Sample records for acid buffering ability

  1. The Potential Role of Systemic Buffers in Reducing Intratumoral Extracellular pH and Acid-Mediated Invasion

    PubMed Central

    Silva, Ariosto S.; Yunes, Jose A.; Gillies, Robert J.; Gatenby, Robert A.

    2013-01-01

    A number of studies have shown that the extracellular pH (pHe) in cancers is typically lower than that in normal tissue and that an acidic pHe promotes invasive tumor growth in primary and metastatic cancers. Here, we investigate the hypothesis that increased systemic concentrations of pH buffers reduce intratumoral and peritumoral acidosis and, as a result, inhibit malignant growth. Computer simulations are used to quantify the ability of systemic pH buffers to increase the acidic pHe of tumors in vivo and investigate the chemical specifications of an optimal buffer for such purpose. We show that increased serum concentrations of the sodium bicarbonate (NaHCO3) can be achieved by ingesting amounts that have been used in published clinical trials. Furthermore, we find that consequent reduction of tumor acid concentrations significantly reduces tumor growth and invasion without altering the pH of blood or normal tissues. The simulations also show that the critical parameter governing buffer effectiveness is its pKa. This indicates that NaHCO3, with a pKa of 6.1, is not an ideal intratumoral buffer and that greater intratumoral pHe changes could be obtained using a buffer with a pKa of ~7. The simulations support the hypothesis that systemic pH buffers can be used to increase the tumor pHe and inhibit tumor invasion. PMID:19276380

  2. [Role of the blood bicarbonate buffer system in the mechanism of fish adaptation to different levels of carbonic acid in an aqueous medium].

    PubMed

    Romanenko, V D; Kotsar', N I

    1976-01-01

    The role of a bicarbonate buffer system of fish (Cyprinidae family) blood was studied in their organism addaptive reactions to different levels of CO2 in the aqueous medium. The fish is established to prossess rather effective for maintaining blood acid-base balance. It permits the fish to endure for a long time essential fluctuations of carbonic acid concentration in water. In prevention of possible development of carbonic acid acidosis an essential role belongs to formation of bicarbonates as a blood buffer system stablizing pH is shown to be significant for preventing possible development of acidosis. The adaptation potentialities of Cyprinidae family permit them to endure an increase of CO2 in water and are determined by the ability of their organism to formations of bicarbonate and their retaining in blood.

  3. Leaching with Penicillium simplicissimum: Influence of metals and buffers on proton extrusion and citric acid production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, A.; Burgstaller, W.; Schinner, F.

    1991-03-01

    In the presence of insoluble metal oxides (industrial filter dust, zinc oxide, synthetic mixture of metal oxides), Penicillium simplicissimum developed the ability to excrete considerable amounts of citric acid (>100 mM). Parallel with the increase of citric acid concentration in the culture broth, zinc was solubilized from zinc oxide. The adsorption of filter dust onto the mycelium (the pellets formed were less than 1 mm in diameter) was required for not only the citric acid excretion but also the leaching of zinc. When the filter dust was replaced with a synthetic mixture of metal oxides or with zinc oxide inmore » combination with trace elements, levels of adsorption and citric acid production were observed to be similar to those in experiments where industrial filter dust was used. The two most important properties of the filter dust were its heavy-metal content and its buffering capacity. These properties were simulated by adding heavy metals in soluble form (as chlorides, sulfates, or nitrates) or soluble buffers to the medium. Both heavy metals and buffers were not able to induce a citric acid efflux. As with citric acid production by Aspergillus niger, the addition of manganese lowered citric acid excretion (by 40% with metal oxide-induced citric acid efflux and by 100% with urea-induced citric acid efflux). Copper antagonized the effect of manganese. The mechanism for the bulk of citric acid excretion by P. simplicissimum, however, seemed to be different from that described for citric acid accumulation by A. niger. Because of the inefficiency of metals in solubilized form and of soluble buffers to induce a strong citric acid efflux, adsorption of an insoluble metal compound (zinc oxide) turned out to be essential.« less

  4. Enhanced Efficiency of Polymer Light-Emitting Diodes by Dispersing Dehydrated Nanotube Titanic Acid in the Hole-buffer Layer

    NASA Astrophysics Data System (ADS)

    Qian, L.; Xu, Z.; Teng, F.; Duan, X.-X.; Jin, Z.-S.; Du, Z.-L.; Li, F.-S.; Zheng, M.-J.; Wang, Y.-S.

    2007-06-01

    Efficiency of polymer light-emitting diodes (PLEDs) with poly(2-methoxy-5-(2-ethyl hexyloxy)- p-phenylene vinylene) (MEH-PPV) as an emitting layer was improved if a dehydrated nanotubed titanic acid (DNTA) doped hole-buffer layer polyethylene dioxythiophene (PEDOT) was used. Photoluminescence (PL) and Raman spectra indicated a stronger interaction between DNTA and sulfur atom in thiophene of PEDOT, which suppresses the chemical interaction between vinylene of MEH-PPV and thiophene of PEDOT. The interaction decreases the defect states in an interface region to result in enhancement in device efficiency, even though the hole transporting ability of PEDOT was decreased.

  5. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.

    PubMed

    Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R

    2015-07-01

    Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.

  6. Vermiculite's strong buffer capacity renders it unsuitable for studies of acidity on soybean (Glycine max L.) nodulation and growth.

    PubMed

    Indrasumunar, Arief; Gresshoff, Peter M

    2013-11-14

    Vermiculite is the most common soil-free growing substrate used for plants in horticultural and scientific studies due to its high water holding capacity. However, some studies are not suitable to be conducted in it. The described experiments aimed to test the suitability of vermiculite to study the effect of acidity on nodulation and growth of soybean (Glycine max L.). Two different nutrient solutions (Broughton & Dilworth, and modified Herridge nutrient solutions) with or without MES buffer addition were used to irrigate soybean grown on vermiculite growth substrates. The pH of nutrient solutions was adjusted to either pH 4.0 or 7.0 prior its use. The nodulation and vegetative growth of soybean plants were assessed at 3 and 4 weeks after inoculation. The unsuitability of presumably inert vermiculite as a physical plant growth substrate for studying the effects of acidity on soybean nodulation and plant growth was illustrated. Nodulation and growth of soybean grown in vermiculite were not affected by irrigation with pH-adjusted nutrient solution either at pH 4.0 or 7.0. This was reasonably caused by the ability of vermiculite to neutralise (buffer) the pH of the supplied nutrient solution (pH 2.0-7.0). Due to its buffering capacity, vermiculite cannot be used as growth support to study the effect of acidity on nodulation and plant growth.

  7. Biocompatibility of a bicarbonate-buffered amino-acid-based solution for peritoneal dialysis.

    PubMed

    Bender, Thorsten O; Witowski, Janusz; Aufricht, Christoph; Endemann, Michaela; Frei, Ulrich; Passlick-Deetjen, Jutta; Jörres, Achim

    2008-09-01

    Amino-acid-based peritoneal dialysis (PD) fluids have been developed to improve the nutritional status of PD patients. As they may potentially exacerbate acidosis, an amino-acid-containing solution buffered with bicarbonate (Aminobic) has been proposed to effectively maintain acid-base balance. The aim of this study was to evaluate the mesothelial biocompatibility profile of this solution in comparison with a conventional low-glucose-based fluid. Omentum-derived human peritoneal mesothelial cells (HPMC) were preexposed to test PD solutions for up to 120 min, then allowed to recover in control medium for 24 h, and assessed for heat-shock response, viability, and basal and stimulated cytokine [interleukin (IL)-6] and prostaglandin (PGE(2)) release. Acute exposure of HPMC to conventional low-glucose-based PD solution resulted in a time-dependent increase in heat-shock protein (HSP-72) expression, impaired viability, and reduced ability to release IL-6 in response to stimulation. In contrast, in cells treated with Aminobic, the expression of HSP-72 was significantly lower, and viability and cytokine-producing capacity were preserved and did not differ from those seen in control cells. In addition, exposure to Aminobic increased basal release of IL-6 and PGE(2). These data point to a favorable biocompatibility profile of the amino-acid-based bicarbonate-buffered PD solution toward HPMC.

  8. Resuscitation of acid-injured Salmonella in enrichment broth, in apple juice and on the surfaces of fresh-cut cucumber and apple.

    PubMed

    Liao, C-H; Fett, W F

    2005-01-01

    To investigate the resuscitation of acid-injured Salmonella enterica in selected enrichment broths, in apple juice and on cut surfaces of apple and cucumber slices. Following exposure to 2.4% acetic acid for 7 min, S. enterica (serovars Mbandaka, Chester and Newport) cells were used to inoculate enrichment broths, phosphate-buffered saline (PBS), apple juice and fruit slices. Injured Salmonella cells resuscitated and regained the ability to form colonies on selective agar (Xylose-Lysine-Tergitol 4) if they were incubated in lactose broth (LB), universal pre-enrichment broth (UPB) or buffered peptone water (BPW), but not in tetrathionate broth, PBS or apple juice. The resuscitation occurred at a significantly (P > 0.05) faster rate in UPB than in LB or BPW. The resuscitation also occurred on the surfaces of fresh-cut cucumber at 20 degrees C, but not at 4 degrees C. Acid-injured Salmonella cells resuscitated in nonselective enrichment broths at different rates, but not in selective enrichment broth, apple juice, PBS or on fresh-cut apple. Pre-enrichment of food samples in UPB prior to selective enrichment is recommended. Injured Salmonella cells have the ability to resuscitate on fresh-cut surfaces of cucumber when stored at abusive temperatures.

  9. Role of Ca++ in Shoot Gravitropism. [avena

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.

    1985-01-01

    A cornerstone in the argument that Ca(2+) levels may regulate growth is the finding the EGTA promotes straight growth. The usual explanation for these results is that Ca(2+) chelation from cell walls results in wall loosening and thus accelerated straight growth. The ability of frozen-thawed Avena coleoptile tissue (subjected to 15g tension) to extend in response to EGTA and Quin II was examined. The EGTA when applied in weakly buffered (i.e., 0.1mM) neutral solutions initiates rapid extension. When the buffer strength is increased, similar concentrations of EGTA produce no growth response. This implies when EGTA liberated protons are released upon Ca(2+) chelation they can either initiate acid growth (low buffer conditions) or if consumed (high buffer conditions) have no effect. Thus Ca(2+) chelation in itself apparently does not result in straight growth.

  10. Student Understanding of pH: "I Don't Know What the Log Actually Is, I Only Know Where the Button Is on My Calculator"

    ERIC Educational Resources Information Center

    Watters, Dianne J.; Watters, James J.

    2006-01-01

    In foundation biochemistry and biological chemistry courses, a major problem area that has been identified is students' lack of understanding of pH, acids, bases, and buffers and their inability to apply their knowledge in solving acid/base problems. The aim of this study was to explore students' conceptions of pH and their ability to solve…

  11. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  12. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  13. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.

    PubMed

    Ogawa, Shigesaburo; Kawai, Ryuichiro; Koga, Maito; Asakura, Kouichi; Takahashi, Isao; Osanai, Shuichi

    2016-06-01

    Experiments were conducted to assess the maintenance effects of oligosaccharide-based surfactants on the enzymatic activity of a model protein, lactate dehydrogenase (LDH), during freeze-drying and room temperature storage using the citric acid buffer system. Oligosaccharide-based surfactants, which exhibit a high glass transition temperature (Tg), promoted the eminent retention of enzymatic activity during these protocols, whereas monosaccharide-based surfactants with a low Tg displayed poor performance at high concentration, albeit much better than that of Tween 80 at middle concentration. The increase in the alkyl chain length did not exert positive effects as observed for the maintenance effect during freeze-thawing, but an amphiphilic nature and a glass forming ability were crucial for the effective stabilization at a low excipient concentration during freeze-drying. Even a low oligosaccharide-based surfactant content (0.1 mg mL(-1)) could maintain LDH activity during freeze-drying, but a high surfactant content (1.0 mg mL(-1)) was required to prevent buffer precipitation and retain high LDH activity on storage. Regarding storage, glass formation restricted molecular mobility in the lyophilized matrix, and LDH activity was effectively retained. The present results describe a strategy based on the glass-forming ability of surfactant-type excipients that affords a natural sugar-free formulation or an alternative use for polysorbate-type surfactants.

  14. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    PubMed

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of catabolism. IMPORTANCE Experimental evolution of an enteric bacterium under a narrow buffered range of acid pH leads to loss of genes that enhance fitness above or below the buffered pH range, including loss of enzymes that may raise external pH in the absence of buffer. Prominent modes of evolutionary change involve IS-mediated insertions and deletions that knock out key regulators. Over generations of acid stress, catabolism undergoes reregulation in ways that differ for each evolving strain. Copyright © 2017 American Society for Microbiology.

  15. Sphagnan--a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH.

    PubMed

    Stalheim, T; Ballance, S; Christensen, B E; Granum, P E

    2009-03-01

    Investigate if the antibacterial effect of sphagnan, a pectin-like carbohydrate polymer extracted from Sphagnum moss, can be accounted for by its ability to lower the pH. Antibacterial activity of sphagnan was assessed and compared to that of three other acids. Sphagnan in its acid form was able to inhibit growth of various food poisoning and spoilage bacteria on low-buffering solid growth medium, whereas sphagnan in its sodium form at neutral pH had no antibacterial activity. At similar acidic pH, sphagnan had comparable antibacterial activity to that of hydrochloric acid and a control rhamnogalacturonan pectin in its acid form. Sphagnan in its acid form is a weak macromolecular acid that can inhibit bacterial growth by lowering the pH of environments with a low buffering capacity. It has previously been suggested that sphagnan is an antimicrobial polysaccharide in the leaves of Sphagnum moss with a broad range of potential practical applications. Our results now show that sphagnan in its acid form can indeed inhibit bacterial growth, but only of acid-sensitive species. These findings represent increased knowledge towards our understanding on how sphagnan or Sphagnum moss might be used in practical applications.

  16. Stacking and determination of phenazine-1-carboxylic acid with low pKa in soil via moving reaction boundary formed by alkaline and double acidic buffers in capillary electrophoresis.

    PubMed

    Sun, Chong; Yang, Xiao-Di; Fan, Liu-Yin; Zhang, Wei; Xu, Yu-Quan; Cao, Cheng-Xi

    2011-04-01

    As shown herein, a normal moving reaction boundary (MRB) formed by an alkaline buffer and a single acidic buffer had poor stacking to the new important plant growth promoter of phenazine-1-carboxylic acid (PCA) in soil due to the leak induced by its low pK(a). To stack the PCA with low pK(a) efficiently, a novel stacking system of MRB was developed, which was formed by an alkaline buffer and double acidic buffers (viz., acidic sample and blank buffers). With the novel system, the PCA leaking into the blank buffer from the sample buffer could be well stacked by the prolonged MRB formed between the alkaline buffer and blank buffer. The relevant mechanism of stacking was discussed briefly. The stacking system, coupled with sample pretreatment, could achieve a 214-fold increase of PCA sensitivity under the optimal conditions (15 mM (pH 11.5) Gly-NaOH as the alkaline buffer, 15 mM (pH 3.0) Gly-HCl-acetonitrile (20%, v/v) as the acidic sample buffer, 15 mM (pH 3.0) Gly-HCl as the blank buffer, 3 min 13 mbar injection of double acidic buffers, benzoic acid as the internal standard, 75 μm i.d. × 53 cm (44 cm effective length) capillary, 25 kV and 248 nm). The limit of detection of PCA in soil was decreased to 17 ng/g, the intra-day and inter-day precision values (expressed as relative standard deviations) were 3.17-4.24% and 4.17-4.87%, respectively, and the recoveries of PCA at three concentration levels changed from 52.20% to 102.61%. The developed method could be used for the detection of PCA in soil at trace level.

  17. Geochemical Modeling of Reactions and Partitioning of Trace Metals and Radionuclides during Titration of Contaminated Acidic Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Parker, Jack C.; Luo, Wensui

    2008-01-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cationmore » exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.« less

  18. Calcium bridges are not load-bearing cell-wall bonds in Avena coleoptiles

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.

    1989-01-01

    I examined the ability of frozen-thawed Avena sativa L. coleoptile sections under applied load to extend in response to the calcium chelators ethyleneglycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin II). Addition of 5 mM EGTA to weakly buffered (0.1 mM, pH 6.2) solutions of 2(N-morpholino) ethanesulfonic acid (Mes) initiated rapid extension and wall acidification. When the buffer strength was increased (e.g. from 20 to 100 mM Mes, pH 6.2) EGTA did not initiate extension nor did it cause wall acidification. At 5 mM Quin II failed to stimulate cell extension or wall acidification at all buffer molarities tested (0.1 to 100 mM Mes). Both chelators rapidly and effectively removed Ca2+ from Avena sections. These data indicate that Ca2+ chelation per se does not result in loosening of Avena cells walls. Rather, EGTA promotes wall extension indirectly via wall acidification.

  19. A Clinical Approach to the Diagnosis of Acid-Base Disorders

    PubMed Central

    Bear, Robert A.

    1986-01-01

    The ability to diagnose and manage acid-base disorders rapidly and effectively is essential to the care of critically ill patients. This article presents an approach to the diagnosis of pure and mixed acid-base disorders, metabolic or respiratory. The approach taken is based on using the law of mass-action equation as it applies to the bicarbonate buffer system (Henderson equation), using sub-classifications for diagnostic purposes of causes of metabolic acidosis and metabolic alkalosis, and using a knowledge of the well-defined and predictable compensatory responses that attempt to limit the change in pH in each of the primary acid-base disorders. PMID:21267134

  20. Development of N(2) Sensor for Determination of PN(2) in Body Tissues.

    DTIC Science & Technology

    1986-08-01

    NK3)4C1 2 ]Cl Acid -140 -340 Acid -120 -280 +500 . + Zn Amalgam +700 +900 2 cis-Ru(N( 3 )4C1 2 C1 Buffer -130 -305 (major) ,450 + Zn Amalgam -210...increase under N 2 -400 mV under N 2 cis- [1u (en) 2C12 )C1 Buffer -125 -350 Buffer + Zn - so -400 .475 Amalgam +780 cis-(Ru(en)2Br 2 ] r Acid -120...375 Acid + Zn - 0 -280 plateau Amalgam 600-8SO cis- ([ (bipyr)C12 1Cl Buffer .455 +320 Buffer + Zn +575 +380 Nme Amalgam 1Acid = 0.1M H2SO42Buffer

  1. Enhancing Nitrogen Availability, Ammonium Adsorption-Desorption, and Soil pH Buffering Capacity using Composted Paddy Husk

    NASA Astrophysics Data System (ADS)

    Latifah, O.; Ahmed, O. H.; Abdul Majid, N. M.

    2017-12-01

    Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.

  2. Effect of Chemicals on the Cell Membrane Transport of Nucleosides.

    DTIC Science & Technology

    1983-08-01

    hypoxanthine in the external buffer and the efflux mte is decreased by uric acid in tne buffer. Perfluorodecanoic acid ( PFDA ), adenine, or xanthlne...uric acid in the buffer. Perfluorodecanoic acid ( PFDA ), Sadenine, or xanthine in the external buffer have no direct effect on the rate of AP efflux, in...observed that perfluorooctanoic acid ( PFOA ) produces a transient weight N loss, but no mortality in young rats. By contrast, the treatment of rats with

  3. Buffered hydrochloric acid: a modern method of treating metabolic alkalosis.

    PubMed

    Finkle, D; Dean, R E

    1981-03-01

    Twenty-one patients with metabolic alkalosis were treated successfully with intravenous hydrochloric acid (HCl) buffered in an amino acid solution (TPN). No complications of HCl were seen. TPN was used to meet energy needs and provide a buffering effect through the interaction of HCl and amino acids. Buffered HCl therapy should be considered as the initial treatment in patients with metabolic alkalosis associated with congestive heart failure, renal failure, hepatic failure, cerebral edema, or refractory metabolic alkalosis.

  4. Cell buffer with built-in test

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A cell buffer with built-in testing mechanism is provided. The cell buffer provides the ability to measure voltage provided by a power cell. The testing mechanism provides the ability to test whether the cell buffer is functioning properly and thus providing an accurate voltage measurement. The testing mechanism includes a test signal-provider to provide a test signal to the cell buffer. During normal operation, the test signal is disabled and the cell buffer operates normally. During testing, the test signal is enabled and changes the output of the cell buffer in a defined way. The change in the cell buffer output can then be monitored to determine if the cell buffer is functioning correctly. Specifically, if the voltage output of the cell buffer changes in a way that corresponds to the provided test signal, then the functioning of the cell buffer is confirmed. If the voltage output of the cell buffer does not change correctly, then the cell buffer is known not to be operating correctly. Thus, the built in testing mechanism provides the ability to quickly and accurately determine if the cell buffer is operating correctly. Furthermore, the testing mechanism provides this functionality without requiring excessive device size and complexity.

  5. Virus inactivation by nucleic acid extraction reagents.

    PubMed

    Blow, Jamie A; Dohm, David J; Negley, Diane L; Mores, Christopher N

    2004-08-01

    Many assume that common methods to extract viral nucleic acids are able to render a sample non-infectious. It may be that inactivation of infectious virus is incomplete during viral nucleic acid extraction methods. Accordingly, two common viral nucleic acid extraction techniques were evaluated for the ability to inactivate high viral titer specimens. In particular, the potential for TRIzol LS Reagent (Invitrogen Corp., Carlsbad, CA) and AVL Buffer (Qiagen, Valencia, CA) were examined to render suspensions of alphaviruses, flaviviruses, filoviruses and a bunyavirus non-infectious to tissue culture assay. The dilution series for both extraction reagents consistently caused cell death through a 100-fold dilution. Except for the DEN subtype 4 positive control, all viruses had titers of at least 10(6)pfu/ml. No plaques were detected in any extraction reagent plus virus combination in this study, therefore, the extraction reagents appeared to inactivate completely each of the high-titer viruses used in this study. These results support the reliance upon either TRIzol LS Reagent or AVL Buffer to render clinical or environmental samples non-infectious, which has implications for the handling and processing of samples under austere field conditions and low level containment.

  6. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-04-01

    Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH

  7. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-05

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  8. Analysis of Natural Buffer Systems and the Impact of Acid Rain

    ERIC Educational Resources Information Center

    Powers, David C.; Yoder, Claude H.; Higgs, Andrew T.; Obley, Matt L.; Hess, Kenneth R.; Leber, Phyllis A.

    2005-01-01

    The environmental significance of acid rain on water systems of different buffer capacities is discussed. The most prevalent natural buffer system is created by the equilibrium between carbonate ions and carbon dioxide.

  9. Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.

    Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.

  10. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  11. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  12. Rapid maturation of the muscle biochemistry that supports diving in Pacific walruses (Odobenus rosmarus divergens)

    USGS Publications Warehouse

    Norem, Shawn R.; Jay, Chadwick V.; Burns, Jennifer M.; Fischbach, Anthony S.

    2015-01-01

    Physiological constraints dictate animals’ ability to exploit habitats. For marine mammals, it is important to quantify physiological limits that influence diving and their ability to alter foraging behaviors. We characterized age-specific dive limits of walruses by measuring anaerobic (acid-buffering capacity) and aerobic (myoglobin content) capacities of the muscles that power hind (longissimus dorsi) and fore (supraspinatus) flipper propulsion. Mean buffering capacities were similar across muscles and age classes (a fetus, five neonatal calves, a 3 month old and 20 adults), ranging from 41.31 to 54.14 slykes and 42.00 to 46.93 slykes in the longissimus and supraspinatus, respectively. Mean myoglobin in the fetus and neonatal calves fell within a narrow range (longissimus: 0.92–1.68 g 100 g−1 wet muscle mass; supraspinatus: 0.88–1.64 g 100 g−1 wet muscle mass). By 3 months post-partum, myoglobin in the longissimus increased by 79%, but levels in the supraspinatus remained unaltered. From 3 months post-partum to adulthood, myoglobin increased by an additional 26% in the longissimus and increased by 126% in the supraspinatus; myoglobin remained greater in the longissimus compared with the supraspinatus. Walruses are unique among marine mammals because they are born with a mature muscle acid-buffering capacity and attain mature myoglobin content early in life. Despite rapid physiological development, small body size limits the diving capacity of immature walruses and extreme sexual dimorphism reduces the diving capacity of adult females compared with adult males. Thus, free-ranging immature walruses likely exhibit the shortest foraging dives while adult males are capable of the longest foraging dives.

  13. Oxidizing action of purine N-oxide esters.

    PubMed

    Stöhrer, G; Salemnick, G

    1975-01-01

    A technique involving O-acetylation of purine N-oxide derivatives in buffered aqueous solutions has permitted studies of the reactivity of many compounds for which the O-acetyl derivatives are not otherwise available. The oxidizing properties of a variety of N-acetoxypurines have been measured through their ability to oxidize iodide ion ot iodine, a reaction which is representative of a more general oxidizing ability. Those esters that oxidize iodide ion also catalyze the autoxidation of sulfite, a property characteristic of radicals. The same esters also oxidize cysteine to cysteic acid and tryptophan, tyrosine, and uric acid to yet uncharacterized products. Their oxidizing reactivity was compared with the ability of the same esters to react as electrophiles in another assay that measured the rate of formation of pyridine substitution products. The sulfate ester of 3-hydroxyxanthine has been synthesized. Its reactivity is qualitatively the same as that of 3-acetoxyxanthine but proceeds at a higher rate. Syntheses of S-(8-xanthyl)-N-acetylcysteine, 8-(2-hydroxyethylthio)xanthine, and 1-methyl-8-mehtylmercaptoguanine are also described.

  14. Bicarbonate availability for vocal fold epithelial defense to acidic challenge.

    PubMed

    Durkes, Abigail; Sivasankar, M Preeti

    2014-01-01

    Bicarbonate is critical for acid-base tissue homeostasis. In this study we investigated the role of bicarbonate ion transport in vocal fold epithelial defense to acid challenges. Acidic insults to the larynx are common in gastric reflux, carcinogenesis and metastasis, and acute inflammation. Ion transport was measured in viable porcine vocal fold epithelium. First, 18 vocal folds were exposed to either the carbonic anhydrase antagonist acetazolamide or to vehicle. Second, 32 vocal folds were exposed to either a control buffer or a bicarbonate-free buffer on their luminal or basolateral surface or both. Third, 32 vocal folds were challenged with acid in the presence of bicarbonate-free or control buffer. The vocal fold transepithelial resistance was greater than 300 Ω*cm(2), suggesting robust barrier integrity. Ion transport did not change after exposure to acetazolamide (p > 0.05). Exposure to bicarbonate-free buffer did not compromise vocal fold ion transport (p > 0.05). Ion transport increased after acid challenge. This increase approached statistical significance and was the greatest for the control buffer and for the bicarbonate-free buffer applied to the basolateral surface. Bicarbonate secretion may contribute to vocal fold defense against acid challenge. Our data offer a potential novel role for bicarbonate as a therapeutic agent to reduce pH abnormalities in the larynx and prevent associated pathological changes.

  15. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Common stock solutions, buffers, and media.

    PubMed

    2001-05-01

    This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.

  17. The chemistry, physiology and pathology of pH in cancer.

    PubMed

    Swietach, Pawel; Vaughan-Jones, Richard D; Harris, Adrian L; Hulikova, Alzbeta

    2014-03-19

    Cell survival is conditional on the maintenance of a favourable acid-base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid-base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H(+)-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H(+)-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H(+)-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H(+)/H(+)-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H(+)/H(+)-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.

  18. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  19. Ribonucleic Acid and Ribosomes of Bacillus stearothermophilus1

    PubMed Central

    Saunders, Grady F.; Campbell, L. Leon

    1966-01-01

    Saunders, Grady F. (University of Illinois, Urbana), and L. Leon Campbell. Ribonucleic acid and ribosomes of Bacillus stearothermophilus. J. Bacteriol. 91:332–339. 1966.—The ability of some thermophilic bacteria to grow at temperatures as high as 76 C emphasizes the remarkable thermal stability of their crucial macromolecules. An investigation of the ribonucleic acid (RNA) and ribosomes of Bacillus stearothermophilus was conducted. Washed log-phase cells were disrupted either by sonic treatment or by alumina grinding in 10−2m MgCl2–10−2m tris-(hydroxymethyl)aminomethane buffer, pH 7.4 (TM buffer). Ultracentrifugal analysis revealed peaks at 72.5S, 101S, and 135S, with the 101S peak being the most prominent. By lowering the Mg++ concentration to 10−3m, the ribosome preparation was dissociated to give 40S, 31S, and 54S peaks. These in turn were reassociated in the presence of 10−2m Mg++ to give the larger 73S and 135S particles. When heated in TM buffer, Escherichia coli ribosomes began a gradual dissociation at 58 C, and at 70 C underwent a large hyperchromic shift with a Tm at 72.8 C. In contrast, B. stearothermophilus ribosomes did not show a hyperchromic shift below 70 C; they had a Tm of 77.9 C. The thermal denaturation curves of the 4S, 16S, and 23S RNA from both organisms were virtually identical. The gross amino acid composition of B. stearothermophilus ribosomes showed no marked differences from that reported for E. coli ribosomes. These data suggest that the unusual thermal stability of B. stearothermophilus ribosomes may reflect either an unusual packing arrangement of the protein to the RNA or differences in the primary structure of the ribosomal proteins. Images PMID:5903099

  20. Dynamic Buffer Capacity in Acid-Base Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz

    The generalized concept of 'dynamic' buffer capacity β V is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.

  1. Bicarbonate Availability for Vocal Fold Epithelial Defense to Acidic Challenge

    PubMed Central

    Durkes, Abigail; Sivasankar, M. Preeti

    2014-01-01

    Objectives Bicarbonate is critical for acid-base tissue homeostasis. In this study we investigated the role of bicarbonate ion transport in vocal fold epithelial defense to acid challenges. Acidic insults to the larynx are common in gastric reflux, carcinogenesis and metastasis, and acute inflammation. Methods Ion transport was measured in viable, porcine vocal fold epithelium. First, 18 vocal folds were exposed to either the carbonic anhydrase antagonist acetazolamide or to vehicle. Second, 32 vocal folds were exposed to either a control buffer or a bicarbonate-free buffer on their luminal or basolateral surface or both. Third, vocal folds were challenged with acid in the presence of bicarbonate-free or control buffer. Results The vocal fold transepithelial resistance was greater than 300 Ω*cm2, suggesting robust barrier integrity. Ion transport did not change after exposure to acetazolamide (p > 0.05). Exposure to bicarbonate-free buffer did not compromise vocal fold ion transport (p > 0.05). Ion transport increased after acid challenge. This increase approached statistical significance and was the greatest for the control buffer and for the bicarbonate-free buffer applied to the basolateral surface. Conclusions Bicarbonate secretion may contribute to vocal fold defense against acid challenge. Our data offer a potential novel role for bicarbonate as a therapeutic agent to reduce pH abnormalities in the larynx and prevent associated pathological changes. PMID:24574427

  2. A study of different buffers to maximize viability of an oral Shigella vaccine.

    PubMed

    Chandrasekaran, Lakshmi; Lal, Manjari; Van De Verg, Lillian L; Venkatesan, Malabi M

    2015-11-17

    Live, whole cell killed and subunit vaccines are being developed for diarrheal diseases caused by V. cholerae, Shigella species, ETEC, and Campylobacter. Some of these vaccines can be administered orally since this route best mimics natural infection. Live vaccines administered orally have to be protected from the harsh acidic gastric environment. Milk and bicarbonate solutions have been administered to neutralize the stomach acid. For many Shigella vaccine trials, 100-120 ml of a bicarbonate solution is ingested followed by the live vaccine candidate, which is delivered in 30 ml of bicarbonate, water or saline. It is not clear if maximum bacterial viability is achieved under these conditions. Also, volumes of neutralizing buffer that are optimal for adults may be unsuitable for children and infants. To address these questions, we performed studies to determine the viability and stability of a Shigella sonnei vaccine candidate, WRSS1, in a mixture of different volumes of five different buffer solutions added to hydrochloric acid to simulate gastric acidity. Among the buffers tested, bicarbonate solution, rotavirus buffer and CeraVacx were better at neutralizing acid and maintaining the viability of WRSS1. Also, a much smaller volume of the neutralizing buffer was sufficient to counteract stomach acid while maintaining bacterial viability. Published by Elsevier Ltd.

  3. Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.

    PubMed

    Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer

    2015-01-14

    In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the kosmotropic or chaotropic behaviors of the investigated buffers at 25 °C have been examined.

  4. Nonclinical safety evaluation of boric acid and a novel borate-buffered contact lens multi-purpose solution, Biotrue™ multi-purpose solution.

    PubMed

    Lehmann, David M; Cavet, Megan E; Richardson, Mary E

    2010-12-01

    Multipurpose solutions (MPS) often contain low concentrations of boric acid as a buffering agent. Limited published literature has suggested that boric acid and borate-buffered MPS may alter the corneal epithelium; an effect attributed to cytotoxicity induced by boric acid. However, this claim has not been substantiated. We investigated the effect of treating cells with relevant concentrations of boric acid using two cytotoxicity assays, and also assessed the impact of boric acid on corneal epithelial barrier function by measuring TEER and immunostaining for tight junction protein ZO-1 in human corneal epithelial cells. Boric acid was also assessed in an in vivo ocular model when administered for 28 days. Additionally, we evaluated Biotrue multi-purpose solution, a novel borate-buffered MPS, alone and with contact lenses for ocular compatibility in vitro and in vivo. Boric acid passed both cytotoxicity assays and did not alter ZO-1 distribution or corneal TEER. Furthermore, boric acid was well-tolerated on-eye following repeated administration in a rabbit model. Finally, Biotrue multi-purpose solution demonstrated good ocular biocompatibility both in vitro and in vivo. This MPS was not cytotoxic and was compatible with the eye when administered alone and when evaluated with contact lenses. We demonstrate that boric acid and a borate-buffered MPS is compatible with the ocular environment. Our findings provide evidence that ocular effects reported for some borate-buffered MPS may be incorrectly attributed to boric acid and are more likely a function of the unique combination of ingredients in the MPS formulation tested. Copyright © 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  5. Contributions of separate reactions to the acid-base buffering of soils in brook floodplains (Central Forest State Reserve)

    NASA Astrophysics Data System (ADS)

    Sokolova, T. A.; Tolpeshta, I. I.; Rusakova, E. S.

    2016-04-01

    The acid-base buffering of gleyic gray-humus soils developed in brook floodplains and undisturbed southern-taiga landscapes has been characterized by the continuous potentiometric titration of soil water suspensions. During the interaction with an acid, the major amount of protons (>80%) is consumed for the displacement of exchangeable bases and the dissolution of Ca oxalates. In the O and AY horizons, Mn compounds make the major contribution (2-15%) to the acid buffering. The buffer reactions with the participation of Al compounds make up from 0.5 to 1-2% of the total buffering capacity, and the protonation of the surface OH groups of kaolinite consumes 2-3% of the total buffering capacity. The deprotonation of OH groups on the surface of Fe hydroxides (9-43%), the deprotonation of OH groups on the surface of illite crystals (3-19%), and the dissolution of unidentified aluminosilicates (9-14%) are the most significant buffer reactions whose contributions have been quantified during the interaction with a base. The contribution of the deprotonation of OH groups on the surface of kaolinite particles is lower (1-5%) because of the small specific surface area of this mineral, and that of the dissolution of Fe compounds is insignificant. In the AY horizon, the acid and base buffering of soil in the rhizosphere is higher than beyond the rhizosphere because of the higher contents of organic matter and nonsilicate Fe and Al compounds.

  6. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar [Lenoir City, TN; An, Ke [Knoxville, TX; Kiggans, Jr., James O.; Dudney, Nancy J [Knoxville, TN; Contescu, Cristian I [Knoxville, TN; Baker, Frederick S [Oak Ridge, TN; Armstrong, Beth L [Clinton, TN

    2011-09-13

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  7. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  8. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    NASA Astrophysics Data System (ADS)

    Barbour, Michele E.; Shellis, R. Peter

    2007-02-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.

  9. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  10. Influence of high-conductivity buffer composition on field-enhanced sample injection coupled to sweeping in CE.

    PubMed

    Anres, Philippe; Delaunay, Nathalie; Vial, Jérôme; Thormann, Wolfgang; Gareil, Pierre

    2013-02-01

    The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-06-02

    Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.

  12. Buffering of protons released by mineral formation during amelogenesis in mice.

    PubMed

    Bronckers, Antonius L J J; Lyaruu, Don M; Jalali, Rozita; DenBesten, Pamela K

    2016-10-01

    Regulation of pH by ameloblasts during amelogenesis is critical for enamel mineralization. We examined the effects of reduced bicarbonate secretion and the presence or absence of amelogenins on ameloblast modulation and enamel mineralization. To that end, the composition of fluorotic and non-fluorotic enamel of several different mouse mutants, including enamel of cystic fibrosis transmembrane conductance regulator-deficient (Cftr null), anion exchanger-2-deficient (Ae2a,b null), and amelogenin-deficient (Amelx null) mice, was determined by quantitative X-ray microanalysis. Correlation analysis was carried out to compare the effects of changes in the levels of sulfated-matrix (S) and chlorine (Cl; for bicarbonate secretion) on mineralization and modulation. The chloride (Cl - ) levels in forming enamel determined the ability of ameloblasts to modulate, remove matrix, and mineralize enamel. In general, the lower the Cl - content, the stronger the negative effects. In Amelx-null mice, modulation was essentially normal and the calcium content was reduced least. Retention of amelogenins in enamel of kallikrein-4-deficient (Klk4-null) mice resulted in decreased mineralization and reduced the length of the first acid modulation band without changing the total length of all acidic bands. These data suggest that buffering by bicarbonates is critical for modulation, matrix removal and enamel mineralization. Amelogenins also act as a buffer but are not critical for modulation. © 2016 Eur J Oral Sci.

  13. Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.

    PubMed

    Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui

    2015-01-01

    In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA.

  14. Thermodynamic characteristics of the interaction between nicotinic acid and phenylalanine in an aqueous buffer solution at 298 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.

    2013-08-01

    The interaction between L-phenylalanine and nicotinic acid is studied by solution calorimetry in an aqueous buffer solution (pH 7.35) at different ratios of the reagents. Experimental data on the enthalpy of dissolution of amino acid in the buffer solution of nicotinic acid at 298.15 K are calculated. The values of thermodynamic parameters for the complexation of L-phenylalanine with nicotinic acid are calculated. It is shown that the formation of a 1: 2 molecular complex is stabilized by the entropy factor due to the dominant role of the dehydration effect of initial reagents.

  15. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland

    NASA Astrophysics Data System (ADS)

    Cai, Jiangping; Luo, Wentao; Liu, Heyong; Feng, Xue; Zhang, Yongyong; Wang, Ruzhen; Xu, Zhuwen; Zhang, Yuge; Jiang, Yong

    2017-12-01

    Atmospheric nitrogen (N) deposition can result in soil acidification and reduce soil acid buffering capacity. However, it remains poorly understood how changes in precipitation regimes with elevated atmospheric N deposition affect soil acidification processes in a water-limited grassland. Here, we conducted a 9-year split-plot experiment with water addition as the main factor and N addition as the second factor. Results showed that soil acid buffering capacity significantly decreased with increased N inputs, mainly due to the decline of soil effective cation exchange capacity (ECEC) and exchangeable basic cations (especially Ca2+), indicating an acceleration of soil acidification status in this steppes. Significant interactive N and water effects were detected on the soil acid buffering capacity. Water addition enhanced the soil ECEC and exchangeable base cations and thus alleviated the decrease of soil acid buffering capacity under N addition. Our findings suggested that precipitation can mitigate the impact of increased N deposition on soil acidification in semi-arid grasslands. This knowledge should be used to improve models predicting soil acidification processes in terrestrial ecosystems under changing environmental conditions.

  16. High effective cytosolic H+ buffering in mouse cortical astrocytes attributable to fast bicarbonate transport.

    PubMed

    Theparambil, Shefeeq M; Deitmer, Joachim W

    2015-09-01

    Cytosolic H(+) buffering plays a major role for shaping intracellular H(+) shifts and hence for the availability of H(+) for biochemical reactions and acid/base-coupled transport processes. H(+) buffering is one of the prime means to protect the cell from large acid/base shifts. We have used the H(+) indicator dye BCECF and confocal microscopy to monitor the cytosolic H(+) concentration, [H(+)]i, in cultured cortical astrocytes of wild-type mice and of mice deficient in sodium/bicarbonate cotransporter NBCe1 (NBCe1-KO) or in carbonic anhydrase isoform II (CAII-KO). The steady-state buffer strength was calculated from the amplitude of [H(+)]i transients as evoked by CO2/HCO3(-) and by butyric acid in the presence and absence of CO2/HCO3(-). We tested the hypotheses if, in addition to instantaneous physicochemical H(+) buffering, rapid acid/base transport across the cell membrane contributes to the total, "effective" cytosolic H(+) buffering. In the presence of 5% CO2/26 mM HCO3(-), H(+) buffer strength in astrocytes was increased 4-6 fold, as compared with that in non-bicarbonate, HEPES-buffered solution, which was largely attributable to fast HCO3 (-) transport into the cells via NBCe1, supported by CAII activity. Our results show that within the time frame of determining physiological H(+) buffering in cells, fast transport and equilibration of CO2/H(+)/HCO3(-) can make a major contribution to the total "effective" H(+) buffer strength. Thus, "effective" cellular H(+) buffering is, to a large extent, attributable to membrane transport of base equivalents rather than a purely passive physicochemical process, and can be much larger than reported so far. Not only physicochemical H(+) buffering, but also rapid import of HCO3(-) via the electrogenic sodium-bicarbonate cotransporter NBCe1, supported by carbonic anhydrase II (CA II), was identified to enhance cytosolic H(+) buffer strength substantially. © 2015 Wiley Periodicals, Inc.

  17. Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH.

    PubMed

    Zareie, Mohammad; Keuning, Eelco D; ter Wee, Piet M; Schalkwijk, Casper G; Beelen, Robert H J; van den Born, Jacob

    2006-01-01

    Chronic exposure to conventional peritoneal dialysis fluid (PDF) is associated with functional and structural alterations of the peritoneal membrane. The bioincompatibility of conventional PDF can be due to hypertonicity, high glucose concentration, lactate buffering system, presence of glucose degradation products (GDPs) and/or acidic pH. Although various investigators have studied the sole effects of hyperosmolarity, high glucose, GDPs and lactate buffer in experimental PD, less attention has been paid to the chronic impact of low pH in vivo. Rats received daily 10 ml of either conventional lactate-buffered PDF (pH 5.2; n=7), a standard bicarbonate/lactate-buffered PDF with physiological pH (n=8), bicarbonate/lactate-buffered PDF with acidic pH (adjusted to pH 5.2 with 1 N hydrochloride, n=5), or bicarbonate/lactate buffer, without glucose, pH 7.4 (n=7). Fluids were instilled via peritoneal catheters connected to implanted subcutaneous mini vascular access ports for 8 weeks. Control animals with or without peritoneal catheters served as control groups (n=8/group). Various functional (2 h PET) and morphological/cellular parameters were analyzed. Compared with control groups and the buffer group, conventional lactate-buffered PDF induced a number of morphological/cellular changes, including angiogenesis and fibrosis in various peritoneal tissues (all parameters P<0.05), accompanied by increased glucose absorption and reduced ultrafiltration capacity. Daily exposure to standard or acidified bicarbonate/lactate-buffered PDF improved the performance of the peritoneal membrane, evidenced by reduced new vessel formation in omentum (P<0.02) and parietal peritoneum (P<0.008), reduced fibrosis (P<0.02) and improved ultrafiltration capacity. No significant differences were found between standard and acidified bicarbonate/lactate-buffered PDF. During PET, acidic PDF was neutralized within 15 to 20 min. The bicarbonate/lactate-buffered PDF, acidity per se did not contribute substantially to peritoneal worsening in our in vivo model for PD, which might be explained by the buffering capacity of the peritoneum.

  18. Metabolic component of intestinal PCO(2) during dysoxia.

    PubMed

    Raza, O; Schlichtig, R

    2000-12-01

    The adequacy of intestinal perfusion during shock and resuscitation might be estimated from intestinal tissue acid-base balance. We examined this idea from the perspective of conventional blood acid-base physicochemistry. As the O(2) supply diminishes with failing blood flow, tissue acid-base changes are first "respiratory, " with CO(2) coming from combustion of fuel and stagnating in the decreasing blood flow. When the O(2) supply decreases to critical, the changes become "metabolic" due to lactic acid. In blood, the respiratory vs. metabolic distinction is conventionally made using the buffer base principle, in which buffer base is the sum of HCO(3)(-) and noncarbonate buffer anion (A(-)). During purely respiratory acidosis, buffer base stays constant because HCO(3)(-) cannot buffer its own progenitor, carbonic acid, so that the rise of HCO(3)(-) equals the fall of A(-). During anaerobic "metabolism," however, lactate's H(+) is buffered by both A(-) and HCO(3)(-), causing buffer base to decrease. We quantified the partitioning of lactate's H(+) between HCO(3)(-) and A(-) buffer in anoxic intestine by compressing intestinal segments of anesthetized swine into a steel pipe and measuring PCO(2) and lactate at 5- to 10-min intervals. Their rises followed first-order kinetics, yielding k = 0. 031 min(-1) and half time = approximately 22 min. PCO(2) vs. lactate relations were linear. Over 3 h, lactate increased by 31 +/- 3 mmol/l tissue fluid (mM) and PCO(2) by approximately 17 mM, meaning that one-half of lactate's H(+) was buffered by tissue HCO(3)(-) and one-half by A(-). The data were consistent with a lumped pK(a) value near 6.1 and total A(-) concentration of approximately 30 mmol/kg. We conclude that the respiratory vs. metabolic distinction could be made in tissue by estimating tissue buffer base from measured pH and PCO(2).

  19. Zinc(II) complexation by some biologically relevant pH buffers.

    PubMed

    Wyrzykowski, D; Tesmar, A; Jacewicz, D; Pranczk, J; Chmurzyński, L

    2014-12-01

    The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2-(N-morpholino)ethanesulfonic acid (Mes), piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional-independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed. Copyright © 2014 John Wiley & Sons, Ltd.

  20. The acid-base buffer capacity of podzolic soils and its changes under the impact of treatment with the Mehra-Jackson and Tamm reagents

    NASA Astrophysics Data System (ADS)

    Maksimova, Yu. G.; Maryakhina, N. N.; Tolpeshta, I. I.; Sokolova, T. A.

    2010-10-01

    The acid-base buffer capacity before and after the treatment with the Mehra-Jackson and Tamm reagents was assessed by continuous potentiometric titration for the main genetic horizons of two profiles of podzolic soils in the Central Forest State Reserve. The total buffer capacity was calculated in the pH range from the initial titration point (ITP) to 3 for the acid titration and from the ITP to 10 for the base titration, as well as the buffer capacities in the pH intervals of 0.25. It was found that both treatments abruptly decreased the base buffer capacity, which reached 70-90% in the E horizons. The high direct linear correlation of the difference between the total base buffer capacities before and after each treatment with the content of Fe in the Tamm extract was revealed. From the results obtained, a conclusion was drawn that finely dispersed Fe hydroxides were the main solid-phase constituents ensuring the base buffer capacity, and the deprotonation of hydroxyl groups on the surface of Fe hydroxides was the essential buffer reaction during the base titration.

  1. Thiol-ene click chemistry derived cationic cyclodextrin chiral stationary phase and its enhanced separation performance in liquid chromatography.

    PubMed

    Yao, Xiaobin; Tan, Timothy Thatt Yang; Wang, Yong

    2014-01-24

    This work is the first demonstration of a simple thiol-ene click chemistry to anchor vinyl imidazolium β-CD onto thiol silica to form a novel cationic native cyclodextrin (CD) chiral stationary phase (CSP). The CSP afforded high enantioseparation ability towards dansyl (Dns) amino acids, carboxylic aryl compounds and flavonoids in chiral HPLC. The current CSP demonstrates the highest resolving ability (selectivity >1.1, resolution >1.5) towards Dns amino acids in a mobile phase buffered at pH=6.5, with the resolution of Dns-dl-leucine as high as 6.97. 2,4-dichloride propionic acid (2,4-ClPOPA) was well resolved with the selectivity and resolution of 1.37 and 4.88, respectively. Compared to a previously reported native CD-CSP based on a triazole linkage, the current cationic CD-CSP shows a stronger retention and higher resolution towards acidic chiral compounds, ascribed to the propitious strong electrostatic attraction. Stability evaluation results indicated that thiol-ene reaction can provide a facile and robust approach for the preparation of positively charged CD CSPs. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20% for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.

  3. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  4. Aqueous photolysis of niclosamide

    USGS Publications Warehouse

    Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.

    2004-01-01

    The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.

  5. Organization and ELISA-Based Results of the First Proficiency Testing to Evaluate the Ability of European Union Laboratories to Detect Staphylococcal Enterotoxin Type B (SEB) in Buffer and Milk

    PubMed Central

    Nia, Yacine; Rodriguez, Mélanie; Zeleny, Reinhard; Herbin, Sabine; Auvray, Frédéric; Fiebig, Uwe; Avondet, Marc-André; Munoz, Amalia; Hennekinne, Jacques-Antoine

    2016-01-01

    The aim of this work was to organize the first proficiency test (PT) dedicated to staphylococcal enterotoxin B (SEB) detection in milk and buffer solutions. This paper describes the organization of the PT trial according to EN ISO 17043 requirements. Characterization of the SEB stock solution was performed using SDS-PAGE and SE-specific ELISA, and amino acid analysis was used to assign its protein concentration. The solution was then used to prepare six PT materials (four milk and two buffer batches) at a ng/g toxin level, which included one blank and one SEA-containing milk as specificity control. Suitable material homogeneity and stability were assessed using screening and quantitative ELISAs. Among the methods used by the participants, ELISA-based methods demonstrated their efficiency for the detection of SEB in both simple and complex matrices. The results serve as a basis for further improving the detection capabilities in expert laboratories and can therefore be considered as a contribution to biopreparedness. PMID:27649244

  6. Differential effect of buffering agents on the crystallization of gemcitabine hydrochloride in frozen solutions.

    PubMed

    Patel, Mehulkumar; Munjal, Bhushan; Bansal, Arvind K

    2014-08-25

    The purpose of this study was to evaluate the differential effect of buffering agents on the crystallization of gemcitabine hydrochloride (GHCl) in frozen solutions. Four buffering agents, viz. citric acid (CA), malic acid (MA), succinic acid (SA) and tartaric acid (TA) were selected and their effect on GHCl crystallization was monitored using standard DSC and low temperature XRD. Onset of GHCl crystallization during heating run in DSC was measured to compare the differential effect of buffering agents. Glass transition temperature (Tg'), unfrozen water content in the freeze concentrate and crystallization propensity of the buffering agents was also determined for mechanistic understanding of the underlying effects. CA and MA inhibited while SA facilitated crystallization of GHCl even at 25 mM concentration. Increasing the concentration enhanced their effect. However, TA inhibited GHCl crystallization at concentrations <100mM and facilitated it at concentrations ≥100 mM. Lyophilization of GHCl with either SA or TA yielded elegant cakes, while CA and MA caused collapse. Tg' failed to explain the inhibitory effects of CA, MA and TA as all buffering agents lowered the Tg' of the system. Differential effect of buffering agents on GHCl crystallization could be explained by consideration of two opposing factors: (i) their own crystallization tendency and (ii) unfrozen water content in the freeze concentrate. In conclusion, it was established that API crystallization in frozen solution is affected by the type and concentration of the buffering agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOEpatents

    Hankins, Matthew G [Albuquerque, NM

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  8. DNA adsorption to and elution from silica surfaces: influence of amino acid buffers.

    PubMed

    Vandeventer, Peter E; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S; Niemz, Angelika

    2013-09-19

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction.

  9. Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)

    NASA Astrophysics Data System (ADS)

    Chadwick, O.; Kramer, M. G.; Chorover, J.

    2013-12-01

    The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are <6 are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry and wet environments and acid soils with wet environments. Furthermore acid soils often have lost much of their easily weatherable primary minerals and their soluble (plant nutrient) ions, and thus much of their ability to buffer against acidity introduced by biological respiration and its products. Acid soils are closer to thermodynamic equilibrium with their near-surface environment and are less vulnerable to change compared with soils that contain a substantial supply of weatherable minerals (young soils) or carbonate minerals (dry soils). The impact of changing seasonal and annual rainfall and evapotranspiration patterns associated with climate change depends on how current pedogenic thresholds manifest across the landscape. We expect that humid soils subjected to drying should undergo less change than arid or semi-arid soils subjected to wetter seasonal conditions. Land-use changes can drive differential responses depending on changing chemistry and porosity. Collectively these factors provide the framework from which to predict and map soil sensivity to global change and climate change in particular.

