes. The records are 56 cm and 169 cm long, respectively. Geophysical data suggest that we recovered the whole sedimentary record from BdlC; however, there are some post-glacial sediments remaining below the BdlV core that we could not recover due to hard-ground conditions. During the early and middle Holocene, aquatic conditions predominated in BdlV compared to the most recent part of the record (low C/N values and high proportion of aquatic plants (Paq) deduced from the n-alkanes) suggesting a lake environment whose water level gradually decreased until ˜5.5 cal ky BP. This aridity trend is also observed in nearby records such as at Laguna de Río Seco (LdRS), a result of the African Humid Period demise. Carbon and nitrogen isotopes were higher during this interval, which might suggest more algae activity, in agreement with the highest concentrations of the algae Pediastrum in the area. There is an important development of terrestrial plants, a real bog stage (C/N higher than 20, high TOC, lower Paq) in both records from ˜5.5 to 3.5-3.0 cal ky BP. Those hydrological changes in the landscape might be related to a possible change in the source of

  11. Influence of natural acidity and fisheries management activities upon the status of Adirondack fish populations

    SciTech Connect

    Retzsch, W.C.; Everett, A.G.

    1981-01-01

    Acidification and the disappearance of fish from some Adirondack waters does not appear to be caused solely by acid rain. Acidification is a natural process under certain conditions and precipitation acidified by industrial emissions appears to be only one of many possible causes of pond, lake and stream acidification. Factors other than acid precipitation can cause acidification or reduce fish stocks. As a result of glaciation, northern New York State has hundreds of glacial ponds and lakes, most of which are dystrophic or oligotrophic. Many such waters are located in the western and central portions of the Adirondacks, an area frequently cited as exhibiting the most pronounced effects of acid rain. It is widely recognized that natural unpolluted bogs and peat deposits result in low pH environments. Seasonal and weather conditions also appear to have a substantial effect upon the acidity of peat-bog outflows. An evaluation of recent survey data on critically acidified Adirondack waters indicates that of 192 waters with values less than pH 5.0, approximately 61 percent appear to be directly influenced by natural bog conditions and an additional 14 percent are probably influenced. A review of historical and recent survey data suggest that significant factors, such as natural causes of acidification, low oxygen concentrations, high CO/sub 2/ and H/sub 2/S concentrations, and extreme temperatures may have been ignored or underestimated in evaluating the cause of acidification and fish disappearances in some Adirondack waters. Another factor responsible for the current status of fish stocks in the Adirondacks involves past and present fishery resource management activities.

  12. Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain)

    PubMed Central

    López-Pamo, Enrique; Gomariz, María; Amils, Ricardo; Aguilera, Ángeles

    2013-01-01

    The Iberian Pyrite Belt (IPB) hosts one of the world’s largest accumulations of acidic mine wastes and pit lakes. The mineralogical and textural characteristics of the IPB ores have favored the oxidation and dissolution of metallic sulfides, mainly pyrite, and the subsequent formation of acidic mining drainages. This work reports the physical properties, hydrogeochemical characteristics, and microbial diversity of two pit lakes located in the IPB. Both pit lakes are acidic and showed high concentrations of sulfate and dissolved metals. Concentrations of sulfate and heavy metals were higher in the Nuestra Señora del Carmen lake (NSC) by one order of magnitude than in the Concepción (CN) lake. The hydrochemical characteristics of NSC were typical of acid mine waters and can be compared with other acidic environments. When compared to other IPB acidic pit lakes, the superficial water of CN is more diluted than that of any of the others due, probably, to the strong influence of runoff water. Both pit lakes showed chemical and thermal stratification with well defined chemoclines. One particular characteristic of NSC is that it has developed a chemocline very close to the surface (2 m depth). Microbial community composition of the water column was analyzed by 16S and 18S rRNA gene cloning and sequencing. The microorganisms detected in NSC were characteristic of acid mine drainage (AMD), including iron oxidizing bacteria (Leptospirillum, Acidithiobacillus ferrooxidans) and facultative iron reducing bacteria and archaea (Acidithiobacillus ferrooxidans, Acidiphilium, Actinobacteria, Acidimicrobiales, Ferroplasma) detected in the bottom layer. Diversity in CN was higher than in NSC. Microorganisms known from AMD systems (Acidiphilium, Acidobacteria and Ferrovum) and microorganisms never reported from AMD systems were identified. Taking into consideration the hydrochemical characteristics of these pit lakes and the spatial distribution of the identified microorganisms, a

  13. Groundwater contribution to an acid upland lake (Loch Fleet, Scotland) and the possibilities for amelioration

    NASA Astrophysics Data System (ADS)

    Cook, J. M.; Edmunds, W. M.; Robins, N. S.

    1991-06-01

    The Loch Fleet catchment lies in an upland region in the centre of the outcrop of the Cairnsmore of Fleet granite. It is a recently acidified lake (pH = 4.4) which has been the subject of a liming experiment to restore fisheries. In the present study, hydrogeological and geochemical techniques were used to determine the contribution of ground water to the loch and its role in buffering the lake water chemistry. Diffuse groundwater seepage was detected by infrared linescan survey, and overflowing ground water (2 m above the level of the loch) was encountered in a shallow borehole. This ground water has an alkaline geochemistry (pH = 7.2, HCO 3- = 142 mg l -1) determined by secondary vein calcite and hydrolysis of silicate minerals. The net gains or losses of various constituents in the ground water and in the loch outflow have been determined relative to rainfall inputs. Na, K, Ca, Mg, HCO 3, SO 4, Cl, Si, Sr, Fe, Mn, Li and F all show net gain in the ground water; NO 3, Al, Zn and B show a net loss. In the acidic loch outflow, Ca, Mg, Si, Sr, Ba, Fe, Mn, Al, Zn and Li show a net gain over rainfall inputs; most of these elements derive from ground water, enhanced by evapotranspiration by a factor of 1.8. The chemical results have been used to determine that ground water contributes around 3.5 l s -1 to the loch, compared with an estimated 3-4 l s -1 derived from hydrograph analysis. This constitutes 5% of the mean loch outflow, which was sufficient to buffer the loch at around pH = 6.0 until the late 1960s. Titrations of ground water with loch water show that as little as 0.06 l s -1 (1656 m 3 year -1) of additional ground water would be required to restore the loch to conditions suitable for a self-sustaining fish population. Twice this flux (3310 m 3 year -1) would restore the loch to the conditions pertaining in the pre-industrial era. These targets could be achieved at an economic cost, it is suggested, by induced abstraction of ground water in the upper reaches

  14. GHG emissions from temperate lowland bog under contrasting land use: insights from the Defra Lowland Bog Project.

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; dIXON, Simon

    2015-04-01

    The Defra lowland peat project was established 3 years ago in response to the estimation that while lowland peat soils represent only 15% of the area of UK peat they represented 75% of the greenhouse gas emissions. The study has considered a range of settings, including: restored raised bog; extracted bare peat; and peat soil converted for arable. The sites were instrumented to cover as complete a range of greenhouse gases as possible and this included N2O as well as fluvial carbon fluxes. This talk will review results with particular emphasis on problems of understanding fluvial carbon fluxes from lowland raised bogs where flow directions are complex.

  15. AMERICANARUM DIATOMARUM EXISCCATA: CANA, VOUCHER SLIDES FROM EIGHT ACIDIC LAKES IN NORTHEASTERN NORTH AMERICA

    EPA Science Inventory

    Ninety-eight slides from eight lakes in the Adirondack Mountains of the northeastern United States have been distributed as an exsiccata to 16 museums and collections around the world. his exsiccata presents slides of material from sediments of Adirondack Mountain lakes that were...

  16. Immune factors and fatty acid composition in human milk from river/lake, coastal and inland regions of China.

    PubMed

    Urwin, Heidi J; Zhang, Jian; Gao, Yixiong; Wang, Chunrong; Li, Lixiang; Song, Pengkun; Man, Qingqing; Meng, Liping; Frøyland, Livar; Miles, Elizabeth A; Calder, Philip C; Yaqoob, Parveen

    2013-06-01

    Breast milk fatty acid composition may be affected by the maternal diet during gestation and lactation. The influence of dietary and breastmilk fatty acids on breast milk immune factors is poorly defined. We determined the fatty acid composition and immune factor concentrations of breast milk from women residing in river/lake, coastal and inland regions of China, which differ in their consumption of lean fish and oily fish. Breast milk samples were collected on days 3–5 (colostrum), 14 and 28 post-partum (PP) and analysed for soluble CD14 (sCD14), transforming growth factor (TGF)-b1, TGF-b2, secretory IgA (sIgA) and fatty acids. The fatty acid composition of breast milk differed between the regions and with time PP. The concentrations of all four immune factors in breast milk decreased over time, with sCD14, sIgA and TGF-b1 being highest in the colostrum in the river and lake region. Breast milk DHA and arachidonic acid (AA) were positively associated, and g-linolenic acid and EPA negatively associated, with the concentrations of each of the four immune factors. In conclusion, breast milk fatty acids and immune factors differ between the regions in China characterised by different patterns of fish consumption and change during the course of lactation. A higher breast milk DHA and AA concentration is associated with higher concentrations of immune factors in breast milk, suggesting a role for these fatty acids in promoting gastrointestinal and immune maturation of the infant. PMID:23148871

  17. Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and 'Candidatus Heliomonas lunata'.

    PubMed

    Asao, Marie; Takaichi, Shinichi; Madigan, Michael T

    2012-07-01

    Two novel taxa of heliobacteria, Heliorestis acidaminivorans sp. nov. strain HR10B(T) and 'Candidatus Heliomonas lunata' strain SLH, were cultured from shoreline sediments/soil of Lake El Hamra (Egypt) and lake water/benthic sediments of Soap Lake (USA), respectively; both are highly alkaline soda lakes. Cells of strain HR10B were straight rods, while cells of strain SLH were curved rods. Both organisms were obligate anaerobes, produced bacteriochlorophyll g, and lacked intracytoplasmic photosynthetic membrane systems. Although the absorption spectrum of strain HR10B was typical of other heliobacteria, that of strain SLH showed unusually strong absorbance of the OH-chlorophyll a component. Major carotenoids of both organisms were OH-diaponeurosporene glucosyl esters, as in other alkaliphilic heliobacteria, and both displayed an alkaliphilic and mesophilic phenotype. Strain HR10B was remarkable among heliobacteria in its capacity to photoassimilate a number of carbon sources, including several amino acids. Nitrogenase activity was observed in strain HR10B, but not in strain SLH. The 16S ribosomal RNA gene tree placed strain HR10B within the genus Heliorestis, but distinct from other described species. By contrast, strain SLH was phylogenetically more closely related to neutrophilic heliobacteria and is the first alkaliphilic heliobacterium known outside of the genus Heliorestis. PMID:22588563

  18. Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas

    USGS Publications Warehouse

    Pomes, M.L.; Larive, C.K.; Thurman, E.M.; Green, W.R.; Orem, W.H.; Rostad, C.E.; Coplen, T.B.; Cutak, B.J.; Dixon, A.M.

    2000-01-01

    Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humicacid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U

  19. Carbon dynamics in peat bogs: Insights from substrate macromolecular chemistry

    NASA Astrophysics Data System (ADS)

    Kuder, Tomasz; Kruge, Michael A.

    2001-09-01

    The macromolecular compositions of subfossil plants from boreal Sphagnum bogs and restiad bogs (New Zealand) have been studied by pyrolysis-gas chromatography/mass spectrometry to evaluate the extent of degradation in the anoxic zone (catotelm) of a peat bog. Degradation of vascular plant polysaccharides was apparent only into the upper catotelm. Sphagnum was degraded more slowly than vascular plants, but no cessation of degradation was observed. The inferred rate of degradation varied depending on type of plant, extent of aerobic, precatotelmic degradation, and mode of litter deposition (rooting versus at the surface). Environmental forcing on anaerobic carbon dynamics would potentially be largest if the hydrology was disturbed at a wet and vascular plant-rich site. Peat deposited under a dry regime would be relatively inert in anaerobic conditions. Although catotelmic degradation is usually not extensive, in some cases, if labile organic matter is retained in the aerobic phase (e.g., restiad bogs) a major fraction of peat is degraded in catotelm, potentially resulting in a delayed major export of 14C-old methane.

  20. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    NASA Astrophysics Data System (ADS)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  1. A combined CaO/electrochemical treatment of the acid mine drainage from the "Robule" Lake.

    PubMed

    Orescanin, Visnja; Kollar, Robert

    2012-01-01

    The purpose of this work was development and application of the purification system suitable for the treatment of the acid mine drainage (AMD) accumulated in the "Robule" Lake, which represents the part of the Bor copper mining and smelting complex, Serbia. The study was undertaken in order to minimize adverse effect on the environment caused by the discharge of untreated AMD, which was characterized with low pH value (2.63) and high concentration of heavy metals (up to 610 mg/L) and sulfates (up to 12,000 mg/L). The treatment of the effluent included pretreatment/pH adjustment with CaO followed by electrocoagulation using iron and aluminum electrode sets. Following the final treatment, the decrease in the concentration of heavy metals ranged from 40 up to 61000 times depending on the metal and its initial concentration. The parameters, color and turbidity were removed completely in the pretreatment step, while the removal efficiencies for other considered parameters were as follows: EC = 55.48%, SO(4) (2-) = 70.83%, Hg = 98.36%, Pb = 97.50%, V = 98.43%, Cr = 99.86%, Mn = 97.96%, Fe = 100.00%, Co = 99.96%, Ni = 99.78%, Cu = 99.99% and Zn = 99.94%. Because the concentrations of heavy metals in the electrochemically treated AMD (ranging from 0.001 to 0.336 mg/L) are very low, the negative impact of this effluent on the aquatic life and humans is not expected. The sludge generated during the treatment of AMD is suitable for reuse for at least two purposes (pretreatment of AMD and covering of the flotation waste heap). From the presented results, it could be concluded that electrochemical treatment is a suitable approach for the treatment of AMD. PMID:22506711

  2. Oribatid mite species numbers increase, densities decline and parthenogenetic species suffer during bog degradation.

    PubMed

    Seniczak, Anna; Seniczak, Stanisław; Maraun, Mark; Graczyk, Radomir; Mistrzak, Marcin

    2016-04-01

    This study compared the oribatid mites in two natural and four industrially exploited bogs. One natural bog (Zakręt, Z) was located in northeastern Poland and the other one (Toporowy Staw Niżni, TSN), in southern Poland. The four exploited bogs were also located in southern Poland and can be ranked from least to most degraded as follows: Łysa Puścizna (LP), Baligówka (B), Puścizna Mała (PM) and Kaczmarka (K). In the natural bogs, the water pH was higher than in the degraded ones, but other parameters were lower (conductivity, colour value, oxygen demand, and concentration of chlorides). In the natural bogs, the Oribatida were highly abundant (average density was 169,100 ind./m(2)), but with low species diversity and one dominating species. In bog Z the most abundant was Limnozetes foveolatus that had dominance of 75 % and in bog TSN, located at higher altitude, Trimalaconothrus maior dominated (73 %). In two degraded bogs that had still good water conditions (LP and B) the oribatid communities resembled those from the natural bogs; in LP the most abundant species was Hydrozetes lacustris and in bog B, L. foveolatus. In contrast, in two more degraded bogs (PM and K) the abundance of mites was lower (average density was 17,850 ind./m(2)), species diversity of the Oribatida was higher, and no species achieved a high dominance like in the natural bogs. Additionally, in more degraded bogs the abundance of parthenogenetic species was lower than in the natural bogs. PMID:26846473

  3. Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography–tandem mass spectrometry

    USGS Publications Warehouse

    Li, Ke; Buchinger, Tyler J.; Bussy, Ugo; Fissette, Skye D; Johnson, Nicholas; Li, Weiming

    2015-01-01

    Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC–MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile–water (containing 7.5 mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25 mL/min for 12 min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00–5,000 ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2 ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2 ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.

  4. Benthic plant communities in acidic Lake Colden, New York: Sphagnum and the algal mat

    SciTech Connect

    Hendrey, G R; Vertucci, J A

    1980-03-01

    Lake Colden, in the central Adirondack Mountains of New York State is botanically similar to acidified lakes in Sweden. Acidification of some Swedish lakes has been associated with an expansion of Sphagnum, primarily in shallow, sheltered littoral areas but also to depths of 18m. During a brief botanical survey on 24-25 July 1979, we observed a dense meadow of Sphagnum pylaesii around much of the shoreline of Lake Colden. Plant community composition was determined by a visual estimate of cover along a single typical transect and through underwater photography on 28-29 August 1979. Water samples were collected and returned to our laboratory for analyses several days later. Sample pH was determined by potentiometry and alkalinity by multiple end point titrations. Biomass samples were also taken of the Sphagnum mat community and dry weight was determined. Chemical content of plant tissue was analyzed.

  5. Labile aluminium chemistry downstream a limestone treated lake and an acid tributary: effects of warm winters and extreme rainstorms.

    PubMed

    Andersen, Dag O

    2006-08-01

    The outlet from the limestone treated Lake Terjevann consisted mainly of well-mixed lake water (mean pH 6.1) during the ice-free seasons including the unusually warm winters of 1992 and 1993. However, during the ice-covered period acidic water (mean pH 4.8, mean inorganic aluminium (Al(i)) about 160 microg/l) from the catchment draining under the lake ice dominated. A downstream tributary was generally acid and rich in aluminium (mean pH 4.6, Al(i) about 230 microg/l). After an extreme rainstorm loaded with sea-salts cation exchange in the soil resulted in more than a doubling of the Al(i) concentration (reaching about 500 microg/l). It took 3-4 months until the Al(i) concentration returned to pre-event levels. During the ice-covered period, the acidic outlet and tributary waters resulted in acidic conditions below the confluence (pH<4.8, Al(i) about 150 microg/l) while during the ice-free periods the more neutral outlet water resulted in higher pH and lower Al(i) concentrations (pH>5.2, Al(i) about 95 microg/l). However, during the latter climatic conditions the water was most probably more harmful to fish due to hydrolysing and polymerizing aluminium. After the sea-salt event, the increased Al(i) concentration in the tributary made the zone below the confluence potentially more toxic (pH approximately 5, Al(i) approximately 250 microg/l). Expected global warming resulting in winter mean temperatures above 0 degrees C may eliminate the seasonal acidification of the outlet from limestone-treated lakes creating permanent toxic mixing zones in the confluence below acidic aluminium-rich tributaries. Besides, more frequent rainstorms as a consequence of global warming may increase the frequency of sea-salt events and the Al(i) concentrations in the mixing zones. PMID:16269168

  6. Effects of different cooking methods on fatty acid profiles in four freshwater fishes from the Laurentian Great Lakes region.

    PubMed

    Neff, Margaret R; Bhavsar, Satyendra P; Braekevelt, Eric; Arts, Michael T

    2014-12-01

    Fish is often promoted as a healthy part of the human diet due its high content of long chain n-3 polyunsaturated fatty acids (LC-PUFA). Previous studies have shown that cooked fish can have different fatty acid profiles than raw fillets, depending on the cooking method and fish species. In this study, the fatty acid content of broiled, baked or fried skinless, boneless fillets of four fish species from the tributaries of the Great Lakes, or connecting rivers, was compared to fatty acid profiles in raw sections from the same fillet. Cooking treatments had little effect on n-3 fatty acid content; however, fried treatments generally had higher n-6 and MUFA content, which is likely a result of the cooking oil used (canola). Broiling or baking is generally the most healthy option presented in this study, as these methods result in lower levels of less-favourable fatty acids; however, the choice of cooking oil may also influence the overall fatty acid content in cooked fish. PMID:24996368

  7. Determining D/L Ratios of Amino Acids Found in Ice Above Lake Vostok Using ESI/CIT Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tsapin, A.; Kanik, I.; Beegle, L. W.; Wu, L.; Cooks, R. G.

    2003-01-01

    Astrobiology is an area where longevity of (micro) organisms is of great interest. Cryospheres are common phenomena in the solar system, particularly on satellites, comets and asteroids, as well as at least some of the planets. Recent data from the Mars Global Surveyor mission suggest the possibility of permafrost or perhaps even liquid water under the Martian surface [2]. These environments may be the areas in which the probability of finding life is the highest. This issue is of concern due to the probable evolution of planetary environments such as that of Mars from more hospitable to less hospitable conditions over the history of the solar system. In addition, evaluation of the possible transfer of living organisms between planets via impact ejecta [3] is dependent on knowledge of the maximum time periods over which microorganisms can remain dormant and subsequently revive and reproduce.Amino acid racemization dating, or aminostratigraphy, has been used for many years to date biological systems, and has been examined as a possible biosignature detection technique for Mars. We have suggested using amino acid racemization as one of the most indicative biosignatures [4]. Only life systems produce preferential synthesis of L-amino acids versus D-amino acids. Almost all amino acids in terrestrial organisms can be found only in the L-enantiomeric form.We studied the level of amino acid racemization, specifically of aspartic acid, in permafrost samples from eastern Siberia. Also we analyzed samples of ice from borehole drilled to lake Vostok, Antarctica.

  8. Processes at the sediment water interface after addition of organic matter and lime to an acid mine pit lake mesocosm

    SciTech Connect

    Matthias Koschorreck; Elke Bozau; Rene Froemmichen; Walter Geller; Peter Herzsprung; Katrin Wendt-Potthoff

    2007-03-01

    A strategy to neutralize acidic pit lakes was tested in a field mesocosm of 4500 m{sup 3} volume in the Acidic Pit Mine Lake 111 in the Koyne-Plessa lignite mining district of Lusatia, Germany. Carbokalk, a byproduct from sugar production, and wheat straw was applied near to the sediment surface to stimulate in lake microbial alkalinity generation by sulfate and iron reduction. The biogeochemical processes at the sediment-water interface were studied over 3 years by geochemical monitoring and an in situ microprofiler. Substrate addition generated a reactive zone at the sediment surface where sulfate and iron reduction proceeded. Gross sulfate reduction reached values up to 10 mmol m{sup -2} d{sup -1}. The neutralization rates between 27 and 0 meq m{sup -2} d{sup -1} were considerably lower than in previous laboratory experiments. The precipitation of ferric iron minerals resulted in a growing acidic sediment layer on top of the neutral sediment. In this layer sulfate reduction was observed but iron sulfides could not precipitate. In the anoxic sediment H{sub 2}S was oxidized by ferric iron minerals. H{sub 2}S partly diffused to the water column where it was oxidized. As a result the net formation of iron sulfides decreased after 1 year although gross sulfate reduction rates continued to be high. The rate of iron reduction exceeded the sulfate reduction rate, which resulted in high fluxes of ferrous iron out of the sediment. 46 refs., 6 figs., 1 tab.

  9. Integrated lake-watershed acidification study. Volume 1: model principles and application procedures. Final report

    SciTech Connect

    Chen, C.W.; Gherini, S.A.; Hudson, R.J.M.; Dean, J.D.

    1983-09-01

    The ILWAS model has been developed to simulate the biogeochemical processes occurring along the pathways which precipitation follows as it passes through the forest canopy, soil horizons, streams, bogs, and lakes. The model accepts as input precipitation quantity, precipitation quality, ambient air quality and basin properties. It calculates the volumetric flow rates and the concentrations of cations (H/sup +/, Ca/sup 2 +/, Mg/sup 2 +/, K/sup +/, Na/sup +/, and NH/sub 4//sup +/), anions (SO/sub 4//sup 2 -/, NO/sub 3//sup -/, Cl/sup -/, and F/sup -/), monomeric aluminum, total inorganic carbon, and an organic acid analog throughout the lake-watershed system. The model segments heterogeneous lake-watershed systems into cascades of homogeneous compartments. Precipitation is routed through the compartments using hydraulic formulations and the principle of continuity. Alkalinity is used as a master variable; major alkalinity producing and consuming reactions are simulated. Slow reactions are presented by rate expressions; fast reactions by multiphase equilibria. Modeled processes are all formulated in terms of deterministic equations. Application of the model involves eight steps: (1) system segmentation, (2) preparation of data on lake-watershed characteristics, (3) selection of model coefficients, (4) preparation of wet and dry deposition data, (5) model calibration, (6) sensitivity analysis, (7) hypotheses testing, and (8) evaluation of management scenarios. 89 references, 36 figures, 8 tables.

  10. Diet of yellow-billed loons (Gavia adamsii) in Arctic lakes during the nesting season inferred from fatty acid analysis

    USGS Publications Warehouse

    Haynes, T B; Schmutz, Joel A.; Bromaghin, Jeffrey; Iverson, S J; Padula, V M; Rosenberger, A E

    2015-01-01

    Understanding the dietary habits of yellow-billed loons (Gavia adamsii) can give important insights into their ecology, however, studying the diet of loons is difficult when direct observation or specimen collection is impractical. We investigate the diet of yellow-billed loons nesting on the Arctic Coastal Plain of Alaska using quantitative fatty acid signature analysis. Tissue analysis from 26 yellow-billed loons and eleven prey groups (nine fish species and two invertebrate groups) from Arctic lakes suggests that yellow-billed loons are eating high proportions of Alaska blackfish (Dallia pectoralis), broad whitefish (Coregonus nasus) and three-spined stickleback (Gasterosteus aculeatus) during late spring and early summer. The prominence of blackfish in diets highlights the widespread availability of blackfish during the early stages of loon nesting, soon after spring thaw. The high proportions of broad whitefish and three-spined stickleback may reflect a residual signal from the coastal staging period prior to establishing nesting territories on lakes, when loons are more likely to encounter these species. Our analyses were sensitive to the choice of calibration coefficient based on data from three different species, indicating the need for development of loon-specific coefficients for future study and confirmation of our results. Regardless, fish that are coastally distributed and that successfully overwinter in lakes are likely key food items for yellow-billed loons early in the nesting season.

  11. Possibilities for detailed dating of peat bog deposits

    SciTech Connect

    Punning, J.; Ilomets, M.; Koff, T. )

    1993-01-01

    Geochemical and palynological data as well as radiocarbon dating were used to study the peat bog deposits in Niinsarre bog, northeast Estonia. The aim of this study was to establish criteria for determining a detailed chronology, which is important, for example, in studying paleoevents and historical monitoring. In some cases, they can use cumulative pollen data, as well as cumulative chemical and peat bulk density data. Material was gathered for [sup 14]C dating from three parallel samples taken from cores ca. 10--20 cm apart using a Russian peat sampler. Samples for peat bulk density, palynological and chemical measurements were taken from the same cores. To measure peat bulk density, the authors used a continuous sampling method. Sampling frequency was calculated to cover layers formed over 50 yr.

  12. Toxicity of acid mine pit lake water remediated with limestone and phosphorus

    SciTech Connect

    Neil, L.L.; McCullough, C.D.; Lund, M.A.; Evans, L.H.; Tsvetnenko, Y.

    2009-11-15

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH similar to 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  13. Comparison of different methods to determine the degree of peat decomposition in peat bogs

    NASA Astrophysics Data System (ADS)

    Biester, H.; Knorr, K.-H.; Schellekens, J.; Basler, A.; Hermanns, Y.-M.

    2014-05-01

    composition indicate that peat decomposition in the KK bog is mainly characterized by preferential decomposition of phenols and polysaccharides and relative enrichment of aliphatics during drier periods. Enrichment of lignin and other aromatics during decomposition was also observed but showed less variation than polysaccharides or aliphatics, and presumably reflects changes in vegetation associated with changes in hydrology of the bogs. Significant correlations with polysaccharide and aliphatic pyrolysis products were found for C / N ratios, FTIR-band intensities and for hydrogen index values, supporting that these decomposition indices provide reasonable information. Correlations of polysaccharide and aliphatic pyrolysis products with oxygen index values and δ13C was weaker, assumingly indicating carboxylation of the peat during drier periods and enrichment of isotopically lighter peat components during decomposition, respectively. FTIR, C / N ratio, pyrolysis-GC-MS analyses and Rock Eval hydrogen indices appear to reflect mass loss and related changes in the molecular peat composition during mineralization best. Pyrolysis-GC-MS allows disentangling the decomposition processes and vegetation changes. UV-ABS measurements of alkaline peat extracts show only weak correlation with other decomposition proxies and pyrolysis results as they mainly reflect the formation of humic acids through humification and to a lesser extent mass loss during mineralization.

  14. Fate and Transport of Road Salt During Snowmelt Through a Calcareous Fen: Kampoosa Bog, Stockbridge, Massachusetts

    NASA Astrophysics Data System (ADS)

    Rhodes, A. L.; Guswa, A. J.; Pufall, A.

    2007-12-01

    Kampoosa Bog is the largest and most ecologically diverse calcareous lake-basin fen in Massachusetts. Situated within a 4.7 km2 drainage basin, the open fen (approx. 20 acres) consists of a floating mat of sedges (incl. Carex aquatilis and Cladium mariscoides) that overlie peat and lake clay deposits. Mineral weathering of marble bedrock within the drainage basin supplies highly alkaline ground and surface waters to the fen basin. The natural chemistry has been greatly altered by road salt runoff from the Massaschusetts Turnpike, and in question is whether disturbance from the Turnpike and a gas pipline has facilitated aggressive growth by the invasive species Phragmites australis. Considered to be one of the most significant rare species habitats in the state, Massachusetts has designated Kampoosa Bog an Area of Critical Environmental Concern, and a committee representing several local, regional, and state agencies, organizations, and citizens manages the wetland. The purpose of this study is to characterize the hydrologic and chemical response of the wetland during snowmelt events to understand the fate and movement of road salt (NaCl). Concentrations of Na and Cl in the fen groundwater are greatest close to the Turnpike. Concentrations decrease with distance downstream but are still greatly elevated relative to sites upstream of the Turnpike. During snowmelt events, the fen's outlet shows a sharp rise in Na and Cl concentrations at the onset of melting that is soon diluted by the added meltwater. The Na and Cl flux, however, is greatest at peak discharge, suggesting that high-flow events are significant periods of export of dissolved salts from the fen. Pure dissolution of rock salt produces an equal molar ratio between Na and Cl, and sodium and chloride imbalances in stream and ground waters suggest that ~20% of the Na is stored on cation exchange sites within the peat. The largest imbalances between Na and Cl occur deeper within the peat, where the peat is

  15. Insights from the metagenome of an acid salt lake: the role of biology in an extreme depositional environment.

    PubMed

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206

  16. Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment

    PubMed Central

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L.; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206

  17. Long term response of acid-sensitive Vermont Lakes to sulfate deposition

    EPA Science Inventory

    Atmospheric deposition of sulfur can negatively affect the health of lakes and streams, particularly in poorly buffered catchments. In response to the Clean Air Act Amendments, wet deposition of sulfate decreased more than 35% in Vermont between 1990 and 2008. However, most of ...

  18. MODELING OF LONG-TERM LAKE ALKALINITY RESPONSES TO ACID DEPOSITION

    EPA Science Inventory

    A watershed acidification model for two New York state lakes was verified by simulating an additional year of field data that was excluded during the calibration period. he findings confirmed calibration and indicated that the most sensitive physicochemical and biochemical proces...

  19. Design considerations for ozone and acid aerosol exposure and health investigations: the Fairview Lake summer camp - photochemical smog case study

    SciTech Connect

    Lioy, P.J.; Spektor, D.; Thurston, G.; Citak, K.; Lippmann, M.; Bock, N.; Speizer, F.E.; Hayes, C.

    1987-01-01

    The health effects associated with ozone and acidic particulate sulfate exposures to active children have been and are being addressed in field epidemiological studies at summer camps in rural areas of the Northeastern US. The rationale and study design for studies, which have been conducted in Pennsylvania and New Jersey, are developed and reviewed. As background, results are summarized for human clinical and epidemiological studies and animal studies. These provided the basis for selection of health outcomes measured results from chemical characterization and transport studies are reviewed to define the criteria used for selection of a site which is effected by high ozone and acid species during photochemical smog episodes. The integration of the study design is discussed in detail by reviewing its application to the 1984 - Fairview Lake Camp Study (July 8 to August 4). The features of the camp study are reviewed, including the study population, pulmonary function procedures and analyses, air pollution monitoring instrumentation, and the site characteristics. The pollution exposure data are presented, for ozone and acidic sulfates and examined for the range and distribution concentration. Further information is provided on the intensity and duration of episodes encountered over the course of the study. Episodes occurred which had ozone and acid sulfates, ozone alone, and acid sulfates alone. 56 references, 9 figures.

  20. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This book contains lesson plans that provide an integrated approach to incorporating Great Lakes environmental issues into elementary subjects. The book is divided into three subject areas: (1) History, which includes the origins of the Great Lakes, Great Lakes people, and shipwrecks; (2) Social Studies, which covers government, acid rain as a…

  1. Animal and vegetation patterns in natural and man-made bog pools: implications for restoration

    USGS Publications Warehouse

    Mazerolle, M.J.; Poulin, M.; Lavoie, C.; Rochefort, L.; Desrochers, A.; Drolet, B.

    2006-01-01

    1. Peatlands have suffered great losses following drainage for agriculture, forestry, urbanisation, or peat mining, near inhabited areas. We evaluated the faunal and vegetation patterns after restoration of a peatland formerly mined for peat. We assessed whether bog pools created during restoration are similar to natural bog pools in terms of water chemistry, vegetation structure and composition, as well as amphibian and arthropod occurrence patterns. 2. Both avian species richness and peatland vegetation cover at the site increased following restoration. Within bog pools, however, the vegetation composition differed between natural and man-made pools. The cover of low shrubs, Sphagnum moss, submerged, emergent and floating vegetation in man-made pools was lower than in natural pools, whereas pH was higher than in typical bog pools. Dominant plant species also differed between man-made and natural pools. 3. Amphibian tadpoles, juveniles and adults occurred more often in man-made pools than natural bog pools. Although some arthropods, including Coleoptera bog specialists, readily colonised the pools, their abundance was two to 26 times lower than in natural bog pools. Plant introduction in bog pools, at the stocking densities we applied, had no effect on the occurrence of most groups. 4. We conclude that our restoration efforts were partially successful. Peatland-wide vegetation patterns following restoration mimicked those of natural peatlands, but 4 years were not sufficient for man-made pools to fully emulate the characteristics of natural bog pools.

  2. Key plant species and succession patterns associated to past fen-bog transitions - perspective to future

    NASA Astrophysics Data System (ADS)

    Väliranta, Minna; Luoto, Miska; Juutinen, Sari; Korhola, Atte; Tuittila, Eeva-stiina

    2016-04-01

    Minerotrophic fens and ombrotrophic bogs differ in their hydrology, vegetation and carbon dynamics and their geographical distribution seems to be linked to certain climate parameters, such as temperature and effective precipitation. Currently bogs dominate the southern boreal zone but the climate warming with altered temperature and effective precipitation may shift the distribution of bog zone northwards. In this study, we first used plant macrofossil method and radiocarbon analysis to identify and date past fen-bog transitions. These transitions were compared to major Holocene climate phases. Subsequently, palaeoecological data were associated to ecological and environmental data collected along the current fen-bog ecotone in Finland. We identified three successional phases 1) initial minerotrophic fen phase 2) Eriophorum vaginatum-dominated oligotrophic fen phase which was followed by 3) ombrorophic bog phase. Duration of these phases varied but late Holocene timing of fen-bog transition showed some consistency. Based on palaeoecological data 57 % of the modern ecotone peatlands were classified to be in a fen phase, 10 % were in an Eriophorum-dominated phase and 33 % were going through a transition from fen to bog. The study showed that regime shifts are driven by autogenic succession and climate but also fires may efficiently control succession pathways. Our results support the hypothesis that climate change can promote the ombrotrophication process in the southern border of the fen-bog ecotone due to changes in hydrology balance.

  3. Reconnaissance of Colorado Front Range bogs for uranium and other elements

    SciTech Connect

    Owen, D.E.; Schumann, R.R.; Otton, J.K.

    1987-08-01

    Alpine bogs form along spring-fed valley floors and in steam drainages restricted by moraines, slides, and beaver dams. The bogs are generally young (Holocene) and contain a few tens of centimeters to several meters of peat and organic-rich muck. Organic matter has a great affinity for cations such as uranium; the geochemical enrichment factor between the peats and uraniferous ground water can approach 10,000 to 1. Because the bog sediments are geologically young, the uranium is in gross disequilibrium and has low radioactivity, thus it is undetectable by ground and aerial gamma surveys. Communities that derive a part of their water supplies from drainages containing uraniferous bogs face a potential health threat because the uranium is loosely bound and may easily be remobilized by ground water moving through the bogs. Reconnaissance sampling of bogs was conducted in the Colorado Front Range from the South Park area to the Colorado-Wyoming state line. Several bogs have uranium concentrations of 1000-3000 ppm, but most bogs have uranium concentrations in the 10-100 ppm range. Zinc concentrations of 100-1000 ppm are found in some bogs and many other metallic elements are present in concentrations between 10 and 100 ppm. Concentrations between 100 and 1000 ppm of some of the rare earth elements (e.g., Ce, La, Nd, Yb) were found in the Cripple Creek area.

  4. A Record of Moisture History in Hawaii since the Arrival of Humans Inferred from Testate Amoebae and Cladocera Fossils Preserved in Bog Sediments

    NASA Astrophysics Data System (ADS)

    Barrett, K.; Kim, S. H.; Hotchkiss, S.

    2015-12-01

    Around AD 800, Polynesians arrived on the Hawaiian Islands where they expanded and intensified distinct agricultural practices in the islands' wet and dry regions. Dryland farming productivity in particular would have been sensitive to atmospheric rearrangements of the ENSO and PDO systems that affect rainfall in Hawaii. The few detailed terrestrial paleoclimate records in Hawaii are mainly derived from vegetation proxies (e.g. pollen, seeds, fruits, and plant biomarkers) which are heavily influenced by widespread landscape modification following human arrival. Here we present initial results of an independent paleomoisture proxy: fossil remains of moisture-sensitive testate amoebae (Protozoa: Rhizopoda) and cladocera (water fleas) preserved in continuous bog sediments on Kohala Volcano uplsope of the ancient Kohala agricultural field system, one of the largest dryland field systems in Hawaii. Hydrologic conditions inferred from testate amoebae and cladoceran fossil assemblages correlate with observed decadal moisture regimes in Hawaii and state changes of the PDO system during the last century. Testate ameoabe and cladoceran fossils in older sediments reveal an alternating history of very wet, lake-forming conditions on the bog surface to periods when bog soils were much drier than today's, demonstrating that this method can be paired with vegetation proxies to provide a better understanding of hydroclimate variability in prehistoric Hawaii.

  5. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  6. The use of amino acid analyses in (palaeo-) limnological investigations: A comparative study of four Indian lakes in different climate regimes

    NASA Astrophysics Data System (ADS)

    Menzel, Philip; Anupama, Krishnamurthy; Basavaiah, Nathani; Das, Brijraj Krishna; Gaye, Birgit; Herrmann, Nicole; Prasad, Sushma

    2015-07-01

    In the present study, we report the results of comprehensive amino acid (AA) analyses of four Indian lakes from different climate regimes. We focus on the investigation of sediment cores retrieved from the lakes but data of modern sediment as well as vascular plant, soil, and suspended particulate matter samples from individual lakes are also presented. Commonly used degradation and organic matter source indices are tested for their applicability to the lake sediments, and we discuss potential reasons for possible limitations. A principal component analysis including the monomeric AA composition of organic matter of all analysed samples indicates that differences in organic matter sources and the environmental properties of the individual lakes are responsible for the major variability in monomeric AA distribution of the different samples. However, the PCA also gives a factor that most probably separates the samples according to their state of organic matter degradation. Using the factor loadings of the individual AA monomers, we calculate a lake sediment degradation index (LI) that might be applicable to other palaeo-lake investigations.

  7. Alpha- and beta-Proteobacteria control the consumption and release of amino acids on lake snow aggregates.

    PubMed

    Schweitzer, B; Huber, I; Amann, R; Ludwig, W; Simon, M

    2001-02-01

    We analyzed the composition of aggregate (lake snow)-associated bacterial communities in Lake Constance from 1994 until 1996 between a depth of 25 m and the sediment surface at 110 m by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes of various specificity. In addition, we experimentally examined the turnover of dissolved amino acids and carbohydrates together with the microbial colonization of aggregates formed in rolling tanks in the lab. Generally, between 40 and more than 80% of the microbes enumerated by DAPI staining (4',6'-diamidino-2-phenylindole) were detected as Bacteria by the probe EUB338. At a depth of 25 m, 10.5% +/- 7.9% and 14.2% +/- 10.2% of the DAPI cell counts were detected by probes specific for alpha- and beta-Proteobacteria. These proportions increased to 12.0% +/- 3.3% and 54.0% +/- 5.9% at a depth of 50 m but decreased again at the sediment surface at 110 m to 2.7% +/- 1.4% and 41.1% +/- 8.4%, indicating a clear dominance of beta-Proteobacteria at depths of 50 and 110 m, where aggregates have an age of 3 to 5 and 8 to 11 days, respectively. From 50 m to the sediment surface, cells detected by a Cytophaga/Flavobacteria-specific probe (CF319a) comprised increasing proportions up to 18% of the DAPI cell counts. gamma-Proteobacteria always comprised minor proportions of the aggregate-associated bacterial community. Using only two probes highly specific for clusters of bacteria closely related to Sphingomonas species and Brevundimonas diminuta, we identified between 16 and 60% of the alpha-Proteobacteria. In addition, with three probes highly specific for close relatives of the beta-Proteobacteria Duganella zoogloeoides (formerly Zoogloea ramigera), Acidovorax facilis, and Hydrogenophaga palleroni, bacteria common in activated sludge, 42 to 70% of the beta-Proteobacteria were identified. In the early phase (<20 h) of 11 of the 15 experimental incubations of aggregates, dissolved amino acids were consumed by the

  8. The role of pegmatites and acid fluids for REE/HFSE mobilization in the Strange Lake peralkaline granitic pluton, Canada

    NASA Astrophysics Data System (ADS)

    Gysi, A. P.; Williams-Jones, A.

    2012-12-01

    . We modeled the interaction of HF-NaCl and HF-HCl-NaCl fluids with a Strange Lake pegmatite at 400-250 °C to test different alteration scenarios. The simulations indicated that a stronger acid than HF is needed to shift the system towards fluid buffered pH values, which are required to remobilize the REE and Zr. Comparison of the field study with numerical simulation indicates that for the effective hydrothermal remobilization of REE/HFSE, the system needs a source of elevated acidity and high fluid/rock ratios. We propose a model in which the Strange Lake pegmatites were a source of acidic fluids and upon cooling were affected by autometasomatic alteration due to increased acidity of the fluids, creating pathways for REE/HFSE mobilization.

  9. Biogeochemistry of carbon and related major and trace elements in peat bog soils of the middle taiga of Western Siberia (Russia).

    NASA Astrophysics Data System (ADS)

    Stepanova, V. A.; Mironycheva-Tokareva, N. P.; Pokrovsky, O. S.

    2012-04-01

    Global climate changes impact the status of wetland ecosystems shifting the balances of the carbon, macro-, and microelements cycles. This study aims to establish the features of accumulation and distribution of major- and trace elements in the organic layer of peat bog soils, belonging to different ecosystems of the oligotrophic bog complex located in the middle taiga of Western Siberia (Khanty-Mansiysk region, Russia). Key areas which are selected for this study include the following bog conjugate elementary ecosystems: higher ryam, lower ryam, ridge-hollow complex, and oligotrophic poor fen as characterized previously [1]. We have sampled various peat types along the entire length of the soil column (every 10 cm down to 3 m). Peat samples were analyzed for a wide range of macro- and microelements using an ICP-MS technique following full acid digestion in a microwave oven. These measurements allowed quantitative estimates of major- and trace elements in the peat deposits within the whole bog complex and individual elementary landscapes. Based on the data obtained, the lateral and radial geochemical structures of the bog landscapes were determined and clarified for the first time for middle taiga of the West Siberian plain. The similar regime of mineral nutrition during the complete bog landscape formation was detected for the peat deposits based on the measurements of some major- and trace elements (Ca, Fe, Mg, etc.). The vertical distribution of some major and some trace elements along the profile of peat column is rather uniform with relatively strong increase in the bottom organic layers. This strongly suggests the similarity of the processes of element accumulation in the peat and relatively weak post depositional redistribution of elements within the peat soil profile. Overall, obtained corroborate the existing view on chemical composition of peats being determined by botanical peat's components (which forms this peat deposit), atmospheric precipitation

  10. Emissions of biogenic sulfur gases from northern bogs and fens

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in tropic status was investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

  11. Impacts of changing food webs in Lake Ontario: Implications of dietary fatty acids on growth of alewives

    USGS Publications Warehouse

    Snyder, R.J.; Demarche, C.J.; Honeyfield, D.C.