  10. A novel, environmentally friendly sodium lauryl ether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containing buffer for MEKC on microfluidic devices.

    PubMed

    Hoeman, Kurt W; Culbertson, Christopher T

    2008-12-01

    A new buffer has been developed for fast, high-efficiency separations of amino acids by MEKC. This buffer was more environmentally friendly than the most commonly used surfactant-containing buffers for MEKC separations. It used a commercially available dishwashing soap by Seventh Generation (Burlington, VT, USA), which contained three micelle-forming agents. The mixed micelles were composed of sodium lauryl ether sulfate (anionic), cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (non-ionic). The optimized buffer contained 5.0% w/w Seventh Generation Free & Clear dishwashing soap, 10 mM sodium borate, and was completely void of organics. The lack of organics and the biodegradability of the surfactant molecules made this buffer more environmentally friendly than typical SDS-containing buffers. This new buffer also had a different selectivity and provided faster separations with higher separation efficiencies than SDS-based buffers. Fast separations of BODIPY FL labeled amino acids yielded peaks with separation efficiencies greater than 100,000 in less than 20 s.

  11. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS

    PubMed Central

    Brdička, R.

    1936-01-01

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968

  12. Geochemical and lithological factors in acid precipitation

    Treesearch

    James R. Kramer

    1976-01-01

    Acid precipitation is altered by interaction with rocks, sediment and soil. A calcareous region buffers even the most intense loading at pH ~8; an alumino silicate region with unconsolidated sediment buffers acid loadings at pH ~6.5; alumino silicate outcrops are generally acidified. Either FeOOH or alumino silicates are probable H+...

  13. The effect of extracellular weak acids and bases on the intracellular buffering power of snail neurones.

    PubMed Central

    Szatkowski, M S

    1989-01-01

    1. Intracellular pH (pHi) was measured in snail neurones using pH-sensitive glass microelectrodes. The influence of externally applied weak acids and bases on the total intracellular buffering power (beta T) was investigated by monitoring the pHi changes caused by the intracellular ionophoretic injection of HCl. 2. In the absence of weak acids or bases a reduction in the extracellular HEPES concentration had no effect on pHi or on beta T. It did, however, reduce slightly the rate of pHi recovery following HCl injection. 3. The presence of CO2 greatly increased beta T. However, as predicted for an open buffer system, the contributions to intracellular buffering by CO2 (beta CO2) decreased as pHi decreased. 4. When added to the superfusate, procaine, 4-aminopyridine, trimethylamine and NH4Cl (1-10 mM) all increased steady-state pHi. Procaine was fastest at increasing pHi and 4-aminopyridine the slowest. All four of these weak bases increased beta T. 5. The intracellular buffering action by these weak bases varied. HCl injection in the presence of procaine usually resulted in steady-state pHi changes with no pHi transients. In the presence of the other three weak bases HCl injections resulted in intracellular acidifications which were followed by pHi recovery-like transients. However, these were not blocked by SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid) or by CaCl2 and I thus conclude that these transients were as a result of slow or incomplete intracellular buffering by the weak bases. 6. In many cells there was a good correlation between the measured contributions to intracellular buffering by the weak bases (beta base) and those predicted assuming a simple two-compartment open system. In all cases, as predicted, beta base increased as pHi decreased. 7. I found a clear relationship between the concentration of external buffer (HEPES) and the rate at which weak bases, applied to the superfusate, were able to increase pHi. The greater the extracellular buffer concentration the greater was the speed of intracellular alkalinization. 8. Lowering the extracellular buffer concentration reduced the efficiency of intracellular buffering by weak bases in response to an intracellular acid load. HCl injection in the presence of weak base caused a larger initial intracellular acidification if the extracellular HEPES concentration was reduced. 9. In conclusion, both weak acids and weak bases can make very large, pHi-dependent contributions to intracellular buffering by way of open buffer systems.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2555474

  14. Student understanding of pH: "i don't know what the log actually is, i only know where the button is on my calculator".

    PubMed

    Watters, Dianne J; Watters, James J

    2006-07-01

    In foundation biochemistry and biological chemistry courses, a major problem area that has been identified is students' lack of understanding of pH, acids, bases, and buffers and their inability to apply their knowledge in solving acid/base problems. The aim of this study was to explore students' conceptions of pH and their ability to solve problems associated with the behavior of biological acids to understand the source of student difficulties. The responses given by most students are characteristic of an atomistic approach in which they pay no attention to the structure of the problem and concentrate only on juggling the elements together until they get a solution. Many students reported difficulty in understanding what the question was asking and were unable to interpret a simple graph showing the pH activity profile of an enzyme. The most startling finding was the lack of basic understanding of logarithms and the inability of all except one student to perform a simple calculation on logs without a calculator. This deficiency in high school mathematical skills severely hampered their understanding of pH. This study has highlighted a widespread deficiency in basic mathematical skills among first year undergraduates and a fragmented understanding of acids and bases. Implications for the way in which the concepts of pH and buffers are taught are discussed. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  15. Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    NASA Astrophysics Data System (ADS)

    Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  16. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  17. DNA Adsorption to and Elution from Silica Surfaces: Influence of Amino Acid Buffers

    PubMed Central

    Vandeventer, Peter E.; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S.; Niemz, Angelika

    2014-01-01

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed, and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction. PMID:23931415

  18. The quantitation of buffering action II. Applications of the formal & general approach.

    PubMed

    Schmitt, Bernhard M

    2005-03-16

    The paradigm of "buffering" originated in acid-base physiology, but was subsequently extended to other fields and is now used for a wide and diverse set of phenomena. In the preceding article, we have presented a formal and general approach to the quantitation of buffering action. Here, we use that buffering concept for a systematic treatment of selected classical and other buffering phenomena. H+ buffering by weak acids and "self-buffering" in pure water represent "conservative buffered systems" whose analysis reveals buffering properties that contrast in important aspects from classical textbook descriptions. The buffering of organ perfusion in the face of variable perfusion pressure (also termed "autoregulation") can be treated in terms of "non-conservative buffered systems", the general form of the concept. For the analysis of cytoplasmic Ca++ concentration transients (also termed "muffling"), we develop a related unit that is able to faithfully reflect the time-dependent quantitative aspect of buffering during the pre-steady state period. Steady-state buffering is shown to represent the limiting case of time-dependent muffling, namely for infinitely long time intervals and infinitely small perturbations. Finally, our buffering concept provides a stringent definition of "buffering" on the level of systems and control theory, resulting in four absolute ratio scales for control performance that are suited to measure disturbance rejection and setpoint tracking, and both their static and dynamic aspects. Our concept of buffering provides a powerful mathematical tool for the quantitation of buffering action in all its appearances.

  19. Acid neutralizing processes in an alpine watershed front range, Colorado, U.S.A.-1: Buffering capacity of dissolved organic carbon in soil solutions

    USGS Publications Warehouse

    Iggy, Litaor M.; Thurman, E.M.

    1988-01-01

    Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.

  20. Calorimetric and Diffractometric Evidence for the Sequential Crystallization of Buffer Components and the Consequential pH Swing in Frozen Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj

    2010-06-22

    Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH < pK{sub a2} was cooled from room temperature (RT), the freeze-concentrate pH first increased and then decreased. This was attributed to the sequential crystallization of succinic acid, monosodium succinate, and finally disodium succinate. When buffered to pH > pK{sub a2}, the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followedmore » by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na{sub 2}(CH{sub 2}COO){sub 2} {center_dot} 6H{sub 2}O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.« less

  1. Highly efficient treatment of aerobic vaginitis with simple acidic buffered gels: The importance of pH and buffers on the microenvironment of vaginas.

    PubMed

    Sun, Xiaodong; Qiu, Haiying; Jin, Yiguang

    2017-06-15

    Aerobic vaginitis (AV) leads to uterus deep infection or preterm birth. Antibacterial agents are not optimal therapeutics of AV. Here, we report a series of temperature-sensitive in situ forming acidic buffered gels for topical treatment of AV, involving lactate, acetate, and citrate gels at pH 3.5, 5.0, and 6.5. AV rat models were prepared following vaginal infection with Staphylococcus aureus and Escherichia coli. In vitro/in vivo studies of the buffered gels were performed compared with ofloxacin gels and blank gels. All the buffered gels showed the lower in vitro antibacterial activities than ofloxacin gels but the better in vivo anti-S. aureus effects and similar anti-E. coli effects. The buffered gels improved Lactobacillus growth in the vaginas. Both the healthy rat vaginal pH and the pH of rat vaginas treated with the buffered gels were about 6.5 though the AV rat models or ones treated with ofloxacin gels still remained at the high pH more than 7.0. After treatments with the buffered gels, the vaginal smears changed to a clean state nearly without aerobic bacteria, the vaginal tissues were refreshed, and the immunoreactions were downregulated. The acidic buffered gels bring rapid decrease of local vaginal pH, high antibacterial activities, improvement of probiotics, and alleviation of inflammation. They are simple, highly efficient, and safe anti-AV formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  3. The chemistry, physiology and pathology of pH in cancer

    PubMed Central

    Swietach, Pawel; Vaughan-Jones, Richard D.; Harris, Adrian L.; Hulikova, Alzbeta

    2014-01-01

    Cell survival is conditional on the maintenance of a favourable acid–base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid–base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H+-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H+-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H+-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H+/H+-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H+/H+-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors. PMID:24493747

  4. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values.

    PubMed

    Zhang, Jingyang; Huang, Xuelian; Huang, Shengbin; Deng, Meng; Xie, Xincheng; Liu, Mingdong; Liu, Hongling; Zhou, Xuedong; Li, Jiyao; Ten Cate, Jacob Martien

    2015-01-01

    Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.

  5. Evaluation of buffers toxicity in tobacco cells: Homopiperazine-1,4-bis (2-ethanesulfonic acid) is a suitable buffer for plant cells studies at low pH.

    PubMed

    Borgo, Lucélia

    2017-06-01

    Low pH is an important environmental stressor of plant root cells. Understanding the mechanisms of stress and tolerance to acidity is critical; however, there is no widely accepted pH buffer for studies of plant cells at low pH. Such a buffer might also benefit studies of Al toxicity, in which buffering at low pH is also important. The challenge is to find a buffer with minimal cellular effects. We examined the cytotoxicity and possible metabolic disturbances of four buffers that have adequate pK a values and potential use for studies in the pH range of 4.0-5.0. These were homopipes (homopiperazine-1,4-bis (2-ethanesulfonic acid); pK a1 4.4), 3,3-dimethylglutaric acid (pK a1 3.73), β-alanine (pK a1 3.70) and potassium biphthalate (pK a1 2.95; pK a2 5.41). First, tobacco BY-2 cells were grown in a rich medium containing 10 mM of each buffer or MES (2-(N-morpholino) ethanesulfonic acid) as a control, with the pH initially adjusted to 5.7. β-alanine was clearly toxic and dimethylgluturate and biphthalate were found to be cytostatic, in which no culture growth occurred but cell viability was either unaffected or decreased only after 5 days. Only homopipes allowed normal culture growth and cell viability. Homopipes (10 mM) was then tested in cell cultures with an initial pH of 4.3 ± 0.17 in minimal medium to examine whether its undissociated species (H 2 A) displayed any cellular effects and no cytotoxic effects were observed. It is possible to conclude that among tested buffers, homopipes is the most suitable for studies at low pH, and may be especially useful for aluminum toxicity experiments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Beneficial effects of humic acid on micronutrient availability to wheat

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

    2001-01-01

    Humic acid (HA) is a relatively stable product of organic matter decomposition and thus accumulates in environmental systems. Humic acid might benefit plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA on growth and micronutrient uptake in wheat (Triticum aestivum L.) grown hydroponically. Four root-zone treatments were compared: (i) 25 micromoles synthetic chelate N-(4-hydroxyethyl)ethylenediaminetriacetic acid (C10H18N2O7) (HEDTA at 0.25 mM C); (ii) 25 micromoles synthetic chelate with 4-morpholineethanesulfonic acid (C6H13N4S) (MES at 5 mM C) pH buffer; (iii) HA at 1 mM C without synthetic chelate or buffer; and (iv) no synthetic chelate or buffer. Ample inorganic Fe (35 micromoles Fe3+) was supplied in all treatments. There was no statistically significant difference in total biomass or seed yield among treatments, but HA was effective at ameliorating the leaf interveinal chlorosis that occurred during early growth of the nonchelated treatment. Leaf-tissue Cu and Zn concentrations were lower in the HEDTA treatment relative to no chelate (NC), indicating HEDTA strongly complexed these nutrients, thus reducing their free ion activities and hence, bioavailability. Humic acid did not complex Zn as strongly and chemical equilibrium modeling supported these results. Titration tests indicated that HA was not an effective pH buffer at 1 mM C, and higher levels resulted in HA-Ca and HA-Mg flocculation in the nutrient solution.

  7. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  8. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids.

    PubMed

    Tang, Qian; Li, Zai-Yong; Wei, Yu-Bo; Yang, Xia; Liu, Lan-Tao; Gong, Cheng-Bin; Ma, Xue-Bing; Lam, Michael Hon-Wah; Chow, Cheuk-Fai

    2016-09-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22×10(-5)M in aqueous NaH2PO4 buffer at pH=7.0 and a maximal adsorption capacity of 1.45μmolg(-1). Upon alternate irradiation at 365 and 440nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  10. Controlled release of acidic drugs in compendial and physiological hydrogen carbonate buffer from polymer blend-coated oral solid dosage forms.

    PubMed

    Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S

    2015-09-18

    The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of buffers on milk fatty acids and mammary arteriovenous differences in dairy cows fed Ca salts of fatty acids.

    PubMed

    Thivierge, M C; Chouinard, P Y; Lévesque, J; Girard, V; Seoane, J R; Brisson, G J

    1998-07-01

    Ten Holstein cows in early lactation were used in a replicated 5 x 5 Latin square design to study the effects of MgO and three buffers added to diets containing Ca salts of canola oil fatty acids. Treatments were 1) control (basal diet; no buffer). 2) 1.1% NaHCO3 plus 1.1% KHCO3, 3) 1.9% NaHCO3, 4) 0.5% MgO, and 5) 2.0% Na sesquicarbonate (percentage of dry matter). The control diet contained 53% grass silage, 43% concentrate, and 4% Ca salts. Body weight, intake, milk yield, and percentages of milk fat, protein, and lactose were unaffected by treatments. Buffers and MgO tended to increase triacylglycerol extraction by the mammary gland and changed the proportions of some fatty acids in milk. Arterial concentrations of acetate and triacylglycerol were correlated with their respective arteriovenous differences. Extraction by the mammary gland was high for acetate (approximately equal to 58.2%), triacylglycerol (approximately equal to 47.3%) propionate (approximately equal to 34.6%), and glucose (approximately equal to 24.3%). Extraction of free fatty acids, phospholipids, or cholesterol was negligible. Mammary triacylglycerol arteriovenous difference tended to be higher than when MgO was fed than when NaHCO3 was fed. Sodium sesquicarbonate, NaHCO3, and the blend of bicarbonate buffers increased C18:2 in milk fat when compared with the control treatment. The concentration of C18:2 in milk fat decreased when MgO was fed, but the ratio of cis-C18:1 to trans-C18:1 increased compared with effects of dietary NaHCO3. Medium-chain fatty acids in milk fat tended to be higher than Na sesquicarbonate than with NaHCO3. Buffers and MgO modified the profiles of fatty acids in milk.

  12. Pharmacokinetic study of a new oral buffered acetylsalicylic acid (ASA) formulation in comparison with plain ASA in healthy volunteers.

    PubMed

    Viganò, G; Garagiola, U; Gaspari, F

    1991-01-01

    A single-blind, randomized, crossover pharmacokinetic study was carried out to investigate the bioavailability of a new oral buffered 325 mg acetylsalicylic acid (ASA) formulation (ASPIRINA 03) in comparison with a 325 mg plain tablet. Twelve healthy volunteers of both sexes, aged between 20 and 37 years, received buffered or plain ASA on two separate occasions with a wash-out interval of at least two weeks. ASA and salicylic acid (SA) plasma levels were determined by a chromatographic method. The results showed no difference between the area under concentration time curve (AUC0-infinity) ASA values of both formulations (p = 0.19), and buffered ASA relative bioavailability was 102.49% (= bioequivalence). A significant difference was found between the AUC0-30 min ASA values: 90.5 micrograms. min/ml with buffered and 67.7 micrograms. min/ml with the plain tablet (p less than 0.05). The buffered ASA time of maximum concentration was shorter (28 +/- 8 min) than the plain one (38 +/- 19 min, p less than 0.05). The plasma concentrations and pharmacokinetic parameters of SA were not significantly different after the administration of the two ASA formulations. The plain ASA tablet had a significantly lower (p less than 0.05) dissolution rate than buffered ASA tablet. Moreover, the buffered ASA tablet significantly (p less than 0.01) increased the pH by 0.5 units. In conclusion, the bioavailability of the new oral buffered ASA was equivalent to that of plain ASA, but the plasma concentration peak was reached in a shorter time.

  13. Molecularly imprinted polymer for caffeic acid by precipitation polymerization and its application to extraction of caffeic acid and chlorogenic acid from Eucommia ulmodies leaves.

    PubMed

    Miura, Chitose; Matsunaga, Hisami; Haginaka, Jun

    2016-08-05

    Molecularly imprinted polymers (MIPs) for caffeic acid (CA) were prepared using 4-vinylpyridine and methacrylamide (MAM) as functional monomers, divinylbenzene as a crosslinker and acetonitrile-toluene (3:1, v/v) as a porogen by precipitation polymerization. The use of MAM as the co-monomer resulted in the formation of microsphere MIPs and non-imprinted polymers (NIPs) with ca. 3- and 5-μm particle diameters, respectively. Binding experiments and Scatchard analyses revealed that the binding capacity and affinity of the MIP to CA are higher than those of the NIP. The retention and molecular-recognition properties of the prepared MIPs were evaluated using water-acetonitrile and sodium phosphate buffer-acetonitrile as mobile phases in hydrophilic interaction chromatography (HILIC) and reversed-phase chromatography, respectively. In HILIC mode, the MIP showed higher molecular-recognition ability for CA than in reversed-phase mode. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of CA on the MIP in HILIC mode, while hydrogen bonding and hydrophobic interactions seem to work for the recognition of CA in reversed-phase mode. The MIP had a specific molecular-recognition ability for CA in HILIC mode, while other structurally related compounds, such as chlorogenic acid (CGA), gallic acid, protocatechuic acid and vanillic acid, could not be recognized by the MIP. Furthermore, the MIP was successfully applied for extraction of CA and CGA in the leaves of Eucommia ulmodies in HILIC mode. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Three-Stream, Bicarbonate-Based Hemodialysis Solution Delivery System Revisited: With an Emphasis on Some Aspects of Acid-Base Principles.

    PubMed

    Lew, Susie Q; Kohn, Orly F; Cheng, Yuk-Lun; Kjellstrand, Carl M; Ing, Todd S

    2017-06-01

    Hemodialysis patients can acquire buffer base (i.e., bicarbonate and buffer base equivalents of certain organic anions) from the acid and base concentrates of a three-stream, dual-concentrate, bicarbonate-based, dialysis solution delivery machine. The differences between dialysis fluid concentrate systems containing acetic acid versus sodium diacetate in the amount of potential buffering power were reviewed. Any organic anion such as acetate, citrate, or lactate (unless when combined with hydrogen) delivered to the body has the potential of being converted to bicarbonate. The prescribing physician aware of the role that organic anions in the concentrates can play in providing buffering power to the final dialysis fluid, will have a better knowledge of the amount of bicarbonate and bicarbonate precursors delivered to the patient. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Characterization of pH-fractionated humic acids with respect to their dissociation behaviour.

    PubMed

    Klučáková, Martina

    2016-04-01

    Humic acids were divided into several fractions using buffer solutions as extraction agents with different pH values. Two methods of fractionation were used. The first one was subsequent dissolution of bulk humic acids in buffers adjusted to different pH. The second one was sequential dissolution in buffers with increasing pH values. Experimental data were compared with hypothesis of partial solubility of humic acids in aqueous solutions. Behaviour of humic fractions obtained by sequential dissolution, original bulk sample and residual fractions obtained by subsequent dissolution at pH 10 and 12 agrees with the hypothesis. Results demonstrated that regardless the common mechanism, solubility and dissociation degree of various humic fractions may be very different and can be estimated using parameters of the model based on the proposed mechanism. Presented results suggest that dissolving of solid humic acids in water environment is more complex than conventional solubility behaviour of sparingly soluble solids.

  16. The role of ExbD in periplasmic pH homeostasis in Helicobacter pylori

    PubMed Central

    Marcus, Elizabeth A.; Sachs, George; Scott, David R.

    2013-01-01

    Background Helicobacter pylori, a neutralophile, colonizes the acidic environment of the human stomach by employing acid acclimation mechanisms that regulate periplasmic and cytoplasmic pH. The regulation of urease activity is central to acid acclimation. Inactive urease apoenzyme, UreA/B, requires nickel for activation. Accessory proteins UreE, F, G and H are required for nickel insertion into apoenzyme. The ExbB/ExbD/TonB complex transfers energy from the inner to outer membrane, providing the driving force for nickel uptake. Therefore, the aim of this study was to determine the contribution of ExbD to pH homeostasis. Materials and Methods A nonpolar exbD knockout was constructed and survival, growth, urease activity, and membrane potential were determined in comparison to wildtype. Results Survival of the ΔexbD strain was significantly reduced at pH 3.0. Urease activity as a function of pH and UreI activation were similar to the wildtype strain, showing normal function of the proton-gated urea channel, UreI. The increase in total urease activity over time in acid seen in the wildtype strain was abolished in the ΔexbD strain, but recovered in the presence of supra-physiologic nickel concentrations, demonstrating that the effect of the ΔexbD mutant is due to loss of a necessary constant supply of nickel. In acid, ΔexbD also decreased its ability to maintain membrane potential and periplasmic buffering in the presence of urea. Conclusions ExbD is essential for maintenance of periplasmic buffering and membrane potential by transferring energy required for nickel uptake, making it a potential non-antibiotic target for H. pylori eradication. PMID:23600974

  17. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Partial Purification and Properties of an Alkaline α-Galactosidase from Mature Leaves of Cucurbita pepo1

    PubMed Central

    Gaudreault, Pierre-Richard; Webb, John A.

    1983-01-01

    A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant. Images Fig. 1 PMID:16662884

  19. Macrophyte and pH buffering updates to the Klamath River water-quality model upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Asbill-Case, Jessica R.; Deas, Michael L.

    2013-01-01

    A hydrodynamic, water temperature, and water-quality model of the Link River to Keno Dam reach of the upper Klamath River was updated to account for macrophytes and enhanced pH buffering from dissolved organic matter, ammonia, and orthophosphorus. Macrophytes had been observed in this reach by field personnel, so macrophyte field data were collected in summer and fall (June-October) 2011 to provide a dataset to guide the inclusion of macrophytes in the model. Three types of macrophytes were most common: pondweed (Potamogeton species), coontail (Ceratophyllum demersum), and common waterweed (Elodea canadensis). Pondweed was found throughout the Link River to Keno Dam reach in early summer with densities declining by mid-summer and fall. Coontail and common waterweed were more common in the lower reach near Keno Dam and were at highest density in summer. All species were most dense in shallow water (less than 2 meters deep) near shore. The highest estimated dry weight biomass for any sample during the study was 202 grams per square meter for coontail in August. Guided by field results, three macrophyte groups were incorporated into the CE-QUAL-W2 model for calendar years 2006-09. The CE-QUAL-W2 model code was adjusted to allow the user to initialize macrophyte populations spatially across the model grid. The default CE-QUAL-W2 model includes pH buffering by carbonates, but does not include pH buffering by organic matter, ammonia, or orthophosphorus. These three constituents, especially dissolved organic matter, are present in the upper Klamath River at concentrations that provide substantial pH buffering capacity. In this study, CE-QUAL-W2 was updated to include this enhanced buffering capacity in the simulation of pH. Acid dissociation constants for ammonium and phosphoric acid were taken from the literature. For dissolved organic matter, the number of organic acid groups and each group's acid dissociation constant (Ka) and site density (moles of sites per mole of carbon) were derived by fitting a theoretical buffering response to measured upper Klamath River alkalinity titration curves. The organic matter buffering in the Klamath River was modeled with two monoprotic organic acids: carboxylic acids with a mean pKa of 5.584 and site density of 0.1925, and phenolic organic acids with a mean pKa of 9.594 and site density of 0.6466. Total inorganic carbon concentrations in the model boundary inputs were recalculated based on the new buffering equations. CE-QUAL-W2 was also adjusted to allow the simulation of nonconservative alkalinity caused by nitrification, denitrification, photosynthesis, and respiration. The Klamath River model was recalibrated after the macrophyte and pH buffering updates producing improved predictions for pH, dissolved oxygen, and particulate carbon.

  20. Toward an In Vivo Dissolution Methodology: A Comparison of Phosphate and Bicarbonate Buffers

    PubMed Central

    Sheng, Jennifer J.; McNamara, Daniel P.; Amidon, Gordon L.

    2011-01-01

    Purpose To evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. Methods The intrinsic dissolution rates of, ketoprofen and indomethacin, were experimentally measured using rotating disk method at 37°C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Results Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin, in USP and FaSSIF phosphate buffers are 1.5–3.0 times of that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pKa and secondly on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pKa, solubility and diffusivity, simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13–15 mM and 3–4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. Conclusions This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for BCS II weak acids in developing in vitro bioequivalence dissolution methodology. PMID:19183104

  1. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    PubMed

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable.

  2. Applied Technology on Influence of Humic Substances on Fertilizer, Water-use Efficiency and Soil Health

    NASA Astrophysics Data System (ADS)

    Seyedbagheri, Mir

    2017-04-01

    In continuation of over 35 years of on-farm studies on soil organic matter from different humates (functional carbon) and compost, I have documented quantitative improvements in soil health and water-use efficiency. The ability of soil organic matter to bind water has become an important theme for research in past years. Research trials were established to evaluate the efficacy of different commercial functional carbon products derived from Leonardite (highly oxidized lignite) in crop production. In each of these trials, functional carbon (Humic and Fulvic acids) products were used in a randomized complete block design. The use of humic substances creates strong organo-mineral complexes (aggregation), chelation, as well as enhanced buffering capacities. We evaluated data from 3 fields and compared the results. Our observation and field demonstrations indicated there was a marked increase in water retention. Data from humic acid (HA) trials showed that different cropping systems responded differently to different products in relation to yield and quality. The functional carbon products used in the study seemed to enhance fertilizer and water-use efficiency by increasing complexation, chelation and buffering. The consistent use of good quality functional carbons in our replicated plots resulted in a yield increase from 6% to 30% over several decades.

  3. Chemoselective amide formation using O-(4-nitrophenyl)hydroxylamines and pyruvic acid derivatives.

    PubMed

    Kumar, Sonali; Sharma, Rashi; Garcia, Megan; Kamel, Joseph; McCarthy, Caroline; Muth, Aaron; Phanstiel, Otto

    2012-12-07

    A series of O-(4-nitrophenyl)hydroxylamines were synthesized from their respective oximes using a pulsed addition of excess NaBH(3)CN at pH 3 in 65-75% yield. Steric hindrance near the oxime functional group played a key role in both the ease by which the oxime could be reduced and the subsequent reactivity of the respective hydroxylamine. Reaction of the respective hydroxylamines with pyruvic acid derivatives generated the desired amides in good yields. A comparison of phenethylamine systems bearing different leaving groups revealed significant differences in the rates of these systems and suggested that the leaving group ability of the N-OR substituent plays an important role in determining their reactivity with pyruvic acid. Competition experiments (in 68% DMSO/phosphate buffered saline) using 1 equiv of N-phenethyl-O-(4-nitrophenyl)hydroxylamine and 2 equiv of pyruvic acid in the presence of other nucleophiles such as glycine, cysteine, phenol, hexanoic acid, and lysine demonstrated that significant chemoselectivity is present in this reaction. The results suggest that this chemoselective reaction can occur in the presence of excess α-amino acids, phenols, acids, thiols, and amines.

  4. Mechanisms of buffer therapy resistance.

    PubMed

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  5. Mechanisms of buffer therapy resistance

    PubMed Central

    Bailey, Kate M.; Wojtkowiak, Jonathan W.; Cornnell, Heather H.; Ribeiro, Maria C.; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J.

    2014-01-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. PMID:24862761

  6. Stabilization of biothreat diagnostic samples through vitrification matrices.

    PubMed

    Minogue, Timothy Devin; Kalina, Warren Vincent; Coyne, Susan Rajnik

    2014-06-01

    Diagnostics for biothreat agents require sample shipment to reference labs for diagnosis of disease; however high/fluctuating temperatures during sample transport negatively affect sample quality and results. Vitrification additives preserve sample integrity for molecular-based assay diagnostics in the absence of refrigeration by imparting whole molecule stability to a plethora of environmental insults. Therefore, we have evaluated commercially available vitrification matrices' (Biomatrica's CloneStable® and RNAStable®) ability to stabilize samples of Yersinia pestis and Venezuelan Equine Encephalitis Virus. When heated to 95°C in RNAStable®, Y. pestis had a 13-fold improvement in detection via real-time PCR compared to heated samples in buffer. VEEV, in RNAStable® at 55°C, had a ~10-fold improved detection versus heated samples in buffer. CloneStable® also preserved Y. pestis antigens for 7days after exposure to cycling temperatures. Overall, RNAStable® and CloneStable® respectively offered superior stabilization to nucleic acids and proteins in response to temperature fluctuations. Copyright © 2014. Published by Elsevier B.V.

  7. Physiological responses of Daphnia pulex to acid stress

    PubMed Central

    Weber, Anna K; Pirow, Ralph

    2009-01-01

    Background Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (PCO2), circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions. Results D. pulex had a remarkably high extracellular pH of 8.33 and extracellular PCO2 of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L-1 pH-1. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23), a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L-1 pH-1. The extracellular PCO2 of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. Conclusion Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport raised the question of whether a carbonic anhydrase (CA) is involved in the catalysis of the reaction, which led to the discovery of 31 CA-genes in the genome of D. pulex. PMID:19383148

  8. Setting priorities for research on pollution reduction functions of agricultural buffers.

    PubMed

    Dosskey, Michael G

    2002-11-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An assessment of these uncertainties cautions that there is greater risk of overestimating buffer impact than underestimating it. Priorities for future research are proposed that will lead more quickly to major advances in predictive capabilities. Highest priority is given for work on the surface runoff filtration function, which is almost universally important to the amount of pollution reduction expected from buffer installation and for which there remain major sources of uncertainty for predicting level of impact. Foremost uncertainties surround the extent and consequences of runoff flow concentration and pollutant accumulation. Other buffer functions, including filtration of groundwater nitrate and stabilization of channel erosion sources of sediments, may be important in some regions. However, uncertainty surrounds our ability to identify and quantify the extent of site conditions where buffer installation can substantially reduce stream pollution in these ways. Deficiencies in predictive models reflect gaps in experimental information as well as technology to account for spatial heterogeneity of pollutant sources, pathways, and buffer capabilities across watersheds. Since completion of a comprehensive watershed-scale buffer model is probably far off, immediate needs call for simpler techniques to gage the probable impacts of buffer installation at local scales.

  9. Setting priorities for research on pollution reduction functions of agricultural buffers

    Treesearch

    Michael G. Dosskey

    2002-01-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An...

  10. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase.

    PubMed

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.

  11. Improved pH buffering agent for sodium hypochlorite

    NASA Technical Reports Server (NTRS)

    Nash, J. R.; Veeder, L. N.

    1969-01-01

    Sodium citrate/citric acid was found to be an effective buffer for pH control when used with sodium hypochlorite. The mixture does not corrode aluminum. The buffer appears to form a type of conversion coating that may provide corrosion-resistant properties to aluminum in other applications.

  12. An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and Amberlite IRC-50 as pH buffers for nutrient solution studies

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1985-01-01

    All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.

  13. The dynamics of the metabolism of acetate and bicarbonate associated with use of hemodialysates in the ABChD trial: a phase IV, prospective, single center, single blind, randomized, cross-over, two week investigation.

    PubMed

    Smith, William B; Gibson, Sandy; Newman, George E; Hendon, Kendra S; Askelson, Margarita; Zhao, James; Hantash, Jamil; Flanagan, Brigid; Larkin, John W; Usvyat, Len A; Thadhani, Ravi I; Maddux, Franklin W

    2017-08-29

    In the United States, hemodialysis (HD) is generally performed via a bicarbonate dialysate. It is not known if small amounts of acid used in dialysate to buffer the bicarbonate can meaningfully contribute to overall buffering administered during HD. We aimed to investigate the metabolism of acetate with use of two different acid buffer concentrates and determine if it effects blood bicarbonate concentrations in HD patients. The Acid-Base Composition with use of hemoDialysates (ABChD) trial was a Phase IV, prospective, single blind, randomized, cross-over, 2 week investigation of peridialytic dynamics of acetate and bicarbonate associated with use of acid buffer concentrates. Eleven prevalent HD patients participated from November 2014 to February 2015. Patients received two HD treatments, with NaturaLyte® and GranuFlo® acid concentrates containing 4 and 8 mEq/L of acetate, respectively. Dialysate order was chosen in a random fashion. The endpoint was to characterize the dynamics of acetate received and metabolized during hemodialysis, and how it effects overall bicarbonate concentrations in the blood and dialysate. Acetate and bicarbonate concentrations were assessed before, at 8 time points during, and 6 time points after the completion of HD. Data from 20 HD treatments for 11 patients (10 NaturaLyte® and 10 GranuFlo®) was analyzed. Cumulative trajectories of arterialized acetate were unique between NaturaLyte® and GranuFlo® (p = 0.003), yet individual time points demonstrated overlap without remarkable differences. Arterialized and venous blood bicarbonate concentrations were similar at HD initiation, but by 240 min into dialysis, mean arterialized bicarbonate concentrations were 30.2 (SD ± 4.16) mEq/L in GranuFlo® and 28.8 (SD ± 4.26) mEq/L in NaturaLyte®. Regardless of acid buffer concentrate, arterial blood bicarbonate was primarily dictated by the prescribed bicarbonate level. Subjects tolerated HD with both acid buffer concentrates without experiencing any related adverse events. A small fraction of acetate was delivered to HD patients with use of NaturaLyte® and GranuFlo® acid buffers; the majority of acetate received was observed to be rapidly metabolized and cleared from the circulation. Blood bicarbonate concentrations appear to be determined mainly by the prescribed concentration of bicarbonate. This trial was registered on ClinicalTrials.gov on 11 Dec 2014 ( NCT02334267 ).

  14. Effects of vehicles and prodrug properties and their interactions on the delivery of 6-mercaptopurine through skin: bisacyloxymethyl-6-mercaptopurine prodrugs.

    PubMed

    Waranis, R P; Sloan, K B

    1987-08-01

    A series of S6,9-bisacyloxymethyl-6-mercaptopurine (6,9-bis-6-MP) prodrug derivatives was synthesized and characterized. The solubilities of the derivatives in solvents (vehicles), which exhibited a wide range of polarities from water to oleic acid, were measured. The abilities of the prodrugs to deliver 6-mercaptopurine (6-MP) from the vehicles have also been determined, and experimental fluxes and permeability coefficients (Kp) have been calculated for a large number of prodrug: vehicle combinations. Generally the best prodrugs of the series in terms of delivering 6-MP, regardless of the vehicle, were the first two members--the bisacetyl- and the bispropionyloxymethyl-6-mercaptopurine prodrugs. This result has been attributed mainly to the increased water solubility of these two prodrugs compared with that of 6-MP and the other prodrugs, since all of the prodrugs are much more lipid soluble than 6-MP. For three vehicles--isopropyl myristate, propylene glycol, and water--there was a good correlation between log experimental Kp for the delivery of 6-MP by the prodrugs from those vehicles and the theoretical solubility parameters of the prodrugs. The stabilities of the bisacetyl-(2), bisproprionyl-(3), and bisbutyryloxymethyl-6-mercaptopurine (4) derivatives were determined in buffer and in buffer containing enzymes leached from the dermis. Prodrug 2 was more stable than 3 or 4 in the buffer containing the enzymes, while 4 was more stable than 2 or 3 in the plain buffer.

  15. A Novel Tool to Facilitate the Learning of Buffering Mechanism by Undergraduate Students of the Biological Area

    ERIC Educational Resources Information Center

    Carvalho, Eduardo O.; Nantes, Iseli L.

    2008-01-01

    In this study, the application and evaluation of a novel didactic tool (buffer kit) is described to make it easy for students in the biological area to overcome their conceptual deficiencies that render the learning of the buffering mechanism difficult. The buffer kit was constructed with double-face EVA cards with a conjugated acid formula…

  16. Visualization of Buffer Capacity with 3-D "Topo" Surfaces: Buffer Ridges, Equivalence Point Canyons and Dilution Ramps

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2016-01-01

    BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…

  17. Kinetic and Mechanistic Study of the pH-Dependent Activation (Epoxidation) of Prodrug Treosulfan Including the Reaction Inhibition in a Borate Buffer.

    PubMed

    Romański, Michał; Ratajczak, Whitney; Główka, Franciszek

    2017-07-01

    A prodrug treosulfan (T) undergoes a pH-dependent activation to epoxide derivatives. The process seems to involve an intramolecular Williamson reaction (IWR) but clear kinetic evidence is lacking. Moreover, a cis-diol system present in the T structure is expected to promote complexation with boric acid. As a result, the prodrug epoxidation would be inhibited; however, this phenomenon has not been investigated. In this article, the effect of pH on the kinetics of T conversion to its monoepoxide was studied from a mechanistic point of view. Also, the influence of boric acid on the reaction kinetics was examined. The rate constants observed for the activation of T (k obs ) in acetate, phosphate, and carbonate buffers satisfied the equation logk obs  = -7.48 + 0.96 pH. The reaction was inhibited in the excess of boric acid over T, and the k obs decreased with increasing borate buffer concentration. The experimental results were consistent with the inhibition model that included the formation of a tetrahedral, anionic T-boric acid monoester. To conclude, in nonborate buffers, the T activation to (2S,3S)-1,2-epoxybutane-3,4-diol 4-methanesulfonate follows IWR mechanism. A borate buffer changes the reaction kinetics and complicates kinetic analysis. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Simultaneous determination of eleven preservatives in cosmetics by micellar electrokinetic chromatography.

    PubMed

    Wang, Ping; Ding, Xiaojing; Li, Yun; Yang, Yuanyuan

    2012-01-01

    A new method for the simultaneous quantitation of 11 preservatives-imidazolidinyl urea, benzyl alcohol, dehydroacetic acid, sorbic acid, phenoxyethanol, benzoic acid, salicylic acid, and four parabens (methyl, ethyl, propyl, and butyl)-in cosmetics by micellar electrokinetic capillary chromatography was established and validated. The separation was performed using an uncoated fused-silica capillary (50 pm id x 60.2 cm, effective length 50 cm) with a running buffer consisting of 15 mmol/L sodium tetraborate, 60 mmol/L boric acid, and 100 mmol/L sodium dodecyl sulfate. A 1:10 dilution of the running buffer was used as the sample buffer to extract the cosmetic samples. The key factors, such as the concentration and pH of the running and sample buffers, which influence quantitative analysis of the above 11 preservatives in cosmetic samples, were investigated in detail. The linear ranges of the calibration curves for imidazolidinyl urea and the other 10 preservatives were 50-1000 and 10-200 mg/L, respectively. The correlation coefficients of the standard curves were all higher than 0.999. The recoveries at the concentrations studied ranged from 93.0 to 102.7%. RSDs were all less than 5%. The new method with simple sample pretreatment met the needs for routine analysis of the 11 preservatives in cosmetics.

  19. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  20. Oxidation of pyrimidine nucleosides and nucleotides by osmium tetroxide

    PubMed Central

    Burton, K.

    1967-01-01

    1. Pyrimidine nucleosides such as thymidine, uridine or cytidine are oxidized readily at 0° by osmium tetroxide in ammonium chloride buffer. There is virtually no oxidation in bicarbonate buffer of similar pH. Oxidation of 1-methyluracil yields 5,6-dihydro-4,5,6-trihydroxy-1-methyl-2-pyrimidone. 2. Osmium tetroxide and ammonia react reversibly in aqueous solution to form a yellow 1:1 complex, probably OsO3NH. A second molecule of ammonia must be involved in the oxidation of UMP since the rate of this reaction is approximately proportional to the square of the concentration of unprotonated ammonia. 3. 4-Thiouridine reacts with osmium tetroxide much more rapidly than does uridine. The changes of absorption spectra are different in sodium bicarbonate buffer and in ammonium chloride buffer. They occur faster in the latter buffer and, under suitable conditions, cytidine is a major product. 4. Polyuridylic acid is oxidized readily by ammoniacal osmium tetroxide, but its oxidation is inhibited by polyadenylic acid. Pyrimidines of yeast amino acid-transfer RNA are oxidized more slowly than the corresponding mononucleosides, especially the thymine residues. Appreciable oxidation can occur without change of sedimentation coefficient. PMID:6048808

  1. Oxidation of pyrimidine nucleosides and nucleotides by osmium tetroxide.

    PubMed

    Burton, K

    1967-08-01

    1. Pyrimidine nucleosides such as thymidine, uridine or cytidine are oxidized readily at 0 degrees by osmium tetroxide in ammonium chloride buffer. There is virtually no oxidation in bicarbonate buffer of similar pH. Oxidation of 1-methyluracil yields 5,6-dihydro-4,5,6-trihydroxy-1-methyl-2-pyrimidone. 2. Osmium tetroxide and ammonia react reversibly in aqueous solution to form a yellow 1:1 complex, probably OsO(3)NH. A second molecule of ammonia must be involved in the oxidation of UMP since the rate of this reaction is approximately proportional to the square of the concentration of unprotonated ammonia. 3. 4-Thiouridine reacts with osmium tetroxide much more rapidly than does uridine. The changes of absorption spectra are different in sodium bicarbonate buffer and in ammonium chloride buffer. They occur faster in the latter buffer and, under suitable conditions, cytidine is a major product. 4. Polyuridylic acid is oxidized readily by ammoniacal osmium tetroxide, but its oxidation is inhibited by polyadenylic acid. Pyrimidines of yeast amino acid-transfer RNA are oxidized more slowly than the corresponding mononucleosides, especially the thymine residues. Appreciable oxidation can occur without change of sedimentation coefficient.

  2. Dynamically-allocated multi-queue buffers for VLSI communication switches

    NASA Technical Reports Server (NTRS)

    Tamir, Yuval; Frazier, Gregory L.

    1992-01-01

    Several buffer structures are discussed and compared in terms of implementation complexity, interswitch handshaking requirements, and their ability to deal with variations in traffic patterns and message lengths. A new design of buffers is presented that provide non-FIFO message handling and efficient storage allocation for variable size packets using linked lists managed by a simple on-chip controller. The new buffer design is evaluated by comparing it to several alternative designs in the context of a multistage interconnection network. The present modeling and simulations show that the new buffer outperforms alternative buffers and can thus be used to improve the performance of a wide variety of systems currently using less efficient buffers.

  3. Does education buffer the impact of disability on psychological distress?

    PubMed

    Mandemakers, Jornt J; Monden, Christiaan W S

    2010-07-01

    This paper investigates whether education buffers the impact of physical disability on psychological distress. It further investigates what makes education helpful, by examining whether cognitive ability and occupational class can explain the buffering effect of education. Two waves of the 1958 British National Child Development Study are used to test the hypothesis that the onset of a physical disability in early adulthood (age 23 to 33) has a smaller effect on psychological distress among higher educated people. In total 423 respondents (4.6%) experienced the onset of a physical disability between the ages of 23 and 33. We find that a higher educational level cushions the psychology impact of disability. Cognitive ability and occupational class protect against the effect of a disability too. The education buffer arises in part because individuals with a higher level of education have more cognitive abilities, but the better social position of those with higher levels of education appears to be of greater importance. Implications of these findings for the social gradient in health are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Maternal and fetal Acid-base chemistry: a major determinant of perinatal outcome.

    PubMed

    Omo-Aghoja, L

    2014-01-01

    Very small changes in pH may significantly affect the function of various fetal organ systems, such as the central nervous system, and the cardiovascular system with associated fetal distress and poor Apgar score. Review of existing data on maternal-fetal acid-base balance in pregnancy highlight the factors that are associated with derangements of the acid-base status and the impact of the derangements on fetal outcome. Extensive search of electronic databases and manual search of journals for relevant literature on maternal and fetal acid chemistry, clinical studies and case studies were undertaken. There is a substantial reduction in the partial pressure of carbon dioxide (pCO2) in pregnancy. Adequate buffering prevents significant changes in maternal arterial pH. Normal fetal metabolism results in the production of acids which are buffered to maintain extracellular pH within a critical range. Fetal hypoxia can occur when maternal oxygenation is compromised, maternal perfusion of the placenta is reduced, or delivery of oxygenated blood from the placenta to the fetus is impeded. When adequate fetal oxygenation does not occur, metabolisms proceed along with an anaerobic pathway with production of organic acids, such as lactic acid. Accumulation of lactic acid can deplete the buffer system and result in metabolic acidosis with associated low fetal pH, fetal distress and poor Apgar score. There is a significant reduction in pCO2 in pregnancy. This change, however, does not result in a corresponding significant reduction in maternal arterial pH, because of adequate buffering. Very small changes in pH may cause significant derangement in fetal function and outcome.

  5. Rapid and sensitive analytical method for monitoring of 12 organotin compounds in natural waters.

    PubMed

    Vahčič, Mitja; Milačič, Radmila; Sčančar, Janez

    2011-03-01

    A rapid analytical method for the simultaneous determination of 12 different organotin compounds (OTC): methyl-, butyl-, phenyl- and octyl-tins in natural water samples was developed. It comprises of in situ derivatisation (by using NaBEt4) of OTC in salty or fresh water sample matrix adjusted to pH 6 with Tris-citrate buffer, extraction of ethylated OTC into hexane, separation of OTC in organic phase on 15 m GC column and subsequent quantitative determination of separated OTC by ICP-MS. To optimise the pH of ethylation, phosphate, carbonate and Tris-citrate buffer were investigated alternatively to commonly applied sodium acetate - acetic acid buffer. The ethylation yields in Tris-citrate buffer were found to be better for TBT, MOcT and DOcT in comparison to commonly used acetate buffer. Iso-octane and hexane were examined as organic phase for extraction of ethylated OTC. The advantage of hexane was in its ability for quantitative determination of TMeT. GC column of 15 m in length was used for separation of studied OTC under the optimised separation conditions and its performances compared to 30 m column. The analytical method developed enables sensitive simultaneous determination of 12 different OTC and appreciably shortened analysis time in larger series of water samples. LOD's obtained for the newly developed method ranged from 0.05-0.06 ng Sn L-1 for methyl-, 0.11-0.45 ng Sn L-1 for butyl-, 0.11-0.16 ng Sn L-1 for phenyl-, and 0.07-0.10 ng Sn L-1 for octyl-tins. By applying the developed analytical method, marine water samples from the Northern Adriatic Sea containing mainly butyl- and methyl-tin species were analysed to confirm the proposed method's applicability.

  6. Explaining the Spatial Variability in Stream Acid Buffering Chemistry and Aquatic Biota in the Neversink River Watershed, Catskill Mountains, New York State

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.; Walter, M. T.

    2009-12-01

    The Neversink River Watershed (NRW) originates at the highest point in the Catskill Mountains and is sensitive to changing patterns in acidic deposition, precipitation, and air temperature. Despite reductions in fossil fuel emission since the Clean Air Act, past acidic deposition has accelerated the leaching of cations from the soil and reduced the stores of base cations necessary for buffering stream acidity. The goal of this study was to investigate connections between different watershed ‘features’ and the apparently complex spatial patterns of stream buffering chemistry (specifically, acid neutralizing capacity ANC and Ca concentrations) and aquatic biota (macroinvertebrate and fish populations). The ten nested NRW watersheds (2.0 km^2 to 176.0 km^2) have relatively homogeneous bedrock geology, forested cover, and soil series; therefore, we hypothesized that differing distributions of hydrological flowpaths between the watersheds control the variability in stream buffering chemistry and aquatic biota. However because the flowpath distributions are not directly measurable, this study used step-wise linear regression to develop relationships between watershed ‘features’ and buffering chemistry. The regression results showed that the mean ratio of precipitation to stream runoff (or runoff ratio) from twenty non-winter storm events explained more than 81% of the variability in mean summer ANC and Ca concentrations. The results also suggested that steeper (higher mean slope) more channelized watersheds (larger drainage density) are more susceptible to stream acidity and negative impacts on biota. A simple linear relationship (using no discharge or water chemistry measurements) was able to explain buffering chemistry and aquatic biota populations in 17 additional NRW watersheds (0.3 km^2 to 160.0 km^2), including 60-80% of the variability in macroinvertebrate populations (EPT richness and BAP) and 50-60% of the variability in fish density and species richness. These results have several important implications for understanding the effects of climate change on buffering chemistry and aquatic biota in this well-studied watershed. First, the results demonstrate that geomorphological and hydrogeological ‘features’ control the spatial variability of stream buffering chemistry, suggesting that acidification ‘hot-spots’ could be predicted a priori. Second, the connection between event-scale processes (runoff ratio) and average stream chemistry imply that changing precipitation patterns in the Catskills may have uneven effects on long-term buffering chemistry between ‘flashy’ and ‘damped’ watersheds. Specifically, an increasing trend in precipitation in the last 25 years in the Catskill Mountains makes it difficult to compare base cation recovery across NRW streams, even if the concentrations are normalized by discharge. The results of this study could improve the modeling of base cation recovery in surface waters in other mountainous Northeastern U.S. watersheds with future reductions in acidic deposition and differing climate scenarios.

  7. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China

    NASA Astrophysics Data System (ADS)

    Ren, Lihong; Wang, Wei; Wang, Qingyue; Yang, XiaoYang; Tang, Dagang

    2011-12-01

    The acidity of about 2000 particulate matter samples from aircraft and ground-based monitoring is analyzed by the method similar to soil acidity determination. The ground-based samples were collected at about 50 urban or background sites in northern and southern China. Moreover, the acidic buffering capacity of those samples is also analyzed by the method of micro acid-base titration. Results indicate that the acidity level is lower in most northern areas than those in the south, and the acidic buffering capacity showed inverse tendency, correspondingly. This is the most important reason why the pollution of acidic-precipitation is much more serious in Southern China than that in Northern China. The acidity increases and the acidic buffering capacity drops with the decreasing of the particle sizes, indicating that fine particle is the main influencing factor of the acidification. The ionic results show that Ca salt is the main alkaline substance in particulate matter, whereas the acidification of particulate matter is due to the SO 2 and NO x emitted from the fossil fuel burning. And among of them, coal burning is the main contributor of SO 2, however the contribution of NO x that emitted from fuel burning of motor vehicles has increased in recent years. By comparison of the experimental results during the past 20 years, it can be concluded that the acid precipitation of particulate matter has not been well controlled, and it even shows an increasing tendency in China lately. The acid precipitation of particulate matter has begun to frequently attack in part of the northern areas. Multiple regression analysis indicates that coefficient value of the ions is the lowest at the urban sites and the highest at the regional sites, whereas the aircraft measurement results are intermediate between those two kinds of sites.

  8. Rapid Bedside Inactivation of Ebola Virus for Safe Nucleic Acid Tests.

    PubMed

    Rosenstierne, Maiken Worsøe; Karlberg, Helen; Bragstad, Karoline; Lindegren, Gunnel; Stoltz, Malin Lundahl; Salata, Cristiano; Kran, Anne-Marte Bakken; Dudman, Susanne Gjeruldsen; Mirazimi, Ali; Fomsgaard, Anders

    2016-10-01

    Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport, and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available Magna Pure lysis/binding buffer used for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding Magna Pure lysis/binding buffer directly into vacuum blood collection EDTA tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum tubes are stable for more than 4 months, and Ebola virus RNA is preserved in the Magna Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from Magna Pure lysis/binding buffer-inactivated samples using the QIAamp viral RNA minikit. We present an easy and convenient method for bedside inactivation using available blood collection vacuum tubes and reagents. We propose to use this simple method for fast, safe, and easy bedside inactivation of Ebola virus for safe transport and routine nucleic acid detection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. The influence of graded degrees of chronic hypercapnia on the acute carbon dioxide titration curve

    PubMed Central

    Goldstein, Marc B.; Gennari, F. John; Schwartz, William B.

    1971-01-01

    Studies were carried out to determine the influence of the chronic level of arterial carbon dioxide tension upon the buffering response to acute changes in arterial carbon dioxide tension. After chronic adaptation to six levels of arterial CO2 tension, ranging between 35 and 110 mm Hg, unanesthetized dogs underwent acute whole body CO2 titrations. In each instance a linear relationship was observed between the plasma hydrogen ion concentration and the arterial carbon dioxide tension. Because of this linear relationship, it has been convenient to compare the acute buffering responses among dogs in terms of the slope, dH+/dPaco2. With increasing chronic hypercapnia there was a decrease in this slope, i.e. an improvement in buffer capacity, which is expressed by the equation dH+/dPaco2=-0.005 (Paco2)chronic + 0.95. In effect, the ability to defend pH during acute titration virtually doubled as chronic Paco2 increased from 35 to 110 mm Hg. The change in slope, dH+/dPaco2, was the consequence of the following two factors: the rise in plasma bicarbonate concentration which occurs with chronic hypercapnia of increasing severity, and the greater change in bicarbonate concentration which occurred during the acute CO2 titration in the animals with more severe chronic hypercapnia. These findings demonstrate the importance of the acid-base status before acute titration in determining the character of the carbon dioxide titration curve. They also suggest that a quantitative definition of the interplay between acute and chronic hypercapnia in man should assist in the rational analysis of acid-base disorders in chronic pulmonary insufficiency. PMID:5543876

  10. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    PubMed

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Impacts of simulated acid rain on recalcitrance of two different soils.

    PubMed

    Dai, Zhongmin; Liu, Xingmei; Wu, Jianjun; Xu, Jianming

    2013-06-01

    Laboratory experiments were conducted to estimate the impacts of simulated acid rain (SAR) on recalcitrance in a Plinthudult and a Paleudalfs soil in south China, which were a variable and a permanent charge soil, respectively. Simulated acid rains were prepared at pH 2.0, 3.5, 5.0, and 6.0, by additions of different volumes of H2SO4 plus HNO3 at a ratio of 6 to 1. The leaching period was designed to represent 5 years of local annual rainfall (1,200 mm) with a 33 % surface runoff loss. Both soils underwent both acidification stages of (1) cation exchange and (2) mineral weathering at SAR pH 2.0, whereas only cation exchange occurred above SAR pH 3.5, i.e., weathering did not commence. The cation exchange stage was more easily changed into that of mineral weathering in the Plinthudult than in the Paleudalfs soil, and there were some K(+) and Mg(2+) ions released on the stages of mineral weathering in the Paleudalfs soil. During the leaching, the release of exchangeable base cations followed the order Ca(2+) >K(+) >Mg(2+) >Na(+) for the Plinthudult and Ca(2+) >Mg(2+) >Na(+) >K(+) for the Paleudalfs soil. The SARs above pH 3.5 did not decrease soil pH or pH buffering capacity, while the SAR at pH 2.0 decreased soil pH and the buffering capacity significantly. We conclude that acid rain, which always has a pH from 3.5 to 5.6, only makes a small contribution to the acidification of agricultural soils of south China in the short term of 5 years. Also, Paleudalfs soils are more resistant to acid rain than Plinthudult soils. The different abilities to prevent leaching by acid rain depend upon the parent materials, types of clay minerals, and soil development degrees.

  12. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO 3 supplementation condition. From the medium containing 50 g sugars l -1 and 0.5 g formic acid l -1 , only 0.75 g ABE l -1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l -1 was produced when pH was adjusted by 4 g CaCO 3 l -1 . The beneficial effect can be ascribed to the buffering capacity of CaCO 3 . Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO 3 . Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO 3 supplementation due to its buffering capacity.

  14. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.

  15. Optimizing buffering chemistry to maintain near neutral pH of broiler feed during pre-enrichment for Salmonella.

    PubMed

    Berrang, M E; Cosby, D E; Cox, N A; Cason, J A; Richardson, K E

    2015-12-01

    Salmonella is a human pathogen that can accompany live broilers to the slaughter plant, contaminating fully processed carcasses. Feed is one potential source of Salmonella to growing broilers. Monitoring feed for the presence of Salmonella is part of good agricultural practice. The first step in culturing feed for Salmonella (which may be at low numbers and sub-lethally stressed) is to add it to a pre-enrichment broth which is incubated for 24 h. During the course of pre-enrichment, extraneous bacteria metabolize carbohydrates in some feed and excrete acidic byproducts, causing the pH to drop dramatically. An acidic pre-enrichment pH can injure or kill Salmonella resulting in a failure to detect, even if it is present and available to infect chickens. The objective of this study was to test an array of buffering chemistries to prevent formation of an injurious acidic environment during pre-enrichment of feed in peptone water. Five grams of feed were added to 45 mL of peptone water buffered with carbonate, Tris pH 8, and phosphate buffering ingredients individually and in combination. Feed was subjected to a pre-enrichment at 35°C for 24 h; pH was measured at 0, 18, and 24 h. Standard phosphate buffering ingredients at concentrations up to 4 times the normal formulation were unable to fully prevent acidic conditions. Likewise, carbonate and Tris pH 8 were not fully effective. The combination of phosphate, carbonate, and Tris pH 8 was the most effective buffer tested. It is recommended that a highly buffered pre-enrichment broth be used to examine feed for the presence of Salmonella. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Sarcolemmal mechanisms for pHi recovery from alkalosis in the guinea-pig ventricular myocyte

    PubMed Central

    Leem, Chae-Hun; Vaughan-Jones, Richard D

    1998-01-01

    The mechanism of pHi recovery from an intracellular alkali load (induced by acetate prepulse or by reduction/removal of ambient PCO2) was investigated using intracellular SNARF fluorescence in the guinea-pig ventricular myocyte. In Hepes buffer (pHo 7.40), pHi recovery was inhibited by removal of extracellular Cl−, but not by removal of Na+o or elevation of K+o. Recovery was unaffected by the stilbene drug DIDS (4,4-diisothiocyanatostilbene-disulphonic acid), but was slowed dose dependently by the stilbene drug DBDS (dibenzamidostilbene-disulphonic acid). In 5 % CO2/HCO3− buffer (pHo 7.40), pHi recovery was faster than in Hepes buffer. It consisted of an initial rapid recovery phase followed by a slow phase. Much of the rapid phase has been attributed to CO2-dependent buffering. The slow phase was inhibited completely by Cl− removal but not by Na+o removal or K+o elevation. At a test pHi of 7.30 in CO2/HCO3− buffer, the slow phase was inhibited 70 % by DIDS. The mean DIDS-inhibitable acid influx was equivalent in magnitude to the HCO3−-stimulated acid influx. Similarly, the DIDS-insensitive influx was equivalent to that estimated in Hepes buffer. We conclude that two independent sarcolemmal acid-loading carriers are stimulated by a rise of pHi and account for the slow phase of recovery from an alkali load. The results are consistent with activation of a DIDS-sensitive Cl−-HCO3− anion exchanger (AE) to produce HCO3− efflux, and a DIDS-insensitive Cl−-OH− exchanger (CHE) to produce OH− efflux. H+-Cl− co-influx as the alternative configuration for CHE is not, however, excluded. The dual acid-loading system (AE plus CHE), previously shown to be activated by a fall of extracellular pH, is thus activated by a rise of intracellular pH. Activity of the dual-loading system is therefore controlled by pH on both sides of the cardiac sarcolemma. PMID:9575297

  17. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase

    PubMed Central

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060

  18. Development of a nucleic Acid extraction procedure for simultaneous recovery of DNA and RNA from diverse microbes in water.

    PubMed

    Hill, Vincent R; Narayanan, Jothikumar; Gallen, Rachel R; Ferdinand, Karen L; Cromeans, Theresa; Vinjé, Jan

    2015-05-26

    Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters.

  19. Development of a Nucleic Acid Extraction Procedure for Simultaneous Recovery of DNA and RNA from Diverse Microbes in Water

    PubMed Central

    Hill, Vincent R.; Narayanan, Jothikumar; Gallen, Rachel R.; Ferdinand, Karen L.; Cromeans, Theresa; Vinjé, Jan

    2015-01-01

    Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters. PMID:26016775

  20. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  1. Maternal and Fetal Acid-Base Chemistry: A Major Determinant of Perinatal Outcome

    PubMed Central

    Omo-Aghoja, L

    2014-01-01

    Very small changes in pH may significantly affect the function of various fetal organ systems, such as the central nervous system, and the cardiovascular system with associated fetal distress and poor Apgar score. Review of existing data on maternal-fetal acid-base balance in pregnancy highlight the factors that are associated with derangements of the acid-base status and the impact of the derangements on fetal outcome. Extensive search of electronic databases and manual search of journals for relevant literature on maternal and fetal acid chemistry, clinical studies and case studies were undertaken. There is a substantial reduction in the partial pressure of carbon dioxide (pCO2) in pregnancy. Adequate buffering prevents significant changes in maternal arterial pH. Normal fetal metabolism results in the production of acids which are buffered to maintain extracellular pH within a critical range. Fetal hypoxia can occur when maternal oxygenation is compromised, maternal perfusion of the placenta is reduced, or delivery of oxygenated blood from the placenta to the fetus is impeded. When adequate fetal oxygenation does not occur, metabolisms proceed along with an anaerobic pathway with production of organic acids, such as lactic acid. Accumulation of lactic acid can deplete the buffer system and result in metabolic acidosis with associated low fetal pH, fetal distress and poor Apgar score. There is a significant reduction in pCO2 in pregnancy. This change, however, does not result in a corresponding significant reduction in maternal arterial pH, because of adequate buffering. Very small changes in pH may cause significant derangement in fetal function and outcome. PMID:24669324

  2. Role of Buffers in Protein Formulations.

    PubMed

    Zbacnik, Teddy J; Holcomb, Ryan E; Katayama, Derrick S; Murphy, Brian M; Payne, Robert W; Coccaro, Richard C; Evans, Gabriel J; Matsuura, James E; Henry, Charles S; Manning, Mark Cornell

    2017-03-01

    Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates.

    PubMed

    Ragoonanan, Vishard; Suryanarayanan, Raj

    2014-06-01

    We hypothesize that ultrasonication can accelerate solute crystallization in freeze-concentrates. Our objective is to demonstrate ultrasonication as a potential predictive tool for evaluating physical stability of excipients in frozen solutions. The crystallization tendencies of lyoprotectants (trehalose, sucrose), carboxylic acid buffers (citric, tartaric, malic, and acetic) and an amino acid buffer (histidine HCl) were studied. Aqueous solutions of buffers, lyoprotectants and mixtures of the two were cooled from room temperature to -20°C and sonicated to induce solute crystallization. The crystallized phases were identified by X-ray diffractometry (laboratory or synchrotron source). Sonication accelerated crystallization of trehalose dihydrate in frozen trehalose solutions. Sonication also enhanced solute crystallization in tartaric (200 mM; pH 5), citric (200 mM pH 4) and malic (200 mM; pH 4) acid buffers. At lower buffer concentrations, longer annealing times following sonication were required to facilitate solute crystallization. The time for crystallization of histidine HCl progressively increased as a function of sucrose concentration. The insonation period required to effect crystallization also increased with sucrose concentration. Sonication can substantially accelerate solute crystallization in the freeze-concentrate. Ultrasonication may be useful in assessing the crystallization tendency of formulation constituents used in long term frozen storage and freeze-drying.

  4. An exploratory study into students' conceptual understanding of acid/base principles associated with chemical buffer systems

    NASA Astrophysics Data System (ADS)

    MacGowan, Catherine Elizabeth

    The overall objective of this research project was to provide an insight into students' conceptual understanding of acid/base principles as it relates to the comprehension and correct application of scientific concepts during a problem-solving activity. The difficulties experienced learning science and in developing appropriate problem-solving strategies most likely are predetermined by students' existing conceptual and procedural knowledge constructs; with the assimilation of newly acquired knowledge hindering or aiding the learning process. Learning chemistry requires a restructuring of content knowledge which will allow the individual to assemble and to integrate his/her own perception of science with instructional knowledge. The epistemology of constructivism, the theoretical grounding for this research project, recognizes the student's role as an active participant in the learning process. The study's design was exploratory in nature and descriptive in design. The problem-solving activity, the preparation of a chemical buffer solution at pH of 9, was selected and modified to reflect and meet the study's objective. Qualitative research methods (i.e., think aloud protocols, retrospective interviews, survey questionnaires such as the Scale of Intellectual Development (SID), and archival data sources) were used in the collection and assessment of data. Given its constructivist grounding, simplicity, and interpretative view of knowledge acquisition and learning of collegiate aged individuals, the Perry Intellectual and Ethical Development Model (1970) was chosen as the applied model for evaluation student cognition. The study's participants were twelve traditional college age students from a small, private liberal arts college. All participants volunteered for the project and had completed or were completing a general college chemistry course at the time of the project. Upon analysis of the data the following observations and results were noted: (1) students' overall comprehension level of key acid/base principles was at the misconception/miscued level of understanding; (2) the level of a student's conceptual knowledge effected their problem-solving performance and influenced their use of problem-solving tactics; (3) students casual use of the terms "acid" and/or "base" played a significant role in the misuse and misunderstanding of the principles of acid/base chemistry; (4) as assessed from their think aloud protocols and described by the Perry Scheme positions of intellect the study's participants' overall level of cognition were ranked as dualistic/relativistic thinkers; and (5) the SID questionnaire survey rankings did not seem to assess or reflect the participants' cognitive ability to learn or correctly use acid/base concepts as they preformed the study's problem-solving activity--the preparation of buffer solution having a pH of 9.

  5. Calculated and measured [Ca(2+)] in buffers used to calibrate Ca(2+) macroelectrodes.

    PubMed

    McGuigan, John A S; Stumpff, Friederike

    2013-05-01

    The ionized concentration of calcium in physiological buffers ([Ca(2+)]) is normally calculated using either tabulated constants or software programs. To investigate the accuracy of such calculations, the [Ca(2+)] in EGTA [ethylene glycol-bis(β-aminoethylether)-N,N,N|,N|-tetraacetic acid], BAPTA [1,2-bis(o-aminophenoxy) ethane-N,N,N|,N|-tetraacetic acid], HEDTA [N-(2-hydroxyethyl)-ethylenediamine-N,N|,N|-triacetic acid], and NTA [N,N-bis(carboxymethyl)glycine] buffers was estimated using the ligand optimization method, and these measured values were compared with calculated values. All measurements overlapped in the pCa range of 3.51 (NTA) to 8.12 (EGTA). In all four buffer solutions, there was no correlation between measured and calculated values; the calculated values differed among themselves by factors varying from 1.3 (NTA) to 6.9 (EGTA). Independent measurements of EGTA purity and the apparent dissociation constants for HEDTA and NTA were not significantly different from the values estimated by the ligand optimization method, further substantiating the method. Using two calibration solutions of pCa 2.0 and 3.01 and seven buffers in the pCa range of 4.0-7.5, calibration of a Ca(2+) electrode over the pCa range of 2.0-7.5 became a routine procedure. It is proposed that such Ca(2+) calibration/buffer solutions be internationally defined and made commercially available to allow the precise measurement of [Ca(2+)] in biology. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction†

    PubMed Central

    Sciacca, Beniamino; Alvarez, Sara D.; Geobaldo, Francesco; Sailor, Michael J.

    2011-01-01

    The high stability of Salonen’s thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge—many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces. PMID:20967329

  7. A comprehensive structure-function analysis shed a new light on molecular mechanism by which a novel smart copolymer, NY-3-1, assists protein refolding.

    PubMed

    Ye, Chaohui; Ilghari, Dariush; Niu, Jianlou; Xie, Yaoyao; Wang, Yan; Wang, Chao; Li, Xiaokun; Liu, Bailin; Huang, Zhifeng

    2012-08-31

    An in-depth understanding of molecular basis by which smart polymers assist protein refolding can lead us to develop a more effective polymer for protein refolding. In this report, to investigate structure-function relationship of pH-sensitive smart polymers, a series of poly(methylacrylic acid (MAc)-acrylic acid (AA))s with different MAc/AA ratios and molecular weights were synthesized and then their abilities in refolding of denatured lysozyme were compared by measuring the lytic activity of the refolded lysozyme. Based on our analysis, there were optimal MAc/AA ratio (44% MAc), M(w) (1700 Da), and copolymer concentration (0.1%, w/v) at which the highest yield of protein refolding was achieved. Fluorescence, circular dichroism, and RP-HPLC analysis reported in this study demonstrated that the presence of P(MAc-AA)s in the refolding buffer significantly improved the refolding yield of denatured lysozyme without affecting the overall structure of the enzyme. Importantly, our bioseparation analysis, together with the analysis of zeta potential and particle size of the copolymer in refolding buffers with different copolymer concentrations, suggested that the polymer provided a negatively charged surface for an electrostatic interaction with the denatured lysozyme molecules and thereby minimized the hydrophobic-prone aggregation of unfolded proteins during the process of refolding. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    PubMed

    Ramirez-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  9. Performance of an Anaerobic Baffled Reactor (ABR) in treatment of cassava wastewater

    PubMed Central

    Ferraz, Fernanda M.; Bruni, Aline T.; Del Bianchi, Vanildo L.

    2009-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater, a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35ºC was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000 mg L-1 and it was evaluated the most appropriated hydraulic retention time (HRT) for the best performance on COD removal. The ABR was evaluated by analysis of COD (colorimetric method), pH, turbidity, total and volatile solids, alkalinity and acidity. Principal component analysis (PCA) was carried to better understand data obtained. The system showed buffering ability as acidity decreased along compartments while alkalinity and pH values were increased. There was particulate material retention and COD removal varied from 83 to 92% for HRT of 3.5 days. PMID:24031316

  10. Features of the adsoprtion of naproxen on the chiral stationary phase (S,S)-Whelk-O1 under reversed-phase conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asnin, Leonid; Gritti, Fabrice; Kaczmarski, Krzysztof

    Using elution chromatography, we studied the adsorption mechanism of the Naproxen enantiomers on the chiral stationary phase (S,S)-Whelk-O1, from buffered methanol-water solutions. We propose an adsorption mechanism that assumes monolayer adsorption of the more retained enantiomer and the associative adsorption of the less retained one. The effects of the mobile phase composition on the adsorption of Naproxen are discussed. The combination of an elevated column temperature and of the use of an acidic mobile phase led to the degradation of the column and caused a major loss of its separation ability. The use of a moderately acidic mobile phase atmore » temperature slightly above ambient did not produce rapid severe damages but, nevertheless, hampered the experiments and caused a slow gradual deterioration of the column.« less

  11. Ocean acidification may increase calcification rates, but at a cost

    PubMed Central

    Wood, Hannah L; Spicer, John I; Widdicombe, Stephen

    2008-01-01

    Ocean acidification is the lowering of pH in the oceans as a result of increasing uptake of atmospheric carbon dioxide. Carbon dioxide is entering the oceans at a greater rate than ever before, reducing the ocean's natural buffering capacity and lowering pH. Previous work on the biological consequences of ocean acidification has suggested that calcification and metabolic processes are compromised in acidified seawater. By contrast, here we show, using the ophiuroid brittlestar Amphiura filiformis as a model calcifying organism, that some organisms can increase the rates of many of their biological processes (in this case, metabolism and the ability to calcify to compensate for increased seawater acidity). However, this upregulation of metabolism and calcification, potentially ameliorating some of the effects of increased acidity comes at a substantial cost (muscle wastage) and is therefore unlikely to be sustainable in the long term. PMID:18460426

  12. Evidence for biofilm acid neutralization by baking soda.

    PubMed

    Zero, Domenick T

    2017-11-01

    The generating of acids from the microbial metabolism of dietary sugars and the subsequent decrease in biofilm pH below the pH at which tooth mineral begins to demineralize (critical pH) are the key elements of the dental caries process. Caries preventive strategies that rapidly neutralize biofilm acids can prevent demineralization and favor remineralization and may help prevent the development of sugar-induced dysbiosis that shifts the biofilm toward increased cariogenic potential. Although the neutralizing ability of sodium bicarbonate (baking soda) has been known for many years, its anticaries potential as an additive to fluoride dentifrice has received only limited investigation. There is evidence that baking soda rapidly can reverse the biofilm pH decrease after a sugar challenge; however, the timing of when it is used in relation to a dietary sugar exposure is critical in that the sooner its used the greater the benefit in preventing a sustained biofilm pH decrease and subsequent demineralization. Furthermore, the effectiveness of baking soda in elevating biofilm pH appears to depend on concentration. Thus, the concentration of baking soda in marketed dentifrice products, which ranges from 10% to 65%, may affect their biofilm pH neutralizing performance. People with hyposalivation particularly may benefit from using fluoride dentifrice containing baking soda because of their diminished ability to clear dietary sugars and buffer biofilm acids. Although promising, there is the need for more evidence that strategies that modify the oral ecology, such as baking soda, can alter the cariogenic (acidogenic and aciduric) properties of biofilm microorganisms. The acid neutralization of dental biofilm by using fluoride dentifrice that contains baking soda has potential for helping counteract modern high-sugar diets by rapidly neutralizing biofilm-generated acid, especially in people with hyposalivation. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  13. Acid-base metabolism: implications for kidney stones formation.

    PubMed

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ <--> NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  14. Effect of penicillin on fatty acid synthesis and excretion in Streptococcus mutans BHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brissette, J.L.; Pieringer, R.A.

    Treatment of exponentially growing cultures of Streptococcus mutans BHT with growth-inhibitory concentrations (0.2 microgram/ml) of benzylpenicillin stimulates the incorporation of (2-/sup 14/C) acetate into lipids excreted by the cells by as much as 69-fold, but does not change the amount of /sup 14/C incorporated into intracellular lipids. At this concentration of penicillin cellular lysis does not occur. The radioactive label is incorporated exclusively into the fatty acid moieties of the glycerolipids. During a 4-hr incubation in the presence of penicillin, the extracellular fatty acid ester concentration increases 1.5 fold, even though there is no growth or cellular lysis. An indicationmore » of the relative rate of fatty acid synthesis was most readily obtained by placing S. mutans BHT in a buffer containing /sup 14/C-acetate. Under these nongrowing conditions free fatty acids are the only lipids labeled, a factor which simplifies the assay. The addition of glycerol to the buffer causes all of the nonesterified fatty acids to be incorporated into glycerolipid. The cells excrete much of the lipid whether glycerol is present or not. Addition of penicillin to the nongrowth supporting buffer system does not stimulate the incorporation of (/sup 14/C)-acetate into fatty acids.« less

  15. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.

  16. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    PubMed Central

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  17. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  18. Rosmarinic acid improves function and in vitro fertilising ability of boar sperm after cryopreservation.

    PubMed

    Luño, Victoria; Gil, Lydia; Olaciregui, Maite; González, Noelia; Jerez, Rodrigo Alberto; de Blas, Ignacio

    2014-08-01

    During cryopreservation, oxidative stress exerts physical and chemical changes on sperm functionality. In the present study we investigated the antioxidant effect of rosmarinic acid (RA) on quality and fertilising ability of frozen-thawed boar spermatozoa. Ejaculates collected from mature boar were cryopreserved in lactose-egg yolk buffer supplemented with different concentrations of RA (0 μM, 26.25 μM, 52.5 μM and 105 μM). Motion parameters, acrosome and plasma membrane integrity, lipoperoxidation levels, DNA oxidative damage (8-hydroxy-2-deoxyguanosine base lesion) and in vitro fertilisation ability were evaluated. Total and progressive motility were significantly higher in experimental extenders with RA than in the control (P<0.05) at 0 and 120 min post-thawing. The plasma and acrosomal membrane integrity were improved by supplementation with 105 μMRA (P<0.05). Negative correlation between RA and malondialdehyde (MDA) concentration were determined (P<0.05). After thawing, the percentage of spermatozoa with oxidised DNA did not differ between extenders, however, at 120 and 240 min post-thawing, the samples supplemented with 105 μMRA showed the lowest DNA oxidation rate (P<0.05). The penetration rate was significantly higher on spermatozoa cryopreserved with 105 μMRA (P<0.05). The results suggest that RA provides a protection for boar spermatozoa against oxidative stress during cryopreservation by their antioxidant properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study.

    PubMed

    Jayaraj, D; Ganesan, S

    2015-01-01

    The diagnostic utility of saliva is currently being explored in various branches of dentistry, remarkably in the field of caries research. This study was aimed to determine if assessment of salivary pH and buffering capacity would serve as reliable tools in risk prediction of early childhood caries (ECC). Paraffin-stimulated salivary samples were collected from 50 children with ECC (group I) and 50 caries free children (group II). Salivary pH and buffering capacity (by titration with 0.1 N hydrochloric acid) were assessed using a handheld digital pH meter in both groups. The data obtained were subjected to statistical analysis. Statistically, no significant difference was observed between both the groups for all salivary parameters assessed, except for the buffering capacity level at 150 μl titration of 0.1 N hydrochloric acid (p = 0.73; significant at 1% level). Salivary pH and buffering capacity may not serve as reliable markers for risk prediction of ECC. How to cite this article: Jayaraj D, Ganesan S. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study. Int J Clin Pediatr Dent 2015;8(3):167-171.

  20. A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules.

    PubMed

    Tsunehiro, Masaya; Meki, Yuma; Matsuoka, Kanako; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2013-04-15

    A simple and efficient method based on magnetic-bead technology has been developed for the separation of phosphorylated and nonphosphorylated low-molecular-weight biomolecules, such as nucleotides, phosphorylated amino acids, or phosphopeptides. The phosphate-binding site on the bead is an alkoxide-bridged dinuclear zinc(II) complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag), which is linked to a hydrophilic cross-linked agarose coating on a magnetic core particle. All steps for the phosphate-affinity separation are conducted in buffers of neutral pH with 50 μL of the magnetic beads in a 1.5-mL microtube. The entire separation protocol for phosphomonoester-type compounds, from addition to elution, requires less than 12 min per sample if the buffers and the zinc(II)-bound Phos-tag magnetic beads have been prepared in advance. The phosphate-affinity magnetic beads are reusable at least 15 times without a decrease in their phosphate-binding ability and they are stable for three months in propan-2-ol. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Poly(propyleneimine) glycodendrimers non-covalently bind ATP in a pH- and salt-dependent manner - model studies for adenosine analogue drug delivery.

    PubMed

    Gorzkiewicz, Michał; Buczkowski, Adam; Appelhans, Dietmar; Voit, Brigitte; Pułaski, Łukasz; Pałecz, Bartłomiej; Klajnert-Maculewicz, Barbara

    2018-06-10

    Adenosine analogue drugs (such as fludarabine or cladribine) require transporter-mediated uptake into cells and subsequent phosphorylation for anticancer activity. Therefore, application of nanocarrier systems for direct delivery of active triphosphate forms has been proposed. Here, we applied isothermal titration calorimetry and zeta potential titration to determine the stoichiometry and thermodynamic parameters of interactions between 4th generation poly(propyleneimine) dendrimers (unmodified or sugar-modified for increased biocompatibility) and ATP as a model adenosine nucleotide. We showed that glycodendrimers have the ability to efficiently interact with nucleoside triphosphates and to form stable complexes via electrostatic interactions between the ionized phosphate and amino groups on the nucleotide and the dendrimer, respectively. The complexation process is spontaneous, enthalpy-driven and depends on buffer composition (strongest interactions in organic buffer) and pH (more binding sites in acidic pH). These properties allow us to consider maltose-modified dendrimers as especially promising carriers for adenosine analogues. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    NASA Astrophysics Data System (ADS)

    Liljestrand, Howard M.

    The system of water equilibrated with a constant partial pressure of CO 2, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not [H +]. Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity [H +] yields erroneously low mean pH values. To extend the open CO 2 system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometeors is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH 3, HCl, HNO 3, SO 2 and CH 3COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  3. The reaction of iodobenzene-p-sulphonyl chloride (pipsyl chloride) with certain amino acids and peptides, and with insulin

    PubMed Central

    Fletcher, J. C.

    1967-01-01

    1. A system of separation using buffered Celite columns is described that enables the pipsyl derivatives of most of the common amino acids to be separated. 2. The reaction of pipsyl chloride with several amino acids not included in previous studies has been investigated. In particular, knowledge of the acid-soluble pipsyl derivatives of arginine, histidine, lysine, tyrosine and cysteic acid has been extended. 3. Reproducible factors have been obtained that enable corrections to be applied for the breakdown of pipsylamino acids on acid hydrolysis. 4. The reaction of pipsyl chloride with peptides has been studied under various conditions. 5. The extent of the reaction between pipsyl chloride and insulin depends on the nature of the solvent–buffer system, and under the best conditions so far found is about 75% complete. 6. In an Appendix, the separation of pipsylamino acids by thin-layer chromatography is described. PMID:16742498

  4. Differences in the ribosomes prepared from lactating and non-lactating bovine mammary gland

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1971-01-01

    1. Ribosomes prepared from bovine lactating mammary gland are able to synthesize protein, whereas similar preparations from non-lactating glands are not. Washing the ribosome suspensions through a medium containing 0.5m-ammonium chloride enhanced their ability to incorporate phenylalanine into polyphenylalanine. 2. Ribosomes isolated from non-lactating bovine mammary gland, in contrast with those from rat liver and lactating mammary gland, contained significant amounts of extraneous nucleases. These enzymes could be removed by washing with a medium A buffer containing 0.5m-ammonium chloride. 3. Only those ribosomes from functionally active tissues were able to bind polyuridylic acid and phenylalanyl-tRNA. PMID:5165653

  5. Political skill: A proactive inhibitor of workplace aggression exposure and an active buffer of the aggression-strain relationship.

    PubMed

    Zhou, Zhiqing E; Yang, Liu-Qin; Spector, Paul E

    2015-10-01

    In the current study we examined the role of 4 dimensions of political skill (social astuteness, interpersonal influence, networking ability, and apparent sincerity) in predicting subsequent workplace aggression exposure based on the proactive coping framework. Further, we investigated their buffering effects on the negative outcomes of experienced workplace aggression based on the transactional stress model. Data were collected from nurses at 3 time points: before graduation (Time 1, n = 346), approximately 6 months after graduation (Time 2, n = 214), and approximately 12 months after graduation (Time 3, n = 161). Results showed that Time 1 interpersonal influence and apparent sincerity predicted subsequent physical aggression exposure. Exposure to physical and/or psychological workplace aggression was related to increased anger and musculoskeletal injury, and decreased job satisfaction and career commitment. Further, all dimensions of political skill but networking ability buffered some negative effects of physical aggression, and all dimensions but social astuteness buffered some negative effects of psychological aggression. (c) 2015 APA, all rights reserved).

  6. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  7. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  8. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    PubMed

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  9. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space

    PubMed Central

    Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Takahashi, Hidekazu; Uo, Motohiro

    2018-01-01

    This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii)  1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased. PMID:29854774

  10. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space.

    PubMed

    Wada, Takahiro; Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Ueno, Toshiaki; Takahashi, Hidekazu; Uo, Motohiro

    2018-01-01

    This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii)  1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased.

  11. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.

    PubMed

    Imani, Rana; Shao, Wei; Taherkhani, Samira; Emami, Shahriar Hojjati; Prakash, Satya; Faghihi, Shahab

    2016-11-01

    The aim of this study is to improve hydrocolloid stability and siRNA transfection ability of a reduced graphene oxide (rGO) based nano-carrier using a phospholipid-based amphiphilic polymer (PL-PEG) and cell penetrating peptide (CPPs). The dual functionalized nano-carrier is comprehensively characterized for its chemical structure, size, surface charge and morphology as well as thermal stability. The nano-carrier cytocompatibility, siRNA condensation ability both in the presence and absence of enzyme, endosomal buffering capacity, cellular uptake and intracellular localization are also assessed. The siRNA loaded nano-carrier is used for internalization to MCF-7 cells and its gene silencing ability is compared with AllStars Hs Cell Death siRNA as a model gene. The nano-carrier remains stable in biological solution, exhibits excellent cytocompatibility, retards the siRNA migration and protects it against enzyme degradation. The buffering capacity analysis shows that incorporation of the peptide in nano-carrier structure would increase the resistance to endo/lysosomal like acidic condition (pH 6-4) The functionalized nano-carrier which is loaded with siRNA in an optimal N:P ratio presents superior internalization efficiency (82±5.1% compared to HiPerFect(®)), endosomal escape quality and capable of inducing cell death in MCF-7 cancer cells (51±3.1% compared to non-treated cells). The success of siRNA-based therapy is largely dependent on the safe and efficient delivery system, therefore; the dual functionalized rGO introduced here could have a great potential to be used as a carrier for siRNA delivery with relevancy in therapeutics and clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L

    2013-12-01

    Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.

  13. Asparagine deamidation dependence on buffer type, pH, and temperature.

    PubMed

    Pace, Amanda L; Wong, Rita L; Zhang, Yonghua Taylor; Kao, Yung-Hsiang; Wang, Y John

    2013-06-01

    The deamidation of asparagine into aspartate and isoaspartate moieties is a major pathway for the chemical degradation of monoclonal antibodies (mAbs). It can affect the shelf life of a therapeutic antibody that is not formulated or stored appropriately. A new approach to detect deamidation using ion exchange chromatography was developed that separates papain-digested mAbs into Fc and Fab fragments. From this, deamidation rates of each fragment can be calculated. To generate kinetic parameters useful in setting shelf life, buffers prepared at room temperature and then placed at the appropriate stability temperatures. Solution pH was not adjusted to the same at different temperatures. Deamidation rate at 40°C was faster in acidic buffers than in basic buffers. However, this trend is reversed at 5°C, attributed to the change in hydroxide ion concentration influenced by buffer and temperature. The apparent activation energy was higher for rates generated in an acidic buffer than in a basic buffer. The rate-pH profile for mAb1 can be deconvoluted to Fc and Fab. The Fc deamidation showed a V-shaped profile: deamidation of PENNY peptide is responsible for the rate at high-pH, whereas deamidation of a new site, Asn323, may be responsible for the rate at low-pH. The profile for Fab is a straight line without curvature. Copyright © 2013 Wiley Periodicals, Inc.

  14. Films based on neutralized chitosan citrate as innovative composition for cosmetic application.

    PubMed

    Libio, Illen C; Demori, Renan; Ferrão, Marco F; Lionzo, Maria I Z; da Silveira, Nádya P

    2016-10-01

    In this work, citrate and acetate buffers, were investigated as neutralizers to chitosan salts in order to provide biocompatible and stable films. To choose the appropriate film composition for this study, neutralized chitosan citrate and acetate films, with and without the plasticizer glycerol, were prepared and characterized by thickness, moisture content, degree of swelling, total soluble matter in acid medium, simultaneous thermal analysis and differential scanning calorimetry. Chitosan films neutralized in citrate buffer showed greater physical integrity resulted from greater thicknesses, lower moisture absorbance, lower tendency to solubility in the acid medium, and better swelling capacities. According to thermal analyses, these films had higher interaction with water which is considered an important feature for cosmetic application. Since the composition prepared in citrate buffer without glycerol was considered to present better physical integrity, it was applied to investigate hyaluronic acid release in a skin model. Skins treated with those films, with or without hyaluronic acid, show stratum corneum desquamation and hydration within 10min. The results suggest that the neutralized chitosan citrate film prepared without glycerol promotes a cosmetic effect for skin exfoliation in the presence or absence of hyaluronic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. RNA extraction from various recalcitrant plant tissues with a cethyltrimethylammonium bromide-containing buffer followed by an acid guanidium thiocyanate-phenol-chloroform treatment.

    PubMed

    Suzuki, Yuji; Mae, Tadahiko; Makino, Amane

    2008-07-01

    High-quality total RNA was extracted using a cethyltrimethylammonium bromide-containing buffer followed by an acid guanidium thiocyanate-phenol-chloroform treatment from recalcitrant plant tissues such as tree leaves (pine, Norway spruce, ginkgo, Japanese cedar, rose), flowers (rose, Lotus japonicus) and storage tissues (seeds of Lotus japonicus and rice, sweet potato tuber, banana fruit). This protocol greatly reduced the time required for RNA extraction.

  16. [Determination of glutamic acid in biological material by capillary electrophoresis].

    PubMed

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  17. Simultaneous determination of thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II) based on isothermal titration calorimetry data.

    PubMed

    Tesmar, Aleksandra; Wyrzykowski, Dariusz; Muñoz, Eva; Pilarski, Bogusław; Pranczk, Joanna; Jacewicz, Dagmara; Chmurzyński, Lech

    2017-04-01

    The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co 2 + and Ni 2 + ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L -1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co 2 + and Ni 2 + complexes and their thermodynamic stabilities are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Amino Acid-Assisted Dehalogenation of Carbon Tetrachloride by Green Rust: Inhibition of Chloroform Production.

    PubMed

    Yin, Weizhao; Strobel, Bjarne W; B Hansen, Hans Christian

    2017-03-21

    Layered Fe II -Fe III hydroxides (green rusts, GRs) are promising reactants for reductive dechlorination of chlorinated solvents due to high reaction rates and the opportunity to inject reactive slurries of the compounds into contaminant plumes. However, it is necessary to develop strategies that reduce the formation of toxic byproducts such as chloroform (CF). In this study, carbon tetrachloride (CT) dehalogenation by the chloride form of GR (GR Cl ) was tested in the presence of glycine (GLY) and other selected amino acids. GLY, alanine (ALA), and serine (SER) all resulted in remarkable suppression of CF formation with only ∼10% of CF recovery while sarcosine (SAR) showed insignificant effects. For two nonamino acid buffers, TRIS had little effect while HEPES resulted in a 40 times lower rate constant compared to experiments in which no buffer was added. The Fe II complexing properties of the amino acids and buffers caused variable extents of GR Cl dissolution which was linearly correlated with CF suppression and dehalogenation rate. We hypothesize that the CF suppression seen for amino acids is caused by stabilization of carbene intermediates via the carbonyl group. Different effects on CF suppression and CT dehalogenation rate were expected because of the different structural and chemical properties of the amino acids.

  19. Identifying Riparian Buffer Effects on Stream 1 Nitrogen in Southeastern Coastal Plain Watersheds

    EPA Science Inventory

    Riparian areas have long demonstrated their ability to attenuate nutrients and sediments from agricultural runoff at the field scale; however, to inform effective nutrient management choices, the impact of riparian buffers on water quality services must be assessed at watershed s...

  20. A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid deposition

    USGS Publications Warehouse

    Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.

    2004-01-01

    Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.

  1. Buffer capacity of the coelomic fluid in echinoderms.

    PubMed

    Collard, Marie; Laitat, Kim; Moulin, Laure; Catarino, Ana I; Grosjean, Philippe; Dubois, Philippe

    2013-09-01

    The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8mmolkg(-1) SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4mmolkg(-1) SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3mmolkg(-1) SW compared to unfed ones who showed a difference of about 0.5mmolkg(-1) SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH7.7 to about twice that of the control individuals and, for those at pH7.4, about three times. This allowed a partial compensation of the coelomic fluid pH for individuals maintained at pH7.7 but not for those at pH7.4. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, F. W.; Lane, M. W., E-mail: mlane@ehc.edu; Gates, S. M.

    2014-05-15

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, thismore » work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.« less

  3. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  4. The impact of reduced gastric acid secretion on dissolution of salts of weak bases in the fasted upper gastrointestinal lumen: Data in biorelevant media and in human aspirates.

    PubMed

    Litou, Chara; Vertzoni, Maria; Xu, Wei; Kesisoglou, Filippos; Reppas, Christos

    2017-06-01

    To propose media for simulating the intragastric environment under reduced gastric acid secretion in the fasted state at three levels of simulation of the gastric environment and evaluate their usefulness in evaluating the intragastric dissolution of salts of weak bases. To evaluate the importance of bicarbonate buffer in biorelevant in vitro dissolution testing when using Level II biorelevant media simulating the environment in the fasted upper small intestine, regardless of gastric acid secretions. Media for simulating the hypochlorhydric and achlorhydric conditions in stomach were proposed using phosphates, maleates and bicarbonates buffers. The impact of bicarbonates in Level II biorelevant media simulating the environment in upper small intestine was evaluated so that pH and bulk buffer capacity were maintained. Dissolution data were collected using two model compounds, pioglitazone hydrochloride and semifumarate cocrystal of Compound B, and the mini-paddle dissolution apparatus in biorelevant media and in human aspirates. Simulated gastric fluids proposed in this study were in line with pH, buffer capacity, pepsin content, total bile salt/lecithin content and osmolality of the fasted stomach under partial and under complete inhibition of gastric acid secretion. Fluids simulating the conditions under partial inhibition of acid secretion were useful in simulating concentrations of both model compounds in gastric aspirates. Bicarbonates in Level III biorelevant gastric media and in Level II biorelevant media simulating the composition in the upper intestinal lumen did not improve simulation of concentrations in human aspirates. Level III biorelevant media for simulating the intragastric environment under hypochlorhydric conditions were proposed and their usefulness in the evaluation of concentrations of two model salts of weak bases in gastric aspirates was shown. Level II biorelevant media for simulating the environment in upper intestinal lumen led to underestimation of concentrations in aspirates, even when bicarbonate buffer was used. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.

    PubMed

    Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A

    2011-09-01

    Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (<1%), whereas substantial (>10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must seriously consider metastable equilibria; those most likely involve redox disequilibrium among the sulfur species in solution and perhaps also involve organic compounds. ?? 1981.

  7. Osmotic agents and buffers in peritoneal dialysis solution: monocyte cytokine release and in vitro cytotoxicity.

    PubMed

    Plum, J; Schoenicke, G; Grabensee, B

    1997-09-01

    Peritonitis remains a major problem in peritoneal dialysis. The incidence of peritonitis may be reduced by the use of more "biocompatible" peritoneal dialysis solutions that do not impair local host defense mechanisms, such as occurs with conventional lactate-buffered glucose solutions. In the present study, we investigated the use of bicarbonate and lactate as buffer systems and glucose, amino acids, and glucose polymer as osmotic agents on specific cellular functions of isolated fresh blood monocytes in vitro. The bicarbonate-buffered solutions had a physiologic pH (7.0 to 7.6). Lactate-buffered solutions were tested with a pH between 5.5 and 7.3. RPMI 1640 (Roswell Park Memorial Institute, supplied by Biochrom, Berlin, Germany) and phosphate-buffered saline were used as control mediums. The test solutions were incubated with 200,000 monocytes/mL for 45 minutes followed by a 1:1 mix with RPMI 1640 (with supplements) during a 24- or 4-hour tetrazolium bromide test (MTT test) recovery period. Constitutive and lipopolysaccharide (LPS)-stimulated release of interleukin-1beta (IL-1beta) and IL-6 in the supernatants as parameters of cellular host defense and lactate dehydrogenase concentrations and MTT-formazan production as parameters for cell cytotoxicity were measured. Significantly higher IL-6 and IL-1beta release was found in the bicarbonate-buffered solutions, both under basal conditions and after LPS stimulation, compared with the lactate-buffered solutions (LPS stimulation: 1% amino acids/34 mmol/L bicarbonate, IL-1beta: 1,166 +/- 192 pg/mL; 1.5% glucose/34 mmol/L bicarbonate, IL-1beta: 752 +/- 107 pg/mL; 1.5% glucose/35 mmol/L lactate/pH 5.5, IL-1beta: 174 +/- 51 pg/mL). Some of these differences could even be detected in spent dialysate after a 6-hour dwell in continuous ambulatory peritoneal dialysis patients (n = 10). A lower degree of cellular cytotoxicity (lactate dehydrogenase activity) and better-preserved metabolic activity (MTT test) also were found for the bicarbonate-buffered solutions. Amino acids (1%) proved to be comparable to glucose (1.5%) as an osmotic agent at a neutral pH with regard to LPS-stimulated cytokine release and cytotoxicity. The incubation with a glucose polymer solution (7.5% glucose polymer in phosphate-buffered saline, pH 7.3) resulted in a significantly lowered cytokine release (LPS stimulation: IL-1beta, 69 +/- 19 pg/mL) compared with the other solutions with neutral pH (P < 0.01). These results suggest that bicarbonate as a buffer provided better biocompatibility with regard to mononuclear cytokine release and viability compared with lactate. Amino acids and glucose were equivalent to these parameters at a physiologic pH. The glucose polymer solution, however, was associated with a marked depression of cytokine release.

  8. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows

    PubMed Central

    Pessione, Enrica

    2012-01-01

    Lactic Acid Bacteria (LAB) are ancient organisms that cannot biosynthesize functional cytochromes, and cannot get ATP from respiration. Besides sugar fermentation, they evolved electrogenic decarboxylations and ATP-forming deiminations. The right balance between sugar fermentation and decarboxylation/deimination ensures buffered environments thus enabling LAB to survive in human gastric trait and colonize gut. A complex molecular cross-talk between LAB and host exists. LAB moonlight proteins are made in response to gut stimuli and promote bacterial adhesion to mucosa and stimulate immune cells. Similarly, when LAB are present, human enterocytes activate specific gene expression of specific genes only. Furthermore, LAB antagonistic relationships with other microorganisms constitute the basis for their anti-infective role. Histamine and tyramine are LAB bioactive catabolites that act on the CNS, causing hypertension and allergies. Nevertheless, some LAB biosynthesize both gamma-amino-butyrate (GABA), that has relaxing effect on gut smooth muscles, and beta-phenylethylamine, that controls satiety and mood. Since LAB have reduced amino acid biosynthetic abilities, they developed a sophisticated proteolytic system, that is also involved in antihypertensive and opiod peptide generation from milk proteins. Short-chain fatty acids are glycolytic and phosphoketolase end-products, regulating epithelial cell proliferation and differentiation. Nevertheless, they constitute a supplementary energy source for the host, causing weight gain. Human metabolism can also be affected by anabolic LAB products such as conjugated linoleic acids (CLA). Some CLA isomers reduce cancer cell viability and ameliorate insulin resistance, while others lower the HDL/LDL ratio and modify eicosanoid production, with detrimental health effects. A further appreciated LAB feature is the ability to fix selenium into seleno-cysteine. Thus, opening interesting perspectives for their utilization as antioxidant nutraceutical vectors. PMID:22919677

  9. APEX model simulation of edge-of-field water quality benefits from upland buffers

    USDA-ARS?s Scientific Manuscript database

    For maximum usefulness, simulation models must be able to estimate the effectiveness of management practices not represented in the dataset used for model calibration. This study focuses on the ability of the Agricultural Policy Environmental eXtender (APEX) to simulate upland buffer effectiveness f...

  10. Acid/Salt/pH Gradient Improved Resolution and Sensitivity in Proteomics Study Using 2D SCX-RP LC-MS.

    PubMed

    Zhu, Ming-Zhi; Li, Na; Wang, Yi-Tong; Liu, Ning; Guo, Ming-Quan; Sun, Bao-Qing; Zhou, Hua; Liu, Liang; Wu, Jian-Lin

    2017-09-01

    The usage of strong cation exchange (SCX) chromatography in proteomics is limited by its poor resolution and nonspecific hydrophobic interactions with peptides, which lead to peptide overlap across fractions and change of peptide retention, respectively. The application of high concentration of salt (up to 1000 mM) in SCX also restricted its use in online 2D SCX-RP LC. In the present research, we first exploited the chromatographic ability of online 2D SCX-RP LC by combination of acid, salt, and pH gradient, three relatively independent modes of eluting peptides from SCX column. 50% ACN was added to elution buffer for eliminating hydrophobic interactions between SCX matrix and peptides, and the concentration of volatile salt was reduced to 50 mM. Acid/salt/pH gradient showed superior resolution and sensitivity as well as uniform distribution across fractions, consequently leading to significant improvements in peptide and protein identification. 112 191 unique peptides and 7373 proteins were identified by acid/salt/pH fractionation, while 69 870 unique peptides and 4536 proteins were identified by salt elution, that is, 62.5 and 60.6% more proteins and unique peptides, respectively, identified by the former. Fraction overlap was also significantly minimized by acid/salt/pH approach. Furthermore, acid/salt/pH elution showed more identification for acidic peptides and hydrophilic peptides.

  11. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    PubMed

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Predicting the safety and efficacy of buffer therapy to raise tumour pHe: an integrative modelling study.

    PubMed

    Martin, N K; Robey, I F; Gaffney, E A; Gillies, R J; Gatenby, R A; Maini, P K

    2012-03-27

    Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts. We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies. The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1-7.2. Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1-7.2 is most promising.

  13. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  14. Ex vivo evaluation of various instrumentation techniques and irrigants in reducing E. faecalis within root canals.

    PubMed

    Basmaci, F; Oztan, M D; Kiyan, M

    2013-09-01

    To evaluate ex vivo the effectiveness of single-file instrumentation techniques compared with serial Ni-Ti rotary instrumentation with several irrigation regimens in reducing E. faecalis within root canals. A total of 81 extracted human mandibular premolar teeth with a single root canal were infected with E. faecalis before and after canal preparation. Samples were divided randomly into 9 groups, as follows: group 1-A: sterile phosphate-buffered saline + Self-adjusting file, group 1-B: 5% sodium hypochlorite + 15% EDTA + Self-adjusting file, group 1-C: 5% sodium hypochlorite + 7% maleic acid + Self-adjusting file, group 2-A: sterile phosphate-buffered saline + Reciproc (R25), group 2-B: 5% sodium hypochlorite + 15% EDTA + Reciproc (R25), group 2-C: 5% sodium hypochlorite + 7% maleic acid + Reciproc (R25), group 3-A: sterile phosphate-buffered saline + ProTaper, group 3-B: 5% sodium hypochlorite + 15% EDTA + ProTaper, group 3-C: 5% sodium hypochlorite + 7% maleic acid + ProTaper. anova was used to analyse statistically the differences in terms of reduction in colony counts between the groups, and Dunn's post hoc test was used for multiple comparisons. All techniques and irrigation regimens significantly reduced the number of bacterial cells in the root canal (P < 0.001). Comparisons amongst the groups revealed significant differences between group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 1B (5% sodium hypochlorite + 15% EDTA + Self-adjusting file) (P = 0.031), group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 2C (5% sodium hypochlorite + 7% maleic acid + Reciproc) (P = 0.003), group 2A (sterile phosphate-buffered saline + Reciproc)/group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper) (P = 0.036), group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P < 0.001), and group 3C (5% sodium hypochlorite + 7% maleic acid + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P = 0.033). No significant differences in terms of reduction in microbial counts were observed between single-file techniques (SAF and Reciproc) and serial Ni-Ti instrumentation technique (ProTaper) in combination with irrigants. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Separation of silver nanoparticles by hollow fiber flow field-flow fractionation: Addition of tannic acid into carrier liquid as a modifier.

    PubMed

    Saenmuangchin, Rattaporn; Mettakoonpitak, Jaruwan; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2015-10-09

    A homemade hollow fiber flow-field fractionation (Hf-FlFFF) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was set-up for silver nanoparticles (AgNPs) separation by using polysulfone hollow fiber membrane (30,000 MW cutoff) as a separation channel. Tannic acid and citrate stabilized AgNPs were synthesized and introduced into Hf-FlFFF. The effects of carrier liquid and stabilizing agent on retention behavior of AgNPs were investigated. Different elution behaviors were observed as follows: with 0.02% (w/v) FL-70, all of AgNPs were eluted from Hf-FlFFF but differences in retention behaviors were observed for AgNPs with tannic acid and citrate stabilizing agents; and with 30mM TRIS buffer, only tannic acid stabilized AgNPs were eluted from Hf-FlFFF, whereas citrate stabilized AgNPs were not eluted. In this work, tannic acid addition into carrier liquid was proposed to modify the surface of AgNPs and the surface of the membrane, and thereby adjusting the retention behaviors of AgNPs. Various concentrations of tannic acid were added into FL-70 and TRIS buffer. With the use of 0.1mM tannic acid in 30mM TRIS buffer as the carrier liquid, retention behaviors of both tannic acid stabilized- and citrate stabilized-AgNPs were similar and with similar fractionation recovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Mechanism of Indole-3-acetic Acid Conjugation

    PubMed Central

    Goren, Raphael; Bukovac, Martin J.; Flore, James A.