    2011-01-01

    Declines in the abundance and condition of Great Lakes Alewives have been reported periodically during the last two decades, and the reasons for these declines remain unclear. To better understand how food web changes may influence Alewife growth and Wisconsin growth model predictions, we fed Alewives isocaloric diets high in omega-6 fatty acids (corn oil) or high in omega-3 fatty acids (fish oil). Alewives were fed the experimental diets at either 1% ("low ration") or 3% ("high ration") of their wet body weight per day. After six weeks, Alewives maintained on the high ration diets were significantly larger than those fed the low ration diets. Moreover, Alewives given the high ration fish oil diet were significantly larger than those maintained on the high ration corn oil diet after six weeks of growth. Body lipid, energy density and total body energy of Alewives on the high ration diets were significantly higher than those fed the low ration diets, and total body energy was significantly higher in Alewives given the high ration fish oil diet compared to those on the high ration corn oil diet. The current Wisconsin bioenergetics model underestimated growth and overestimated food consumption by Alewives in our study. Alewife thiaminase activity was similar among treatment groups. Overall, our results suggest that future food web changes in Lake Ontario, particularly if they involve decreases in the abundance of lipid rich prey items such as Mysis, may reduce Alewife growth rates and total body energy due to reductions in the availability of dietary omega-3 fatty acids. ?? 2011 AEHMS.

  12. Sediment amino acids as indicators of anthropogenic activities and potential environmental risk in Erhai Lake, Southwest China.

    PubMed

    Ni, Zhaokui; Wang, Shengrui; Zhang, Mianmian

    2016-05-01

    Total hydrolysable amino acids (THAAs) constitute the most important fraction of labile nitrogen. Anthropogenic activities directly influence various biogeochemical cycles and then accelerate lake ecosystem deterioration. This is the first study that has established the relationship between sediment THAAs and anthropogenic activities using dated sediment cores, and evaluated the possibility of THAAs release at the sediment interface based on changes in environmental conditions in Erhai Lake. The results showed that historical distribution and fractions of THAAs could be divided into three stages: a stable period before the 1970s, a clear increasing period from the 1970s to 1990s, and a gradually steady period that started after the 1990s. The chemical fraction, aromatic and sulfur amino acids (AAs) accounted for only ≤3% of THAAs. Basic AAs accounted for 5-17% of THAAs, and remained at a relatively stable level. However, acidic and neutral AAs, which accounted for 19-44% and 35-69% of THAAs, respectively, were the predominant factors causing THAAs to increase due to rapid agricultural intensification and intensification of contemporary sedimentation of phytoplankton or macrophytes since the 1970s. These trends were closely related to both anthropogenic activities and natural processes, which implied that sediment THAAs could act as an effective indicator that reflects anthropogenic activities and aquatic environmental characteristics. The current contributions of sediment THAAs on TN and TOC were <5% and 1.5%, respectively. However, the dramatic increase in THAAs in the sediment cores indicated that there was a huge potential source of labile nitrogen for the overlying water under certain environmental conditions. Correlation analysis suggested that the release of THAAs was negatively correlated with pH, whereas positively correlated with bacterial number and degree of OM mineralization, which particularly depend on the stability of HFOM. Therefore, the risk of

  13. Terrestrial isopod community as indicator of succession in a peat bog

    PubMed Central

    Antonović, Ivan; Brigić, Andreja; Sedlar, Zorana; Bedek, Jana; Šoštarić, Renata

    2012-01-01

    Abstract Terrestrial isopods were studied in the Dubravica peat bog and surrounding forest in the northwestern Croatia. Sampling was conducted using pitfall traps over a two year period. Studied peat bog has a history of drastically decrease in area during the last five decades mainly due to the process of natural succession and changes in the water level. A total of 389 isopod individuals belonging to 8 species were captured. Species richness did not significantly differ between bog, edge and surrounding forest. High species richness at the bog is most likely the result of progressive vegetation succession, small size of the bog and interspecific relationships, such as predation. With spreading of Molinia grass on the peat bog, upper layers of Sphagnum mosses become less humid and probably more suitable for forest species that slowly colonise bog area. The highest diversity was found at the edge mainly due to the edge effect and seasonal immigration, but also possibly due to high abundance and predator pressure of the Myrmica ants and lycosid spiders at the bog site. The most abundant species were Trachelipus rathkii and Protracheoniscus politus, in the bog area and in the forest, respectively. Bog specific species were not recorded and the majority of the species collected belong to the group of tyrphoneutral species. However, Hyloniscus adonis could be considered as a tyrphoxenous species regarding its habitat preferences. Most of collected isopod species are widespread eurytopic species that usually inhabit various habitats and therefore indicate negative successive changes or degradation processes in the peat bog. PMID:22536107

  14. Geochemical evidence for the hydrology of a Tamarack-peat bog, Brimfield Township, Portage County, Ohio

    SciTech Connect

    Wilson, T.P.; Miller, L.A. . Dept. of Geology and Water Resources)

    1992-01-01

    Peat Bogs and wetlands represent unique environmental settings what are increasingly subjected to anthropogenic stresses involving inputs of water and chemicals. This study used geochemical and hydrologic monitoring to determine the inputs and fates of elements of the Kent-Brimfield bog located in Portage County, Ohio. Based on physical and chemical information collected over one year, a model is proposed here describing the hydrologic connection between a bog and shallow ground water surrounding the bog. The chemical composition of precipitation, soil water and ground water in the bog vicinity were monitored for one year. Field measurements included water levels, pH, Eh, alkalinity and temperature. Trace metal content of the peat, the pore waters, soil water and ground waters were determined by GFAA, ICP and LIC methods. This bog was found to function as part of a perched water table aquifer. Water in the upper 3 m of the bog is found to be chemically similar to precipitation, but modified by reactions involving dissolution of mineral matter and biologic processes. The chemistry of water deeper in the bog (> 3m) resembles shallow ground water surrounding the bog, modified by weathering of underlying geologic materials and sulfate reduction. This similarity, along with ground water elevations within and outside of the bog, supports that shallow ground water interacts with, and helps maintain water levels in the upper surface of the bog. From these results, a model is proposed for the seasonal variations in hydrologic processes operating in the wetland and surrounding basin, and describes how wetlands may change seasonally from being influent to effluent systems.

  15. SHORT-TERM CHANGES IN THE BASE NEUTRALIZING CAPACITY OF AN ACID ADIRONDACK LAKE, NEW YORK

    EPA Science Inventory

    Concern and controversy over the effects of acidic deposition on low ionic strength surface wa ters has led to much discussion on the nature and extent of proton transformations within acid sensitive ecosystems. The source of base neutralizing capacity(BNC) within acid surface wa...

  16. Late Holocene peatland carbon dynamics inferred from Teringi Bog in southern Estonia

    NASA Astrophysics Data System (ADS)

    Hill, Kristyn; Stansell, Nathan; Klein, Eric; Borges, Alberto

    2015-04-01

    Radiocarbon dated peat cores collected along a transect from Teringi Bog, an ombotrophic peatland, record changes in carbon accumulation rates during the late Holocene in response to shifting climatic conditions. Stable oxygen isotope records from nearby lakes indicate that periods of wetter conditions during the Holocene occurred at times when carbon accumulation rates were higher at Teringi. This suggests that shifting water table conditions drove much of the observed changes in carbon dynamics. Modern surface process observations indicate that carbon accumulation rates are indeed more variable at locations where the height of the water table is highly sensitive to rainfall amounts. In addition, carbon isotopes measured on water samples indicate that there is a close relationship between δ13C values and methane concentrations, suggesting that methanogenesis is strongly biomediated, and likewise varies as a function of the regional hydrology. Regardless, all of the cores collected indicate that there was a trend toward higher carbon accumulation rates from ~4.2 to 3.5 ka when precipitation amounts were higher, followed by lower values under drier conditions until ~2.8 ka. There was then a trend toward higher carbon accumulation rates through the remaining late Holocene. These observations further highlight the importance of high latitude peatland in global carbon dynamics as both a potential sink and source of CO2 and CH4.

  17. New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northeastern U.S.

    EPA Science Inventory

    The last several decades have seen decreases in SO42- deposition across the northeastern United States. As a result, SO42- concentrations in lakes and streams have also decreased and many surface water bodies have become less acidic. During the same time period, there has been ...

  18. Growing spherulitic calcite grains in saline, hyperalkaline lakes: experimental evaluation of the effects of Mg-clays and organic acids

    NASA Astrophysics Data System (ADS)

    Mercedes-Martín, R.; Rogerson, M. R.; Brasier, A. T.; Vonhof, H. B.; Prior, T. J.; Fellows, S. M.; Reijmer, J. J. G.; Billing, I.; Pedley, H. M.

    2016-04-01

    The origin of spherical-radial calcite bodies - spherulites - in sublacustrine, hyperalkaline and saline systems is unclear, and therefore their palaeoenvironmental significance as allochems is disputed. Here, we experimentally investigate two hypotheses concerning the origin of spherulites. The first is that spherulites precipitate from solutions super-saturated with respect to magnesium-silicate clays, such as stevensite. The second is that spherulite precipitation happens in the presence of dissolved, organic acid molecules. In both cases, experiments were performed under sterile conditions using large batches of a synthetic and cell-free solution replicating waters found in hyperalkaline, saline lakes (such as Mono Lake, California). Our experimental results show that a highly alkaline and highly saline solution supersaturated with respect to calcite (control solution) will precipitate euhedral to subhedral rhombic and trigonal bladed calcite crystals. The same solution supersaturated with respect to stevensite precipitates sheet-like stevensite crystals rather than a gel, and calcite precipitation is reduced by ~ 50% compared to the control solution, producing a mixture of patchy prismatic subhedral to euhedral, and minor needle-like, calcite crystals. Enhanced magnesium concentration in solution is the likely the cause of decreased volumes of calcite precipitation, as this raised equilibrium ion activity ratio in the solution. On the other hand, when alginic acid was present then the result was widespread development of micron-size calcium carbonate spherulite bodies. With further growth time, but falling supersaturation, these spherules fused into botryoidal-topped crusts made of micron-size fibro-radial calcite crystals. We conclude that the simplest tested mechanism to deposit significant spherical-radial calcite bodies is to begin with a strongly supersaturated solution that contains specific but environmentally-common organic acids. Furthermore, we found

  19. A multiproxy study of Holocene water-depth and environmental changes in Lake St Ana, Eastern Carpathian Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Magyari, E. K.; Buczkó, K.; Braun, M.; Jakab, G.

    2009-04-01

    This study presents the results of a multi-disciplinary investigation carried out on the sediment of a crater lake (Lake Saint Ana, 950 m a.s.l.) from the Eastern Carpathian Mountains. The lake is set in a base-poor volcanic environment with oligotrophic and slightly acidic water. Loss-on-ignition, major and trace element, pollen, plant macrofossil and siliceous algae analyses were used to reconstruct Holocene environmental and water-depth changes. Diatom-based transfer functions were applied to estimate the lake's trophic status and pH, while reconstruction of the water-depth changes was based on the plant macrofossil and diatom records. The lowest Holocene water-depths were found between 9,000 and 7,400 calibrated BP years, when the crater was occupied by Sphagnum-bog and bog-pools. The major trend from 7,400 years BP was a gradual increase, but the basin was still dominated by poor-fen and poor fen-pools. Significant increases in water-depth, and meso/oligotrophic lake conditions were found from 5,350(1), 3,300(2) and 2,700 years BP. Of these, the first two coincided with major terrestrial vegetation changes, namely the establishment of Carpinus betulus on the crater slope (1), and the replacement of the lakeshore Picea abies forest by Fagus sylvatica (2). The chemical record clearly indicated significant soil changes along with the canopy changes (from coniferous to deciduous), that in turn led to increased in-lake productivity and pH. A further increase in water-depth around 2,700 years BP resulted in stable thermal stratification and hypolimnetic anoxia that via P-release further increased in-lake productivity and eventually led to phytoplankton blooms with large populations of Scenedesmus cf. S. brasiliensis. High productivity was depressed by anthropogenic lakeshore forest clearances commencing from ca. 1,000 years BP that led to the re-establishment of Picea abies on the lakeshore and consequent acidification of the lake-water. On the whole, these data

  20. Isotope evidence for N2-fixation in Sphagnum peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Jackova, Ivana; Buzek, Frantisek; Stepanova, Marketa; Veselovsky, Frantisek; Curik, Jan; Prechova, Eva

    2016-04-01

    Waterlogged organic soils store as much as 30 % of the world's soil carbon (C), and 15 % of the world's soil nitrogen (N). In the era of climate change, wetlands are vulnerable to increasing temperatures and prolonged periods of low rainfall. Higher rates of microbial processes and/or changing availability of oxygen may lead to peat thinning and elevated emissions of greenhouse gases (mostly CO2, but also CH4 and N2O). Biogeochemical cycling of C and N in peat bogs is coupled. Under low levels of pollution by reactive nitrogen (NO3-, NH4+), increasing N inputs may positively affect C storage in peat. Recent studies in North America and Scandinavia have suggested that pristine bogs are characterized by significant rates of microbial N2 fixation that augments C storage in the peat substrate. We present a nitrogen isotope study aimed at corroborating these findings. We conducted an isotope inventory of N fluxes and pools at two Sphagnum-dominated ombrotrophic peat bogs in the Czech Republic (Central Europe). For the first time, we present a time-series of del15N values of atmospheric input at the same locations as del15N values of living Sphagnum and peat. The mean del15N values systematically increased in the order: input NH4+ (-10.0 ‰) < input NO3- (-7.9 ‰) < peat porewater (-5.6 ‰) < Sphagnum (-5.0 ‰) < shallow peat (-4.2 ‰) < deep peat (-2.2 ‰) < runoff (-1.4 ‰) < porewater N2O (1.4 ‰). Importantly, N of Sphagnum was isotopically heavier than N of the atmospheric input (p < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N from atmospheric N2 (del15N N2 = 0 ‰). We conlude that the N isotope systematics at the two Czech sites is consistent with the concept of significant N2 fixation

  1. Ferricrete, manganocrete, and bog iron occurrences with selected sedge bogs and active iron bogs and springs in the upper Animas River watershed, San Juan County, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Church, Stanley E.; Verplanck, Philip L.; Wirt, Laurie

    2003-01-01

    During 1996 to 2000, the Bureau of Land Management, National Park Service, Environmental Protection Agency, United States Department of Agriculture (USDA) Forest Service, and the U.S. Geological Survey (USGS) developed a coordinated strategy to (1) study the environmental effects of historical mining on Federal lands, and (2) remediate contaminated sites that have the greatest impact on water quality and ecosystem health. This dataset provides information that contributes to these overall objectives and is part of the USGS Abandoned Mine Lands Initiative. Data presented here represent ferricrete occurrences and selected iron bogs and springs in the upper Animas River watershed in San Juan County near Silverton, Colorado. Ferricretes (stratified iron and manganese oxyhydroxide-cemented sedimentary deposits) are one indicator of the geochemical baseline conditions as well as the effect that weathering of mineralized rocks had on water quality in the Animas River watershed prior to mining. Logs and wood fragments preserved in several ferricretes in the upper Animas River watershed, collected primarily along streams, yield radiocarbon ages of modern to 9,580 years B.P. (P.L. Verplanck, D.B. Yager, and S.E. Church, work in progress). The presence of ferricrete deposits along the current stream courses indicates that climate and physiography of the Animas River watershed have been relatively constant throughout the Holocene and that weathering processes have been ongoing for thousands of years prior to historical mining activities. Thus, by knowing where ferricrete is preserved in the watershed today, land-management agencies have an indication of (1) where metal precipitation from weathering of altered rocks has occurred in the past, and (2) where this process is ongoing and may confound remediation efforts. These data are included as two coverages-a ferricrete coverage and a bogs and springs coverage. The coverages are included in ArcInfo shapefile and Arc

  2. EVALUATING CUMULATIVE EFFECTS OF DISTURBANCE ON THE HYDROLOGIC FUNCTION OF BOGS, FENS, AND MIRES

    EPA Science Inventory

    Few quantitative studies have been done on the hydrology of fens, bogs and mires, and consequently any predictions of the cumulative impacts of disturbances on their hydrologic functions is extremely difficult. or example, few data are available on the role of bogs and fens with ...

  3. The bog landforms of continental western Canada in relation to climate and permafrost patterns

    SciTech Connect

    Vitt, D.H.; Halsey, L.A. ); Zoltai, S.C. )

    1994-02-01

    In continental western Canada, discontinuous permafrost is almost always restricted to ombrotrophic peatlands (bogs). Bogs occur mostly as islands or peninsulas in large, often complex fens or are confined to small basins. Permafrost may be present in extensive peat plateaus (or more locally as palsas) and was preceded by a well-developed layer of Sphagnum that served to insulate the peat and lower the pore water temperatures. Air photo interpretation reveals the occurrence of bogs with five types of surface physiography. Concentrated to the south are bogs without internal patterns that have never had permafrost. Dominating the mid-latitudes are bogs with internal lawns and fens with internal lawns (mostly representing former bogs) that had permafrost lenses in the past that have recently degraded. Concentrated in the northwest are peat plateaus without internal lawns or distinct collapse scars, but with permafrost; dominating in the northernmost area are peat plateaus with extensive permafrost and collapse scars. Relationships are apparent between the current - 1[degrees]C isotherm and the southern occurrence of peat plateaus and between the 0[degrees]C isotherm and the southern edge of bogs and fens with internal lawns. We interpret bogs and fens with internal lawns to represent areas where permafrost degradation is currently occurring at a greater rate than aggradation, seemingly in response to warmer regional climate, although fire frequency may also be of local importance. 54 refs., 21 figs., 2 tabs.

  4. Genesis of peat-bog soils in the northern taiga spruce forests of the Kola Peninsula

    SciTech Connect

    Nikonov, V.V.

    1981-01-01

    The characteristics of soil formation processes in the Peat-Bog soils of waterlogged spruce phytocenoses on the Kola Peninsula are investigated. It is found that the ash composition of the peat layer is determined primarily by the composition of the buried plant residues. The effect of the chemical composition of water feeding the peat bogs is determined. (Refs. 7).

  5. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  6. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota

    EPA Science Inventory

    We compared the N budgets of an ombrotrophic bog and a minerotrophic fen to quantify the importance of denitrification in peatlands and their watersheds. We also compared the watershed upland mineral soils to bog/fen peat; lagg and transition zone peat to central bog/fen peat; an...

  7. 76 FR 77814 - Cameron LNG, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed BOG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... for the Proposed BOG Liquefaction Project, and Request for Comments on Environmental Issues The staff... assessment (EA) that will discuss the environmental impacts of the BOG Liquefaction Project involving... construct and operate facilities necessary to liquefy boil-off gas (BOG) at its existing liquefied...

  8. 77 FR 2970 - Notice of Intent To Prepare an Environmental Assessment for the Proposed Elba BOG Compressor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... Elba BOG Compressor Project and Request for Comments on Environmental Issues; Southern LNG Company, L.L... Environmental Assessment (EA) that will discuss the environmental impacts of the Elba BOG Compressor Project... (BOG) compression facilities at its liquefied natural gas (LNG) marine terminal on Elba Island...

  9. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    PubMed Central

    Robert, Agnes; Mfilinge, Prosper; Limbu, Samwel M.; Mwita, Chacha J.

    2014-01-01

    Fatty acids (FAs) particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs) play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), Tilapia zillii, and dagaa (Rastrineobola argentea) from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34) compared to L. niloticus (27), T. zillii (26), and R. argentea (21). The levels of EPA differed significantly among the four commercial fish species (F = 6.19,  P = 0.001). The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F = 0.652,  P = 0.583). The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA. PMID:25610654

  10. Geochemical behavior and dissolved species control in acid sand pit lakes, Sepetiba sedimentary basin, Rio de Janeiro, SE - Brazil

    NASA Astrophysics Data System (ADS)

    Marques, Eduardo D.; Sella, Sílvia M.; Bidone, Edison D.; Silva-Filho, Emmanoel V.

    2010-12-01

    This work shows the influence of pluvial waters on dissolved components and mineral equilibrium of four sand pit lakes, located in the Sepetiba sedimentary basin, SE Brazil. The sand mining activities promote sediment oxidation, lowering pH and increasing SO 4 contents. The relatively high acidity of these waters, similar to ore pit lakes environment and associated acid mine drainage, increases weathering rate, especially of silicate minerals, which produces high Al concentrations, the limiting factor for fish aquaculture. During the dry season, basic cations (Ca, Mg, K and Na), SiO 2 and Al show their higher values due to evapoconcentration and pH are buffered. In the beginning of the wet season, the dilution factor by rainwater increases SO 4 and decreases pH values. The aluminum monomeric forms (Al(OH) 2+ and Al(OH) 2+), the most toxic species for aquatic organisms, occur during the dry season, while AlSO 4+ species predominate during the wet season. Gibbsite, allophane, alunite and jurbanite are the reactive mineral phases indicated by PHREEQC modeling. During the dry season, hydroxialuminosilicate allophane is the main phase in equilibrium with the solution, while the sulphate salts alunite and jurbanite predominate in the rainy season due to the increasing of SO 4 values. Gibbsite is also in equilibrium with sand pit lakes waters, pointing out that hydrolysis reaction is a constant process in the system. Comparing to SiO 2, sulphate is the main Al retriever in the pit waters because the most samples (alunite and jurbanite) are in equilibrium with the solution in both seasons. This Al hydrochemical control allied to some precaution, like pH correction and fertilization of these waters, allows the conditions for fishpond culture. Equilibrium of the majority samples with kaolinite (Ca, Mg, Na diagrams) and primary minerals (K diagram) points to moderate weathering rate in sand pit sediments, which cannot be considered for the whole basin due to the anomalous

  11. Magmatic and hydrothermal controls on trace element output at active volcanoes as recorded by spherules of sulfur in acid crater lakes

    NASA Astrophysics Data System (ADS)

    Mason, P. R.; van Bergen, M.; Martinez, M.; Martinez, M.; Sumarti, S.; Sumarti, S.; Valdes, J.; Malavassi, E.; Sriwana, T.

    2001-12-01

    Volcanic crater lakes are a major site of condensation for volatile elements and associated trace elements produced by magmatic activity. Spherules of solid native sulfur up to several mm in diameter with sulfide inclusions (mainly corroded FeS) are common in the dense acidic waters of magmatically active lakes. They were most likely produced as hot gas (e.g. H2S or SO2) was released at the bottom of the lake creating turbulence in pools of liquid sulfur. Analysis of the spherules presents a new opportunity to estimate the magmatic output of a poorly studied group of trace elements including Se, Te, As, Sb and Hg that often present a major environmental hazard in volcanic areas. Sulfur spherules and acid lake waters were sampled from three active subduction-related volcanoes with differing stages of activity and degassing rates. Poás in Costa Rica hosts a highly dynamic crater lake with respect to volume and chemical composition. In contrast, the crater lakes at Kawah Ijen, East Java and Kawah Putih, West Java were more stable during the last 10 years but show some seasonal variations. Major and trace elements were determined in situ using electron microprobe and laser ablation ICP-MS techniques. Spherules are highly enriched in trace elements including Se (400-4000 μ g/g), Te (500-800 μ g/g), Sb (1-18 μ g/g) and As (30-510 μ g/g). The internal chemical homogeneity of the spherules supports rapid formation. Changes in lake chemistry may account in part for large differences in trace element content between samples from each volcanic center. Lower As/S and Sb/S ratios at Poás correspond to higher temperatures that promote an enhanced release of HCl vapor from the lake surface. Recycling of hydrothermal acid brines into the lake may also have affected these trace element ratios. High Se/S and Te/S ratios cannot be explained by mixing between mantle and shallow sources and probably reflect additional sulfur loss due to degassing of the magmatic source.

  12. Comparison of different methods to determine the degree of peat decomposition in peat bogs

    NASA Astrophysics Data System (ADS)

    Biester, H.; Knorr, K.-H.; Schellekens, J.; Basler, A.; Hermanns, Y.-M.

    2013-11-01

    associated to changes in hydrology of the bogs. Significant correlations with polysaccharide and aliphatic pyrolysis products were found for C / N ratios, FTIR-band intensities and for hydrogen index values, supporting that these decomposition indices provide reasonable information despite their bulk nature. Correlation with oxygen index values and δ13C was weaker assumingly indicating carboxylation of the peat during drier periods and enrichment of isotopically lighter peat components during decomposition, respectively. FTIR, C / N ratio, Pyrolysis-GC-MS analyses and Rock Eval hydrogen indices appear to reflect mass loss and related changes in the molecular peat composition during mineralization best. Different to the other investigated proxies, Pyrolysis-GC-MS and FTIR analyses allow disentangling decomposition processes and vegetation changes. UV-ABS measurements of alkaline peat extracts show only weak correlation with other decomposition proxiesas they mainly reflect the formation of humic acids through humifcation and to a~lesser extend mass loss during mineralization.

  13. Interactions among waterfowl, fishes, invertebrates, and macrophytes in four Maine lakes of different acidity

    SciTech Connect

    Hunter, M.L. Jr.; Jones, J.J.; Gibbs, K.E.; Moring, J.R.; Brett, M.

    1985-07-01

    This study addresses the influence of low pH waters on community structure and species interactions on two pairs of oligotrophic, headwater ponds that were physically similar but with markedly different acidities. The circumneutral ponds had fish and the acidic ponds were fishless. The results showed macrophyte species was lower in the acidic ponds possibly due to low pH. Density of backswimmers was greater on the acidic ponds. Tests indicated that the large numbers of backswimmers present on the acidic ponds replaced fish as a significant planktivore. Although macroinvertebrate species differed between acidic and circumneutral ponds, Diptera were the most abundant macroinvertebrates on both sets of ponds. Diptera were the principle item in the diet of brook trout in the circumneutral ponds. Because of the absence of fish in the acidic ponds, this study suggests that a potential competitor of ducks for aquatic foods had been eliminated. Ducklings on the acidic ponds grew faster, spent less time searching, and more time feeding and resting than ducklings on the circumneutral ponds. There was substantial overlap in the diet of trout and ducks, supporting the hypothesis that ducklings and fish compete for invertegrates and that, under certain circumstances, the negative effect of acidification on fish may produce a beneficial effect for ducklings. 3 figs., 30 tabs.

  14. SOURCES OF ACIDITY IN LAKES AND STREAMS OF THE UNITED STATES

    EPA Science Inventory

    Acidic surface waters in the United States sampled in the National Surface Water Survey (NSWS) were classified into three groups according to their probable sources of acidity: (1) organic-dominated waters, (2) watershed sulphate-dominated waters, and (3) deposition-dominated wat...

  15. Variation in fatty acid composition in muscle and heart tissues among species and populations of tropical fish in Lakes Victoria and Kyoga.

    PubMed

    Kwetegyeka, Justus; Mpango, George; Grahl-Nielsen, Otto

    2008-11-01

    The composition of the fatty acids in muscle and heart tissue of seven fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), marbled lungfish (Protopterus aethiopicus), African catfish (Clarias gariepinus), Lake Victoria squeaker (Synodontis victoriae), Bagrus docmas, and Tilapia zilli, from two locations in Lake Kyoga and one location in Lake Victoria was chemometrically determined. The muscle tissue was very lean, with an average of 3.4 mg total fatty acids per g tissue. The lipid level in the heart tissue was approximately five times higher than in the muscle tissue, with an average of 15.5 mg total fatty acids per g tissue. The n-3/n-6 level in the muscles was 1.7 +/- 0.7 and in the heart tissue 1.0 +/- 0.4. The muscle tissue contained an average of 46 mg cholesterol per 100 g, and the heart tissue contained about five times as much. Plasmalogens were detected in 7-8% of the amounts of total fatty acids in both muscle and heart tissue. The seven species had large differences (P < 0.05) in the fatty acid composition for both muscle and heart tissue. Within the species there were differences between fish from the populations in the three locations, although the population differences were smaller than the species differences. These differences appear to be controlled more closely by genetics/transcriptomics than by the diet. PMID:18712426

  16. Impact of acid effluent from Kawah Ijen crater lake on irrigated agricultural soils: Soil chemical processes and plant uptake

    NASA Astrophysics Data System (ADS)

    van Rotterdam-Los, A. M. D.; Heikens, A.; Vriend, S. P.; van Bergen, M. J.; van Gaans, P. F. M.

    2008-12-01

    Volcanogenic contamination of irrigation water, caused by effluent from the hyperacid Ijen crater lake, has severely affected the properties of agricultural soils in East Java, Indonesia. From a comparison of acidified topsoil with subsoil and with top- and subsoil in a reference area, we identified processes responsible for changes in soil and soil solution chemistry induced by acid irrigation water, with emphasis on the nutrients Ca, Mg, Fe, and Mn, and on Al, which may become phytotoxic under acid conditions in soils. Compositional data for bulk soil composition and selective extractions with 1 M KCl and 0.2 M acid ammonium oxalate are used in a mass balance approach to specify element fluxes, including uptake by rice plants. The results show that input via irrigation water has produced an increase in the total aluminum content in the affected topsoil, which is of the same order of magnitude as the increase in labile Al. High bioavailability of Al, as reflected by concentrations in KCl extracts, is consistent with elevated concentrations observed in rice plants. In contrast, and despite the high input via irrigation water, Ca and Mg concentrations have decreased in all measured soil fractions through dissolution of amorphous phases and minerals, and through competition of Al for adsorption sites on the exchange complex and plant roots. Strong leaching is also evident for Fe and especially Mn. In terms of the overall mass balance of the topsoil, plant uptake of Al, Ca, Fe, Mg and Mn is negligible. If the use of acid irrigation would be stopped and the soil pH were to increase to values above 4.5, the observed phytotoxicity of Al will be halted. However, crops may then become fully dependent on the input from irrigation water or fertilizer for essential elements, due to the previous removal from the topsoil through leaching.

  17. Consequences of marginal drainage from a raised bog and understanding the hydrogeological dynamics as a basis for restoration

    NASA Astrophysics Data System (ADS)

    Regan, Shane; Johnston, Paul

    2010-05-01

    Raised bogs in Ireland have long been exploited for local fuel utilisation. The drainage associated with such activities alters the hydrological regime of the bog as consolidation of the peat substrate results in significant water loss and subsidence of the bog. Undisturbed raised bog environments are typically characterised by distinct ecological systems, or ecotopes, which are controlled by the relationship between surface slopes, flow path lengths and drainage conditions. Shrinkage of the main peat profile, or catotelm, invariably alters these conditions, changes of which significantly damage ecotopes of conservational value. Clara Bog, Ireland, is one of western Europe's largest remaining raised bogs and on which much hydroecological research has been conducted since the early 1990's. Though a relatively intact raised bog, it has been extensively damaged in the past with the construction of a road through the centre of the bog known to have resulted in subsidence of 9-10m. However, the western tract of Clara Bog, Clara Bog West, has also subsided significantly since the early 1990's due to on-going peat cutting activities on the bogs margins. Current research now indicates that the bog is not an isolated hydrological entity, as generally perceived of bogs, but rather that Clara Bog West is intrinsically linked to the regional groundwater table, which appears to provide a significant ‘support' function to the bog. Hydrogeological monitoring and analysis has shown that water losses are not simply a result of lateral seepage of water through the peat profile at the bogs margins. Measurements of flow rates and electrical conductivity in drains bordering the bog indicate that little water is discharging laterally through the peat profile. However, piezometric head levels in mineral subsoil underlying the bog and close to the margins of the bog have decreased by 0.3 to 0.5m and 0.4 to 1.0m respectively since the early 1990s and it is believed that this is a result

  18. Origin and vertical variation of the bound fatty acids in core sediments of Lake Dianchi in Southwest China.

    PubMed

    Wang, Lifang; Wu, Fengchang; Xiong, Yongqiang; Fang, Jidun

    2013-04-01

    Based on the molecular distribution of bound fatty acid (BFA) compound classes in core sediments of Lake Dianchi combined with the compound-specific δ(13)C values of the straight-chain BFAs, origin and vertical changes of organic matters in the sediments were investigated. The results indicated a significant change of BFA sources over the past 700 years. Contrast to the low concentrations of the terrestrial BFAs, the abundance of BFAs derived from the plankton/bacteria in the top sections (1944-recent) was more than 80%. The increasing proportions of the branched and unsaturated BFAs in total fatty acids were closely correlated with the heavy eutrophication and the frequent algal blooms in the decades. Furthermore, the positive shift of δ (13)C of C16 and C18 (~2‰) in the upper section might be an indicator of the excess phytoplankton productivity. However, it was found that the plankton/bacteria-derived BFAs were more easily degraded during the early diagenetic process. The special compound carbon isotopic compositions of the long straight-chain BFAs (C24 and C26) in the sediments showed a depletion of heavier δ (13)C values (ca. -30‰) in the midsections (1559-1787), reflecting a relatively growing contribution of C3 plants to C4 plants or that C4 plant growth was inhibited in cold and arid climates during the period. PMID:22903813

  19. Combined stress effect of pH and temperature narrows the niche width of flagellates in acid mining lakes

    PubMed Central

    Moser, Michael; Weisse, Thomas

    2011-01-01

    Strains of the green alga Chlamydomonas acidophila and two chrysomonads, Ochromonas spp., isolated from each of two similar acid mining lakes (AMLs) with extremely low pH (∼2.6) were investigated to consider a possible synergistic stress effect of low pH and unfavourable temperature. We measured flagellate growth rates over a combination of four pH (2.5, 3.5, 5.0 and 7.0) and three temperatures (10, 17.5 and 25°C) in the laboratory. Our hypothesis was that, under highly acidic conditions (pH <3), an obligate acidophil species (C. acidophila) would be less sensitive to the combined stress of pH and temperature than acidotolerant species (Ochromonas spp.). We expected that the difference of the fundamental vs. realized pH niche would be greater in the latter. Another chrysomonad, Poterioochromonas malhamensis strain DS, served as a reference for a closely related neutrophil species. Surprisingly, C. acidophila did not survive temperatures >27°C. The lowest temperature tested reduced growth rates of all three chrysomonad strains significantly. Since all chrysomonads were tolerant to high temperature, growth rate of one Ochromonas spp. strain was measured exemplarily at 35°C. Only at this high temperature was the realized pH niche significantly narrowed. We also recorded significant intraspecific differences within the C. acidophila strains from the two AML, illustrating that the niche width of a species is broader than that of individual clones. PMID:21655470

  20. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the

  1. Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific.

    PubMed

    Juottonen, Heli; Kotiaho, Mirkka; Robinson, Devin; Merilä, Päivi; Fritze, Hannu; Tuittila, Eeva-Stiina

    2015-09-01

    Vegetation and water table are important regulators of methane emission in peatlands. Microform variation encompasses these factors in small-scale topographic gradients of dry hummocks, intermediate lawns and wet hollows. We examined methane production and oxidization among microforms in four boreal bogs that showed more variation of vegetation within a bog with microform than between the bogs. Potential methane production was low and differed among bogs but not consistently with microform. Methane oxidation followed water table position with microform, showing higher rates closer to surface in lawns and hollows than in hummocks. Methanogen community, analysed by mcrA terminal restriction fragment length polymorphism and dominated by Methanoregulaceae or 'Methanoflorentaceae', varied strongly with bog. The extent of microform-related variation of methanogens depended on the bog. Methanotrophs identified as Methylocystis spp. in pmoA denaturing gradient gel electrophoresis similarly showed effect of bog, and microform patterns were stronger within individual bogs. Our results suggest that methane-cycling microbes in boreal Sphagnum bogs with seemingly uniform environmental conditions may show strong site-dependent variation. The bog-intrinsic factor may be related to carbon availability but contrary to expectations appears to be unrelated to current surface vegetation, calling attention to the origin of carbon substrates for microbes in bogs. PMID:26220310

  2. The biogeochemistry of an ombrotrophic bog: Evaluation of use as an archive of atmospheric mercury deposition

    SciTech Connect

    Benoit, J.M.; Fitzgerald, W.F.; Damman, A.W.H.

    1998-08-01

    The utility of ombrotrophic bogs as archives of atmospheric mercury deposition was assessed with an investigation in Arlberg Bog, Minnesota, US. Since the use of ombrotrophic bogs as archives depends on the immobility of deposited trace metals, the authors examined the postdepositional transport processes revealed by the solid-phase distributions of mercury and ancillary metals in this bog. They modeled metal speciation in bog pore-waters as a function of pe in order to understand metal behavior in ombrotrophic peat. Specifically, they considered the effect of water movement and resultant shifts in redox potential gradients on metal retention. The results indicate that Hg and Pb are immobile in ombrotrophic peat, so their distribution can be used to determine temporal changes in deposition. To substantiate the deposition estimates determined in this study, they emphasized the importance of confirming the validity of the dating scheme, assessing the degree of horizontal homogeneity in the accumulation record, and providing evidence for retention of Hg based on geochemical modeling. As recorded in Arlberg Bog, historic atmospheric Hg deposition increased gradually after the mid-1800s, peaked between 1950 and 1960, and may have declined thereafter. Preindustrial deposition was about 4 {micro}g/m{sup 2} year and recent deposition about 19 {micro}g/m{sup 2} year. The results of this study indicate that deposition at Arlberg Bog has been influenced by a regional and/or local-scale source.

  3. Connections between hyper-acid crater lakes and flank springs: new evidence from Rincón de la Vieja volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Martínez, M.; Fernández, E.; Sáenz, W.; van Bergen, M. J.; Ayres, G.; Pacheco, J. F.; Brenes, J.; Avard, G.; Malavassi, E.

    2012-04-01

    Rincón de la Vieja, a complex andesitic stratovolcano in NW Costa Rica, shows various hydrothermal surface manifestations that comprise: (1) A hyper-acid crater lake and subaerial fumaroles receiving direct input of fluids of magmatic origin, (2) Acid thermal discharges along the northeastern slopes of the volcano that feed the headwaters of the Cucaracho river, and (3) Small lakes and a geothermal field with bubbling-boiling mud pools, acid-sulfate springs, steaming ground and fumarolic emissions in a region on the western flank. Here the streams are of relatively low flow rate and their chemical signatures correspond to that of deep fluids from an extensive geothermal reservoir mixed with shallow meteoric water. Physico-chemical properties of the sulfate-chloride hyper-acid lake (T=28-58 °C; pH between 1.2 and <0, high TDS of 24,000-160,000 mg/kg) are consistent with a meteoric water body supplied by a significant input of chemical components derived from hydrolysis of magmatic volatiles and from intense rock leaching. The Cucaracho catchment receives input from warm acid brines with no free-gas phase but carrying a high load of hydrolyzed magmatic volatiles and rock-forming elements. One of these brines (Spring 4) is characterized by a sulfate-chloride chemical signature, medium temperatures of 27-38 °C, pH between 2 and 4 and TDS values between 780 and 1300 mg/L. Based on water and heat-balance considerations, chemical and stable-isotope signatures and groundwater transport modeling, it has been proposed that these acid springs represent brine water from the lake-hydrothermal system that is diluted by shallow groundwater permeating tephra layers (Kempter and Rowe, 2000). Since Rincóńs latest phreatomagmatic activity in 1983, episodes of phreatic eruptions from the crater lake have been registered in 1983-87, 1991, 1995, 1998 and 2011. Some of these eruptions (VEI 1) have expelled large quantities of lake water, triggering small to medium- sized fast

  4. Ecology and hydrology of pristine and cutover lowland raised bogs: relationships and implications for restoration

    NASA Astrophysics Data System (ADS)

    Labadz, Jillian; Hart, Roger; Robbins, Jane; Butcher, David; Topliss, David

    2013-04-01

    This paper will examine relationships in vegetation communities and hydrological conditions on areas of lowland raised bog in north west England, comparing damaged and relatively intact sites on two adjacent bogs in Cumbria. Walton Moss is a relatively pristine site whilst and Bolton Fell Moss has a small nature reserve area with remnant vegetation which is surrounded by commercial peat cutting. The intended outcome is to provide a mechanism to inform management decisions, with a view to assisting in the long-term protection and rehabilitation of lowland raised bogs.

  5. IMPLICATIONS OF A GRADIENT IN ACID AND ION DEPOSITION ACROSS THE NORTHERN GREAT LAKES STATES

    EPA Science Inventory

    Average precipitation pH, 1979-1982, declines from west to east from 5.3 to 4.3 along a cross section of sites in Minnesota, Wisconsin, and Michigan. The answers questions about the seasonal and geographic pattern of anthropogenic acid precursor emissions and reaction products (S...

  6. EFFECTS OF ACIDIC DEPOSITION ON NORTH AMERICAN LAKES: PALAEOLIMNOLOGICAL EVIDENCE FORM DIATOMS AND CHRYSOPHYTES

    EPA Science Inventory

    Analysis of sediment diatom and chrysophyte assemblages is the best technique currently available for inferring past lakewater pH trends, and use of the approach for assessing the ecological effects of acidic deposition is increasing rapidly. s of August 1989, sediment core infer...

  7. Species Identification of Archaeological Skin Objects from Danish Bogs: Comparison between Mass Spectrometry-Based Peptide Sequencing and Microscopy-Based Methods

    PubMed Central

    Brandt, Luise Ørsted; Schmidt, Anne Lisbeth; Mannering, Ulla; Sarret, Mathilde; Kelstrup, Christian D.; Olsen, Jesper V.; Cappellini, Enrico

    2014-01-01

    Denmark has an extraordinarily large and well-preserved collection of archaeological skin garments found in peat bogs, dated to approximately 920 BC – AD 775. These objects provide not only the possibility to study prehistoric skin costume and technologies, but also to investigate the animal species used for the production of skin garments. Until recently, species identification of archaeological skin was primarily performed by light and scanning electron microscopy or the analysis of ancient DNA. However, the efficacy of these methods can be limited due to the harsh, mostly acidic environment of peat bogs leading to morphological and molecular degradation within the samples. We compared species assignment results of twelve archaeological skin samples from Danish bogs using Mass Spectrometry (MS)-based peptide sequencing, against results obtained using light and scanning electron microscopy. While it was difficult to obtain reliable results using microscopy, MS enabled the identification of several species-diagnostic peptides, mostly from collagen and keratins, allowing confident species discrimination even among taxonomically close organisms, such as sheep and goat. Unlike previous MS-based methods, mostly relying on peptide fingerprinting, the shotgun sequencing approach we describe aims to identify the complete extracted ancient proteome, without preselected specific targets. As an example, we report the identification, in one of the samples, of two peptides uniquely assigned to bovine foetal haemoglobin, indicating the production of skin from a calf slaughtered within the first months of its life. We conclude that MS-based peptide sequencing is a reliable method for species identification of samples from bogs. The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium with the dataset identifier PXD001029. PMID:25260035

  8. Species identification of archaeological skin objects from Danish bogs: comparison between mass spectrometry-based peptide sequencing and microscopy-based methods.