    1974-01-01

    Formation of indole-3-acetic acid-aspartate in detached primary leaves of cowpea (Vigna sinensis Endl.) floating on 14C-indole-3-acetic acid (3 μc; 3.15 μm, phosphate-citrate buffer, pH 4.75), almost doubled when leaves were pretreated with 31.5 μm12C-indole-3-acetic acid for 17 hr and then transferred to 14C-indole-3-acetic acid for 4 hours as compared with leaves preincubated in buffer only. When leaves were preincubated with ethylene (11.0 and 104 μl/l) instead of 12C-indole-3-acetic acid, no induction of indole-3-acetylaspartic acid formation was observed, and the rate of indole-3-acetylaspartic acid formation decreased as compared with control leaves. Rhizobitoxine (1.87 μm) inhibited indole-3-acetic acid-induced ethylene production but did not prevent the formation of indole-3-acetylaspartic acid. In view of the similarity of these results and those previously obtained with α-naphthaleneacetic acid, it is concluded that ethylene has no role in the auxin-induced indole-3-acetylaspartic acid formation in cowpea leaves. PMID:16658669

  17. Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities

    PubMed Central

    Shrestha, Ritu; Elsabahy, Mahmoud; Florez-Malaver, Stephanie; Samarajeewa, Sandani; Wooley, Karen L.

    2012-01-01

    Cationic shell crosslinked knedel-like nanoparticles (cSCKs) have emerged as a highly efficient transfection agent for nucleic acids delivery. In this study, a new class of cSCKs with tunable buffering capacities has been developed by altering the amounts of histamines and primary amines incorporated into their crosslinked shell regions. The effect of histamine content of these nanoparticles with a hydrodynamic diameter of ca. 20 nm, on the siRNA-binding affinity, cytotoxicity, immunogenicity, and transfection efficiency was investigated. The modification of cSCKs with histamine was found to reduce the siRNA-binding affinity and cellular binding. On the other hand, it significantly reduced the toxicity and immunogenicity of the nanoparticles with subsequent increase in the transfection efficiency. In addition, escape from endosomes was facilitated by having two species of low and high pKas (i.e. histamine and primary amine groups, respectively), as demonstrated by the potentiometric titration experiments and the effect of bafilomycin A1, an inhibitor of the endosomal acidification, on the transfection efficiency of cSCKs. Histamine modification of 15 mol% was a threshold, above which cSCKs with higher histamine content completely lost the ability to bind siRNA and to transfect cells. This study highlights the potential of histamine incorporation to augment the gene silencing activity of cationic nanoparticles, reduce their toxicity, and increase their biocompatibility, which is of particular importance in the design of nucleic acids delivery vectors. PMID:22901966

  18. How the multiple antioxidant properties of ascorbic acid affect lipid oxidation in oil-in-water emulsions.

    PubMed

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-02-18

    Lipid oxidation is a serious problem for oil-containing food products because it negatively affects shelf life and nutritional composition. An antioxidant strategy commonly employed to prevent or delay oxidation in foods is to remove oxygen from the closed food-packaging system. An alternative technique is use of an edible oxygen scavenger to remove oxygen within the food. Ascorbic acid (AA) is a particularly promising antioxidant because of its natural label and multiple antioxidative functions. In this study, AA was tested as an oxygen scavenger in buffer and an oil-in-water (O/W) emulsion. The effects of transition metals on the ability of AA to scavenge oxygen were determined. Headspace oxygen decrease less than 1% in the medium-chain triacylglycerol (MCT) O/W emulsion system (pH 3 and 7). AA was able to almost completely remove dissolved oxygen (DO) in a buffered solution. Transition metals (Fe(2+) and Cu(+)) significantly accelerated the degradation of AA; however, iron and copper only increased DO depletion rates, by 10.6-16.4% from day 1 to 7, compared to the control. AA (2.5-20 mM) decreased DO in a 1% O/W emulsion system 32.0-64.0% and delayed the formation of headspace hexanal in the emulsion from 7 to over 20 days. This research shows that, when AA is used in an O/W emulsion system, oxidation of the emulsion system can be delay by multiple mechanisms.

  19. Nitrate and Nitrite Determination in Gunshot Residue Samples by Capillary Electrophoresis in Acidic Run Buffer.

    PubMed

    Erol, Özge Ö; Erdoğan, Behice Y; Onar, Atiye N

    2017-03-01

    Simultaneous determination of nitrate and nitrite in gunshot residue has been conducted by capillary electrophoresis using an acidic run buffer (pH 3.5). In previously developed capillary electrophoretic methods, alkaline pH separation buffers were used where nitrite and nitrate possess similar electrophoretic mobility. In this study, the electroosmotic flow has been reversed by using low pH running buffer without any additives. As a result of reversing the electroosmotic flow, very fast analysis has been actualized, well-defined and separated ion peaks emerge in less than 4 min. Besides, the limit of detection was improved by employing large volume sample stacking. Limit of detection values were 6.7 and 4.3 μM for nitrate and nitrite, respectively. In traditional procedure, mechanical agitation is employed for extraction, while in this work the extraction efficiency of ultrasound mixing for 30 min was found sufficient. The proposed method was successfully applied to authentic gunshot residue samples. © 2016 American Academy of Forensic Sciences.

  20. Uricase alkaline enzymosomes with enhanced stabilities and anti-hyperuricemia effects induced by favorable microenvironmental changes

    PubMed Central

    Zhou, Yunli; Zhang, Mi; He, Dan; Hu, Xueyuan; Xiong, Huarong; Wu, Jianyong; Zhu, Biyue; Zhang, Jingqing

    2016-01-01

    Enzyme therapy is an effective strategy to treat diseases. Three strategies were pursued to provide the favorable microenvironments for uricase (UCU) to eventually improve its features: using the right type of buffer to constitute the liquid media where catalyze reactions take place; entrapping UCU inside the selectively permeable lipid vesicle membranes; and entrapping catalase together with UCU inside the membranes. The nanosized alkaline enzymosomes containing UCU/(UCU and catalase) (ESU/ESUC) in bicine buffer had better thermal, hypothermal, acid-base and proteolytic stabilities, in vitro and in vivo kinetic characteristics, and uric acid lowering effects. The favorable microenvironments were conducive to the establishment of the enzymosomes with superior properties. It was the first time that two therapeutic enzymes were simultaneously entrapped into one enzymosome having the right type of buffer to achieve added treatment efficacy. The development of ESU/ESUC in bicine buffer provides valuable tactics in hypouricemic therapy and enzymosomal application. PMID:26823332

  1. Use of bicarbonate buffer systems for dissolution characterization of enteric-coated proton pump inhibitor tablets.

    PubMed

    Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-04-01

    The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  2. The concept of "buffering" in systems and control theory: from metaphor to math.

    PubMed

    Schmitt, Bernhard M

    2004-10-04

    The paradigm of "buffering" is used increasingly for the description of diverse "systemic" phenomena encountered in evolutionary genetics, ecology, integrative physiology, and other areas. However, in this new context, the paradigm has not yet matured into a truly quantitative concept inasmuch as it lacks a corresponding quantitative measure of "systems-level buffering strength". Here, I develop such measures on the basis of a formal and general approach to the quantitation of buffering action. "Systems-level buffering" is shown to be synonymous with "disturbance rejection" in feedback-control systems, and can be quantitated by means of dimensionless proportions between partial flows in two-partitioned systems. The units allow either the time-independent, "static" buffering properties or the time-dependent, "dynamic" ones to be measured. Analogous to this "resistance to change", one can define and measure the "conductance to change"; this quantity corresponds to "set-point tracking" in feedback-control systems. Together, these units provide a systematic framework for the quantitation of buffering action in systems biology, and reveal the common principle behind systems-level buffering, classical acid-base buffering, and multiple other manifestations of buffering.

  3. Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits.

    PubMed

    Bates, Timothy C; Luciano, Michelle; Medland, Sarah E; Montgomery, Grant W; Wright, Margaret J; Martin, Nicholas G

    2011-01-01

    The region containing ROBO1 (Chromosome 3p12.3) has been implicated as a susceptibility gene for reading disorder and language deficit by translocation and linkage data. No association studies have yet been reported supporting any candidate gene. Here we report the first association of this gene with language deficits, specifically with phonological buffer deficits (a phenotype implicated in language acquisition, Specific Language Impairment and Speech Sound Disorder) and dyslexia (reading and spelling ability traits) in an unselected sample of adolescent twins and their siblings. Family-based analyses were performed on 144 tag SNPs in ROBO1, typed in 538 families with up to five offspring and tested for association with a developmental marker of language impairment (phonological buffer capacity, assessed using non word repetition). A reading and spelling ability measure--based on validated measures of lexical processing (irregular word) and grapheme-phoneme decoding (pseudo word)--and measures of short-term and working memory were also analysed. Significant association for phonological buffer capacity was observed for 21 of 144 SNPs tested, peaking at 8.70 × 10(-05) and 9.30 × 10(-05) for SNPs rs6803202 and rs4535189 respectively for nonword repetition, values that survive correction for multiple testing. Twenty-two SNPs showed significant associations for verbal storage (forward digit span)--a trait linked to phonological span. By contrast, just 5 SNPs reached nominal significance for working-memory, not surviving correction, and, importantly, only one SNP in the 144 tested reached nominal significance (0.04) for association with reading and spelling ability. These results provide strong support for ROBO1 as a gene involved in a core trait underpinning language acquisition, with a specific function in supporting a short-term buffer for arbitrary phonological strings. These effects of ROBO1 appear to be unrelated to brain mechanisms underpinning reading ability, at least by adolescence. While replication will be critical, the present results strongly support ROBO1 as the first gene discovered to be associated with language deficits affecting normal variation in language ability. Its functional role in neuronal migration underlying bilateral symmetry and lateralization of neuronal function further suggests a role in the evolution of human language ability.

  4. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR).

    PubMed

    Fadda, Angela; Barberis, Antonio; Sanna, Daniele

    2018-02-01

    The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Potential benefits of pH 8.8 alkaline drinking water as an adjunct in the treatment of reflux disease.

    PubMed

    Koufman, Jamie A; Johnston, Nikki

    2012-07-01

    At the cellular level, tissue-bound pepsin is fundamental to the pathophysiologic mechanism of reflux disease, and although the thresholds for laryngeal damage in laryngopharyngeal reflux and for esophageal damage in gastroesophageal reflux disease differ, both forms of damage are due to pepsin, which requires acid for its activation. In addition, human pepsin remains stable at pH 7.4 and may be reactivated by hydrogen ions from any source. Thus, most tap and bottled waters (typically pH 6.7 to 7.4) would not be expected to affect pepsin stability. The purposes of these in vitro studies were to investigate whether artesian well water containing natural bicarbonate (pH 8.8) might irreversibly denature (inactivate) human pepsin, and to establish its potential acid-buffering capacity. Laboratory studies were performed to determine whether human pepsin was inactivated by pH 8.8 alkaline water. In addition, the buffering capacity of the alkaline water was measured and compared to that of the two most popular commercially available bottled waters. The pH 8.8 alkaline water irreversibly inactivated human pepsin (in vitro), and its hydrochloric acid-buffering capacity far exceeded that of the conventional-pH waters. Unlike conventional drinking water, pH 8.8 alkaline water instantly denatures pepsin, rendering it permanently inactive. In addition, it has good acid-buffering capacity. Thus, the consumption of alkaline water may have therapeutic benefits for patients with reflux disease.

  6. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  7. Comparison of behavior in muscle fiber regeneration after bupivacaine hydrochloride- and acid anhydride-induced myonecrosis.

    PubMed

    Akiyama, C; Kobayashi, S; Nonaka, I

    1992-01-01

    We compared the morphologic characteristics of muscle fiber necrosis and subsequent regeneration after injury induced by intramuscular injections of bupivacaine hydrochloride (BPVC) and a variety of solutions at acid and alkaline pH (acetic anhydride, citric acid buffer, and sodium carbonate buffer). After BPVC injection the necrotic muscle fibers were rapidly invaded by phagocytic cells, followed by active regeneration and very little fibrous scar formation. The regenerating muscle fibers increased rapidly in size and attained complete fiber type differentiation and regained their initial fiber diameter within 1 month. Both alkaline and acid solutions induced muscle fiber necrosis followed by regeneration. Fiber necrosis induced by alkaline buffers and acetic anhydride solutions above pH 5.0 produced changes quite similar to that induced by BPVC. However, injection with 0.1 M acetic anhydride at pH below 4.0 resulted in coagulative necrosis of the injured muscle with very little phagocytic infiltration with poor regenerative activity and dense fibrous tissue scarring. Thus, pH 4.0 appears to be the critical pH determining the type of muscle injury and subsequent poor phagocytic and regenerative activities. This model of acidic acetic anhydride injury may lead to the identification of factors which interfere with regeneration and cause fibrous tissue scarring in human muscular dystrophy.

  8. Using GIS Models to Identify Relative Nitrogen Attenuation by Riparian Buffers in the Coastal Plain of North Carolina

    EPA Science Inventory

    Riparian areas have demonstrated the ability to attenuate nutrients and provide water quality services at the field scale, but services of riparian buffers for downstream users should be assessed at watershed scales. GIS-based riparian models have been developed to connect ripari...

  9. Extraction of glycogen on mild condition lacks AIG fraction.

    PubMed

    Ghafouri, Z; Rasouli, M

    2016-12-01

    Extraction of animal tissues with cold water or perchloric acid yields less glycogen than is obtained with hot-alkaline. Extraction with acid and alkaline gives two fractions, acid soluble (ASG) and insoluble glycogen (AIG). The aim of this work is to examine the hypothesis that not all liver glycogen is extractable by Tris-buffer using current techniques. Rat liver was homogenized with Tris-buffer pH 8.3 and extracted for the glycogen fractions, ASG and AIG. The degree of homogenization was changed to remove all glycogen. The content of glycogen was 47.7 ± 1.2 and 11.6 ± 0.8 mg/g wet liver in the supernatant and pellet of the first extraction respectively. About 24% of total glycogen is lost through the first pellet. Increasing the extent of homogenization from 30 to 180 sec and from 15000 to 20000 rpm followed with 30 sec ultrasonication did not improve the extraction. ASG and AIG constitute about 77% and 23% of the pellet glycogen respectively. Extraction with cold Tris-buffer failed to extract glycogen completely.  Increasing the extent of homogenization followed with ultrasonication also did not improve the extraction. Thus it is necessary to re-examine the previous findings obtained by extraction with cold Tris-buffer.

  10. Potential differentiation ability of gingiva originated human mesenchymal stem cell in the presence of tacrolimus

    PubMed Central

    Ha, Dong-Ho; Pathak, Shiva; Yong, Chul Soon; Kim, Jong Oh; Jeong, Jee-Heon; Park, Jun-Beom

    2016-01-01

    The aim of the present study is to evaluate the potential differentiation ability of gingiva originated human mesenchymal stem cell in the presence of tacrolimus. Tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres were prepared using electrospraying technique. In vitro release study of tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres was performed in phosphate-buffered saline (pH 7.4). Gingiva-derived stem cells were isolated and incubated with tacrolimus or tacrolimus-loaded microspheres. Release study of the microspheres revealed prolonged release profiles of tacrolimus without any significant initial burst release. The microsphere itself did not affect the morphology of the mesenchymal stem cells, and cell morphology was retained after incubation with microspheres loaded with tacrolimus at 1 μg/mL to 10 μg/mL. Cultures grown in the presence of microspheres loaded with tacrolimus at 1 μg/mL showed the highest mineralization. Alkaline phosphatase activity increased with an increase in incubation time. The highest expression of pSmad1/5 was achieved in the group receiving tacrolimus 0.1 μg/mL every third day, and the highest expression of osteocalcin was achieved in the group receiving 1 μg/mL every third day. Biodegradable poly(lactic-co-glycolic acid)-based microspheres loaded with tacrolimus promoted mineralization. Microspheres loaded with tacrolimus may be applied for increased osteoblastic differentiation. PMID:27721434

  11. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  12. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  13. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  14. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  15. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  16. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  17. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  18. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  19. 21 CFR 343.13 - Rheumatologic active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.13 Rheumatologic active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  20. 21 CFR 343.12 - Cardiovascular active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-COUNTER HUMAN USE Active Ingredients § 343.12 Cardiovascular active ingredients. (a) Aspirin. (b) Buffered aspirin. Aspirin identified in paragraph (a) of this section may be buffered with any antacid ingredient(s... milliequivalents of acid-neutralizing capacity per 325 milligrams of aspirin as measured by the procedure provided...

  1. Physicochemical parameters influencing coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13.

    PubMed

    Min, K R; Zimmer, M N; Rickard, A H

    2010-11-01

    The aim of this study was to explore the physicochemical parameters that influence coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13. Using visual coaggregation assays, the effect of different buffers, solutions of differing ionic strength, pH, temperature, and viscosity on the degree of coaggregation was assessed. Coaggregation occurred maximally in distilled water but was inhibited when coaggregates were suspended in a commonly-used oral bacterial coaggregation buffer, saline solutions, and Tris-Cl buffers. Coaggregation was weakly expressed in standard laboratory buffers. The ionic strength of inorganic salt solutions required to inhibit coaggregation depended upon the inorganic salt being tested. Coaggregation occurred at a pH of 3-10, between 5 and 80°C and was inhibited in solutions with a viscosity of 22.5 centipoises at 20°C. Inhibition of coaggregation with NaCl impaired biofilm development. When developing buffers to test for coaggregation, the natural liquid environment should be considered. Coaggregation between S. natatoria 2.1 and M. luteus 2.13 is only affected by physicochemical conditions beyond those typically found in natural freshwater ecosystems. Such a robust ability to coaggregate may enhance the ability of S. natatoria 2.1 and M. luteus 2.13 to develop a niche in freshwater biofilms.

  2. Ergogenic Effects of β-Alanine and Carnosine: Proposed Future Research to Quantify Their Efficacy

    PubMed Central

    Caruso, John; Charles, Jessica; Unruh, Kayla; Giebel, Rachel; Learmonth, Lexis; Potter, William

    2012-01-01

    β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle’s ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation’s ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day−1, for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation. PMID:22852051

  3. BIOKID: Randomized controlled trial comparing bicarbonate and lactate buffer in biocompatible peritoneal dialysis solutions in children [ISRCTN81137991

    PubMed Central

    Nau, Barbara; Schmitt, Claus P; Almeida, Margarida; Arbeiter, Klaus; Ardissino, Gianluigi; Bonzel, Klaus E; Edefonti, Alberto; Fischbach, Michel; Haluany, Karin; Misselwitz, Joachim; Kemper, Markus J; Rönnholm, Kai; Wygoda, Simone; Schaefer, Franz

    2004-01-01

    Background Peritoneal dialysis (PD) is the preferred dialysis modality in children. Its major drawback is the limited technique survival due to infections and progressive ultrafiltration failure. Conventional PD solutions exert marked acute and chronic toxicity to local tissues. Prolonged exposure is associated with severe histopathological alterations including vasculopathy, neoangiogenesis, submesothelial fibrosis and a gradual loss of the mesothelial cell layer. Recently, more biocompatible PD solutions containing reduced amounts of toxic glucose degradation products (GDPs) and buffered at neutral pH have been introduced into clinical practice. These solutions contain lactate, bicarbonate or a combination of both as buffer substance. Increasing evidence from clinical trials in adults and children suggests that the new PD fluids may allow for better long-term preservation of peritoneal morphology and function. However, the relative importance of the buffer in neutral-pH, low-GDP fluids is still unclear. In vitro, lactate is cytotoxic and vasoactive at the concentrations used in PD fluids. The BIOKID trial is designed to clarify the clinical significance of the buffer choice in biocompatible PD fluids. Methods/design The objective of the study is to test the hypothesis that bicarbonate based PD solutions may allow for a better preservation of peritoneal transport characteristics in children than solutions containing lactate buffer. Secondary objectives are to assess any impact of the buffer system on acid-base status, peritoneal tissue integrity and the incidence and severity of peritonitis. After a run-in period of 2 months during which a targeted cohort of 60 patients is treated with a conventional, lactate buffered, acidic, GDP containing PD fluid, patients will be stratified according to residual renal function and type of phosphate binding medication and randomized to receive either the lactate-containing Balance solution or the bicarbonate-buffered Bicavera® solution for a period of 10 months. Patients will be monitored by monthly physical and laboratory examinations. Peritoneal equilibration tests, 24-h dialysate and urine collections will be performed 4 times. Peritoneal biopsies will be obtained on occasion of intraabdominal surgery. Changes in small solute transport rates, markers of peritoneal tissue turnover in the effluent, acid-base status and peritonitis rates and severity will be analyzed. PMID:15485574

  4. Out-of-equilibrium pH transients in the guinea-pig ventricular myocyte

    PubMed Central

    Leem, Chae-Hun; Vaughan-Jones, Richard D

    1998-01-01

    Following an intracellular alkali load (imposed by acetate prepulsing in CO2/HCO3− buffer), intracellular pH (pHi) of the guinea-pig ventricular myocyte (recorded from intracellular SNARF fluorescence) recovers to control levels. Recovery has two phases. An initial rapid phase (lasting up to 2 min) is followed by a later slow phase (several minutes). Inhibition of sarcolemmal acid-loading carriers (by removal of extracellular Cl−) inhibits the later, slow phase but the initial rapid recovery phase persists. It also persists in the absence of extracellular Na+ and in the presence of the HCO3− transport inhibitor DIDS (4,4-di-isothiocyanatostilbene-2,2-disulphonic acid). The rapid recovery phase is not evident if the alkali load has been induced by reducing PCO2 (from 10 to 5 %), and it is inhibited in the absence of CO2/HCO3− buffer (i.e. Hepes buffer). It is also slowed by the carbonic anhydrase (CA) inhibitor acetazolamide (ATZ). We conclude that it is caused by buffering of the alkali load through the hydration of intracellular CO2 (CO2-dependent buffering). The time course of rapid recovery is consistent with an intracellular CO2 hydration rate constant (k1) of 0.36 s−1 in the presence of CA activity, and 0.14 s−1 in the absence of CA activity. This latter k1 value matches the literature value for uncatalysed CO2 hydration in free solution. Natural CO2 hydration is accelerated 2.6-fold in the ventricular myocyte by endogenous CA. The rapid recovery phase represents a period when the intracellular CO2/HCO3− buffer is out of equilibrium (OOE). Modelling of the recovery phase using our k1 value, indicates that OOE conditions will normally extend for at least 2 min following a step rise in pHi (at constant PCO2). If CA is inactive, this period can be as long as 5 min. During normal pHi regulation, the recovery rate during these periods cannot be used as a measure of sarcolemmal acid loading since it is a mixture of slow CO2-dependent buffering and transmembrane acid loading. The implication of this finding for quantification of pHi regulation during alkalosis is discussed. PMID:9575296

  5. Use of an exchange method to estimate the association and dissociation rate constants of cadmium complexes formed with low-molecular-weight organic acids commonly exuded by plant roots.

    PubMed

    Schneider, André; Nguyen, Christophe

    2011-01-01

    Organic acids released from plant roots can form complexes with cadmium (Cd) in the soil solution and influence metal bioavailability not only due to the nature and concentration of the complexes but also due to their lability. The lability of a complex influences its ability to buffer changes in the concentration of free ions (Cd); it depends on the association (, m mol s) and dissociation (, s) rate constants. A resin exchange method was used to estimate and (m mol s), which is the conditional estimate of depending on the calcium (Ca) concentration in solution. The constants were estimated for oxalate, citrate, and malate, three low-molecular-weight organic acids commonly exuded by plant roots and expected to strongly influence Cd uptake by plants. For all three organic acids, the and estimates were around 2.5 10 m mol s and 1.3 × 10 s, respectively. Based on the literature, these values indicate that the Cd- low-molecular-weight organic acids complexes formed between Cd and low-molecular-weight organic acids may be less labile than complexes formed with soil soluble organic matter but more labile than those formed with aminopolycarboxylic chelates. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Preservation of RNA and DNA from mammal samples under field conditions.

    PubMed

    Camacho-Sanchez, Miguel; Burraco, Pablo; Gomez-Mestre, Ivan; Leonard, Jennifer A

    2013-07-01

    Ecological and conservation genetics require sampling of organisms in the wild. Appropriate preservation of the collected samples, usually by cryostorage, is key to the quality of the genetic data obtained. Nevertheless, cryopreservation in the field to ensure RNA and DNA stability is not always possible. We compared several nucleic acid preservation solutions appropriate for field sampling and tested them on rat (Rattus rattus) blood, ear and tail tip, liver, brain and muscle. We compared the efficacy of a nucleic acid preservation (NAP) buffer for DNA preservation against 95% ethanol and Longmire buffer, and for RNA preservation against RNAlater (Qiagen) and Longmire buffer, under simulated field conditions. For DNA, the NAP buffer was slightly better than cryopreservation or 95% ethanol, but high molecular weight DNA was preserved in all conditions. The NAP buffer preserved RNA as well as RNAlater. Liver yielded the best RNA and DNA quantity and quality; thus, liver should be the tissue preferentially collected from euthanized animals. We also show that DNA persists in nonpreserved muscle tissue for at least 1 week at ambient temperature, although degradation is noticeable in a matter of hours. When cryopreservation is not possible, the NAP buffer is an economical alternative for RNA preservation at ambient temperature for at least 2 months and DNA preservation for at least 10 months. © 2013 John Wiley & Sons Ltd.

  7. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells.

    PubMed

    Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Effects of Different Buffers on the Construction of Aptamer Sensors

    NASA Astrophysics Data System (ADS)

    Yu, Quan; Dai, Zhao; Wu, Wenjing; Zhu, Haijia; Ji, Luyu

    2017-12-01

    In this paper, the effect of different buffers, PBS and TBE, on the construction of an aptamer sensor (apt sensor) for ATP was investigated. The apt sensor was based on fluorescence energy resonance transfer (FRET), when the energy donor was 5'-carboxyfluorescein (5'-FAM) and the energy receptor was Au nanoparticles (AuNPs), respectively. Both the donor and acceptor were conjugated with complementary and single stranded DNA (ssDNA). The fluorescent changes of the sensors were measured to investigate the influence of different buffers during the whole preparation and detection process. The results indicated that when the AuNPs and ssDNA (Au-DNA1) were conjugated in PBS buffer, the corresponding apt sensors would obtain a better detection ability of ATP than in TBE buffer.

  9. Dietary Supplementation of Benzoic Acid and Essential Oil Compounds Affects Buffering Capacity of the Feeds, Performance of Turkey Poults and Their Antioxidant Status, pH in the Digestive Tract, Intestinal Microbiota and Morphology

    PubMed Central

    Giannenas, I.; Papaneophytou, C. P.; Tsalie, E.; Pappas, I.; Triantafillou, E.; Tontis, D.; Kontopidis, G. A.

    2014-01-01

    Three trials were conducted to evaluate the effect of supplementation of a basal diet with benzoic acid or thymol or a mixture of essential oil blends (MEO) or a combination of benzoic acid with MEO (BMEO) on growth performance of turkey poults. Control groups were fed a basal diet. In trial 1, benzoic acid was supplied at levels of 300 and 1,000 mg/kg. In trial 2, thymol or the MEO were supplied at levels of 30 mg/kg. In trial 3, the combination of benzoic acid with MEO was evaluated. Benzoic acid, MEO and BMEO improved performance, increased lactic acid bacteria populations and decreased coliform bacteria in the caeca. Thymol, MEO and BMEO improved antioxidant status of turkeys. Benzoic acid and BMEO reduced the buffering capacity compared to control feed and the pH values of the caecal content. Benzoic acid and EOs may be suggested as an effective alternative to AGP in turkeys. PMID:25049947

  10. Microhabitats in the tropics buffer temperature in a globally coherent manner

    PubMed Central

    Scheffers, Brett R.; Evans, Theodore A.; Williams, Stephen E.; Edwards, David P.

    2014-01-01

    Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9°C and reduced maximum temperatures by 3.5°C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates. PMID:25540160

  11. The Primacy of Perceiving: Emotion Recognition Buffers Negative Effects of Emotional Labor

    ERIC Educational Resources Information Center

    Bechtoldt, Myriam N.; Rohrmann, Sonja; De Pater, Irene E.; Beersma, Bianca

    2011-01-01

    There is ample empirical evidence for negative effects of emotional labor (surface acting and deep acting) on workers' well-being. This study analyzed to what extent workers' ability to recognize others' emotions may buffer these effects. In a 4-week study with 85 nurses and police officers, emotion recognition moderated the relationship between…

  12. Pop-cola acids and tooth erosion: an in vitro, in vivo, electron-microscopic, and clinical report.

    PubMed

    Borjian, Amirfirooz; Ferrari, Claudia C F; Anouf, Antoni; Touyz, Louis Z G

    2010-01-01

    Introduction. Manufactured Colas are consumed universally as soft drinks. Evidence about the acid contents of Cola-beverages and its effects on teeth is rare. Aim. To assess (i) cola acidity and buffering capacity in vitro, (ii) tooth erosion after swishing with colas in vivo (iii) scanning electron microscopic effects on teeth of colas, and tooth-brush abrasion, and (iv) report a clinical case of erosion from cola consumption. Materials and Methods. (i) We measured six commercially available pop "Cola beverages", pH, and buffering capacities using a pH-Mettler Automatic Titrator, with weak solution of Sodium Hydroxide (ii) two cohorts, one with teeth, the second without teeth rinsed with aliquots of Cola for 60 seconds. Swished cola samples tested for calcium and phosphorus contents using standardized chemical analytical methods (iii) enamel, dentine, and the enamel-cemental junction from unerupted extracted wisdom teeth were examined with a scanning electron microscope after exposure to colas, and tested for tooth-brush abrasion; (iv) a clinical case of pop cola erosion presentation, are all described. Results. Comparisons among pop colas tested in vitro reveal high acidity with very low pH. Buffering capacities in millilitres of 0.5 M NaOH needed to increase one pH unit, to pH 5.5 and pH 7 are reported. Rinsing in vivo with pop cola causes leeching of calcium from teeth; SEM shows dental erosion, and pop-cola consumption induces advanced dental erosion and facilitates abrasion. Conclusions. (i) Pop-Cola acid activity is below the critical pH 5.5 for tooth dissolution, with high buffering capacities countering neutralization effects of saliva; (ii) calcium is leeched out of teeth after rinsing with pop colas; (iii) SEM evidence explains why chronic exposure to acid pop colas causes dental frangibles; (iv) a clinical case of pop-cola erosion confirms this.

  13. Pop-Cola Acids and Tooth Erosion: An In Vitro, In Vivo, Electron-Microscopic, and Clinical Report

    PubMed Central

    Borjian, Amirfirooz; Ferrari, Claudia C. F.; Anouf, Antoni; Touyz, Louis Z. G.

    2010-01-01

    Introduction. Manufactured Colas are consumed universally as soft drinks. Evidence about the acid contents of Cola-beverages and its effects on teeth is rare. Aim. To assess (i) cola acidity and buffering capacity in vitro, (ii) tooth erosion after swishing with colas in vivo (iii) scanning electron microscopic effects on teeth of colas, and tooth-brush abrasion, and (iv) report a clinical case of erosion from cola consumption. Materials and Methods. (i) We measured six commercially available pop “Cola beverages”, pH, and buffering capacities using a pH-Mettler Automatic Titrator, with weak solution of Sodium Hydroxide (ii) two cohorts, one with teeth, the second without teeth rinsed with aliquots of Cola for 60 seconds. Swished cola samples tested for calcium and phosphorus contents using standardized chemical analytical methods (iii) enamel, dentine, and the enamel-cemental junction from unerupted extracted wisdom teeth were examined with a scanning electron microscope after exposure to colas, and tested for tooth-brush abrasion; (iv) a clinical case of pop cola erosion presentation, are all described. Results. Comparisons among pop colas tested in vitro reveal high acidity with very low pH. Buffering capacities in millilitres of 0.5 M NaOH needed to increase one pH unit, to pH 5.5 and pH 7 are reported. Rinsing in vivo with pop cola causes leeching of calcium from teeth; SEM shows dental erosion, and pop-cola consumption induces advanced dental erosion and facilitates abrasion. Conclusions. (i) Pop-Cola acid activity is below the critical pH 5.5 for tooth dissolution, with high buffering capacities countering neutralization effects of saliva; (ii) calcium is leeched out of teeth after rinsing with pop colas; (iii) SEM evidence explains why chronic exposure to acid pop colas causes dental frangibles; (iv) a clinical case of pop-cola erosion confirms this. PMID:21151663

  14. Effects of sucking acidic candy on whole-mouth saliva composition.

    PubMed

    Jensdottir, T; Nauntofte, B; Buchwald, C; Bardow, A

    2005-01-01

    Limited information is available on the effects of sucking acidic candies on saliva composition and the protective role of saliva in this relation. Therefore the aim of this study was to determine salivary effects of sucking acidic candies in vivo in relation to individual variations in whole-saliva flow rate (WSFR) and buffer capacity (WSbeta). Ten healthy young males (24 +/- 2 years) sucked a rhubarb-flavoured acidic hard-boiled candy with tartaric acid available on the Danish market. The whole saliva was collected into a closed system, regarding CO2, at different times as follows: firstly, unstimulated saliva for 5 min (baseline), secondly stimulated saliva for 4 min upon sucking the candy, and finally post-stimulated saliva for 10 min. Saliva pH was determined on a blood gas analyser and WSbeta was estimated from the saliva bicarbonate concentration obtained by the analyser and by ionic balance calculation. The erosive potential of the candy in saliva was estimated from the saliva pH values and degree of saturation with respect to hydroxyapatite (DS(HAp)). The results showed that saliva pH dropped from 6.5 (baseline) down to 4.5 at the fourth minute of sucking the candy, and returned to pH 6.5 five minutes after stimulation (post-stimulated). DS(HAp) decreased upon sucking the candy and saliva from all subjects became undersaturated with respect to HAp. Significant positive correlations were obtained between pH and WSFR (r(s) = 0.47; p < 0.05) and between pH and WSbeta (r(s) = 0.65; p < 0.01). In relation to WSbeta we found that 70% of the buffer capacity originating from the bicarbonate buffer system upon sucking the candy was exerted as phase buffering. We conclude that sucking this type of acidic candies changes whole-mouth saliva composition so that it may have erosive potential and that high WSFR and WSbeta have protective effects against these salivary changes. Copyright 2005 S. Karger AG, Basel.

  15. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  16. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    PubMed

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  17. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings.

    PubMed

    Rice, Clifford P; McCarty, Gregory W; Bialek-Kalinski, Krystyna; Zabetakis, Kara; Torrents, Alba; Hapeman, Cathleen J

    2016-08-01

    To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid. Published by Elsevier B.V.

  18. Predicting the safety and efficacy of buffer therapy to raise tumour pHe: an integrative modelling study

    PubMed Central

    Martin, N K; Robey, I F; Gaffney, E A; Gillies, R J; Gatenby, R A; Maini, P K

    2012-01-01

    Background: Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts. Methods: We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies. Results: The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1–7.2. Conclusion: Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1–7.2 is most promising. PMID:22382688

  19. Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR.

    PubMed

    Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P

    2002-01-01

    Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.

  20. A Pollutant Transformation Laboratory Exercise for Environmental Chemistry: The Reduction of Nitrobenzenes by Anaerobic Solutions of Humic Acid

    ERIC Educational Resources Information Center

    Dunnivant, Frank M.; Reynolds, Mark-Cody

    2007-01-01

    The laboratory experiment, which acts as a capstone, integrated lecture-laboratory exercise involving solution preparation, pH buffers, [E[subscript]H] (reduction potential) buffers, organic reaction mechanisms, reaction kinetics, and instrumental analysis is presented. The students completing the lecture and laboratory exercises could gain a…

  1. Imaging the Drosophila retina: zwitterionic buffers PIPES and HEPES induce morphological artifacts in tissue fixation.

    PubMed

    Nie, Jing; Mahato, Simpla; Zelhof, Andrew C

    2015-02-03

    Tissue fixation is crucial for preserving the morphology of biological structures and cytological details to prevent postmortem degradation and autolysis. Improper fixation conditions could lead to artifacts and thus incorrect conclusions in immunofluorescence or histology experiments. To resolve reported structural anomalies with respect to Drosophila photoreceptor cell organization we developed and utilized a combination of live imaging and fixed samples to investigate the exact biogenesis and to identify the underlying source for the reported discrepancies in structure. We found that piperazine-N,N'-bis(ethanesulfonic acid) (PIPES) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), two zwitterionic buffers commonly used in tissue fixation, can cause severe lumen and cell morphological defects in Drosophila pupal and adult retina; the inter-rhabdomeral lumen becomes dilated and the photoreceptor cells are significantly reduced in size. Correspondingly, the localization pattern of Eyes shut (EYS), a luminal protein, is severely altered. In contrast, tissues fixed in the phosphate buffered saline (PBS) buffer results in lumen and cell morphologies that are consistent with live imaging. We suggest that PIPES and HEPES buffers should be utilized with caution for fixation when examining the interplay between cells and their extracellular environment, especially in Drosophila pupal and adult retina research.

  2. Driving forces and the influence of the buffer composition on the complexation reaction between ibuprofen and HPCD.

    PubMed

    Perlovich, German L; Skar, Merete; Bauer-Brandl, Annette

    2003-10-01

    Cyclodextrins are often used in order to increase the aqueous solubility of drug substances by complexation. In order to investigate the complexation reaction of ibuprofen and hydroxypropyl-beta-cyclodextrin, titration calorimetry was used as a direct method. The thermodynamic parameters of the complexation process (stability constant, K(11); complexation enthalpy, deltaH(c) degrees ) were obtained in two different buffer systems (citric acid/sodium-phosphate and phosphoric acid) at various pH values. Based on these data the relative contributions of the enthalpic and entropic terms of the Gibbs energy to the complexation process have been analyzed. In both buffers the enthalpic and entropic terms are of different sign and this case corresponds to a 'nonclassical' model of hydrophobic interaction. In citric buffer, the main driving force of complexation is the entropy, which increases from 60 to 67% while the pH of the solution increases from 3.2 to 8.0. However, for the phosphoric buffer the entropic term decreases from 60 to 45%, while the pH-value of the solution increases from 5.0 to 8.2, and the driving force of the complexation process changes from entropy to enthalpy. The experimental data of the present study are compared to results of other authors and discrepancies discussed in detail.

  3. Simultaneous determination of phenylethanoid glycosides and aglycones by capillary zone electrophoresis with running buffer modifier.

    PubMed

    Dong, Shuqing; Gao, Ruibin; Yang, Yan; Guo, Mei; Ni, Jingman; Zhao, Liang

    2014-03-15

    Although the separation efficiency of capillary electrophoresis (CE) is much higher than that of other chromatographic methods, it is sometimes difficult to adequately separate the complex ingredients in biological samples. This article describes how one effective and simple way to develop the separation efficiency in CE is to add some modifiers to the running buffer. The suitable running buffer modifier β-cyclodextrin (β-CD) was explored to fast and completely separate four phenylethanoid glycosides and aglycones (homovanillyl alcohol, hydroxytyrosol, 3,4-dimethoxycinnamic acid, and caffeic acid) in Lamiophlomis rotata (Lr) and Cistanche by capillary zone electrophoresis with ultraviolet (UV) detection. It was found that when β-CD was used as running buffer modifier, a baseline separation of the four analytes could be accomplished in less than 20 min and the detection limits were as low as 10(-3) mg L(-1). Other factors affecting the CE separation, such as working potential, pH value and ionic strength of running buffer, separation voltage, and sample injection time, were investigated extensively. Under the optimal conditions, a successful practical application on the determination of Lr and Cistanche samples confirmed the validity and practicability of this method. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The interaction of insulin with phospholipids

    PubMed Central

    Perry, M. C.; Tampion, W.; Lucy, J. A.

    1971-01-01

    1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholine

  5. [Key factors in the control of electroosmosis with external radial electric field in CE].

    PubMed

    Zhu, Y; Chen, Y

    1999-11-01

    Direct control of electroosmosis flow (EOF) by external radial electric field was performed at room temperature using a home-made field-modulated capillary electrophoresis (CE) system. The EOF was monitored at 206 nm by using DMSO as a probe. To apply a radial electric field across the CE capillary wall, the capillary was cased with a wide column. Both of the concentric space and the capillary bore were then filled with an identical running buffer and applied with an axial electric field of 150 V/cm but starting from different levels. All of the tubes used were made of fused silica with polyimide over-coating (from the Yongnian Optical Fiber Work, Hebei, P. R. China). The size of the CE capillaries adopted was 25-100 microns i.d. (375 microns o.d.) x 28.5/45 cm (effective/total length), and that of the casing column 400 microns i.d. x 32 cm. To investigate the fundamentals of the external EOF control when using the flexible fused silica capillaries, various parameters have been inspected such as pH, buffer composition, additives and capillary wall feature etc.. As expected, to well control both of the magnitude and direction of the electroosmosis, the buffer pH should be kept below 4 and the buffer concentration below 50 mmol/L. However, buffers below 1 mmol/L should be avoided because such a diluted running buffer may result in poor CE separation. Weak electrolytes like citric acid, tartaric acid and acetic acid were found to be capable of generating better EOF control than the strong electrolytes such as phosphate and chlorides. This is possibly due to the formation of looser electric double layer with the weak rather than the strong electrolytes. Some wall coatings like calix arene and its derivatives can evidently improve the EOF control even at pH 5. This reveals an exciting way to expend the controllable pH range. In addition, narrow-bore capillaries were demonstrated to be better than wide-bore tubes. Other conditions such as buffer additives and capillary rinse procedure were shown to have only negligible influence on the control.

  6. 40 CFR 180.910 - Inert ingredients used pre- and post-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., carrier Lactic acid Solvent Lactic acid, 2-ethylhexyl ester (CAS Reg. No. 6283-86-9) Solvent Lactic acid, 2-ethylhexyl ester, (2S)- (CAS Reg. No. 186817-80-1) Solvent Lactic acid, n-propyl ester, (S); (CAS... coating agent Petroleum wax, conforming to 21 CFR 172.886(d) Coating agent Phosphoric acid Buffer...

  7. Ocean life breaking rules by building shells in acidic extremes.

    PubMed

    Doubleday, Zoë A; Nagelkerken, Ivan; Connell, Sean D

    2017-10-23

    Rising levels of carbon dioxide (CO 2 )from fossil fuel combustion is acidifying our oceans [1,2]. This acidification is expected to have negative effects on calcifying animals because it affects their ability to build shells [3,4]. However, the effects of ocean acidification in natural environments, subject to ecological and evolutionary processes (such as predation, competition, and adaptation), is uncertain [5,6]. These processes may buffer, or even reverse, the direct, short-term effects principally measured in laboratory experiments (for example, [6]). Here we describe the discovery of marine snails living at a shallow-water CO 2 vent in the southwest Pacific, an environment 30 times more acidic than normal seawater (Figure 1). By measuring the chemical fingerprints locked within the shell material, we show that these snails have a restricted range of movement, which suggests that they live under these conditions for their entire lives. The existence of these snails demonstrates that calcifying animals can build their shells under the acidic and corrosive conditions caused by extreme CO 2 enrichment. This unforeseen capacity, whether driven by ecological or adaptive processes, is key to understanding whether calcifying life may survive a high-CO 2 future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of three oxidizing biocides on Legionella pneumophila serogroup 1.

    PubMed Central

    Domingue, E L; Tyndall, R L; Mayberry, W R; Pancorbo, O C

    1988-01-01

    A study was conducted to determine the bactericidal effects of ozone and hydrogen peroxide relative to that of free chlorine on Legionella pneumophila serogroup 1. In laboratory batch-type experiments, organisms seeded at various densities were exposed to different concentrations of these biocides in demand-free buffers. Bactericidal effects were measured by determining the ability of L. pneumophila to grow on buffered charcoal-yeast extract agar supplemented with alpha-ketoglutarate. Ozone was the most potent of the three biocides, with a greater than 99% kill of L. pneumophila occurring during a 5-min exposure to 0.10 to 0.30 micrograms of O3 per ml. The bactericidal action of O3 was not markedly affected by changes in pH or temperature. Concentrations of 0.30 and 0.40 micrograms of free chlorine per ml killed 99% of the L. pneumophila after 30- and 5-min exposures, respectively. A 30-min exposure to 1,000 micrograms of H2O2 per ml was required to effect a 99% reduction of the viable L. pneumophila population. However, no viable L. pneumophila could be detected after a 24-h exposure to 100 or 300 micrograms of H2O2 per ml. Attempts were made to correlate the biocidal effects of O3 and H2O2 with the oxidation of L. pneumophila fatty acids. These tests indicated that certain biocidal concentrations of O3 and H2O2 resulted in a loss or severe reduction of L. pneumophila unsaturated fatty acids. PMID:3377492

  9. Toward quantifying water pollution abatement in response to installing buffers on crop land

    Treesearch

    Michael G. Dosskey

    2001-01-01

    The scientific research literature is reviewed (i) for evidence of how much reduction in nonpoint source pollution can be achieved by installing buffers on crop land, (ii) to summarize important factors that can affect this response, and (iii) to identify remaining major information gaps that limit our ability to make probable estimates. This review is intended to...

  10. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica

    PubMed Central

    Ferrara, Maria Antonieta; Almeida, Débora S.; Siani, Antonio C.; Lucchetti, Leonardo; Lacerda, Paulo S.B.; Freitas, André; Tappin, Marcelo R.R.; Bon, Elba P.S.

    2013-01-01

    Perillyl derivatives are increasingly important due to their flavouring and antimicrobial properties as well as their potential as anticancer agents. These terpenoid species, which are present in limited amounts in plants, may be obtained via bioconversion of selected monoterpene hydrocarbons. In this study, seventeen yeast strains were screened for their ability to oxidize the exocyclic methyl group in the p-menthene moiety of limonene into perillic acid. Of the yeast tested, the highest efficiency was observed for Yarrowia lipolytica ATCC 18942. The conversion of R (+)-limonene by Y. lipolytica was evaluated by varying the pH (3 to 8) and the temperature (25 to 30 °C) in a reaction medium containing 0.5% v/v limonene and 10 g/L of stationary phase cells (dry weight). The best results, corresponding to 564 mg/L of perillic acid, were obtained in buffered medium at pH 7.1 that was incubated at 25 °C for 48 h. The stepwise addition of limonene increased the perillic acid concentration by over 50%, reaching 855 mg/L, whereas the addition of glucose or surfactant to the reaction medium did not improve the bioconversion process. The use of Y. lipolytica showed promise for ease of further downstream processing, as perillic acid was the sole oxidised product of the bioconversion reaction. Moreover, bioprocesses using safe and easy to cultivate yeast cells have been favoured in industry. PMID:24688495

  11. Validation of paper-based assay for rapid blood typing.

    PubMed

    Al-Tamimi, Mohammad; Shen, Wei; Zeineddine, Rania; Tran, Huy; Garnier, Gil

    2012-02-07

    We developed and validated a new paper-based assay for the detection of human blood type. Our method involves spotting a 3 μL blood sample on a paper surface where grouping antibodies have already been introduced. A thin film chromatograph tank was used to chromatographically elute the blood spot with 0.9% NaCl buffer for 10 min by capillary absorption. Agglutinated red blood cells (RBCs) were fixed on the paper substrate, resulting in a high optical density of the spot, with no visual trace in the buffer wicking path. Conversely, nonagglutinated RBCs could easily be eluted by the buffer and had low optical density of the spot and clearly visible trace of RBCs in the buffer wicking path. Different paper substrates had comparable ability to fix agglutinated blood, while a more porous substrate like Kleenex paper had enhanced ability to elute nonagglutinated blood. Using optimized conditions, a rapid assay for detection of blood groups was developed by spotting blood to antibodies absorbed to paper and eluted with 200 μL of 0.9% NaCl buffer directly by pipetting. RBCs fixation on paper accurately detected blood groups (ABO and RhD) using ascending buffer for 10 min or using a rapid elution step in 100/100 blood samples including 4 weak AB and 4 weak RhD samples. The assay has excellent reproducibility where the same blood group was obtained in 26 samples assessed in 2 different days. Agglutinated blood fixation on porous paper substrate provides a new, simple, and sensitive assay for rapid detection of blood group for point-of-care applications. © 2011 American Chemical Society

  12. Improved labelling of DTPA- and DOTA-conjugated peptides and antibodies with 111In in HEPES and MES buffer.

    PubMed

    Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C

    2012-01-27

    In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling efficiency, whereas Cd2+ concentrations up to 0.1 nM did not affect the labelling efficiency in MES and HEPES buffer. We showed improved labelling of DTPA- and DOTA-conjugated compounds with 111In in HEPES and MES buffer. The enhanced labelling efficiency appears to be due to the reduced competitive chelation of cadmium. The enhanced labelling efficiency will allow more sensitive imaging of the biomarkers with SPECT.

  13. Determination of the radioprotective effects of topical applications of MEA, WR-2721, and N-acetylcysteine on murine skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhey, L.J.; Sedlacek, R.

    1983-01-01

    Topical applications of MEA (beta-mercaptoethylamine or cysteamine), WR-2721 (S-2-(3-aminopropylamino)-ethylphosphorothioic acid), and N-acetylcysteine (NAC) were tested for their ability to protect the normal skin of the hind legs of mice against acute and late damage from single doses of /sup 137/Cs radiation. No significant protection was observed with either WR-2721 or NAC. MEA was shown to offer significant protection against acute skin damage in both buffered and unbuffered forms, but no significant protection against late contraction. The use of topical MEA on unanesthetized animals breathing carbogen (95% O2, 5% CO2) appears to give an enhanced level of radioprotection over that shownmore » for anesthetized, air-breathing animals.« less

  14. Evaluating the developmental trajectory of the episodic buffer component of working memory and its relation to word recognition in children.

    PubMed

    Wang, Shinmin; Allen, Richard J; Lee, Jun Ren; Hsieh, Chia-En

    2015-05-01

    The creation of temporary bound representation of information from different sources is one of the key abilities attributed to the episodic buffer component of working memory. Whereas the role of working memory in word learning has received substantial attention, very little is known about the link between the development of word recognition skills and the ability to bind information in the episodic buffer of working memory and how it may develop with age. This study examined the performance of Grade 2 children (8 years old), Grade 3 children (9 years old), and young adults on a task designed to measure their ability to bind visual and auditory-verbal information in working memory. Children's performance on this task significantly correlated with their word recognition skills even when chronological age, memory for individual elements, and other possible reading-related factors were taken into account. In addition, clear developmental trajectories were observed, with improvements in the ability to hold temporary bound information in working memory between Grades 2 and 3, and between the child and adult groups, that were independent from memory for the individual elements. These findings suggest that the capacity to temporarily bind novel auditory-verbal information to visual form in working memory is linked to the development of word recognition in children and improves with age. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Fast and Non-Toxic In Situ Hybridization without Blocking of Repetitive Sequences

    PubMed Central

    Matthiesen, Steen H.; Hansen, Charles M.

    2012-01-01

    Formamide is the preferred solvent to lower the melting point and annealing temperature of nucleic acid strands in in situ hybridization (ISH). A key benefit of formamide is better preservation of morphology due to a lower incubation temperature. However, in fluorescence in situ hybridization (FISH), against unique DNA targets in tissue sections, an overnight hybridization is required to obtain sufficient signal intensity. Here, we identified alternative solvents and developed a new hybridization buffer that reduces the required hybridization time to one hour (IQFISH method). Remarkably, denaturation and blocking against repetitive DNA sequences to prevent non-specific binding is not required. Furthermore, the new hybridization buffer is less hazardous than formamide containing buffers. The results demonstrate a significant increased hybridization rate at a lowered denaturation and hybridization temperature for both DNA and PNA (peptide nucleic acid) probes. We anticipate that these formamide substituting solvents will become the foundation for changes in the understanding and performance of denaturation and hybridization of nucleic acids. For example, the process time for tissue-based ISH for gene aberration tests in cancer diagnostics can be reduced from days to a few hours. Furthermore, the understanding of the interactions and duplex formation of nucleic acid strands may benefit from the properties of these solvents. PMID:22911704

  16. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  17. Synthesis, kinetic studies and pharmacological evaluation of mutual azo prodrug of 5-aminosalicylic acid with D-phenylalanine for colon specific drug delivery in inflammatory bowel disease.

    PubMed

    Dhaneshwar, Suneela S; Gairola, Neha; Kandpal, Mini; Bhatt, Lokesh; Vadnerkar, Gaurav; Kadam, S S

    2007-04-01

    Mutual azo prodrug of 5-aminosalicylic acid with d-phenylalanine was synthesized by coupling D-phenylalanine with salicylic acid, for targeted drug delivery to the inflamed gut tissue in inflammatory bowel disease. The structure of synthesized prodrug was confirmed by elemental analysis, IR and NMR spectroscopy. In vitro kinetic studies in HCl buffer (pH 1.2) showed negligible release of 5-aminosalicylic acid, whereas in phosphate buffer (pH 7.4) only 15% release was observed over a period of 7h. In rat fecal matter the release of 5-aminosalicylic acid was almost complete (85%), with a half-life of 160.1 min, following first order kinetics. The azo conjugate was evaluated for its ulcerogenic potential by Rainsford's cold stress method. Therapeutic efficacy of the carrier system and the mitigating effect of the azo conjugate were evaluated in trinitrobenzenesulfonic acid-induced experimental colitis model. The synthesized prodrug was found to be equally effective in mitigating the colitis in rats as that of sulfasalazine without the ulcerogenicity of 5-aminosalicylic acid.

  18. Regional postprandial differences in pH within the stomach and gastroesophageal junction.

    PubMed

    Simonian, Hrair P; Vo, Lien; Doma, Siva; Fisher, Robert S; Parkman, Henry P

    2005-12-01

    Our objective was to determine regional differences in intragastric pH after different types of meals. Ten normal subjects underwent 27-hr esophagogastric pH monitoring using a four-probe pH catheter. Meals were a spicy lunch, a high-fat dinner, and a typical bland breakfast. The fatty dinner had the highest postprandial buffering effect, elevating proximal and mid/distal gastric pH to 4.9 +/- 0.4 and 4.0 +/- 0.4, respectively, significantly (P < 0.05) higher compared to 4.2 +/- 0.3 and 3.0 +/- 0.4 for the spicy lunch and 3.0 +/- 0.3 and 2.5 +/- 0.8 for the breakfast. The buffering effect of the high-volume fatty meal to pH > 4 was also longer (150 min) compared to that of the spicy lunch (45 min) and the bland breakfast, which did not increase gastric pH to > 4 at any time. Proximal gastric acid pockets were seen between 15 and 90 min postprandially. These were located 3.4 +/- 0.8 cm below the proximal LES border, extending for a length of 2.3 +/- 0.8 cm, with a drop in mean pH from 4.7 +/- 0.4 to 1.5 +/- 0.9. Acid pockets were seen equally after the spicy lunch and fatty dinner but less frequently after the bland breakfast. We conclude that a high-volume fatty meal has the highest buffering effect on gastric pH compared to a spicy lunch or a bland breakfast. Buffering effects of meals are significantly higher in the proximal than in the mid/distal stomach. Despite the intragastric buffering effect of meals, focal areas of acidity were observed in the region of the cardia-gastroesophageal junction during the postprandial period.

  19. Analysis of pilocarpine and its trans epimer, isopilocarpine, by capillary electrophoresis.

    PubMed

    Baeyens, W; Weiss, G; Van Der Weken, G; Van Den Bossche, W

    1993-05-28

    Capillary zone electrophoresis was used for the separation of pilocarpine from its epimer, isopilocarpine, using coated fused-silica capillaries of 20 cm x 25 microm I.D., 8 kV running voltage, migration buffer of 0.1 M sodium dihydrogenphosphate pH 8, detection at 217 nm and injection by electromigration. Injections of aqueous, acid and basic solutions were compared. Linearity of the signal for pilocarpine hydrochloride up to 200 microg ml(-1) in 0.05 M hydrochloric acid was obtained, using naphazoline nitrate as internal standard. Optimization of migration buffer pH using coated silica capillaries of 50 cm x 50 microm I.D. showed that at pH 6.9 pilocarpine can be separated from ++isopilocarpine. Inclusion of beta-cyclodextrin in the buffer allows full baseline separation of both epimers. The method was applied to the analysis of a commercial ophthalmic pilocarpine solution.

  20. [SPECTRAL AND ACID-BASE PROPERTIES OF HEMOLYMPH PLASMA AND ITS FRACTIONS FROM GASTROPOD PULMONATE MOLLUSC ACHATINA FULICA].

    PubMed

    Petrova, T A; Lianguzov, A Yu; Malygina, N M

    2016-01-01

    The set of normal biochemical indicators of the hemolymph plasma of gastropod pulmonate mollusc Achatinafulica is described. Comparative analysis of the whole plasma and its subfractions enriched and depleted of oxygen-carrying protein hemocyanin was performed by spectrophotometry and spectrofluorimetry methods. Individual features of the absorption spectra were analyzed using fourth derivatives. The optimum method for estimating protein concentration was chosen. To characterize acid-base properties of plasma hemolymph and its sub-fractions we calculated buffer capacity, equivalence points and pK values of dominant buffer groups. It is shown that the major role in maintaining the buffer capacity of hemolymph belongs to the bicarbonate system. These results are compared with data for Helix pomatia available in literature. In the future the indicators studied in this work will be used to develop ecotoxicological criteria for the environmental assessment.

  1. Microhabitats in the tropics buffer temperature in a globally coherent manner.

    PubMed

    Scheffers, Brett R; Evans, Theodore A; Williams, Stephen E; Edwards, David P

    2014-12-01

    Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9 °C and reduced maximum temperatures by 3.5 °C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation.

    PubMed

    Zhao, Renyong; Bean, Scott R; Crozier-Dodson, Beth Ann; Fung, Daniel Y C; Wang, Donghai

    2009-01-01

    A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0-5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R (2) = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41-47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (mu(max)) were 0.42 and 0.32 h(-1) for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.

  3. Effects of pH buffering agents on the anaerobic hydrolysis acidification stage of kitchen waste.

    PubMed

    Wang, Yaya; Zang, Bing; Gong, Xiaoyan; Liu, Yu; Li, Guoxue

    2017-10-01

    This study investigated effects of initial pH buffering agents on the lab-scale anaerobic hydrolysis acidification stage of kitchen waste (KW). Different cheap, available and suitable buffering agents (NaOH(s), NaOH(l), CaO(s)-NaOH, KOH(l)-NaOH, K 2 HPO 4 (s)-KOH, Na 2 CO 3 (s)-NaOH) were added under optimal adjusting mode (first two days: per 16h, after: one time per day) which was obtained in previous work. The effects of buffering agents were evaluated according to indexes of pH, VFAs, NH 4 + -N, TS, VS, VS/TS, TS and VS removal rate. The results showed treatment 5 with adding K 2 HPO 4 -KOH buffering agents had the most stable pH (6.7-7.0). Also treatment 5, 2, 4 and 6 provided stable pH ranging in 5-8. Among the treatments, treatment 6 with adding Na 2 CO 3 as initial buffering agents and 10mol/L NaOH as regulator was chosen as the optimal mode for highest VFAs content (44.05g/L) with high acetic acid and butyrate acid proportion (42.64%), TS and VS removal rate (44.84% and 58.67%, respectively), low VS/TS ratio (58.55), fewer adding dosage and low adjusting frequency. The VFAs content of treatment 6 at the end of hydrolysis acidification stage could be used for methanogenic phase of anaerobic two-phase digestion. Thus, treatment 6 (adding Na 2 CO 3 as initial buffering agents and 10mol/L NaOH as regulator) with highest VFAs content and TS and VS removal rate could be considered using in anaerobic hydrolysis acidification stage pH adjustment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Role of the Acid Pocket in Gastroesophageal Reflux Disease.

    PubMed

    Mitchell, David R; Derakhshan, Mohammad H; Robertson, Elaine V; McColl, Kenneth E L

    2016-02-01

    Gastroesophageal reflux disease is one of the commonest chronic conditions in the western world and its prevalence is increasing worldwide. The discovery of the acid pocket explained the paradox of acid reflux occurring more frequently in the postprandial period despite intragastric acidity being low due to the buffering effect of the meal. The acid pocket was first described in 2001 when it was detected as an area of low pH immediately distal to the cardia using dual pH electrode pull-through studies 15 minutes after a meal. It was hypothesized that there was a local pocket of acid close to the gastroesophageal junction that escapes the buffering effect of the meal, and that this is the source of postprandial acidic reflux. The presence of the acid pocket has been confirmed in other studies using different techniques including high-resolution pHmetry, Bravo capsule, magnetic resonance imaging, and scintigraphy. This review aims to describe what we know about the acid pocket including its length, volume, fluid constituents, and its relationship to the lower esophageal sphincter and squamocolumnar junction. We will discuss the possible mechanisms that lead to the formation of the acid pocket and examine what differences exist in patients who suffer from acid reflux. Treatments for reflux disease that affect the acid pocket will also be discussed.

  5. Evaluation of a newly developed triple buffered peptone broth for detection of Salmonella in broiler feed

    USDA-ARS?s Scientific Manuscript database

    Lactose broth (LB) and buffered peptone (BP) are used as pre-enrichment media to recover Salmonella from feed. Bacterial utilization of feed carbohydrates results in the production of acidic byproducts causing a drop in the media pH which can injure or kill Salmonella and yield false negative resul...

  6. Study to optimize gellant polymer-water systems for the control of hypergolic spills and fires

    NASA Technical Reports Server (NTRS)

    Jennings, R. R.; Macwilliams, D. C.; Foshee, W. C.; Katzer, M. F.

    1973-01-01

    A system of buffered gelled water was developed to prevent and control fires from small spills of nitrogen tetroxide-(N2O4)-Aerozine 50-hypergolic fuel. Laboratory studies on various alkalis, buffers, and seavengers for the fuel components are described. Chilling and sodium acetate-acetic acid buffer was found to be the best additives to the gelled water. Field tests and a delivery system (airborne) for the extinguishant are described. A short movie showing the field testing is available upon request.

  7. Free Available Chlorine Disinfection Criteria for Fixed Army Installation Primary Drinking Water

    DTIC Science & Technology

    1981-12-01

    Buffered Water with Fuivic Acid (5 C.U.) at pH 9 and 60C ............................................ 6. FAC Disinfection of f 2 Coliphage in Buffered Water ...with and without 250 mg/L -Ca+ at pH 5, 7, and 9 and 6°C ............... 31 10. FAC Disinfection of f 2 Coliphage in Water Containing 5 NTU Bentonite2...rngi L Ca+ 2 at pH- 5, 7, and q and 60C ...... ........................ 34 13. FAC Disinfection of f 2 Coliphage in Borate-Buffered Water with 250 mg

  8. Kinetics of salivary pH after acidic beverage intake by patients undergoing orthodontic treatment.

    PubMed

    Turssi, Cecilia P; Silva, Carolina S; Bridi, Enrico C; Amaral, Flavia Lb; Franca, Fabiana Mg; Basting, Roberta T

    2015-01-01

    The saliva of patients undergoing orthodontic treatment with fixed appliances can potentially present a delay in the diluting, clearing, and buffering of dietary acids due to an increased number of retention areas. The aim of this clinical trial was to compare salivary pH kinetics of patients with and without orthodontic treatment, following the intake of an acidic beverage. Twenty participants undergoing orthodontic treatment and 20 control counterparts had their saliva assessed for flow rate, pH, and buffering capacity. There was no significant difference between salivary parameters in participants with or without an orthodontic appliance. Salivary pH recovery following acidic beverage intake was slower in the orthodontic subjects compared to controls. Patients with fixed orthodontic appliances, therefore, seem to be at higher risk of dental erosion, suggesting that dietary advice and preventive care need to be implemented during orthodontic treatment.

  9. Increased degradation rate of nitrososureas in media containing carbonate.

    PubMed

    Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov

    2009-01-01

    The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.

  10. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    PubMed

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Impact of Stainless Steel Exposure on the Oxidation of Polysorbate 80 in Histidine Placebo and Active Monoclonal Antibody Formulation.

    PubMed

    Gopalrathnam, Ganapathy; Sharma, Anant Navanithan; Dodd, Steven Witt; Huang, Lihua

    2018-01-01

    Rapid oxidation of polysorbate 80 in histidine buffer was observed upon brief exposure to stainless steel. Liquid chromatography-mass spectrometry analysis indicates degradation of both polyoxyethylene sorbitan and polyoxyethylene head groups and unsaturated fatty acid chains, with further confirmation by reversed-phase high-performance liquid chromatography data. Both Fe 2+ and Fe 3+ were shown to induce polysorbate 80 oxidation. The degree of oxidation in polysorbate 20 and polysorbate 80 are comparable for the head groups and saturated fatty acid esters. However, the same phenomenon was not observed with placebo or monoclonal antibody at a threshold protein concentration, formulated in sodium citrate, in combination with histidine and sodium citrate, or with Na 2 ethylenediaminetetraacetic acid (EDTA). Further, polysorbate 80 oxidation was not observed with Lilly's antibody containing the active ingredient LY2951742, at or above a threshold concentration. Finally, no major polysorbate 80 degradation was observed in histidine buffer, with or without protein, in containers composed of glass or plastic, or when stainless steel exposure was otherwise completely absent. Finally, the 2-oxo oxidation form of histidine was not observed, but the other oxidation products and modifications of histidine were identified. LAY ABSTRACT: Rapid oxidation of polysorbate 80 in histidine buffer was observed upon brief exposure to stainless steel. The degree of oxidation in polysorbate 80 and polysorbate 20 were comparable. However, the same phenomenon was not observed with placebo when formulated in sodium citrate, in combination with histidine and sodium citrate, or with Na 2 ethylenediaminetetraacetic acid (EDTA). Polysorbate 80 oxidation was not observed with Lilly's antibody containing the active ingredient, LY2951742, at or above a threshold concentration. No major polysorbate 80 degradation in histidine buffer was observed when stainless steel contact was completely absent. © PDA, Inc. 2018.

  12. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  13. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  15. Structural characterization and dissolution profile of mycophenolic acid cocrystals.

    PubMed

    Zeng, Qing-Zhu; Ouyang, Jian; Zhang, Shuo; Zhang, Lei

    2017-05-01

    Three novel cocrystals of mycophenolic acid (MPA) with isonicotinamide (MPA-ISO), minoxidil (MPA-MIN) and 2,2'-dipyridylamine (MPA-DPA) as coformers have been prepared successfully by both slow evaporation and liquid-assisted grinding. The structures of these cocrystals show that all the three coformers form hydrogen bonds with the carboxylic acid group of MPA. The cocrystal MPA-ISO possesses remarkably improved solubility and dissolution rate, while two other cocrystals exhibit the opposite characteristics. The solids in the slurry with pH6.8 phosphate buffer and cocrystals remain as the incipient cocrystal after 24h. However, evidence of slight polymerization was shown in the slurry of pH6.8 phosphate buffer with MPA and MPA-ISO cocrystal. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hematite Reduction Buffers Acid Generation and Enhances Nutrient Uptake by a Fermentative Iron Reducing Bacterium, Orenia metallireducens Strain Z6.

    PubMed

    Dong, Yiran; Sanford, Robert A; Chang, Yun-Juan; McInerney, Michael J; Fouke, Bruce W

    2017-01-03

    Fermentative iron-reducing organisms have been identified in a variety of environments. Instead of coupling iron reduction to respiration, they have been consistently observed to use ferric iron minerals as an electron sink for fermentation. In the present study, a fermentative iron reducer, Orenia metallireducens strain Z6, was shown to use iron reduction to enhance fermentation not only by consuming electron equivalents, but also by generating alkalinity that effectively buffers the pH. Fermentation of glucose by this organism in the presence of a ferric oxide mineral, hematite (Fe 2 O 3 ), resulted in enhanced glucose decomposition compared with fermentation in the absence of an iron source. Parallel evidence (i.e., genomic reconstruction, metabolomics, thermodynamic analyses, and calculation of electron transfer) suggested hematite reduction as a proton-consuming reaction effectively consumed acid produced by fermentation. The buffering effect of hematite was further supported by a greater extent of glucose utilization by strain Z6 in media with increasing buffer capacity. Such maintenance of a stable pH through hematite reduction for enhanced glucose fermentation complements the thermodynamic interpretation of interactions between microbial iron reduction and other biogeochemical processes. This newly discovered feature of iron reducer metabolism also has significant implications for groundwater management and contaminant remediation by providing microbially mediated buffering systems for the associated microbial and/or chemical reactions.

  17. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    PubMed

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  18. pH tunability and influence of alkali metal basicity on the plasmonic resonance of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Yadav, Vijay D.; Akhil Krishnan, R.; Borade, Lalit; Shirolikar, Seema; Jain, Ratnesh; Dandekar, Prajakta

    2017-07-01

    Localized surface plasmon resonance has been a unique and intriguing feature of silver nanoparticles (AgNPs) that has attracted immense attention. This has led to an array of applications for AgNPs in optics, sensors, plasmonic imaging etc. Although numerous applications have been reported consistently, the importance of buffer and reaction parameters during the synthesis of AgNPs, is still unclear. In the present study, we have demonstrated the influence of parameters like pH, temperature and buffer conditions (0.1 M citrate buffer) on the plasmonic resonance of AgNPs. We found that neutral and basic pH (from alkali metal) provide optimum interaction conditions for nucleation of plasmon resonant AgNPs. Interestingly, this was not observed in the non-alkali metal base (ammonia). Also, when the nanoparticles synthesized from alkali metal base were incorporated in different buffers, it was observed that the nanoparticles dissolved in the acidic buffer and had reduced plasmonic resonance intensity. This, however, was resolved in the basic buffer, increasing the plasmonic resonance intensity and confirming that nucleation of nanoparticles required basic conditions. The above inference has been supported by characterization of AgNPs using UV-Vis spectrophotometer, Fluorimetry analysis, Infrared spectrometer and TEM analysis. The study concluded that the plasmonic resonance of AgNPs occurs due to the interaction of alkali (Na) and transition metal (Ag) salt in basic/neutral conditions, at a specific temperature range, in presence of a capping agent (citric acid), providing a pH tune to the overall system.

  19. Getting Back to Basics (& Acidics)

    ERIC Educational Resources Information Center

    Rhodes, Sam

    2006-01-01

    This article describes a few novel acid-base experiments intended to introduce students to the basic concepts of acid-base chemistry and provide practical examples that apply directly to the study of biology and the human body. Important concepts such as the reaction between carbon dioxide and water, buffers and protein denaturation, are covered.…

  20. New serine-derived gemini surfactants as gene delivery systems.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Amália S

    2015-01-01

    Gemini surfactants have been extensively used for in vitro gene delivery. Amino acid-derived gemini surfactants combine the special aggregation properties characteristic of the gemini surfactants with high biocompatibility and biodegradability. In this work, novel serine-derived gemini surfactants, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini surfactant-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low surfactant/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini surfactants with great potential as gene delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sour streams in appalachia: mapping nature’s buffer against sulfur deposition

    Treesearch

    Natasha Vizcarra; Nicholas Povak; Paul Hessburg; Keith Reynolds

    2015-01-01

    Even while emissions are in decline, sulfur released into the air primarily by coal- and oil-burning power plants continues to acidify streams in the eastern United States, stressing vegetation and harming aquatic life. Watersheds rich in base cations—nutrients that attract and bind acidic molecules—naturally buffer streams against acidification. These watersheds can...

  2. Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability

    NASA Astrophysics Data System (ADS)

    Long, Shiwei; Cao, Xun; Sun, Guangyao; Li, Ning; Chang, Tianci; Shao, Zewei; Jin, Ping

    2018-05-01

    Vanadium dioxide (VO2) is one of the most well-known thermochromic materials, which exhibits a notable optical change from transparent to reflecting in the infrared region upon a metal-insulator phase transition. For practical applications, VO2 thin films should be in high crystalline quality to obtain a strong solar modulation ability (ΔTsol). Meanwhile, narrow hysteresis loops and robust ambient durability are also indispensable for sensitivity and long-lived utilization, respectively. In this work, a series of high-quality V2O3/VO2 bilayer structures were grown on quartz glass substrates by reactive magnetron sputtering. Basically, the bottom V2O3 acts as the buffer layer to improve the crystallinity of the top VO2, while the VO2 serves as the thermochromic layer to guarantee the solar modulation ability for energy-saving. We observed an obvious increase in ΔTsol of 76% (from 7.5% to 13.2%) for VO2 films after introducing V2O3 buffer layers. Simultaneously, a remarkable reduction by 79% (from 21.9 °C to 4.7 °C) in width of hysteresis loop was obtained when embedding 60 nm V2O3 buffer for 60 nm VO2. In addition, VO2 with non-stoichiometry of V2O3±x buffer demonstrates a broadening hysteresis loops width, which is derived from the lattice distortion caused by lattice imperfection. Finally, durability of VO2 has been significantly improved due to positive effects of V2O3 buffer layer. Our results lead to a comprehensive enhancement in crystallinity of VO2 and shed new light on the promotion of thermochromic property by homologous oxides for VO2.

  3. CZE separation of strawberry anthocyanins with acidic buffer and comparison with HPLC.

    PubMed

    Comandini, Patrizia; Blanda, Giampaolo; Cardinali, Andrea; Cerretani, Lorenzo; Bendini, Alessandra; Caboni, Maria Fiorenza

    2008-10-01

    Anthocyanins, the major colourants of strawberries, are polar pigments that are positively charged at low pH. Herein, we have assessed a new analytical method for the separation of anthocyanins using CZE. Acidic buffer solutions (pH <2) were employed in order to maintain pigments in the cation flavylium form and achieve high molar absorptivity at 510 nm. These spectral properties enabled us to identify strawberry anthocyanins in a preliminary stage by detection in the visible range, although the method was optimised at 280 nm to obtain the best S/N. The effects of buffer composition highlighted the necessity of adding an organic modifier to the running buffer to obtain a suitable separation. The electrophoretic method permitted the separation of the three main anthocyanins of strawberry extracts, namely pelargonidin 3-glucoside (Pg-glu), pelargonidin 3-rutinoside and cyanidin 3-glucoside. The electrophoretic results, expressed as retention time and separation efficiency of the major anthocyanin (Pg-glu), were compared to those achieved in HPLC, the analytical technique traditionally used for the investigation of anthocyanins in vegetable matrix. The content of Pg-glu in strawberries (cv. Camarosa), calculated with HPCE and HPLC methods, resulted respectively in 11.41 mg/L and 11.37 mg/L.

  4. Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces.

    PubMed

    Couto, José António; Neves, Filipe; Campos, Francisco; Hogg, Tim

    2005-10-25

    The heat resistance of three strains of Dekkera/Brettanomyces (Dekkera anomala PYCC 5,153, Dekkera bruxellensis PYCC 4,801 and Dekkera/Brettanomyces 093) was evaluated at different temperatures between 32.5 and 55 degrees C. Thermal inactivation tests were performed in tartrate buffer solution (pH 4.0) and in wines. In the studies employing buffer as the heating menstruum, measurable thermal inactivation began only at temperatures of 50 degrees C. When heating was performed in wine, significant inactivation begins at 35 degrees C. Subsequent thermal inactivation tests were performed in buffer at various levels of pH, ethanol concentration, and various phenolic acids. Results from experiments in buffer with added ethanol suggest that the greater heat sensitivity shown in wines can be largely attributed to ethanol, although potentiation of this effect might be due to the phenolic content, particularly from ferulic acid. In the range of pH values tested (2.5-4.5), this factor had no influence in the heat inactivation kinetics. Relevant data, in the form of D and Z values calculated in the various environments, potentially useful for the establishment of regimes of thermal control of Dekkera/Brettanomyces yeasts in wine and contaminated equipment is presented.

  5. Fluorescence Stability of Mercaptopropionic Acid Capped Cadmium Telluride Quantum Dots in Various Biochemical Buffers.

    PubMed

    Borse, Vivek; Kashikar, Adisha; Srivastava, Rohit

    2018-04-01

    Quantum dots are the semiconductor nanocrystals having unique optical and electronic properties. Quantum dots are category of fluorescent labels utilized for biological tagging, biosensing, bioassays, bioimaging and in vivo imaging as they exhibit very small size, signal brightness, photostability, tuning of light emission range, longer photoluminescence decay time as compared to organic dyes. In this work, we have synthesized and characterized mercaptopropionic acid capped cadmium telluride quantum dots (MPA-CdTe QDs) using hydrothermal method. The study further reports fluorescence intensity stability of quantum dots suspended in different buffers of varying concentration (1-100 mM), stored at various photophysical conditions. Fluorescence intensity values were reduced with increase in buffer concentration. When the samples were stored at room temperature in ambient light condition the quantum dots suspended in different buffers lost the fluorescence intensity after day 15 (except TRIS II). Fluorescence intensity values were found stable for more than 30 days when the samples were stored in dark condition. Samples stored in refrigerator displayed modest fluorescence intensity even after 300 days of storage. Thus, storage of MPA-CdTe QDs in refrigerator may be the suitable choice to maintain its fluorescence stability for longer time for further application.

  6. Mechanism of molecular recognition on molecular imprinted monolith by capillary electrochromatography.

    PubMed

    Liu, Zhao-Sheng; Xu, Yan-Li; Yan, Chao; Gao, Ru-Yu

    2005-09-16

    The recognition mechanism of molecularly imprinted polymer (MIP) in capillary electrochromatography (CEC) is complicated since it possesses a hybrid process, which comprises the features of chromatographic retention, electrophoretic migration and molecular imprinting. For an understanding of the molecular recognition of MIP in CEC, a monolithic MIP in a capillary with 1,1'-binaphthyl-2,2'-diamine (BNA) imprinting was prepared by in situ copolymerization of imprinted molecule, methacrylic acid and ethylene glycol dimethacrylate in porogenic solvent, a mixture of toluene-isooctane. Strong recognition ability and high column performance (theory plates was 43,000 plates/m) of BNA were achieved on this monolithic MIP in CEC mode. In addition, BNA and its structural analogue, 1,1'-bi-2, 2'-naphthol, differing in functional groups, were used as model compounds to study imprinting effect on the resultant BNA-imprinted monolithic column, a reference column without imprinting of BNA and a open capillary. The effects of organic modifier concentration, pH value of buffer, salt concentration of buffer and column temperature on the retention and recognition of two compounds were investigated. The results showed that the molecular recognition on MIP monolith in CEC mode mainly derived from imprinting cavities on BNA-imprinted polymer other than chromatographic retention and electrophoretic migration.

  7. Oxidation and Assimilation of Carbohydrates by Micrococcus sodonensis1

    PubMed Central

    Perry, Jerome J.; Evans, James B.

    1966-01-01

    Perry, Jerome J. (North Carolina State University, Raleigh), and James B. Evans. Oxidation and assimilation of carbohydrates by Micrococcus sodonensis. J. Bacteriol. 91:33–38. 1966.—Micrococcus sodonensis is a biotin-requiring strict aerobe that cannot utilize carbohydrates as sole sources of carbon and energy. However, addition of mannose, glucose, sucrose, or maltose to a medium on which the organism can grow resulted in an increase in total growth. M. sodonensis oxidized these sugars without induction, thus indicating the presence of constitutive enzymes for their transport, activation, and metabolism. Under appropriate nonproliferating cell conditions, glucose was readily incorporated into essential constituents of the cell. When glucose-1-C14 and glucose-6-C14 were oxidized by nonproliferating cells, the label was found in both the protein and nucleic acid fractions of the cell. The respiratory quotients of cells oxidizing glucose in saline and in phosphate buffer indicated assimilation of sugar carbon in buffer and virtually no assimilation in saline. The ability of M. sodonensis to completely oxidize glucose and to grow on intermediates of glucose oxidation but not on glucose suggests that glucose may suppress or repress some reaction(s) necessary for growth, and that growth substrates either derepress or circumvent this block. PMID:5903100

  8. Determination of residual cell culture media components by MEKC.

    PubMed

    Zhang, Junge; Chakraborty, Utpal; Foley, Joe P

    2009-11-01

    Folic acid, hypoxanthine, mycophenolic acid, nicotinic acid, riboflavin, and xanthine are widely used as cell culture media components in monoclonal antibody manufacturing. These components are subsequently removed during the downstream purification processes. This article describes a single MEKC method that can simultaneously determine all the listed compounds with acceptable LOD and LOQ. All the analytes were successfully separated by MEKC using running buffer containing 40 mM SDS, 20 mM sodium phosphate, and 20 mM sodium borate at pH 9.0. The MEKC method was compared to the corresponding CZE method using the same running buffer containing no SDS. The effect of SDS concentration on separation, the pH of the running buffer, and the detection wavelength were studied and optimal MEKC conditions were established. Good linearity was obtained with correlation coefficients of more than 0.99 for all analytes. Specificity, accuracy, and precision were also evaluated. The recovery was in the range of 89-112%. The precision results were in the range of 1.7-4.8%. The experimentally determined data demonstrated that the MEKC method is applicable to the determination of the six analytes in in-process samples from monoclonal antibody manufacturing processes.

  9. Investigating on the fermentation behavior of six lactic acid bacteria strains in barley malt wort reveals limitation in key amino acids and buffer capacity.

    PubMed

    Nsogning, Sorelle Dongmo; Fischer, Susann; Becker, Thomas

    2018-08-01

    Understanding lactic acid bacteria (LAB) fermentation behavior in malt wort is a milestone towards flavor improvement of lactic acid fermented malt beverages. Therefore, this study aims to outline deficiencies that may exist in malt wort fermentation. First, based on six LAB strains, cell viability and vitality were evaluated. Second, sugars, organic acids, amino acids, pH value and buffering capacity (BC) were monitored. Finally, the implication of key amino acids, fructose and wort BC on LAB growth was determined. Short growth phase coupled with prompt cell death and a decrease in metabolic activity was observed. Low wort BC caused rapid pH drop with lactic acid accumulation, which conversely increased the BC leading to less pH change at late-stage fermentation. Lactic acid content (≤3.9 g/L) was higher than the reported inhibitory concentration (1.8 g/L). Furthermore, sugars were still available but fructose and key amino acids lysine, arginine and glutamic acid were considerably exhausted (≤98%). Wort supplementations improved cell growth and viability leading to conclude that key amino acid depletion coupled with low BC limits LAB growth in malt wort. Then, a further increase in organic acid reduces LAB viability. This knowledge opens doors for LAB fermentation process optimization in malt wort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Characterization of binding affinity of CJ-023,423 for human prostanoid EP4 receptor.

    PubMed

    Murase, Akio; Nakao, Kazunari; Takada, Junji

    2008-01-01

    In order to characterize the receptor binding pharmacology of CJ-023,423, a potent and selective EP4 antagonist, we performed a radioligand receptor binding assay under various assay conditions. An acidic (pH 6) and hypotonic buffer is a conventional, well-known buffer for prostaglandin E2 receptor binding assays. CJ-023,423 showed moderate binding affinity for human EP4 receptor under conventional buffer conditions. However, its binding affinity was greatly increased under neutral (pH 7.4) and isotonic buffer conditions. In this report, the binding mechanism between CJ-023,423 and human EP4 receptor is discussed based on the binding affinities determined under various assay conditions. Copyright 2008 S. Karger AG, Basel.

  11. Tabun scavengers based on hydroxamic acid containing cyclodextrins.

    PubMed

    Brandhuber, Florian; Zengerle, Michael; Porwol, Luzian; Bierwisch, Anne; Koller, Marianne; Reiter, Georg; Worek, Franz; Kubik, Stefan

    2013-04-28

    Arrangement of several hydroxamic acid-derived substituents along the cavity of a cyclodextrin ring leads to compounds that detoxify tabun in TRIS-HCl buffer at physiological pH and 37.0 °C with half-times as low as 3 min.

  12. Isolation, purification and characterization of collagenase from hepatopancreas of the land snail Achatina fulica.

    PubMed

    Indra, D; Ramalingam, K; Babu, Mary

    2005-09-01

    Collagenase (matrix metalloproteinase-1, EC:3.4.24.7) was isolated from the hepatopancreas of Achatina fulica and characterized for its enzymatic activity and immunological properties. Procollagenase was isolated using ammonium sulphate precipitation and gel filtration, followed by purification by reverse-phase high performance liquid chromatography in the presence of trifluoroacetic acid and by dialysis in neutral buffer. In the presence of SDS and beta-mercaptoethanol, the procollagenase resolved into two subunits with molecular masses of 63 and 28 kDa, respectively. The 63 kDa fragment retained its ability to bind and degrade gelatin, but the 28 kDa was inactive. Analysis by 2D gel electrophoresis revealed that the 63 kDa fragment was basic (pIs 7.6, 7.8 and 8.15), while the 28 kDa fragment was acidic (pI 4.7 and 5.1). Western blot analysis confirmed the identity of collagenase, as only matrix metalloproteinase-1 rabbit antibodies against human matrix metalloproteinase-1 (N-terminal region) recognized both the isolated procollagenase and the 63 kDa fragment.

  13. Synthesis, characterization and electrochemical properties of 5-aza[5]helicene-CH2O-CO-MWCNTs nanocomposite

    NASA Astrophysics Data System (ADS)

    Fontana, F.; Melone, F.; Iannazzo, D.; Leonardi, S. G.; Neri, G.

    2017-03-01

    In this study, we report the preparation of a novel nanocomposite, 5-aza[5]helicene-CH2O-CO-MWCNTs, obtained by grafting the 5-aza[5]helicene moiety on the surface of multi-walled carbon nanotubes (MWCNTs). Thermogravimetry (TGA), Fourier transform-infrared spectroscopy (FTIR), ultraviolet (UV), and photoluminescence (PL) measurements provided evidence that the organic moiety is covalently grafted to the MWCNTs. The 5-aza[5]helicene-CH2O-CO-MWCNTs nanocomposite was utilized to fabricate modified commercial screen-printed carbon electrodes. Its electrochemical behavior was studied in neutral buffer solution in the presence of ferricyanide and hydroquinone (HQ). Finally, the electrochemical sensing of epinephrine in the presence of ascorbic acid by using the linear sweep voltammetry (LSV) technique was investigated. Results have demonstrated the enhanced electrocatalytic activity and excellent ability of the 5-aza[5]helicene-CH2O-CO-MWCNTs-modified electrode in the separation between the anodic peaks of epinephrine (EP) and ascorbic acid (AA), even in the presence of a high amount of AA, with a detection limit (S/N = 3) of 5 μmol l-1.

  14. Poly-Cross-Linked PEI Through Aromatically Conjugated Imine Linkages as a New Class of pH-Responsive Nucleic Acids Packing Cationic Polymers

    PubMed Central

    Chen, Shun; Jin, Tuo

    2016-01-01

    Cationic polyimines polymerized through aromatically conjugated bis-imine linkages and intra-molecular cross-linking were found to be a new class of effective transfection materials for their flexibility in structural optimization, responsiveness to intracellular environment, the ability to facilitate endosome escape and cytosol release of the nucleic acids, as well as self-metabolism. When three phthalaldehydes of different substitution positions were used to polymerize highly branched low-molecular weight polyethylenimine (PEI 1.8K), the product through ortho-phthalimines (named PPOP) showed significantly higher transfection activity than its two tere- and iso-analogs (named PPTP and PPIP). Physicochemical characterization confirmed the similarity of three polyimines in pH-responded degradability, buffer capacity, as well as the size and Zeta potential of the polyplexes formed from the polymers. A mechanistic speculation may be that the ortho-positioned bis-imine linkage of PPOP may only lead to the straight trans-configuration due to steric hindrance, resulting in larger loops of intra-polymer cross-linking and more flexible backbone. PMID:26869931

  15. Control of short-channel effects in InAlN/GaN high-electron mobility transistors using graded AlGaN buffer

    NASA Astrophysics Data System (ADS)

    Han, Tiecheng; Zhao, Hongdong; Peng, Xiaocan; Li, Yuhai

    2018-04-01

    A graded AlGaN buffer is designed to realize the p-type buffer by inducing polarization-doping holes. Based on the two-dimensional device simulator, the effect of the graded AlGaN buffer on the direct-current (DC) and radio-frequency (RF) performance of short-gate InAlN/GaN high-electron mobility transistors (HEMTs) are investigated, theoretically. Compared to standard HEMT, an enhancement of electron confinement and a good control of short-channel effect (SCEs) are demonstrated in the graded AlGaN buffer HEMT. Accordingly, the pinched-off behavior and the ability of gate modulation are significantly improved. And, no serious SCEs are observed in the graded AlGaN buffer HEMT with an aspect ratio (LG/tch) of about 6.7, much lower than that of the standard HEMT (LG/tch = 13). In addition, for a 70-nm gate length, a peak current gain cutoff frequency (fT) of 171 GHz and power gain cutoff frequency (fmax) of 191 GHz are obtained in the grade buffer HEMT, which are higher than those of the standard one with the same gate length.

  16. Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells.

    PubMed

    Chen, Gunng-Shinng; Lee, Shiao-Pieng; Huang, Shu-Fu; Chao, Shih-Chi; Chang, Chung-Yi; Wu, Gwo-Jang; Li, Chung-Hsing; Loh, Shih-Hurng

    2018-06-01

    Homeostasis of intracellular pH (pH i ) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na + -H + exchanger (NHE), Na + -HCO 3 - co-transporter (NBC), Cl - /HCO 3 - exchanger (AE) and Cl - /OH - exchanger (CHE) have been identified to co-regulate pH i homeostasis. However, functional and biological pH i -regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pH i changes. NH 4 Cl and Na + -acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pH i -regulators were detected by Western blot technique. The resting pH i was no significant difference between that in HEPES-buffered (nominal HCO 3 - -free) solution or CO 2 /HCO 3 -buffered system (7.42 and 7.46, respectively). The pH i recovery following the induced-intracellular acidosis was blocked completely by removing [Na + ] o , while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pH i recovery was inhibited entirely by removing [Na + ] o , while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO 2 /HCO 3 -buffered system solution, the pH i recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl - ] o . Western blot analysis showed the isoforms of pH i regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. We demonstrate for the first time that resting pH i is significantly higher than 7.2 and meditates functionally by two Na + -dependent acid extruders (NHE and NBC), two Cl - -dependent acid loaders (CHE and AE) and one Na + -independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  18. Comparison of the use of the Halimeter and the Oral Chroma™ in the assessment of the ability of common cultivable oral anaerobic bacteria to produce malodorous volatile sulfur compounds from cysteine and methionine.

    PubMed

    Salako, Nathanael O; Philip, Leeba

    2011-01-01

    To compare the use of the Halimeter and the Oral Chroma™ to assess the ability of common oral anaerobic bacteria isolated from the Kuwaiti population to produce volatile sulfur compounds (VSCs). Broth cultures of common anaerobes isolated from supragingival plaque were centrifuged and pellets resuspended in phosphate buffer (pH 7.7) with an optical density OD(550) of 0.3. 100 μl of this suspension and 870 μl of buffer were added in 2 sterile 15-ml head space vials. Reaction was initiated by addition of 30 μl of 33 mML-methionine and L-cysteine, respectively, in each vial and incubation at 37°C for 90 min. 500 μl of 3 M phosphoric acid was added to tubes and was kept aside for 10 min. Production of VSCs was measured using the Halimeter and the Oral Chroma. The major VSC producers identified by both Halimeter and Oral Chroma with L-cystenine as substrate were Campylobacter ureolyticus, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, Aggregatibacter actinomycetemcomitans and Gemella morbillorum. The concentrations of hydrogen sulfide recorded by both Halimeter and Oral Chroma were essentially identical. With L-methionine as substrate, both Halimeter and Oral Chroma identified different complements of anaerobes with C. ureolyticus,P. gingivalis,Fusobacterium nucleatum and P. intermedia as major VSC producers. The concentrations of methyl mercaptan recorded by the Halimeter were lower compared to those assessed by the Oral Chroma. The results suggest that the Oral Chroma may produce a more comprehensive assessment of VSC production by oral microflora than the Halimeter. Copyright © 2010 S. Karger AG, Basel.

  19. Transient synchronization following invasion: revisiting Moran's model and a case study

    Treesearch

    Ottar N. Bjørnstad; Andrew M. Liebhold; Derek M. Johnson

    2008-01-01

    Synchrony in forest insect outbreaks is important because the resulting regionalized outbreak dilutes the regulating effects of natural enemies, reduces the landscape's ability to buffer the disturbance, exacerbates the economic burden on individual stakeholders, and overwhelms the logistical abilities of managers to suppress populations and mitigate impacts....

  20. Separation of dietary omega-3 and omega-6 fatty acids in food by capillary electrophoresis.

    PubMed

    Soliman, Laiel C; Donkor, Kingsley K; Church, John S; Cinel, Bruno; Prema, Dipesh; Dugan, Michael E R

    2013-10-01

    A lower dietary omega-6/omega-3 (n-6/n-3) fatty acid ratio (<4) has been shown to be beneficial in preventing a number of chronic illnesses. Interest exists in developing more rapid and sensitive analytical methods for profiling fatty acid levels in foods. An aqueous CE method was developed for the simultaneous determination of 15 n-3 and n-6 relevant fatty acids. The effect of pH and concentration of buffer, type and concentration of organic modifier, and additive on the separation was investigated in order to determine the best conditions for the analysis. Baseline separations of the 15 fatty acids were achieved using 40 mM borate buffer at pH 9.50 containing 50 mM SDS, 10 mM β-cyclodextrin, and 10% acetonitrile. The developed CE method has LODs of <5 mg/L and good linearity (R(2) > 0.980) for all fatty acids studied. The proposed method was successfully applied to the determination of n-3 and n-6 fatty acids in flax seed, Udo® oils and a selection of grass-fed and grain-fed beef muscle samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Revisiting the cognitive buffer hypothesis for the evolution of large brains

    PubMed Central

    Sol, Daniel

    2008-01-01

    Why have some animals evolved large brains despite substantial energetic and developmental costs? A classic answer is that a large brain facilitates the construction of behavioural responses to unusual, novel or complex socioecological challenges. This buffer effect should increase survival rates and favour a longer reproductive life, thereby compensating for the costs of delayed reproduction. Although still limited, evidence in birds and mammals is accumulating that a large brain facilitates the construction of novel and altered behavioural patterns and that this ability helps dealing with new ecological challenges more successfully, supporting the cognitive-buffer interpretation of the evolution of large brains. PMID:19049952

  2. The antimalarial activity of Ru–chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces

    PubMed Central

    Martínez, Alberto; Rajapakse, Chandima S. K.; Jalloh, Dalanda; Dautriche, Cula

    2012-01-01

    We have measured water/n-octanol partition coefficients, pKa values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium–πarene–chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied. PMID:19343380

  3. The antimalarial activity of Ru-chloroquine complexes against resistant Plasmodium falciparum is related to lipophilicity, basicity, and heme aggregation inhibition ability near water/n-octanol interfaces.

    PubMed

    Martínez, Alberto; Rajapakse, Chandima S K; Jalloh, Dalanda; Dautriche, Cula; Sánchez-Delgado, Roberto A

    2009-08-01

    We have measured water/n-octanol partition coefficients, pK(a) values, heme binding constants, and heme aggregation inhibition activity of a series of ruthenium-pi-arene-chloroquine (CQ) complexes recently reported to be active against CQ-resistant strains of Plasmodium falciparum. Measurements of heme aggregation inhibition activity of the metal complexes near water/n-octanol interfaces qualitatively predict their superior antiplasmodial action against resistant parasites, in relation to CQ; we conclude that this modified method may be a better predictor of antimalarial potency than standard tests in aqueous acidic buffer. Some interesting tendencies emerge from our data, indicating that the antiplasmodial activity is related to a balance of effects associated with the lipophilicity, basicity, and structural details of the compounds studied.

  4. Sensitive determination of phenolic acids in extra-virgin olive oil by capillary zone electrophoresis.

    PubMed

    Carrasco Pancorbo, Alegría; Cruces-Blanco, Carmen; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto

    2004-11-03

    A sensitive, rapid, efficient, and reliable method for the separation and determination of phenolic acids by capillary zone electrophoresis has been carried out. A detailed method optimization was carried out to separate 14 different compounds by studying parameters such as pH, type and concentration of buffer, applied voltage, and injection time. The separation was performed within 16 min, using a 25 mM sodium borate buffer (pH 9.6) at 25 kV with 8 s of hydrodynamic injection. With this method and using a liquid-liquid extraction system, with recovery values around 95%, it has been possible to detect small quantities of phenolic acids in olive oil samples. This is apparently the first paper showing the quantification of this specific family of phenolic compounds in virgin olive oil samples.

  5. 6.0 Monitoring recovery from calcium depletion and nitrogen saturation

    Treesearch

    Walter C. Shortle; Peter S. Murdoch; Kevin T. Smith; Rakesh Minocha; Gregory B. Lawrence

    2008-01-01

    Atmospheric emissions from industrial processes in the early part of the 20th century resulted in acidic deposition in the Northeastern U.S., a phenomenon known as "acid rain." Acid rain has been implicated in acidification of sensitive waterways, nitrate enrichment of surface waters, and fish population declines in poorly buffered mountain streams (Baldigo...

  6. A Paper Chase: Technology Helps Library Save Its Collections on Paper.

    ERIC Educational Resources Information Center

    Dalrymple, Will

    1997-01-01

    Bookkeeper, a liquid-based mass deacidification technology, may help the Library of Congress win its war against acid damage in its paper collection. The process impregnates books with magnesium oxide particles that both neutralize the acid in paper and leave an alkaline buffer behind. Describes the problem of acidic degradation and the Bookkeeper…

  7. Technical Evaluation of Sample-Processing, Collection, and Preservation Methods

    DTIC Science & Technology

    2014-07-01

    For the Gram-positive organism, B. atrophaeus var. globigii (Unified Culture Collection [ UCC ] designation: BACI051) was selected as a surrogate for...the well-known biothreat agent Bacillus anthracis. For the Gram-negative organism, Y. pestis CO92 (pgm–) ( UCC designation: YERS059) was selected...Diagnostics device) TAMRA tetramethylrhodamine TE buffer tris-ethylenediaminetetraacetic acid buffer UCC Unified Culture Collection USG U.S. Government

  8. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine

    PubMed Central

    Abdelkader, Hamdy; Longman, Michael R; Alany, Raid G; Pierscionek, Barbara

    2016-01-01

    This study reports on L-carnosine phytosomes as an alternative for the prodrug N-acetyl-L-carnosine as a novel delivery system to the lens. L-carnosine was loaded into lipid-based phytosomes and hyaluronic acid (HA)-dispersed phytosomes. L-carnosine-phospholipid complexes (PC) of different molar ratios, 1:1 and 1:2, were prepared by the solvent evaporation method. These complexes were characterized with thermal and spectral analyses. PC were dispersed in either phosphate buffered saline pH 7.4 or HA (0.1% w/v) in phosphate buffered saline to form phytosomes PC1:1, PC1:2, and PC1:2 HA, respectively. These phytosomal formulations were studied for size, zeta potential, morphology, contact angle, spreading coefficient, viscosity, ex vivo transcorneal permeation, and cytotoxicity using primary human corneal cells. L-carnosine-phospholipid formed a complex at a 1:2 molar ratio and phytosomes were in the size range of 380–450 nm, polydispersity index of 0.12–0.2. The viscosity of PC1:2 HA increased by 2.4 to 5-fold compared with HA solution and PC 1:2, respectively; significantly lower surface tension, contact angle, and greater spreading ability for phytosomes were also recorded. Ex vivo transcorneal permeation parameters showed significantly controlled corneal permeation of L-carnosine with the novel carrier systems without any significant impact on primary human corneal cell viability. Ex vivo porcine lenses incubated in high sugar media without and with L-carnosine showed concentration-dependent marked inhibition of lens brunescence indicative of the potential for delaying changes that underlie cataractogenesis that may be linked to diabetic processes. PMID:27366062

  9. A Geochemical Reaction Model for Titration of Contaminated Soil and Groundwater at the Oak Ridge Reservation

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.

    2007-12-01

    This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.

  10. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reibel, D.K.; O'Rourke, B.

    1986-03-05

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H/sub 2/O left atrial filling pressure with a ventricular afterload of 80 cm of H/sub 2/O with buffer containing 1.2 mM /sup 14/C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. /sup 14/CO/submore » 2/ production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by /sup 14/CO/sub 2/ production during this time was 0.728 +/- 0.06 ..mu..moles/min/g dry in control hearts and 0.710 +/- 0.02 ..mu..moles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O/sub 2/ consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 ..mu..moles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine.« less

  11. Metabolism of Linoleic Acid by Barley Lipoxygenase and Hydroperoxide Isomerase 1

    PubMed Central

    Lulai, Edward C.; Baker, Charles W.; Zimmerman, Don C.

    1981-01-01

    The oxidation of linoleic acid in incubation mixtures containing extracts of barley lipoxygenase and hydroperoxide isomerase, and the production of these enzymes in quiescent and germinated barley, were investigated. The ratio of 9-hydroperoxylinoleic acid to 13-hydroperoxylinoleic acid was higher for incubation mixtures containing extracts of quiescent barley than for mixtures containing extracts of germinated barley; production of 13-hydroperoxylinoleic acid from germinated barley exceeded that of quiescent barley. Hydroperoxy metabolites of linoleic acid were converted to 9-hydroxy-10-oxo-cis-12-octadecenoic acid, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, and small amounts of 11-hydroxy-12,13-epoxy-cis-9-octadecenoic acid and 11-hydroxy-9,10-epoxy-cis-13-octadecenoic acid whether quiescent or germinated barley was the enzyme source; a fifth product, 13-hydroxy-12-oxo-cis-9-octadecenoic acid was formed only when germinated barley was the enzyme source. Lipoxygenase was readily extracted by buffer, but hydroperoxide isomerase was bound in a catalytically active state to the insoluble barley grist and was efficiently extracted only when Triton X-100 was included in the extraction buffer. Hydroperoxide isomerase was localized in the embryo of quiescent barley, but it was present in the embryo, acrospire, and in small but concentrated amounts in the rootlet of germinating barley. The levels of both lipoxygenase and hydroperoxide isomerase increased through the thirteenth day of germination. Images PMID:16662032

  12. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  13. Attentional Control Buffers the Effect of Public Speaking Anxiety on Performance.

    PubMed

    Jones, Christopher R; Fazio, Russell H; Vasey, Michael W

    2012-09-01

    We explored dispositional differences in the ability to self-regulate attentional processes in the domain of public speaking. Participants first completed measures of speech anxiety and attentional control. In a second session, participants prepared and performed a short speech. Fear of public speaking negatively impacted performance only for those low in attentional control. Thus, attentional control appears to act as a buffer that facilitates successful self-regulation despite performance anxiety.

  14. Attentional Control Buffers the Effect of Public Speaking Anxiety on Performance

    PubMed Central

    Jones, Christopher R.; Fazio, Russell H.; Vasey, Michael W.

    2011-01-01

    We explored dispositional differences in the ability to self-regulate attentional processes in the domain of public speaking. Participants first completed measures of speech anxiety and attentional control. In a second session, participants prepared and performed a short speech. Fear of public speaking negatively impacted performance only for those low in attentional control. Thus, attentional control appears to act as a buffer that facilitates successful self-regulation despite performance anxiety. PMID:22924093

  15. International comparison of observation-specific spatial buffers: maximizing the ability to estimate physical activity.

    PubMed

    Frank, Lawrence D; Fox, Eric H; Ulmer, Jared M; Chapman, James E; Kershaw, Suzanne E; Sallis, James F; Conway, Terry L; Cerin, Ester; Cain, Kelli L; Adams, Marc A; Smith, Graham R; Hinckson, Erica; Mavoa, Suzanne; Christiansen, Lars B; Hino, Adriano Akira F; Lopes, Adalberto A S; Schipperijn, Jasper

    2017-01-23

    Advancements in geographic information systems over the past two decades have increased the specificity by which an individual's neighborhood environment may be spatially defined for physical activity and health research. This study investigated how different types of street network buffering methods compared in measuring a set of commonly used built environment measures (BEMs) and tested their performance on associations with physical activity outcomes. An internationally-developed set of objective BEMs using three different spatial buffering techniques were used to evaluate the relative differences in resulting explanatory power on self-reported physical activity outcomes. BEMs were developed in five countries using 'sausage,' 'detailed-trimmed,' and 'detailed,' network buffers at a distance of 1 km around participant household addresses (n = 5883). BEM values were significantly different (p < 0.05) for 96% of sausage versus detailed-trimmed buffer comparisons and 89% of sausage versus detailed network buffer comparisons. Results showed that BEM coefficients in physical activity models did not differ significantly across buffering methods, and in most cases BEM associations with physical activity outcomes had the same level of statistical significance across buffer types. However, BEM coefficients differed in significance for 9% of the sausage versus detailed models, which may warrant further investigation. Results of this study inform the selection of spatial buffering methods to estimate physical activity outcomes using an internationally consistent set of BEMs. Using three different network-based buffering methods, the findings indicate significant variation among BEM values, however associations with physical activity outcomes were similar across each buffering technique. The study advances knowledge by presenting consistently assessed relationships between three different network buffer types and utilitarian travel, sedentary behavior, and leisure-oriented physical activity outcomes.