    PubMed

    Brandt, Luise Ørsted; Schmidt, Anne Lisbeth; Mannering, Ulla; Sarret, Mathilde; Kelstrup, Christian D; Olsen, Jesper V; Cappellini, Enrico

    2014-01-01

    Denmark has an extraordinarily large and well-preserved collection of archaeological skin garments found in peat bogs, dated to approximately 920 BC - AD 775. These objects provide not only the possibility to study prehistoric skin costume and technologies, but also to investigate the animal species used for the production of skin garments. Until recently, species identification of archaeological skin was primarily performed by light and scanning electron microscopy or the analysis of ancient DNA. However, the efficacy of these methods can be limited due to the harsh, mostly acidic environment of peat bogs leading to morphological and molecular degradation within the samples. We compared species assignment results of twelve archaeological skin samples from Danish bogs using Mass Spectrometry (MS)-based peptide sequencing, against results obtained using light and scanning electron microscopy. While it was difficult to obtain reliable results using microscopy, MS enabled the identification of several species-diagnostic peptides, mostly from collagen and keratins, allowing confident species discrimination even among taxonomically close organisms, such as sheep and goat. Unlike previous MS-based methods, mostly relying on peptide fingerprinting, the shotgun sequencing approach we describe aims to identify the complete extracted ancient proteome, without preselected specific targets. As an example, we report the identification, in one of the samples, of two peptides uniquely assigned to bovine foetal haemoglobin, indicating the production of skin from a calf slaughtered within the first months of its life. We conclude that MS-based peptide sequencing is a reliable method for species identification of samples from bogs. The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium with the dataset identifier PXD001029. PMID:25260035

  9. Effects of heavy metals in combination with NTA, humic acid, and suspended sediment on natural phytoplankton photosynthesis. [None

    SciTech Connect

    Hongve, D.; Skogheim, O.K.; Hindar, A.; Abrahamsen, H.

    1980-10-01

    In studies of effects of heavy metals on phytoplankton most experiments are conducted with monocultures in artificial or natural media. The response is measured in growth or in the intensity of biochemical processes. We have adopted the method described by GAECHTER using natural phytoplankton communities and measuring the response of heavy metal addition in photosynthesis. Our aim was to evaluate the acute effects of the metals Cu, Cd, Pb, Zn, and Hg separately and in combination on a natural phytoplankton community under different experimental circumstances. These circumstances are thought to simulate various conditions which may occur in a lake. Addition of a dilute suspension of sediment corresponds to resuspension of sediment in shore-near areas during periods of heavy wave action. Addition of bog water increases the content of natural chelators (humic acid). Additions of NTA simulate a situation which may occur if this synthesic chelator is used as a substitute for phosphorus in detergents. The reported experiment was conducted in coordination with a research program on the eutrophication and contamination of Lake Tyrifjord, Norway. Lake data: Volume 13.8 x 10/sup 9/ m/sup 3/, area 136 km/sup 2/, maximum depth 296 m. The lake is still oligotrophic but significant signs of eutrophication have recently been identified. Until 1970 the lake was seriously contaminated by mercury from wood products industry.

  10. Microbial heterotrophic production in an oligotrophic acidic geothermal lake: responses to organic amendments and terrestrial plant litter.

    PubMed

    Wolfe, Gordon V; Fitzhugh, Connor; Almasary, Areeje; Green, Adrian; Bennett, Patrick; Wilson, Mark; Siering, Patricia

    2014-09-01

    Boiling Springs Lake (BSL) is an oligotrophic, acidic geothermal feature where even very low levels of microbial heterotrophic production still exceed autotrophy. To test whether allochthonous leaf litter (LL) inputs fuel this excess, we quantified leaf litterfall, leaching and decomposition kinetics, and measured the impact of organic amendments on production, germination and cell growth, using pyrosequencing to track changes in microbial community composition. Coniferous leaves in BSL exhibited high mass loss rates during leaching and decomposition, likely due to a combination of chemical hydrolysis and contributions of both introduced and endemic microbes. We measured very low in situ (3)H-thymidine incorporation over hours by the dominant chemolithotroph Acidimicrobium (13-65 μg C L(-1) day(-1)), which was inhibited by simple C sources (acetate, glucose). Longer term incubations with additions of 0.01-0.02% complex C/N sources induced germination of the Firmicute Alicyclobacillus within 1-2 days, as well as growth of Acetobacteraceae after 3-4 days. LL additions yielded the opposite successional patterns of these r-selected heterotrophs, boosting production to 30-150 μg C L(-1) day(-1). Growth and germination studies suggest both prokaryotes and fungi likely consume allochthonous organics, and might be novel sources of lignocellulose-degrading enzymes. A model of BSL's C budget supports the hypothesis that allochthonous inputs fuel seasonal microbial heterotrophy, but that dissolved organic C sources greatly exceed direct LL inputs. PMID:24890617

  11. EPISODIC ACIDIFICATION OF ADIRONDACK LAKES DURING SNOWMELT

    EPA Science Inventory

    Maximum values of acid neutralizing capacity (ANC) in Adirondack, New York lake outlets generally occur during summer and autumn. During spring snowmelt, transport of acidic water through acid-sensitive watersheds causes depression of upper lake water ANC. n some systems lake out...

  12. Climate-driven expansion of blanket bogs in Britain during the Holocene

    NASA Astrophysics Data System (ADS)

    Gallego-Sala, A. V.; Charman, D. J.; Harrison, S. P.; Li, G.; Prentice, I. C.

    2016-01-01

    Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts that large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales, and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of

  13. Climate-driven expansion of blanket bogs in Britain during the Holocene

    NASA Astrophysics Data System (ADS)

    Gallego-Sala, A. V.; Charman, D. J.; Harrison, S. P.; Li, G.; Prentice, I. C.

    2015-10-01

    Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland, and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of blanket

  14. Functional diversity, succession, and human-mediated disturbances in raised bog vegetation.

    PubMed

    Dyderski, Marcin K; Czapiewska, Natalia; Zajdler, Mateusz; Tyborski, Jarosław; Jagodziński, Andrzej M

    2016-08-15

    Raised and transitional bogs are one of the most threatened types of ecosystem, due to high specialisation of biota, associated with adaptations to severe environmental conditions. The aim of the study was to characterize the relationships between functional diversity (reflecting ecosystem-shaping processes) of raised bog plant communities and successional gradients (expressed as tree dimensions) and to show how impacts of former clear cuts may alter these relationships in two raised bogs in 'Bory Tucholskie' National Park (N Poland). Herbaceous layers of the plant communities were examined by floristic relevés (25m(2)) on systematically established transects. We also assessed patterns of tree ring widths. There were no relationships between vegetation functional diversity components and successional progress: only functional dispersion was negatively, but weakly, correlated with median DBH. Lack of these relationships may be connected with lack of prevalence of habitat filtering and low level of competition over all the successional phases. Former clear cuts, indicated by peaks of tree ring width, influenced the growth of trees in the bogs studied. In the bog with more intensive clear cuts we found more species with higher trophic requirements, which may indicate nutrient influx. However, we did not observe differences in vegetation patterns, functional traits or functional diversity indices between the two bogs studied. We also did not find an influence of clear cut intensity on relationships between functional diversity indices and successional progress. Thus, we found that alteration of the ecosystems studied by neighbourhood clear cuts did not affect the bogs strongly, as the vegetation was resilient to these impacts. Knowledge of vegetation resilience after clear cuts may be crucial for conservation planning in raised bog ecosystems. PMID:27110977

  15. The Auchenorrhyncha fauna of peat bogs in the Austrian part of the Bohemian Forest (Insecta, Hemiptera).

    PubMed

    Holzinger, Werner E; Schlosser, Lydia

    2013-01-01

    The first overview on the Auchenorrhyncha fauna of peat bogs of the Austrian Bohemian Forest is presented. Seven oligotrophic peat bog sites were studied in 2011 by suction sampler ("G-Vac") and 93 Auchenorrhyncha species (with 7465 adult specimens) were recorded. Eleven species (about 18 % of the individuals) are tyrphobiontic or tyrphophilous. The relative species abundance plot is not very steep; the six most abundant species represent 50 % of the individuals. The most common species is Conomelus anceps (17 % of the individuals). Compared to the whole Austrian Auchenorrhyncha fauna, the fauna of peat bogs comprises distinctly more univoltine species and more species hibernating in nymphal stage. Densities of adult Auchenorrhyncha in peat bogs are low in spring (about 10-60 individuals per m²) and high in July, with up to 180 (±50) individuals per m². Disturbed peat bogs have higher species numbers and higher Auchenorrhyncha densities in total, but lower numbers and densities in peat bog specialists. PMID:24039517

  16. The water balance as an approach to assessing groundwater dependency in raised bog wetlands

    NASA Astrophysics Data System (ADS)

    Regan, Shane

    2014-05-01

    The management of raised bogs, as active peat-forming ecosystems, requires an understanding of the relationships between regional hydrology and wetland ecohydrological processes. Marginal drainage, < 20 years, of Clara Bog, Ireland, has resulted in dramatic morphological changes. Differential peat consolidation has fragmented what was one topographic catchment area into four distinct catchment areas. Runoff has reduced by c. 40% from the original main catchment area and there has been a c. 25% decrease of suitably saturated areas supporting the growth of sphagnum moss species. In undisturbed bog systems the recharge rate of water seeping through the bog body to the regional groundwater table is in the order of 40 mm/ year. The downward seepage rate in Clara is > 100 mm/ year. A reduction in pore water pressure, due to drainage of the regional groundwater table, has disturbed the structure of the peat substratum and induced water loss from peat storage, resulting in the ecohydrological modification of the bog surface. Numerical modelling of a simulated raised groundwater table reduces the leakage rate to between 30 and 50 mm/ year. The significance is that the hydraulic gradient of the regional groundwater table is an important environmental supporting condition in raised bog ecosystems, implying indirect groundwater dependence.

  17. Lake Life.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This quarterly publication of the State Historical Society of Iowa features articles and activities for elementary school students. This summer issue focuses on the topic of lake life. The issue includes the following features: (1) "Where the Lakes Are Map"; (2) "Letter from the Lake"; (3) "Lake People"; (4) "Spirit Lake"; (5) "Lake Manawa"; (6)…

  18. Anthropogenic degradation of mountainous raised bogs. Case study of the Polish Carpathians

    NASA Astrophysics Data System (ADS)

    Lajczak, Adam

    2016-04-01

    Publications on the human impact on peat bogs pay a lot of attention to peat erosion, peat burning and changes in the physical and chemical properties of peat deposits that indicate pollution in the environment, but a more detailed analysis of current changes in the peat bog relief as a result of peat deposit extraction and drying is omitted. Compared to other areas of the world, the level of knowledge on anthropogenic changes in the relief of peat bogs in some areas of Poland may be considered advanced. This applies not only to peat bogs in northern Poland but also southern Poland, where peat bogs in the Carpathians and the Sudetes are also found. The best analyzed peat bogs in southern Poland are the raised bogs in the Orawsko-Nowotarska Basin (Western Carpathians) and in valleys in the Bieszczady Mts. (Eastern Carpathians). Both areas are impacted by deep precipitation shadow. The purpose of this paper is: (1) to assess the rate of shrinkage in the surface area of peat domes in the mentioned areas, (2) to describe the rate of growth in the surface area of older and younger post-peat areas, (3) to explain current changes in peat bogs morphology, (4) to explain changes in water retention in peat deposit, (5) to separate phases in peat bogs relief changes. With that in mind, the direction and rate of change of landforms typical of younger post-peat areas, such as peat extraction scarps, post-extraction hollows, drainage systems including ditches and regulated stream channels, were analyzed. A special emphasis was placed on the period of time when the restoration of such areas has taken place. The paper is based on an analysis of maps produced over the last 230 years as well as on aerial photographs taken since 1965 and on LiDAR data. Fieldwork included the geomorphological and hydrographic mapping of specified landforms within peat bogs using GPS methods. In period prior to human activity peat domes were larger than today and were surrounded by lagg fens and were

  19. Can continental bogs withstand the pressures from climate change?

    NASA Astrophysics Data System (ADS)

    Roulet, Nigel; Humphreys, Elyn; Wu, Jianghua; Frolking, Steve; Talbot, Julie; Lafleur, Peter; Moore, Tim

    2016-04-01

    Not all peatlands are alike. Theoretical and process based models suggest that ombrogenic, oligotrophic peatlands can withstand the pressures due to climate change because of the feedbacks among ecosystem production, decomposition and water storage. Although there have been many inductive explanations inferring from paleo-records, there is a lack of deductive empirical tests of the models predictions of these systems' stability and there are few records of the changes in the net ecosystem carbon balance (NECB) of peatlands that are long enough to examine the dynamics of the NECB in relation to climate variability. Continuous measurements of all the components of the NECB and the associated general climatic and environmental conditions have been made at the Mer Bleue (MB) peatland, a large, 28 km2, 5 m deep, raised ombro-oligotrophic, shrub and Sphagnum covered bog, near Ottawa, Canada from May 1, 1998 until the present. The sixteen-year daily CO2, CH4, and DOC flux and NECB covers a wide range of variability in peatland water storage from very dry to very wet growing seasons. We used the MB data to test the extent of MB peatland's stability and the strength of the underlying key feedback between the NECB and changes in water storage projected by the models. In 2007 we published a six-year (1999-2004) net ecosystem carbon balance (NECB) for MB of ~22 ± 40 g C m-2 yr-1, but we have since recalculated the 1998-2004 NECB to be 32 ± 40 g C m-2 yr-1 based on a reanalyzed average NEP of 51 ± 41 g C m-2 yr-1. Over the same period the net loss of C via the CH4 and DOC fluxes were -4 ± 1 and -15 ± 3 g C m-2 yr-1. The 1998-2004 six-year MB average NECB is similar to the long-term C accumulation rate, estimated from MB peat cores, for the last 3,000 years. The post 2004 MB NEP has increased to an average of ~96 ± 32 g C m-2 yr-1 largely to there being generally wetter growing seasons. The losses of C via DOC (18 ± 1 g C m-2 yr-1) and CH4 (7 ± 4 g C m-2 yr-1) while

  20. The hydrology of natural and artificial bog pools

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Turner, Ed; McKenzie, Rebecca; Baird, Andy; Billett, Mike; Chapman, Pippa; Dinsmore, Kerry; Dooling, Gemma

    2016-04-01

    Twelve bog pools were monitored over a 3.5-year period (2012-2015) in the Cross Lochs blanket peatland in the Flow Country of northern Scotland. Six pools were located in a natural pool complex while the other six were in an adjacent area where the peat had been ditched in the 1970s. The ditches had been subsequently dammed with peat in 2002 resulting in dozens of artificial pools along each ditch, with one pool upslope of each dam. The natural pools ranged in area from 15 m2 to 850 m2, while the artificial pools are a more uniform size at c.3 - 4 m2. Following a dry first summer, water levels in the 12 pools were lower throughout the subsequent winter and spring than they were in proceeding years showing strong inter-annual variability in pool levels even for winter months. Over the three year study, water level fluctuations in the natural pools were very different to those in the artificial pools. The natural pools showed subdued responses to rainfall and, after rainfall, slow falls in water level dominated by evaporation; the hydraulic conductivity of the peat was very low at depths of 30 and 50 cm below the peat surface around the pools (median values of 2.49 × 10-5 and 1.09 × 10-5 cm s-1 respectively). The artificial pools had much larger monthly interquartile ranges of water levels and a greater rise and fall of pool water level in response to each individual rainfall event compared with the natural pools. Thus the biogeochemistry and carbon cycling processes that occur within the natural pools is not likely to be replicated in the artificial pools as their hydrological behaviour is quite different. Slope position was a factor in terms of hydrological response of pools with those further downslope having higher relative water levels for longer periods of time compared to upslope pools. Thus we anticipate that local biogeochemical processes in and around bog pools may be impacted by slope position and by whether they are natural pools or artificial pools

  1. Isotopic evidence for nitrogen mobility in peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Stepanova, Marketa; Jackova, Ivana; Vile, Melanie A.; Wieder, R. Kelman; Buzek, Frantisek; Adamova, Marie; Erbanova, Lucie; Fottova, Daniela; Komarek, Arnost

    2014-05-01

    Elevated nitrogen (N) input may reduce carbon (C) storage in peat. Under low atmospheric deposition, most N is bound in the moss layer. Under high N inputs, Sphagnum is not able to prevent penetration of dissolved N to deeper peat. Nitrogen may become available to the roots of invading vascular plants. The concurrent oxygenation of deeper peat layers, along with higher supply of labile organic C, may enhance microbial decomposition and lead to peat thinning. The resulting higher emissions of greenhouse gases may accelerate global warming. Seepage of N to deeper peat has never been quantified. Here we present evidence for post-depositional mobility of atmogenic N in peat, based on natural-abundance N isotope ratios. We conducted a reciprocal peat transplant experiment between two Sphagnum-dominated peat bogs in the Czech Republic (Central Europe), differing in anthropogenic N inputs. The northern site VJ received as much as 33 kg N ha-1 yr-1 via spruce canopy throughfall. The southern site was less polluted (17.6 kg N ha-1 yr-1). Isotope signatures of living moss differed between the two sites (δ15N of -3‰ and -7‰ at VJ and CB, respectively). After 18 months, an isotope mass balance was constructed. In the CB-to-VJ transplant, a significant portion of original CB nitrogen (98-31%) was removed and replaced by nitrogen of the host site throughout the top 10 cm of the profile. Nitrogen, deposited at VJ, was immobilized in imported CB peat that was up to 20 years old. Additionally, we compared N concentration and N accumulation rates in 210Pb-dated peat profiles with well-constrained data on historical atmospheric N pollution. Nationwide N emissions peaked in 1990, while VJ exhibited the highest N content in peat that formed in 1930. This de-coupling of N inputs and N retention in peat might be interpreted as a result of translocation of dissolved pollutant N downcore, corroborating our δ15N results at VJ and CB. Data from a variety of peat bogs along pollution

  2. Iron buffer system in the water column and partitioning in the sediments of the naturally acidic Lake Caviahue, Neuquén, Argentina

    NASA Astrophysics Data System (ADS)

    Cabrera, J. M.; Diaz, M. M.; Schultz, S.; Temporetti, P.; Pedrozo, F.

    2016-05-01

    Sedimentary iron partitioning was studied for five sediment strata (16 cm depth) at three sampling sites of the naturally-occurring acidic Lake Caviahue (Patagonia, Argentina). Additionally, water column iron was modeled based on five-year period input loadings to study a possible iron buffer system. The partition coefficient between the water column and the total iron content of the sediments was also addressed. Sedimentary iron was found to be distributed, on average, in the following forms: exchangeable (6%), iron oxides (4%), pyrite and reactive organic matter (38%) and residual (non-andesitic) materials with a high content of humic acids (52%). Furthermore, we found that the dissolved iron in the lake was nearly constant throughout the five year period we studied. This is consistent with the existence of an iron buffer system in the lake at pH between 2.0 and 3.0, which may cause differential iron precipitation at the delta of the volcanic river with respect to the deeper northern and southern arms. Sedimentary iron measurements taken at the delta further support the existence of a buffer system, where it was found that the iron content in the sub-superficial stratum (2 cm) was double that of the remainder of the vertical profile at the same site.

  3. The growth of permafrost-free bogs at the southern margin of permafrost, 1947-2010

    NASA Astrophysics Data System (ADS)

    Quinton, W. L.; Sonnentag, O.; Connon, R.; Chasmer, L.

    2013-12-01

    In the high-Boreal region of NW Canada, permafrost occurs predominantly in the form of tree-covered peat plateaus within a permafrost-free and treeless terrain dominated by flat bogs. This region is experiencing unprecedented rates of thaw. Over the last several decades, such thaw has significantly expanded the permafrost-free, treeless terrain at the expense of the plateaus. This rapid change in land-cover has raised concerns over its impact on northern water resources, since remotely sensed data and ground observations indicate that the two major land-covers in this region have very different hydrological functions. Peat plateaus have a limited capacity to store water, a relatively large snowmelt water supply and hydraulic gradients that direct excess water into adjacent permafrost-free wetlands. As such, the plateaus function primarily as runoff generators. Plateaus also obstruct and redirect water movement in adjacent wetlands since the open water surfaces of the latter occupy an elevation below the permafrost table. By contrast, bogs are primarily water storage features since they are surrounded by raised permafrost and therefore less able to exchange surface and near-surface flows with the basin drainage network. Accurate estimate of the permafrost and permafrost-free areas is needed for accurate predictions of basin runoff and storage. This study examines the perimeter-area characteristics of bogs and permafrost plateaus, using fractal geometry as a basis for quantifying these properties. Image analyses are applied to aerial photographs and satellite imagery of Scotty Creek, NWT over the period 1947-2010. Preliminary analyses suggest that the expanding bogs and shrinking permafrost plateaus behave as fractals, meaning that their perimeter-area characteristics can be described by simple power equations. The area-frequency characteristics of bogs and plateaus have a hyperbolic distribution with relatively few large bogs and plateaus and numerous small ones

  4. Exploring climatic controls on blanket bog litter decomposition across an altitudinal gradient

    NASA Astrophysics Data System (ADS)

    Bell, Michael; Ritson, Jonathan P.; Clark, Joanna M.; Verhoef, Anne; Brazier, Richard E.

    2016-04-01

    The hydrological and ecological functioning of blanket bogs is strongly coupled, involving multiple ecohydrological feedbacks which can affect carbon cycling. Cool and wet conditions inhibit decomposition, and favour the growth of Sphagnum mosses which produce highly recalcitrant litter. A small but persistent imbalance between production and decomposition has led to blanket bogs in the UK accumulating large amounts of carbon. Additionally, healthy bogs provide a suite of other ecosystems services including water regulation and drinking water provision. However, there is concern that climate change could increase rates of litter decomposition and disrupt this carbon sink. Furthermore, it has been argued that the response of these ecosystems in the warmer south west and west of the UK may provide an early analogue for later changes in the more extensive northern peatlands. In order to investigate the effects of climate change on blanket bog litter decomposition, we set-up a litter bag experiment across an altitudinal gradient spanning 200 m of elevation (including a transition from moorland to healthy blanket bog) on Dartmoor, an area of hitherto unstudied, climatically marginal blanket bog in the south west of the UK. At seven sites, water table depth and soil and surface temperature were recorded continuously. Litter bags filled with the litter of three vegetation species dominant on Dartmoor were incubated just below the bog surface and retrieved over a period of 12 months. We found significant differences in the rate of decomposition between species. At all sites, decomposition progressed in the order Calluna vulgaris (dwarf shrub) > Molinia caerulea (graminoid) > Sphagnum (bryophyte). However, while soil temperature did decrease along the altitudinal gradient, being warmer in the lower altitudes, a hypothesised accompanying decrease in decomposition rates did not occur. This could be explained by greater N deposition at the higher elevation sites (estimated

  5. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    USGS Publications Warehouse

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  6. [Decline of Activity and Shifts in the Methanotrophic Community Structure of an Ombrotrophic Peat Bog after Wildfire].

    PubMed

    Danilova, O V; Belova, S E; Kulichevskaya, I S; Dedysh, S N

    2015-01-01

    This study examined potential disturbances of methanotrophic communities playing a key role in reducing methane emissions from the peat bog Tasin Borskoye, Vladimir oblast, Russia as a result of the 2007 wildfire. The potential activity of the methane-oxidizing filter in the burned peatland site and the abundance of indigenous methanotrophic bacteria were significantly reduced in comparison to the undisturbed site. Molecular analysis of methanotrophic community structure by means of PCR amplification and cloning of the pmoAgene encoding particulate methane monooxygenase revealed the replacement of typical peat-inhabiting, acidophilic type II methanotrophic bacteria with type I methanotrophs, which are less active in acidic environments. In summary, both the structure and the activity of the methane-oxidizing filter in burned peatland sites underwent significant changes, which were clearly pronounced even after 7 years of the natural ecosystem recovery. These results point to the long-term character of the disturbances caused by wildfire in peatlands. PMID:27169243

  7. CH4 production via CO2 reduction in a temperate bog - A source of (C-13)-depleted CH4

    NASA Technical Reports Server (NTRS)

    Lansdown, J. M.; Quay, P. D.; King, S. L.

    1992-01-01

    The paper reports measurements, taken over two annual cycles, of the flux and delta(C-13) of CH4 released from an acidic peat bog located in the foothills of the Cascade Range in Washington state, U.S. Measurements of the rate of aceticlastic methanogenesis and CO2 reduction in peat soil, using (C-14)-labeled acetate and sodium bicarbonate, show that acetate was not an important CH4 precursor and that CO2 reduction could account for all of the CH4 production. The in situ kinetic isotope effect for CO2 reduction, calculated using the delta-(C-13) of soil water CO2 and CH4 flux, was 0.932 +/- 0.007.

  8. Stability of uncoated and fulvic acids coated manufactured CeO2 nanoparticles in various conditions: From ultrapure to natural Lake Geneva waters.

    PubMed

    Oriekhova, Olena; Stoll, Serge

    2016-08-15

    Understanding the behavior of engineered nanoparticles in natural water and impact of water composition in changing conditions is of high importance to predict their fate once released into the environment. In this study we investigated the stability of uncoated and Suwannee River fulvic acids coated CeO2 manufactured nanoparticles in various environmental conditions. The effect of pH changes on the nanoparticle and coating stability was first studied in ultrapure water as well as the variation of zeta potentials and sizes with time in presence of fulvic acids at environmental pH. Then the stability of CeO2 in synthetic and natural Lake Geneva waters was investigated as a function of fulvic acids concentration. Our results indicate that the adsorption of environmentally relevant concentrations of Suwannee River fulvic acids promotes CeO2 stabilization in ultrapure water as well as synthetic water and that the coating stability is high upon pH variations. On the other hand in natural Lake Geneva water CeO2 NPs are found in all cases aggregated due to the effect of heterogeneous organic and inorganic compounds. PMID:27100013

  9. Peat Bogs as Hotspots for Organoarsenical Formation and Persistence.

    PubMed

    Mikutta, Christian; Rothwell, James J

    2016-04-19

    Peatlands have received significant atmospheric inputs of As and S since the onset of the Industrial Revolution, but the effect of S deposition on the fate of As is largely unknown. It may encompass the formation of As sulfides and organosulfur-bound As, or the indirect stimulation of As biotransformation processes, which are presently not considered as important As immobilization pathways in wetlands. To investigate the immobilization mechanisms of anthropogenically derived As in peatlands subjected to long-term atmospheric pollution, we explored the solid-phase speciation of As, Fe, and S in English peat bogs by X-ray absorption spectroscopy. Additionally, we analyzed the speciation of As in pore- and streamwaters. Linear combination fits of extended X-ray absorption fine structure (EXAFS) data imply that 62-100% (average: 82%) of solid-phase As (Astot: 9-92 mg/kg) was present as organic As(V) and As(III). In agreement with appreciable concentrations of organoarsenicals in surface waters (pH: 4.0-4.4, Eh: 165-190 mV, average Astot: 1.5-129 μg/L), our findings reveal extensive biotransformation of atmospheric As and the enrichment of organoarsenicals in the peat, suggesting that the importance of organometal(loid)s in wetlands subjected to prolonged air pollution is higher than previously assumed. PMID:27034028

  10. Hydrologic conditions in the Klatt Bog area, Anchorage, Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1986-01-01

    Klatt Bog is a 2.3 sq mi wetland in Anchorage, Alaska which provides habitat for many wildlife species but also offers potential sites for residential, commercial, and agricultural developments. Precipitation, the main source of water for the area, averages 15 in/yr; during the 1983 study period, precipitation was 12.16 inches. Estimates of evapotranspiration, considered to be the major component of water outflow, range from 10 to 20 inches. Surface runoff and groundwater outflow during 1983 are estimated to be 2.8 and < 0.2 inches, respectively. During summer, most of the runoff is derived from groundwater discharge near the upgradient eastern edge of the wetland. The wetland 's aquifer system is composed of fibrous peat which overlies a poorly permeable layer of silt and clay. The aquifer is recharged by infiltration of precipitation and inflow of groundwater from upland areas east of the wetland. During 1983 the water table was at or within 3 ft of land surface in most areas and its seasonal fluctuation was < 2 feet. Water collected from four shallow observation wells, two ponds, and two sites on a stream had concentrations of dissolved iron ranging from 2,300 to 6,100 micrograms/L. (Author 's abstract)

  11. Increased tree establishment in Lithuanian peat bogs--insights from field and remotely sensed approaches.

    PubMed

    Edvardsson, Johannes; Šimanauskienė, Rasa; Taminskas, Julius; Baužienė, Ieva; Stoffel, Markus

    2015-02-01

    Over the past century an ongoing establishment of Scots pine (Pinus sylvestris L.), sometimes at accelerating rates, is noted at three studied Lithuanian peat bogs, namely Kerėplis, Rėkyva and Aukštumala, all representing different degrees of tree coverage and geographic settings. Present establishment rates seem to depend on tree density on the bog surface and are most significant at sparsely covered sites where about three-fourth of the trees have established since the mid-1990s, whereas the initial establishment in general was during the early to mid-19th century. Three methods were used to detect, compare and describe tree establishment: (1) tree counts in small plots, (2) dendrochronological dating of bog pine trees, and (3) interpretation of aerial photographs and historical maps of the study areas. In combination, the different approaches provide complimentary information but also weigh up each other's drawbacks. Tree counts in plots provided a reasonable overview of age class distributions and enabled capturing of the most recently established trees with ages less than 50 years. The dendrochronological analysis yielded accurate tree ages and a good temporal resolution of long-term changes. Tree establishment and spread interpreted from aerial photographs and historical maps provided a good overview of tree spread and total affected area. It also helped to verify the results obtained with the other methods and an upscaling of findings to the entire peat bogs. The ongoing spread of trees in predominantly undisturbed peat bogs is related to warmer and/or drier climatic conditions, and to a minor degree to land-use changes. Our results therefore provide valuable insights into vegetation changes in peat bogs, also with respect to bog response to ongoing and future climatic changes. PMID:25310886

  12. Characterization of year-round sensitivity of California's Montane Lakes to acidic deposition. Final report, October 1986-June 1989

    SciTech Connect

    Sickman, J.O.; Melack, J.M.

    1989-06-01

    Four high-elevation, lake watersheds in the Sierra Nevada were studied from October 1986 through June 1988. Researchers measured wet deposition, lake outflow and lake chemistry and physics at these sites using the mass-balance approach to relate the effect of wet deposition on lake and stream water chemistry. Crystal and Ruby Lakes, located on the eastern slope of the Sierra, and Topaz and Pear Lakes, located on the western slope in Sequoia National Park, were found to be dimictic. Major solute concentrations in the subsurface reached a minima during the latter part of snowmelt. Near-bottom concentrations of these solutes generally had less seasonal variation and were generally higher than subsurface values. Mean snow depth and chemical concentrations were similar for the winters of 1986-87 and 1987-88 at all watersheds. Volume-weighted mean pH ranged from 5.3 to 5.5, with the dominant ion being hydrogen, ammonium, acetate, nitrate and sulfate. Wet deposition as mixed rain and snow occurring between May and October can deliver more solutes to the watersheds than winter snows.

  13. Reconstructing the environmental impact of smelters using Pb isotope analyses of peat cores from bogs: Flin Flon, Manitoba and Harjavalta, Finland

    NASA Astrophysics Data System (ADS)

    Shotyk, W.

    2012-04-01

    Located on the Manitoba - Saskatchewan border, the city of Flin Flon has been home to a metallurgical complex since 1930, processing Cu and Zn ores from surrounding mines and consisting of a concentrator, Zn plant, and Cu smelter. Peat cores were collected from two sites, dated using 210Pb, and measured for a broad suite of potentially toxic trace metals. A peat core collected from the bog at Kotyk Lake (30 km NE of FF) shows declines in 206Pb/207Pb from the natural "background" values of 1.25 at the base of the core, to a minimum of 1.02. A peat core collected from the bog at Sask Lake (88 km NW of FF) shows declines in 206Pb/207Pb from the natural "background" values of 1.35 at the base of the core to a minimum of 1.05. But the isotopic evolution of Pb shows significantly declines in 206Pb/207Pb beginning in the late 1800's, presumably because of long-range atmospheric transport from other sources. The 206Pb/207Pb values increase in both cores starting in the 1960's, and reach a recent maximum in the 1990's, apparently reflecting the growing use and eventually phase out of leaded gasoline use. Since the 1990's, the 206Pb/207Pb have continued their decline, apparently reflecting the elimination of leaded gasoline and the growing relative importance of Pb from the smelter. The temporal evolution in Pb enrichment factors follows the history of the metallurgical complex, with the maximum EF values (calculated using Sc) reaching maxima of ca. 100 x (Kotyk Lake) and 10 x (Sask Lake). The maximum rates of atmospheric Pb accumulation are approximately 1200 and 120 μg/m2/yr, respectively. In Finland, peat cores were taken from three bogs: the Pyhäsuo mire in SW Finland, 6 km NE from the Cu Ni smelter at Harjavalta (HAR); at the Viurusuo complex in eastern Finland, 8 km SW of the Cu Ni mine in the town of Outokumpu (OUT); and at Hietajärvi (HJ), in the Patvinsuo National Park of eastern Finland. The cores from HJ and OUT document 3,000 years of anthropogenic Pb and

  14. Can restoration convert a degraded bog in southern Bavaria to a carbon sink and climate cooler?

    NASA Astrophysics Data System (ADS)

    Förster, Christoph; Drösler, Matthias

    2014-05-01

    The peatland area of Germany is about 14.000 km² (Succow & Joosten 2001) with 8% natural like bogs and 4% natural like fens (Höper 2006). All other peatland areas are more or less intensively used and thus, lost their sink function for carbon. If, theoretically, all German peatlands would be rewetted, this restoration would lead to a carbon mitigation of 9.5 Mio. t CO2-C equivalents (Freibauer et al. 2009). In test areas like the studied bog, the viability and potential of peatland restoration for climate mitigation can be proofed. The investigated bog is situated close to the Bavarian Alps; one part of this bog is extensively used and had been rewetted in 1993 except of a small stripe; management was stopped totally at another stripe. The second part of this bog had been drained without any further use. Here a Calluna heath established, accompanied by Pine trees. The restoration of this bog heath was done in two time steps; here a chronosequence of succession after restoration at different water table levels was investigated. To get to the greenhouse gas (GHG) balances of CO2 CH4 and N2O, gas flux measurements were done for two years using the chamber technique of Drösler (2005). At both areas, the degraded sites were sources for GHG (+203 to +736 g CO2-C-equiv m-2 a-1). Restoration reduced these emissions depending on water table and succession of bog species (-51 to +557 g CO2-C-equiv m-2 a-1). Depending on the vegetation's vitality GHG balances of already established natural like sites varied in between the years (-189 to +264 g CO2-C-equiv m-2 a-1) mainly driven by the oscillation of their water table. Stop of management and development of Sphagnum communities turned most of the sites into sinks for GHG (-216 to +7 g CO2-C-equiv m-2 a-1). Thus restoration turned degraded bogs efficiently to carbon sinks and climate coolers in dependence of a proper water table management, withdrawal of land use and vegetation succession. Key words: bog, greenhouse gases

  15. A new peat bog testate amoeba transfer function and quantitative palaeohydrological reconstructions from southern Patagonia

    NASA Astrophysics Data System (ADS)

    van Bellen, S.; Mauquoy, D.; Payne, R.; Roland, T. P.; Hughes, P. D.; Daley, T. J.; Street-Perrot, F. A.; Loader, N.

    2013-12-01

    Testate amoebae have been used extensively as proxies for environmental change and palaeoclimate reconstructions in European and North American peatlands. The presence of these micro-organisms in surface samples is generally significantly linked to the local water table depth (WTD) and preservation of the amoeba shells downcore allows for millennial length water table reconstructions. Peat bog archive records in southern Patagonia are increasingly the focus of palaeoecological research due to the possibility of detecting changes in the Southern Westerlies. These Sphagnum magellanicum-dominated peat bogs are characterised by a wide range of water table depths, from wet hollows to high hummocks (>100 cm above the water table). Here we present the first transfer function for this region along with ~2k-year palaeorecords from local peat bogs. A modern dataset (155 samples) was sampled along transects from five bogs in 2012 and 2013. Measurements of WTD, pH and conductivity were taken for all samples. The transfer function model was based on the 2012 dataset, while the 2013 samples served as an independent test set to validate the model. Besides the standard leave-one-out cross-validation, we applied leave-one-site-out and leave-one transect-out cross-validation, which are effective means of verifying the degree of clustering in the dataset. To ensure that the environmental gradient had been evenly sampled we quantified the root-mean-squared error of prediction (RMSEP) individually for segments of this gradient. Ordinations showed a clear hydrological gradient in amoeba assemblages, with the dominant Assulina muscorum at the dry end and Amphitrema wrightianum and Difflugia globulosa at the wet end. Canonical correspondence analysis showed that WTD was the most important environmental variable, accounting for 18% of the variance in amoeba assemblages. A weighted averaging-partial least squares model showed best performance in cross-validation, using the 2013 data as an

  16. CO2 and CH4 fluxes of contrasting pristine bogs in southern Patagonia (Tierra del Fuego, Argentina)

    NASA Astrophysics Data System (ADS)

    Münchberger, Wiebke; Blodau, Christian; Kleinebecker, Till; Pancotto, Veronica

    2015-04-01

    South Patagonian peatlands cover a wide range of the southern terrestrial area and thus are an important component of the terrestrial global carbon cycle. These extremely southern ecosystems have been accumulating organic material since the last glaciation up to now and are - in contrast to northern hemisphere bogs - virtually unaffected by human activities. So far, little attention has been given to these pristine ecosystems and great carbon reservoirs which will potentially be affected by climate change. We aim to fill the knowledge gap in the quantity of carbon released from these bogs and in what controls their fluxes. We study the temporal and spatial variability of carbon fluxes in two contrasting bog ecosystems in southern Patagonia, Tierra del Fuego. Sphagnum-dominated bog ecosystems in Tierra del Fuego are similar to the ones on the northern hemisphere, while cushion plant-dominated bogs can almost exclusively be found in southern Patagonia. These unique cushion plant-dominated bogs are found close to the coast and their occurrence changes gradually to Sphagnum-dominated bogs with increasing distance from the coast. We conduct closed chamber measurements and record relevant environmental variables for CO2 and CH4 fluxes during two austral vegetation periods from December to April. Chamber measurements are performed on microforms representing the main vegetation units of the studied bogs. Gas concentrations are measured with a fast analyzer (Los Gatos Ultraportable Greenhouse Gas Analyzer) allowing to accurately record CH4 fluxes in the ppm range. We present preliminary results of the carbon flux variability from south Patagonian peat bogs and give insights into their environmental controls. Carbon fluxes of these two bog types appear to be highly different. In contrast to Sphagnum-dominated bogs, cushion plant-dominated bogs release almost no CH4 while their CO2 flux in both, photosynthesis and respiration, can be twice as high as for Sphagnum

  17. Estimating methane production rates in bogs and landfills by deuterium enrichment of pore water

    USGS Publications Warehouse

    Siegel, D.I.; Chanton, J.P.; Glaser, P.H.; Chasar, L.S.; Rosenberry, D.O.

    2001-01-01

    Raised bogs and municipal waste landfills harbor large populations of methanogens within their domed deposits of anoxic organic matter. Although the methane emissions from these sites have been estimated by various methods, limited data exist on the activity of the methanogens at depth. We therefore analyzed the stable isotopic signature of the pore waters in two raised bogs from northern Minnesota to identify depth intervals in the peat profile where methanogenic metabolism occurs. Methanogenesis enriched the deuterium (2H) content of the deep peat pore waters by as much as +11% (Vienna Standard Mean Sea Water), which compares to a much greater enrichment factor of +70% in leachate from New York City's Fresh Kills landfill. The bog pore waters were isotopically dated by tritium (3H) to be about 35 years old at 1.5 m depth, whereas the landfill leachate was estimated as ~ 17 years old from Darcy flow calculations. According to an isotopic mass balance the observed deuterium enrichment indicates that about 1.2 g of CH4m-3 d-1 were produced within the deeper peat, compared to about 2.8 g CH4 m-3 d-1 in the landfill. The values for methane production in the bog peat are substantially higher than the flux rates measured at the surface of the bogs or at the landfill, indicating that deeper methane production may be much higher than was previously assumed.

  18. The Draft Genome Sequence of Sphingomonas sp. Strain FukuSWIS1, Obtained from Acidic Lake Grosse Fuchskuhle, Indicates Photoheterotrophy and a Potential for Humic Matter Degradation

    PubMed Central

    Salka, Ivette; Srivastava, Abhishek; Allgaier, Martin

    2014-01-01

    Sphingomonas spp. are Alphaproteobacteria considered to be versatile bacteria that can utilize a variety of natural substrates available in terrestrial and aquatic systems. Sphingomonas sp. strain FukuSWIS1 was isolated from the eutrophic and acidic freshwater Lake Grosse Fuchskuhle in northeastern Germany. The strain has a genome size of 3.89 Mb, possesses a set of photosynthetic genes, and expresses photopigment BChl a under oxic conditions. Thus, this strain belongs to the aerobic anoxygenic phototrophic (AAP) bacteria, which are most likely involved in humic matter degradation as indicated by the presence of organic compound mineralizing genes. PMID:25395647

  19. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions.

    PubMed

    Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G; Müller, Henry; Berg, Gabriele

    2014-09-01

    Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria. PMID:25113243

  20. Sources of acid and metals from the weathering of the Dinero waste pile, Lake Fork watershed, Leadville, Colorado

    USGS Publications Warehouse

    Diehl, S.F.; Hageman, Phil L.; Smith, Kathleen S.; Herron, J.T.; Desborough, G.A.

    2005-01-01

    Two trenches were dug into the south Dinero mine-waste pile near Leadville, Colorado, to study the weathering of rock fragments and the mineralogic sources of metal contaminants in the surrounding wetland and Lake Fork Watershed. Water seeping from the base of the south Dinero waste-rock pile was pH 2.9, whereas leachate from a composite sample of the rock waste was pH 3.3. The waste pile was mostly devoid of vegetation, open to infiltration of precipitation, and saturated at the base because of placement in the wetland. The south mine-waste pile is composed of poorly sorted material, ranging from boulder-size to fine-grained rock fragments. The trenches showed both matrix-supported and clast-supported zones, with faint horizontal color banding, suggesting zonation of Fe oxides. Secondary minerals such as jarosite and gypsum occurred throughout the depth of the trenches. Infiltration of water and transport of dissolved material through the pile is evidenced by optically continuous secondary mineral deposits that fill or line voids. Iron-sulfate material exhibits microlaminations with shrinkage cracking and preferential dissolution of microlayers that evidence drying and wetting events. In addition to fluids, submicron-sized to very fine-grained particles such as jarosite are transported through channel ways in the pile. Rock fragments are coated with a mixture of clay, jarosite, and manganese oxides. Dissolution of minerals is a primary source of metals. Skeletal remnants of grains, outlined by Fe-oxide minerals, are common. Potassium jarosite is the most abundant jarosite phase, but Pb-and Ag-bearing jarosite are common. Grain-sized clusters of jarosite suggest that entire sulfide grains were replaced by very fine-grained jarosite crystals. The waste piles were removed from the wetland and reclaimed upslope in 2003. This was an opportunity to test methods to identify sources of acid and metals and metal transport processes within a waste pile. A series of

  1. Draft Genome Sequences of Three Chromobacterium subtsugae Isolates from Wild and Cultivated Cranberry Bogs in Southeastern Massachusetts

    PubMed Central

    Vöing, Kristin; Harrison, Alisha

    2015-01-01

    Chromobacterium subtsugae was isolated from cranberry bogs in Massachusetts. While it is unknown what environmental role these bacteria play in bog soils, they hold potential as biological control agents against the larvae of insect pests. Potential virulence genes were identified, including the violacein synthesis pathway, siderophores, and several chitinases. PMID:26358592

  2. Hydrogeologic setting of the Glacial Lake Agassiz Peatlands, northern Minnesota

    USGS Publications Warehouse

    Siegel, Donald I.