  16. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    PubMed

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-08

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the protective capabilities of the prodrugs against H2O2-induced cell death. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Fluorophotometric measurement of the buffering action of human tears in vivo.

    PubMed

    Yamada, M; Kawai, M; Mochizuki, H; Hata, Y; Mashima, Y

    1998-10-01

    The buffering action of human tears is thought to be important to keep its pH constant. We measured the change in pH in the precorneal tear film in vivo when the acidic solution is challenged, using a fluorophotometric technique. Twelve eyes from 6 healthy subjects were entered in this study. Each subject was pretreated with either one drop of 0.4% oxybuprocaine for once (light anesthesia), three times (deep anesthesia), or none (controls). The measurement was initiated by instilling 20 microl of 0.067 M phosphate buffer at pH 5.5 containing 2 mM bis-carboxyethyl-carboxyfluorescein free acid, a pH sensitive dye, into the subject's eye. The pH was determined by the ratio of fluorescent intensities at two excitation wavelengths (490 and 430 nm). pH recovery time (PHRT) as defined by the time required for pH to reach 95% of pH at equilibrium was used for the marker of tear buffering action. Tear turnover rate was also determined using the fluorescent decay curve at 430 nm, which was independent of pH, but dependent on dye concentration. Immediately after the instillation, the pH value in the tear film was around 6.0-6.5 in all cases. The tear film rapidly became more alkaline, reaching its normal value in 2.3 +/- 0.5 min in untreated eyes. The pretreatment with 0.4% oxybuprocaine retarded the neutralization process. A single regression analysis revealed that the PHRT had a significant negative correlation with the tear turnover rate (r = -0.78). Our results suggest that the neutralization process of tears largely depends on the tear turnover rate. The buffering action of tears in vivo consists of the tear turnover as well as its chemical buffering capacity.

  18. Enzymatic hydrolysis of organic phosphorus in swine manure and soil.

    PubMed

    He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne

    2004-01-01

    Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.

  19. Effect of the ionic strength of a mobile phase on the chromatographic retention and thermodynamic characteristics of the adsorption of enantiomers of α-phenylcarboxylic acids on a chiral adsorbent with grafted antibiotic eremomycin

    NASA Astrophysics Data System (ADS)

    Reshetova, E. N.

    2017-01-01

    The effect the ionic strength of an aqueous ethanol mobile phase containing buffer salt has the on retention and thermodynamics of adsorption of optical isomers of some α-phenylcarboxylic acids on chiral adsorbent Nautilus-E with grafted antibiotic eremomycin is investigated. It is shown that ion exchange processes participate in the adsorption of enantiomers of α-phenylcarboxylic acids. It is established that electrostatic interactions contribute to the retention of enantiomers of α-phenylcarboxylic acids and affect selectivity only slightly. The dependences of retention characteristics, selectivity, and thermodynamic parameters on the concentration of the buffer salt in the eluent are determined. A statistical analysis of enthalpy-entropy compensation is performed, and the compensation effect is shown to be true. It is found that the points corresponding to the investigated adsorbates are distributed over the compensation dependence according to the spatial structural characteristics of molecules.

  20. Effects of acids on forest trees as measured by titration in vitro, inheritance of buffer capacity in Picea abies

    Treesearch

    F. Scholz; S. Reck

    1976-01-01

    The effect of acidic precipitation on vegetation is the result of an interaction between the acid and the plant. The metabolism of plants is dependent on optimal pH-values, which are maintained by regulation. There are differences in the effectiveness of regulation under such exogenous influences as acidic precipitation. These differences can be related to the...

  1. First derivative spectrophotometric and LC determination of benoxinate hydrochloride and its degradation products.

    PubMed

    El-Gindy, A

    2000-03-01

    Two methods are presented for the determination of benoxinate HCI and its acid and alkali-induced degradation products using first derivative (1D) spectrophotometry with zero-crossing measurements and liquid chromatography. Benoxinate HCl was determined by measurement of its first derivative amplitude in mcllvaine's-citric acid phosphate buffer pH 7.0 at 268.4 and 272.4 nm in the presence of its alkali- and acid-induced degradation products, respectively. The acid- and alkali-induced, degradation products were determined by measurement of their first derivative amplitude in the same solvent at 307.5 nm. The LC method depends upon using a mu bondapak CN column with a mobile phase consisting of acetonitrile-water triethylamine (60:40:0.01, v/v) and adjusted to apparent pH 7. Quantitation was achieved with UV detection at 310 nm based on peak area. The proposed methods were utilized to investigate the kinetics of the acidic and alkaline degradation processes at different temperatures. The pH-rate profile of degradation of benoxinate HCl in Britton-Robinson buffer solutions was studied.

  2. Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids.

    PubMed

    Gawlik-Dziki, Urszula; Dziki, Dariusz; Świeca, Michał; Nowak, Renata

    2017-06-15

    The aim of this study was to estimate the phenolic composition and xanthine oxidase (XO) inhibitory activity of green coffee beans (GCB) and wholemeal wheat flour (WF). Additionally, the type and strength of interaction (expressed as the combination index, CI) and mode of XO inhibition were analyzed. The major phenolic in GCB was 5-caffeoylquinic acid (39.92mg/g dw). The main phenolic acids in WF were trans- and cis-ferulic acids (257 and 165.57mg/100g dw, respectively). Both ferulic and chlorogenic acids individually inhibited XO, and for their combination moderate synergism was found. Buffer extractable compounds from GCB and WF demonstrated slight synergism (CI=0.92), while potentially bioaccessible and bioavailable compounds acted synergistically (CI=0.43 and 0.54, respectively). Buffer-extractable and potentially bioavailable phytochemicals from GCB acted uncompetitively, whereas potentially bioaccessible compounds acted as noncompetitive XO inhibitors. The addition of 3-5% of GCB to wheat bread significantly increased XO-inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Delayed release film coating applications on oral solid dosage forms of proton pump inhibitors: case studies.

    PubMed

    Missaghi, Shahrzad; Young, Cara; Fegely, Kurt; Rajabi-Siahboomi, Ali R

    2010-02-01

    Formulation of proton pump inhibitors (PPIs) into oral solid dosage forms is challenging because the drug molecules are acid-labile. The aim of this study is to evaluate different formulation strategies (monolithic and multiparticulates) for three PPI drugs, that is, rabeprazole sodium, lansoprazole, and esomeprazole magnesium, using delayed release film coating applications. The core tablets of rabeprazole sodium were prepared using organic wet granulation method. Multiparticulates of lansoprazole and esomeprazole magnesium were prepared through drug layering of sugar spheres, using powder layering and suspension layering methods, respectively. Tablets and drug-layered multiparticulates were seal-coated, followed by delayed release film coating application, using Acryl-EZE(R), aqueous acrylic enteric system. Multiparticulates were then filled into capsules. The final dosage forms were evaluated for physical properties, as well as in vitro dissolution testing in both compendial acid phase, 0.1N HCl (pH 1.2), and intermediate pH, acetate buffer (pH 4.5), followed by phosphate buffer, pH 6.8. The stability of the delayed release dosage forms was evaluated upon storage in accelerated conditions [40 degrees C/75% relative humidity] for 3 months. All dosage forms demonstrated excellent enteric protection in the acid phase, followed by rapid release in their respective buffer media. Moreover, the delayed release dosage forms remained stable under accelerated stability conditions for 3 months. Results showed that Acryl-EZE enteric coating systems provide excellent performance in both media (0.1N HCl and acetate buffer pH 4.5) for monolithic and multiparticulate dosage forms.

  4. Agarose electrophoresis of DNA in discontinuous buffers, using a horizontal slab apparatus and a buffer system with improved properties.

    PubMed

    Zsolnai, A; Orbán, L; Chrambach, A

    1993-03-01

    Using a horizontal slab apparatus with a buffer in the reservoirs at the level of the gel ("sea-level electrophoresis"), the retrograde discontinuous buffer system reported by Wiltfang et al. for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins was applied to DNA electrophoresis. This application yielded the advantages of an increased displacement rate of the moving boundary front and a decrease in the concentration of the counterion base in the resolving phase, which yielded reduced relative mobility values at equivalent gel concentrations and practicable low buffer concentrations. The change of relative mobilities (Rf) with a variation of field strength is decreased compared to that of the migration rate in the continuous Tris-boric-acid-EDTA (TBE) buffer and thus the robustness of the system is improved, as well as the efficiency of separation. The system of Wiltfang et al. has in common with previously described discontinuous DNA system, that it is able to stack DNA from dilute samples and is insensitive to sample components with lower net mobilities than DNA, such as acetate. However, the variance of Rf at constant current density in the discontinuous buffer system is not improved over that of the migration rate at constant field strength in the continuous TBE buffer.

  5. Can fungal zoospores be the source of energy for the rumen protozoa Eudiplodinium maggii?

    PubMed

    Miltko, Renata; Bełżecki, Grzegorz; Kowalik, Barbara; Michałowski, Tadeusz

    2014-10-01

    Results of our earlier studies showed the ability of ciliates Eudiplodinium maggii to digest and metabolize commercial chitin. The natural source of this polysaccharide in the rumen are fungi. The objectives of present research were to determine the effect of fungal zoospores on the survival and population density of E. maggii to quantify the concentration of chitin in the cells of protozoa and to examine the ability of E. maggii, to ferment chitin of fungal zoospores. The cultivation experiment showed that the survival of protozoa was shorter than 4 days when the culture medium was composed of buffer solution and lyophilized fungal spores. An enrichment of this medium with wheat gluten prolonged the survival of ciliates up to 8 days. The supplementation of the last medium with meadow hay enabled the protozoa to survive for 28 days but a positive effect was observed only during the last 8 days of experiment. The chitin content was 0.27 ng and 0.21-0.35 ng per single zoospore and ciliate, respectively. An increase in the concentration of volatile fatty acids (VFA) was found when protozoa were incubated with zoospores. The production rate of VFA was 46.3 pM/protozoan per h whereas the endogenous production did not exceed 31 pM/protozoan per h. The molar proportion of acetic acid was 77.7% and these of butyric and propionic acids-12.2 and 11.0%, respectively. The obtained results make it evident that carbohydrates present in fungal zoospores were utilized by protozoa in energy yielding processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Local indigenous fruit-derived juices as alternate source of acidity regulators.

    PubMed

    D'souza, Cassandra; Fernandes, Rosaline; Kudale, Subhash; Naik, Azza Silotry

    2018-03-01

    Acidity regulators are additives that alter and control food acidity. The objective of this study was to explore local indigenous fruits as sources of natural acidity regulators. Juices extracted from Garcinia indica (kokum), Embilica officinalis (amla) and Tamarindus indica (tamarind) were used as acidulants for media such as coconut milk and bottle gourd juice. The buffering capacity β, acid composition, antioxidant activity and shelf-life study of the acidified media were estimated. Potentiometric titration showed G. indica to possess the highest buffering capacity in both ranges. High-performance liquid chromatography analysis showed T. indica contained a high level of tartaric acid (4.84 ± 0.01 mg g -1 ), while G. indica had citric acid (22.37 ± 0.84 mg g -1 ) and E. officinalis had citric acid (2.75 ± 0.02 mg g -1 ) along with ascorbic acid (2.68 ± 0.01 mg g -1 ). 1,1-Diphenyl-2-picrylhydrazyl scavenging activity was high for E. officinalis (91.24 ± 0.66%) and T. indica (90.93 ± 0.817%) and relatively lower for G. indica (34.61 ± 3.66%). The shelf-life study showed total plate count to be within the prescribed limits up to a week, in accordance with safety regulations. This investigation confirmed the suitability of indigenous fruit juices as alternatives to existing acidity regulators. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Comparison of adhesive properties of water- and phosphate-buffer-washed cottonseed meals with cottonseed protein isolate on maple and poplar veneers

    USDA-ARS?s Scientific Manuscript database

    Water- and phosphate buffer (35 mM Na2HPO4/NaH2PO4, pH 7.5)-washed cottonseed meals (abbreviated as WCM and BCM, respectively) could be low-cost and environmentally friendly protein-based adhesives as their preparation does not involve corrosive alkali and acid solutions that are needed for cottonse...

  8. Safety and tolerability of BufferGel, a novel vaginal microbicide, in women in the United States.

    PubMed

    Mayer, K H; Peipert, J; Fleming, T; Fullem, A; Moench, T; Cu-Uvin, S; Bentley, M; Chesney, M; Rosenberg, Z

    2001-02-01

    BufferGel (ReProtect, LLC) is a vaginal gel with an acidic buffering action that was designed to prevent vaginal neutralization by semen. The purpose of this study was to evaluate the safety and tolerability of BufferGel (ReProtect, Limited Liability Company) applied vaginally either once or twice daily by 27 women who were at low risk for acquisition of human immunodeficiency virus (HIV). Participants initially used the product once daily for 14 days and then twice daily for 14 days; they underwent colposcopy before and after product exposure. BufferGel was well tolerated, although two-thirds of the participants reported at least 1 mild or moderate adverse experience. The most common adverse events were irritative genitourinary symptoms. Product use was discontinued after 3 adverse events. BufferGel was well tolerated in women at low risk for acquisition of HIV; toxicity was limited and occurred at frequencies similar to those in women who did not use any vaginal product and at levels lower than in women who used detergent-based microbicides.

  9. Botulism challenge studies of a modified atmosphere package for fresh mussels: inoculated pack studies.

    PubMed

    Newell, C R; Ma, Li; Doyle, Michael

    2012-06-01

    A series of botulism challenge studies were performed to determine the possibility of production of botulinum toxin in mussels (Mytilus edulis) held under a commercial high-oxygen (60 to 65% O(2)), modified atmosphere packaging (MAP) condition. Spore mixtures of six strains of nonproteolytic Clostridium botulinum were introduced into mussel MAP packages receiving different packaging buffers with or without the addition of lactic acid bacteria. Dye studies and package flipping trials were conducted to ensure internalization of spores by packed mussels. Inoculated mussel packages were stored at normal (4°C) and abusive (12°C) temperatures for 21 and 13 days, respectively, which were beyond the packaged mussels' intended shelf life. Microbiological and chemical analyses were conducted at predetermined intervals (a total of five sampling times at each temperature), including total aerobic plate counts, C. botulinum counts, lactic acid bacterial counts, package headspace gas composition, pH of packaging buffer and mussel meat, and botulinum toxin assays of packaging buffer and mussel meat. Results revealed that C. botulinum inoculated in fresh mussels packed under MAP packaging did not produce toxin, even at an abusive storage temperature and when held beyond their shelf life. No evidence was found that packaging buffers or gas composition influenced the lack of botulinum toxin production in packed mussels.

  10. Particulate carbonate matter in snow from selected sites in south-central Rocky Mountains

    Treesearch

    David W. Clow; George P. Ingersoll

    1994-01-01

    Trends in snow acidity reflect the balance between strong acid inputs and reactions with neutralizing materials. Carbonate dust can be an important contributor of buffering capacity to snow; however, its concentration in snow is difficult to quantify because it dissolves rapidly in snowmelt. In snow with neutral or acidic pH, most calcite would dissolve during sample...

  11. Interactions of aromatic amino acids with heterocyclic ligand: An IR spectroscopic study

    NASA Astrophysics Data System (ADS)

    Tyunina, E. Yu.; Badelin, V. G.; Tarasova, G. N.

    2015-09-01

    The interactions of L-phenylalanine and L-tryptophan with nicotinic acid and uracyl in an aqueous buffer solution at pH 7.35 were studied by IR spectroscopy. The contributions of various functional groups to the complexation of aromatic amino acids with heterocyclic ligands were determined from the IR spectra of the starting substances and their mixtures.

  12. The quantitation of buffering action I. A formal & general approach.

    PubMed

    Schmitt, Bernhard M

    2005-03-15

    Although "buffering" as a homeostatic mechanism is a universal phenomenon, the quantitation of buffering action remains controversial and problematic. Major shortcomings are: lack of a buffering strength unit for some buffering phenomena, multiple and mutually incommensurable units for others, and lack of a genuine ratio scale for buffering strength. Here, I present a concept of buffering that overcomes these shortcomings. Briefly, when, for instance, some "free" H+ ions are added to a solution (e.g. in the form of strong acid), buffering is said to be present when not all H+ ions remain "free" (i.e., bound to H2O), but some become "bound" (i.e., bound to molecules other than H2O). The greater the number of H+ ions that become "bound" in this process, the greater the buffering action. This number can be expressed in two ways: 1) With respect to the number of total free ions added as "buffering coefficient b", defined in differential form as b = d(bound)/d(total). This measure expresses buffering action from nil to complete by a dimensionless number between 0 and 1, analogous to probabilites. 2) With respect to the complementary number of added ions that remain free as "buffering ratio B", defined as the differential B = d(bound)/d(free). The buffering ratio B provides an absolute ratio scale, where buffering action from nil to perfect corresponds to dimensionless numbers between 0 and infinity, and where equal differences of buffering action result in equal intervals on the scale. Formulated in purely mathematical, axiomatic form, the concept reveals striking overlap with the mathematical concept of probability. However, the concept also allows one to devise simple physical models capable of visualizing buffered systems and their behavior in an exact yet intuitive way. These two measures of buffering action can be generalized easily to any arbitrary quantity that partitions into two compartments or states, and are thus suited to serve as standard units for buffering action. Some exemplary treatments of classical and non-classical buffering phenomena are presented in the accompanying paper.

  13. Cold Osmotic Shock in Saccharomyces cerevisiae

    PubMed Central

    Patching, J. W.; Rose, A. H.

    1971-01-01

    Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201

  14. Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources.

    PubMed

    Nguyen, T A V; Le, Truong D; Phan, Hoa N; Tran, Lam B

    2018-01-01

    Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).

  15. A simple preparative free-flow electrophoresis joined with gratis gravity: I. Gas cushion injector and self-balance collector instead of multiple channel pump.

    PubMed

    Chen, Su; Palmer, James F; Zhang, Wei; Shao, Jing; Li, Si; Fan, Liu-Yin; Sun, Ren; Dong, Yu-Chao; Cao, Cheng-Xi

    2009-06-01

    This paper describes a novel free-flow electrophoresis (FFE), which is joined with gratis gravity, gas cushion injector (GCI) and self-balance collector instead of multiple channel pump, for the purpose of preparative purification. The FFE was evaluated by systemic experiments. The results manifest that (i) even though one-channel peristaltic pump is used for the driving of background buffer, there is still stable flow in the FFE chamber; (ii) the stable flow is induced by the gravity-induced pressure due to the difference of buffer surfaces in the GCI and self-balance collector; (iii) the pulse flow of background buffer induced by the peristaltic pump is greatly reduced by the GCI with good compressibility of included air; (iv) the FFE can be well used for zone electrophoretic separation of amino acids; (v) up to 20 inlets simultaneous sample injection and up to five to tenfold condensation of amino acid can be achieved by combining the FFE device with the method of moving reaction boundary. To the best of authors' knowledge, FFE has not been used for such separation and condensation of amino acids. The relevant results achieved in the paper have evident significance for the development of preparative FFE.

  16. Adsorption characterizations of fulvic acid fractions onto kaolinite.

    PubMed

    Li, Aimin; Xu, Minjuan; Li, Wenhui; Wang, Xuejun; Dai, Jingyu

    2008-01-01

    Fulvic acids extracted from a typical rice-production region near Taihu Lake of China were fractionated into three fractions including F4.8, F7.0 and F11.0 (eluted by pH 4.8 buffer, pH 7.0 buffer and pH 11.0 buffer, respectively). Sorption of fulvic acid (FA) fractions onto kaolinite was studied by batch adsorption experiments, and characterizations of kaolinite before and after adsorption were investigated using scanning electron microscopy (SEM). Adsorption isotherms of kaolinite for three FA fractions fit well with the Langmuir adsorption model. The adsorption density of the three fractions was positively correlated with the ratio of the amount of the alkyl carbon to that of carboxyl and carbonyl carbon in FA fractions and followed an order of F11.0 > F7.0 > F4.8. Hydrophobic interaction was one of the control mechanisms for the sorption of FA fraction onto kaolinite. SEM images confirmed that compared to blank kaolinite samples, kaolinite samples coated by a FA fraction displayed an opener and more dispersed conformation resulting from the disruption of the floc structure in complex. Dispersion of kaolinite after adsorption was due to the repulsion between negatively charged FA-coated particles, which is closely related to the amount of FA fractions absorbed on kaolinite.

  17. Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources

    PubMed Central

    Phan, Hoa N.; Tran, Lam B.

    2018-01-01

    Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL). PMID:29623233

  18. Analysis of low molecular weight acids by monolithic immobilized pH gradient-based capillary isoelectric focusing coupled with mass spectrometry.

    PubMed

    Wang, Tingting; Fekete, Agnes; Gaspar, Andras; Ma, Junfeng; Liang, Zhen; Yuan, Huiming; Zhang, Lihua; Schmitt-Kopplin, Philippe; Zhang, Yukui

    2011-02-01

    A novel method for the separation and detection of low molecular weight (LMW) acids was developed using monolithic immobilized pH gradient-based capillary isoelectric focusing coupled with mass spectrometry. Two main parameters, focusing conditions and delivery buffer conditions, which might affect separation efficiency, were optimized with the focusing time of 7 min at 350 V/cm and the delivery buffer of 50% (v/v) acetonitrile in 10 mmol/L ammonium formate (pH 3.0). Under these conditions, the linear correlation between the volume of delivery solvent and the pK(a) of the model components was observed. In addition, the separation mechanism of LMW acids was proposed as well. We suppose that this method may provide a useful tool for the characterization of LMW components (e.g. natural organic matter of different origins). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantitative Correlation between Viscosity of Concentrated MAb Solutions and Particle Size Parameters Obtained from Small-Angle X-ray Scattering.

    PubMed

    Fukuda, Masakazu; Moriyama, Chifumi; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko

    2015-12-01

    To investigate the relationship between viscosity of concentrated MAb solutions and particle size parameters obtained from small-angle X-ray scattering (SAXS). The viscosity of three MAb solutions (MAb1, MAb2, and MAb3; 40-200 mg/mL) was measured by electromagnetically spinning viscometer. The protein interactions of MAb solutions (at 60 mg/mL) was evaluated by SAXS. The phase behavior of 60 mg/mL MAb solutions in a low-salt buffer was observed after 1 week storage at 25°C. The MAb1 solutions exhibited the highest viscosity among the three MAbs in the buffer containing 50 mM NaCl. Viscosity of MAb1 solutions decreased with increasing temperature, increasing salt concentration, and addition of amino acids. Viscosity of MAb1 solutions was lowest in the buffer containing histidine, arginine, and aspartic acid. Particle size parameters obtained from SAXS measurements correlated very well with the viscosity of MAb solutions at 200 mg/mL. MAb1 exhibited liquid-liquid phase separation at a low salt concentration. Simultaneous addition of basic and acidic amino acids effectively suppressed intermolecular attractive interactions and decreased viscosity of MAb1 solutions. SAXS can be performed using a small volume of samples; therefore, the particle size parameters obtained from SAXS at intermediate protein concentration could be used to screen for low viscosity antibodies in the early development stage.

  20. Stability of glucose oxidase and catalase adsorbed on variously activated 13X zeolite.

    PubMed

    Pifferi, P G; Vaccari, A; Ricci, G; Poli, G; Ruggeri, O

    1982-10-01

    The use of 13X zeolite (0.1-0.4-mm granules), treated with 2N and 0.01N HCI, 0.01M citric acid, 0.1M citric-phosphate buffer (pH 3.6), and in untreated form to adsorb glucose oxidase of fungal origin and microbial catalase was examined. Physicochemical analysis of the support demonstrated that its crystalline structure, greatly altered by the HCl and buffer, could be partially maintained with citric acid. The specific adsorption of the enzymes increased with decreasing pH and proved to be considerable for all the supports. The stability with storage at 25 degrees C is strictly correlated with the titrable acidity of the activated zeolite expressed as meq NaOH/g and with pH value of the activation solution. It proved to be lower than 55 h for both enzymes if adsorbed on zeolite treated with 2N HCl, and 15-fold and 30-fold higher for glucose oxidase and catalase adsorbed, respectively, on zeolite treated with the 0.1M citric-phosphate buffer and 0.01M citric acid. The specific adsorption of glucose oxidase and catalase was, respectively, 1840 U/g at pH 3.0 and 6910 U/g at pH 5.0. Their half-life at 25 degrees C with storage at pH 3.5 for the former and at pH 5.0 for the latter was 800 and 1560 h vs. 40 and 110 h for the corresponding free enzymes.

  1. Effects of air polishing and an amino acid buffered hypochlorite solution to dentin surfaces and periodontal ligament cell survival, attachment, and spreading.

    PubMed

    Schmidlin, Patrick R; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Sculean, Anton; Lussi, Adrian; Miron, Richard J

    2017-06-01

    The aim of this study is to examine morphological changes of dentin surfaces following air polishing or amino acid buffered hypochlorite solution application and to assess their influence on periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs in vitro. Bovine dentin discs were treated with either (i) Classic, (ii) Plus, or (iii) Perio powder (EMS). Furthermore, Perisolv® a hypochlorite solution buffered with various amino acids was investigated. Untreated dentin discs served as controls. Morphological changes to dentin discs were assessed using scanning electron microscopy (SEM). Human PDL cells were seeded onto the respectively treated discs, and samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, adhesion assay, and SEM imaging, respectively. Both control and Perisolv®-rinsed dentin discs demonstrated smooth surfaces at low and high magnifications. The Classic powders demonstrated the thickest coating followed by the Powder Plus. The Perio powder demonstrated marked alterations of dentin discs by revealing the potential to open dentinal tubules even before rinsing. Seeding of PDL cells demonstrated an almost 100 % survival rate on all samples demonstrating very high biocompatibility for all materials. Significantly higher PDL cell numbers were observed on samples treated with the Perio powder and the Perisolv® solution (approximately 40 % more cells; p < 0.05). SEM imaging revealed the potential for PDL cells to attach and spread on all surfaces. The results from the present study demonstrate that cell survival and spreading of PDL cells on root surfaces is possible following either air polishing or application with Perisolv®. Future in vitro and animal testing is necessary to further characterize the beneficial effects of either system in a clinical setting. The use of air polishing or application with Perisolv amino acid buffered hypochlorite solution was effective in treating root surfaces and allowed for near 100 % PDL cell survival, attachment, and spreading onto all root surfaces.

  2. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Continued studies of acid rain and its effects on the Baton Rouge area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J.W.; Ghane, H.

    1983-01-01

    The acidity of rain water was measured in the Baton Rouge, Louisiana area from June 1981 to September 1982. Coordinated measurements were taken of the dissolved oxygen concentration in two local lakes before and after each rainfall. About 50% of the rainfall observed was quite acidic, with about 25% of the rain having a pH of 4 or less. Rain was more acidic during warm summers than in the winter weather. Rainfall during 1982 was, on a month to month comparison, more acidic than in 1981. Attempts were also made to discover any possible correlation of pH values with windmore » direction. The acidity of each of the two lakes increased over the time of the study. The dissolved oxygen content in each lake increased after periods of rain, probably due to a high concentration of oxygen in the rainwater. The buffering capacities of the lakes was measurable. However, it is noted that the larger lake was undergoing dredging at the time of the study and showed considerably less buffer capacity than the smaller lake. The smaller lake was far more affected by surface drainage and thus should have been more influenced by the acid rain. 7 references, 7 figures, 1 table.« less

  4. Matching characteristics of different buffer layers with VO2 thin films

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Dongping; Liu, Yi; Guan, Tianrui; Qin, Xiaonan; Zhong, Aihua; Cai, Xingmin; Fan, Ping; Lv, Weizhong

    2016-10-01

    VO2 thin films were fabricated by reactive DC magnetron sputtering on different buffer layers of MgF2, Al2O3 and TiO2, respectively. The crystallinity and orientation relationship, thickness of VO2 thin films, atoms vibrational modes, optical and electrical property, surface morphology of films were characterized by X-ray diffraction, Raman scattering microscopy, step profiler, spectrophotometer, four-probe technique, and scanning electron microscopy, respectively. XRD results investigated that the films have preferential crystalline planes VO2 (011). The crystallinity of VO2 films grown on TiO2 buffer layers are superior to VO2 directly deposited on soda-lime glass. The Raman bands of the VO2 films correspond to an Ag symmetry mode of VO2 (M). The sample prepared on 100nm TiO2 buffer layer appears nanorods structure, and exhibits remarkable solar energy modulation ability as high as 5.82% in full spectrum and 23% in near infrared spectrum. Cross-sectional SEM image of the thin films samples indicate that MgF2 buffer layer has clear interface with VO2 layer. But there are serious interdiffusion phenomenons between Al2O3, TiO2 buffer layer with VO2 layer.

  5. Acid-Base Disorders--A Computer Simulation.

    ERIC Educational Resources Information Center

    Maude, David L.

    1985-01-01

    Describes and lists a program for Apple Pascal Version 1.1 which investigates the behavior of the bicarbonate-carbon dioxide buffer system in acid-base disorders. Designed specifically for the preclinical medical student, the program has proven easy to use and enables students to use blood gas parameters to arrive at diagnoses. (DH)

  6. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation.

    PubMed

    Cruywagen, C W; Taylor, S; Beya, M M; Calitz, T

    2015-08-01

    Six ruminally cannulated Holstein cows were used to evaluate the effect of 2 dietary buffers on rumen pH, milk production, milk composition, and rumen fermentation parameters. A high concentrate total mixed ration [35.2% forage dry matter (DM)], formulated to be potentially acidotic, was used to construct 3 dietary treatments in which calcareous marine algae (calcified remains of the seaweed Lithothamnium calcareum) was compared with limestone (control) and sodium bicarbonate plus limestone. One basal diet was formulated and the treatment diets contained either 0.4% of dietary DM as Acid Buf, a calcified marine algae product (AB treatment), or 0.8% of dietary DM as sodium bicarbonate and 0.37% as limestone (BC treatment), or 0.35% of dietary DM as limestone [control (CON) treatment]. Cows were randomly allocated to treatments according to a double 3×3 Latin square design, with 3 treatments and 3 periods. The total experimental period was 66 d during which each cow received each treatment for a period of 15 d before the data collection period of 7 d. Rumen fluid was collected to determine volatile fatty acids, lactic acid, and ammonia concentrations. Rumen pH was monitored every 10min for 2 consecutive days using a portable data logging system fitted with in-dwelling electrodes. Milk samples were analyzed for solid and mineral contents. The effect of treatment on acidity was clearly visible, especially from the period from midday to midnight when rumen pH dropped below 5.5 for a longer period of time (13 h) in the CON treatment than in the BC (8.7 h) and AB (4 h) treatments. Daily milk, 4% fat-corrected milk, and energy-corrected milk yields differed among treatments, with AB being the highest, followed by BC and CON. Both buffers increased milk fat content. Treatment had no effect on milk protein content, but protein yield was increased in the AB treatment. Total rumen volatile fatty acids and acetate concentrations were higher and propionate was lower in the AB treatment than in CON. The molar proportion of acetate was higher in AB than in CON, but that of propionate was lower in both buffer treatments than in CON. The acetate:propionate ratio was increased in the AB and BC treatments compared with CON. Lactic acid concentration was higher in the CON treatment than in the buffer treatments. Treatment had no effect on rumen ammonia concentrations. Results indicated that buffer inclusion in high concentrate diets for lactating dairy cows had a positive effect on milk production and milk composition. Calcareous marine algae, at a level of 90 g/cow per day, had a greater effect on rumen pH, milk production and milk composition, and efficiency of feed conversion into milk than sodium bicarbonate at a level of 180 g/cow per day. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. The effect of respiration buffer composition on mitochondrial metabolism and function.

    PubMed

    Wollenman, Lucas C; Vander Ploeg, Matthew R; Miller, Mackinzie L; Zhang, Yizhu; Bazil, Jason N

    2017-01-01

    Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffers and substrate combinations to determine the optimal conditions to support mitochondrial function through ADP-stimulated respiration and uncoupled respiration using FCCP. The buffers consisted of a standard KCl based buffer (B1) and three modified buffers with chloride replaced by the K-lactobionate, sucrose, and the antioxidant taurine (B2) or K-gluconate (B3). The fourth buffer (B4) was identical to B2 except that K-lactobionate was replaced with K-gluconate. The substrate combinations consisted of metabolites that utilize different pathways of mitochondrial metabolism. To test mitochondrial function, we used isolated cardiac guinea pig mitochondria and measured oxygen consumption for three respiratory states using an Oroboros Oxygraph-2k. These states were the leak state (energized mitochondria in the absence of adenylates), ADP-stimulated state (energized mitochondria in the presence of saturating ADP concentrations), and uncoupled state (energized mitochondria in the presence of FCCP). On average across all substrate combinations, buffers B2, B3, and B4 had an increase of 16%, 26%, and 35% for the leak state, ADP-simulated state, and uncoupled state, respectively, relative to rates using B1. The common feature distinguishing these buffers from B1 is the notable lack of high chloride concentrations. Based on the respiratory rate metrics obtained with the substrate combinations, we conclude that the adenine nucleotide translocase, the dicarboxylate carrier, and the alpha-ketoglutarate exchanger are partially inhibited by chloride. Therefore, when the goal is to maximize ADP-stimulated respiration, buffers containing K-lactobionate or K-gluconate are superior choices compared to the standard KCl-based buffers.

  8. The effect of respiration buffer composition on mitochondrial metabolism and function

    PubMed Central

    Wollenman, Lucas C.; Vander Ploeg, Matthew R.; Miller, Mackinzie L.; Zhang, Yizhu

    2017-01-01

    Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffers and substrate combinations to determine the optimal conditions to support mitochondrial function through ADP-stimulated respiration and uncoupled respiration using FCCP. The buffers consisted of a standard KCl based buffer (B1) and three modified buffers with chloride replaced by the K-lactobionate, sucrose, and the antioxidant taurine (B2) or K-gluconate (B3). The fourth buffer (B4) was identical to B2 except that K-lactobionate was replaced with K-gluconate. The substrate combinations consisted of metabolites that utilize different pathways of mitochondrial metabolism. To test mitochondrial function, we used isolated cardiac guinea pig mitochondria and measured oxygen consumption for three respiratory states using an Oroboros Oxygraph-2k. These states were the leak state (energized mitochondria in the absence of adenylates), ADP-stimulated state (energized mitochondria in the presence of saturating ADP concentrations), and uncoupled state (energized mitochondria in the presence of FCCP). On average across all substrate combinations, buffers B2, B3, and B4 had an increase of 16%, 26%, and 35% for the leak state, ADP-simulated state, and uncoupled state, respectively, relative to rates using B1. The common feature distinguishing these buffers from B1 is the notable lack of high chloride concentrations. Based on the respiratory rate metrics obtained with the substrate combinations, we conclude that the adenine nucleotide translocase, the dicarboxylate carrier, and the alpha-ketoglutarate exchanger are partially inhibited by chloride. Therefore, when the goal is to maximize ADP-stimulated respiration, buffers containing K-lactobionate or K-gluconate are superior choices compared to the standard KCl-based buffers. PMID:29091971

  9. Simulation study on dynamics model of two kinds of on-orbit soft-contact mechanism

    NASA Astrophysics Data System (ADS)

    Ye, X.; Dong, Z. H.; Yang, F.

    2018-05-01

    Aiming at the problem that the operating conditions of the space manipulator is harsh and the space manipulator could not bear the large collision momentum, this paper presents a new concept and technical method, namely soft contact technology. Based on ADAMS dynamics software, this paper compares and simulates the mechanism model of on-orbit soft-contact mechanism based on the bionic model and the integrated double joint model. The main purpose is to verify the path planning ability and the momentum buffering ability based on the different design concept mechanism. The simulation results show that both the two mechanism models have the path planning function before the space target contact, and also has the momentum buffer and controllability during the space target contact process.

  10. Buffer Therapy for Cancer

    PubMed Central

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.

    2013-01-01

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  11. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    NASA Astrophysics Data System (ADS)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  12. Proline-coated column for the capillary electrochromatographic separation of amino acids by in-column derivatization.

    PubMed

    Lin, Chun-Chi; Liu, Chuen-Ying

    2004-10-01

    With 3-trimethoxysilylpropyl chloride as the spacer, a proline-coated capillary column was prepared for the capillary electrochromatographic (CEC) separation of amino acids by in-column derivatization. Nine standard mixtures, including aspartic acid, glutamic acid, valine, phenylalanine, alanine, isoleucine, leucine, tyrosine, and tryptophan, were injected. o-Phthalaldehyde (OPA), OPA/2-mercaptoethanol (2-ME) and OPA/N-acetylcysteine (NAC) in borate buffer were tested as the derivatizing agent. Among them, OPA (50 mM) in borate buffer (pH 9.5, 50 mM) gave the best performance. The formation of isoindole could be detected by UV detection. The sandwich-type injection was carried out in hydrostatic mode (10 cm) with the program R(10 s)S(10 s) R(10 s)W(10 min) with R, S, and W being the reagent, sample, and waiting times. Mesityl oxide, benzyl alcohol, and acetone showed some interaction with the column. A current monitoring method was used instead of the determination of the electroosmotic flow (EOF). The direction of EOF was from anode to cathode even under acidic condition lower than the pI value (6.31) of the bonded group due to some unreacted silanol groups. Some parameters including pH, nature, and concentration of the mobile phase and the effect of organic modifier with regard to the CEC separation were investigated. With the proline-coated column (75 (50) cm x 75 microm ID) the best separation was performed in phosphate buffer (pH 4.00, 100 mM) with an applied voltage of -15 kV. The established method was also compared with those precolumn derivatized prior to the separation with proline-coated column as well as with in-capillary derivatization and separation with a bare fused-silica column. Copyright 2004 WILEY-VCH Verlag GmbH & Co.

  13. Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India.

    NASA Astrophysics Data System (ADS)

    Sharma, Disha; Kulshrestha, Umesh

    Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India. The Critical Load approach alongwith integrated assessment models has been used in the European nations for policy formations to reduce acidic emissions. This unique approach was applied to assess the of vulnerability of natural systems to the present day atmospheric pollution scenario. The calculated values of critical loads of sulphur ( 225 - 275 eq/ha/yr) and nitrogen (298 - 303 eq/ha/yr), for the soil system in Delhi, were calculated with respect to Anjan grass, Hibiscus and Black siris. The present loads of sulphur (PL(S) = 26.40 eq/ha/yr) and nitrogen (PL(N) = 36.51 eq/ha/yr) were found to be much lower than their critical loads without posing any danger of atmospheric acidic deposition on the soil systems. The study indicated that the system is still protective due to high pH of soil. The nature of buffering capability of calcium derived from soil dust can be considered as a natural tool to combat acidification in the Indian region. The results showed that the pollution status in Delhi is still within the safe limits. However, at the pace at which the city is growing, it is likely that in coming decades, it may exceed these critical values. In order to set deposition limits and avoid adverse effects of acidic deposition this approach can be applied in India too. Such approach is very useful, not only in abating pollution but also in devising means of cost optimal emission abatement strategies.

  14. Prevalence of Brucella spp in humans.

    PubMed

    Soares, Catharina de Paula Oliveira Cavalcanti; Teles, José Andreey Almeida; dos Santos, Aldenir Feitosa; Silva, Stemberg Oliveira Firmino; Cruz, Maria Vilma Rocha Andrade; da Silva-Júnior, Francisco Feliciano

    2015-01-01

    to determine the seroprevalence of Brucella spp in humans. this is an observational study, developed with 455 individuals between 18 and 64 years old, who use the Estratégia de Saúde da Família (Brazil's family health strategy). The serum samples of volunteers underwent buffered acid antigen tests, such as screening, agar gel immunodiffusion and slow seroagglutination test in tubes and 2-Mercaptoethanol. among the samples, 1.98% has responded to buffered-acid antigen, 2.85% to agar gel immunodiffusion test and 1.54% to the slow seroagglutination tests on tubes/2-Mercaptoethanol. The prevalence of Brucella spp was 4.4%, represented by the last two tests. the results of this research suggest that the studied population is exposed to Brucella spp infection.

  15. Intercalation and controlled release of 2,4-dichlorophenoxyacetic acid using rhombohedral [LiAl2(OH)6]Cl·xH2O

    NASA Astrophysics Data System (ADS)

    Ragavan, Anusha; Khan, Aamir I.; O'Hare, Dermot

    2006-05-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) has been fully intercalated into the rhombohedral polymorph of [LiAl2(OH)6]Cl·xH2O ([rhom-Li Al] LDH) by an ion exchange method. The controlled release of 2,4-D from the interlamellar spaces of [rhom-Li Al] LDH has been studied in a phosphate buffer, natural rainwater and deionised water. In buffer solution and rainwater, the intercalated herbicide is exchanged for anions in solution. In contrast, in deionised water the herbicide is released as part of the Li+/herbicide ion pair, leading to the formation of Al(OH)3 and the solvated ions.

  16. Microneedle pH Sensor: Direct, Label-Free, Real-Time Detection of Cerebrospinal Fluid and Bladder pH.

    PubMed

    Mani, Ganesh Kumar; Miyakoda, Kousei; Saito, Asuka; Yasoda, Yutaka; Kajiwara, Kagemasa; Kimura, Minoru; Tsuchiya, Kazuyoshi

    2017-07-05

    Acid-base homeostasis (body pH) inside the body is precisely controlled by the kidneys and lungs and buffer systems, such that even a minor pH change could severely affect many organs. Blood and urine pH tests are common in day-to-day clinical trials and require little effort for diagnosis. There is always a great demand for in vivo testing to understand more about body metabolism and to provide effective diagnosis and therapy. In this article, we report the simple fabrication of microneedle-based direct, label-free, and real-time pH sensors. The reference and working electrodes were Ag/AgCl thick films and ZnO thin films on tungsten (W) microneedles, respectively. The morphological and structural characteristics of microneedles were carefully investigated through various analytical methods. The developed sensor exhibited a Nernstian response of -46 mV/pH. Different conditions were used to test the sensor to confirm their accuracy and stability, such as various buffer solutions, with respect to time, and we compared the reading with commercial pH electrodes. Besides that, the fabricated microneedle sensor ability is proven by in vivo testing in mouse cerebrospinal fluid (CSF) and bladders. The pH sensor procedure reported here is totally reversible, and results were reproducible after several rounds of testing.

  17. Intrinsic H+ ion mobility in the rabbit ventricular myocyte

    PubMed Central

    Vaughan-Jones, R D; Peercy, B E; Keener, J P; Spitzer, K W

    2002-01-01

    The intrinsic mobility of intracellular H+ ions was investigated by confocally imaging the longitudinal movement of acid inside rabbit ventricular myocytes loaded with the acetoxymethyl ester (AM) form of carboxy-seminaphthorhodafluor-1 (carboxy-SNARF-1). Acid was diffused into one end of the cell through a patch pipette filled with an isotonic KCl solution of pH 3.0. Intracellular H+ mobility was low, acid taking 20-30 s to move 40 μm down the cell. Inhibiting sarcolemmal Na+-H+ exchange with 1 mm amiloride had no effect on this time delay. Net Hi+ movement was associated with a longitudinal intracellular pH (pHi) gradient of up to 0.4 pH units. Hi+ movement could be modelled using the equations for diffusion, assuming an apparent diffusion coefficient for H+ ions (DappH) of 3.78 × 10−7 cm2 s−1, a value more than 300-fold lower than the H+ diffusion coefficient in a dilute, unbuffered solution. Measurement of the intracellular concentration of SNARF (≈400 μM) and its intracellular diffusion coefficient (0.9 × 10−7 cm2 s−1) indicated that the fluorophore itself exerted an insignificant effect (between 0.6 and 3.3 %) on the longitudinal movement of H+ equivalents inside the cell. The longitudinal movement of intracellular H+ is discussed in terms of a diffusive shuttling of H+ equivalents on high capacity mobile buffers which comprise about half (≈11 mm) of the total intrinsic buffering capacity within the myocyte (the other half being fixed buffer sites on low mobility, intracellular proteins). Intrinsic Hi+ mobility is consistent with an average diffusion coefficient for the intracellular mobile buffers (Dmob) of ≈9 × 10−7 cm2 s−1. PMID:12015426

  18. Large Buffering Effect of the Duodenal Bulb in Duodenal Switch: a Wireless pH-Metric Study.

    PubMed

    Bekhali, Z; Hedberg, J; Hedenström, H; Sundbom, M

    2017-07-01

    Bariatric procedures result in massive weight loss, however, not without side effects. Gastric acid is known to cause marginal ulcers, situated in the small bowel just distal to the upper anastomosis. We have used the wireless BRAVO™ system to study the buffering effect of the duodenal bulb in duodenal switch (DS), a procedure in which the gastric sleeve produces a substantial amount of acid. We placed a pre- and a postpyloric pH capsule in 15 DS-patients (seven men, 44 years, BMI 33) under endoscopic guidance and verified the correct location by fluoroscopy. Patients were asked to eat and drink at their leisure, and to register their meals for the next 24 h. All capsules but one could be successfully placed, without complications. Total registration time was 17.2 (1.3-24) hours prepyloric and 23.1 (1.2-24) hours postpyloric, with a corresponding pH of 2.66 (1.74-5.81) and 5.79 (4.75-7.58), p < 0.01. The difference in pH between the two locations was reduced from 3.55 before meals to 1.82 during meals, p < 0.01. Percentage of time with pH < 4 was 70.0 (19.9-92.0) and 13.0 (0.0-34.6) pre and postpylorically, demonstrating a large buffering effect. By this wireless pH-metric technique, we could demonstrate that the duodenal bulb had a large buffering effect, thus counteracting the large amount of gastric acid passing into the small bowel after duodenal switch. This physiologic effect could explain the low incidence of stomal ulcers.

  19. Tropical forests are thermally buffered despite intensive selective logging.

    PubMed

    Senior, Rebecca A; Hill, Jane K; Benedick, Suzan; Edwards, David P

    2018-03-01

    Tropical rainforests are subject to extensive degradation by commercial selective logging. Despite pervasive changes to forest structure, selectively logged forests represent vital refugia for global biodiversity. The ability of these forests to buffer temperature-sensitive species from climate warming will be an important determinant of their future conservation value, although this topic remains largely unexplored. Thermal buffering potential is broadly determined by: (i) the difference between the "macroclimate" (climate at a local scale, m to ha) and the "microclimate" (climate at a fine-scale, mm to m, that is distinct from the macroclimate); (ii) thermal stability of microclimates (e.g. variation in daily temperatures); and (iii) the availability of microclimates to organisms. We compared these metrics in undisturbed primary forest and intensively logged forest on Borneo, using thermal images to capture cool microclimates on the surface of the forest floor, and information from dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences in forest structure remained 9-12 years after repeated selective logging, we found that logging activity had very little effect on thermal buffering, in terms of macroclimate and microclimate temperatures, and the overall availability of microclimates. For 1°C warming in the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly more in primary forest than in logged forest, but the effect amounted to <0.1°C difference between forest types. We therefore conclude that selectively logged forests are similar to primary forests in their potential for thermal buffering, and subsequent ability to retain temperature-sensitive species under climate change. Selectively logged forests can play a crucial role in the long-term maintenance of global biodiversity. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Buffer Optimization of Thermal Melt Assays of Plasmodium Proteins for Detection of Small-Molecule Ligands

    PubMed Central

    Crowther, Gregory J.; Napuli, Alberto J.; Thomas, Andrew P.; Chung, Diana J.; Kovzun, Kuzma V.; Leibly, David J.; Castaneda, Lisa J.; Bhandari, Janhavi; Damman, Christopher J.; Hui, Raymond; Hol, Wim G. J.; Buckner, Frederick S.; Verlinde, Christophe L. M. J.; Zhang, Zhongsheng; Fan, Erkang; Van Voorhis, Wesley C.

    2010-01-01

    In the last decade, thermal melt/thermal shift assays have become a common tool for identifying ligands and other factors that stabilize specific proteins. Increased stability is indicated by an increase in the protein's melting temperature (Tm). In optimizing the assays for subsequent screening of compound libraries, it is important to minimize the variability of Tm measurements so as to maximize the assay's ability to detect potential ligands. Here we present an investigation of Tm variability in recombinant proteins from Plasmodium parasites. Ligands of Plasmodium proteins are particularly interesting as potential starting points for drugs for malaria, and new drugs are urgently needed. A single standard buffer (100 mM HEPES, pH 7.5, 150 mM NaCl) permitted estimation of Tm for 58 of 61 Plasmodium proteins tested. However, with several proteins, Tm could not be measured with a consistency suitable for high-throughput screening unless alternative protein-specific buffers were employed. We conclude that buffer optimization to minimize variability in Tm measurements increases the success of thermal melt screens involving proteins for which a standard buffer is suboptimal. PMID:19470714

  1. Rapid removal of acetimidoyl groups from proteins and peptides. Applications to primary structure determination.

    PubMed Central

    Dubois, G C; Robinson, E A; Inman, J K; Perham, R N; Appella, E

    1981-01-01

    Methylamine buffers can be used for the rapid quantitative removal of acetimidoyl groups from proteins and peptides modified by treatment with ethyl or methyl acetimidate. The half-life for displacement of acetimidoyl groups from fully amidinated proteins incubated in 3.44 M-methylamine/HCl buffer at pH 11.5 and 25 degrees C was approx. 26 min; this half life is 29 times less than that observed in ammonia/HCl buffer under the same conditions of pH and amine concentration. Incubation of acetimidated proteins with methylamine for 4 h resulted in greater than 95% removal of acetimidoyl groups. No deleterious effects on primary structure were detected by amino acid analysis or by automated Edman degradation. Reversible amidination of lysine residues, in conjunction with tryptic digestion, has been successfully applied to the determination of the amino acid sequence of an acetimidated mouse immunoglobulin heavy chain peptide. The regeneration of amino groups in amidinated proteins and peptides by methylaminolysis makes amidination a valuable alternative to citraconoylation and maleoylation in structural studies. PMID:6803762

  2. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    PubMed Central

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947

  3. The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica.

    PubMed

    Lusk, Bradley G; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, Cesar I

    2016-12-01

    We assessed the effects of pH and buffer concentration on current production and growth of biofilms of Thermincola ferriacetica - a thermophilic, Gram-positive, anode-respiring bacterium (ARB) - grown on anodes poised at a potential of -0.06V vs. SHE in microbial electrolysis cells (MECs) at 60°C. T. ferriacetica generated current in the pH range of 5.2 to 8.3 with acetate as the electron donor and 50mM bicarbonate buffer. Maximum current density was reduced by ~80% at pH5.2 and ~14% at 7.0 compared to pH8.3. Increasing bicarbonate buffer concentrations from 10mM to 100mM resulted in an increase in the current density by 40±6%, from 6.8±1.1 to 11.2±2.7Am(-2), supporting that more buffer alleviated pH depression within T. ferriacetica biofilms. Confocal laser scanning microscopy (CLSM) images indicated that higher bicarbonate buffer concentrations resulted in larger live biofilm thicknesses: from 68±20μm at 10mM bicarbonate to >150μm at 100mM, supporting that buffer availability was a strong influence on biofilm thickness. In comparison to mesophilic Geobacter sulfurreducens biofilms, the faster transport rates at higher temperature and the ability to grow at relatively lower pH allowed T. ferriacetica to produce higher current densities with lower buffer concentrations. Published by Elsevier B.V.

  4. Auto-assembly of nanometer thick, water soluble layers of plasmid DNA complexed with diamines and basic amino acids on graphite: Greatest DNA protection is obtained with arginine.