    1981-01-01

    Seven test holes drilled in the Glacial Lake Agassiz Peatlands indicate that the thickness of surficial materials along a north-south traverse parallel to Minnesota Highway 72 ranges from 163 feet near Blackduck, Minnesota to 57 feet about 3 miles south of Upper Red Lake. Lenses of sand and gravel occur immediately above bedrock on the Itasca moraine and are interbedded with lake clay and till under the peatlands. Vertical head gradients measured in a piezometer nest near Blackduck on the moraine are downward, indicative of recharge to the regional ground-water-flow system. Vertical head gradients are upward in a piezometer nest on a sand beach ridge in the peatlands 12 miles north of Upper Red Lake. Numerical sectional models indicate that this discharge probably comes from local flow systems recharged from ground-water mounds located under large raised bogs.

  3. The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity.

    PubMed

    Bragina, Anastasia; Berg, Christian; Berg, Gabriele

    2015-09-01

    Bog ecosystems fulfil important functions in Earth's carbon and water turnover. While plant communities and their keystone species Sphagnum have been well studied, less is known about the microbial communities associated with them. To study our hypothesis that bog plants share an essential core of their microbiome despite their different phylogenetic origins, we analysed four plant community plots with 24 bryophytes, vascular plants and lichen species in two Alpine bogs in Austria by 16S rDNA amplicon sequencing followed by bioinformatic analyses. The overall bog microbiome was classified into 32 microbial phyla, while Proteobacteria (30.8%), Verrucomicrobia (20.3%) and Planctomycetes (15.1%) belonged to the most abundant groups. Interestingly, the archaeal phylum Euryarcheota represented 7.2% of total microbial abundance. However, a high portion of micro-organisms remained unassigned at phylum and class level, respectively. The core microbiome of the bog vegetation contained 177 operational taxonomic units (OTUs) (150 526 seq.) and contributed to 49.5% of the total microbial abundance. Only a minor portion of associated core micro-organisms was host specific for examined plant groups (5.9-11.6%). Using our new approach to analyse plant-microbial communities in an integral framework of ecosystem, vegetation and microbiome, we demonstrated that bog vegetation harboured a core microbiome that is shared between plants and lichens over the whole ecosystem and formed a transkingdom metacommunity. All micro- and macro-organisms are connected to keystone Sphagnum mosses via set of microbial species, for example Burkholderia bryophila which was found associated with a wide spectrum of host plants and is known for a beneficial plant-microbe interaction. PMID:26335913

  4. Changing sources of respiration between a black spruce forest and thermokarst bog

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; McFarland, J.; Czimczik, C. I.; Euskirchen, E. S.; Amendolara, T.; Scott, G. J.; Turetsky, M. R.; Harden, J. W.; McGuire, A. D.

    2011-12-01

    Permafrost thaw in lowland black spruce forests (Picea mariana) which develop into thermokarst bogs can alter ecosystem carbon balance through positive or negative feedbacks to climate warming. In this context, the responses of plant and soil microbial communities to permafrost thaw, and their roles in altered carbon balance, need to be understood. In addition, gross changes in microbial community composition, such as fungal:bacterial ratios and their temperature response functions, are poorly characterized in permafrost thaw experiments. In this study, we compared carbon fluxes between a lowland black spruce forest with intact permafrost and an adjacent thermokarst bog that developed 20-30 years ago located near the Bonanza Creek Experimental Forest in Alaska. We quantified net ecosystem exchange (NEE), ecosystem respiration (ER), and gross primary productivity (GPP) using flux autochambers, and partitioned sources of ecosystem respiration into autotrophic vs. heterotrophic sources using radiocarbon analysis of ecosystem and microbial respiration, and atmospheric CO2. We further partitioned microbial respiration into fungal vs. bacterial sources using substrate inhibition techniques. Preliminary results indicate that in mid summer of 2011 the thermokarst bog was a source of CO2 to the atmosphere. NEE data indicated that the black spruce understory was a source of CO2. However, because flux tower data showed that the black spruce ecosystem was actually a net sink, GPP by the black spruce trees must have been large. In the black spruce forest ER was dominated by plant respiration in the spring and by microbial respiration in the fall whereas in the thermokarst bog CO2 was derived from deeper soil C sources. Although microbial respiration was roughly balanced between fungi and bacteria in the black spruce forest, respiration was dominantly bacterial in the thermokarst bog. Our initial results show that thermokarst bogs are source of C to the atmosphere during summer

  5. Holocene Carbon Accumulation Rates in the SPRUCE Bog Prior to Warming and Elevated CO2 Treatment

    NASA Astrophysics Data System (ADS)

    McFarlane, K. J.; Iversen, C. M.; Phillips, J. R.; Brice, D. J.; Hanson, P. J.

    2015-12-01

    In the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experiment warming and elevated CO2 treatments are being applied to an ombrotrophic spruce bog: the S1 Bog (S1) at Marcell Experimental Forest in northern Minnesota. To provide a historical context for recent and expected experimentally-induced changes in the bog's belowground carbon balance, we reconstructed historical carbon accumulation rates in peat using radiocarbon from 19 peat cores collected from randomly distributed SPRUCE plots. This unusually high number of cores allows us to assess spatial variability in age-depth profiles and accumulation rates across the SPRUCE study area within S1. This data, along with recent C flux measurements, show that the bog has been accumulating carbon for at least 12,0000 years and has continued to be a sink for atmospheric carbon of approximately 150 g C m-2 yr-1 in recent decades. Early Holocene accumulation rates are similar to those reported for other northern peatlands (approximately 25 g C m-2 yr-1), but apparent carbon accumulation decreased substantially around 3,000 years ago (to 5-15 g C m-2 yr-1) and stayed low until the last century. This decrease is considerably larger than that reported for other peatlands and is therefore unlikely to result only from cooling during the Holocene or bog succession. Although no charcoal has been found in peat at this site, evidence from a neighboring bog indicates a considerable amount of peat formed during this period was consumed by fire and it is possible that smoldering fires consumed peat, resulting in low apparent accumulation rates. Past droughts may have also contributed to observed trends by lowering the acrotelm/catotelm boundary, allowing for enhanced aerobic peat decomposition. This work provides important background information on spatial variability and carbon biogeochemistry that will aid in interpretation of climate change simulation experiments at S1.

  6. Hydrology controls methane and nitrous oxide fluxes in swamp and bog forests

    NASA Astrophysics Data System (ADS)

    Mander, Ülo; Pärn, Jaan; Maddison, Martin; Soosaar, Kaido; Salm, Jüri-Ott; Sohar, Kristina; Teemusk, Alar

    2016-04-01

    We used data from a global soil, and N2O and CH4 gas sampling campaign. The objective was to analyse N2O and CH4 emissions related to peat conditions in swamp and bog forests. Altogether, we studied 21 swamp and bog forest sites under various climates: 3 alder swamps and 3 artificially drained bog pine forests in Estonia (Jan.-Dec. 2009), 2 bog forests in Transylvania/Romania (Apr. 2012 & June 2014), 3 cypress swamps in the Everglades (Apr. & Dec. 2013), 2 bog forests in West Siberia (July 2013) and a bog forest in Tasmania (Jan.-Feb. 2014). The N2O and CH4 effluxes were measured during 5-6 days with 8-10 opaque static chambers per site. Soil samples were taken for further analysis of pHKCl, NO3-N, NH4-N, soluble P, K, Ca and Mg, totN and C. Groundwater was measured from sampling wells. The most significant independent factor for site average CH4 fluxes was groundwater depth - an exponential relationship; R2=0.42; p=0.0007; n=21. The N2O fluxes showed a decreasing (power) relationship with the C/N ratio - R2=0.53; p<0.0001; n=21. Related to groundwater level, the N2O fluxes peak at around -40cm. Variation in greenhouse gas fluxes was largest at the more favourable conditions - at optimal water table (+5 to -20cm) for CH4 and at low C/N for N2O. The results agree with previous literature but they are the first to draw such conclusions from a global campaign following a uniform protocol.

  7. The impact of 90 years of drainage works on some chemical properties of raised peat bog organic soils - case study from valley of the Upper San river in Polish Bieszczady Mts. (Eastern Carpathians).

    NASA Astrophysics Data System (ADS)

    Stolarczyk, Mateusz

    2016-04-01

    Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works

  8. Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, Northeast China.

    PubMed

    Bao, Kunshan; Xing, Wei; Yu, Xiaofei; Zhao, Hongmei; McLaughlin, Neil; Lu, Xianguo; Wang, Guoping

    2012-08-01

    Recent deposition of atmospheric soil dust (ASD) was studied using (210)Pb-dated Sphagnum-derived peat sequences from Great Hinggan Mountain in northeast China. Physicochemical indices of peat including dry bulk density, water content, ash content, total organic carbon and mass magnetic susceptibility were measured. Acid-insoluble concentration of lithogenic metals (Al, Ca, Fe, Mn, V and Ti) were measured using ICP-AES. The basic physicochemical properties were used to assess the peat trophic status and indicated that the sections above 45-60 cm are rain-fed peat. A continuous record of ASD fluxes over the past 150 years was reconstructed based on the geochemical data obtained from the ombrotrophic zone, and the average input rate of ASD is 13.4-68.1 g m(-2) year(-1). The source of soil dust deposited in peat was dominated by the long-range transport of mineral aerosol from the drylands in north China and Mongolia. The temporal variation of ASD fluxes in the last 60 years coincides well with the meteorological records of dust storm frequency during 1954-2002 in north China. This suggests that the reconstructed sequence of atmospheric dust deposition is reliable and we can look back in time at the dust evolution before 1949. Dust storm events were observed occasionally in the late Qing dynasty, and their frequency and intensity were smaller than dust weather occurring in recent times. Four peaks of ASD fluxes were distinguished and correlated with the historical events at that time. This study presents the first atmospheric soil dust data in peat records in northeast China, and complements a global database of peat bog archives of atmospheric deposition. The results reflect the patterns of local environmental change over the past century in north China and will be helpful in formulating policies to achieve sustainable and healthy development. PMID:22664536

  9. Design considerations for ozone and acid-aerosol exposure and health investigations: the Fairview Lake Summer Camp - photochemical smog case study

    SciTech Connect

    Lioy, P.J.; Spektor, D.; Thurston, G.; Citak, K.; Lippmann, M.

    1987-01-01

    The health effects associated with ozone and acidic particulate sulfate exposures to active children have been and are being addressed in field epidemiological studies at summer camps in rural areas of the Northeastern U.S. The rationale and study design for studies, which have been conducted in Pennsylvania and New Jersey, are developed and reviewed. As background, results are summarized for human clinical and epidemiological studies and animal studies. These provided the basis for selection of health outcomes. Measured results from chemical characterization and transport studies are reviewed to define the criteria used for selection of a site affected by high ozone and acid species during photochemical smog episodes. The integration of the study design is discussed in detail by reviewing its application to the 1984 - Fairview Lake Camp Study (July 8 to August 4). The features of the camp study are reviewed, including the study population, pulmonary function procedures and analyses, air pollution monitoring instrumentation, and the site characteristics.

  10. Influence of in ovo mercury exposure, lake acidity, and other factors on common loon egg and chick quality in Wisconsin

    EPA Science Inventory

    We conducted a field study in Wisconsin to characterize in ovo mercury (Hg) exposure in common loons (Gavia immer). Total Hg mass fractions ranged from 0.17 to 1.23 ìg/g wet weight (ww) in eggs collected from nests on lakes representing a wide range of pH (5.0 - 8.1) and ...

  11. High contents of both docosahexaenoic and arachidonic acids in milk of women consuming fish from lake Kitangiri (Tanzania): targets for infant formulae close to our ancient diet?

    PubMed

    Kuipers, Remko S; Fokkema, M Rebecca; Smit, Ella N; van der Meulen, Jan; Boersma, E Rudy; Muskiet, Frits A J

    2005-04-01

    Current recommendations for arachidonic (AA) and docosahexaenoic (DHA) acids in infant formulae are based on milk of Western mothers. Validity may be questioned in view of the profound dietary changes in the past 100 years, as opposed to our slowly adapting genome. Hominin evolution occurred in the proximity of East-African freshwater lakes and rivers and early homo sapiens had higher intakes of AA and DHA from a predominantly lacustrine-based diet. In search of milk AA and DHA contents of our African ancestors, we investigated the milk of 29 lactating women living in Doromoni near lake Kitangiri (Tanzania). They consumed sunflower oil-fried local fish as only animal lipid sources, maize and local vegetables. AA and DHA contents of Doromoni milk may be close to that of early homo sapiens, because of the similarity of their life-long consumption of East-African lacustrine-based foods. Human milk fatty acid relationships from our historical worldwide database and the literature revealed that disparities between the Doromoni diet and the presumed ancient diet (i.e. higher carbohydrate and linoleic acid intakes) are unlikely to affect milk AA and DHA contents. Doromoni milk had high contents of AA (median 0.70 mol%), DHA (0.75) and eicosapentaenoic acid (EPA, 0.17), and low AA/DHA ratios (median 0.91; 0.55-2.61). This tracks down to consumption of fish with high AA and DHA contents, and AA/EPA ratios. We conclude that the milk AA, DHA and EPA contents of Doromoni women might provide us with clues to optimize infant formulae and perhaps the milk of Western women. PMID:15763440

  12. Antioxidant properties, phenolic composition and potentiometric sensor array evaluation of commercial and new blueberry (Vaccinium corymbosum) and bog blueberry (Vaccinium uliginosum) genotypes.

    PubMed

    Kraujalytė, Vilma; Venskutonis, Petras Rimantas; Pukalskas, Audrius; Česonienė, Laima; Daubaras, Remigijus

    2015-12-01

    Antioxidant properties of juices of newly bred and known blueberry (Vaccinium corymbosum) genotypes and wild bog blueberry (Vaccinium uliginosum) were evaluated by ABTS(+) scavenging capacity (RSC), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), total phenolic content (TPC) and total anthocyanin content (TAC) assays. TPC varied in the range of 0.85-2.81 mg gallic acid equiv./mL, RSC, FRAP and ORAC values were 6.38-20.9, 3.07-17.8 and 4.21-45.68 μmol Trolox equiv./g, respectively. New blueberry genotypes and bog blueberry demonstrated stronger antioxidant properties and TAC than other studied genotypes. The content of quinic (203-3614 μg/mL), chlorogenic (20.0-346.8 μg/mL) acids and rutin (0.00-26.88 μg/mL) measured by UPLC/ESI-QTOF-MS varied depending on the genotype. Juices were evaluated by electronic tongue; PCA score plot showed that the method discriminates different genotypes although some juice samples were located very closely and overlapping. Significant differences were observed between L(∗), a(∗), b(∗) colour parameters of some genotypes. PMID:26041234

  13. Interactions between Nitrogen Fixation and Methane Cycling in Northern Minnesota Peat Bogs

    NASA Astrophysics Data System (ADS)

    Warren, M. J.; Gaby, J. C.; Lin, X.; Morton, P. L.; Kostka, J. E.; Glass, J. B.

    2014-12-01

    Peatlands cover only 3% of the Earth's surface, yet store a third of soil carbon. Increasing global temperatures have the potential to change peatlands from a net sink to a net source of atmospheric carbon. N is a limiting nutrient in oligotrophic Sphagnum-dominated peatlands and biological N2 fixation likely supplies a significant but unknown fraction of N inputs. Moreover, environmental controls on diazotrophic community composition in N-limited peatlands are poorly constrained. Thus, improved understanding of feedbacks between the CH4 and N cycles is critical for predicting future changes to CH4 flux from peat bogs. We coupled measurements of N2 fixation activity measured by the acetylene (C2H2) reduction assay (ARA) with molecular analyses of expression and diversity of nifH genes encoding the molybdenum (Mo)-containing nitrogenase from two peat bogs in the Marcell Experimental Forest, Minnesota, USA. The top 10 cm of peat was sampled from the high CH4 flux S1 bog and the low CH4 flux Zim bog in April and June 2014. Despite similar N concentrations in the top 10 cm of both bogs (0.5-1.0 μM NO2-+NO3- and 2-3 μM NH4+), the S1 bog displayed variable ARA activity (1-100 nmol C2H4 h-1 g-1) whereas the Zim bog had consistently low ARA activity (<1 nmol C2H4 h-1 g-1). Highest ARA activity was measured in June from S1 bog hollows with higher moisture content incubated without O2 in the light (20-100 nmol C2H4 h-1 g-1). Dissolved Fe (1-25 μM) was higher in hollow vs. hummock samples, and at S1 vs. Zim bog, while dissolved V (4-14 nM) was consistently higher than Mo (1-4 nM), suggesting that alternative V or Fe-containing nitrogenases might be present in these bogs. In contrast, Cu, an essential micronutrient for aerobic methanotrophs, was higher in hummocks (25-48 nM) than hollows (6-17 nM). The facultative methanotroph Methylocella was the dominant diazotroph in the S1 bog based on high throughput next generation sequencing of nifH cDNA amplicons. Given previous

  14. Investigations on the "Extreme" Microbial Arsenic Cycle within the Sediments of an Acidic Impoundment of the Former Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Blum, J. S.; Hoeft McCann, S. E.; Bennett, S.; Miller, L. G.; Stoneburner, B.; Saltikov, C.; Oremland, R. S.

    2014-12-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between this element's +5 [arsenate; As(V)] and + 3 [arsenite; As(III)] oxidation states has been well established. Most research has focused upon circum-neutral pH environments, such as freshwater lake and aquifer sediments, and extreme environments like hot springs and hypersaline soda lakes have also been well investigated. In contrast, little work has been conducted on acidic environments. The azure-hued, clear waters of the Herman Pit are acidic (pH 2-4), and overlie oxidized sediments that have a distinctive red/orange coloration indicative of the presence of ferrihydrites and other Fe(III) minerals. There is extensive ebullitive release of geothermal gases from the lake bottom in the form of numerous continuous-flow seeps which are composed primarily of mixtures of CO2, CH4, and H2S. We collected near-shore surface sediments with an Eckman grab, and stored the "soupy" material in filled mason jars kept at 4˚C. Initial experiments were conducted using 3:1 mixtures of lake water: sediment so as to generate dilute slurries which were amended with mM levels of electron acceptors (arsenate, nitrate, oxygen), electron donors (arsenite, acetate, lactate, hydrogen), and incubated under N2, air, or H2. Owing to the large adsorptive capacity of the Fe(III)-rich slurries, we were unable to detect As(V) or As(III) in the aqueous phase of either live or autoclaved controls, although the former consumed lactate, acetate, nitrate, or hydrogen, while the latter did not. This prompted us to conduct a series of further diluted slurry experiments using the live materials from the first as a 10 % addition to lakewater. In these experiments we observed reduction of As(V) to As(III) in anoxic slurries and that rates were enhanced by addition of electron donors (H2, acetate, or lactate). We also observed oxidation of As(III) to As(V) in oxic slurries and in anoxic slurries amended with nitrate. These

  15. Episodic acidification of Adirondack lakes during snowmelt

    SciTech Connect

    Schaefer, D.A.; Driscoll, C.T.; Van Dreason, R.; Yatsko, C.P.

    1990-07-01

    Maximum values of acid neutralizing capacity (ANC) in Adirondack, New York lake outlets generally occur during summer and autumn. During spring snowmelt, transport of acidic water through acid-sensitive watersheds causes depression of upper lake water ANC. In some systems lake outlet ANC reaches negative values. The authors examined outlet water chemistry from II Adirondack lakes during 1986 and 1987 snowmelts. In these lakes, SO concentrations were diluted during snowmelt and did not depress ANC. For lakes with high baseline ANC values, springtime ANC depressions were primarily accompanied by basic cation dilution. For lakes with low baseline ANC, No increases dominated ANC depressions. Lakes with intermediate baseline ANC were affected by both processes and exhibited larger ANC depressions. Ammonium dilution only affected wetland systems. A model predicting a linear relationship between outlet water ANC minima and autumn ANC was inappropriate. To assess watershed response to episodic acidification, hydrologic flow paths must be considered. (Copyright (c) 1990 by the American Geophysical Union.)

  16. Ecology of southeastern shrub bogs (pocosins) and Carolina bays: a community profile

    SciTech Connect

    Sharitz, R.R.; Gibbons, J.W.

    1982-11-01

    Shrub bogs of the Southeast occur in areas of poorly developed internal drainage that typically but not always have highly developed organic or peat soils. Pocosins and Carolina bays are types or subclasses of shrub bogs on the coastal plains of the Carolinas and Georgia. They share roughly the same distribution patterns, soil types, floral and faunal species composition and other community attributes, but differ in geological formation. Carolina bays may contain pocosin as well as other communities, but are defined more by their unique elliptical shape and geomorphometry. The pocosin community is largely defined by its vegetation, a combination of a dense shrub understory and a sparser canopy. The community is part of a complex successional sequence of communities (sedge bogs, savannas, cedar bogs, and bay forests) that may be controlled by such factors as fire, hydroperiod, soil type, and peat depth. Pocosins and Carolina bays harbor a number of animal groups and may be locally important in their ecology. Although few species are endemic to these habitats, they may provide important refuges for a number of species. These communities are simultaneously among the least understood and most rapidly disappearing habitats of the Southeast. Forestry and agricultural clearage are current impacts.

  17. Role and Responsibility of Board of Governors [BOG] in Ensuring Educational Quality in Colleges & Universities

    ERIC Educational Resources Information Center

    Naik, B. M.

    2012-01-01

    The paper presents in brief the need and importance of effective, imaginative and responsible governing boards in colleges and universities, so as to ensure educational quality. BOG should engage fruitfully with the principal and activities in college/ university. UGC, AICTE have now prescribed creation of effective boards for both government and…

  18. A probe for sampling interstitial waters of stream sediments and bog soils

    USGS Publications Warehouse

    Nowlan, G.A.; Carollo, C.

    1974-01-01

    A probe for sampling interstitial waters of stream sediments and bog soils is described. Samples can be obtained within a stratigraphic interval of 2-3 cm, to a depth of 60-80 cm, and with little or no contamination of the samples by sediment or air. ?? 1974.

  19. Peat bog Records of Atmospheric Dust fluxes - Holocene palaeoenvironmental and paleoclimatic implications for South America

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, François; Vanneste, Heleen; Bertrand, Sébastien; Coronata, Andrea; Gaiero, Diego; Le Roux, Gael

    2013-04-01

    Little attention has been given to pre-anthropogenic signals recorded in peat bogs, especially in the Southern Hemisphere. Yet they are important to 1/ better understand the different particle sources during the Holocene and 2/ to tackle the linkage between atmospheric dust loads and climate change and 3/ to better understand the impact of dust on Holocene palaeoclimate and palaeoenvironments in a critical area for ocean productivity. In the PARAD project, we will explore the use of a broad range of trace elements and radiogenic isotopes (Pb, Nd, Hf) as dust proxies. Coupling these findings with biological proxies (plant macrofossils, pollen) and detailed age-depth modelling, we expect not only to identify and interpret new links between atmospheric dust chemistry and climate change. In this contribution, we will present the preliminary results on two peat records of natural atmospheric dust using the elemental and isotopic signature in Tierra del Fuego. Preliminary results on two peat sections covering the Holocene (Karukinka Bog, Chile, 8kyrs and Harberton bog, Argentina, 14kyrs) will be discussed. This encompasses density, ash content, elemental and isotopic geochemistry, macrofossil determination and radiocarbon dating. More specifically, Karukinka bog display several mineral peaks, which possible origin (soil particles, volcanism, cosmogenic dusts, marine aerosols…) will be discussed here as well as in Vanneste et al. (this conference, session Aeolian dust: Initiator, Player, and Recorder of Environmental Change).

  20. Environmental controls of greenhouse gas release in a restoring peat bog in NW Germany

    NASA Astrophysics Data System (ADS)

    Glatzel, S.; Forbrich, I.; Krüger, C.; Lemke, S.; Gerold, G.

    2008-01-01

    In Central Europe, most bogs have a history of drainage and many of them are currently being restored. Success of restoration as well as greenhouse gas exchange of these bogs is influenced by environmental stress factors as drought and atmospheric nitrogen deposition. We determined the methane and nitrous oxide exchange of sites in the strongly decomposed center and less decomposed edge of the Pietzmoor bog in NW Germany in 2004. Also, we examined the methane and nitrous oxide exchange of mesocosms from the center and edge before, during, and following a drainage experiment as well as carbon dioxide release from disturbed unfertilized and nitrogen fertilized surface peat. In the field, methane fluxes ranged from 0 to 3.8 mg m-2 h-1 and were highest from hollows. Field nitrous oxide fluxes ranged from 0 to 574 μg m-2 h-1 and were elevated at the edge. A large Eriophorum vaginatum tussock showed decreasing nitrous oxide release as the season progressed. Drainage of mesocosms decreased methane release to 0, even during rewetting. There was a tendency for a decrease of nitrous oxide release during drainage and for an increase in nitrous oxide release during rewetting. Nitrogen fertilization did not increase decomposition of surface peat. Our examinations suggest a competition between vascular vegetation and denitrifiers for excess nitrogen. We also provide evidence that the von Post humification index can be used to explain greenhouse gas release from bogs, if the role of vascular vegetation is also considered. An assessment of the greenhouse gas release from nitrogen saturated restoring bogs needs to take into account elevated release from fresh Sphagnum peat as well as from sedges growing on decomposed peat. Given the high atmospheric nitrogen deposition, restoration will not be able to achieve an oligotrophic ecosystem in the short term.

  1. Small is beautiful: why microtopography should be included in bog hydrology

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn; van der Ploeg, Martine; Oosterwoud, Marieke; Cirkel, Gijsbert; van der Zee, Sjoerd; Witte, Jan-Philip

    2014-05-01

    Microtopography can have a large effect on flow processes at the soil surface and the composition of soil water. In peat areas, microtopography is shaped by differences in species, the growth rate and transpiration of the vegetation, and the amount of water flowing from higher areas. Microtopography is often represented by a roughness parameter in hillslope hydrological models. In areas without a strong topographical gradient however, microtopography may be underestimated when accumulated in a single parameter, especially in the presence of shallow groundwater systems. In this study, we review the intricate relationships between microtopography, surface runoff, and ecohydrology in systems featuring shallow water tables. In an analogy to surface runoff, the hydrology of a raised bog can be described as a combination of open water flow on a saturated medium, instead of the traditional acrotelm-catotelm concept that only acknowledges the saturated medium. We explored water flow through the microtopography of a raised bog with a simple conceptual model that accounts explicitly for microtopographic features and the changing flow directions these may cause. With this approach we were able to investigate the activation of fast flow paths on different areas of the bog as a function of their wetness level and bog-specific morphological features, such as hummocks and hollows. Our type of approach could be used to improve the understanding of the spatial and temporal variability of rainfall-runoff responses on raised bogs. In addition, similar approaches could be used to investigate how various runoff regimes affect the mixing of water with different chemical signatures, another driver of variations of the occurrence of plant species.

  2. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    PubMed

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. PMID:20955196

  3. Effects of salinity and ultraviolet radiation on the bioaccumulation of mycosporine-like amino acids in Artemia from Lake Urmia (Iran).

    PubMed

    Khosravi, Sanaz; Khodabandeh, Saber; Agh, Naser; Bakhtiarian, Mahdieh

    2013-01-01

    We investigated the effects of salinity and artificial UV radiation on the accumulation of mycosporine-like amino acids (MAAs) in sexual and parthenogenetic Artemia from Lake Urmia. The nauplii hatched from the cysts were cultured until adulthood under two salinities (150 and 250 g L(-1) ) and two light treatments (PAR and PAR+UVR) in the laboratory. Finally, the Artemia were analyzed for their concentration of MAAs. In most of the cases, the higher salinity level applied was found to increase the MAA concentrations in both Artemia populations significantly. The acquisition efficiency of MAAs in both Artemia populations increased under exposure to UVR-supplemented photosynthetically active radiation (PAR) compared to those raised under PAR, except for Porphyra-334. It was observed that combination of UV radiation and elevated salinity significantly increased the bioaccumulation of MAAs. Thus, the presence of these compounds in these populations of Artemia may increase their adaptability for living in high-UV and high-salinity conditions prevailing in Lake Urmia. Higher concentrations of MAAs in the parthenogenetic population of Artemia could be probably attributed to its mono sex nature and higher adaptation capacities to extreme environmental conditions. PMID:22998644

  4. The Brenner Moor - A saline bog as a source for halogenated and non-halogenated volatile compounds

    NASA Astrophysics Data System (ADS)

    Krause, T.; Studenroth, S.; Furchner, M.; Hoffman, A.; Lippe, S.; Kotte, K.; Schöler, H. F.

    2012-04-01

    The Brenner Moor is a small bog in the catchment area of the river Trave located in Schleswig-Holstein, North Germany, between Baltic and North Sea. The bog is fed by several saline springs with chloride concentrations up to 15 g/L. The high chloride concentrations and the high organic content of the peat make the Brenner Moor an ideal source for the abiotic formation of volatile organic halogenated compounds (VOX). VOX play an important role in the photochemical processes of the lower atmosphere and information on the atmospheric input from saline soils like the Brenner Moor will help to understand the global fluxes of VOX. Soil samples were taken in spring 2011 from several locations and depths in the vicinity of the Brenner Moor. The samples were freeze-dried, ground and incubated in water emphasising an abiotic character for the formation of volatile organic compounds. 1,2-dichloroethane and trichloromethane are the main halogenated compounds emitted from soils of the Brenner Moor. The abiotic formation of trichloromethane as well as other trihalomethanes has been part of intensive studies. A well known source is the decarboxylation of trichloroacetic acid and trichloroacetyl-containing compounds to trichloromethane [1]. Huber et al. discovered another pathway in which catechol, as a model compound for organic substances, is oxidised under Fenton-like conditions with iron(III), hydrogen peroxide and halides to form trihalomethanes [2]. Besides the halogenated compounds, the formation of sulphur compounds such as dimethyl sulfide and dimethyl disulfide and several furan derivatives could be detected which also have an impact on atmospheric chemistry, especially particle formation of clouds. Furan, methylfuran and dimethylfuran are compounds that can be obtained under Fenton-like oxidation from catechol, methyl- and dimethylcatechol and are known to be produced in natural soils [3]. A novel class of furan derivatives that are formed under abiotic conditions from

  5. Lab incubation experiments verify microbial respiration from recent photosynthetic production in deep peat within bog and fen environments

    NASA Astrophysics Data System (ADS)

    Corbett, J.; Burdige, D. J.; Glaser, P. H.; Chanton, J.

    2012-12-01

    Pore water radiocarbon values of DOC and respiration products (CH4 and CO2) have shown a more enriched signature as compared to solid phase peat. The more modern DOC is thought to be advected downward from surficial layers and does not come only from the peat. Peats were rinsed to remove any residual modern DOC and incubated for 160 days to determine if the radiocarbon values of the produced DOC was similar to the peat or if the produced DOC values did in fact mimic those found in pore water samples. Radiocarbon values of respiration products and DOC produced in the incubations of both fen and bog peat from various depths were more similar to peat radiocarbon values than respiration products and DOC values from pore water collected in the field (Figure 1). The more radiocarbon enriched respiration products and DOC in field samples imply that DOC from pore water must come from a more modern source. The comparison between incubation and field pore water measurements strongly suggests an alternative source of DOC in pore water than just peat leachate. It is likely that the more modern DOC was brought down to depth in the peat column from more surficial layers via advective transport which has been shown to be a main component of water and solute movement in the Glacial Lake Agassiz Peatlands.ig 1. RLII Fen peat incubations compared to pore water data. Peat (black circles). Pore water samples are represented with closed symbols: DOC from 2007 (black squares), DOC from 2008 (grey squares), DIC from 2007 (black triangles). Incubation samples are represented with open symbols: DOC from incubations (white squares) and DIC from incubations (white triangles).

  6. Forest responses to late Holocene climate change in north-central Wisconsin: a high- resolution study from Hell's Kitchen Lake.

    NASA Astrophysics Data System (ADS)

    Urban, M. A.; Booth, R. K.; Jackson, S. T.; Minckley, T. A.

    2007-12-01

    Forest dynamics at centennial to millennial timescales can be identified using paleoecological records with high spatial, temporal, and taxonomic resolution. These dynamics are linked to climate changes by comparing the paleoecological records with independent paleoclimate records of complementary sensitivity and temporal resolution. We analyzed plant macrofossils at contiguous 1cm intervals (representing 5 to 35 yr/cm) from late Holocene sediments of Hell's Kitchen Lake (3 ha) in north-central Wisconsin. Most of the plant macrofossils derive from trees growing on the slopes directly adjacent to the lake, and were identified to the species. We also analyzed pollen at an approximately100 year resolution to provide a regionally integrated record of forest composition. We then compared the macrofossil and pollen records with independent records of climate change in the region, particularly paleohydrological records from kettle bogs. The most notable feature of the late Holocene record occurs between 2300-2000 cal yr BP. During this period yellow birch (Betula alleghaniensis) macrofossils first appear in the record, along with a corresponding increase in pollen percentages. Hemlock (Tsuga canadensis) macrofossils and pollen also show a marked increase at this time. These changes coincide with a major transition towards wetter conditions recorded in the testate amoebae record of Hornet Bog (~200km northwest) and in a number of other kettle bog records from the region. Directly following this transition, tamarack (Larix laricina) and Sphagnum macrofossils at Hell's Kitchen Lake increase dramatically, likely representing the initiation of bog-mat growth along the southwest margin of the lake during the wet period. . We are continuing our high-resolution sampling downcore at Hell's Kitchen Lake. This will permit us to examine additional ecologic and climatic events in the early and mid-Holocene.

  7. Factors affecting the sorption of cesium in a nutrient-poor boreal bog.

    PubMed

    Lusa, M; Bomberg, M; Virtanen, S; Lempinen, J; Aromaa, H; Knuutinen, J; Lehto, J

    2015-09-01

    (135)Cs is among the most important radionuclides in the long-term safety assessments of spent nuclear fuel, due to its long half-life of 2.3 My and large inventory in spent nuclear fuel. Batch sorption experiments were conducted to evaluate the sorption behavior of radiocesium ((134)Cs) in the surface moss, peat, gyttja, and clay layers of 7-m-deep profiles taken from a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of radiocesium increased as a function of sampling depth. The highest Kd values, with a geometric mean of 3200 L/kg dry weight (DW), were observed in the bottom clay layer and the lowest in the 0.5-1.0 m peat layer (50 L/kg DW). The maximum sorption in all studied layers was observed at a pH between 7 and 9.5. The in situ Kd values of (133)Cs in surface Sphagnum moss, peat and gyttja samples were one order of magnitude higher than the Kd values obtained using the batch method. The highest in situ Kd values (9040 L/kg DW) were recorded for the surface moss layer. The sterilization of fresh surface moss, peat, gyttja and clay samples decreased the sorption of radiocesium by 38%, although the difference was not statistically significant. However, bacteria belonging to the genera Pseudomonas, Paenibacillus, Rhodococcus and Burkholderia isolated from the bog were found to remove radiocesium from the solution under laboratory conditions. The highest biosorption was observed for Paenibacillus sp. V0-1-LW and Pseudomonas sp. PS-0-L isolates. When isolated bacteria were added to sterilized bog samples, the removal of radiocesium from the solution increased by an average of 50% compared to the removal recorded for pure sterilized peat. Our results demonstrate that the sorption of radiocesium in the bog environment is dependent on pH and the type of the bog layer and that common environmental bacteria prevailing in the bog can remove cesium from the solution phase. PMID:26010098

  8. Lake Powell

    Atmospheric Science Data Center

    2014-05-15

    article title:  Lake Powell     View Larger Image ... (14.42 mb)   This true-color image over Lake Powell was acquired by Multi-angle Imaging SpectroRadiometer (MISR) in late March 2000. Lake Powell was formed with the construction of the Glen Canyon Dam in 1963, on the ...

  9. CONNECTICUT LAKES

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of named lakes in Connecticut. It is a polygon Shapefile that includes all lakes that are named on the U.S. Geologicial Survey (USGS) 7½ minute topographic quadrangle maps that cover the State of Connecticut, plus other officially named lakes i...

  10. Lake Eyre

    Atmospheric Science Data Center

    2013-04-16

    ...   View Larger Image Lake Eyre is a large salt lake situated between two deserts in one of Australia's driest regions. ... the effect of sunglint at the nadir camera view angle. Dry, salt encrusted parts of the lake appear bright white or gray. Purple areas have ...

  11. Glacial geology, glacial recession, proglacial lakes, and postglacial environments, Fishers Island, New York

    SciTech Connect

    Sirkin, L. ); Funk, R.E. . Anthropological Survey)

    1993-03-01

    The Fishers Island Moraine, a complex of three parallel ice margin depositional trends, forms the west-central segment of a major recessional moraine of the Connecticut-Rhode Island Lobe of the late Wisconsinan glacier. As such, the moraine links the Orient Point Moraine of eastern Long Island and the Charlestown Moraine of western Rhode Island and marks a prominent recessional ice margin. The moraine is correlative with the Roanoke Point Moraine of the Connecticut Lobe of northeastern Long Island. Pollen stratigraphy of >13,180 ka bog sediments begins early in the spruce (A) pollen zone with evidence of a cold, late-glacial climate. The pine (B) pollen zone, beginning prior to 11,145 ka, and the oak (C) pollen zone, dating from about 9,000 ka with hickory and hemlock subzones, are well represented. However, after about 2,000 ka, the stratigraphic record in the bog sections is missing in most cases due to peat harvesting. Pollen spectra from several archeological sites fall within the late oak pollen zone, well within the land clearing interval with evidence of hardwood forests and locally holly and cedar. Evidence of cultigens in the pollen record is sparse. Marine deposits over fresh water bog and proglacial lake sediments show that some coastal bogs were drowned by sea level rise.

  12. Tracing decadal environmental change in ombrotrophic bogs using diatoms from herbarium collections and transfer functions.

    PubMed

    Poulíčková, Aloisie; Hájková, Petra; Kintrová, Kateřina; Bat'ková, Romana; Czudková, Markéta; Hájek, Michal

    2013-08-01

    Central European mountain bogs, among the most valuable and threatened of habitats, were exposed to intensive human impact during the 20th century. We reconstructed the subrecent water chemistry and water-table depths using diatom based transfer functions calibrated from modern sampling. Herbarium Sphagnum specimens collected during the period 1918-1998 were used as a source of historic diatom samples. We classified samples into hummocks and hollows according to the identity of dominant Sphagnum species, to reduce bias caused by uneven sampling of particular microhabitats. Our results provide clear evidence for bog pollution by grazing during the period 1918-1947 and by undocumented aerial liming in the early 90-ies. We advocate use of herbarized epibryon as a source of information on subrecent conditions in recently polluted mires. PMID:23688732

  13. CO2 soil fluxes at bog and forest ecosystems in southern taiga of European Russia

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitrii; Ivanov, Aleksey; Vasenev, Ivan; Kurbatova, Juliya

    2015-04-01

    Bogs and spruce forests are typical natural ecosystems of the southern taiga of European Russia. They play an important role in carbon balance between soil and atmosphere. In the Central Forest Reserve (33°00' E, 56°30' N) for over 15 years conduct research of these processes. One of the research methods of CO2 emissions is the chamber method, which allows to analyze the local variation of the intensity of fluxes and its depending of the type of vegetation, microrelief and meteorological parameters. Period of measurements was 5 months - from June to November 2013-2014. In the bog were investigated 3 areas - pine boggy forest, as well as hummocks and hollows in the middle of bog. As the forest ecosystem was chosen paludified shallow-peat spruce forest. From the data obtained it can be concluded that in all ecosystems were observed 2 periods with a minimum values of CO2 emission: the first - in early July, associated with a high level of ground water and decrease the intensity of decomposition of organic matter, and the second - in November, associated with natural processes and seasonal cooling. The average intensity of CO2 emissions in summer-autumn season between all ecosystems varied greatly: in the boggy pine forest - 500 mgCO2/m2*h), hummocks - 550 mgCO2/m2*h, hollows - 290 mgCO2/m2*h) and paludified shallow-peat spruce forest - 750 mgCO2/m2*h. Based on these researches, it was found that the intensity of CO2 emissions significantly below in the bog than in paludified shallow-peat spruce forest because it is limited by the level of ground water. In the paludified shallow-peat spruce forest, fluxes are more depend on soil temperature and less on the groundwater level.

  14. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    NASA Astrophysics Data System (ADS)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  15. Factors Controlling Diffusive CO2 Transport and Production in the Cedarburg Bog, Saukville, Wisconsin: Field Observations

    NASA Astrophysics Data System (ADS)

    Joynt, E.; Han, W. S.; Gulbranson, E. L.; Graham, J. P.

    2015-12-01

    Wetland ecosystems are vital components of the carbon cycle containing an estimated 20-30% of the global soil carbon store. The Cedarburg Bog of southeastern Wisconsin boasts a myriad of wetland habitats including the southernmost string bog found in North America. The behavior of carbon dioxide (CO2) in these systems is the response of multiple interdependent variables that are, collectively, not well understood. Modeling this behavior in future climate scenarios requires detailed representation of such relationships within highly diverse environments. In 2014 a LI-COR 8100A automated soil gas flux system was installed in a hollow of the Cedarburg Bog string bog and collectively measured diffusive CO2 concentration and flux. Supplemental groundwater data, soil temperature, and weather data (temperature, pressure, precipitation, etc.) were also included to elucidate correlations between soil CO2 flux/CO2 concentration and external forces. In 2015 field data were complemented with soil moisture data and depth profile sampling of pore water chemistry and stable carbon isotopes from peat and gaseous media in order to discern the source and evolution of CO2 at depth. Preliminary LI-COR data analysis reveals distinct diurnal and seasonal trends; CO2 concentration builds overnight while flux increases during the day, both peaking in mid-summer. Flux events average 405 mg CO2/m2 per hour but reach over 31,800 mg CO2/m2 per hour in a single event and in several instances negative flux events are observed. Correlation significance also yields a wide array of strengths among variables. Initial δ13C data from gaseous CO2 infer, on average, a more positive δ13C signature in the atmosphere compared to the surface and shallow subsurface. Temporal trends of these parameters are similar to one another, becoming depleted in δ13C through time. Further interpretation of data trends will utilize the HYDRUS-1D model to quantify relationships under changing environmental conditions.

  16. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome

    PubMed Central

    Müller, Christina A.; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C. A.; Wellington, Elizabeth M. H.

    2015-01-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. PMID:26002894

  17. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    PubMed

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. PMID:26002894

  18. Penn State researches acid mine drainage

    SciTech Connect

    Not Available

    1984-08-27

    A brief news item reports that work is being carried out at Penn State University on the effectiveness of sphagnum moss and other marsh-type plants in removing iron from acid mine water. A sphagnum moss bog has been established in a greenhouse at the University and field work is also being undertaken in a natural environment in Clearfield County.

  19. Systematics and species-specific response to pH of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) from acid mining lakes.

    PubMed

    Weisse, Thomas; Moser, Michael; Scheffel, Ulrike; Stadler, Peter; Berendonk, Thomas; Weithoff, Guntram; Berger, Helmut

    2013-05-01

    We investigated the morphology, phylogeny of the 18S rDNA, and pH response of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) isolated from two chemically similar acid mining lakes (pH~2.6) located at Langau, Austria, and in Lusatia, Germany. Oxytricha acidotolerans sp. nov. from Langau has 18 frontal-ventral-transverse cirri but a very indistinct kinety 3 fragmentation so that the assignment to Oxytricha is uncertain. The somewhat smaller species from Lusatia has a highly variable cirral pattern and the dorsal kineties arranged in the Urosomoida pattern and is, therefore, preliminary designated as Urosomoida sp. The pH response was measured as ciliate growth rates in laboratory experiments at pH ranging from 2.5 to 7.0. Our hypothesis was that the shape of the pH reaction norm would not differ between these closely related (3% difference in their SSU rDNA) species. Results revealed a broad pH niche for O. acidotolerans, with growth rates peaking at moderately acidic conditions (pH 5.2). Cyst formation was positively and linearly related to pH. Urosomoida sp. was more sensitive to pH and did not survive at circumneutral pH. Accordingly, we reject our hypothesis that similar habitats would harbour ciliate species with virtually identical pH reaction norm. PMID:23021638

  20. Systematics and species-specific response to pH of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) from acid mining lakes

    PubMed Central

    Weisse, Thomas; Moser, Michael; Scheffel, Ulrike; Stadler, Peter; Berendonk, Thomas; Weithoff, Guntram; Berger, Helmut

    2013-01-01

    We investigated the morphology, phylogeny of the 18S rDNA, and pH response of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) isolated from two chemically similar acid mining lakes (pH ∼ 2.6) located at Langau, Austria, and in Lusatia, Germany. Oxytricha acidotolerans sp. nov. from Langau has 18 frontal-ventral-transverse cirri but a very indistinct kinety 3 fragmentation so that the assignment to Oxytricha is uncertain. The somewhat smaller species from Lusatia has a highly variable cirral pattern and the dorsal kineties arranged in the Urosomoida pattern and is, therefore, preliminary designated as Urosomoida sp. The pH response was measured as ciliate growth rates in laboratory experiments at pH ranging from 2.5 to 7.0. Our hypothesis was that the shape of the pH reaction norm would not differ between these closely related (3% difference in their SSU rDNA) species. Results revealed a broad pH niche for O. acidotolerans, with growth rates peaking at moderately acidic conditions (pH 5.2). Cyst formation was positively and linearly related to pH. Urosomoida sp. was more sensitive to pH and did not survive at circumneutral pH. Accordingly, we reject our hypothesis that similar habitats would harbour ciliate species with virtually identical pH reaction norm. PMID:23021638

  1. Nest-site characteristics of Glyptemys muhlenbergii (Bog Turtle) in New Jersey and Pennsylvania

    USGS Publications Warehouse

    Zappalorti, Robert T.; Lovich, Jeffrey E.; Farrell, Ray F.; Torocco, Michael E.

    2015-01-01

    Nest-site selection can affect both the survival and fitness of female turtles and their offspring. In many turtle species, the nest environment determines the thermal regime during incubation, length of incubation period, sex ratio of the hatchlings, and exposure to predators and other forms of mortality for both mothers and their offspring. Between 1974 and 2012, we collected detailed data on habitat variables at 66 Glyptemys muhlenbergii (Bog Turtle) nests in 9 different bogs, fens, and wetland complexes in New Jersey and Pennsylvania. The nests had a mean elevation above the substrate of 8.2 cm, and many were shallow and located in raised tussocks of grass or sedges. Females covered most nests, but we also observed partially or completely uncovered eggs. Some females deposited eggs in communal nests; we found 4 nests with 2 separate clutches, and 2 nests with 3 clutches. Principal component analysis confirmed the importance of cover and vegetation to nest-site selection in this species. Availability of open, shade-free, wet nesting areas is an important habitat requirement for Bog Turtles.

  2. Evaluating cumulative effects of disturbance on the hydrologic function of bogs, fens, and mires

    SciTech Connect

    Siegel, D.I.

    1988-01-01

    Few quantitative studies have been done on the hydrology of fens, bogs, and mires and, consequently, any predictions of the cumulative impacts of disturbances on their hydrologic functions is extremely difficult. Bogs and fens are, in a sense, hydrobiologic systems, and any evaluation of cumulative impacts on them will have to consider the complicated interactions, barely understood, among the wetland hydrology, water chemistry, and biota, and place the effect of individual wetland impacts within the context of the cumulative impacts contributed to the watershed from other geomorphic areas and land uses. It is difficult to evaluate the potential cumulative impacts on wetland hydrology because geologic settings of wetlands are often complex and the methods used to measure wetland stream flow, ground-water flow, and evapotranspiration are inexact. Their very scale makes it difficult to quantify the hydrologic function accurately. The paper reviews current understanding of the hydrologic function of bogs, fens, and mires at different scales and in different physiographic settings, and presents hypotheses on potential cumulative impacts on the hydrologic function that might occur with multiple disturbances.

  3. Biological N2-Fixation Increases with Peatland Age and Decreases with N Deposition in Bogs of Western Canada

    NASA Astrophysics Data System (ADS)

    Fillingim, H.; Popma, J. M.; Dynarski, K. A.; Wieder, R.; Vile, M. A.

    2013-12-01

    Most terrestrial ecosystems are thought be limited primarily by nitrogen, including boreal peatlands located in pristine regions. Bogs receive nutrients solely from atmospheric deposition. Because of the historically low rates of atmospheric nitrogen deposition in Alberta, Canada, the Sphagnum mosses that dominate bog ground cover in this region have formed relationships with diazotrophs in order to meet their nitrogen needs, making biological N2- fixation the dominant input of new nitrogen to these bogs. The process of N2-fixation is highly variable and is governed by a number of environmental factors. In Alberta, one factor is water availability, as these bogs occur in some of the driest climates in which peatlands are known to exist. More recent factors with the potential to greatly alter N2-fixation dynamics include increasing nitrogen deposition associated with the growing oil sands mining operations and wildfires increasing in frequency and severity with global climate change. To determine the potential importance of N2-fixation to the overall peatland nitrogen balance under current and future conditions, we incubated the moss Sphagnum fuscum, using the acetylene reduction assay calibrated with 15N2, from 3 bogs representing ages of 3, 13, and 30 years since fire. Each bog was fertilized 8 times throughout the growing season with 0, 10, and 20 kg N/ha/yr. N2-fixation rates were measured 5 times at each site throughout the summer of 2013 to account for variation due to season and weather. Mean rates of N2-fixation increased with bog age, with higher rates in the 30 year old bog (36.90 × 8.38) and subsequently lower rates in the 13 yr (25.08 × 5.63) and 3 yr (11.58 × 6.33) old bogs. As expected, we saw decreasing rates of N2-fixation in the 10 (16.96 × 5.39) and 20 kg N/ha/yr treatments (3.35 × 1.34), as compared to water-only controls (47.62 × 12.18). These results indicate that N2-fixation supplies abundant N to support net primary productivity for bogs

  4. Late Holocene palaeoclimate variability: The significance of bog pine dendrochronology related to peat stratigraphy. The Puścizna Wielka raised bog case study (Orawa - Nowy Targ Basin, Polish Inner Carpathians)

    NASA Astrophysics Data System (ADS)

    Krąpiec, Marek; Margielewski, Włodzimierz; Korzeń, Katarzyna; Szychowska-Krąpiec, Elżbieta; Nalepka, Dorota; Łajczak, Adam

    2016-09-01

    The results of dendrochronological and palynological analyses of subfossil pine trees occurring in the peat deposits of the Puścizna Wielka raised bog (Polish Carpathians, Southern Poland) - the only site with numerous subfossil pine trees in the mountainous regions of Central Europe presently known - indicate that the majority of the tree populations grew in the peat bog during the periods ca 5415-3940 cal BP and 3050-2560 cal BP. Several forestless episodes, dated to 5245-5155 cal BP, 4525-4395 cal BP and 3940-3050 cal BP, were preceded by tree dying-off phases caused by an extreme periodical increase in humidity and general climate cooling trends. These events are documented based on analyses of pollen and non-pollen palynomorph assemblages, dendrochronological analyses of the trees, as well as numerous radiocarbon datings of the sediment horizons occurring within the peat bog profile. The phases of germinations, and, in turn, of tree and shrub invasions of the peat bog areas have been closely connected to drying and occasional warming of the regional climate. The last of the forestless periods began about 2600 years ago and continued up to the very recent times. Currently, as a result of desiccation of the peat bog and the lowering of the groundwater level (due to improved water drainage system), pine trees have returned the peat bog again. These results demonstrate that studies of subfossil bog-pine trees are quite effective in documenting and reconstructing periods of humidity fluctuation that occurred within the Carpathian region over the last several millennia.

  5. Photosynthetic properties of boreal bog plant species and their contribution to ecosystem level carbon sink

    NASA Astrophysics Data System (ADS)

    Korrensalo, Aino; Hájek, Tomas; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Mehtätalo, Lauri; Mammarella, Ivan; Tuittila, Eeva-Stiina

    2016-04-01

    Boreal bogs have a low number of plant species, but a large diversity of growth forms. This heterogeneity might explain the seasonally less varying photosynthetic productivity of these ecosystems compared to peatlands with vegetation consisting of fewer growth forms. The differences in photosynthetic properties within bog species and phases of growing season has not been comprehensively studied. Also the role of different plant species for the ecosystem level carbon (C) sink function is insufficiently known. We quantified the seasonal variation of photosynthetic properties in bog plant species and assessed how this variation accounts for the temporal variation in the ecosystem C sink. Photosynthetic light response of 11 vascular plant and 8 Sphagnum moss species was measured monthly over the growing season of 2013. Based on the species' light response parameters, leaf area development and areal coverage, we estimated the ecosystem level gross photosynthesis rate (PG) over the growing season. The level of upscaled PG was verified by comparing it to the ecosystem gross primary production (GPP) estimate calculated based on eddy covariance (EC) measurements. Although photosynthetic parameters differed within plant species and months, these differences were of less importance than expected for the variation in ecosystem level C sink. The most productive plant species at the ecosystem scale were not those with the highest maximum potential photosynthesis per unit of leaf area (Pmax), but those having the largest areal coverage. Sphagnum mosses had 35% smaller Pmax than vascular plants, but had higher photosynthesis at the ecosystem scale throughout the growing season. The contribution of the bog plant species to the ecosystem level PG differed over the growing season. The seasonal variation in ecosystem C sink was mainly controlled by phenology. Sedge PG had a sharp mid-summer peak, but the PG of evergreen shrubs and Sphagna remained rather stable over the growing season

  6. Impact of catchment degree on peat properties in peat deposits of eutrophic bog

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Golubina, O. A.; Rodikova, A. V.; Shinkeeva, N. A.; Bubina, A. B.

    2010-05-01

    Fundamental works of many investigators show that according to the biophysical properties peat deposit (PD) is divided into 2 layers: active and inert. It is interesting to analyze the supposed changes in PD of eutrophic bog according to different data (physical, chemical and biological). The researches were carried out at two plots of one bog (points 1 and 2, positions 56° 21' NL, 84° 47' EL, Russia, Siberia). Agricultural afforestation (pine planting) was made at one of them (point 2) 60 years ago. Now this plot is absolutely identical in ground cover to 1 point, but other conditions are significantly changed. In spring bog water level is at the depth of 20cm at 2 point (at 1 point it is near water face), it lows up to 53 cm during summer time (at 1 point - up to 37 cm). According to redox conditions zone of anoxic-oxic conditions reaches meter depth at 2 points. PDs don't significantly differ in activity of ammonifiers but in activity of cellulose-lytic aerobic microflora it follows that it is more active at 2 point in PD active layer. In spite of good aeration, more favorable conditions were created also for anaerobic cellulose-fermenting microflora in PD of 2 point in comparison with 1 one. Activity analysis of denitrifying agents and microflora of other physiological groups also showed high activity of biota at the plot with afforestation amelioration. This fact was confirmed by high coefficient of mineralization. Time of drainage effect created by afforestation amelioration influenced group composition of peat organic matter which builds up PD of examined plots. According to fractional and group composition data fracture of hard-to-hydrolyze organic matters decreased during the process of microflora activating at the plot with afforestation amelioration but FA content increased. Fractional composition of nitrogen showed that content of mineral nitrogen compounds definitely increased. Thus, 60 years of surface drainage influenced composition change of peat

  7. Paleoecological inferences of recent alluvial damming of a lake basin due to retrogressive permafrost thaw slumping

    NASA Astrophysics Data System (ADS)

    Quinlan, R.; Delaney, S.; Lamoureux, S. F.; Kokelj, S. V.; Pisaric, M. F.

    2014-12-01

    Expected climate impacts of future warming in the Arctic include thawing of permafrost landscapes in northern latitudes. Thawing permafrost is expected to have major consequences on hydrological dynamics, which will affect the limnological conditions of Arctic lakes and ponds. In this study we obtained a sediment core from a small lake (informally named "FM1") near Fort McPherson, Northwest Territories, Canada, with a large retrogressive thaw slump (nearly 1 kilometre in diameter) within its catchment. A radiocarbon date from the base of the FM1 sediment core suggests the lake formed between 990-1160 Cal AD. The analysis of aerial photographs indicate the thaw slump initiated between 1970-1990, and sediment geochemistry analysis indicated major changes in sediment content at 54-cm sediment core depth. Analyses of subfossil midge (Chironomidae) fossils inferred that, pre-slump, lake FM1 was shallow with a large bog or wetland environment, with midge assemblages dominated by taxa such as Limnophyes and Parametriocnemus. Post-thaw midge assemblages were dominated by subfamily Chironominae (Tribe Tanytarsini and Tribe Chironomini) taxa, and the appearance of deepwater-associated taxa such as Sergentia suggests that lake FM1 deepened, possibly as a result of alluvial damming from slump materials washing into the lake near its outlet. Most recent stratigraphic intervals infer a reversion back to shallower conditions, with a slight recovery of bog or wetland-associated midge taxa, possibly due to rapid basin infilling from increased deposition rates of catchment-derived materials. Results emphasize that there may be a variety of different outcomes to Arctic lake and pond ecosystems as a result of permafrost thawing, contingent on system-specific characteristics such as slump location relative to the lake basin, and relative inflow and outflow locations within the lake basin.

  8. The new European Competence Centre for Moor and Climate - A European initiative for practical peat bog and climate protection

    NASA Astrophysics Data System (ADS)

    Smidt, Geerd; Tänzer, Detlef

    2013-04-01

    The new European Competence Centre for Moor and Climate (EFMK) is an initiative by different local communities, environmental protection NGOs, agricultural services, and partners from the peat and other industries in Lower Saxony (Germany). The Centre aims to integrate practical peat bog conservation with a focus on green house gas emission after drainage and after water logging activities. Together with our partners we want to break new ground to protect the remaining bogs in the region. Sphagnum mosses will be produced in paludiculture on-site in cooperation with the local peat industry to provide economic and ecologic alternatives for peat products used in horticulture business. Land-use changes are needed in the region and will be stimulated in cooperation with agricultural services via compensation money transfers from environmental protection funds. On a global scale the ideas of Carbon Credit System have to be discussed to protect the peat bogs for climate protection issues. Environmental education is an important pillar of the EFMK. The local society is invited to explore the unique ecosystem and to participate in peat bog protection activities. Future generations will be taught to understand that the health of our peat bogs is interrelated with the health of the local and global climate. Besides extracurricular classes for schools the centre will provide infrastructure for Master and PhD students, as well for senior researchers for applied research in the surrounding moor. International partners in the scientific and practical fields of peat bog ecology, renaturation, green house gas emissions from peat bogs, and environmental policy are invited to participate in the European Competence Center for Moor and Climate.

  9. Trichloroacetic acid in the vegetation of polluted and remote areas of both hemispheres—Part II: salt lakes as novel sources of natural chlorohydrocarbons

    NASA Astrophysics Data System (ADS)

    Weissflog, Ludwig; Elansky, Nikolai; Putz, Erich; Krueger, Gert; Lange, Christian A.; Lisitzina, Lida; Pfennigsdorff, Andrea

    One of the issues provided for by the 1993 existing substances regulation (793/93/EEC) is the assessment of the environmental risk emanating from waste materials. One such material is the highly volatile substance perchloroethene (PER; TECE). PER is produced in large quantities all over the world by the chemical industry. There are many industrial processes in which PER escapes into the environment, especially the atmosphere. It has since been proven that after entering plants via the air/leaf pathway, airborne PER can be metabolised into the phytotoxic substance trichloroacetic acid. However our own studies detected relatively high levels of TCA in environmental compartments in regions far away from industry which cannot be explained by the anthropogenic input of airborne substances into the relevant ecosystems. This indicates that natural PER emittents also exist and must be identified, in order to find out more about the global spread of PER. This paper reports on the findings of related fieldwork in the Kalmykian Steppe. This area of steppe in southern Russia spans an area extending west-to-east from the Black Sea and the Caspian Sea and north-to-south between the Greater Caucasus and Volgograd. The main aim of the experiments in the Kalmykian Steppe was to study water from lakes, rivers and springs with differing levels of salinity. The concentrations of the chlorinated hydrocarbons (VCHCs) chloroform (CHCl 3), tetrachloromethane (CCl 4), 1,1,1-trichloroethane (1,1,1-C 2H 3Cl 3), trichloroethene (TRI; C 2HCl 3), tetrachloroethene (PER; C 2Cl 4) and TCA in these waters were measured, along with the levels of cations and anions and the pH-value of the waters. The measurements indicate that in particular water from salt lakes located in semiarid/arid areas of the study region must be considered as new types of natural emittents of PER and other chlorinated hydrocarbons as well as trichloroacetic acid. Furthermore, attention is drawn to ecological impacts

  10. Future volcanic lake research: revealing secrets from poorly studied lakes

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Tassi, F.; Mora-Amador, R. A.

    2012-04-01

    Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.

  11. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  12. Water quality of selected lakes in Mount Rainier National Park, Washington, with respect to lake acidification

    SciTech Connect

    Turney, G.L.; Dion, N.P.; Sumioka, S.S.

    1986-01-01

    Thirteen lakes in Mount Rainier National park were evaluated for general chemical characteristics, sensitivity to acidification by acidic precipitation, and degree of existing acidification. The lakes studies were Allen, one of the Chenuis group, Crescent, Crystal, Eleanor, Fan, one of the Golfen group, Marsh, Mowich, Mystic, Shriner, and two unnamed lakes. The lakes were sampled in August 1983. The major cations were calcium and sodium, and the major anion was bicarbonate. Alkalinity concentrations ranged from 2.1 to 9.0 mg/L in 12 of the lakes. Allen Lake was the exception, having an alkalinity concentration of 27 mg/L. The pH values for all of the lakes ranged from 5.8 to 6.5. In most of the lakes, vertical profiles of temperature, dissolved oxygen, pH, and specific conductance were relatively uniform. Exceptions to general water quality patterns were observed in three lakes. Allen Lake had a specific conductance value of 58 Microsiemens/cm. The lake of the Golfen group was anaerobic at the bottom and had relatively high concentrations of dissolved organic carbon and dissolved metals, and a lower light transmission than the other lakes studied. One of the unnamed lakes had relatively high concentrations of phytoplankton and dissolved organic carbon and relatively low levels of light transmission. Comparisons of lake data to acid-sensitivity thresholds for specific conductance and alkalinity indicated that all of the lakes except Allen would be sensitive to acidic precipitation. The small sizes of the lakes, and their locations in basins of high precipitation and weathering-resistant rock types, enhance their sensitivity. None of the lakes in this study appeared to be presently acidified.

  13. CLIMATICALLY INDUCED RAPID ACIDIFICATION OF A SOFTWATER SEEPAGE LAKE

    EPA Science Inventory

    To establish a relationship between levels of atmospheric pollutants such as SO2 and the acid-base chemistry of lakes is an important but elusive goal of studies on acid precipitation. ut the direct effect of acid deposition on the acid-neutralizing capacity (ANC) of lake waters ...

  14. An evaluation of problems arising from acid mine drainage in the vicinity of Shasta Lake, Shasta County, California

    USGS Publications Warehouse

    Fuller, Richard H.; Shay, J.M.; Ferreira, R.F.; Hoffman, R.J.

    1978-01-01

    Streams draining the mined areas of massive sulfide ore deposits in the Shasta Mining Districts of northern California are generally acidic and contain large concentrations of dissolved metals, including iron, copper, and zinc. The streams, including Flat, Little Backbone, Spring, West Squaw, Horse, and Zinc Creeks, discharge into Shasta Reservoir and the Sacramento River and have caused numerous fish kills. The sources of pollution are discharge from underground mines, streams that flow into open pits, and streams that flow through pyritic mine dumps where the oxidation of pyrite and other sulfide minerals results in the production of acid and the mobilization of metals. Suggested methods of treatment include the use of air and hydraulic seals in the mines, lime neutralization of mine effluent, channeling of runoff and mine effluent away from mine and tailing areas, and the grading and sealing of mine dumps. A comprehensive preabatement and postabatement program is recommended to evaluate the effects of any treatment method used. (Woodard-USGS)

  15. Peat bogs and their organic soils: Archives of atmospheric change and global environmentalsignificance (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Shotyk, William

    2013-04-01

    A bog is much more than a waterlogged ecosystem where organic matter accumulates as peat. Peatlands such as bogs represent a critical link between the atmosphere, hydrosphere, and biosphere. Plants growing at the surface of ombrotrophic bogs receive nutrients exclusively from the atmosphere. Despite the variations in redox status caused by seasonal fluctuations in depth to water table, the low pHof the waters, and abundance of dissolved organic matter, bogs preserve a remarkably reproducible history of atmospheric pollution, climate change, landscape evolution and human history. For example, peat cores from bogs in Europe and North America have provided detailed reconstructions of the changing rates and sources of Ag, Cd, Hg, Pb, Sb, and Tl, providing new insights into the geochemical cycles of these elements, including the massive perturbations induced by human activities beginning many thousands of years ago. Despite the low pH, and perhaps because of the abundance of dissolved organic matter, bogs preserve many silicate and aluminosilicate minerals which renders them valuable archives of atmospheric dust deposition and the climate changes which drive them. In the deeper, basal peat layers of the bog, in the minerotrophic zone where pore waters are affected bymineral-water interactions in the underlying and surrounding soils and sediments, peat serves as animportant link to the hydrosphere, efficiently removing from the imbibed groundwaters such trace elements as As, Cu, Mo, Ni, Se, V, and U. These removal processes, while incompletely understood, are so effective that measuring the dissolved fraction of trace elements in the pore waters becomes a considerable challenge even for the most sophisticated analytical laboratories. While the trace elements listed above are removed from groundwaters (along with P and S), elements such as Fe and Mn are added to the waters because of reductive dissolution, an important first step in the formation of lacustrine Fe and Mn

  16. Linking glacial deposits and lake sediments for paleoclimate studies in the Northern Romanian Carpathians

    NASA Astrophysics Data System (ADS)

    Zamosteanu, Andrei; Mindrescu, Marcel; Anselmetti, Flavio; Akçar, Naki; Lowick, Sally E.; Vogel, Hendrik

    2015-04-01

    Timing and extent of glaciations in the Carpathian mountains are still controversely discussed, mostly due to the lack of well dated geomorphological and geochronological studies. We present the preliminary results of geomorphological and sedimentological analyses of glacial and lacustrine deposits in Bistricioara Valley located in the Rodna Mountains (Northern Romanian Carpathians). Most of the glacial deposits in the Romanian Carpathians, such as moraines, typically occur above 1600 m a.s.l. marking the maximum lowering of past glaciations. Most of the glacial lakes occur between 1800 and 2000 m a.s.l. Field surveys included mapping of moraines and erratic boulders using detailed topographical maps and aerial photos. A Digital Elevation Model (DEM) was derived using GIS (ArcMap 10.1) from 1:25000 topographic maps, which was further completed by field survey data. The resulting geomorphological map shows a series of moraines, which indicate the occurrence of several glacial phases in the study area. Sediment samples were collected from a peat bog (1630 m a.s.l.) dammed by a large lateral moraine within Bistricioara Mare, one of the largest glacial cirques in the Romanian Carpathians. A Russian corer was used to extract the sediment profile from the peat bog (approx. 5 m long sediment core). A X-ray computed tomography (CT) system was employed for the study of sedimentary and deformation structures and X-ray fluorescence spectroscopy (XRF) for multi-element analysis at high resolution. Glacial deposits from the lateral moraine in front of the peat bog were also sampled, as well as from the frontal moraines, upstream and downstream of the peat bog. This set of samples from multiple archives allows to link and merge the chronologies and the paleoenvironmental records of glacial deposits and lake sediments. Moreover, we employed cosmogenic nuclide dating for the reconstruction of glacial stages and their paleoclimatic implications during deglaciation in this area of

  17. Comparative microbial ecology of the water column of an extreme acidic pit lake, Nuestra Señora del Carmen, and the Río Tinto basin (Iberian Pyrite Belt).

    PubMed

    González-Toril, Elena; Santofimia, Esther; López-Pamo, Enrique; García-Moyano, Antonio; Aguilera, Ángeles; Amils, Ricardo

    2014-12-01

    The Iberian Pyrite Belt, located in Southwestern Spain, represents one of the world's largest accumulations of mine wastes and acid mine drainages. This study reports the comparative microbial ecology of the water column of Nuestra Señora del Carmen acid pit lake with the extreme acidic Río Tinto basin. The canonical correspondence analysis identified members of the Leptospirillum, Acidiphilium, Metallibacterium, Acidithiobacillus, Ferrimicrobium and Acidisphaera genera as the most representative microorganisms of both ecosystems. The presence of archaeal members is scarce in both systems. Only sequences clustering with the Thermoplasmata have been retrieved in the bottom layer of Nuestra Señora del Carmen and one station of Río Tinto. Although the photosynthetically active radiation values measured in this lake upper layer were low, they were sufficient to activate photosynthesis in acidophilic microorganisms. All identified photosynthetic microorganisms in Nuestra Señora del Carmen (members of the Chlamydomonas, Zygnemopsis and Klebsormidium genera) are major members of the photosynthetic eukaryotic community characterized in Río Tinto basin. This study demonstrates a close relationship between the microbial diversity of Nuestra Señora del Carmen pit lake and the diversity detected in the Río Tinto basin, which underlain the influence of the shared mineral substrates in the microbial ecology of these ecosystems. PMID:26421738

  18. Lake Constance

    Atmospheric Science Data Center

    2013-04-17

    ... Swiss shores of Lake Constance at the town of Rorschach. Eutrophication, or the process of nutrient enrichment, is rapidly accelerated ... of the value of Lake Constance, efforts to mitigate eutrophication were initiated in the 1970's. MISR was built and is managed ...

  19. LAKE FORK

    EPA Science Inventory

    The Lake Fork of the Arkansas River Watershed has been adversely affected through mining, water diversion and storage projects, grazing, logging, and other human influences over the past 120 years. It is the goals of the LFWWG to improve the health of Lake fork by addressing th...

  20. [Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake].

    PubMed

    Liu, Ying; Wang, Li-Hua; Hao, Chun-Bo; Li, Lu; Li, Si-Yuan; Feng, Chuan-Ping

    2014-06-01

    The main physicochemical parameters of the soil sample which was collected near an acid mine drainage reservoir in Anhui province was analyzed. The microbial diversity and community structure was studied through the construction of bacteria and archaea 16S rRNA gene clone libraries and ammonia monooxygenase gene clone library of archaea. The functional groups which were responsible for the process of ammonia oxidation were also discussed. The results indicated that the soil sample had extreme low pH value (pH < 3) and high ions concentration, which was influenced by the acid mine drainage (AMD). All the 16S rRNA gene sequences of bacteria clone library fell into 11 phyla, and Acidobacteria played the most significant role in the ecosystem followed by Verrucomicrobia. A great number of acidophilic bacteria existed in the soil sample, such as Candidatus Koribacter versatilis and Holophaga sp.. The archaea clone library consisted of 2 phyla (Thaumarchaeota and Euryarchaeota). The abundance of Thaumarchaeota was remarkably higher than Euryarchaeota. The ammonia oxidation in the soil environment was probably driven by ammonia-oxidizing archaea, and new species of ammonia-oxidizing archaea existed in the soil sample. PMID:25158511

  1. Atmospheric Feedbacks By Greenhouse Gases From Baltic Bogs During Late Holocene Reconstructed Using Wetness Anomalies

    NASA Astrophysics Data System (ADS)

    Alm, J.; Sillasoo, Ü.; Endjärv, E.; Lode, E.; Blundell, A.; Charman, D.; Väliranta, M.; Laine, J. K.; Tuittila, E.; Seppä, H.; Korhola, A.; Karofeld, E.

    2006-12-01

    Climate changes are documented in multiple proxies in sediments such as peat. At the same time, information on ecosystem feedbacks in terms of greenhouse gas balances can be derived from the proxies. As part of the EU-project ACCROTELM, we headed to building peat-based multi-proxy datasets from Finnish and Estonian sites over the past 4500 years. The cores were 14C-dated using AMS, and the high resolution age-depth curves were assumed by wiggle matching. We sampled the peat cores with a resolution of 1 cm at least every at 4th cm and analyzed plant macrofossils, testate amoebae, and carbon accumulation rates. At least a decadal resolution was obtained for the 1 cm sample slices throughout the cores. We also sampled current testate amoebae communities at different microsites of vegetation varying in moisture conditions, in order to compile a transfer function for water tables. These reconstructions were attributed with spatial proportions of mire microsites, derived in GIS from aerial images. We reviewed the methane emission and carbon accumulation history of the bog landscape as GWP using the time series of GHG balances over the 4,5 millennia. Special attention was paid for the periods of rapid climatic excursions with wet or dry shifts. The climatic feedbacks, i.e. CO2 deposition from bulk density and C content, and CH4 modeled as function of wetness, were combined in CO2 equivalents. Although the bogs were carbon sinks, the apparent impact was net atmospheric warming, through the dynamics of CH4 release. Burning of peat in the fires located in the sediment cores must have increased the net warming effect. The temporal correlations between the bogs south and north from the Gulf of Finland are inspected.

  2. Spatial variation in rates of carbon and nitrogen accumulation in a boreal bog

    SciTech Connect

    Ohlson, M.; Oekland, R.H.

    1998-12-01

    Although previous studies hint at the occurrence of substantial spatial variation in the accumulation rates of C and N in bogs, the extent to which rates may vary on high-resolution spatial and temporal scales is not known. A main reason for the lack of knowledge is that it is problematic to determine the precise age of peat at a given depth. The authors determined rates of carbon and nitrogen accumulation in the uppermost decimeters of a bog ecosystem using the pine method, which enables accurate dating of surface peat layers. They combined accumulation data with numerical and geostatistical analyses of the recent vegetation to establish the relationship between bog vegetation and rate of peat accumulation. Use of a laser technique for spatial positioning of 151 age-determined peat cores within a 20 x 20 m plot made it possible to give the first tine-scaled account of spatial and temporal variation in rates of mass, carbon, and nitrogen accumulation during the last century. Rates of C and N accumulation were highly variable at all spatial scales studied. For example, after {approximately}125 yr of peat growth, C and N accumulation varied by factors of five and four, respectively, from 25 to 125 g/dm{sup 2} for C, and from 0.7 to 2.6 g/dm{sup 2} for N. It takes 40 yr of peat accumulation before significant amounts of C are lost through decay. Hummocks built up by Sphagnum fuscum and S. rubellum were able to maintain average rates of C accumulation that exceed 2 g{center_dot}dm{sup {minus}2}{center_dot} yr{sup {minus}1} during 50 yr of growth. The authors argue that data on spatial variation in rates of C accumulation are necessary to understand the role of boreal peatlands in the greenhouse effect and global climate.

  3. Uptake of radioiodide by Paenibacillus sp., Pseudomonas sp., Burkholderia sp. and Rhodococcus sp. isolated from a boreal nutrient-poor bog.

    PubMed

    Lusa, Merja; Lehto, Jukka; Aromaa, Hanna; Knuutinen, Jenna; Bomberg, Malin

    2016-06-01

    Radionuclides, like radioiodine ((129)I), may escape deep geological nuclear waste repositories and migrate to the surface ecosystems. In surface ecosystems, microorganisms can affect their movement. Iodide uptake of six bacterial strains belonging to the genera Paenibacillus, Pseudomonas, Burkholderia and Rhodococcus isolated from an acidic boreal nutrient-poor bog was tested. The tests were run in four different growth media at three temperatures. All bacterial strains removed iodide from the solution with the highest efficiency shown by one of the Paenibacillus strains with >99% of iodide removed from the solution in one of the used growth media. Pseudomonas, Rhodococcus and one of the two Paenibacillus strains showed highest iodide uptake in 1% yeast extract with maximum values for the distribution coefficient (Kd) ranging from 90 to 270L/kg DW. The Burkholderia strain showed highest uptake in 1% Tryptone (maximum Kd 170L/kg DW). The Paenibacillus strain V0-1-LW showed exceptionally high uptake in 0.5% peptone +0.25% yeast extract broth (maximum Kd>1,000,000L/kg DW). Addition of 0.1% glucose to the 0.5% peptone +0.25% yeast extract broth reduced iodide uptake at 4°C and 20°C and enhanced iodide uptake at 37°C compared to the uptake without glucose. This indicates that the uptake of glucose and iodide may be competing processes in these bacteria. We estimated that in in situ conditions of the bog, the bacterial uptake of iodide accounts for approximately 0.1%-0.3% of the total sorption of iodide in the surface, subsurface peat, gyttja and clay layers. PMID:27266299

  4. Feeding patterns of migratory and non-migratory fourth instar larvae of two coexisting Chaoborus species in an acidic and metal contaminated lake: Importance of prey ingestion rate in predicting metal bioaccumulation

    USGS Publications Warehouse

    Croteau, M.-N.; Hare, L.; Marcoux, P.

    2003-01-01

    We studied diel variations in the feeding habits and migratory behaviors of two coexisting Chaoborus species in an acidic and metal contaminated lake (Lake Turcotte, QC, Canada). We found that although the zooplankton community was dominated by rotifers, both Chaoborus species fed mostly on chironomids and crustaceans despite the relatively low abundance of these prey types in the lake plankton. Chaoborus americanus larvae fed on those of Chaoborus punctipennis, but not vice versa. The non-migratory species (C. americanus) fed throughout the day and night whereas the migratory species (C. punctipennis) fed only at night while in the water column. The larger-bodied C. americanus consumed more prey and had a more diverse diet than did the smaller-bodied C. punctipennis. Differences in feeding habits between the Chaoborus species inhabiting Lake Turcotte (prey biomass, prey types) likely explain in part their ability to coexist. Attempts to predict Cd in the Chaoborus species using our measurements of Cd in their prey and their prey ingestion rates met with mixed success; although we correctly predicted higher Cd concentrations for C. americanus larvae than for C. punctipennis larvae, we under-predicted absolute Cd concentrations. We suggest that studies such as ours that are based on analyses of gut contents of larvae collected at intervals of 4h or longer likely underestimate prey ingestion rates.

  5. Eddy covariance measurements of greenhouse gases from a restored and rewetted raised bog ecosystem.

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Christen, A.; Black, T. A.; Johnson, M. S.; Ketler, R.; Nesic, Z.; Merkens, M.

    2015-12-01

    Wetland ecosystems play a significant role in the global carbon (C) cycle. Wetlands act as a major long-term storage of carbon by sequestrating carbon-dioxide (CO2) from the atmosphere. Meanwhile, they can emit significant amounts of methane (CH4) due to anaerobic microbial decomposition. The Burns Bog Ecological Conservancy Area (BBECA) is recognized as one of Canada's largest undeveloped natural areas retained within an urban area. Historically, it has been substantially reduced in size and degraded by peat mining and agriculture. Since 2005, the bog has been declared a conservancy area, and the restoration efforts in BBECA focus on rewetting the disturbed ecosystems to promote a transition back to a raised bog. A pilot study measured CH4, CO2 and N2O exchanges in 2014 and concluded to monitor CO2, CH4 fluxes continuously. From the perspective of greenhouse gas (GHG) emissions, CO2 sequestered in bog needs to be protected and additional CO2 and CH4 emissions due to land-cover change need to be reduced by wise management. In this study, we measured the growing-season (June-September) fluxes of CO2 and CH4 exchange using eddy covariance (EC). A floating platform with an EC system for both CO2 (closed-path) and CH4 (open-path) began operation in June 2015. During the growing-season, gross ecosystem photosynthesis (GEP) and ecosystem respiration (Re) averaged 5.87 g C m-2 day-1 and 2.02 g C m-2 day-1, respectively. The magnitude of GEP and Re were lower than in previous studies of pristine northern peatlands. The daily average CH4 emission was 0.99 (±1.14) g C m-2 day-1 and it was higher than in most previous studies. We also characterized how environmental factors affected the seasonal dynamics of these exchanges in this disturbed peatland. Our measurements showed that soil temperature and soil water content were major drivers of seasonal changes of GHG fluxes. The daily average GHG warming potential (GWP) of the emissions in the growing seasons (from CO2 and CH4

  6. Preliminary stable isotope results from the Mohos peat bog, East-Carpathians

    NASA Astrophysics Data System (ADS)

    Túri, Marianna; Palcsu, László; Futó, István; Hubay, Katalin; Molnár, Mihály; Rinyu, László; Braun, Mihály

    2016-04-01

    This work provides preliminary results of an isotope investigation carried out on a peat core drilled in the ombrotrophic Mohos peat bog, Ciomadul Mountain, (46°8'3.60"N, 25°54'19.43"E, 1050 m.a.s.l.), East Carpathians, Romania. The Ciomadul is a single dacitic volcano with two craters: the younger Saint Ana and the older Mohos which is a peat bog, and surrounded by a number of individual lava domes as well as a narrow volcaniclastic ring plain volcano. A 10 m long peat core has been taken previously, and is available for stable oxygen and carbon isotope analysis. It is known from our previous work (Hubay et al., 2015) that it covers a period from 11.500 cal year B.P. to present. The peat bog is composed mainly of Sphagnum, which has a direct relationship with the environment, making it suitable for examine the changes in the surrounding circumstances. Isotopic analysis of the prepared cellulose from Sphagnum moss has the attribute to provide such high resolution quantitative estimates of the past climate and there is no such climate studies in this area where the past climate investigations based on oxygen isotope analysis of the Sphagnum. Oxygen and carbon stable isotope analysis were carried out on the hemicellulose samples, which were chemically prepared for 14C dating and taken from every 30 cm of the 10 m long peat core. The oxygen isotope composition of the precipitation can be revealed from the δ18O values of the prepared cellulose samples, since, while carbon isotope ratio tells more about the wet and dry periods of the past. Studying both oxygen and carbon isotope signatures, slight fluctuations can be seen during the Holocene like some of the six periods of significant climate changes can be seen in this resolution during the time periods of 9000-8000, 6000-5000, 4200-3800, 3500-2500, 1200-1000, and 600-150 cal yr B.P. Additionally, the late Pleistocene - early Holocene environmental changes can be clearly observed as Pleistocene peat samples have

  7. Unexpected DNA-fingerprinting pattern in a deep peat bog: evidence for methanotrophs at the bottom?

    NASA Astrophysics Data System (ADS)

    Steinmann, P.; Rossi, P.; Huon, S.; Eilrich, B.; Casati, S.

    2003-04-01

    With the goal of a better understanding of the fate of methane in the deep layers of peat bogs, we analysed the microbial 16S rDNA gene pool and measured the stable carbon isotope composition of bulk peat of a deep (6 m) peat bog profile (Etang de la Gruyère, Switzerland). Both Bacterial and Archaean communities were assessed using respectively TTGE (Temporal Temperature Gradient Electrophoresis) and SSCP (Single Strand Conformation Polymorphism), with fragments of the V1-V3 region of the 16S rDNA gene. The "relative diversity" shown in the TTGE AND SSCP gel patterns is presented using indices and band numbers per sample (Simpson evenness). PCA was calculated on the basis of the intensities of all bands found in the TTGE and SSCP fingerprinting profiles. These DNA fingerprinting patterns reveal the presence of a structured microbial community throughout the whole depth profile. Clear differences can be observed between the communities found in the near surface layers and those found at depth. Surprisingly, for both Archaean and Bacterial communities, the deepest samples display a high similarity level with those found in the first 20 centimeters. The δ13C values of the peat are relatively constant from the surface of the bog down to a depth of 5 m (values between 25.5 ppm and 26.5 ppm). Below 5 m the values decrease considerably with depth ( 28.5 ppm). As a working hypothesis to explain the two observations, we consider the possibility of the presence of methanotrophs in the deepest parts of the bogs. The electron acceptors needed for methane oxidation could be derived from lateral advection of less reducing groundwater. However, available pore water analyses suggest that neither molecular oxygen, nor sulfate or nitrate are present. One possible oxidising agent would be trivalent iron (solid or colloidal). Indeed are the iron concentrations in the deeper pore waters are elevated. Such deep methanotrophic microbial community could be similar to those found near

  8. The impact of peat harvesting and natural regeneration on the water balance of an abandoned cutover bog, Quebec

    NASA Astrophysics Data System (ADS)

    van Seters, Tim E.; Price, Jonathan S.

    2001-02-01

    Harvested sites rarely return to functional ecosystems after abandonment because drainage and peat extraction lower the water table and expose relatively decomposed peat, which is hydrologically unsuitable for Sphagnum moss re-establishment. Some natural regeneration of Sphagnum has occurred in isolated pockets on traditionally harvested (block-cut) sites, for reasons that are poorly understood, but are related to natural functions that regulate runoff and evaporation. This study evaluates the water balance of a naturally regenerated cutover bog and compares it with a nearby natural bog of similar size and origin, near Riviere du Loup, Quebec. Water balance results indicated that evapotranspiration was the major water loss from the harvested bog, comprising 92 and 84% of total outputs (2·9 mm day-1) during the 1997 and 1998 seasons, respectively. Despite denser tree cover at the harvested site, evapotranspiration from the natural bog was similar, although less spatially variable. At the harvested site, evaporative losses ranged from 1·9 mm day-1 on raised baulks and roads to 3·6 mm day-1 from moist surfaces with Sphagnum. Although about half of the ditches were inactive or operating at only a fraction of their original efficiency, runoff was still significant at 12 and 24% of precipitation during the 1997 and 1998 study seasons, respectively. This compares with negligible rates of runoff at the natural bog. Thus the cutover bog, although abandoned over 25 years ago, has not regained its hydrological function. This is both a cause and effect of its inability to support renewed Sphagnum regeneration. Without suitable management (e.g. blocking ditches), this site is not likely to improve for a very long time.

  9. Hydrology of Lake Butler, Orange County, Florida

    USGS Publications Warehouse

    Smoot, James L.; Schiffer, Donna M.

    1984-01-01

    Lake Butler is one of the lakes that collectively make up the Butler chain of lakes in the headwaters of the Kissimmee River, Florida. The bottom configuration of the lake is typical of relict karst features formed during lower stages in sea level. The top of the Floridan aquifer is 50 to 100 feet below the land surface. The drainage area of Lake Butler is approximately 14.5 sq mi and is comprised of sub-basins of other lakes in the vicinity. Surface outflow from Lake Butler is generally southward to Cypress Creek, a tributary of the Kissimmee River. The extremes in lake stage for the period 1933-81 are 94.67 ft on June 23, 1981 and 101.78 ft on September 13, 1960. The median lake stage for this period was 99.28 ft above sea level. The quality of water in Lake Butler is excellent, based on studies of physical, chemical, and biological conditions by the Orange County Pollution Control Department. The lake water is slightly acidic and soft (48 mg/L hardness as calcium carbonate). Pesticides in water were below detection levels at two sites sampled in the lake, but were detected in the bottom sediments. (USGS)

  10. High-resolution Record of Holocene Climate, Vegetation, and Fire from a Raised Peat Bog, Prince Edward Island, Canadian Maritimes

    NASA Astrophysics Data System (ADS)

    Peros, M. C.; Chan, K.; Ponsford, L.; Carroll, J.; Magnan, G.