    PubMed

    Khalil, T T; Boulanouar, O; Heintz, O; Fromm, M

    2017-02-01

    We have investigated the ability of diamines as well as basic amino acids to condense DNA onto highly ordered pyrolytic graphite with minimum damage after re-dissolution in water. Based on a bibliographic survey we briefly summarize DNA binding properties with diamines as compared to basic amino acids. Thus, solutions of DNA complexed with these linkers were drop-cast in order to deposit ultra-thin layers on the surface of HOPG in the absence or presence of Tris buffer. Atomic Force Microscopy analyses showed that, at a fixed ligand-DNA mixing ratio of 16, the mean thickness of the layers can be statistically predicted to lie in the range 0-50nm with a maximum standard deviation ±6nm, using a simple linear law depending on the DNA concentration. The morphology of the layers appears to be ligand-dependent. While the layers containing diamines present holes, those formed in the presence of basic amino acids, except for lysine, are much more compact and dense. X-ray Photoelectron Spectroscopy measurements provide compositional information indicating that, compared to the maximum number of DNA sites to which the ligands may bind, the basic amino acids Arg and His are present in large excess. Conservation of the supercoiled topology of the DNA plasmids was studied after recovery of the complex layers in water. Remarkably, arginine has the best protection capabilities whether Tris was present or not in the initial solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Modified Lipid Extraction Methods for Deep Subsurface Shale

    PubMed Central

    Akondi, Rawlings N.; Trexler, Ryan V.; Pfiffner, Susan M.; Mouser, Paula J.; Sharma, Shikha

    2017-01-01

    Growing interest in the utilization of black shales for hydrocarbon development and environmental applications has spurred investigations of microbial functional diversity in the deep subsurface shale ecosystem. Lipid biomarker analyses including phospholipid fatty acids (PLFAs) and diglyceride fatty acids (DGFAs) represent sensitive tools for estimating biomass and characterizing the diversity of microbial communities. However, complex shale matrix properties create immense challenges for microbial lipid extraction procedures. Here, we test three different lipid extraction methods: modified Bligh and Dyer (mBD), Folch (FOL), and microwave assisted extraction (MAE), to examine their ability in the recovery and reproducibility of lipid biomarkers in deeply buried shales. The lipid biomarkers were analyzed as fatty acid methyl esters (FAMEs) with the GC-MS, and the average PL-FAME yield ranged from 67 to 400 pmol/g, while the average DG-FAME yield ranged from 600 to 3,000 pmol/g. The biomarker yields in the intact phospholipid Bligh and Dyer treatment (mBD + Phos + POPC), the Folch, the Bligh and Dyer citrate buffer (mBD-Cit), and the MAE treatments were all relatively higher and statistically similar compared to the other extraction treatments for both PLFAs and DGFAs. The biomarker yields were however highly variable within replicates for most extraction treatments, although the mBD + Phos + POPC treatment had relatively better reproducibility in the consistent fatty acid profiles. This variability across treatments which is associated with the highly complex nature of deeply buried shale matrix, further necessitates customized methodological developments for the improvement of lipid biomarker recovery. PMID:28790998

  6. Selective binding of pyrene in subdomain IB of human serum albumin: Combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility

    NASA Astrophysics Data System (ADS)

    Ling, Irene; Taha, Mohamed; Al-Sharji, Nada A.; Abou-Zied, Osama K.

    2018-04-01

    The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27 Å, which was closely reproduced by the docking analysis (29 Å) and MD simulation (32 Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5 nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding sites of the protein that can easily adapt their shape to accommodate a variety of molecular structures.

  7. DETERMINATION OF CHLORINATED ACID HERBICIDES AND RELATED COMPOUNDS IN WATER BY CAPILLARY ELECTROPHORESIS-ELECTROSPRAY NEGATIVE ION MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis electrospray negative ion mass spectrometry was investigated for the determination of chlorinated acid herbicides and several phenols in water. Sixteen analytes were separated as their anions in less than 40 min with a buffer consisting of 5 mM ammonium ...

  8. Erosive and buffering capacities of yogurt.

    PubMed

    Kargul, Betul; Caglar, Esber; Lussi, Adrian

    2007-05-01

    The capability of drinks and foods to resist pH changes brought about by salivary buffering may play an important role in the erosion of dental enamel. The aim of the present study was to measure the initial pH of several types of yogurt and to test the degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite to determine the buffering capacity and related erosive potential of yogurt. Twenty-five milliliters of 7 types of freshly opened yogurt was titrated with 1 mol/L of sodium hydroxide, added in 0.5 mL increments, until the pH reached 10, to assess the total titratable acidity, a measure of the drink's own buffering capacity. The degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite were also calculated, using a computer program developed for this purpose. For statistical analysis, samples were compared using Kruskal-Wallis test. The buffering capacities can be ordered as follows: fruit yogurt >low-fat yogurt >bioyogurt >butter yogurt >natural yogurt >light fruit yogurt >light yogurt. The results suggest that, in vitro, fruit yogurt has the greatest buffering capacity. It can be stated that it is not possible to induce erosion on enamel with any type of yogurt.

  9. A mathematical model of tumour and blood pHe regulation: The HCO3-/CO2 buffering system.

    PubMed

    Martin, Natasha K; Gaffney, Eamonn A; Gatenby, Robert A; Gillies, Robert J; Robey, Ian F; Maini, Philip K

    2011-03-01

    Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion and metastasis. Previous research has proposed the potential benefits of manipulating systemic pHe, and recent experiments have highlighted the potential for buffer therapy to raise tumour pHe, prevent metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood pHe, we develop a simple compartmentalised ordinary differential equation model of pHe regulation by the HCO3-/CO2 buffering system. An approximate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour pHe in both humans and mice. From this analysis, we suggest promising alternative and combination therapies, and identify specific patient groups which may show an enhanced response to buffer therapy. In addition, numerical simulations are performed, validating the model against well-known metabolic/respiratory disorders and predicting how these disorders could change tumour pHe. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Determination of active ingredients in corn silk, leaf, and kernel by capillary electrophoresis with electrochemicaI detection.

    PubMed

    Lin, Miao; Chu, Qing-Cui; Tian, Xiu-Hui; Ye, Jian-Nong

    2007-01-01

    Corn has been known for its accumulation of flavones and phenolic acids. However, many parts of corn, except kernel, have not drawn much attention. In this work, a method based on capillary zone electrophoresis with electrochemical detection has been used for the separation and determination of epicatechin, rutin, ascorbic acid (Vc), kaempferol, chlorogenic acid, and quercetin in corn silk, leaf, and kernel. The distribution comparison of the ingredients among silk, leaf, and kernel is discussed. Several important factors--including running buffer acidity, separation voltage, and working electrode potential--were evaluated to acquire the optimum analysis conditions. Under the optimum conditions, the analytes could be well separated within 19 min in a 40-mmol/L borate buffer (pH 9.2). The response was linear over three orders of magnitude with detection limits (S/N = 3) ranging from 4.97 x 10(-8) to 9.75 x 10(-8) g/mL. The method has been successfully applied for the analysis of corn silk, leaf, and kernel with satisfactory results.

  11. Pyrolytic sugars from cellulosic biomass.

    PubMed

    Kuzhiyil, Najeeb; Dalluge, Dustin; Bai, Xianglan; Kim, Kwang Ho; Brown, Robert C

    2012-11-01

    Depolymerization of cellulose offers the prospect of inexpensive sugars from biomass. Breaking the glycosidic bonds of cellulose to liberate glucose has usually been pursued by acid or enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily the anhydrosugar levoglucosan (LG) whereas the presence of naturally occurring alkali and alkaline earth metals (AAEMs) in biomass strongly catalyzes ring-breaking reactions that favor formation of light oxygenates. Here, we show a method of significantly increasing the yield of sugars from biomass by purely thermal means through infusion of certain mineral acids (phosphoric and sulfuric acid) into the biomass to convert the AAEMs into thermally stable salts (particularly potassium sulfates and phosphates). These salts not only passivate AAEMs that normally catalyze fragmentation of pyranose rings, but also buffer the system at pH levels that favor glycosidic bond breakage. It appears that AAEM passivation contributes to 80 % of the enhancement in LG yield while the buffering effect of the acid salts contributes to the balance of the enhancement. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Soil pH buffer capacity of tea garden with different planting years].

    PubMed

    Su, You-Jian; Wang, Ye-Jun; Zhang, Yong-Li; Luo, Yi; Sun, Li; Song, Li; Liao, Wan-You

    2014-10-01

    In order to investigate the effects of long-term tea planting on soil pH buffer capacity (pHBC), the variation of pHBC and its influence factors were investigated in tea gardens of 10, 15, 20, 25 and 30 years in Langxi and Qimen of Anhui Province. The results showed that the acid-base titration method was suitable for the determination of soil pHBC of tea gardens. The amount of acid-base added had approximate linear relationship with soil pH value in specific section (pH 4.0-6.0) of acid-base titration curves, so the soil pHBC could be calculated by linear regression equation. Soil pHBC in the tea gardens from the two regions showed a downward trend with increasing the planting years, which decreased at rates of 0.10 and 0.06 mmol · kg(-1) · a(-1) in Langxi and Qimen tea gardens, respectively. Soil pHBC had significant positive correlation with CEC, soil organic matter, base saturation and physical clay content, and significant negative correlation with exchangeable acid and exchange H+.

  13. The effect of residual water on antacid properties of sucralfate gel dried by microwaves.

    PubMed

    Gainotti, Alessandro; Losi, Elena; Colombo, Paolo; Santi, Patrizia; Sonvico, Fabio; Baroni, Daniela; Massimo, Gina; Colombo, Gaia; Del Gaudio, Pasquale

    2006-01-20

    The aim of this work was to study the acid neutralization characteristics of microwave-dried sucralfate gel in relation to the water content and physical structure of the substance. Several dried sucralfate gels were compared with humid sucralfate gel and sucralfate nongel powder in terms of neutralization rate and buffering capacity. Humid sucralfate gel and microwave-dried gel exhibited antacid effectiveness. In particular, the neutralization rate of dried gel powders was inversely related to the water content: as the water content of dried powders decreased, the acid reaction rate linearly increased. The relationship was due to the different morphology of dried sucralfate gels. In fact, the porosity of the dried samples increased with the water reduction. However, the acid neutralization equivalent revealed that the dried sucralfate gel became more resistant to acid attack in the case of water content below 42%. Then, the microwave drying procedure had the opposite effect on the reactivity of the aluminum hydroxide component of dried sucralfate gel powders, since the rate of the reaction increased whereas the buffering capacity decreased as the amount of water was reduced.

  14. The effect of residual water on antacid properties of sucralfate gel dried by microwaves.

    PubMed

    Gainotti, Alessandro; Losi, Elena; Colombo, Paolo; Santi, Patrizia; Sonvico, Fabio; Baroni, Daniela; Massimo, Gina; Colombo, Gaia; Del Gaudio, Pasquale

    2006-03-01

    The aim of this work was to study the acid neutralization characteristics of microwave-dried sucralfate gel in relation to the water content and physical structure of the substance. Several dried sucralfate gels were compared with humid sucralfate gel and sucralfate nongel powder in terms of neutralization rate and buffering capacity. Humid sucralfate gel and microwave-dried gel exhibited antacid effectiveness. In particular, the neutralization rate of dried gel powders was inversely related to the water content: as the water content of dried powders decreased, the acid reaction rate linearly increased. The relationship was due to the different morphology of dried sucralfate gels. In fact, the porosity of the dried samples increased with the water reduction. However, the acid neutralization equivalent revealed that the dried sucralfate gel became more resistant to acid attack in the case of water content below 42%. Then, the microwave drying procedure had the opposite effect on the reactivity of the aluminum hydroxide component of dried sucralfate gel powders, since the rate of the reaction increased whereas the buffering capacity decreased as the amount of water was reduced.

  15. Legionella pneumophila: Virulent and Avirulent Interaction with Acanthamoeba castellanii.

    DTIC Science & Technology

    1993-08-01

    HCl 0.40 g Ferric Pryophsphate, Soluble 0.25 g ACES Buffer 10.0 g Activated Charcoal 2.0 g Alpha - Ketoglutaric Acid 1.0 g Agar 15.0 g Polyndixin B...Growth enhancement also occurs with the addition of trace metals such as calcium , cobalt, copper, magnesium, manganese, nickel, vandium and zinc (125...by the addition of ACES buffer (BCYE), (116). This formulation with the addition of a- ketoglutarate facilitates good recovery of legionellae from

  16. Cationic composition and acid-base state of the extracellular fluid, and specific buffer value of hemoglobin from the branchiopod crustacean Triops cancriformis.

    PubMed

    Pirow, Ralph; Buchen, Ina; Richter, Marc; Allmer, Carsten; Nunes, Frank; Günsel, Andreas; Heikens, Wiebke; Lamkemeyer, Tobias; von Reumont, Björn M; Hetz, Stefan K

    2009-04-01

    Recent insights into the allosteric control of oxygen binding in the extracellular hemoglobin (Hb) of the tadpole shrimp Triops cancriformis raised the question about the physico-chemical properties of the protein's native environment. This study determined the cationic composition and acid-base state of the animal's extracellular fluid. The physiological concentrations of potential cationic effectors (calcium, magnesium) were more than one order of magnitude below the level effective to increase Hb oxygen affinity. The extracellular fluid in the pericardial space had a typical bicarbonate concentration of 7.6 mM but a remarkably high CO(2) partial pressure of 1.36 kPa at pH 7.52 and 20 degrees C. The discrepancy between this high CO(2) partial pressure and the comparably low values for water-breathing decapods could not solely be explained by the hemolymph-sampling procedure but may additionally arise from differences in cardiovascular complexity and efficiency. T. cancriformis hemolymph had a non-bicarbonate buffer value of 2.1 meq L(-1) pH(-1). Hb covered 40-60% of the non-bicarbonate buffering power. The specific buffer value of Hb of 1.1 meq (mmol heme)(-1) pH(-1) suggested a minimum requirement of two titratable histidines per heme-binding domain, which is supported by available information from N-terminal sequencing and expressed sequence tags.

  17. A novel conducting poly(p-aminobenzene sulphonic acid)-based electrochemical sensor for sensitive determination of Sudan I and its application for detection in food stuffs.

    PubMed

    Li, Bang Lin; Luo, Jun Hua; Luo, Hong Qun; Li, Nian Bing

    2015-04-15

    In the present work, a new method for the determination of Sudan I has been developed based on a conducting poly(p-aminobenzene sulphonic acid) (poly(p-ABSA)) film modified electrode. The new electrochemical sensor showed strong accumulation ability and excellent electrocatalytic activity for Sudan I. Electrochemical oxidation signal of Sudan I at the poly(p-ABSA) modified glassy carbon electrode (poly(p-ABSA)/GCE) was significantly increased when compared to that at the bare GCE. The experimental conditions such as amount of alcohol, pH of buffer solution, accumulation time, and instrumental parameters for square wave anodic stripping voltammetry were optimised for the determination of Sudan I. Under optimum conditions, the linear regression equation of Sudan I was ip=1.868+0.1213c (ip: μA, c: μgL(-1), R=0.9981) from 1 to 500 μg L(-1) with a detection limit of 0.3 μg L(-1). Finally, this sensor was successfully employed to detect Sudan I in some hot chili and ketchup samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Research Update: A minimal region of squid reflectin for vapor-induced light scattering

    NASA Astrophysics Data System (ADS)

    Dennis, Patrick B.; Singh, Kristi M.; Vasudev, Milana C.; Naik, Rajesh R.; Crookes-Goodson, Wendy J.

    2017-12-01

    Reflectins are a family of proteins found in the light manipulating cells of cephalopods. These proteins are made up of a series of conserved repeats that contain highly represented amino acids thought to be important for function. Previous studies demonstrated that recombinant reflectins cast into thin films produced structural colors that could be dynamically modulated via changing environmental conditions. In this study, we demonstrate light scattering from reflectin films following exposure to a series of water vapor pulses. Analysis of film surface topography shows that the induction of light scatter is accompanied by self-assembly of reflectins into micro- and nanoscale features. Using a reductionist strategy, we determine which reflectin repeats and sub-repeats are necessary for these events following water vapor pulsing. With this approach, we identify a singly represented, 23-amino acid region in reflectins as being sufficient to recapitulate the light scattering properties observed in thin films of the full-length protein. Finally, the aqueous stability of reflectin films is leveraged to show that pre-exposure to buffers of varying pH can modulate the ability of water vapor pulses to induce light scatter and protein self-assembly.

  19. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine

    PubMed Central

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-01-01

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine. PMID:27098929

  20. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine.

    PubMed

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-04-21

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine.

  1. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  2. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food.

    PubMed

    Omar, Mei Musa Ali; Elbashir, Abdalla Ahmed; Schmitz, Oliver J

    2017-01-01

    Simple and inexpensive capillary electrophoresis with UV-detection method (CE-UV) was optimized and validated for determination of six amino acids namely (alanine, asparagine, glutamine, proline, serine and valine) for Sudanese food. Amino acids in the samples were derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) prior to CE-UV analysis. Labeling reaction conditions (100mM borate buffer at pH 8.5, labeling reaction time 60min, temperature 70°C and NBD-Cl concentration 40mM) were systematically investigated. The optimal conditions for the separation were 100mM borate buffer at pH 9.7 and detected at 475nm. The method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision (repeatability) (RSD%) and accuracy (recovery). Good linearity was achieved for all amino acids (r(2)>0.9981) in the concentration range of 2.5-40mg/L. The LODs in the range of 0.32-0.56mg/L were obtained. Recoveries of amino acids ranging from 85% to 108%, (n=3) were obtained. The validated method was successfully applied for the determination of amino acids for Sudanese food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Relations between Early Working Memory Abilities and Later Developing Reading Skills: A Longitudinal Study from Kindergarten to Fifth Grade

    ERIC Educational Resources Information Center

    Nevo, Einat; Bar-Kochva, Irit

    2015-01-01

    This study investigated the relations of early working-memory abilities (phonological and visual-spatial short-term memory [STM] and complex memory and episodic buffer memory) and later developing reading skills. Sixty Hebrew-speaking children were followed from kindergarten through Grade 5. Working memory was tested in kindergarten and reading in…

  4. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.

    PubMed

    Chelius, Dirk; Jing, Kay; Lueras, Alexis; Rehder, Douglas S; Dillon, Thomas M; Vizel, Alona; Rajan, Rahul S; Li, Tiansheng; Treuheit, Michael J; Bondarenko, Pavel V

    2006-04-01

    The status of the N-terminus of proteins is important for amino acid sequencing by Edman degradation, protein identification by shotgun and top-down techniques, and to uncover biological functions, which may be associated with modifications. In this study, we investigated the pyroglutamic acid formation from N-terminal glutamic acid residues in recombinant monoclonal antibodies. Almost half the antibodies reported in the literature contain a glutamic acid residue at the N-terminus of the light or the heavy chain. Our reversed-phase high-performance liquid chromatography-mass spectrometry method could separate the pyroglutamic acid-containing light chains from the native light chains of reduced and alkylated recombinant monoclonal antibodies. Tryptic peptide mapping and tandem mass spectrometry of the reduced and alkylated proteins was used for the identification of the pyroglutamic acid. We identified the formation of pyroglutamic acid from N-terminal glutamic acid in the heavy chains and light chains of several antibodies, indicating that this nonenzymatic reaction does occur very commonly and can be detected after a few weeks of incubation at 37 and 45 degrees C. The rate of this reaction was measured in several aqueous buffers with different pH values, showing minimal formation of pyroglutamic acid at pH 6.2 and increased formation of pyroglutamic acid at pH 4 and pH 8. The half-life of the N-terminal glutamic acid was approximately 9 months in a pH 4.1 buffer at 45 degrees C. To our knowledge, we showed for the first time that glutamic acid residues located at the N-terminus of proteins undergo pyroglutamic acid formation in vitro.

  5. Antifungal Activity of Phenyllactic Acid against Molds Isolated from Bakery Products

    PubMed Central

    Lavermicocca, Paola; Valerio, Francesca; Visconti, Angelo

    2003-01-01

    Phenyllactic acid (PLA) has recently been found in cultures of Lactobacillus plantarum that show antifungal activity in sourdough breads. The fungicidal activity of PLA and growth inhibition by PLA were evaluated by using a microdilution test and 23 fungal strains belonging to 14 species of Aspergillus, Penicillium, and Fusarium that were isolated from bakery products, flours, or cereals. Less than 7.5 mg of PLA ml−1 was required to obtain 90% growth inhibition for all strains, while fungicidal activity against 19 strains was shown by PLA at levels of ≤10 mg ml−1. Levels of growth inhibition of 50 to 92.4% were observed for all fungal strains after incubation for 3 days in the presence of 7.5 mg of PLA ml−1 in buffered medium at pH 4, which is a condition more similar to those in real food systems. Under these experimental conditions PLA caused an unpredictable delaying effect that was more than 2 days long for 12 strains, including some mycotoxigenic strains of Penicillium verrucosum and Penicillium citrinum and a strain of Penicillium roqueforti (the most widespread contaminant of bakery products); a growth delay of about 2 days was observed for seven other strains. The effect of pH on the inhibitory activity of PLA and the combined effects of the major organic acids produced by lactic acid bacteria isolated from sourdough bread (PLA, lactic acid, and acetic acid) were also investigated. The ability of PLA to act as a fungicide and delay the growth of a variety of fungal contaminants provides new perspectives for possibly using this natural antimicrobial compound to control fungal contaminants and extend the shelf lives of foods and/or feedstuffs. PMID:12514051

  6. Resilience to suicidal ideation in psychosis: Positive self-appraisals buffer the impact of hopelessness.

    PubMed

    Johnson, J; Gooding, P A; Wood, A M; Taylor, P J; Pratt, D; Tarrier, N

    2010-09-01

    Recent years have seen growing interest into concepts of resilience, but minimal research has explored resilience to suicide and none has investigated resilience to suicide amongst clinical groups. The current study aimed to examine whether a proposed resilience factor, positive self-appraisals of the ability to cope with emotions, difficult situations and the ability to gain social support, could buffer against the negative impact of hopelessness amongst individuals with psychosis-spectrum disorders when measured cross-sectionally. Seventy-seven participants with schizophrenia-spectrum disorders completed self-report measures of suicidal ideation, hopelessness and positive self-appraisals. Positive self-appraisals were found to moderate the association between hopelessness and suicidal ideation. For those reporting high levels of positive self-appraisals, increased levels of hopelessness were significantly less likely to lead to suicidality. These results provide cross-sectional evidence suggest that positive self-appraisals may buffer individuals with psychosis against the pernicious impact of a well known clinical risk factor, hopelessness. Accounting for positive self-appraisals may improve identification of individuals at high risk of suicidality, and may be an important area to target for suicide interventions. 2010 Elsevier Ltd. All rights reserved.

  7. Expansion of mesenchymal stem cells under atmospheric carbon dioxide.

    PubMed

    Brodsky, Arthur Nathan; Zhang, Jing; Visconti, Richard P; Harcum, Sarah W

    2013-01-01

    Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system - which relies upon an elevated CO2 environment - typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self-renewal properties, and the ability to differentiate into multiple lineages after expansion. © 2013 American Institute of Chemical Engineers.

  8. Detection of Chlorogenic Acid in Honeysuckle Using Infrared-Assisted Extraction Followed by Capillary Electrophoresis with UV Detector

    PubMed Central

    Tang, Zhuxing; Zang, Shuliang; Zhang, Xiangmin

    2012-01-01

    In this study, a novel infrared-assisted extraction method coupled capillary electrophoresis (CE) is employed to determine chlorogenic acid from a traditional Chinese medicine (TCM), honeysuckle. The effects of pH and the concentration of the running buffer, separation voltage, injection time, IR irradiation time, and anhydrous ethanol in the extraction concentration were investigated. The optimal conditions were as follows: extraction time, 30 min; extraction solvent, 80% (v/v) ethanol in water solution; and 50 mmol/L borate buffer (pH 8.7) was used as the running buffer at a separation voltage of 16 kV. The samples were injected electrokinetically at 16 kV for 8 s. Good linearity (r2 > 0.9996) was observed over the concentration ranges investigated, and the stability of the solutions was high. Recoveries of the chlorogenic acid were from 95.53% to 106.62%, and the relative standard deviation was below 4.1%. By using this novel IR-assisted extraction method, a higher extraction efficiency than those extracted with conventional heat-reflux extraction was found. The developed IR-assisted extraction method is simple, low-cost, and efficient, offering a great promise for the quick determination of active compounds in TCM. The results indicated that IR-assisted extraction followed by CE is a reliable method for quantitative analysis of active ingredient in TCM. PMID:22291060

  9. Saliva and dental erosion

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  10. Saliva and dental erosion.

    PubMed

    Buzalaf, Marília Afonso Rabelo; Hannas, Angélicas Reis; Kato, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. This review discusses the role of salivary factors on the development of dental erosion. A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  11. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.

    PubMed

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2009-07-01

    The aim of this research was to gain a mechanistic understanding of ion-pair mediated membrane transport of low-permeability drugs. Quasi-equilibrium mass transport analyses were developed to describe the ion-pair mediated octanol-buffer partitioning and hydrophobic membrane permeation of the model basic drug phenformin. Three lipophilic counterions were employed: p-toluenesulfonic acid, 2-naphthalenesulfonic acid, and 1-hydroxy-2-naphthoic acid (HNAP). Association constants and intrinsic octanol-buffer partition coefficients (Log P(AB)) of the ion-pairs were obtained by fitting a transport model to double reciprocal plots of apparent octanol-buffer distribution coefficients versus counterion concentration. All three counterions enhanced the lipophilicity of phenformin, with HNAP providing the greatest increase in Log P(AB), 3.7 units over phenformin alone. HNAP also enhanced the apparent membrane permeability of phenformin, 27-fold in the PAMPA model, and 4.9-fold across Caco-2 cell monolayers. As predicted from a quasi-equilibrium analysis of ion-pair mediated membrane transport, an order of magnitude increase in phenformin flux was observed per log increase in counterion concentration, such that log-log plots of phenformin flux versus HNAP concentration gave linear relationships. These results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.

  12. Open-label evaluation of a novel skin brightening system containing 0.01% decapeptide-12 in combination with 20% buffered glycolic acid for the treatment of mild to moderate facial melasma.

    PubMed

    Ramírez, Sandra P; Carvajal, Alfonso C; Salazar, Juan C; Arroyave, Gladys; Flórez, Ana M; Echeverry, Hector F

    2013-06-01

    Melasma is a cutaneous disorder that primarily affects females of Hispanic and Asian descent. Previous studies have shown that use of a brightening system comprised of 0.01% decapeptide-12 cream, an antioxidant cleanser, a 20% buffered glycolic acid lotion, and a broad spectrum SPF 30 sunscreen yields good clearance of mild-to-moderate melasma in Caucasian and Asian volunteers. The present open-label, prospective, and multicenter study sought to determine the tolerability and efficacy of the above-mentioned brightening system on mild-to-moderate melasma in 33 Hispanic females over 16 weeks. Clinical measures included self-assessment of tolerability, clinical grading, determination of Melasma Area and Severity Index (MASI) scores, and standardized clinical photography. Results showed that the system was well tolerated with no adverse events reported. Mean decreases of 36%, 46%, 54%, and 60% in MASI scores were observed at weeks 4, 8, 12, and 16, respectively, which were further corroborated by standardized photography showing visible reduction in the appearance of melasma. Results suggest that the brightening system consisting of 0.01% decapeptide-12 cream, an antioxidant cleanser, 20% buffered glycolic acid lotion, and broad spectrum SPF 30 sunscreen is safe and efficacious for the treatment of mild-to-moderate melasma in Hispanic females.

  13. Effects of different carboxylic ester spacers on chemical stability, release characteristics, and anticancer activity of mono-PEGylated curcumin conjugates.

    PubMed

    Wichitnithad, Wisut; Nimmannit, Ubonthip; Callery, Patrick S; Rojsitthisak, Pornchai

    2011-12-01

    We investigated the effects of different carboxylic ester spacers of mono-PEGylated curcumin conjugates on chemical stability, release characteristics, and anticancer activity. Three novel conjugates were synthesized with succinic acid, glutaric acid, and methylcarboxylic acid as the respective spacers between curcumin and monomethoxy polyethylene glycol of molecular weight 2000 (mPEG(2000) ): mPEG(2000) -succinyl-curcumin (PSC), mPEG(2000) -glutaryl-curcumin (PGC), and mPEG(2000) -methylcarboxyl-curcumin (PMC), respectively. Hydrolysis of all conjugates in buffer and human plasma followed pseudo first-order kinetics. In phosphate buffer, the overall degradation rate constant and half-life values indicated an order of stability of PGC > PSC > PMC > curcumin. In human plasma, more than 90% of curcumin was released from the esters after incubation for 0.25, 1.5, and 2 h, respectively. All conjugates exhibited cytotoxicity against four human cancer cell lines: Caco-2 (colon), KB (oral cavity), MCF7 (breast), and NCI-H187 (lung) with half maximal inhibitory concentration (IC(50) ) values in the range of 1-6 µM, similar to that observed for curcumin itself. Our results suggest that mono-PEGylation of curcumin produces prodrugs that are stable in buffer at physiological pH, release curcumin readily in human plasma, and show anticancer activity. Copyright © 2011 Wiley-Liss, Inc.

  14. On-column labeling of gram-positive bacteria with a boronic acid functionalized squarylium cyanine dye for analysis by polymer-enhanced capillary transient isotachophoresis.

    PubMed

    Saito, Shingo; Massie, Tara L; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L

    2012-03-06

    A new asymmetric, squarylium cyanine dye functionalized by boronic acid ("SQ-BA") was designed and synthesized for on-capillary labeling of gram-positive bacteria to provide for high sensitivity detection by way of a modified form of capillary electrophoresis with laser induced fluorescence detection (CE-LIF). The CE-based separation employed a polymer-enhanced buffer with capillary transient isotachophoresis in a new hybrid method dubbed "PectI." It was found that the addition of various monosaccharides to SQ-BA in a batch aqueous solution greatly enhanced the emission of the boronic acid functionalized dye by a factor of up to 18.3 at a long wavelength (λ(ex) = 630 nm, λ(em) = 660 nm) with a high affinity constant (K = ~10(2.80) M(-1)) superior to other sugar probes. Semiempirical quantum mechanics calculations suggest that the mechanism for this high enhancement may involve the dissociation of initially nonemissive dye associates (stabilized by an intramolecular hydrogen bond) upon complex formation with sugars. The fluorescence emission of SQ-BA was also significantly enhanced in the presence of a gram-positive bacterial spore, Bacillus globigii (Bg), which serves as a simulant of B. anthracis (or anthrax) and which possesses a peptidoglycan (sugar)-rich spore coat to provide ample sites for interaction with the dye. Several peaks were observed for a pure Bg sample even with polyethyleneoxide (PEO) present in the CE separation buffer, despite the polymer's previously demonstrated ability to focus microoorganisms to a single peak during migration. Likewise, several peaks were observed for a Bg sample when capillary transient isotachophoresis (ctITP) alone was employed. However, the new combination of these techniques as "PectI" dramatically and reproducibly focused the bacteria to a single peak with no staining procedure. Using PectI, the trace detection of Bg spores (corresponding to approximately three cells per injection) along with separation efficiency enough to separate Bg from another gram-positive bacteria, Saccharomyces cerevisiae (resolution, R(s) = 6.09, and apparent plate number, N = 2.7-3.3 × 10(5)), were successfully achieved.

  15. Use of Elements of the Stewart Model (Strong Ion Approach) - SID3, SID4, Atot/A-, SIDe and SIG for the Diagnostics of Respiratory Acidosis in Brachycephalic Dogs.

    PubMed

    Sławuta, P; Sapikowski, G; Sobieraj, B

    2016-09-01

    Buffer systems of blood and tissues, which have the ability to bind with and give up hydrogen ions, participate in maintaining the acid-base balance (ABB) of the organism. According to the classic model, the system of carbonic acid and bicarbonates, where the first component serves the role of an acid and the second a base, determines plasma pH. The so-called Stewart model, which assumes that ions in blood serum can be separated into completely dissociated - nonbuffer and not dissociated - buffer ions which may give up or accept H+ions, also describes the ABB of the organism. The goal of the study was to find out whether, during respiratory acidosis, the values of SID3, SID4, Atot/A-, SIDe and SIG change. The study was carried out on 60 adult dogs of the boxer breed (32 males and 28 females) in which, on the basis of an arterial blood test, respiratory acidosis was found. A strong overgrowth of the soft palate tissue requiring a surgical correction was the cause of the ABB disorder. Prior to surgery and on the 14th day after the surgery, venous and arterial blood was drawn from each dog. ABB parameters were determined in the arterial blood sample: the blood pH, pCO2 and HCO3-. In the venous blood, concentration of Na+, K+, Cl-, lactate-, albumins, and Pinorganic was determined. On the basis of the obtained data, the values of SID3, SID4, SIDe, A- and SIG, before and after the surgery, were calculated. In spite of the fact that the average concentration of ions, albumins, Pinorganic and lactate in the blood serum of dogs before and after the surgical procedure was similar and within the physiological norms, the values of SID3, SIDe and SIG, calculated on the basis of the former, displayed statistically significant differences. On the basis of the results obtained, it can be stated that the values of SID3, SIDe and SIG change during respiratory acidosis and may be helpful in the diagnostics of ABB disorders in brachycephalic dogs.

  16. Mechanism of permeability-enhancing effect of EDTA and boric acid on the corneal penetration of 4-[1-hydroxy-1-methylethyl]-2-propyl-1-[4-[2-[tetrazole-5-yl]phenyl]phenyl] methylimidazole-5-carboxylic acid monohydrate (CS-088).

    PubMed

    Kikuchi, Takayuki; Suzuki, Masahiko; Kusai, Akira; Iseki, Ken; Sasaki, Hitoshi; Nakashima, Kenichiro

    2005-08-11

    This study was conducted to clarify the penetration properties of 4-[1-hydroxy-1-methylethyl]-2-propyl-1-[4-[2-[tetrazole-5-yl]phenyl]phenyl]methylimidazole-5-carboxylic acid monohydrate (CS-088), an ophthalmic agent, and the mechanism of the permeability-enhancing effect of EDTA and boric acid (EDTA/boric acid) on the corneal penetration of CS-088. In the absence of additives, corneal permeability decreased with increasing concentration of CS-088 as CS-088 monomers self-associate to form dimers. Presence of EDTA/boric acid caused no significant changes in the physicochemical properties of CS-088, the apparent partition coefficient or the mean particle size of CS-088. EDTA/boric acid induced only a slight change in the zeta potential of liposomes used as a model of the biological membrane. On the other hand, EDTA/boric acid significantly increased membrane fluidity of liposomes, whereas other buffering agents tested did not. This effect was synergistic and concentration-dependent for both EDTA and boric acid as was observed in in vitro corneal penetration of CS-088. In accordance with the result, the rate of CS-088 permeation into the liposomes significantly increased by the addition of EDTA/boric acid. Therefore, it was demonstrated that EDTA/boric acid promotes corneal penetration of CS-088 through the transcellular pathway by increasing membrane fluidity. Conversely, other buffering agents decreased corneal permeability of CS-088 by inducing further self-association of CS-088 aggregates.

  17. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    PubMed Central

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  18. Microbial community structure across a wastewater-impacted riparian buffer zone in the southeastern coastal plain.

    PubMed

    Ducey, T F; Johnson, P R; Shriner, A D; Matheny, T A; Hunt, P G

    2013-01-01

    Riparian buffer zones are important for both natural and developed ecosystems throughout the world because of their ability to retain nutrients, prevent soil erosion, protect aquatic environments from excessive sedimentation, and filter pollutants. Despite their importance, the microbial community structures of riparian buffer zones remains poorly defined. Our objectives for this study were twofold: first, to characterize the microbial populations found in riparian buffer zone soils; and second, to determine if microbial community structure could be linked to denitrification enzyme activity (DEA). To achieve these objectives, we investigated the microbial populations of a riparian buffer zone located downslope of a pasture irrigated with swine lagoon effluent, utilizing DNA sequencing of the 16S rDNA, DEA, and quantitative PCR (qPCR) of the denitrification genes nirK, nirS, and nosZ. Clone libraries of the 16S rDNA gene were generated from each of twelve sites across the riparian buffer with a total of 986 partial sequences grouped into 654 operational taxonomic units (OTUs). The Proteobacteria were the dominant group (49.8% of all OTUs), with the Acidobacteria also well represented (19.57% of all OTUs). Analysis of qPCR results identified spatial relationships between soil series, site location, and gene abundance, which could be used to infer both incomplete and total DEA rates.

  19. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 {micro}L samples of a 50 mM probe solution were injected into C{sub 18}-bonded columns using a series of five buffered mobile phases at {sub W}{sup S}pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account themore » simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1 g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C{sub 18}-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C{sub 18}-bonded layer and the bulk phase.« less

  20. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-03-06

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 microL samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (SW)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase.

  1. Prevalence of Brucella spp in humans1

    PubMed Central

    Soares, Catharina de Paula Oliveira Cavalcanti; Teles, José Andreey Almeida; dos Santos, Aldenir Feitosa; Silva, Stemberg Oliveira Firmino; Cruz, Maria Vilma Rocha Andrade; da Silva-Júnior, Francisco Feliciano

    2015-01-01

    Objective: to determine the seroprevalence of Brucella spp in humans. Method: this is an observational study, developed with 455 individuals between 18 and 64 years old, who use the Estratégia de Saúde da Família (Brazil's family health strategy). The serum samples of volunteers underwent buffered acid antigen tests, such as screening, agar gel immunodiffusion and slow seroagglutination test in tubes and 2-Mercaptoethanol. Results: among the samples, 1.98% has responded to buffered-acid antigen, 2.85% to agar gel immunodiffusion test and 1.54% to the slow seroagglutination tests on tubes/2-Mercaptoethanol. The prevalence of Brucella spp was 4.4%, represented by the last two tests. Conclusion: the results of this research suggest that the studied population is exposed to Brucella spp infection. PMID:26487143

  2. Combining ligand design and photo-ligation to provide optimal quantum dot-bioconjugates for sensing and imaging

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian; Palui, Goutam; Safi, Malak; Mattoussi, Hedi

    2014-03-01

    We describe the design and synthesis of two metal-coordinating zwitterion ligands to promote the transfer of hydrophobic QDs to buffer media over broad range of conditions. The ligands are prepared by appending either one or two lipoic acid anchoring groups onto a zwitterion, LA-TEG200-ZW and bis(LA)- ZW. Combining these ligands with a photochemical reduction of the lipoic acid group in the presence of UV irradiation, provides an easy to implement method to transfer luminescent QDs to buffer media, while preserving their optical and spectroscopic properties intact. The resulting zwitterion-QDs have very thin capping shell, which allows their self-assembly with full size proteins via metal-to-histidine coordination. These conjugates have great potential for use in various bio-motivated applications.

  3. Improved stability and electrophoretic properties of preformed fluorescent cationic dye-DNA complexes in a taps-tetrapentylammonium buffer in agarose slab gels.

    PubMed

    Zeng, Z; Clark, S M; Mathies, R A; Glazer, A N

    1997-10-01

    High-resolution capillary electrophoresis sizing of preformed complexes of bis-intercalating fluorescent dyes with double-stranded DNA has been demonstrated using hydroxyethylcellulose and 3-[tris-(hydroxymethyl) methylamino]-1-propanesulfonic acid-tetrapentylammonium (Taps-NPe+4) buffers (S. M. Clark and R. A. Mathies, Anal. Chem. 69, 1355-1363, 1997). Such capillary electrophoresis separations were unattainable in conventional buffers containing other cations such as Tris+, Na+, and NH+4. We report here the behavior of preformed double-stranded DNA-dye complexes on agarose slab gel electrophoresis in 40 mM Taps-NPe+4, 1 mM H2EDTA, pH 8.2. Upon electrophoresis in this buffer (a) complexes formed at DNA base pairs:dye ratios ranging from 100:1 to 5:1 show the same mobility; (b) the half-lives of DNA-dye complexes with monointercalators are two- to threefold longer than those in commonly used Tris buffers; (c) there is little dye transfer between labeled and unlabeled DNA molecules; and (d) precise two-color sizing of preformed restriction fragment-dye complexes with fluorescent bisintercalators is achieved.

  4. Simply enhancing throughput of free-flow electrophoresis via organic-aqueous environment for purification of weak polarity solute of phenazine-1-carboxylic acid in fermentation of Pseudomonas sp. M18.

    PubMed

    Yang, Jing-Hua; Shao, Jing; Wang, Hou-Yu; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi; Xu, Yu-Quan

    2012-09-01

    Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Towards a rational approach for heavy-atom derivative screening in protein crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agniswamy, Johnson; Joyce, M. Gordon; Hammer, Carl H.

    2008-04-01

    Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity of more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity ofmore » more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Met-, Cys- and His-containing peptides were derivatized against Hg, Au and Pt compounds, while Tyr-, Glu-, Asp-, Asn- and Gln-containing peptides were assessed against Pb compounds. A total of 1668 reactive conditions were examined using mass spectrometry and were compiled into heavy-atom reactivity tables. The results showed that heavy-atom derivatization reactions are highly linked to buffer and pH, with the most accommodating buffer being MES at pH 6. A group of 21 compounds were identified as most successful irrespective of ligand or buffer/pH conditions. To assess the applicability of the peptide heavy-atom reactivity to proteins, lysozyme crystals were derivatized with a list of peptide-reactive compounds that included both known and new compounds for lysozyme derivatization. The results showed highly consistent heavy-atom reactivities between the peptides and lysozyme.« less

  6. Chitosan adsorption on nanofibrillated cellulose with different aldehyde content and interaction with phosphate buffered saline.

    PubMed

    Ondaral, Sedat; Çelik, Elif; Kurtuluş, Orçun Çağlar; Aşıkuzun, Elif; Yakın, İsmail

    2018-04-15

    The chitosan adsorption on films prepared using nanofibrillated cellulose (NFC) with different content of aldehyde group was studied by means of Quartz Crystal Microbalance with Dissipation (QCM-D). Results showed that frequency change (Δf) was higher when the chitosan adsorbed on NFC film consisting more aldehyde group indicating the higher adsorption. The (Δf) and dissipation (ΔD) factors completely changed during adsorption of chitosan pre-treated with acetic acid: Δf increased and ΔD decreased, oppositely to un-treated chitosan adsorption. After acid treatment, molecular weight and crystallinity index of chitosan decreased addition to change in chemical structure. It was found that more phosphate buffered saline (PBS), as a model liquid for wound exudate, adsorbed to acid treated chitosan-NFC film, especially to film having more aldehyde groups. Comparing with bare NFC film, chitosan-NFC films adsorbed less PBS because chitosan crosslinked the NFC network and blocked the functional groups of NFC and thus, preventing swelling film. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Prediction of Bicarbonate Requirements for Enhanced Reductive Bioremediation of Chlorinated Solvent-Contaminated Sites

    NASA Astrophysics Data System (ADS)

    Robinson, C.; Barry, D. A.

    2008-12-01

    Enhanced anaerobic dechlorination is a promising technology for in situ remediation of chlorinated ethene DNAPL source areas. However, the build-up of organic acids and HCl in the source zone can lead to significant groundwater acidification. The resulting pH drop inhibits the activity of the dechlorinating microorganisms and thus may stall the remediation process. Source zone remediation requires extensive dechlorination, such that it may be common for soil's natural buffering capacity to be exceeded, and for acidic conditions to develop. In these cases bicarbonate addition (e.g., NaHCO3, KHCO3) is required for pH control. As a design tool for treatment strategies, we have developed BUCHLORAC, a Windows Graphical User Interface based on an abiotic geochemical model that allows the user to predict the acidity generated during dechlorination and associated buffer requirements for their specific operating conditions. BUCHLORAC was motivated by the SABRE (Source Area BioREmediation) project, which aims to evaluate the effectiveness of enhanced reductive dechlorination in the treatment of chlorinated solvent source zones.

  8. Gelatin based bio-films prepared from grey triggerfish' skin influenced by enzymatic pretreatment.

    PubMed

    Souissi, Nabil; Abdelhedi, Ola; Mbarek, Aïcha; Kammoun, Wassim; Kechaou, Hela; Nasri, Moncef

    2017-12-01

    Gelatins from grey triggerfish skin were extracted with different methods. The treatment by pepsin (PG) improved the yield of extraction when compared with untreated gelatin (UG) and acidic gelatin (AG). The outputs of gelatins AG, UG and PG, obtained respectively, with acitic acid, glycine buffer and glycine buffer added with 5U of pepsin/g of the skin beforehand treated by alkali, were 6.9%, 7.9% and 9.7%, respectively. The enzymatic treatment of the alkali-pretreated skin of grey triggerfish altered the electrophoresis profile, biophysical, gellification, rheological and thermal properties of the prepared gelatins extracted under acidic condition. However, the untreated gelatin obtained without pepsin exhibited the highest transition and enthaply temperatures. In addition, the properties of the prepared films were interconnected to their microstructure as demonstrated by scanning electron microscopy. Furthermore, films with PG and UG had a regular surface and a more condensed structure, whereas films prepared with AG had rougher surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Long-term leaching behavior of phenol in cement/activated-carbon solidified/stabilized hazardous waste.

    PubMed

    Liu, Jianguo; Nie, Xiaoqin; Zeng, Xianwei; Su, Zhaoji

    2013-01-30

    The long-term leaching behavior of phenol in solidified/stabilized (S/S) hazardous wastes cured for 28 d with different amounts of activated carbon (AC) was investigated using synthetic inorganic acid (H(2)SO(4):HNO(3) = 2:1, pH = 3.2), acetic acid buffer (HAc/NaAc, pH = 4.93), and deionized water as leachants to simulate the leaching of phenol in three exposure scenarios: acid-precipitation, co-disposal, and neutral-precipitation. Phenol immobilization was enhanced by AC adsorption and impaired by the growth of micropores with increasing amount of AC; thus the optimal added amount of AC to be to added S/S wastes was 2%. The leaching behavior of phenol in co-disposal scenario was unpredictable due to inadequate ionization of HAc in the HAc-NaAc buffer solution. The findings indicated that S/S products should be disposed of in hazardous waste landfills rather than municipal solid waste landfills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Butanol production from thin stillage using Clostridium pasteurianum.

    PubMed

    Ahn, Jae-Hyung; Sang, Byoung-In; Um, Youngsoon

    2011-04-01

    The production of butanol from thin stillage by Clostridium pasteurianum DSM 525 was evaluated in the paper. At initial pH values ranging from 5.0 to 7.0 C. pasteurianum DSM 525 produced 6.2-7.2 g/L of butanol utilizing glycerol in thin stillage as the main carbon source, with yields of 0.32-0.44 g butanol produced/g glycerol consumed, which are higher than previously reported yields (e.g., 0.14-0.31 g butanol/g glycerol, Biebl, 2001). Lactic acid in the thin stillage acted as a buffering agent, maintaining the pH of the medium within a range of 5.7-6.1. Lactic acid was also utilized along with glycerol, enhancing butanol production (6.5 g/L butanol vs. 8.7 g/L butanol with 0 and 16 g/L lactic acid, respectively). These results demonstrate the feasibility of cost-effective butanol production using thin stillage as a nutrient-containing medium with a pH buffering capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Analysis of Fatty Acid and Growth Profiles in Ten Shewanella spp. to Associate Phylogenetic Relationships

    DTIC Science & Technology

    2015-10-25

    in a defined medium composed of half-strength Marine Broth adjusted to pH 6, 7, or 8 in a 50 mM phosphate buffer, both growth characteristics and...work had broad phylogenetic diversity (Fig. 1) and were isolated from mostly marine environments. S. putrefaciens was the only strain that was not...the defined medium that supported growth of most of the strains tested was marine broth diluted to half strength with 50 mM phosphate buffer (½-MB

  12. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...

  13. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...

  14. Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers

    PubMed Central

    Ngoka, Lambert CM

    2008-01-01

    Background An important step in the proteomics of solid tumors, including breast cancer, consists of efficiently extracting most of proteins in the tumor specimen. For this purpose, Radio-Immunoprecipitation Assay (RIPA) buffer is widely employed. RIPA buffer's rapid and highly efficient cell lysis and good solubilization of a wide range of proteins is further augmented by its compatibility with protease and phosphatase inhibitors, ability to minimize non-specific protein binding leading to a lower background in immunoprecipitation, and its suitability for protein quantitation. Results In this work, the insoluble matter left after RIPA buffer extraction of proteins from breast tumors are subjected to another extraction step, using a urea-based buffer. It is shown that RIPA and urea lysis buffers fractionate breast tissue proteins primarily on the basis of molecular weights. The average molecular weight of proteins that dissolve exclusively in urea buffer is up to 60% higher than in RIPA. Gene Ontology (GO) and Directed Acyclic Graphs (DAG) are used to map the collective biological and biophysical attributes of the RIPA and urea proteomes. The Cellular Component and Molecular Function annotations reveal protein solubilization preferences of the buffers, especially the compartmentalization and functional distributions. It is shown that nearly all extracellular matrix proteins (ECM) in the breast tumors and matched normal tissues are found, nearly exclusively, in the urea fraction, while they are mostly insoluble in RIPA buffer. Additionally, it is demonstrated that cytoskeletal and extracellular region proteins are more soluble in urea than in RIPA, whereas for nuclear, cytoplasmic and mitochondrial proteins, RIPA buffer is preferred. Extracellular matrix proteins are highly implicated in cancer, including their proteinase-mediated degradation and remodelling, tumor development, progression, adhesion and metastasis. Thus, if they are not efficiently extracted by RIPA buffer, important information may be missed in cancer research. Conclusion For proteomics of solid tumors, a two-step extraction process is recommended. First, proteins in the tumor specimen should be extracted with RIPA buffer. Second, the RIPA-insoluble material should be extracted with the urea-based buffer employed in this work. PMID:18950484

  15. Sulfate mobility in an outwash soil in western Washington

    Treesearch

    D. W. Johnson; D. W. Cole

    1976-01-01

    The effect of acidic precipitation on cation leaching in a second-growth Douglas-fir ecosystem at the Thompson Research Center is reviewed. Sulfate mobility and soil pH buffering power were tested by applications of heavy doses of sulfuric acid to the study plot. Sulfate at high concentrations proved to be immobilized, presumably by adsorption to soil sesquioxide...

  16. Hemorheological changes, the state of microcirculation, and blood acid-base balance in rats under conditions of a 30-day limiting of the motor activity

    NASA Technical Reports Server (NTRS)

    Shtykhno, Y. M.; Udovichenko, V. I.

    1980-01-01

    Changes were expressed in reduction in number of true capillaries, the appearance of nonfunctioning empty vessels and in the opening of the arteriolo-venular shunts. Changes in the acid-base balance in the direction of reduction of buffer blood content were also noted.

  17. AN ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD FOR THE URINARY BIOMONITORING OF 2,4-DICHLOROPHRENOCYACETIC ACID (2,4-D)

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was developed to quantitatively measure 2,4-dichlorophenoyacetic acid (2,4-D) in human urine. Samples were diluted (1:5) with phosphate-buffered saline, 0.05% Tween 20, with 0.02% sodium azide, and analyzed by a 96-microwekk pl...

  18. Use it or lose it: engaged lifestyle as a buffer of cognitive decline in aging?

    PubMed

    Hultsch, D F; Hertzog, C; Small, B J; Dixon, R A

    1999-06-01

    Data from the Victoria Longitudinal Study were used to examine the hypothesis that maintaining intellectual engagement through participation in everyday activities buffers individuals against cognitive decline in later life. The sample consisted of 250 middle-aged and older adults tested 3 times over 6 years. Structural equation modeling techniques were used to examine the relationships among changes in lifestyle variables and an array of cognitive variables. There was a relationship between changes in intellectually related activities and changes in cognitive functioning. These results are consistent with the hypothesis that intellectually engaging activities serve to buffer individuals against decline. However, an alternative model suggested the findings were also consistent with the hypothesis that high-ability individuals lead intellectually active lives until cognitive decline in old age limits their activities.

  19. Estimating iron and aluminum content of acid mine discharge from a north-central Pennsylvania coal field by use of acidity titration curves

    USGS Publications Warehouse

    Ott, A.N.

    1986-01-01

    Determination of acidity provides a value that denotes the quantitative capacity of the sample water to neutralize a strong base to a particular pH. However, much additional information can be obtained from this determination if a titration curve is constructed from recorded data of titrant increments and their corresponding pH values. The curve can be used to identify buffer capabilities, the acidity with respect to any pH value within the curve limit, and, in the case of acid mine drainage from north-central Pennsylvania, the identification and estimation of the concentration of dissolved ferrous iron, ferric iron, and aluminum. Through use of titration curves, a relationship was observed for the acid mine drainage between: (1) the titratable acidity (as milligrams per liter calcium carbonate) to pH 4.0 and the concentration of dissolved ferric iron; and (2) the titratable acidity (as milligrams per liter calcium carbonate) from pH 4.0 to 5.0 and the concentration of dissolved aluminum. The presence of dissolved ferrous iron can be detected by the buffering effect exhibited in the area between pH 5.5 to 7.5. The concentration of ferrous iron is estimated by difference between the concentrations of ferric iron in an oxidized and unoxidized sample. Interferences in any of the titrations from manganese, magnesium, and aluminate, appear to be negligible within the pH range of interest.