    2014-12-01

    Raised peat bogs receive all precipitation and nutrients from the atmosphere and are thus widely used archives for information on past environments and climates. In this paper we provide high-resolution multi-proxy data from a raised bog from northeastern Prince Edward Island, located in the Gulf of St. Lawrence, Canada. We studied testate amoeba (a proxy for water table depth), macrocharcoal (a proxy for local-scale fire), peat humification (a proxy for decomposition), plant macrofossils (indicative of local-scale vegetation), and organic matter content (yielding carbon accumulation rates) from a 5.5 m long core lifted from the center of Baltic Bog. Eleven AMS radiocarbon dates show that peat accumulation began before 9000 cal yr BP and continued almost uninterrupted until the present. The macrofossil data show that a transition from a sedge-dominated fen to a sphagnum-dominated bog occurred around 8000 cal yr BP, and sphagnum remained dominant in the bog throughout most of the Holocene. A testate amoeba-based reconstruction of water table depth indicates that conditions were drier during the early Holocene (~8000 to 5000 cal yr BP) and became gradually wetter into the late Holocene. In addition, a number of higher frequency shifts in precipitation are inferred throughout the Holocene on the basis of the testate amoeba and humification results. The macrocharcoal evidence indicates fire—probably in the surrounding forest—was relatively more common during the early Holocene, perhaps due to drier climate conditions. A large influx of charcoal at around 2000 cal yr BP suggests the presence of one or more major fires at this time, and a concurrent decrease in the rate of peat accumulation indicates the fire may have affected the bog itself. The data from Baltic Bog is broadly comparable to other proxy data (in particular pollen studies) from the Canadian Maritimes. This work is important because it: 1) helps us better understand the role of hydroclimatic

  11. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

    NASA Astrophysics Data System (ADS)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude M.; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer; Turetsky, Merritt R.; McGuire, A. David; Shah, Manesh B.; Verberkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K.

    2015-05-01

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular `omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  12. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    PubMed

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost. PMID:25739499

  13. Multi-omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes

    SciTech Connect

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Shah, Manesh B.; VerBerkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Konstantinos; Jansson, Janet K.

    2015-03-04

    Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, if thawed may represent the largest future transfer of C from the biosphere to the atmosphere 1. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils 2-4 and a rapid shift in functional gene composition during short-term thaw experiments 3. However, the fate of permafrost C depends on climatic, hydrologic, and microbial responses to thaw at decadal scales 5, 6. Here the combination of several molecular “omics” approaches enabled us to determine the phylogenetic composition of the microbial community, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy revealed a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  14. Near-neutral carbon dioxide balance at a seminatural, temperate bog ecosystem

    NASA Astrophysics Data System (ADS)

    Hurkuck, Miriam; Brümmer, Christian; Kutsch, Werner L.

    2016-02-01

    The majority of peatlands in the temperate zone is subjected to drainage and agricultural land use and have been found to be anthropogenic emission hot spots for greenhouse gases. At the same time, many peatlands receive increased atmospheric nitrogen (N) deposition by intensive agricultural practices. Here we provide eddy covariance measurements determining net ecosystem carbon dioxide (CO2) exchange at a protected but moderately drained ombrotrophic bog in Northwestern Germany over three consecutive years. The region is dominated by intensive agricultural land use with total (wet and dry) atmospheric N deposition being about 25 kg N ha-1 yr-1. The investigated peat bog was a small net CO2 sink during all three years ranging from -9 to -73 g C m-2 yr-1. We found temperature- and light-dependent ecosystem respiration (Reco) and gross primary production, respectively, but only weak correlations to water table depths despite large interannual and seasonal variability. Significant short-term effects of atmospheric N deposition on CO2 flux components could not be observed, as the primary controlling factors for N deposition and C sequestration, i.e., fertilization of adjacent fields as well as temperature and light availability, respectively, exceeded potential interactions between the two.

  15. Functioning of microbial complexes in aerated layers of a highmoor peat bog

    NASA Astrophysics Data System (ADS)

    Golovchenko, A. V.; Bogdanova, O. Yu.; Stepanov, A. L.; Polyanskaya, L. M.; Zvyagintsev, D. G.

    2010-09-01

    Monitoring was carried out using the luminescent-microscopic method of the abundance parameters of different groups of microorganisms in a monolith and in the mixed layers of a highmoor peat bog (oligotrophic residual-eutrophic peat soil) in a year-long model experiment. The increase of the aeration as a result of mixing of the layers enhanced the activity of the soil fungi. This was attested to by the following changes: the increase of the fungal mycelium length by 6 times and of the fungal biomass by 4 times and the double decrease of the fraction of spores in the fungal complex. The response of the fungal complex to mixing was different in the different layers of the peat bog. The maximal effect was observed in the T1 layer and the minimal one in the T2 layer. The emission of CO2 in the mixed samples was 1.5-2 times higher than that from the undisturbed peat samples. In contrast with the fungi, the bacteria and actinomycetes were not affected by the aeration of the highmoor layers.

  16. The contribution of Fe(III) and humic acid reduction to ecosystem respiration in drained thaw lake basins of the Arctic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Lipson, David A.; Raab, Theodore K.; Goria, Dominic; Zlamal, Jaime

    2013-04-01

    research showed that anaerobic respiration using iron (Fe) oxides as terminal electron acceptor contributed substantially to ecosystem respiration (ER) in a drained thaw lake basin (DTLB) on the Arctic coastal plain. As DTLBs age, the surface organic layer thickens, progressively burying the Fe-rich mineral layers. We therefore hypothesized that Fe(III) availability and Fe reduction would decline with basin age. We studied four DTLBs across an age gradient, comparing seasonal changes in the oxidation state of dissolved and extractable Fe pools and the estimated contribution of Fe reduction to ER. The organic layer thickness did not strictly increase with age for these four sites, though soil Fe levels decreased with increasing organic layer thickness. However, there were surprisingly high levels of Fe minerals in organic layers, especially in the ancient basin where cryoturbation may have transported Fe upward through the profile. Net reduction of Fe oxides occurred in the latter half of the summer and contributed an estimated 40-45% to ecosystem respiration in the sites with the thickest organic layers and 61-63% in the sites with the thinnest organic layers. All sites had high concentrations of soluble Fe(II) and Fe(III), explained by the presence of siderophores, and this pool became progressively more reduced during the first half of the summer. Redox titrations with humic acid (HA) extracts and chelated Fe support our view that this pattern indicates the reduction of HA during this interval. We conclude that Fe(III) and HA reductions contribute broadly to ER in the Arctic coastal plain.

  17. Characterization and grouping of aquatic fulvic acids isolated from clear-water rivers and lakes in Japan.

    PubMed

    Tsuda, Kumiko; Mori, Hisayo; Asakawa, Daichi; Yanagi, Yukiko; Kodama, Hiroki; Nagao, Seiya; Yonebayashi, Koyo; Fujitake, Nobuhide

    2010-07-01

    Characteristics of aquatic fulvic acids (FAs) from 10 clear waters in Japan (around the temperate zone) were revealed by several analytical techniques-high performance size exclusion chromatography (HPSEC), elemental analysis, liquid-state (13)C NMR spectroscopy, isotopic analyses (delta(13)C and delta(15)N), and compared with those of International Humic Substances Society (IHSS) standard samples including FAs from brown waters (Suwannee, Pony, and Nordic FAs). Generally clear-water FAs were different from brown-water FAs in chemical properties. Weight-average molecular weights (Mw) of the clear-water FAs were similar to each other, whereas their elemental compositions and carbon species distribution were different. The clear-water FAs all exhibited a high proportion of alkyl carbons, which may be attributed to microbial activity. delta(13)C and delta(15)N values of the FAs indicated that there would be a huge gap between origin and chemical structure of clear-water FA. Results of the chemical structural analyses described above were not always linked to those of the isotopic analyses (delta(13)C and delta(15)N). Multivariate statistical analysis, i.e. cluster and principal component analysis was applied to reveal differences or similarities in a more objective manner. The FAs were always classified into two clear-water groups and one brown-water group. Aryl-C and O-Alkyl-C contents were important for the grouping. We speculate that the grouping might depend on the differences of aquatic microbial activity caused by the differences of residence time of water. PMID:20569962

  18. Mid- and late Holocene human impact recorded by the Coltrondo peat bog (NE Italian Alps)

    NASA Astrophysics Data System (ADS)

    Segnana, Michela; Poto, Luisa; Gabrieli, Jacopo; Martino, Matteo; Oeggl, Klaus; Barbante, Carlo

    2016-04-01

    Peat bogs are ideal archives for the study of environmental changes, whether these are natural or human induced. Indeed, receiving water and nutrients exclusively from dry and wet atmospheric depositions, they are among the most suitable matrices for palaeoenvironmental reconstruction. The present study is focused on the Eastern sector of the Italian Alps, where we sampled the Coltrondo peat bog, in the Comelico area (ca. 1800 m a.s.l.) The knowledge of the human history in this area is rather scarce: the only pieces of archaeological evidence found in this area dates back to the Mesolithic and the absence of later archaeological finds makes it difficult to reconstruct the human settlement in the valley. With the main aim to obtain information about the human settlement in that area we selected a multi-proxy approach, combining the study of biotic and abiotic sedimentary components archived in the 7900 years-peat bog record. Pollen analysis is performed along the core registering human impacts on the area from ca. 2500 cal BP, when land-use changes are well evidenced by the presence of human-related pollen and non-pollen palynomorphs (NPPs), as well as by the increase in micro-charcoal particles. Periods of increased human impact are recorded at the end of the Middle Ages and later, at the end of the 19th century. The analysis of trace elements, such as lead, is performed by means of ICP-MS technique and its enrichment factor (EF) is calculated. A first slight increase of Pb EF during Roman Times is possibly related to mining activities carried out by the Romans. Mining activities carried out in the area are registered during the Middle Ages, while the advent of the industrialization in the 20th century is marked by the highest EF values registered on the top of the core. To help and support the interpretation of geochemical data, lead isotopes ratios are also measured using ICP-MS to discriminate between natural and anthropogenic sources of lead. The 206Pb/207Pb

  19. Nitrogen dynamics in peat bogs: Comparison of sites with contrasting pollution levels (Central Europe)

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Bohdalkova, Leona; Stepanova, Marketa; Vile, Melanie A.; Wieder, Kelman R.

    2013-04-01

    Nitrogen belongs to chemical elements whose biogeochemical cycles are most heavily disturbed by human activities, and large regions worlwide experience elevated depositions of reactive N (NO3-, NH4+). Peatlands contain as much as 15 % of the world's soil N. It it is unclear whether fertilizing by anthopogenic N will lead to higher storage of C in wetlands. Elevated N input may lead to both higher net primary productivity, but will also augment microbial decomposition. Here we discuss two aspects of N cycling in Sphagnum-dominated bogs in the Czech Republic, an area characterized by a steep north-south pollution gradient and high annual N deposition (60 kg ha-1). These two aspects are N inventory in 210Pb-dated peat cores, and post-depositional mobility of N in peat. We compared the N inventory in two Czech bogs, differing in pollution, with cumulative atmospheric N input. We hypothesized that the total amount of N in the peat cores would be smaller than the cumulative N input (leaching of excess N from the bog, denitrification). The two bogs were VJ (industrial north) and CB (rural south). The investigated period was 1885-2002. The total amount of N was 4020 kg ha-1 at VJ and 1530 kg ha-1 at CB. Peat in the north contained 2.6 times more N than in the south. Historical rates of N deposition in the Czech Republic are well known (numerous papers by Kopacek). To estimate cumulative N inputs into the bogs, we also used the monthly N depositions between 1994 and 2002, measured in two nearby catchments. The estimated cumulative atmospheric N input was 1350 kg ha-1 at VJ, and 530 kg ha-1 at CB. In both cases, the amount of N found in peat was 3 times higher than the estimated atmospheric N input. Such high storage of N in peat is surprising. Post-depositional mobility of N may help to explain the discrepancies between atmospheric N inputs and N storage in peat. We found two-fold evidence for post-depositional mobility of N. Maximum N concentrations at VJ were observed in

  20. Hydrologic analysis of two headwater lake basins of differing lake pH in the west-central Adirondack Mountains of New York

    USGS Publications Warehouse

    Murdoch, Peter S.; Peters, N.E.; Newton, R.M.

    1987-01-01

    Hydrologic analysis of two headwater lake basins in the Adirondack Mountains, New York, during 1980-81 indicates that the degree of neutralization of acid precipitation is controlled by the groundwater contribution to the lake. According to flow-duration analyses, daily mean outflow/unit area from the neutral lake (Panther Lake, pH 5-7) was more sustained and contained a higher percentage of groundwater than that of the acidic lake (Woods Lake, pH 4-5). Outflow recession rates and maximum base-flow rates, derived from individual recession curves, were 3.9 times and 1.5 times greater, respectively, in the neutral-lake basin than in the acidic-lake basin. Groundwater contribution to lake outflow was also calculated from a lake-water budget; the groundwater contribution to the neutral lake was about 10 times greater than that to the acidic lake. Thick sandy till forms the groundwater reservoir and the major recharge area in both basins but covers 8.5 times more area in the neutral-lake basin than in the acidic-lake basin. More groundwater storage within the neutral basin provides longer contact time with neutralizing minerals and more groundwater discharge. As a result, the neutral lake has relatively high pH and alkalinity, and more net cation transport. (USGS)

  1. Ecological distribution and bioavailability of uranium series radionuclides in terrestrial food chains: Key Lake uranium operations, northern Saskatchewan

    SciTech Connect

    Thomas, P.A.

    1997-12-31

    The purpose of this study was to determine radionuclide uptake within the terrestrial ecosystem at uranium mining operations in northern Saskatchewan. The study site was the Key Lake mine, chosen because it has been an operational mine, mill, and surface tailings area for 15 years and will continue to be an active ore-milling and tailings disposal area for the next 40 years. The focus of the study was on the small mammal food chains in black spruce bogs nearest to the Key Lake facilities, since bog habitats tend to absorb and accumulate radionuclides. Three study sites were chosen on the basis of their proximity to sources of radioactive dust and the presence of bog habitats. Interconnected terrestrial ecosystem components were sampled at the same time at each site. Samples of needles, twigs, ground cover, litter, soils, small mammals, and birds were analyzed for the four radionuclides of greatest concern in the uranium decay series. Radiation doses were calculated to small mammals and birds, food chain transfer parameters were determined to enable future modelling of environmental pathways, and a variety of atmospheric dust collectors were pilot tested to examine the rates of radionuclide deposition from facility emissions to local environments. Four sets of conclusions are discussed regarding: radionuclide distribution within habitats and among sites; the radionuclides responsible for animal doses; the relative bioavailability of radionuclides among sites; and the measurement of atmospheric deposition rates.

  2. Current and historical record of indium deposition from the atmosphere to an ombrotrophic bog in northeastern United States

    NASA Astrophysics Data System (ADS)

    White, S. O.; Keach, C.; Hemond, H.

    2012-12-01

    The industrial production of indium is increasing dramatically due to new uses in the rapidly growing electronics, photovoltaic, and LED industries. Little is known, however, about the natural or industrial cycling of indium or its environmental behavior, despite the fact that industrial emissions to the atmosphere appear to have already exceeded natural emissions. The history of metal deposition from the atmosphere is often reflected in the vertical profiles of the metals in ombrotrophic bogs, which by definition do not receive surface or subsurface runoff. Analysis of a peat core obtained using a novel freeze corer at Thoreau's Bog in Concord, MA shows that the rate of indium deposition to the bog increased beginning in the early 1900s, peaked in the early 1970s, and then decreased dramatically to pre-1900 values by the present time. This profile is counter to the pattern of indium's industrial use, which has increased only in the past 30-40 years. The profile coincides well, however, with the estimated history of particulate emissions from smelting and from coal combustion in North America. Back-trajectory analysis suggests that smelting was the dominant source of atmospheric particles with high indium concentrations deposited to the bog. This study suggests that metal smelting and coal burning are currently indium's primary industrial environmental sources. While releases from the semiconductor and electronics industries are comparatively small at present, this scenario may change with the rapid growth of indium use in these industries.

  3. Carbon and Nitrogen Isotope Variation in Peat Bogs in the Midwestern US: Implications for Holocene Climate Reconstruction

    NASA Astrophysics Data System (ADS)

    Wong, D.; Paytan, A.; Jackson, S.

    2008-12-01

    A peat core, from near the center of Minden Bog in Michigan, representing about 3500 years of accumulation was previously analyzed for plant macrofossils, colorimetric humification, and testate amoebae to yield three independent climate proxies (Booth and Jackson, 2003). The plant macrofossil data show the site to be sensitive to bog water table fluctuations. The data suggest that this may be related to regional climatic changes. We analyzed the carbon and nitrogen isotopes, as well as the carbon-nitrogen ratios in the bulk peat samples to determine if fluctuations of these records correspond to climate events as seen in the plant microfossil and amoebae records. The degree to which peat-based carbon and nitrogen isotope records reflect changes in the relative distribution of vegetation and, in turn, reflect temperature changes in effective precipitation (precipitation minus evapotranspiration) will be assessed. Peat carbon and nitrogen isotope records will be compared with existing proxy climate records and with a temperature reconstruction based on testate amoebae in bogs. We expect that climate-related changes, in the relative abundance of vegetation remains accumulating in the peat bogs, will be recorded in the organic matter in forms of carbon and nitrogen isotopes.

  4. A Holocene record of climate, vegetation change and peat bog development, east Otago, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    McGlone, Matt S.; Wilmshurst, Janet M.

    1999-05-01

    A Holocene record of pollen, macrofossils, testate amoebae and peat humification is presented from a small montane bog. Sediment accumulation began before 9000 yr BP, but peat growth not until ca. 7000 BP. From 12 000 to 7000 yr BP, a shrub-grassland dominated under a dry climate, with increasing conifer forest and tall scrub from ca. 9600 yr BP. At 7000 yr BP a dense montane-subalpine low conifer forest established under a moist, cool climatic regime. Between 7000 and 700 yr BP the bog surface was shrubby, tending to be dry but with highly variable surface wetness. The catchment was affected by major fire at least four times between 4000 and 1000 yr BP. Both fire and bog surface wetness may have been linked to ENSO-caused variations in rainfall. Cooler, cloudier winters and disturbance by fire promoted the expansion of the broadleaf tree Nothofagus menziesii between 4000 yr BP and 1300 yr BP at the expense of the previous conifer forest-scrub vegetation. Polynesian fires (ca. 700 yr BP) reduced the vegetation to tussock grassland and bracken. Deforestation did not markedly affect the hydrology of the site. European pastoralism since ad 1860 has increased run-off and rising water tables in the bog have led to a Sphagnum-dominated cover.

  5. Stable (206Pb, 207Pb, 208Pb) and radioactive (210Pb) lead isotopes in 1 year of growth of Sphagnum moss from four ombrotrophic bogs in southern Germany: Geochemical significance and environmental implications

    NASA Astrophysics Data System (ADS)

    Shotyk, William; Kempter, Heike; Krachler, Michael; Zaccone, Claudio

    2015-08-01

    The surfaces of Sphagnum carpets were marked with plastic mesh and 1 year later the production of plant matter was harvested in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Radioactive, 210Pb was determined in solid samples using ultralow background gamma spectrometry while total Pb concentrations and stable isotopes (206Pb, 207Pb, 208Pb) were determined in acid digests using ICP-SMS. Up to 12 samples (40 × 40 cm) were collected per site, and 6-10 sites investigated per bog. The greatest variations within a given sampling site were in the range 212-532 Bq kg-1 for 210Pb activity, whereas 206Pb/207Pb and 208Pb/206Pb varied less than 1%. The median values of all parameters for the sites (6-10 per bog) were not significantly different. The median activities of 210Pb (Bq kg-1) in the mosses collected from the bogs in NBF (HO = 372 ± 56, n = 55; WI = 342 ± 58, n = 93) were slightly less from those in OB (GS = 394 ± 50, n = 55; KL = 425 ± 58, n = 24). However, the mosses in the NBF bogs exhibited much greater productivity (187-202 g m-2 a-1) compared to those of OB (71-91 g m-2 a-1), and this has a profound impact on the accumulation rates of 210Pb (Bq m-2 a-1), with the bogs in the NBF yielding fluxes (HO = 73 ± 30; WI = 65 ± 20) which are twice those of OB (GS = 29 ± 11; KL = 40 ± 13). Using the air concentrations of 210Pb measured at Schauinsland (SIL) in the southern Black Forest and average annual precipitation, the atmospheric fluxes of 210Pb at SIL (340 Bq m-2 a-1) exceeds the corresponding values obtained from the mosses by a factor of five, providing the first quantitative estimate of the net retention efficiency of 210Pb by Sphagnum. When the 210Pb activities of all moss samples are combined (n = 227), a significant decrease with increasing plant production rate is observed; in contrast, total Pb concentrations show the opposite trend. The contrasting

  6. Acid Deposition

    EPA Science Inventory

    This indicator presents acid deposition trends in the contiguous U.S. from 1989 to 2007. Data are broken down by wet and dry deposition and deposition of nitrogen and sulfur compounds. Acid deposition is particularly damaging to lakes, streams, and forests and the plants and a...

  7. Lake restoration technology transfer assessment

    SciTech Connect

    Daschbach, M.H.; Roe, E.M.; Sharpe, W.E.

    1982-06-01

    Based upon a review of the eutrophication problem and its impact on lake restoration (LR) programs, treatment of the relatively new problem of acid deposition and its impact on LR activities, consideration of the LR programs of the Environmental Protection Agency and several states, and a review of individual LR technology transfer publications, it is recommended that new LR technology transfer programs be given a low priority until more new information is available on the restoration of acidified lakes. Both primary and secondary users of LR research, technology transfer documents, and public awareness documents were considered in this assessment. Primary users included the general public and recreationists, lakeshore property owners, lake/homeowner associations, lake/sanitary districts, and research and environmental organizations; secondary users included state/county/local officials who administer/manage water-related regulations/activities. 4 tables.

  8. Summer methane fluxes from a boreal bog in northern Quebec, Canada, using eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Nadeau, Daniel F.; Rousseau, Alain N.; Coursolle, Carole; Margolis, Hank A.; Parlange, Marc B.

    2013-12-01

    A boreal bog located in the James Bay lowlands, Canada, was instrumented with an open-path gas analyzer to monitor the turbulent fluxes of methane throughout the summer of 2012. The mostly continuous eddy covariance measurements permitted the study of methane dynamics at the hourly, daily and seasonal scales. To exclude data segments for which the biological methane fluxes were underestimated due to inefficient atmospheric transport under stable stratification, we applied a novel approach based on both the atmospheric stability parameter ζ = z/L and the friction velocity u∗, where z is the measurement height and L the Obukhov length. The field measurements revealed the existence of at least one sustained ebullition event, triggered by low barometric pressures, a declining water table and increasing mechanical turbulence - suggesting that large-scale release of methane bubbles can be an important transport mechanism of methane in boreal bogs. The validity of similarity scaling for atmospheric methane under convective conditions was also assessed and the normalized standard deviations of methane concentrations did not scale well with ζ, highlighting the heterogeneity in natural methane production and release across the bog. Overall the hourly emissions ranged between -2.0 and 32.1 mg CH4 m-2 h-1, with a summertime mean of 2.4 mg CH4 m-2 h-1. At the daily scale, the two main controls on methane emissions were found to be the water table position and the peat temperature at 0.3 m under the surface. Contrary to other studies, seasonal methane emissions peaked when the water table was at its maximum distance from the surface, around mid-August. No clear diurnal pattern could be found in methane emissions, indicating that methane was produced quite deep within the peat. The seasonal emissions were estimated at 4.4 g CH4 m-2, and compared well with other observations over similar landscapes using different measurement techniques. Given that methane releases and

  9. Small scale controls of greenhouse gas release under elevated N deposition rates in a restoring peat bog in NW Germany

    NASA Astrophysics Data System (ADS)

    Glatzel, S.; Forbrich, I.; Krüger, C.; Lemke, S.; Gerold, G.

    2008-06-01

    In Central Europe, most bogs have a history of drainage and many of them are currently being restored. Success of restoration as well as greenhouse gas exchange of these bogs is influenced by environmental stress factors as drought and atmospheric nitrogen deposition. We determined the methane and nitrous oxide exchange of sites in the strongly decomposed center and less decomposed edge of the Pietzmoor bog in NW Germany in 2004. Also, we examined the methane and nitrous oxide exchange of mesocosms from the center and edge before, during, and following a drainage experiment as well as carbon dioxide release from disturbed unfertilized and nitrogen fertilized surface peat. In the field, methane fluxes ranged from 0 to 3.8 mg m-2 h-1 and were highest from hollows. Field nitrous oxide fluxes ranged from 0 to 574 μg m-2 h-1 and were elevated at the edge. A large Eriophorum vaginatum tussock showed decreasing nitrous oxide release as the season progressed. Drainage of mesocosms decreased methane release to 0, even during rewetting. There was a tendency for a decrease of nitrous oxide release during drainage and for an increase in nitrous oxide release during rewetting. Nitrogen fertilization did not increase decomposition of surface peat. Our examinations suggest a competition between vascular vegetation and denitrifiers for excess nitrogen. We also provide evidence that the von Post humification index can be used to explain nitrous oxide release from bogs, if the role of vascular vegetation is also considered. An assessment of the greenhouse gas release from nitrogen saturated restoring bogs needs to take into account elevated release from fresh Sphagnum peat as well as from sedges growing on decomposed peat. Given the high atmospheric nitrogen deposition, restoration will not be able to achieve an oligotrophic ecosystem in the short term.

  10. Purple Pitcher Plant (Sarracenia rosea) Dieback and Partial Community Disassembly following Experimental Storm Surge in a Coastal Pitcher Plant Bog

    PubMed Central

    Abbott, Matthew J.; Battaglia, Loretta L.

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change. PMID:25874369

  11. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota.

    PubMed

    Hill, Brian H; Jicha, Terri M; Lehto, LaRae L P; Elonen, Colleen M; Sebestyen, Stephen D; Kolka, Randall K

    2016-04-15

    We compared nitrogen (N) storage and flux in soils from an ombrotrophic bog with that of a minerotrophic fen to quantify the differences in N cycling between these two peatlands types in northern Minnesota (USA). Precipitation, atmospheric deposition, and bog and fen outflows were analyzed for nitrogen species. Upland and peatland soil samples were analyzed for N content, and for ambient (DN) and potential (DEA) denitrification rates. Annual atmospheric deposition was: 0.88-3.07kg NH4(+)ha(-1)y(-1); 1.37-1.42kg NO3(-)ha(-1)y(-1); 2.79-4.69kg TNha(-1)y(-1). Annual N outflows were: bog-0.01-0.04kg NH4(+)ha(-1)y(-1), NO3(-) 0.01-0.06kgha(-1)y(-1), and TN 0.11-0.69kgha(-1)y(-1); fen-NH4(+) 0.01-0.16kgha(-1)y(-1), NO3(-) 0.29-0.48kgha(-1)y(-1), and TN 1.14-1.61kgha(-1)y(-1). Soil N content depended on location within the bog or fen, and on soil depth. DN and DEA rates were low throughout the uplands and peatlands, and were correlated with atmospheric N deposition, soil N storage, and N outflow. DEA was significantly greater than DN indicating C or N limitation of the denitrification process. We highlight differences between the bog and fen, between the upland mineral soils and peat, and the importance of biogeochemical hotspots within the peatlands. We point out the importance of organic N storage, as a source of N for denitrification, and propose a plausible link between organic N storage, denitrification and N export from peatlands. Finally, we considered the interactions of microbial metabolism with nutrient availability and stoichiometry, and how N dynamics might be affected by climate change in peatland ecosystems. PMID:26851760

  12. Purple pitcher plant (Sarracenia rosea) Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    PubMed

    Abbott, Matthew J; Battaglia, Loretta L

    2015-01-01

    Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea) are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea) were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment). There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change. PMID:25874369

  13. Peat bog records of dust deposition over the last 2000 years in the Dolomites (NE Italian Alps)

    NASA Astrophysics Data System (ADS)

    Poto, Luisa; Segnana, Michela; Gabrieli, Jacopo; Zaccone, Claudio; Barbante, Carlo

    2016-04-01

    The reconstruction of dust composition and fluxes is crucial to help to understand climate variability and climate changes. Dust fluctuations, linked to changes in dry and wet depositions, can indicate more humid or arid conditions, changes in temperature, vegetation cover and wind regimes. Peatlands are unique terrestrial archives that can capture changes in atmospheric deposition over time. Among them, ombrotrophic environments are hydrologically isolated from the surrounding landscapes receiving all the nutrients from precipitation and wind, with no influence from streams and groundwater. In recent decades biological and chemical proxies from peat bogs were extensively used to trace past climate changes, and rare earth elements (REE) in particular have been developed as inorganic geochemical proxies of mineral dust input in the atmosphere that plays an important role in the marine and terrestrial biogeochemical cycle as source for both major and trace elements. Dust deposition in the Italian Alps during the last 2000 years is estimated from the geochemical signature of two ombrotrophic peatlands. The first bog is located in Danta di Cadore (Belluno province, 1400 m a.s.l.), the second one in Coltrondo (Belluno province, 1800 m a.s.l.): they both allow us to have new insights into climate variability in the Eastern sector of the Italian Alps. The REE and the lithogenic elements concentration, as well as the lead isotopic composition were determined by CRC-ICP-QMS along the first meter of each core. For both the archives chronology is based upon independent 14C and 210Pb measurements. Changes in REE concentration through the bogs were related with those of lithogenic elements in order to test the immobility of the REE. Moreover peat humification degree was used to evaluate the hydroclimatic conditions of the bogs and Pb isotopic signature were used to trace dust deposited at Danta di Cadore and Coltrondo bogs and to discriminate natural from anthropogenic source

  14. Lake Powell

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The white ring around Lake Powell tells the story. The surface is down 98 feet. This is critical, because Powell, Lake Mead, and other lakes along the Colorado River provide water for millions of people in five states. We are in the eighth year of a drought on the Colorado River. This year was the driest year ever reported in Southern California, and there is a severe drought in Northern California, down to less than 30-percent of snow pack. This ASTER image of part of Lake Powell was acquired in 2001. The gray area depicts the shrunken, reduced 2007 lake extent compared to the extended, larger black area in 2001.

    The image covers an area of 24 x 30 km, and is centered near 37.1 degrees north latitude, 111.3 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  15. Analysis of Lake Baikal's phytoplankton and fluvial input dynamics using SeaWiFS satellite data within the Scope of the Paleoclimate Project CONTINENT

    NASA Astrophysics Data System (ADS)

    Heim, B.; Oberhaensli, H.; Kaufmann, H.

    2003-04-01

    Multispectral ocean colour satellite data provide a new tool for spatial and temporal limnological data overview. The Ulaan Baatar (Mongolia) HRPT (high resolution picture transmission) station provides the paleoclimate EC-Project CONTINENT "High Resolution CONTINENTal Paleoclimate Record in Lake Baikal (Siberia, Russia)" with daily SeaWiFS data covering the area of south-eastern Siberia. After a SeaWiFS data processing chain with radiometric and atmospheric correction, we use the water leaving reflectances to gain information on phytoplankton and suspended sediment whose dynamics are a response to the present climate forcing. During the CONTINENT Summer cruises in 2001 and 2002, we were able to verify the spectral analysis of SeaWiFS satellite data with a high quality calibration/validation ground truth data set (field spectrometer and fluorometer measurement activities simultaneously to water sampling activities for pigment and suspended matter SPM and DOC analysis and algae counting). The fluviatil input into Lake Baikal is visible in the SeaWiFS data due to its higher loads of suspended matter, further particularly due to the presence of coloured dissolved organic matter (cDOM). These coloured fraction of DOM (mainly humic acids) originate from the bog areas and swampy basins within the Lake Baikal watershed. The so called yellow substances react optically with a strong absorption in the blue spectral bands of SeaWiFS and are therefore ideal tracers for the river input even over long distances from the river inflow. The phytoplankton main pigment chlorophyll-a is made visible by its absorption band in the blue which results in a green reflectance peak. Additional pigment groups (carotinoids, phycobilins) differentiate the spectral shape of the water leaving reflectance depending on the respective main phytoplankton composition. On satellite images obtained in late Summer, we can differentiate between diatom and cyanobacteria-picoplankton dominated surface water

  16. Mirror Lake: Past, present and future: Chapter 6

    USGS Publications Warehouse

    Likens, Gene E.; LaBaugh, James W.

    2009-01-01

    This chapter discusses the hydrological and biogeochemical characteristics of Mirror Lake and the changes that resulted from air-land-water interactions and human activities. Since the formation of Mirror Lake, both the watershed and the lake have undergone many changes, such as vegetation development and basin filling. These changes are ongoing, and Mirror Lake is continuing along an aging pathway and ultimately, it will fill with sediment and no longer be a lake. The chapter also identifies major factors that affected the hydrology and biogeochemistry of Mirror Lake: acid rain, atmospheric deposition of lead and other heavy metals, increased human settlement around the lake, the construction of an interstate highway through the watershed of the Northeast Tributary, the construction of an access road through the West and Northeast watersheds to the lake, and climate change. The chapter also offers future recommendations for management and protection of Mirror Lake.

  17. Climate-growth relationships for bog-grown black spruce in northern Minnesota

    SciTech Connect

    Vogel, K.J. )

    1993-06-01

    Black spruce (Picea mariana) tree-ring chronologies were derived for three bogs in northern Minnesota. Standard chronologies were highly intercorrelated (0.72 to 0.87). The ring-width variability attributable to a common signal ranged from 38.6 to 56.8 percent which is large for closed canopy eastern forests. These chronologies exhibited great serial correlation, therefore all chronologies were autoregressively modelled prior to climatic analyses. Each chronology was compared to monthly temperature and precipitation data from a nearby weather station. Strengths of linear relationships were measured by the product-moment correlation coefficient. May and August temperatures from the previous year and March precipitation of the current year were significantly correlated with ring-width indices. These data suggest that tree-ring chronologies from mid-continental peatlands may be a valuable, though presently ignored, source of paleoclimatic data.

  18. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.

    PubMed

    Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo

    2015-01-01

    The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils. PMID:24630445

  19. Dynamics of biochemical processes and redox conditions in geochemically linked landscapes of oligotrophic bogs

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.

    2016-04-01

    The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.

  20. Investigations on the "Extreme" Microbial Methane Cycle within the Sediments of an Acidic Impoundment of the Inactive Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.; Wei, J. H. C.; Welander, P. V.

    2014-12-01

    The inactive Sulfur Bank Mercury Mine is located in a volcanic region having geothermal flow and gas inputs into the Herman Pit impoundment. The acidic (pH 2 - 4) waters of the Herman Pit are permeated by hundreds of continuous flow gas seeps that contain CO2, H2S and CH4. We sampled one seep and found it to be composed of 95 % CO2 and 5 % CH4, in agreement with earlier measurements. Only a trace of ethane (10 - 20 ppm) was found and propane was below detection, resulting in a high CH4/C2H6 + C3H8 ratio of > 5,000, while the δ13CH4 and the δ13CO2 were respectively - 24 and - 11 per mil. Collectively, these results suggested a complex origin for the methane, being made up of a thermogenic component resulting from pyrolysis of buried organics, along with an active methanogenic portion. The relatively 12C-enriched value for the CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. We found that dissolved methane in the collected water from 2-4 m depth was high (~ 400 µM), which would support methanotrophy in the lake's aerobic biomes. We therefore tested the ability of bottom sediments to consume methane by conducting aerobic incubations of slurried bottom sediments. Methane was removed from the headspace of live slurries, and subsequent additions of methane to the headspace over the course of 2-3 months resulted in faster removal rates suggesting a buildup of the population of methanotrophs. This activity could be transferred to an artificial medium originally devised for the cultivation of acidophilic iron oxidizing bacteria (Silverman and Lundgren, 1959; J. Bacteriol. 77: 642 - 647), suggesting the possibility of future cultivation of acidophilic methanotrophs. A successful extraction of some hopanoid compounds from the sediments was achieved, although the results were too preliminary at the time of this writing to identify any hopanoids specifically linked to methanotrophic bacteria. Further efforts to amplify functional genes for

  1. Ecohydrology by thinking outside the bog: Shifting paradigms in an era of shifting peatland ecosystems

    NASA Astrophysics Data System (ADS)

    Waddington, James; Moore, Paul

    2016-04-01

    Large shifts in vegetation distributions are occurring worldwide and at unprecedented rates. The most extreme of these regime shifts are expected to occur at ecosystem boundaries of both semi-arid and semi-humid landscapes. Despite extensive hydrological research on the interactions between water and semi-arid ecosystems, research in peatlands on the wet end of ecosystem continuum has been "bogged down" (pun fully intended) by the traditional conceptual models (paradigms?) of peatland hydrology and ecology. The consequences of this "thinking" are large given that northern peatlands provide important global and regional ecosystem services (carbon storage, water storage, and biodiversity). This is especially true because peatlands face increases in the severity, areal extent, and frequency of climate-mediated (e.g., wildfire, drought) and land-use change (e.g., drainage, flooding, and mining) disturbances placing the future security of these critical ecosystem services in doubt. We use the word doubt because while numerical modelling studies predict peatland regime shifts and the demise of global peat stocks, there is growing evidence that peatlands are self-regulating ecosystems dominated by negative ecohydrological feedbacks that stabilize the aforementioned ecosystem services through high ecosystem resilience to disturbance. This raises several important hydrological questions? "Is there field evidence of peatland regime shifts? If so, what are the potential impacts of these shifts on water resources and watershed management? If not, are researchers actually looking in the right places (or times)? In this presentation we explore the need for a "thinking outside the bog" in order to understand the ecohydrological consequences of transformative landscape change caused by peatland regime shifts. With reference to over two decades of field research, recent advances with our Peatland Hydrological Impacts model and recent research examining primary peat formation, we

  2. Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition.

    PubMed

    Enrico, Maxime; Roux, Gaël Le; Marusczak, Nicolas; Heimbürger, Lars-Eric; Claustres, Adrien; Fu, Xuewu; Sun, Ruoyu; Sonke, Jeroen E

    2016-03-01

    Gaseous elemental mercury (GEM) is the dominant form of mercury in the atmosphere. Its conversion into oxidized gaseous and particulate forms is thought to drive atmospheric mercury wet deposition to terrestrial and aquatic ecosystems, where it can be subsequently transformed into toxic methylmercury. The contribution of mercury dry deposition is however largely unconstrained. Here we examine mercury mass balance and mercury stable isotope composition in a peat bog ecosystem. We find that isotope signatures of living sphagnum moss (Δ(199)Hg = -0.11 ± 0.09‰, Δ(200)Hg = 0.03 ± 0.02‰, 1σ) and recently accumulated peat (Δ(199)Hg = -0.22 ± 0.06‰, Δ(200)Hg = 0.00 ± 0.04‰, 1σ) are characteristic of GEM (Δ(199)Hg = -0.17 ± 0.07‰, Δ(200)Hg = -0.05 ± 0.02‰, 1σ), and differs from wet deposition (Δ(199)Hg = 0.73 ± 0.15‰, Δ(200)Hg = 0.21 ± 0.04‰, 1σ). Sphagnum covered during three years by transparent and opaque surfaces, which eliminate wet deposition, continue to accumulate Hg. Sphagnum Hg isotope signatures indicate accumulation to take place by GEM dry deposition, and indicate little photochemical re-emission. We estimate that atmospheric mercury deposition to the peat bog surface is dominated by GEM dry deposition (79%) rather than wet deposition (21%). Consequently, peat deposits are potential records of past atmospheric GEM concentrations and isotopic composition. PMID:26849121

  3. High methane emissions dominate annual greenhouse gas balances 30 years after bog rewetting

    NASA Astrophysics Data System (ADS)

    Vanselow-Algan, M.; Schmidt, S. R.; Greven, M.; Fiencke, C.; Kutzbach, L.; Pfeiffer, E.-M.

    2015-02-01

    Natural peatlands are important carbon sinks and sources of methane (CH4). In contrast, drained peatlands turn from a carbon sink to a carbon source and potentially emit nitrous oxide (N2O). Rewetting of peatlands thus implies climate change mitigation. However, data about the time span that is needed for the re-establishment of the carbon sink function by restoration is scarce. We therefore investigated the annual greenhouse gas (GHG) balances of three differently vegetated bog sites 30 years after rewetting. All three vegetation communities turned out to be sources of carbon dioxide (CO2) ranging between 0.6 ± 1.43 t CO2 ha-2 yr-1 (Sphagnum-dominated vegetation) and 3.09 ± 3.86 t CO2 ha-2 yr-1 (vegetation dominated by heath). While accounting for the different global warming potential (GWP) of the three greenhouse gases, the annual GHG balance was calculated. Emissions ranged between 25 and 53 t CO2-eq ha-1 yr-1 and were dominated by large emissions of CH4 (22 up to 51 t CO2-eq ha-1 yr-1), while highest rates were found at purple moor grass (Molinia caerulea) stands. These are to our knowledge the highest CH4 emissions so far reported for bog ecosystems in temperate Europe. As the restored area was subject to large fluctuations in water table, we conclude that the high CH4 emission rates were caused by a combination of both the temporal inundation of the easily decomposable plant litter of this grass species and the plant-mediated transport through its tissues. In addition, as a result of the land use history, the mixed soil material can serve as an explanation. With regards to the long time span passed since rewetting, we note that the initial increase in CH4 emissions due to rewetting as described in the literature is not limited to a short-term period.

  4. Rare earth element and Nd isotope geochemistry of an ombrotrophic peat bog at Karukinka (Chile, 53.9° S): a palaeo-record of Holocene dust deposition in Tierra del Fuego.

    NASA Astrophysics Data System (ADS)

    Vanneste, Heleen; De Vleeschouwer, François; Vanderstraeten, Aubry; Mattielli, Nadine; Triquet, Delphine; Piotrowska, Natalia; Le Roux, Gael

    2013-04-01

    The value of ombrotrophic peat bogs as past atmospheric dust records, has been increasingly recognized over the past 10 years. Their high accumulation rates provide high resolution archives of natural atmospheric dust deposition since the Late Glacial, often missing in marine, lake and ice core records. Consequently, peat deposits can be used as a proxy for atmospheric circulation patterns and thus palaeoclimate. In the Southern Hemisphere, the climate is considered to be driven by the Southern Westerly Wind belt (SSW), as it significantly affects the Antarctic Circumpolar Current and hence atmospheric CO2 levels. Palaeo SSW belt migrations have been observed in palaeoclimate records but, reconstructions of SSW shifts and associated climatic changes are incoherent, in particular for the Holocene. As peatlands thrive in southwest Tierra del Fuego due to its high annual precipitation, a remote ombrotrophic peat bog at Karukinka (southwest on the Isla Grande de Tierra del Fuego) was sampled, to investigate the Holocene palaeoclimate in southern South America based on dust deposition records. A 4,5 m long Russian D-core was recovered and subsequently subsampled for elemental and isotope geochemistry in addition to density and radiocarbon dating measurements. Initial results show a number of layers enriched in scandium, indicating the presence of lithogenic material, i.e. dust. Rare earth element patterns indicate at least 2 different sources. The most significant dust peak occurs at the base of the core at ~7300 Cal years B.P and has a neodymium isotopic composition of 2.2, suggesting a volcanic origin.

  5. A 15 000-year record of climate change in northern New Mexico, USA, inferred from isotopic and elemental contents of bog sediments

    USGS Publications Warehouse

    Cisneros-Dozal, L. M.; Heikoop, J.M.; Fessenden, J.; Anderson, R. Scott; Meyers, P.A.; Allen, C.D.; Hess, M.; Larson, T.; Perkins, G.; Rearick, M.

    2010-01-01

    Elemental (C, N, Pb) and isotopic (??13C, ??15N) measurements of cored sediment from a small bog in northern New Mexico reveal changes in climate during the Late Pleistocene and Holocene. Abrupt increases in Pb concentration and ??13C values ca. 14 420 cal. YBP indicate significant runoff to the shallow lake that existed at that time. Weathering and transport of local volcanic rocks resulted in the delivery of Pb-bearing minerals to the basin, while a 13C-enriched terrestrial vegetation source increased the ??13C values of the sedimentary material. Wet conditions developed over a 300 a period and lasted for a few hundred years. The Younger Dryas period (ca. 12 700-11 500 cal. YBP) caused a reduction in terrestrial productivity reflected in decreasing C/N values, ??15N values consistently greater than 0??? and low organic content. By contrast, aquatic productivity increased during the second half of this period, evidenced by increasing ??13C values at the time of highest abundance of algae. Dry conditions ca. 8 000-6 000 cal. YBP were characterised by low organic carbon content and high Pb concentrations, the latter suggesting enhanced erosion and aeolian transport of volcanic rock. The range in ??13C, ??15N and C/N values in the sedimentary record fall within the range of modern plants, except during the periods of runoff and drought. The sedimentary record provides evidence of natural climate variability in northern New Mexico, including short- (multi-centennial) and long-(millennial) term episodes during the Late Pleistocene and Holocene. Copyright ?? 2010 John Wiley & Sons, Ltd.

  6. Elevated Nitrogen Deposition Enhances the Net CO2 Sink Strength in Alberta Bogs along a Post-fire Chronosequence

    NASA Astrophysics Data System (ADS)

    Wieder, R. K.; Vile, M. A.; Albright, C. M.; Scott, K. D.

    2014-12-01

    About 30% of the landscape of northern Alberta, Canada is occupied by peatlands, which persist at the low end range of both mean annual precipitation (<500 mm/yr) and mean annual atmospheric nitrogen (N) deposition (< 1 kg/ha/yr) across which peatlands are found globally. Ombrotrophic bogs in this region function as a net sink for atmospheric CO2 of over 75 g/m2/yr, taking into consideration changes in CO2 sink strength as a function of time since fire. In addition to fire, a new disturbance is emerging in the Athabasca Oil Sands Region (AOSR) of northern Alberta, where development of the oil sands resource has increased atmospheric N deposition to as much as 2.5 kg/ha/yr. To examine the effects of elevated N deposition on bog C cycling, we experimentally applied N (as NH4NO3 solutions) to replicated plots at levels equivalent to 0 (water added with no N), 10, and 20 kg/ha/yr, and controls (no waher, no N added) at five bog sites, aged at 2, 12, 32, 73, and 113 years since fire in 2013 (6 plots per N treatment per site). Understory net ecosystem exchange of CO2 (NEE) was measured repeatedly throughout the 2013 and 2014 growing season (and in 2011 and 2012 at the most recently burned site) using the closed chamber approach. Using a rectangular hyperbola equation to characterize NEE as a function of photosynthetically active radiation (PAR) and near-surface air temperature (T), monthly and annual NEE was estimated based on hourly measurements of PAR and T at each site. Across all sites, a general pattern emerged that N additions enhanced the net CO2 sink strength of the bogs, with no effect on ecosystem respiration. Net primary production of Sphagnum fuscum, the dominant peat-forming moss, was not affected by N addition, suggesting that the overall response of NEE to N addition is the result of enhanced growth of ericaceous shrubs. These findings suggest that while elevated N deposition in the AOSR may enhance the strength of the overall CO2 sink of bogs in the short

  7. The supply of trace elements from the atmosphere recorded in a natural archive by the example of the Ilas ombrotrophic bog in the White Sea drainage basin

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. P.; Kusnetsov, O. L.; Politova, N. V.; Zaretskaya, N. E.; Kutenkov, S. A.; Lisitzin, A. P.; Pokrovsky, O. S.

    2015-12-01

    The results of studies are presented for the elemental composition of peat from the Ilas ombrotrophic bog (White Sea drainage basin). The calculations of enrichment factors of trace elements over the section of the bog peat relatively to the average composition of the Earth's continental crust showed that the concentrations of most of chemical elements is determined by the contributions of lithogenic and biogenic sources, and the content of trace elements is equal to the background level. Enrichment growth since the beginning of intense development of European industry until the early 21th century was revealed only for Zn, Sb, Pb, and Cd. These elements were supplied to the bog resulting from long-range air transport and precipitation from the atmosphere. No pronounced heavy-metal contamination caused by the Arkhangelsk agglomeration was revealed for the peat in the Ilas bog.

  8. Water quality of selected lakes in Mount Rainier National Park, Washington with respect to lake acidification

    USGS Publications Warehouse

    Turney, G.L.; Dion, N.P.; Sumioka, S.S.

    1986-01-01

    Thirteen lakes in Mount Rainier National Park were evaluated for general chemical characteristics, sensitivity to acidification by acidic precipitation, and degree of existing acidification. The lakes studies were Allen, one of the Chenuis group, Crescent , Crystal, Eleanor, Fan, one of the Golden group, Marsh, Mowich, Mystic, Shriner, and two unnamed lakes. The lakes were sampled in August 1983. Specific conductance values were generally 21 microsiemens/cm at 25 C or less, and dissolved solids concentrations were generally 20 mg/L or less. The major cations were calcium and sodium, and the major anion was bicarbonate. Alkalinity concentrations ranged from 2.1 to 9.0 mg/L in 12 of the lakes. Allen Lake was the exception, having an alkalinity concentration of 27 mg/L. The pH values for all of the lakes ranged from 5.8 to 6.5. In most of the lakes, vertical profiles of temperature, dissolved oxygen, pH, and specific conductance were relatively uniform. In the deeper lakes, temperature decreased with depth and dissolved-oxygen concentrations increased to about 20 feet, remained constant to 80 ft, then decreased with increasing depth. Exceptions to general water quality patterns were observed in three lakes. Allen Lake had a specific conductance value of 58 Microsiemens/cm. The lake of the Golden group was anaerobic at the bottom and had relatively high concentrations of dissolved organic carbon and dissolved metals, and a lower light transmission than the other lakes studied. One of the unnamed lakes had relatively high concentrations of phytoplankton and dissolved organic carbon and relatively low levels of light transmission. Comparisons of lake data to acid-sensitivity thresholds for specific conductance and alkalinity indicated that all of the lakes except Allen would be sensitive to acidic precipitation. The small sizes of the lakes, and their locations in basins of high precipitation and weathering-resistant rock types, enhance their sensitivity. None of the

  9. The Effects of Peatland Plant Functional Types and Altered Hydrology on Porewater Chemistry in a Northern Bog

    NASA Astrophysics Data System (ADS)

    Daniels, A.; Kane, E. S.; Lilleskov, E. A.; Kolka, R. K.; Chimner, R. A.; Potvin, L. R.; Romanowicz, K. J.

    2012-12-01

    Northern wetlands, peatlands in particular, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Carbon accumulation in peatlands is the result of retarded decomposition due to low oxygen availability in these water-logged environments. Changes in our planet's climate cycles are altering peatland hydrology and vegetation communities, resulting in changes in their ability to sequester carbon through increases in peat carbon oxidation and mineralization. To date, the consequences of altered hydrology and changes in vegetation communities, and their interactive effects on carbon storage, are not well understood. We have initiated a research plan that assesses the varying roles that water table variation and vegetation communities have on extracellular enzyme activity and labile carbon availability in porewater from an ombrotrophic bog. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content in addressing our hypotheses of responses to climate change drivers. Research on these components will evaluate the relative importance of biology, water table, and their interactive affects on the porewater quality of peatlands. We hypothesized that oxygen availability will strongly influence decomposition in these systems but that this response will largely be mediated by changes in plant community and the enzymes associated with root exudates and mycorrhizae. To date, our data confirm vegetation and water table related patterns. Acetate and propionate concentrations in the sedge-dominated communities dropped significantly with depth and drainage, relative to the control and ericaceous treatments, which likely reflects

  10. Mercury deposition in ombrotrophic bogs in New Brunswick, Nova Scotia and Prince Edward Island. Atlantic region surveillance report number EPS-5-AR-98-4

    SciTech Connect

    Rutherford, L.A.; Matthews, S.L.

    1998-12-31

    A study was conducted to determine historical atmospheric mercury deposition patterns in the Maritime Provinces. Investigators measured mercury concentrations in peat cores from five ombrotrophic bogs in Kejimkujik, Fundy, Kouchibougouac, and Cape Breton Highlands national parks and in East Baltic Bog, Prince Edward Island. Results presented and discussed include deposition rates calculated using lead-210 date estimates, temporal trends in mercury concentrations, and spatial patterns of mercury deposition.

  11. Optimization of UA of heat exchangers and BOG compressor exit pressure of LNG boil-off gas reliquefaction system using exergy analysis

    NASA Astrophysics Data System (ADS)

    Kochunni, Sarun Kumar; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2015-12-01

    Boil-off gas (BOG) generation and its handling are important issues in Liquefied natural gas (LNG) value chain because of economic, environment and safety reasons. Several variants of reliquefaction systems of BOG have been proposed by researchers. Thermodynamic analyses help to configure them and size their components for improving performance. In this paper, exergy analysis of reliquefaction system based on nitrogen-driven reverse Brayton cycle is carried out through simulation using Aspen Hysys 8.6®, a process simulator and the effects of heat exchanger size with and without related pressure drop and BOG compressor exit pressure are evaluated. Nondimensionalization of parameters with respect to the BOG load allows one to scale up or down the design. The process heat exchanger (PHX) requires much higher surface area than that of BOG condenser and it helps to reduce the quantity of methane vented out to atmosphere. As pressure drop destroys exergy, optimum UA of PHX decreases for highest system performance if pressure drop is taken into account. Again, for fixed sizes of heat exchangers, as there is a range of discharge pressures of BOG compressor at which the loss of methane in vent minimizes, the designer should consider choosing the pressure at lower value.

  12. Global CO2 Emission from Volcanic Lakes

    NASA Astrophysics Data System (ADS)

    Perez, N.; Hernandez Perez, P. A.; Padilla, G.; Melian Rodriguez, G.; Padron, E.; Barrancos, J.; Calvo, D.; Kusukabe, M.; Mori, T.; Nolasco, D.

    2009-12-01

    During the last two decades, scientists have paid attention to CO2 volcanic emissions and its contribution to the global C budget. Excluding MORBs as a net source of CO2 to the atmosphere, the global CO2 discharge from subaerial volcanism has been estimated about 300 Mt y-1 and this rate accounts for both visible (plume & fumaroles) and non-visible (diffuse) volcanic gas emanations (Mörner & Etíope, 2002). However, CO2 emissions from volcanic lakes have not been considered to estimate the global CO2 discharge from subaerial volcanoes. In order to improve this global CO2 emission rate and estimate the global CO2 emission from volcanic lakes, an extensive research on CO2 emission of volcanic lakes from Phillipines, Nicaragua, Guatemala, Mexico, Indonesia, Germany, France, Cameroon, Costa Rica, El Salvador and Ecuador had been recently carried out. In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of a modified floating device of the accumulation chamber method. To quantify the total CO2 emission from each volcanic lake, CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). CO2 emission rates were normalized by the lake area (km2), and volcanic lakes were grouped following classification in acid, alkaline and neutral lakes. The observed average normalized CO2 emission rate values increase from alkaline (5.5 t km-2 d-1), neutral (210.0 t km-2 d-1), to acid (676.8 t km-2 d-1) volcanic lakes. Taking into account (i) these normalized CO2 emission rates from 31 volcanic lakes, (ii) the number of volcanic lakes in the world (~ 1100), (iii) the fraction of the investigated alkaline (45%), neutral (39%), and acid (16%) volcanic lakes, and (iv) the average areas of the investigated alkaline (36,8 km2), neutral (3,7 km2), and acid (0,5 km2) volcanic lakes; the global CO2 emission from volcanic lakes is about ~ 182 Mt year-1. This estimated value is about ~ 50% of the actual estimated global CO2

  13. CO2 fluxes at northern fens and bogs have opposite responses to inter-annual fluctuations in water table

    NASA Astrophysics Data System (ADS)

    Sulman, Benjamin N.; Desai, Ankur R.; Saliendra, Nicanor Z.; Lafleur, Peter M.; Flanagan, Lawrence B.; Sonnentag, Oliver; Mackay, D. Scott; Barr, Alan G.; van der Kamp, Garth

    2010-10-01

    This study compares eddy-covariance measurements of carbon dioxide fluxes at six northern temperate and boreal peatland sites in Canada and the northern United States of America, representing both bogs and fens. The two peatland types had opposite responses of gross ecosystem photosynthesis (GEP) and ecosystem respiration (ER) to inter-annual fluctuations in water table level. At fens, wetter conditions were correlated with lower GEP and ER, while at bogs wetter conditions were correlated with higher GEP and ER. We hypothesize that these contrasting responses are due to differences in the relative contributions of vascular plants and mosses. The coherence of our results between sites representing a range of average environmental conditions indicates ecosystem-scale differences in resilience to hydrological changes that should be taken into account when considering the future of peatland ecosystem services such as carbon sequestration under changing environmental conditions.

  14. Tracing of ca 800 yr old mining activity in peat bog using Pb elemental concentrations and isotope compositions.

    NASA Astrophysics Data System (ADS)

    Baron, S.; Carignan, J.; Ploquin, A.

    2003-04-01

    Sixty sites of slags have been documented on the Mont-Lozère in southern France. The petrographic analysis shows that slags are metallurgical wastes (800 to 850 yr BP) which certainly result from smelting activity for lead and silver extraction (Ploquin et al., 2001). The aims of this study are: 1) to trace the source of Pb ores which supplied the smelting sites, by using the Pb isotopic composition of several surrounding Pb deposits, 2) to evaluate the actual pollution caused by these slags, by using elemental and isotopic compositions of soils, water and vegetation, and 3) to document the pollution history of the region, by using elemental and isotopic compositions of peat bog cores collected in the neighbourhood of the historical smelting sites. The lead isotopic composition of galena collected in most surrounding ores is very similar to that of different slag samples. On the other hand, the high precision of the results allowed us to select the mineralised areas which were probably the ore sources. The Pb isotopic composition of slags is even more homogeneous: 208/206 Pb: 2.092±0.002; 206/207 Pb: 1.179±0.001; 208/204 Pb: 38.663±0.025; 207/204 Pb: 15.665±0.006; 206/204 Pb: 18.476±0.023, and will allow source tracing in the environment. The "Narses Mortes" peat bog, around which two smelting sites have been reported, is strongly minerotrophic and contains 8 to 60% ash. A 1.40 m core have been retrieved and divided into 58 individual samples. Minerotrophic peat bog records both atmospheric deposition, soils leaching and the grounwater influence. The measured metal concentrations are normalised to Al contents of peat bog samples and the metal/Al ratios are compared to that of the Mont-Lozère granite: relative excess in metal concentrations are found in peat bog samples. An increasing excess of most metals (Pb, Zn, Cd...) was measured for surface samples, from 55 cm depth to the top of the core (23 cm depth). This profil might be attributed to atmospheric

  15. Pb isotopes in sediments of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere

    SciTech Connect

    Kober, B.; Wessels, M.; Bollhoefer, A.; Mangini

    1999-05-01

    Pb isotope ratios and Pb concentrations of well-dated sediments of Lake Constance, Central Europe have been analyzed using thermal ion mass spectrometry. Sequential extraction studies indicated isotope homogeneity of the leachable Pb components within the investigated layers. Since the middle of the 19th century a significant anthropogenic Pb component appeared in the lake sediments, and rapidly approaches concentration levels similar to that of the geogenic Pb background (20 ppm) at the beginning of the 20th century. Anthropogenic Pb was predominantly transferred to the lake sediments via the atmosphere. Pb sources were coal combustion, industrial ore processing and leaded gasoline. The flux of a fluvial Pb component to the lake sediments, additive to atmospheric Pb deposition, peaked in about 1960. This flux is attributed to (re)mobilization of Pb from polluted parts of the lake catchment, and indicates the change of catchment soils from a pollution sink to a heavy metal source. The strong reduction of anthropogenic Pb in the uppermost lake sediments since the 1960s has been caused by advances of environmental protection. The lake sediments record the changing fluxes and the isotope composition of the deposited aeolian Pb pollution. During the 20th century aeolian Pb fluxes to the lake sediments were in the range of 1--4 {micro}g/cm{sup 2}/a. During peak emission periods of gasoline Pb to the atmosphere (1960--1990) the aerosol Pb isotope composition was rather constant ({sup 206}Pb/{sup 207}Pb: 1.12--1.13) and probably a mixture of Canadian and Australian with Russian and Central European Pb types. Aeolian Pb isotope and Pb flux trends in the lake sediments as a whole agree well with the trends found in Alpine glaciers (Doering et al., 1997a,b) and in ombrotrophic peat bogs of Switzerland (Shotyk et al., 1996). However, different industrial Pb components were deposited in the archives of aeolian pollution during the early 20th century.

  16. Parameter Calculation Technique for the Waste Treatment Facilities Using Naturally-Aerated Blocks in the Bog Ecosystems

    NASA Astrophysics Data System (ADS)

    Akhmed-Ogly, K. V.; Savichev, O. G.; Tokarenko, O. G.; Pasechnik, E. Yu; Reshetko, M. V.; Nalivajko, N. G.; Vlasova, M. V.

    2014-08-01

    Technique for the domestic wastewater treatment in the small residential areas and oil and gas facilities of the natural and man-made systems including a settling tank for mechanical treatment and a biological pond with peat substrate and bog vegetation for biological treatment has been substantiated. Technique for parameters calculation of the similar natural and man-made systems has been developed. It was proven that effective treatment of wastewater can be performed in Siberia all year round.

  17. How much does fluvial dissolved organic carbon export from blanket bogs vary at the regional scale? An example from the Pennine region of Yorkshire, UK

    NASA Astrophysics Data System (ADS)

    Grayson, Richard; Blundell, Antony; Holden, Joseph

    2014-05-01

    Often only one or a very small number of stream sampling points are used to infer wider regional export of fluvial carbon from peatlands. However, we suggest that the amount of fluvial carbon being exported varies enormously within regions even when blanket peat is the dominant land cover type. Here we present results from an extensive and comprehensive monitoring project covering blanket peat dominated catchments across the Pennine region of the UK using data from 2006 onwards. Up to the start of January 2014 the dataset contained dissolved organic carbon (DOC) data for approximately 11500 stream water samples (both routine spot samples and storm event samples). The majority of these DOC measurements also have associated UV-Vis absorbance data allowing an insight into the composition of the DOC present, specifically the dominance of humic versus fulvic acids and the degree of aromaticity (SUVA254). Additional data to support interpretation of the regional variability of DOC includes particulate organic carbon, discharge, pH, conductivity and turbidity, water table depth, soil water chemistry and meteorological data. We provide an unparalleled insight into the spatial and temporal variability of DOC in a region of blanket bogs showing how catchment attributes influence fluvial DOC, how there are hotspots of DOC production and how high flow events regulating DOC export and its composition.

  18. Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog

    NASA Astrophysics Data System (ADS)

    Beetz, S.; Liebersbach, H.; Glatzel, S.; Jurasinski, G.; Buczko, U.; Höper, H.

    2013-02-01

    Wetlands can either be net sinks or net sources of greenhouse gases (GHGs), depending on the mean annual water level and other factors like average annual temperature, vegetation development, and land use. Whereas drained and agriculturally used peatlands tend to be carbon dioxide (CO2) and nitrous oxide (N2O) sources but methane (CH4) sinks, restored (i.e. rewetted) peatlands rather incorporate CO2, tend to be N2O neutral and release CH4. One of the aims of peatland restoration is to decrease their global warming potential (GWP) by reducing GHG emissions. We estimated the greenhouse gas exchange of a peat bog restoration sequence over a period of 2 yr (1 July 2007-30 June 2009) in an Atlantic raised bog in northwest Germany. We set up three study sites representing different land use intensities: intensive grassland (deeply drained, mineral fertilizer, cattle manure and 4-5 cuts per year); extensive grassland (rewetted, no fertilizer or manure, up to 1 cutting per year); near-natural peat bog (almost no anthropogenic influence). Daily and annual greenhouse gas exchange was estimated based on closed-chamber measurements. CH4 and N2O fluxes were recorded bi-weekly, and net ecosystem exchange (NEE) measurements were carried out every 3-4 weeks. Annual sums of CH4 and N2O fluxes were estimated by linear interpolation while NEE was modelled. Regarding GWP, the intensive grassland site emitted 564 ± 255 g CO2-C equivalents m-2 yr-1 and 850 ± 238 g CO2-C equivalents m-2 yr-1 in the first (2007/2008) and the second (2008/2009) measuring year, respectively. The GWP of the extensive grassland amounted to -129 ± 231 g CO2-C equivalents m-2 yr-1 and 94 ± 200 g CO2-C equivalents m-2 yr-1, while it added up to 45 ± 117 g CO2-C equivalents m-2 yr-1 and -101 ± 93 g CO2-C equivalents m-2 yr-1 in 2007/08 and 2008/09 for the near-natural site. In contrast, in calendar year 2008 GWP aggregated to 441 ± 201 g CO2-C equivalents m-2 yr-1, 14 ± 162 g CO2-C equivalents m-2 yr-1

  19. Soil carbon balance on drained and afforested transitional bog in forest research station Vesetnieki in Latvia

    NASA Astrophysics Data System (ADS)

    Lupiķis, Ainārs; Lazdiņš, Andis

    2015-04-01

    Around 0.8 mill. ha forests in Latvia are located on organic soils and 0.5 mill. ha of these forests are drained. Drainage of organic soils alters carbon stock and may has impact on the climate change. The aim of this study is to analyse the impact of drainage on a soil carbon stock in transitional bog (average growing stock before drainage 50 m3*ha-1) located in central part of Latvia in research station "Vesetnieki". Drainage was done in 1960. Average peat thickness is around 4.5 m; dominant tree species are pine (Pinus sylvestris L.) and spruce (Picea abies Karst.) with average growing stock 226 m3*ha-1 and 213 m3*ha-1. Volumetric peat samples were taken from soil surface down to 80 cm depth in 30 sample plots in drained sites and non-drained areas (transitional bog), which have been left as a control. Bulk density, carbon content in peat was determined to evaluate carbon stock changes in soil. Ground surface levelling in drained sites was done before drainage and repeatedly in 1966, 1970, 1975, 1977, 1982 and 2014 to calculate peat subsidence. The rate of peat subsidence after drainage increased rapidly, and 14 years after drainage 15.8 cm decrease of the surface level was found. The rate of the peat subsidence decreased later, and the ground level reduced by 9.9 cm in the following 40 years, reaching 25.7±3.5 cm from initial ground surface level in the 2014. The rapid decrease of the surface level after drainage can be explained by physical alters and by decomposition of the peat surface layers, however, it is not possible to assess now, which of these processes dominated. However, the significant (α=0.05) increase of the peat bulk density and carbon content in upper layers (0-80 cm) in drained sites compared to non-drained leads to conclusion that the compaction was the dominating process. Average carbon stock (0-80 cm deep soil layer) in non-drained areas is 339±29 tons*ha-1 and 513±27 tons*ha-1 in drained sites. We compared carbon stock in upper 80 cm

  20. Low impact of dry conditions on the CO2 exchange of a Northern-Norwegian blanket bog

    NASA Astrophysics Data System (ADS)

    Lund, Magnus; Bjerke, J. W.; Drake, B. G.; Engelsen, O.; Hansen, G. H.; Parmentier, F. J. W.; Powell, T. L.; Silvennoinen, H.; Sottocornola, M.; Tømmervik, H.; Weldon, S.; Rasse, D. P.

    2015-02-01

    Northern peatlands hold large amounts of organic carbon (C) in their soils and are as such important in a climate change context. Blanket bogs, i.e. nutrient-poor peatlands restricted to maritime climates, may be extra vulnerable to global warming since they require a positive water balance to sustain their moss dominated vegetation and C sink functioning. This study presents a 4.5 year record of land-atmosphere carbon dioxide (CO2) exchange from the Andøya blanket bog in northern Norway. Compared with other peatlands, the Andøya peatland exhibited low flux rates, related to the low productivity of the dominating moss and lichen communities and the maritime settings that attenuated seasonal temperature variations. It was observed that under periods of high vapour pressure deficit, net ecosystem exchange was reduced, which was mainly caused by a decrease in gross primary production. However, no persistent effects of dry conditions on the CO2 exchange dynamics were observed, indicating that under present conditions and within the range of observed meteorological conditions the Andøya blanket bog retained its C uptake function. Continued monitoring of these ecosystem types is essential in order to detect possible effects of a changing climate.

  1. Sphagnum N and P Stoichiometry Indicates P-limitation on N2 Fixation in Ombrotrophic Bogs

    NASA Astrophysics Data System (ADS)

    Zivkovic, T.; Moore, T. R.; Disney, K.

    2015-12-01

    Biological N2 fixation is an important N input in ombrotrophic, nutrient poor and Sphagnum dominated bogs. As an energetically costly process, by which each N2 molecule is fixed to a cost of 16ATP molecules, N2 fixation might be P limited process. In this study we tested whether moss P and N concentrations, and N:P ratios could explain N2 fixation in the top 6cm photosynthetically active Sphagnum moss across eight ombrotrophic bogs along south-north geographical gradient in Ontario and Quebec. Under constant environmental conditions, we incubated subsamples of the surface Sphagnum mosses by using both, acetylene reduction assays (ARA) and 15N2 enriched method to measure N2 fixation rates. Same subsamples were later analyzed for N and P concentrations. Our preliminary data show that the increase of P concentration within moss capitula is related to a significant linear increase of ARA rates (R2=0.18, p<0.0001, N=150). N:P ratios showed a significant negative linear relationship with ARA (R2=0.34, p<0.0001, N=150) indicating that P limitation in the photosynthetically active part of mosses in bogs may also indicate P limitation on microbial N2 fixation

  2. Comparative characteristic of the sphagnum moss and peat of upland bogs in Siberia, Russia and central part of Germany

    NASA Astrophysics Data System (ADS)

    Mezhibor, Antonina; Podkozlin, Ivan

    2013-04-01

    This research represents the results of the ICP-MS study for the moss and peat samples from two upland bogs of Germany and one bog from Siberia, Russia (Tomsk region). Moss and upland peat are widely used for ecological studies. These substances enable to detect atmospheric pollution because of the peculiar structure of sphagnum moss. According to the obtained results, we can resume that moss and peat in Tomsk region are more enriched in such chemical elements as Cr, Fe, As, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Hf, Hg, Th, and U. The samples from Germany are more enriched in Mn, Cu, Zn, and Se. The geochemical composition of the bogs reflects the specificity of industries that pollute the atmosphere with definite chemical elements. Thus, REE, Th and U in the moss and peat of Tomsk region can originate from nuclear facility near the Tomsk city. Coal combustion in power stations can be the source of Cr, As, Sr and REE as well. Mn, Cu, Zn, and Se possibly can originate from metallurgical facilities in Germany.

  3. A stacked record of late-Holocene moisture variability from three raised bogs in Maine

    NASA Astrophysics Data System (ADS)

    Clifford, M. J.; Booth, R. K.

    2011-12-01

    During the past century, drought has caused substantial social, economic, and ecological changes in North America. Semi-arid regions of the western United States have been particularly vulnerable to drought and drought impacts. However, drought has been less frequent and severe in humid regions of North America during the past century, leading to the perception that these regions are not particularly vulnerable to hydroclimatic change. Although the tree-ring record provides a detailed perspective on drought frequency and duration for the past millennium in the western US, much less is known about the long-term history of water balance in humid regions like the Northeast. To better understand the long-term history of moisture variability in this region, we developed records of past hydroclimate variability spanning the past 3000 years from three raised bogs in Maine. We used testate amoeba-inferred water table depths and measurements of the degree of peat decomposition to reconstruct the paleohydrology at each site. Proxy hydroclimate records from these bogs were combined (stacked), creating a single, regional record of hydroclimate variability. Our results reveal that droughts longer or more severe than any recorded during the 20th century have been common in the region, with particularly prominent multidecadal-to-centennial scale droughts centered on ~1800 yr BP, ~1650 yr BP, ~850 yr BP, and ~550 yr BP. Hydroclimate variability was greatest during the Medieval Climate Anomaly, a time period of relative warmth in much of the Northern Hemisphere. Droughts in Maine during the past century have been associated with northerly wind anomalies and anomalously cool sea surface temperatures in the adjacent northwestern North Atlantic, patterns that are likely associated with broader circulation features such as those associated with the North Atlantic Oscillation. Droughts of the past 3000 years may have been characterized by similar responses to the coupled ocean

  4. Effects of Nutrient Addition on Belowground Stoichiometry and Microbial Activity in an Ombrotrophic Bog

    NASA Astrophysics Data System (ADS)

    Pinsonneault, A. J.; Moore, T. R.; Roulet, N. T.

    2015-12-01

    Ombrotrophic bogs are both nutrient-poor systems and important carbon (C) sinks yet there remains a dearth of information on the stoichiometry of C, nitrogen (N), phosphorus (P), and potassium (K), an important determinant of substrate quality for microorganisms, in these systems. In this study, we quantified the C, N, P, and K concentrations and stoichiometric ratios of both soil organic matter (SOM) and dissolved organic matter (DOM) as well as microbial extracellular enzyme activity from 0 - 10cm depth in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada. Though trends in C:N, C:P, and C:K between SOM and DOM seem to follow one another, preliminary results indicate that the stoichiometric ratios of DOM were at least an order of magnitude smaller than those of DOM suggesting that nutrient fertilization impacts the quality of DOM as a microbial substrate to a greater degree than SOM. C:N decreased with greater nitrogen addition but C:P and C:K increased; the magnitude of that increase being smaller in NPK treatments relative to N-only treatments suggesting co-limitation by P and/or K. This is further supported by the increase in activity of both the C-cycling enzyme, β-D-glucosidase (bdG), and the P-cycling enzyme, phosphatase (Phos), with greater nitrogen addition; particularly in NPK-treatments for bdG and N-only treatments for Phos. The activity of the N-cycling enzyme, N-acetyl-β-D-glucosaminidase, and the C-cycling enzyme, phenol oxidase, with greater N-addition suggests a decreased need to breakdown organic nitrogen to meet microbial N-requirements in the former and N-inhibition in the latter consistent with findings in the literature. Taken together, these results suggest that higher levels of nutrients impact both microbial substrate quality as well as the activity of microbial enzymes that are key in the decomposition process which may ultimately decrease the ability of peatlands to sequester carbon.

  5. Water and Energy Exchanges over a Subarctic Bog in Northern Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Isabelle, P.; Nadeau, D. F.; Rousseau, A. N.

    2013-12-01

    A significant fraction of the energy supply to eastern Canada and to the northeastern US comes from large hydropower plants located in the Canadian boreal shield. For instance, the La Grande River watershed near James Bay (Canada), hosts a hydropower complex producing nearly 40% of the overall peak load of Quebec. In this northern, remote and vast (≈100,000 km2) watershed, boreal forest is predominant, but wetlands (25% of the surface cover) are of key importance to the river's water budget. Unfortunately, little is known about how boreal wetlands affect regional hydrological processes, and hence, how they contribute to inflows to hydropower reservoirs. This study aims to gain a deeper understanding of evapotranspiration processes over boreal wetlands, based on field observations. The study site is a 60-ha bog (53.7°N, 78.2°W) located next to the Necopastic River, a tributary of the La Grande River. The peatland is of ombrotrophic type, meaning that it receives most of its water and nutrients from precipitation. The analysis relies on data collected by a flux tower during a field campaign throughout summer 2012., as well as detailed measurements of the water budget in this sub-watershed. One key finding is that the atmosphere is neutrally-stratified for more than 60% of the summer. The impact of this unusual feature of the atmospheric boundary layer on water vapor fluxes is carefully analyzed. As expected, eddy covariance evapotranspiration data compared well with classical formulas (Priestley-Taylor, Penman, Penman-Monteith, FAO), particularly with Priestley-Taylor. Given nearly all these formulations command direct measurements or estimations of net radiation, and that the cost of net radiometers is prohibitive, we tested the less frequently used profile method, which simply requires one or two additional measurement levels of wind speed, temperature and humidity. The latter method led to promising results, especially considering its ease of implementation

  6. No limits to peat bog growth? Transport and thermodynamic constraints on anaerobic organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Blodau, C.; Julia, B.; Siems, M.

    2009-05-01

    methanogenesis decreasing to 0 near a critical Gibbs free energy of about -27 KJ mol-1. The results thus suggest that, even in absence of inorganic electron acceptors, respiration rates in peat bogs are likely higher near the redox interface to the atmosphere due to lower respiration endproduct concentrations. Similar effects ensue when rates of transport are elevated or pools of CO2 and CH4 are eliminated. With decomposition being constrained, peat bog growth may occur longer than previously thought.

  7. Seasonal and interannual variation in water vapor and heat fluxes in a West Siberian continental bog

    NASA Astrophysics Data System (ADS)

    Shimoyama, K.; Hiyama, T.; Fukushima, Y.; Inoue, G.

    2003-10-01

    The seasonal and interannual variation in the energy fluxes of a West Siberian continental bog were measured from April to October in 1999 and 2000 using the eddy covariance method. The energy balance closure rate (=[sensible + latent heat fluxes]/[available energy]) ranged from ˜0.8 to 0.9 and showed a better energy balance and less scattering using the soil heat flux estimated from an area-averaged soil thermal parameter rather than from a plot-based measurement. The net radiation (Rn) increased drastically after snowmelt because the surface albedo (a) dropped from its highest value to its lowest value over the course of the snowmelt. The snowmelt water raised the water table (zwt) to its highest level; it then gradually decreased. The seasonal and interannual variation in a, which ranged from 0.09-0.19, depended on zwt, because surface wetness was closely related to zwt through the capillary uptake of Sphagnum moss. The seasonal variation in the latent heat flux (lE) was similar to that in Rn. The largest lE was observed in the middle of June, and was ˜120 Wm-2 (4.2 mm d-1) in both years. Conversely, the sensible heat flux (H) did not show an obvious seasonal pattern and was lower than lE during the growing season. The Bowen ratio (Br) in the early growing season was 0.57 and 0.60, and the values in the peak growing season were 0.65 and 0.78, in 1999 and 2000, respectively. The lower Br was related to the higher zwt; specifically, it was due to the wetter surface conditions. An interannual comparison of the monthly mean atmospheric water vapor deficit (δe) and lE showed a significant relationship with a higher lE observed in the year with a higher δe. Therefore in the bog studied the interannual variation in the water vapor flux was controlled mainly by zwt and δe.

  8. High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting

    NASA Astrophysics Data System (ADS)

    Vanselow-Algan, M.; Schmidt, S. R.; Greven, M.; Fiencke, C.; Kutzbach, L.; Pfeiffer, E.-M.

    2015-07-01

    Natural peatlands are important carbon sinks and sources of methane (CH4). In contrast, drained peatlands turn from a carbon sink to a carbon source and potentially emit nitrous oxide (N2O). Rewetting of peatlands thus potentially implies climate change mitigation. However, data about the time span that is needed for the re-establishment of the carbon sink function by restoration are scarce. We therefore investigated the annual greenhouse gas (GHG) balances of three differently vegetated sites of a bog ecosystem 30 years after rewetting. All three vegetation communities turned out to be sources of carbon dioxide (CO2) ranging between 0.6 ± 1.43 t CO2 ha-2 yr-1 (Sphagnum-dominated vegetation) and 3.09 ± 3.86 t CO2 ha-2 yr-1 (vegetation dominated by heath). While accounting for the different global warming potential (GWP) of CO2, CH4 and N2O, the annual GHG balance was calculated. Emissions ranged between 25 and 53 t CO2-eq ha-1 yr-1 and were dominated by large emissions of CH4 (22-51 t CO2-eq ha-1 yr-1), with highest rates found at purple moor grass (Molinia caerulea) stands. These are to our knowledge the highest CH4 emissions so far reported for bog ecosystems in temperate Europe. As the restored area was subject to large fluctuations in the water table, we assume that the high CH4 emission rates were caused by a combination of both the temporal inundation of the easily decomposable plant litter of purple moor grass and the plant-mediated transport through its tissues. In addition, as a result of the land use history, mixed soil material due to peat extraction and refilling can serve as an explanation. With regards to the long time span passed since rewetting, we note that the initial increase in CH4 emissions due to rewetting as described in the literature is not inevitably limited to a short-term period.

  9. Climate, Nitrogen Depostion and Terrestrial Vegetation As Major Drivers of Lake DOC and Stoichiometry

    NASA Astrophysics Data System (ADS)

    Hessen, D. O.; Larsen, S.; Andersen, T.

    2014-12-01

    By using data for nitrogen deposition, temperature, runoff and GIS-data for a range of catchment-specific properties, the effect of these variables on elemental export and ratios between carbon (C), nitrogen (N), phosphorus (P) and silicate (Si) in downstream lakes was assessed in Norwegian boreal catchments based on data from nearly 1000 lakes. The study covered a wide range of anthrophogenic N-deposition from south to north (max: 2 g m-2 yr-1, min: 0.1 g m-2 yr-1) as well as highly variable climate and catchment and lake properties. Inorganic N in lakes was positively correlated with N-deposition, while organic N was closely associated with allochthonous DOC. The ratio of NO3: total N as well as NO3: total P and NO3:SiO2 showed a strong variability, and most of this variability could be explained by N-deposition, terrestrial vegetation as inferred from NDVI, temperature, runoff and the fraction of bogs in the catchment. The "global change" induced changes in element concentrations and elemental ratios could profoundly affect the lake metabolism and community composition. By linking these data with downscaled climate change predictions we may also predict future shifts in element export and element ratios in various lakes with reasonable accuracy.

  10. The role of shoreland development and commercial cranberry farming in a lake in Wisconsin, USA

    USGS Publications Warehouse

    Garrison, P.J.; Fitzgerald, S.A.

    2005-01-01

    Musky Bay in Lac Courte Oreilles, Wisconsin, USA, is currently eutrophic. This large, shallow bay of an oligotrophic lake possesses the densest aquatic plant growth and a floating algal mat. Paleoecological reconstructions encompassing the last 130 years, were based on multiproxy analyses of sediment cores from three coring sites, two within the bay and one in the lake itself. These data were compared to historical records of the construction and expansion of two commercial cranberry bogs and shoreline residential homes to identify temporal and causal relations of eutrophication. The proxies investigated included: minor and trace elements; biogenic silica; and the diatom community. Post-depositional diagenesis of organic carbon, nitrogen, and phosphorus in the upper 30 cm of the core obscured records of historical ambient nutrient concentrations in the bay obviating their usefulness for this purpose. In contrast, calcium, magnesium, and potassium concentration profiles appeared to reflect runoff of soil amendments applied to the cranberry bogs and aerial fertilizer spraying over the eastern bog adjacent to Musky Bay. The increase in aluminum content since about 1930 coincided with the historical trend in shoreland development and construction of the original commercial cranberry farm. The biogenic silica profile recorded a steady increase of nutrients to Musky Bay over the last several decades. Stratigraphic changes in the diatom community indicated that nutrient input began to increase in the 1940s and accelerated in the mid-1990s with the onset of a noxious floating algal mat. The diatom community indicates the bay has possessed a significant macrophyte community for at least the last 200 years, but increased nutrient input was manifested by a change in the composition, and an increase in the density of the epiphytic diatom community. Cranberry farming appeared to be the major source of nutrients because the diatom community changes occurred prior to the

  11. Interactions between peat and salt-contaminated runoff in Alton Bog, Maine, USA

    NASA Astrophysics Data System (ADS)

    Pugh, Alexander L.; Norton, Stephen A.; Schauffler, Molly; Jacobson, George L.; Kahl, Jeffrey S.; Brutsaert, Willem F.; Mason, Charles F.

    1996-07-01

    Year round, concentrations of base cations (Ca, Mg, Na, and K) and Cl - in surface and groundwater decline exponentially away from Interstate 95, a four-lane asphalt highway which bisects Alton Bog, a poor fen in Penobscot County, Maine, USA. The increased concentrations close to the highway are caused primarily by runoff of road-salt and weathering products of road-bed fill. Concentration ratios, constant with time, between base cations and H + at individual sites suggest that cation exchange reactions between peat and water achieve a state of equilibrium. These ratios change systematically with increasing distance from the highway, indicating systematic changes in the character of the peat exchange surfaces. The major change is a decrease in the occupancy of exchange sites by Na away from the road. These relationships and inferred processes have been duplicated with laboratory experiments. Base saturation of the peat, dominated by Ca, decreases with distance from the highway. Thus, in the short term, peat-water equilibration exerts strong controls on the water chemistry, particularly ion ratios. Long term exposure to elevated concentrations of Ca, Mg, and NaCl in the shallow ground waters has altered the peat chemistry. Availability of plant nutrients (Ca, Mg, and K) has been generally increased by the weathering of road-bed fill and equilibration of the NaCl salt with the peat.

  12. Ecosystem Phenology from Eddy-covariance Measurements: Spring Photosynthesis in a Cool Temperate Bog

    NASA Astrophysics Data System (ADS)

    Lafleur, P.; Moore, T. R.; Poon, D.; Seaquist, J.

    2005-12-01

    The onset and increase of spring photosynthetic flux of carbon dioxide is an important attribute of the carbon budget of northern ecosystems and we used eddy-covariance measurements from March to May over 5 years at the Mer Bleue ombrotrophic bog to establish the important controls. The onset of ecosystem photosynthesis (day-of-year from 86 to 101) was associated with the disappearance on the snow cover and there is evidence that photosynthesis can continue after a thin new snowfall. The growth of photosynthesis during the spring period was partially associated with light (daily photosynthetically active radiation) but primarily with temperature, with the strongest correlation being observed with peat temperature at a depth of 5 and 10 cm, except in one year in which there was a long snow cover. The vegetation comprises mosses, which are able to photosynthesize very early, evergreen shrubs, which appear dependent on soil warming, and deciduous shrubs, which leaf-out only in late spring. We observed changes in shrub leaf colour from brown to green and concomitant increases in foliar nitrogen and chlorophyll concentrations during the spring in this "evergreen" system. We analyzed MODIS images for periods of overlap of tower and satellite data and found a generally strong correlation, though the infrequent satellite measurements were unable to pick out the onset and timing of rapid growth of photosynthesis in this ecosystem.

  13. Palynology of cushion bogs of the Cordillera Pelada, Province of Valdivia, Chile

    NASA Astrophysics Data System (ADS)

    Heusser, Calvin J.

    1982-01-01

    Fossil pollen identified in the earliest sediments of three cushion bogs in the Cordillera Pelada (40°10'S, 73°30'W) dated 10,425 14C yr B.P. includes the subantarctic species Dacrydium fonckii, Tetroncium magellanicum, Astelia pumila, Gaimardia australis, Donatia fascicularis, and Drosera uniflora. All grow today in the Cordillera Pelada and range poleward to the southernmost Province of Magallanes; one species, Drapetes muscosa, included with the pollen of these plants in the earliest record, is no longer a constituent of the flora but is limited only to subantarctic Chile. Available evidence indicates that plants survived the last glaciation north of the glacial border with the course of postglacial migration southward following the wastage of the glacier complex. Holocene climatic and vegetational changes in the Cordillera Pelada are interpreted in the context of regional reconstructions which show maximum warmth about 9000 yr ago with a pronounced dry period lasting from 9000 to 6500 yr B.P. Maximum precipitation was later reached around 4000 yr ago but has decreased overall since then. The regional decline of the endemic gymnosperm Fitzroya cupressoides, which today is extensively destroyed in the Cordillera Pelada, follows this decrease in precipitation. These climatic data suggest a net south ward shift in the zone of westerly winds that bring rainfall to the region over the past 4000 yr.

  14. Atmospheric methane sources - Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Grice, S. S.; Bartlett, K. B.; Sebacher, S. M.

    1986-01-01

    Methane (CH4) flux measurements from Alaska tundra bogs, an alpine fen, and a subarctic boreal marsh were obtained at field sites ranging from Prudhoe Bay on the coast of the Arctic Ocean to the Alaskan Range south of Fairbanks during August 1984. In the tundra, average CH4 emission rates varied from 4.9 mg CH4 per sq m per day (moist tundra) to 119 mg CH4 per sq m per day (waterlogged tundra). Fluxes averaged 40 mg CH4 per sq m per day from wet tussock meadows in the Brooks Range and 289 mg Ch4 per sq m per day from an alpine fen in the Alaskan Range. The boreal marsh had an average CH4 emission rate of 106 mg CH4 per sq m per day. Significant emissions were detected in tundra areas where peat temperatures were as low as 4 C, and permafrost was only 25 cm below the ground surface. Emission rates from the 17 sites sampled were found to be logarithmically related to water levels at the sites. Extrapolation of the data to an estimate of the total annual CH4 emission from all arctic and boreal wetlands suggests that these ecosystems are a major source of atmospheric CH4 and could account for up to 23 percent of global CH4 emissions from wetlands.

  15. Superfund record of decision (EPA Region 2): Burnt Fly Bog, Marlboro Township, NJ, September 30, 1998

    SciTech Connect

    1999-03-01

    This decision document presents the selected remedial action for the Westerly Wetlands, Northerly Wetlands, and Tar Patch Area at the Burnt Fly Bog Superfund Site. It addresses contaminated soil present on the three remaining contaminated areas on the Site, including the Westerly Wetlands, Northerly Wetlands, and Tar Patch Area. The major components of the selected remedy include: Excavation and off-site disposal of contaminated soil from the Northerly Wetlands; Excavation and off-site disposal of contaminated soil from the Tar Patch Area; Backfilling the excavated area in the Northerly Wetland and reestablishing wetlands; Backfilling the excavated area in the Tar Patch Area and creating wetlands; Provision of additional security fencing around the Westerly Wetlands, and the recording of a Deed Notice for the Westerly Wetlands, Northerly Wetlands, and Tar Patch Area; Monitoring of surface water and sediment in the Westerly Wetlands, surface water and sediment in the existing sedimentation basin located in the Downstream Area, and surface water, sediment and, if necessary, biota in Burnt Fly Brook; and Biological sampling in the Westerly Wetlands.

  16. Mercury in a spanish peat bog: archive of climate change and atmospheric metal deposition

    PubMed

    Martinez-Cortizas; Pontevedra-Pombal; Garcia-Rodeja; Novoa-Munoz; Shotyk

    1999-05-01

    A peat core from a bog in northwest Spain provides a record of the net accumulation of atmospheric mercury since 4000 radiocarbon years before the present. It was found that cold climates promoted an enhanced accumulation and the preservation of mercury with low thermal stability, and warm climates were characterized by a lower accumulation and the predominance of mercury with moderate to high thermal stability. This record can be separated into natural and anthropogenic components. The substantial anthropogenic mercury component began approximately 2500 radiocarbon years before the present, which is near the time of the onset of mercury mining in Spain. Anthropogenic mercury has dominated the deposition record since the Islamic period (8th to 11th centuries A.D.). The results shown here have implications for the global mercury cycle and also imply that the thermal lability of the accumulated mercury can be used not only to quantify the effects of human activity, but also as a new tool for quantitative paleotemperature reconstruction. PMID:10320369

  17. Modelling alternative states of an ombrotrophic bog with experimentally deposed nitrogen

    NASA Astrophysics Data System (ADS)

    Wu, Yuanqiao; Keller, Philipp; Blodau, Christian

    2015-04-01

    Nitrogen (N) pollution of peatlands alters their vegetation composition and carbon (C) sequestration. We applied a coupled carbon and nitrogen wetland model (PEATBOG) to analyse alternative steady states of an ombrotrophic bog exposed to experimentally deposited N at 1.6, 3.2 and 6.4 gN m-2 yr-1. The study predicted discontinuous responses of the peatland ecosystem to differing N deposition and a lack of recovery after 15 years of fertilization with 6.4 gN m-2 yr-1, which indicated a regime shift of the modelled ecosystem. In combination drought, as concurrent disturbance, reduced the resilience of the system and contributed to the regime shift. Internal feedbacks may interact with the direct feedback of the external disturbances from nitrogen and climatic drivers and alter the responses of the ecosystem. The result suggested that the state of a peatland exposed to N deposition may be highly uncertain due to a dominant feedback loop that emerged from all disturbances. The finding highlighted the need for systematically quantifying the relative importance of multiple disturbances to predict the potential shift of a peatland ecosystem to alternative states as response to N deposition in a changing environment.

  18. Peat Bog Archives: from human history, vegetation change and Holocene climate, to atmospheric dusts and trace elements of natural and anthropogenic origin

    NASA Astrophysics Data System (ADS)

    Shotyk, William

    2010-05-01

    For at least two centuries, peat has been recognized as an excellent archive of environmental change. William Rennie (1807), for example, interpreted stratigraphic changes in Scottish bogs not only in terms of natural changes in paleoclimate, but was also able to identify environmental changes induced by humans, namely deforestation and the hydrological impacts which result from such activities. The use of bogs as archives of climate change in the early 20th century was accelerated by studies of fossil plant remains such as those by Lewis in Scotland, and by systematic investigations of pollen grains pioneered by von Post in Sweden. In Denmark, Glob outlined the remarkably well-preserved remains of bog bodies and associated artefacts (of cloth, wood, ceramic and metal) in Danish bogs. In Britain, Godwin provided an introduction to the use of bogs as archives of human history, vegetation change, and Holocene climate, with a more recent survey provided by Charman. Recent decades have provided many mineralogical studies of peat and there is growing evidence that many silicate minerals, whether derived from the surrounding watershed or the atmosphere (soil-derived dusts and particles emitted from volcanoes), also are well preserved in anoxic peatland waters. Similarly, geochemical studies have shown that a long list of trace metals, of both natural and anthropogenic origin, also are remarkably well preserved in peat bogs. Thus, there is growing evidence that ombrotrophic (ie 'rain-fed') peat bogs are reliable archives of atmospheric deposition of a wide range of trace elements, including conservative, lithogenic metals such as Al, Sc, Ti, Y, Zr, Hf and the REE, but also the potentially toxic Class B, or 'heavy metals' such as Cu, Ag, Hg, Pb, Sb and Tl. When high quality measurements of these elements is combined with accurate radiometric age dating, it becomes possible to create high resolution reconstructions of atmospheric soil dust fluxes, ancient and modern metal

  19. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  20. Assessing Li and other leachable geochemical proxies for paleo-salinity in lake sediments from the Mono Basin, CA (USA)

    NASA Astrophysics Data System (ADS)

    Sahajpal, Rahul; Zimmerman, Susan R. H.; Datta, Saugata; Hemming, N. Gary; Hemming, Sidney R.

    2011-12-01

    Regional climate-driven hydrological changes are accompanied by salinity changes in closed basin lakes. We have investigated acid leachable Li, along with other leachable ions including Mg, Ca and Sr, as geochemical proxies of salinity in lake sediments in the Mono Basin, California. All the elements in the acid leachable suite show a strong correlation with paleo-lake level estimates based on physical and stratigraphic evidence. The CaCO 3 content of lake sediments, which has been shown to be a reliable proxy for lake level changes in the Mono basin and the adjoining Owens Lake basin, corresponds well with our acid-leachable proxy data.

  1. Longevity of Lake Superior lake trout

    USGS Publications Warehouse

    Schram, Stephen T.; Fabrizio, Mary C.

    1998-01-01

    The age structure of mature lake trout Salvelinus namaycush from the Wisconsin waters of Lake Superior increased following a population recovery that has taken place since the 1960s. As the population aged, it became apparent that scales were unreliable aging structures. Beginning in 1986, we examined both scale and sagittal otolith ages from tagged fish with a known period at liberty. We found large discrepancies in scale and sagittal otolith ages of mature fish, such that scale ages were biased low. We estimated lake trout living up to 42 years, which is greater than previously reported from Lake Superior. Investigators studying lake trout population dynamics in the Great Lakes should be aware that lake trout can live longer than previously thought.

  2. Vegetation drives belowground biogeochemical gradients and C accumulation in an ombrotrophic bog

    NASA Astrophysics Data System (ADS)

    Knorr, Klaus-Holger; Galka, Mariusz; Borken, Werner

    2016-04-01

    Peat decomposition and C accumulation is determined by hydrology and climate and by concomitant changes in vegetation and changes in the quality of carbon inputs. Especially changes from moss dominated to vascular plant dominated vegetation affect belowground biogeochemistry and decomposition, as Sphagnum mosses provide refractory, nutrient poor litter, while vascular plants produce more labile litter and may have aerenchymatic rooting systems. In-site variability in moisture and vegetation, e.g. hummock-hollow structures, lawns, and medium scale surface topography, could thus cause large differences in decomposition and C accumulation within a site. In order to understand within-site variability and to see how C accumulation, common decomposition indices, and major biogeochemical parameters in the pore waters are affected by site specific conditions and vegetation, we investigated a moisture-vegetation gradient along a 800 m transect in an oceanic, ombrotrophic bog in Southern Patagonia. Along the transect, conditions changed from wet, Sphagnum dominated (S. magellanicum), to intermediate drier and wetter with Sphagnum/shrubs mixtures, sedges and rushes to more wind exposed, dominated by cushion plants (mainly Astelia pumila). We hypothesized that under arenchymatic vascular plants, decomposition is enhanced and C accumulation is decreased. Vegetation development was elucidated by plant macrofossils and carbon accumulation was attributed to the respective vegetation. The transect demonstrated a high variability of depth records within the bog. At the two most contrasting sites, the uppermost 1 meter persistently dominated by either Sphagnum magellanicum or Astelia pumila had accumulated over 2400 or 4200 years, respectively. Accordingly, the peat under cushion plants was much more decomposed, with C/N ratios of 20-50 compared to C/N ratios of 40-80 under Sphagnum patches. Mixed sites in between had C/N ratios of 30-90, depending on plant community, and

  3. Modeling past and future acidification of Swedish lakes.

    PubMed

    Moldan, Filip; Cosby, Bernard J; Wright, Richard F

    2013-09-01

    Decades of acid deposition have caused acidification of lakes in Sweden. Here we use data for 3000 lakes to run the acidification model MAGIC and estimate historical and future acidification. The results indicate that beginning in about 1920 a progressively larger number of lakes in Sweden fell into the category of "not naturally acidified" (∆pH > 0.4). The peak in acidification was reached about 1985; since then many lakes have recovered in response to lower levels of acid deposition. Further recovery from acidification will occur by the year 2030 given implementation of agreed legislation for emissions of sulphur (S) and nitrogen (N) in Europe. But the number of catchments with soils being depleted in base cations will increase slightly. MAGIC-reconstructed history of acidification of lakes in Sweden agrees well with information on fish populations. Future acidification of Swedish lakes can be influenced by climate change as well as changes in forest harvest practices. PMID:23288615

  4. Responses of Bog Vegetation and CO2 Exchange to Experimental N and PK Addition

    NASA Astrophysics Data System (ADS)

    Juutinen, S.; Bubier, J. L.; Shrestha, P.; Smith, R.; Moore, T.

    2008-12-01

    Atmospheric nitrogen (N) deposition has the potential to alter the structure and functioning of nutrient poor wetland ecosystems. It is important to quantify the effect of N input on ecosystem carbon (C) sequestration in these globally important C storages. We address this issue at the temperate Mer Bleue bog, ON, Canada. After 6 years of experimental fertilization, we saw that high N deposition can change mixed Sphagnum and dwarf shrub dominated communities to taller and denser dwarf shrub communities that are losing moss cover, and which might have even lower net C uptake. Now, after 8 years of fertilization and with new treatments we quantify the relationship between the plant community structure and ecosystem CO2 exchange. Three levels of N fertilization were applied with or without phosphorus and potassium (PK) into triplicate plots. We measured light saturated net ecosystem CO2 exchange (NEE), and its components ecosystem respiration and gross photosynthesis using clear and dark chambers (May-August). Vegetation characteristics were quantified by measuring foliage cover (LAI), amount of woody and foliar biomass, and abundance of moss species (point interception technique), moss growth (cranked wires) and green area of vascular leaves and moss. Addition of PK fertilizer did not alter NEE or its components relative to the control. The 8-year low N addition alone and with PK, and the 4-year fertilization with high N levels resulted in the highest net ecosystem CO2 uptake relative to the control. The ecosystem respiration increased with increasing N input rate. All levels of N fertilization resulted in higher gross photosynthesis than the control, but there was no increasing trend with increasing N input. Vascular foliage increased, while moss cover drastically decreased with increasing levels of N fertilization. At the highest level of N (and PK) addition woody biomass increased at the expense of leaf increment. Dependencies of ecosystem CO2 exchange on the

  5. Characterization of the efficiency of sedimentation basins downstream of harvested peat bogs

    NASA Astrophysics Data System (ADS)

    Samson-Do, Myriam; St-Hilaire, André

    2015-04-01

    Peat harvesting is a very lucrative industry in the provinces of Quebec and New-Brunswick (Canada). Peat enters in many potting mix used for horticulture. However, harvesting this resource has some impacts on the environment. First, industries need to drain the peat bog to dry the superficial layer. Then, it is harvested with industrial vacuums and the underlying layer is allowed to dry. The drained water is laden with suspended sediments (mostly organic peat fibers) that may affect biota of the stream where it is discharged. To counter the problem, this water does not go directly on the stream but first flows through a sedimentation basin, built to reduce suspended sediment loads. This work focuses on characterizing and eventually modeling the efficiency of those sedimentation basins. Seven basins were studied in Rivière-du-Loup, St-Valère and Escoumins (Quebec, Canada). They each have a different ratio basin area/drained area (4.7 10-4 to 20.3 10-4). To continuously monitor the sediment loads (calculated from sediment concentrations and discharge) entering and leaving basins, a nephelometer and a level logger were installed in the water column upstream and downstream of sedimentation basins. Their trapping efficiency was measured during the ice-free period (May to October) and for each significant rain event, since it is known that the rain and subsequent runoff induce most of the peat transport in and out of the basin. Results show that the event efficiency decreases as the basin is filled up with trapped sediments. For one basin, the efficiency was 85August. Trapping efficiency can be used as a tool to estimate basin dimensions. This has been done for municipal sedimentation ponds that trap minerals and will be adapted to the current context, where the dominant sediment is organic.

  6. Carbon cycling responses to a water table drawdown and decadal vegetation changes in a bog

    NASA Astrophysics Data System (ADS)

    Talbot, J.; Roulet, N. T.

    2009-12-01

    The quantity of carbon stored in peat depends on the imbalance between production and decomposition of organic matter. This imbalance is mainly controlled by the wetness of the peatland, usually described by the water table depth. However, long-term processes resulting from hydrological changes, such as vegetation succession, also play a major role in the biogeochemistry of peatlands. Previous studies have looked at the impact of a water table lowering on carbon fluxes in different types of peatlands. However, most of these studies were conducted within a time frame that did not allow the examination of vegetation changes due to the water table lowering. We conducted a study along a drainage gradient resulting from the digging of a drainage ditch 85 years ago in a portion of the Mer Bleue bog, located near Ottawa, Canada. According to water table reconstructions based on testate amoeba, the drainage dropped the water table by approximately 18 cm. On the upslope side of the ditch, the water table partly recovered and the vegetation changed only marginally. However, on the downslope side of the ditch, the water table stayed persistently lower and trees established (Larix and Betula). The importance of Sphagnum decreased with a lower water table, and evergreen shrubs were replaced by deciduous shrubs. The water table drop and subsequent vegetation changes had combined and individual effects on the carbon functioning of the peatland. Methane fluxes decreased because of the water table lowering, but were not affected by vegetation changes, whereas respiration and net ecosystem productivity were affected by both. The carbon storage of the system increased because of an increase in plant biomass, but the long-term carbon storage as peat decreased. The inclusion of the feedback effect that vegetation has on the carbon functioning of a peatland when a disturbance occurs is crucial to simulate the long-term carbon balance of this ecosystem.

  7. Bioavailability of inorganic arsenic from bog ore-containing soil in the dog.

    PubMed Central

    Groen, K; Vaessen, H A; Kliest, J J; de Boer, J L; van Ooik, T; Timmerman, A; Vlug, R F

    1994-01-01

    In some parts of The Netherlands, bog ore-containing soils predominate, which have natural arsenic levels that exceed, by a factor of 10, existing standards for maximum allowable levels of inorganic arsenic in soil. These standards are based on the assumption that in humans the bioavailability of arsenic from ingested soil is equal to that from an aqueous solution. In view of the regulatory problem that the arsenic levels of these soils present, we questioned the validity of this assumption. To obtain a more realistic estimate, the bioavailability of inorganic arsenic from soil in a suitable animal model was studied. In this report, a study performed in six dogs in a two-way cross-over design is presented. The dogs received orally, in random order, arsenic both as an intravenous solution and as arsenic-containing soil. During a 120-hr period after administration urine was collected in 24-hr fractions. Levels of arsenic were determined using a method of wet digestion, isolation and complexation of arsine, followed by molecule absorption spectrometry. Within 120 hr after intravenous administration, 88 +/- 16% of the dose was excreted renally. After oral administration of arsenic-containing soil, only 7.0 +/- 1.5% was excreted renally. From the urinary excretion data for these two routes of administration, the calculated bioavailability of inorganic arsenic from soil was 8.3 +/- 2.0%. The results from this study demonstrate the need to reconsider the present risk assessment for arsenic in soil. Images Figure 1. Figure 2. PMID:8033848

  8. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms

    SciTech Connect

    Funk, D.W.; Pullmann, E.R.; Peterson, K.M.

    1994-09-01

    Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms was decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.

  9. Lake Volta, Ghana

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of Lake Volta in Ghana was acquired March 31, 2002 by the Moderate Resolution Imaging Spectroradiometer (MODIS). Lake Volta is one of the world's largest artificially created lakes. Lake Volta is actually a reservoir formed from the damming of the Volta River, and extends 250 miles north of the Akosombo Dam. The lake covers an area of 8,482 square km. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  10. No nitrification in lakes below pH 3.

    PubMed

    Jeschke, Christina; Falagán, Carmen; Knöller, Kay; Schultze, Martin; Koschorreck, Matthias

    2013-12-17

    Lakes affected by acid mine drainage (AMD) or acid rain often contain elevated concentrations of ammonium, which threatens water quality. It is commonly assumed that this is due to the inhibition of microbial nitrification in acidic water, but nitrification was never directly measured in mine pit lakes. For the first time, we measured nitrification by (15)NH4Cl isotope tracer addition in acidic as well as neutral mine pit lakes in Spain and Germany. Nitrification activity was only detected in neutral lakes. In acidic lakes no conversion of (15)NH4(+) to (15)NO3(-) was observed. This was true both for the water column as well as for biofilms on the surface of macrophytes or dead wood and the oxic surface layer of the sediment. Stable isotope analysis of nitrate showed (18)O values typical for nitrification only in neutral lakes. In a comparison of NH4(+) concentrations in 297 surface waters with different pH, ammonium concentrations higher 10 mg NH4-N L(-1) were only observed in lakes below pH 3. On the basis of the results from stable isotope investigations and the examination of a metadata set we conclude that the lower limit for nitrification in lakes is around pH 3. PMID:24229046

  11. Ombrotrophic peat bogs are not suited as natural archives to investigate the historical atmospheric deposition of perfluoroalkyl substances.

    PubMed

    Dreyer, Annekatrin; Thuens, Sabine; Kirchgeorg, Torben; Radke, Michael

    2012-07-17

    As ombrotrophic peat bogs receive only atmospheric input of contaminants, they have been identified as suitable natural archives for investigating historical depositions of airborne pollutants. To elucidate their suitability for determining the historical atmospheric contamination with perfluoroalkyl substances (PFAS), two peat cores were sampled at Mer Bleue, a bog located close to Ottawa, Canada. Peat cores were segmented, dried, and analyzed in duplicate for 25 PFASs (5 perfluororalkyl sulfonates (PFSAs), 13 perfluoroalkyl carboxylates (PFCAs), 7 perfluororalkyl sulfonamido substances). Peat samples were extracted by ultrasonication, cleaned up using a QuEChERS method, and PFASs were measured by HPLC-MS/MS. Twelve PFCAs and PFSAs were detected regularly in peat samples with perfluorooctane sulfonate (85-655 ng kg(-1)), perfluorooctanoate (150-390 ng kg(-1)), and perfluorononanoate (45-320 ng kg(-1)) at highest concentrations. Because of post depositional relocation processes within the peat cores, true or unbiased deposition fluxes (i.e., not affected by post depositional changes) could not be calculated. Apparent or biased deposition rates (i.e., affected by post depositional changes) were lower than measured/calculated deposition rates for similar urban or near-urban sites. Compared to PFAS production, PFAS concentration and deposition maxima were shifted about 30 years toward the past and some analytes were detected even in the oldest segments from the beginning of the 20th century. This was attributed to PFAS mobility in the peat profile. Considerable differences were observed between both peat cores and different PFASs. Overall, this study demonstrates that ombrotrophic bogs are not suited natural archives to provide authentic and reliable temporal trend data of historical atmospheric PFAS deposition. PMID:22680699

  12. Modeling CH4 and CO2 cycling using porewater stable isotopes in a thermokarst bog, interior Alaska

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Blazewicz, S.; Waldrop, M. P.

    2014-12-01

    Methane emitted from wetlands represents the end product of various microbial processes operating within anaerobic wetland soils. Determining the rate at which these microbial reactions occur is challenging, making it difficult to gain a mechanistic understanding of the factors and conditions that influence microbial rates and ultimately methane emissions. One approach for estimating in-situ reaction rates involves tracking the time evolution of porewater concentrations and stable carbon isotopes of CH4 and CO2. Microbes preferentially use isotopically light carbon substrates, which causes the carbon product pool to become isotopically lighter and the carbon substrate pool become isotopically heavier. Different microbial biochemical pathways fractionate carbon to different extents, allowing for differentiation between microbial reactions. This is a powerful approach to estimate in-situ rates, but, as we show in our presentation, it is possible for different combinations of reaction rates to provide equally good fits to the evolution of these data. The solution is non-unique and depends on the set of considered reactions. We used two different reaction network models on a set of porewater data collected from a thermokarst bog at the Alaska Peatland Experiment (APEX) outside of Fairbanks, AK to estimate in-situ microbial reaction rates during the summer season. Both models included methane production, methane oxidation and fermentation/respiration, but only one model included homoacetogenesis. We found that both reaction networks explained the evolution of dissolved gas concentrations and stable carbon isotope data, but predicted rates that differed from each other by up to a factor of six. The methane production rates estimated by the model that included homoacetogenesis aligned better with measured rates of methane emission. Despite differences in the magnitude of modeled rates, results from the two models told a similar story about the spatial and temporal

  13. Soil data for a collapse-scar bog chronosequence in Koyukuk Flats National Wildlife Refuge, Alaska, 2008

    USGS Publications Warehouse

    O’Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre

    2012-01-01

    Peatlands in the northern permafrost region store large amounts of organic carbon, most of which is currently stored in frozen peat deposits. Recent warming at high-latitudes has accelerated permafrost thaw in peatlands, which will likely result in the loss of soil organic carbon from previously frozen peat deposits to the atmosphere. Here, we report soil organic carbon inventories, soil physical data, and field descriptions from a collapse-scar bog chronosequence located in a peatland ecosystem at Koyukuk Flats National Wildlife Refuge in Alaska.

  14. [Analysis of genetic structure and differentiation of the bog and dry land populations of Pinus sibirica du tour based on nuclear microsatellite loci].

    PubMed

    Oreshkova, N V; Sedel'nikova, T S; Pimenov, A V; Efremov, S P

    2014-09-01

    We evaluated the population structure of the bog and dry land populations of the Siberian pine Pinus sibirica (P. sibrica) in Western Siberia using nuclear genome markers. Six pairs of nuclear microsatellite loci were used for this analysis. We detected 30 allelic variants in 120 individuals of four populations of P. Sibirica. We established that the studied populations differ by genetic structure. The most essential differences were identified between the Siberian pine population from oligotrophic bog and the group of populations from dry land within eutrophic bogs and near settlements P. sibirica forest (F(ST) = 0.019; D(N) = 0.053). We estimated that diversification of the West Siberian populations of P. sibirica exceeded 2.4% (F(ST) = 0.024), based on an analysis of SSR markers. PMID:25735136

  15. Complete Mitochondrial and Plastid Genomes of the Green Microalga Trebouxiophyceae sp. Strain MX-AZ01 Isolated from a Highly Acidic Geothermal Lake

    PubMed Central

    Martínez-Romero, Esperanza

    2012-01-01

    We report the complete organelle genome sequences of Trebouxiophyceae sp. strain MX-AZ01, an acidophilic green microalga isolated from a geothermal field in Mexico. This eukaryote has the remarkable ability to thrive in a particular shallow lake with emerging hot springs at the bottom, extremely low pH, and toxic heavy metal concentrations. Trebouxiophyceae sp. MX-AZ01 represents one of few described photosynthetic eukaryotes living in such a hostile environment. The organelle genomes of Trebouxiophyceae sp. MX-AZ01 are remarkable. The plastid genome sequence currently presents the highest G+C content for a trebouxiophyte. The mitochondrial genome sequence is the largest reported to date for the Trebouxiophyceae class of green algae. The analysis of the genome sequences presented here provides insight into the evolution of organelle genomes of trebouxiophytes and green algae. PMID:23104370

  16. Shifting microbiology and carbon loss across a thawing permafrost wetland-to-lake mosaic landscape

    NASA Astrophysics Data System (ADS)

    Rich, V. I.; Tyson, G. W.; Woodcroft, B. J.; Hodgkins, S. B.; Tfaily, M.; Wik, M.; Anderson, D.; Crill, P. M.; Chanton, J.; McCalley, C. K.; Saleska, S. R.; Varner, R. K.

    2014-12-01

    Understanding the fate of carbon (C) in thawing permafrost is an unresolved challenge of modern biogeochemistry and climate change. The associated C pools are large (~1700 PgC), and their dynamics under thaw are complex: old C decomposes as it is liberated from thawing permafrost as CO2 or CH4, even as new C accumulates due to thaw-initiated ecological succession. The interconnected wetland and aquatic landscapes commonly associated with thaw are critically important to tracing C fate, with a significant fraction cycling through lake sediments. Microbes mediate C loss across this landscape, but a mechanistic microbes-to-emissions scaling is missing. Our team is investigating in situ changes in C cycling and microbiology across a thawing permafrost mosaic palsa-bog-fen-lake landscape, at Stordalen Mire (68°21'N, 19°02'E) in Arctic Sweden. At this site, wetlands and lakes each account for roughly half of total landscape emissions (eg Wik et al 2013). Along the thaw gradient, vegetation shifts from ericaceous shrubs to mosses and sedges, and then aquatic plants, while organic matter becomes increasingly reduced and labile, with evidence of greater humification rates and faster decomposition (Hodgkins et al 2014). C gas emissions peak in the fen habitat, with increasing relative production ratios of CH4 to CO2 (McCalley et al in review, Hodgkins et al 2014). The microbial communities mediating these transformations and losses are markedly complex, and change dramatically across the landscape. Notable community shifts include high abundances of an undescribed group of Caldiserica in intact and freshly-thawed permafrost, and of newly-identified family of hydrogenotrophic methanogens (Methanoflorentaceae) (Mondav and Woodcroft et al., 2014) in bog and fen, as well as anaerobic methane oxidizers of the ANME-2d lineage present in the lake sediments. Methanogenesis shifts both isotopically and by lineage-abundance from hydrogenotrophy in the bog to a mixture with

  17. Acidification of lake water due to drought

    NASA Astrophysics Data System (ADS)

    Mosley, L. M.; Zammit, B.; Jolley, A. M.; Barnett, L.

    2014-04-01

    Droughts are predicted to increase in many river systems due to increased demand on water resources and climate variability. A severe drought in the Murray-Darling Basin of Australia from 2007 to 2009 resulted in unprecedented declines in water levels in the Lower Lakes (Ramsar-listed ecosystem of international importance) at the end of the river system. The receding water exposed large areas (>200 km2) of sediments on the lake margins. The pyrite (FeS2) in these sediments oxidised and generated high concentrations of acidity. Upon rewetting of the exposed sediments, by rainfall or lake refill, surface water acidification (pH 2-3) occurred in several locations (total area of 21.7 km2). High concentrations of dissolved metals (Al, As, Co, Cr, Cu, Fe, Mn, Ni, Zn), which greatly exceeded aquatic ecosystem protection guidelines, were mobilised in the acidic conditions. In many areas neutralisation of the surface water acidity occurred naturally during lake refill, but aerial limestone dosing was required in two areas to assist in restoring alkalinity. However acidity persists in the submerged lake sediment and groundwater several years after surface water neutralisation. The surface water acidification proved costly to manage and improved water management in the Murray-Darling Basin is required to prevent similar events occurring in the future.

  18. S190 interpretation techniques development and application to New York State water resources. [Lake Ontario and Conesus Lake

    NASA Technical Reports Server (NTRS)

    Piech, K. R. (Principal Investigator); Schott, J. R.; Stewart, K. M.

    1975-01-01

    The author has identified the following significant results. The program has demonstrated that Skylab imagery can be utilized to regularly monitor eutrophication indices of lakes, such as chlorophyll concentration and photic zone depth. The relationship between the blue to green reflectance ratio and chlorophyll concentration was shown, along with changes in lake properties caused by chlorophyll, lignin, and humic acid using reflectance ratios and changes. A data processing technique was developed for detecting atmospheric fluctuations occurring over a large lake.

  19. Holocene Landscape Dynamics in the Ammer Rv. Catchment (Bavarian Alps) - Influence of extreme weather events and land use on soil erosion using peat bogs as geoarchives

    NASA Astrophysics Data System (ADS)

    Schwindt, Daniel; Manthe, Pierre; Völkel, Jörg

    2016-04-01

    Soil degradation and the loss of soil organic carbon (SOC) induced by erosion events significantly influence soils and fertility as parts of the ecosystem services and play an important role with regard to global carbon dynamics. Soil erosion is strongly correlated with anthropogenic land use since the Neolithic Revolution around 8.000 BP. Likewise the effect of extreme weather events on soil erosion is of great interest with regard to the recent climate change debate, predicting a strong increase of extreme weather events. Aim of this study is the reconstruction of the Holocene landscape dynamic as influenced by land use and climate conditions. In this study peat bogs containing layers of colluvial sediments directly correlated to soil erosion were used as geoarchives for landscape dynamics. A temporal classification of extreme erosion events was established by dating organic material via 14C within both, colluvial layers as well as their direct peat surroundings. Detection and characterization of peat bogs containing colluvial sediments was based on geomorphological mapping, the application of geophysical methods (ERT - electrical resistivity tomography, GPR - ground penetrating radar) and core soundings. Laboratory analysis included the analysis of particle sizes and the content of organic material. We investigated 16 peat bogs following the altitudinal gradient of the Ammer River from alpine and subalpine towards lowland environments. A deposition of colluvial material could be detected in 4 peat bogs, all situated in the lower parts of the catchment. The minerogenic entry into peat bogs occurred throughout the Holocene as revealed by radiocarbon dating. A distinct cluster of erosional events e.g. during the little ice age could not be detected. Therefore, soil erosion dynamics and the appearance of colluvial sediments within peat bogs must rather be regarded as an effect of land use, actually farming and crop cultivation, or small-scale morphodynamic like

  20. Atmospheric Pb deposition in Spain during the last 4600 years recorded by two ombrotrophic peat bogs and implications for the use of peat as archive.

    PubMed

    Martinez Cortiza, A; García-Rodeja, E; Pontevedra Pombal, X; Nóvoa Muñoz, J C; Weiss, D; Cheburkin, A

    2002-06-20

    Two ombrotrophic peat bogs in Northwestern Spain provided a history of 4600 years of Pb accumulation. Highest Pb concentrations (84-87 microg g(-1)) were found near the bogs' surface, but there were also other significant peaks (6-14 microg g(-1)), indicating pre-industrial atmospheric pollution. The enrichment factors (EFs) in both cores show a remarkably similar record. Atmospheric Pb pollution dates back to at least approximately 2500 years ago, reaching a first maximum during the Roman period. For the last 300 years, Pb EFs significantly increased due to industrial development, but the uppermost samples of the bogs show decreasing Pb EFs, probably due to the phasing out of leaded gasoline. These results are also supported by 206Pb/207Pb isotope ratios, as they continuously decrease from ca. 3000 BP until 2000 BP (from 1.275 at 4070 14C years BP to 1.182), indicating the growing importance of nonradiogenic Pb released from Iberian ores by ancient mining. Peat samples at a 3-5-cm depth are even less radiogenic (206Pb/107Pb = 1.157), indicating the strong influence of leaded gasoline. Despite the common history shared by the two bogs, striking differences were found for Pb enrichment, whether this was calculated by normalising to the Pb/Ti ratio of the upper continental crust or to the Pb/Ti ratios of peats from pre-anthropogenic times. This effect seems to be related to differences in Ti accumulation in both bogs, possibly due to physical fractionation of the airborne dust during wind transport. Enrichment has to be carefully considered when comparing the results obtained for different bogs, since our results suggest that normalising to crustal proportions is meaningless when the bulk of the deposition in an area is strongly influenced by short- and medium-range dust transport. PMID:12108443

  1. Rapid changes in dissolved humic substances in Spirit Lake and South Fork Castle Lake, Washington

    USGS Publications Warehouse

    McKnight, Diane M.; Thorn, K.A.; Wershaw, R. L.; Bracewell, J.M.; Robertson, G.W.

    1988-01-01

    One major effect of the eruption of Mount St. Helens, Washington, was a large increase of dissolved organic material in the lakes of the area devastated near the volcano. Much of this material was aquatic fulvic acid derived from plants and soils from the surrounding watershed. During the 3 yr after the eruption, substantial chemical changes occurred in the aquatic fulvic acid. -from Authors

  2. Biological studies of atmospheric deposition impact on biota in Kola North Mountain Lakes, Russia

    SciTech Connect

    Yakovlev, V.; Sharov, A.; Vandysh, O.

    1996-12-31

    In the framework of the AL:PE projects, biological studies of phyto-, zooplankton and zoobenthos communities of a small lakes situated in Chuna tundra and Chibiny mountains in Murmansk region were performed in 1993-1995. The lakes are the typical oligotrophic mountain lakes. In the Chibiny lake phytoplankton were presented mostly by species from rock catchment area. Summer phytoplankton state in the lakes showed no acidification in 1993-1995. However, the great number dead cells of acid tolerance diatoms, such as Tabellaria flocculosa found in the Chuna lake in summer period, may indicate a presence of acid episodes. Zooplankton of the lakes is typical for high oligotrophic mountain lakes. However, lack of the acid sensitive daphniidae cladocerans seems to be a result of acidification effects. There were no significant relationships between benthic invertebrates species composition and present water acidity of the lakes. The typical for mountain lakes taxa (Prodiamesinae chironomids, stone flies and mayflies) were found in lake shore and streams. Despite the only little evidence of damage in biota, the further biological studies would be useful for long-term monitoring of the mountain lakes.

  3. Lake Nasser and Toshka Lakes, Egypt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Nasser (center) and the Toshka Lakes (center left) glow emerald green and black in this MODIS true-color image acquired March 8, 2002. Located on and near the border of Egypt and Norther Sudan, these lakes are an oasis of water in between the Nubian (lower right) and Libyan Deserts (upper left). Also visible are the Red Sea (in the upper right) and the Nile River (running north from Lake Nasser). Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  4. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and

  5. Biogeochemical indicators of peatland degradation - a case study of a temperate bog in northern Germany

    NASA Astrophysics Data System (ADS)

    Kruger, J. P.; Leifeld, J.; Glatzel, S.; Szidat, S.; Alewell, C.

    2015-05-01

    Organic soils in peatlands store a great proportion of the global soil carbon pool and can lose carbon via the atmosphere due to degradation. In Germany, most of the greenhouse gas (GHG) emissions from organic soils are attributed to sites managed as grassland. Here, we investigated a land use gradient from near-natural wetland (NW) to an extensively managed (GE) to an intensively managed grassland site (GI), all formed in the same bog complex in northern Germany. Vertical depth profiles of δ13C, δ15N, ash content, C / N ratio and bulk density as well as radiocarbon ages were studied to identify peat degradation and to calculate carbon loss. At all sites, including the near-natural site, δ13C depth profiles indicate aerobic decomposition in the upper horizons. Depth profiles of δ15N differed significantly between sites with increasing δ15N values in the top soil layers paralleling an increase in land use intensity owing to differences in peat decomposition and fertilizer application. At both grassland sites, the ash content peaked within the first centimetres. In the near-natural site, ash contents were highest in 10-60 cm depth. The ash profiles, not only at the managed grassland sites, but also at the near-natural site indicate that all sites were influenced by anthropogenic activities either currently or in the past, most likely due to drainage. Based on the enrichment of ash content and changes in bulk density, we calculated the total carbon loss from the sites since the peatland was influenced by anthropogenic activities. Carbon loss at the sites increased in the following order: NW < GE < GI. Radiocarbon ages of peat in the topsoil of GE and GI were hundreds of years, indicating the loss of younger peat material. In contrast, peat in the first centimetres of the NW was only a few decades old, indicating recent peat growth. It is likely that the NW site accumulates carbon today but was perturbed by anthropogenic activities in the past. Together, all

  6. Evidence for Multiple Holocene Marine Impact Events: Ejecta in a Bog Core

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.; Courty, M.; Breger, D.; Costa, S.; Gerard-Little, P.; Burckle, L.; Pekar, S.

    2006-12-01

    In a core from Tamarack Pond (a former bog) in the Hudson Highlands of New York, we found two layers containing marine microfossils. Because carbon rich sediments can be bioturbated over 20 cm depths, we give the layer thicknesses as 20 cm. The first layer is at 332-354 cm depth. It contains a radiolarian with a splashed on coating of Fe-Cr-Ni metal. It also contains a benthonic foraminiferal fossil. The second layer is at 432-454 cm depth. The second layer contains a degraded radiolarian fossil, a silicate with a splashed on coating of Fe-Cr-Ni metal, a carbon rich spherule containing Fe-Cr-Ni metal, and a grain of titanomagnetite with multiple craters. It also contains organic matter with Sn in it. As Tamarack Pond is quite far from the ocean, the marine fossils in the cores are unlikely to be windblown debris of Holocene age. A benthonic foraminifera is particularly unlikely to be blown by the wind. This conclusion is strengthened by the observation that the splashed on coating of Fe-Cr-Ni metal occurs in chondritic relative abundances with Fe>Cr>Ni. In grains with a thick layer of splashed metal, the Ni is sufficiently abundant to produce 3 distinct Ni peaks in the X-ray analysis. Such a high abundance of Ni coupled with chondritic relative abundances suggests that the Fe-Cr- Ni splash is derived from the vaporization of an extraterrestrial impactor. If we assume that the sedimentation rate of the Tamarack Pond core is the same as that of a previously dated core from nearby Sutherland Pond, the two layers have an uncorrected C-14 age of around 900-1200 B.C. for the layer at 332-354 cm and 2100 to 2400 B.C. for the layer at 432-454 cm. Both ages have a rough correspondence with times of climate downturn recorded in tree ring data (1159 and 2354 B.C.). These climate downturns cannot be explained by volcanic eruptions and are proposed to be cosmogenic in origin[1]. The older layer also corresponds in components to a previously studied circa 2350 B.C. impact ejecta

  7. Bringing back the rare - biogeochemical constraints of peat moss establishment in restored cut-over bogs

    NASA Astrophysics Data System (ADS)

    Raabe, Peter; Blodau, Christian; Hölzel, Norbert; Kleinebecker, Till; Knorr, Klaus-Holger

    2016-04-01

    In rewetted cut-over bogs in north-western Germany and elsewhere almost no spontaneous recolonization of hummock peat mosses, such as Sphagnum magellanicum, S. papillosum or S. rubellum can be observed. However, to reach goals of climate protection every restoration of formerly mined peatlands should aim to enable the re-establishment of these rare but functionally important plant species. Besides aspects of biodiversity, peatlands dominated by mosses can be expected to emit less methane compared to sites dominated by graminoids. To assess the hydrological and biogeochemical factors constraining the successful establishment of hummock Sphagnum mosses we conducted a field experiment by actively transferring hummock species into six existing restoration sites in the Vechtaer Moor, a large peatland complex with active peat harvesting and parallel restoration efforts. The mosses were transferred as intact sods in triplicate at the beginning of June 2016. Six weeks (mid-July) and 18 weeks later (beginning of October) pore water was sampled in two depths (5 and 20 cm) directly beneath the inoculated Sphagnum sods as well as in untreated control plots and analysed for phosphate, ferrous iron, ammonia, nitrate and total organic carbon (TOC). On the same occasions and additionally in December, the vitality of mosses was estimated. Furthermore, the increment of moss height between July and December was measured by using cranked wires and peat cores were taken for lab analyses of nutrients and major element inventories at the depths of pore water sampling. Preliminary results indicate that vitality of mosses during the period of summer water level draw down was strongly negatively related to plant available phosphate in deeper layers of the residual peat. Furthermore, increment of moss height was strongly negatively related to TOC in the upper pore waters sampled in October. Concentration of ferrous iron in deeper pore waters was in general significantly higher beneath

  8. A 5 Year Study of Carbon Fluxes from a Restored English Blanket Bog

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Dixon, S.; Evans, M.

    2014-12-01

    , climatically marginal blanket bog. However, had water table restoration been conducted alongside revegetation then a significant decline in DOC concentrations could have also been realised.

  9. Methane production and oxidation patterns along a hydrological gradient in Luther Bog, Ontario

    NASA Astrophysics Data System (ADS)

    Praetzel, Leandra; Berger, Sina; Blodau, Christian

    2016-04-01

    Methane emissions from natural peatlands contribute significantly to the global budget of atmospheric CH4. In the northern hemisphere, where climate models predict rising temperatures and precipitation rates, these emissions are likely to rise. So far, little is known about the change of processes of methane production and oxidation, which influence the total amount of methane emissions, in peatland soils under warmer and wetter climate conditions. Our work focuses on anaerobic CH4 production and aerobic CH4 oxidation processes along a hydrological gradient in an ombotrophic bog in Ontario, Canada that was induced by creation of a reservoir in 1952. Along this transect, four sites were established differing in hydrologic conditions and vegetation patterns. We examined depth profiles of CO2 and CH4 concentrations and delta 13C isotope ratios in the peat using silicon samplers, dialysis chambers and multi-level piezometers. Chamber flux measurements were used to determine carbon fluxes. Isotope mass balances were calculated based on 13C isotope ratios and concentration profiles. By this approach the contribution of anaerobic CH4 and CO2 production to the total ER flux and the amount of oxidised CH4 can be determined. In addition meteorological data, soil temperatures, moisture and water table levels were recorded. By raising data at different sites and dates and with the help of the additionally recorded parameters, we will be able to make predictions about changing CH4 production and oxidation processes due to changing climate conditions. Preliminary results show that CH4 concentrations in the soil profile are higher at the sites which are exposed to stronger water table fluctuations, whereas CO2 concentration levels are lower at these sites. At all sites, CO2 concentrations in the peat are increasing but CH4 profiles are fairly stable. Moreover, isotopic signatures of 13CH4 indicate that the importance of the production pathway changes with depth from acetoclastic

  10. Geostatistical analysis of the spatial variation of the ash reserves in the litter of bog birch forests in Western Siberia

    NASA Astrophysics Data System (ADS)

    Efremova, T. T.; Sekretenko, O. P.; Avrova, A. F.; Efremov, S. P.

    2013-01-01

    A typological series of native Betula pubescens Ehrh. dendrocenoses along the channel of a river crossing a bog was studied. The variability of the mineral element reserves is described by geostatistical methods as the sum of a trend, autocorrelation, and random components. The contribution of deterministic and random components has been assessed in the years with average precipitation and in the year of 2007 with high and long-term flooding. The empirical variograms and the parameters of the model variograms are presented. The class of the spatial correlation of the ash reserves is described. A primary cause of the ash content's variability is the specific water regime, which is determined by the following: (i) the abundance and duration of the spring floods responsible for the silt mass brought by the river and (ii) the draining effect of the intrabog river, the distance from