  20. Inert Reassessment Document for Poly(oxyethylene)(5) sorbitan monooleate

    EPA Pesticide Factsheets

    The sorbitan fatty acid esters and polysorbates are inert ingredients used as surfactants, related adjuvants of surfactants, emulsifiers, buffering agents, and corrosion inhibitors in a variety of pesticide products.

  1. A sensitive new fluorescence assay for measuring proton transport across liposomal membranes.

    PubMed

    Orosz, D E; Garlid, K D

    1993-04-01

    6-Methoxy-N-(3-sulfopropyl)-quinolinium (SPQ) is a fluorophore that is collisionally quenched by halide anions and is widely used to measure chloride ion transport across cellular and liposomal membranes. We report a new finding that SPQ fluorescence is also quenched by the zwitterionic hydrogen ion buffers introduced by Good et al. [(1966) Biochemistry 5, 467-477]. Although buffer quenching interferes with chloride ion measurements using SPQ, it can be turned to good advantage for measurements of proton flux. The basis for this application is that, for most buffers, the anion quenches and the zwitterion does not. Accordingly, buffer quenching of SPQ can be used to assay proton transport across liposomal membranes. We describe application of the technique to liposomes in which proton transport was mediated by ionophores and by the purified, reconstituted uncoupling protein of brown adipose tissue mitochondria. Because SPQ detects changes in buffer anion concentration, it can be used to measure changes in total acidity, which is the parameter desired when measuring net proton transport. Furthermore, this technique can be used to measure proton transport under conditions in which pH changes are minimized with buffers, and, consequently, effects of pH on proton transport can be dissociated from the transport itself.

  2. Mechanical characteristics of beta sheet-forming peptide hydrogels are dependent on peptide sequence, concentration and buffer composition

    PubMed Central

    Müller, Michael; König, Finja; Meyer, Nina; Gattlen, Jasmin; Pieles, Uwe; Peters, Kirsten; Kreikemeyer, Bernd; Mathes, Stephanie; Saxer, Sina

    2018-01-01

    Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy. PMID:29657766

  3. Fish Viruses: Buffers and Methods for Plaquing Eight Agents Under Normal Atmosphere

    PubMed Central

    Wolf, Ken; Quimby, M. C.

    1973-01-01

    A universal procedure was sought for plaque assay of eight fish viruses (bluegill myxovirus, channel catfish virus, eel virus, Egtved virus, infectious hematopoietic necrosis virus, infectious pancreatic necrosis virus, lymphocystis virus, and the agent of spring viremia of carp (Rhabdovirus carpio), in dish cultures of various fish cells. Eagle minimal essential medium with sodium bicarbonate-CO2 buffer (Earle’s salt solution) was compared with minimal essential medium buffered principally with tris (hydroxymethyl)aminomethane or N-2-hydroxyethylpiperazine-N′-2′-ethanesulfonic acid at a pH or in the range of 7.6 to 8.0 depending upon temperature. Five fish cell lines collectively capable of replicating all fish viruses thus far isolated were tested and quantitatively found to grow comparably well in the three media. Two-phase (gel-liquid) media incorporating the various buffer systems allowed plaquing at 15 to 33 C either in partial pressures of CO2 or in normal atmosphere, but greater efficiency and sensitivity were obtained with the organic buffers, and, overall, the best results were obtained with tris(hydroxymethyl)aminomethane. Epizootiological data, specific fish cell line response, and plaque morphology permit presumptive identification of most of the agents. At proper pH, use of organic buffers obviates the need for CO2 incubators. Images PMID:4349252

  4. The use of high pressure CO2 -facilitated pH swings to enhance in situ product recovery of butyric acid in a two-phase partitioning bioreactor.

    PubMed

    Peterson, Eric C; Daugulis, Andrew J

    2014-11-01

    Through the use of high partial pressures of CO2 (pCO2 ) to facilitate temporary pH reductions in two-phase partitioning bioreactors (TPPBs), improved pH dependent partitioning of butyric acid was observed which achieved in situ product recovery (ISPR), alleviating end-product inhibition (EPI) during the production of butyric acid by Clostridium tyrobutyricum (ATCC 25755). Through high pressure pCO2 studies, media buffering effects were shown to be substantially overcome at 60 bar pCO2 , resulting in effective extraction of the organic acid by the absorptive polymer Pebax® 2533, yielding a distribution coefficient (D) of 2.4 ± 0.1 after 1 h of contact at this pressure. Importantly, it was also found that C. tyrobutyricum cultures were able to withstand 60 bar pCO2 for 1 h with no decrease in growth ability when returned to atmospheric pressure in batch reactors after several extraction cycles. A fed-batch reactor with cyclic high pCO2 polymer extraction recovered 92 g of butyric acid to produce a total of 213 g compared to 121 g generated in a control reactor. This recovery reduced EPI in the TPPB, resulting in both higher productivity (0.65 vs. 0.33 g L(-1)  h(-1) ) and yield (0.54 vs. 0.40). Fortuitously, it was also found that repeated high pCO2 -facilitated polymer extractions of butyric acid during batch growth of C. tyrobutyricum lessened the need for pH control, and reduced base requirements by approximately 50%. Thus, high pCO2 -mediated absorptive polymer extraction presents a novel method for improving process performance in butyric acid fermentation, and this technique could be applied to the bioproduction of other organic acids as well. © 2014 Wiley Periodicals, Inc.

  5. Saliva characteristics, diet and carioreceptivity in dental students.

    PubMed

    Chifor, Ioana; Badea, Iulia; Chifor, Radu; Popa, Dan; Staniste, Liviu; Tarmure, Dragos; Avram, Ramona

    2014-01-01

    The use of sugar by dental plaque microorganisms leads to acid formation from the bacteria metabolism, which determines a decrease of pH onto teeth surfaces. The value of the critical pH is 5.2-5.5. We aimed to evaluate the capacity of patients to change their diet towards caries prevention after acknowledging the values of saliva parameters (pH, buffer capacity). A group of 52 subjects were clinically examined according to the International Caries Assessment and Detection System protocol. They were required to complete a diet questionnaire and salivary tests were made for the oral mucosa hydration level, pH, buffer capacity, salivary flow rate at rest and upon stimulation. 4 pre-calibrated 6th year students and 2 dentists performed the tests and the ICDAS examination. One week after the tests, the subjects were asked to complete the diet questionnaire again. The studied group consisted of students aged between 23-26 years, randomly selected among 6(th) year students of the Faculty of Dentistry from Cluj-Napoca. The mean DMF-S index was 18.39. Most of the patients (65%) had a DMF-S index between 9 and 21. Just 2.5% had an index of 3, which was the lowest value recorded. 5% of the patients had a DMFS of 35, which was the maximal value recorded. The distribution of DMF-S was normal. 50% of the patients had no active caries. Even though most subjects (19.23%) had a pH within the normal interval, most of them were at the bottom value of the interval (6.8). Most subjects had a pH of 6.4, which is moderately acid. The mean pH was 6.7, therefore, a moderately acid one. The Pearson correlation coefficient between DMFS and pH was 0.255. A mild negative correlation (-0.275) was found between the cariogenic food and buffer capacity. A week later we noticed a statistically significant decrease of cariogenic foods and drinks in students with acid pH and with low buffer capacity. A regular intake of cakes, bonbons and chocolate was reported by subjects who had a high DMF-S value and a low saliva buffer capacity. Only after the patients were aware of their caries risk, did they change their diet towards a non-cariogenic one, even though they had had the theoretical knowledge regarding caries prevention for at least 3 years. We conclude that the use of the chair-side salivary test should be highly recommended for cario-receptive patients.

  6. Adverse postresuscitation myocardial effects elicited by buffer-induced alkalemia ameliorated by NHE-1 inhibition in a rat model of ventricular fibrillation.

    PubMed

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Mason, Thomas G; Kraut, Jeffrey A; Gazmuri, Raúl J

    2016-11-01

    Major myocardial abnormalities occur during cardiac arrest and resuscitation including intracellular acidosis-partly caused by CO 2 accumulation-and activation of the Na + -H + exchanger isoform-1 (NHE-1). We hypothesized that a favorable interaction may result from NHE-1 inhibition during cardiac resuscitation followed by administration of a CO 2 -consuming buffer upon return of spontaneous circulation (ROSC). Ventricular fibrillation was electrically induced in 24 male rats and left untreated for 8 min followed by defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Rats were randomized 1:1:1 to the NHE-1 inhibitor zoniporide or vehicle during CPR and disodium carbonate/sodium bicarbonate buffer or normal saline (30 ml/kg) after ROSC. Survival at 240 min declined from 100% with Zoniporide/Saline to 50% with Zoniporide/Buffer and 25% with Vehicle/Buffer (P = 0.004), explained by worsening postresuscitation myocardial dysfunction. Marked alkalemia occurred after buffer administration along with lactatemia that was maximal after Vehicle/Buffer, attenuated by Zoniporide/Buffer, and minimal with Zoniporide/Saline [13.3 ± 4.8 (SD), 9.2 ± 4.6, and 2.7 ± 1.0 mmol/l; P ≤ 0.001]. We attributed the intense postresuscitation lactatemia to enhanced glycolysis consequent to severe buffer-induced alkalemia transmitted intracellularly by an active NHE-1. We attributed the worsened postresuscitation myocardial dysfunction also to severe alkalemia intensifying Na + entry via NHE-1 with consequent Ca 2+ overload injuring mitochondria, evidenced by increased plasma cytochrome c Both buffer-induced effects were ameliorated by zoniporide. Accordingly, buffer-induced alkalemia after ROSC worsened myocardial function and survival, likely through enhancing NHE-1 activity. Zoniporide attenuated these effects and uncovered a complex postresuscitation acid-base physiology whereby blood pH drives NHE-1 activity and compromises mitochondrial function and integrity along with myocardial function and survival.

  7. A functional description of the Buffered Telemetry Demodulator (BTD)

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Shah, B.; Lee, R.; Hinedi, S.

    1993-01-01

    This article gives a functional description of the buffered telemetry demodulator (BTD), which operates on recorded digital samples to extract the symbols from the received signal. The key advantages of the BTD are as follows: (1) its ability to reprocess the signal to reduce acquisition time; (2) its ability to use future information about the signal and to perform smoothing on past samples; and (3) its minimum transmission bandwidth requirement as each sub carrier harmonic is processed individually. The first application of the BTD would be the Galileo S-band contingency mission, where the signal is so weak that reprocessing to reduce the acquisition time is crucial. Moreover, in the event of employing antenna arraying with full spectrum combining, only the sub carrier harmonics need to be transmitted between sites, resulting in significant reduction in data rate transmission requirements. Software implementation of the BTD is described for various general-purpose computers.

  8. Simultaneous determination of ochratoxin A and cyclopiazonic, mycophenolic, and tenuazonic acids in cornflakes by solid-phase microextraction coupled to high-performance liquid chromatography.

    PubMed

    Aresta, Antonella; Cioffi, Nicola; Palmisano, Francesco; Zambonin, Carlo G

    2003-08-27

    A solid-phase microextraction (SPME) method, coupled to liquid chromatography with diode array UV detection (LC-UV/DAD), for the simultaneous determination of cyclopiazonic acid, mycophenolic acid, tenuazonic acid, and ochratoxin A is described. Chromatographic separation was achieved on a propylamino-bonded silica gel stationary phase using acetonitrile/methanol/ammonium acetate buffer mixture (78:2:20, v/v/v) as mobile phase. SPME adsorption and desorption conditions were optimized using a silica fiber coated with a 60 microm thick polydimethylsiloxane/divinylbenzene film. Estimated limits of detection and limits of quantitation ranged from 3 to 12 ng/mL and from 7 to 29 ng/mL, respectively. The method has been applied to cornflake samples. Samples were subjected to a preliminary short sonication in MeOH/2% KHCO(3) (70:30, v/v); the mixture was evaporated to near dryness and reconstituted in 1.5 mL of 5 mM phosphate buffer (pH 3) for SPME followed by LC-UV/DAD. The overall procedure had recoveries (evaluated on samples spiked at 200 ng/g level) ranging from 74 +/- 4 to 103 +/- 9%. Samples naturally contaminated with cyclopiazonic and tenuazonic acids were found; estimated concentrations were 72 +/- 9 and 25 +/- 6 ng/g, respectively.

  9. Chiral analysis of UV nonabsorbing compounds by capillary electrophoresis using macrocyclic antibiotics: 1. Separation of aspartic and glutamic acid enantiomers.

    PubMed

    Bednar, P; Aturki, Z; Stransky, Z; Fanali, S

    2001-07-01

    Glycopeptide antibiotics, namely vancomycin or teicoplanin, were evaluated in capillary electrophoresis for the analysis of UV nonabsorbing compounds such as aspartic and glutamic acid enantiomers. Electrophoretic runs were performed in laboratory-made polyacrylamide-coated capillaries using the partial filling-counter current method in order to avoid the presence on the detector path of the absorbing chiral selector. The background electrolyte consisted of an aqueous or aqueous-organic buffer in the pH range of 4.5-6.5 of sorbic acid/histidine and the appropriate concentration of chiral selector. Several experimental parameters such as antibiotic concentration and type, buffer pH, organic modifier, type and concentration of absorbing co-ion (for the indirect UV detection) were studied in order to find the optimum conditions for the chiral resolution of the two underivatized amino acids in their enantiomers. Among the two investigated chiral selectors, vancomycin resulted to be the most useful chiral selector allowing relatively high chiral resolution of the studied compounds even at low concentration. The optimized method (10 mM sorbic acid/histidine, pH 5, and 10 mM of vancomycin) was used for the analysis of real samples such as teeth dentine and beer.

  10. Capillary electrophoretic enantioseparation of basic drugs using a new single-isomer cyclodextrin derivative and theoretical study of the chiral recognition mechanism.

    PubMed

    Liu, Yongjing; Deng, Miaoduo; Yu, Jia; Jiang, Zhen; Guo, Xingjie

    2016-05-01

    A novel single-isomer cyclodextrin derivative, heptakis {2,6-di-O-[3-(1,3-dicarboxyl propylamino)-2-hydroxypropyl]}-β-cyclodextrin (glutamic acid-β-cyclodextrin) was synthesized and used as a chiral selector in capillary electrophoresis for the enantioseparation of 12 basic drugs, including terbutaline, clorprenaline, tulobuterol, clenbuterol, procaterol, carvedilol, econazole, miconazole, homatropine methyl bromide, brompheniramine, chlorpheniramine and pheniramine. The primary factors affecting separation efficiency, which include the background electrolyte pH, the concentration of glutamic acid-β-cyclodextrin and phosphate buffer concentration, were investigated. Satisfactory enantioseparations were obtained using an uncoated fused-silica capillary of 50 cm (effective length 40 cm) × 50 μm id with 120 mM phosphate buffer (pH 2.5-4.0) containing 0.5-4.5 mM glutamic acid-β-cyclodextrin as background electrolyte. A voltage of 20 kV was applied and the capillary temperature was kept at 20°C. The results proved that glutamic acid-β-cyclodextrin was an effective chiral selector for studied 12 basic drugs. Moreover, the possible chiral recognition mechanism of brompheniramine, chlorpheniramine and pheniramine on glutamic acid-β-cyclodextrin was investigated using the semi-empirical Parametric Method 3. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Isolation and characterization of Chinese standard fulvic acid sub-fractions separated from forest soil by stepwise elution with pyrophosphate buffer.

    PubMed

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P

    2015-03-04

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants.

  12. Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer

    PubMed Central

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P.

    2015-01-01

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants. PMID:25735451

  13. Conditions affecting transformation of a group H streptococcus.

    PubMed

    Schlissel, H J; Sword, C P

    1966-11-01

    Schlissel, Harvey J. (The University of Kansas, Lawrence), and C. P. Sword. Conditions affecting transformation of a group H streptococcus. J. Bacteriol. 92:1357-1363. 1966.-A defined transforming medium (DTM) containing buffer and 5 to 10 mug per ml of deoxyribonucleic acid was developed to study the physical and chemical requirements for optimal transformation in streptococcal strain SBE. Optimal transformation in DTM occurred at pH 7.5 and 7.0 in 0.07 m sodium phosphate buffer and 0.05 m tris(hydroxymethyl)aminomethane buffer, respectively. In the presence of either a monovalent or a divalent cation, transformation was stimulated maximally by Mn(+2) (10(-3)m) and K(+) (0.05 m). Other cations tested (Na(+), Mg(+2), Ca(+2)) were less stimulatory. A mixture of K(+) and Mn(+2) stimulated transformation to a level higher than either cation alone. Kinetic studies showed that the stimulating effect of cations was greatest during the early part of the transformation reaction and decreased with time. Transformation was inhibited by Cu(+2) (10(-5)m) and Mn(+2) (10(-2)m). Ethylenediaminetetraacetic acid (EDTA) inhibited transformation at 10(-5)m. The inhibition by EDTA could be overcome by Mn(+2) during the early part of the transformation reaction.

  14. Effect of various halide salts on the incompatibility of cyanocobalamin and ascorbic acid in aqueous solution.

    PubMed

    Ichikawa, Makoto; Ide, Nagatoshi; Shiraishi, Sumihiro; Ono, Kazuhisa

    2005-06-01

    Combination of cyanocobalamin (VB12) and ascorbic acid (VC) has been widely seen in pharmaceutical products and dietary supplements. However, VB12 has been reported that its behavior in stability in aqueous solution is quite different when VC is mixed. In the present study, we examined the stabilities of these vitamins in acetate buffer (pH 4.8) using high performance liquid chromatography. Degradation of VB12 was not observed in the absence of VC in the buffer. However, when VC was mixed in the VB12 solution, VB12 concentrations decreased in accordance with VC degradation. VB12 and VC degradations were inhibited by adding sodium halides to acetate buffer at pH 4.8. These stabilization effects were also observed in the range from pH 3.5 to 5.3 and by adding potassium, magnesium, and calcium halides. Furthermore, our data demonstrated that increases in the halide anion concentrations and atomic number (Cl-

  15. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    PubMed

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  16. Does cognitive ability buffer the link between childhood disadvantage and adult health?

    PubMed

    Bridger, Emma; Daly, Michael

    2017-10-01

    Individual differences in childhood cognitive ability have been neglected in the study of how early life psychosocial factors may buffer the long-term health consequences of social disadvantage. In this study, we drew on rich data from two large British cohorts to test whether high levels of cognitive ability may protect children from experiencing the physical and mental health consequences of early life socioeconomic disadvantage. Participants from the 1970 British Cohort Study (BCS; N = 11,522) were followed from birth to age 42, and those from the 1958 National Child Development Study (NCDS; N = 13,213) were followed from birth to age 50. Childhood social disadvantage was indexed using 6 indicators gauging parental education, occupational prestige, and housing characteristics (i.e., housing tenure and home crowding). Standardized assessments of cognitive ability were completed at ages 10 (BCS) and 11 (NCDS) years. Psychological distress, self-rated health, and all-cause mortality were examined from early adulthood to midlife in both cohorts. Early social disadvantage predicted elevated levels of psychological distress and lower levels of self-rated health in both cohorts and higher mortality risk in the NCDS. Childhood cognitive ability moderated each of these relationships such that the link between early life social disadvantage and poor health in adulthood was markedly stronger at low (-1 SD) compared to high (+1 SD) levels of childhood cognitive ability. This study provides evidence that high childhood cognitive ability is associated with a decrease in the strength of socioeconomic status-driven health inequalities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from thesemore » solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was observed. Similarly, glycine and mannitol, two widely used bulking agents, inhibited buffer component crystallization only when retained amorphous. In addition to stabilizing the active pharmaceutical ingredient, lyoprotectants may prevent solution pH shift by inhibiting buffer crystallization.« less

  18. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    PubMed

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  19. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids.

    PubMed Central

    Kamp, F; Hamilton, J A

    1992-01-01

    A central, unresolved question in cell physiology is how fatty acids move across cell membranes and whether protein(s) are required to facilitate transbilayer movement. We have developed a method for monitoring movement of fatty acids across protein-free model membranes (phospholipid bilayers). Pyranin, a water-soluble, pH-sensitive fluorescent molecule, was trapped inside well-sealed phosphatidylcholine vesicles (with or without cholesterol) in Hepes buffer (pH 7.4). Upon addition of a long-chain fatty acid (e.g., oleic acid) to the external buffer (also Hepes, pH 7.4), a decrease in fluorescence of pyranin was observed immediately (within 10 sec). This acidification of the internal volume was the result of the "flip" of un-ionized fatty acids to the inner leaflet, followed by a release of protons from approximately 50% of these fatty acid molecules (apparent pKa in the bilayer = 7.6). The proton gradient thus generated dissipated slowly because of slow cyclic proton transfer by fatty acids. Addition of bovine serum albumin to vesicles with fatty acids instantly removed the pH gradient, indicating complete removal of fatty acids, which requires rapid "flop" of fatty acids from the inner to the outer monolayer layer. Using a four-state kinetic diagram of fatty acids in membranes, we conclude that un-ionized fatty acid flip-flops rapidly (t1/2 < or = 2 sec) whereas ionized fatty acid flip-flops slowly (t1/2 of minutes). Since fatty acids move across phosphatidylcholine bilayers spontaneously and rapidly, complex mechanisms (e.g., transport proteins) may not be required for translocation of fatty acids in biological membranes. The proton movement accompanying fatty acid flip-flop is an important consideration for fatty acid metabolism in normal physiology and in disease states such as cardiac ischemia. Images PMID:1454821

  20. Pathophysiology of Non-Freezing Cold Injury

    DTIC Science & Technology

    1989-07-01

    the leg. Salicylic acid was injected through the femoral vein at the end of some experiments to assay hydroxy radical (OH*). Our results demonstrated...pH 4.5); 50 J1 of 70% perchloric acid was then added to the mixtur,". The resultant mixture was degassed and filtered through a Rainin Nylon-66...consisting of a Model 510 pump and a Model 460 electrochemical detector. The hydroxylated products of salicylic acid were eluted with buffer (degassed and

  1. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    Geoenvironmental concerns are generally low because of low volumes of sulfide minerals. Most deposits are marginally acid-generating to non-acid-generating with drainage waters being near-neutral pH because of the acid generating potential of pyrite being partially buffered by late-stage calcite-bearing veins. The low ore content results in a waste:ore ratio of nearly 1:1 and large tailings piles from the open-pit method of mining.

  2. Fort Ord Groundwater Remediation Studies, 2002 - 2005

    DTIC Science & Technology

    2006-08-01

    Groundwater was also directly sampled from a well OU1-36 with a bailer using an acid - cleaned bailer to determine whether comparable levels of trace...collected for the analysis of total chromium. The total chromium and Cr(VI) samples were collected in acid -clean low density polyethylene (LDPE) bottles...and 69Ga to be used as an internal standard. Acetic acid /ammonia buffer solution was prepared by slow addition of 15 mL of aqueous ammonia (20–22

  3. The effect of actinoquinol with hyaluronic acid in eye drops on the optical properties and oxidative damage of the rabbit cornea irradiated with UVB rays.

    PubMed

    Čejka, Čestmír; Luyckx, Jacques; Ardan, Taras; Pláteník, Jan; Širc, Jakub; Michálek, Jiří; Čejková, Jitka

    2010-01-01

    Irradiation of the cornea with UVB rays leads to its oxidative damage, swelling and increased light absorption. We investigated changes in the corneal optics (evaluated by changes of corneal hydration and light absorption) and microscopical disturbances of corneas irradiated with UVB rays as influenced by eye drops containing actinoquinol with hyaluronic acid. Rabbit corneas were irradiated with a daily dose of 0.5 or 1.01 J cm(-2) of UVB rays (312 nm) for 4 days. During irradiation, the eye drops were applied on the right eye and buffered saline (or hyaluronic acid) on the left eye. On day 5 the rabbits were sacrificed and the corneas examined spectrophotometrically for light absorption. The corneal thickness (hydration) was measured using a pachymeter. Corneas of some other rabbits were examined immunohistochemically. After buffered saline treatment UVB rays evoked changes in the corneal optics and induced oxidative damage of the corneas. After actinoquinol-hyaluronic acid application, these changes were diminished. Hyaluronic acid alone was less effective. In conclusion, actinoquinol-hyaluronic acid eye drops decreased changes in corneal optics and suppressed oxidative damage in the UVB-irradiated cornea. However, the effective corneal protection by these eye drops was limited to the lower UVB dose. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  4. In Vivo Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals.

    PubMed

    Shenoi, Rajesh A; Abbina, Srinivas; Kizhakkedathu, Jayachandran N

    2016-11-14

    Understanding the influence of degradable chemical moieties on in vivo degradation, tissue distribution, and excretion is critical for the design of novel biodegradable drug carriers. Polyketals have recently emerged as a promising therapeutic delivery platform due to their ability to degrade under mild acidic intracellular compartments and generation of nontoxic degradation products. However, the effect of chemical structure of the ketal groups on the in vivo degradation, biodistribution, and pharmacokinetics of water-soluble ketal-containing polymers has not been explored. In the present work, we synthesized high molecular weight, water-soluble biodegradable hyperbranched polyglycerols (BHPGs) through the incorporation of structurally different ketal groups into the main chain of highly biocompatible polyglycerols. BHPGs showed pH and ketal group structure dependent degradation in buffer solutions. When the polymers were intravenously administered in mice, a strong dependence of in vivo degradation, biodistribution, and clearance on the ketal group structure was observed. All the BHPGs demonstrated degradation and clearance in vivo, with minimal tissue accumulation. Interestingly, an unanticipated degradation behavior of BHPGs with structurally different ketal groups was observed in vivo in comparison to their degradation in buffer solutions. BHPGs with cyclohexyl ketal (CHK) and cyclopentyl ketal (CPK) groups degraded much faster and were cleared from circulation much rapidly, while BHPG with glycerol hydroxy butanone ketal (GHBK) group degraded at a much slower rate and exhibited similar plasma half-life as that of nondegradable HPG. BHPG-GHBK also showed significantly lower tissue accumulation than nondegradable HPG after 30 days of administration. The difference in in vivo degradation may be attributed to the difference in hydrophobic characteristics of different ketal containing polymers, which may change their interaction with proteins and cells in vivo. This is the first study that demonstrates the influence of chemical structure of ketal groups on in vivo degradation and circulation profile of polymers, and through proper surface modifications, these polymers would be useful as multifunctional drug carriers.

  5. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  6. 3-D Topo Surface Visualization of Acid-Base Species Distributions: Corner Buttes, Corner Pits, Curving Ridge Crests, and Dilution Plains

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2017-01-01

    Species TOPOS is a free software package for generating three-dimensional (3-D) topographic surfaces ("topos") for acid-base equilibrium studies. This upgrade adds 3-D species distribution topos to earlier surfaces that showed pH and buffer capacity behavior during titration and dilution procedures. It constructs topos by plotting…

  7. Separation of plant hormones from biofertilizer by capillary electrophoresis using a capillary coated dynamically with polycationic polymers.

    PubMed

    Jiang, Ting-Fu; Lv, Zhi-Hua; Wang, Yuan-Hong; Yue, Mei-E

    2006-06-01

    A new, simple and rapid capillary electrophoresis (CE) method, using hexadimethrine bromide (HDB) as electroosmotic flow (EOF) modifier, was developed for the identification and quantitative determination of four plant hormones, including gibberellin A3 (GA3), indole-3-acetic acid (IAA), alpha-naphthaleneacetic acid (NAA) and 4-chlorophenoxyacetic acid (4-CA). The optimum separation was achieved with 20 mM borate buffer at pH 10.00 containing 0.005% (w/v) of HDB. The applied voltage was -25 kV and the capillary temperature was kept constant at 25 degrees C. Salicylic acid was used as internal standard for quantification. The calibration dependencies exhibited good linearity within the ratios of the concentrations of standard samples and internal standard and the ratios of the peak areas of samples and internal standard. The correlation coefficients were from 0.9952 to 0.9997. The relative standard deviations of migration times and peak areas were < 1.93 and 6.84%, respectively. The effects of buffer pH, the concentration of HDB and the voltage on the resolution were studied systematically. By this method, the contents of plant hormone in biofertilizer were successfully determined within 7 min, with satisfactory repeatability and recovery.

  8. Quantitative analysis of flavonoids and phenolic acid in Coreopsis tinctoria Nutt. by capillary zone electrophoresis.

    PubMed

    Deng, Yong; Lam, Shing-Chung; Zhao, Jing; Li, Shao-Ping

    2017-10-01

    Capillary zone electrophoresis was developed for the simultaneous determination of five flavonoids and one phenolic acid, including taxifolin-7-O-glucoside, flavanomarein, quercetagetin-7-O-glucoside, okanin 4'-O-glucoside, okanin, and chlorogenic acid, in different parts and origins of Coreopsis tinctoria and its related species. Effects of acidity, running-buffer concentration, and modifier concentration were investigated to determine the optimum conditions for analyte determination. Analysis was performed within 18 min by using 50 mM borax buffer containing 15% acetonitrile as a modifier (pH 9.0) at 25 kV and 25°C. Hyperoside was used as internal standard for quantification. The method was accurate, simple, and repeatable, and was successfully applied to the analysis in 13 samples with satisfactory assay results. Results showed that C. tinctoria obviously differed from the related flower tea materials, "Hangju" and "Gongju". The parts (flowers, buds, seeds, stems, and leaves) of C. tinctoria also varied among one another. This study can serve as a foundation for the quality control and pharmacological evaluation of different parts of C. tinctoria and its related species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effect of pH control and 'hydraulic flush' on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate.

    PubMed

    Cysneiros, Denise; Banks, Charles J; Heaven, Sonia; Karatzas, Kimon-Andreas G

    2012-11-01

    The effect of hydraulic flush and pH control on hydrolysis, Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors was investigated for the first time. Six reactors were operated under different regimes for two consecutive batches of 28days each. Buffering at pH ∼6.5 improved hydrolysis (Volatile Solid (VS) degradation) and VFA production by ∼50%. Butyric and acetic acid were dominant when reactors were buffered, while only butyric acid was produced at low pH. Hydraulic flush enhanced VS degradation and VFA production by ∼15% and ∼32%, respectively. Most Probable Number (MPN) of cellulolytic microorganisms indicated a wash out when hydraulic flush was applied, but pH control helped to counteract this. The highest VS degradation (∼89%), VFA yield (0.84kgCODkg(-1)VS(added)) and theoretical methane potential (0.37m(3)CH(4)kg(-1)VS(added)) were obtained when pH control and hydraulic flush were applied, and therefore, these conditions are recommended. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Separation of the enantiomers of ibuprofen and its major phase I metabolites in urine using capillary electrophoresis.

    PubMed

    Bjørnsdottir, I; Kepp, D R; Tjørnelund, J; Hansen, S H

    1998-03-01

    A capillary electrophoresis method for determination of the enantiomers of ibuprofen and its major phase I metabolites: 2'-hydroxyibuprofen and 2'-carboxyibuprofen in urine samples have been developed. Cyclodextrins and linear dextrins have been investigated as chiral selectors. Simultaneous chiral separation of the enantiomers of ibuprofen, 2'-hydroxyibuprofen and 2'-carboxyibuprofen was obtained using a mixture of dextrin 10 and heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin in a 2-[N-morpholino]ethanesulphonic acid buffer, pH 5.26. The electroosmotic flow was reversed using hexadimethrine bromide as a buffer additive. The method can be used for the determination of the free enantiomers of ibuprofen, 2'-hydroxyibuprofen and 2'-carboxyibuprofen as well as for the indirect determination of their glucuronic acid conjugates in urine samples.

  11. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells

    PubMed Central

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beon; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains. PMID:28338088

  12. Factors affecting the recovery of Legionella pneumophila serogroup 1 from cooling tower water systems.

    PubMed

    Lu, H F; Tsou, M F; Huang, S Y; Tsai, W C; Chung, J G; Cheng, K S

    2001-09-01

    A total of 20 water samples collected from the cooling towers at 20 different sites were analyzed under various conditions for the presence of Legionella pneumophila serogroup 1. A comparative assessment was performed to evaluate methods of sample collection (spray drops, beneath water at 20- to 40-cm depth, and water outlet), concentration (filtration and centrifugation), acid buffer treatment (no treatment, treatment for 3, 5, and 15 min), and CO2 incubation or candle jar incubation. The reduction in viable colonies and false negative rate were compared for the different factors. No quantitative differences in isolation of L. pneumophila serogroup 1 was found among samples collected from water at a depth of 20 to 40 cm, from water outlet, and from spray drops. Treatment in an acid buffer for 15 min significantly reduced the recovery rate, with a reduction in bacterial counts of about 40%, compared with a 3-min (12%) or a 5-min (25%) treatment. Acid buffer treatment for 3 or 5 min reduced the overgrowth of commensal flora. This treatment improved the selectivity but not the sensitivity for L. pneumophila serogroup 1. Colonies on plates incubated at 37 degrees C in a candle jar with a humidified atmosphere grew better than those incubated at 35 degrees C with 5% CO2. These results demonstrate that methods of sample collection, concentration, and incubation, but not collection site, can affect the isolation rate for L. pneumophila serogroup 1.

  13. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study.

    PubMed

    Astefanei, Alina; Núñez, Oscar; Galceran, Maria Teresa; Kok, Wim Th; Schoenmakers, Peter J

    2015-10-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C60), C70, and N-methyl-fulleropyrrolidine (C60-pyrr)] and water-soluble fullerenes [fullerol (C60(OH)24); polyhydroxy small gap fullerene, hydrated (C120(OH)30); C60 pyrrolidine tris acid (C60-pyrr tris acid); and (1,2-methanofullerene C60)-61-carboxylic acid (C60CHCOOH)] in micellar electrokinetic capillary chromatography (MECC) was evaluated. The aggregation behavior of the water-soluble compounds in MECC at different buffer and sodium dodecyl sulfate (SDS) concentrations and pH values of the background electrolyte (BGE) was studied by monitoring the changes observed in the electrophoretic pattern of the peaks. Broad and distorted peaks that can be attributed to fullerene aggregation were obtained in MECC which became narrower and more symmetric by working at low buffer and SDS concentrations (below the critical micelle concentration, capillary zone electrophoresis (CZE) conditions). For the characterization of the suspected aggregates formed (size and shape), asymmetrical flow field-flow fractionation (AF4) and transmission electron microscopy (TEM) were used. The results showed that the increase in the buffer concentration promoted the aggregation of the particles, while the presence of SDS micelles revealed multiple peaks corresponding to particles of different aggregation degrees. Furthermore, MECC has been applied for the first time for the analysis of C60 in two different cosmetic products (i.e., anti-aging serum and facial mask).

  14. Effects of prolonged acclimation to cold on the extra--and intracellular acid-base status in the land snail Helix lucorum (L.).

    PubMed

    Staikou, A; Stiakakis, M; Michaelidis, B

    2001-01-01

    The aim of this study was to examine the effect of prolonged acclimation to cold on the acid-base status of extra- and intracellular fluids in the land snail Helix lucorum. For this purpose, acid-base parameters in the hemolymph and tissues were determined. In addition, the buffer values of hemolymph and tissues were determined in order to examine whether they change in the snails during acclimation to cold. According to the results presented, there is an inverse pH-temperature relationship in the hemolymph within the first day of acclimation, which is consistent with alphastat regulation. The Pco2 decreased, and pH in the hemolymph (pH(e)) increased by 0.32 U within the first day of acclimation to cold, which corresponds to a change of 0.013 U degrees C(-1). After the first day of acclimation, Pco2 increased in the hemolymph, resulting in a significant drop in pH(e) by 90 d of acclimation to cold. Acclimation of snails to low temperatures did not change the buffer value of the hemolymph. Also, intracellular pH (pH(i)) and intracellular buffer values remained stable during acclimation to cold for prolonged periods. The latter results in conjunction with those obtained by the in vitro determination of the passive component of intracellular fluids indicate an active regulation of pH(i) in H. lucorum during acclimation to cold.

  15. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beon; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-03-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains.

  16. A novel, stable, aqueous glucagon formulation using ferulic acid as an excipient.

    PubMed

    Bakhtiani, Parkash A; Caputo, Nicholas; Castle, Jessica R; El Youssef, Joseph; Carroll, Julie M; David, Larry L; Roberts, Charles T; Ward, W Kenneth

    2015-01-01

    Commercial glucagon is unstable due to aggregation and degradation. In closed-loop studies, it must be reconstituted frequently. For use in a portable pump for 3 days, a more stable preparation is required. At alkaline pH, curcumin inhibited glucagon aggregation. However, curcumin is not sufficiently stable for long-term use. Here, we evaluated ferulic acid, a stable breakdown product of curcumin, for its ability to stabilize glucagon. Ferulic acid-formulated glucagon (FAFG), composed of ferulic acid, glucagon, L-methionine, polysorbate-80, and human serum albumin in glycine buffer at pH 9, was aged for 7 days at 37°C. Glucagon aggregation was assessed by transmission electron microscopy (TEM) and degradation by high-performance liquid chromatography (HPLC). A cell-based protein kinase A (PKA) assay was used to assess in vitro bioactivity. Pharmacodynamics (PD) of unaged FAFG, 7-day aged FAFG, and unaged synthetic glucagon was determined in octreotide-treated swine. No fibrils were observed in TEM images of fresh or aged FAFG. Aged FAFG was 94% intact based on HPLC analysis and there was no loss of bioactivity. In the PD swine analysis, the rise over baseline of glucose with unaged FAFG, aged FAFG, and synthetic native glucagon (unmodified human sequence) was similar. After 7 days of aging at 37°C, an alkaline ferulic acid formulation of glucagon exhibited significantly less aggregation and degradation than that seen with native glucagon and was bioactive in vitro and in vivo. Thus, this formulation may be stable for 3-7 days in a portable pump for bihormonal closed-loop treatment of T1D. © 2014 Diabetes Technology Society.

  17. A Novel, Stable, Aqueous Glucagon Formulation Using Ferulic Acid as an Excipient

    PubMed Central

    Bakhtiani, Parkash A.; Caputo, Nicholas; Castle, Jessica R.; Carroll, Julie M.; David, Larry L.; Roberts, Charles T.; Ward, W. Kenneth

    2014-01-01

    Background: Commercial glucagon is unstable due to aggregation and degradation. In closed-loop studies, it must be reconstituted frequently. For use in a portable pump for 3 days, a more stable preparation is required. At alkaline pH, curcumin inhibited glucagon aggregation. However, curcumin is not sufficiently stable for long-term use. Here, we evaluated ferulic acid, a stable breakdown product of curcumin, for its ability to stabilize glucagon. Methods: Ferulic acid-formulated glucagon (FAFG), composed of ferulic acid, glucagon, L-methionine, polysorbate-80, and human serum albumin in glycine buffer at pH 9, was aged for 7 days at 37°C. Glucagon aggregation was assessed by transmission electron microscopy (TEM) and degradation by high-performance liquid chromatography (HPLC). A cell-based protein kinase A (PKA) assay was used to assess in vitro bioactivity. Pharmacodynamics (PD) of unaged FAFG, 7-day aged FAFG, and unaged synthetic glucagon was determined in octreotide-treated swine. Results: No fibrils were observed in TEM images of fresh or aged FAFG. Aged FAFG was 94% intact based on HPLC analysis and there was no loss of bioactivity. In the PD swine analysis, the rise over baseline of glucose with unaged FAFG, aged FAFG, and synthetic native glucagon (unmodified human sequence) was similar. Conclusions: After 7 days of aging at 37°C, an alkaline ferulic acid formulation of glucagon exhibited significantly less aggregation and degradation than that seen with native glucagon and was bioactive in vitro and in vivo. Thus, this formulation may be stable for 3-7 days in a portable pump for bihormonal closed-loop treatment of T1D. PMID:25253164

  18. Crystal engineering of stable temozolomide cocrystals.

    PubMed

    Babu, N Jagadeesh; Sanphui, Palash; Nangia, Ashwini

    2012-10-01

    The antitumor prodrug temozolomide (TMZ) decomposes in aqueous medium of pH≥7 but is relatively stable under acidic conditions. Pure TMZ is obtained as a white powder but turns pink and then brown, which is indicative of chemical degradation. Pharmaceutical cocrystals of TMZ were engineered with safe coformers such as oxalic acid, succinic acid, salicylic acid, d,l-malic acid, and d,l-tartaric acid, to stabilize the drug as a cocrystal. All cocrystals were characterized by powder X-ray diffraction (PXRD), single crystal X-ray diffraction, and FT-IR as well as FT-Raman spectroscopy. Temozolomide cocrystals with organic acids (pK(a) 2-6) were found to be more stable than the reference drug under physiological conditions. The half-life (T(1/2)) of TMZ-oxalic and TMZ-salicylic acid measured by UV/Vis spectroscopy in pH 7 buffer is two times longer than that of TMZ (3.5 h and 3.6 h vs. 1.7 h); TMZ-succinic acid, TMZ-tartaric acid, and TMZ-malic acid also exhibited a longer half-life (2.3, 2.5, and 2.8 h, respectively). Stability studies at 40 °C and 75 % relative humidity (ICH conditions) showed that hydrolytic degradation of temozolomide in the solid state started after one week, as determined by PXRD, whereas its cocrystals with succinic acid and oxalic acid were intact at 28 weeks, thus confirming the greater stability of cocrystals compared to the reference drug. The intrinsic dissolution rate (IDR) profile of TMZ-oxalic acid and TMZ-succinic acid cocrystals in buffer of pH 7 is comparable to that of temozolomide. Among the temozolomide cocrystals examined, those with succinic acid and oxalic acid exhibited both an improved stability and a comparable dissolution rate to the reference drug. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Immunoblotting assays for keratan sulfate.

    PubMed

    Yoon, Jung Hae; Brooks, Randolph; Halper, Jaroslava

    2002-07-15

    The detection of microquantities of glycosaminoglycans (GAGs) in biological samples has been hampered by the lack of sensitive methods. In this paper we describe the modification and development of three sensitive assays capable of detecting nanogram quantities of GAGs in biological samples. The first assay detects total GAGs. It is a modified Alcian blue dye precipitation assay in which the dye binds to the negatively charged GAGs in CsCl-fractionated extracts from chicken tendons. This assay compares favorably with the widely used uronic acid assay in terms of its sensitivity and ability to detect all classes of GAGs, including keratan sulfate (KS). Two other assays, dot-blotting and immunoblotting, detect KS in complex mixtures and can be easily adapted for the detection of other GAGs. Both take advantage of binding of carboxyl and sulfate groups of GAGs to trivalent neodymium. In dot-blotting, samples were directly blotted onto nitrocellulose membrane soaked in Nd(2)(SO(4))(3) buffer, and KS was detected with the monoclonal anti-KS 5-D-4 antibody and an avidin-biotin complex detection system. In immunoblotting, the samples were first separated in 28% polyacrylamide gels, transferred onto a Nd(2)(SO(4))(3)-soaked nitrocellulose membrane using a phosphate buffer system, and stained and developed using the same protocol as in dot-blotting. Whereas dot-blotting allows the use of very low quantities of samples because of its high sensitivity (lower detection limit was 5 ng), immunoblotting provides more specificity.

  20. Cognitive reappraisal ability buffers against the indirect effects of perceived stress reactivity on Type 2 diabetes.

    PubMed

    Sagui, Sara J; Levens, Sara M

    2016-10-01

    Stress contributes to poor health outcomes; importantly, a stress reaction begins with the negative appraisal of a situation. The ability to use cognitive reappraisal, an emotion regulation strategy that involves reinterpreting an initial appraisal to change its emotional impact, could be a protective factor against the health consequences of stress reactivity. The present study investigated (a) if cognitive reappraisal ability (CRA) acts as a stress buffer against a body mass index (BMI) indicative of being overweight (≥25 kg/m2) or obese (≥30 kg/m2), and (b) if this buffering effect persists against the indirect influences of perceived stress reactivity (PSR) on Type 2 diabetes. One hundred fifty participants (54% female; mean age = 40.4 years ± 12.4 years) completed an online CRA task, self-report measures of PSR, height, weight, and Type 2 diabetes diagnosis on Amazon's Mechanical Turk. Results revealed that CRA significantly interacted with PSR to predict BMI, which indirectly predicted Type 2 diabetes. Individuals with higher PSR and higher CRA exhibited BMIs within a normal weight range and lower incidence of Type 2 diabetes. In contrast, individuals with higher PSR and lower CRA were overweight or obese, with a higher incidence of Type 2 diabetes. Interestingly, higher CRA was not protective in those who had lower levels of PSR. Findings from this study suggest that emotion regulation interventions can be developed to indirectly target Type 2 diabetes and similar obesity-related illnesses, and that emotion regulation interventions should be tailored to the individual. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Effect of buffer strips and soil texture on runoff losses of flufenacet and isoxaflutole from maize fields.

    PubMed

    Milan, Marco; Ferrero, Aldo; Letey, Marilisa; De Palo, Fernando; Vidotto, Francesco

    2013-01-01

    The influence of buffer strips and soil texture on runoff of flufenacet and isoxaflutole was studied for two years in Northern Italy. The efficacy of buffer strips was evaluated on six plots characterized by different soil textures; two plots had Riva soil (18.6% sand, 63.1% silt, 18.3% clay) while the remaining four plots had Tetto Frati (TF) soil (37.1% sand, 57% silt, 5.9% clay). Additionally, the width of the buffer strips, constituted of spontaneous vegetation grown after crop sowing, was also compared for their ability to abate runoff waters. Chemical residues in water following runoff events were investigated, as well as their dissipation in the soil. After the first runoff events, concentrations of herbicides in water samples collected from Riva plots were as much as four times lower in waters from TF plots. On average of two growing seasons, the field half-life of flufenacet in the upper soil layer (5 cm) ranged between 8.1 and 12.8 days in Riva soil, 8.5 and 9.3 days in TF soil. Isoxaflutole field half-life was less than 1 day. The buffer strip was very affective by the uniformity of the vegetative cover, particularly, at the beginning of the season. In TF plots, concentration differences were generally due to the presence or absence of the buffer strip, regardless of its width.

  2. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    NASA Astrophysics Data System (ADS)

    Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian

    2015-07-01

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  3. Release of salicylic acid, diclofenac acid and diclofenac acid salts from isotropic and anisotropic nonionic surfactant systems across rat skin.

    PubMed

    Gabboun, N H; Najib, N M; Ibrahim, H G; Assaf, S

    2001-01-05

    Release of salicylic acid, diclofenac acid, diclofenac diethylamine and diclofenac sodium, from lyotropic structured systems, namely; neat and middle liquid crystalline phases, across mid-dorsal hairless rat skin into aqueous buffer were studied. Release results were compared with those from the isotropic systems. The donor systems composed of the surfactant polyoxyethylene (20) isohexadecyl ether, HCl buffer of pH 1 or distilled water and the specific drug. High performance liquid chromatography (HPLC) methods were used to monitor the transfer of the drugs across the skin barrier. Results indicated that the rate-determining step in the transport process was the release of the drug from the specified donor system. Further, apparent zero order release was demonstrated with all systems. Except for diclofenac sodium, drug fluxes decreased as the donor medium changed from isotropic to anisotropic. The decrease in fluxes was probably due to the added constrains on the movement of drug molecules. By changing the anisotropic donor medium from neat to middle phase, drug flux decreased in case of salicylic acid and diclofenac sodium. In the mean time, flux increased in case of the diethylamine salt and appeared nearly similar in case of diclofenac acid. Rates of drug transfer across the skin from the anisotropic donors seemed to be largely controlled by the entropy contribution to the transport process. The type and extent of drug-liquid crystal interactions probably influenced the latter.

  4. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.

  5. Functional characterization of intracellular pH regulators responsible for acid extrusion in human radial artery smooth muscle cells.

    PubMed

    Lee, Chung-Yi; Tsai, Yi-Ting; Chang, Chung-Yi; Chang, Yi-Yu; Cheng, Tzu-Hurng; Tsai, Chien-Sung; Loh, Shih-Hurng

    2014-10-31

    Intracellular pH (pHi) is a critical factor influencing many important cellular functions. Acid extrusion carriers such as an Na⁺/H⁺ exchanger (NHE) Na⁺/HCO₃⁻ cotransporter (NBC) and monocarboxylate transporters (MCT) can be activated when cells are in an acidic condition (pHi < 7.1). Human radial artery smooth muscle cells (HRASMC) is an important conduit in coronary artery bypass graft surgery. However, such far, the pHi regulators have not been characterized in HRASMCs. We therefore investigated the mechanism of pHi recovery from intracellular acidosis and alkalosis, induced by NH₄Cl-prepulse and Na-acetate-prepulse, respectively, using intracellular 2',7'-bis(2-carboxethyl)-5(6)- carboxy-fluorescein (BCECF)-fluorescence in HRASMCs. Cultured HRASMCs were derived from the segments of human radial artery that were obtained from patients undergoing bypass grafting. The resting pHi is 7.22 ± 0.03 and 7.17 ± 0.02 for HEPES- (nominally HCO₃⁻-free) and CO₂/HCO₃⁻- buffered solution, respectively. In HEPES-buffered solution, a pHi recovery from induced intracellular acidosis could be blocked completely by 30 μM HOE 694 (3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride) a specific NHE inhibitor, or by removing [Na⁺]₀. In 3% CO₂/HCO₃⁻-buffered solution, HOE 694 slowed the pHi recovery from the induced intracellular acidosis only, while adding together with DIDS (a specific NBC inhibitor) or removal of [Na⁺]₀ entirely inhibited the acid extrusion. Moreover, α-cyano-4-hydroxycinnamate (CHC; a specific blocker of MCT) blocked the lactate-induced pHi changes. In conclusion, we demonstrate, for the first time, that 3 different pHi regulators responsible for acid extruding, i.e. NHE and NBC, and MCT, are functionally co-existed in cultured HRASMCs.

  6. Dose-dependent competitive block by topical acetylsalicylic and salicylic acid of low pH-induced cutaneous pain.

    PubMed

    Steen, K H; Reeh, P W; Kreysel, H W

    1996-01-01

    In a human acid pain model, which uses continuous intradermal pressure infusion of a phosphate-buffered solution (pH 5.2) to induce localized non-adapting pain, the flow was adjusted to result in constant pain ratings of about 20% or 50% on a visual analog scale (VAS). Six volunteers in each group participated in 4 different placebo-controlled double-blind cross-over studies to measure rapidly evolving cutaneous analgesia from topically applied new ointment formulations of acetylsalicylic acid (ASA) and salicylic acid (SA) as well as of commercial ibuprofen and benzocain creams. Similar, log-linear dose-response curves were found for both ASA and SA, significant in effect at 3 g/kg and higher drug contents and reaching saturation level at 15 or 30 g/kg, respectively, which, 20 min after application, caused a mean pain suppression of 95% using ASA and 80% using SA. Half-maximal effects were achieved using 3 g/kg ASA or 15 g/kg SA. The SA action was also clearly slower to develop. With an increased flow of the acidic buffer, producing lower effective tissue pH and more intense pain, the effect of ASA and SA decreased to 73% pain suppression. A competitive mechanism of both drug effects was suggested by the fact that, with 15 g/kg ASA and SA, pain reduction could be reversed by increasing the buffer flow by a factor of 1.75, on average. Commercial ibuprofen (50 g/kg) and benzocain creams (100 g/kg) were comparably as effective as ASA and SA, but the local anesthetic caused a loss of all cutaneous sensations while the touch threshold (von Frey) under the specific analgesics was the same as under the placebo ointment. Thus, topical applications of non-steroidal anti-inflammatory drugs (NSAIDS) dissolved in different ointment formulations have proven dose-dependently effective and specific in suppressing experimental acidotic pain by a local and competitive mechanism.

  7. Investigation of mitigating effect of colon-specific prodrugs of boswellic acid on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in Wistar rats: Design, kinetics and biological evaluation

    PubMed Central

    Sarkate, Ajinkya; Dhaneshwar, Suneela S

    2017-01-01

    AIM To develop a colon-targeting bioreversible delivery system for β-boswellic acid (BBA) and explore utility of its prodrugs in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. METHODS Synthesis of 4 co-drugs of BBA with essential amino acids was achieved by CDI coupling, followed by their spectral characterization. In vitro kinetics were studied by HPLC in aqueous buffers, homogenates of gastrointestinal tract and fecal matter. In vivo kinetic studies were performed in Wistar rat plasma, urine and feces. The prodrugs were screened in TNBS-induced colitis modeled Wistar rats. Statistical significance was assumed at P < 0.05, P < 0.01, P < 0.001 when compared with disease controls using one-way and two-way ANOVAs. RESULTS Prodrugs were stable in 0.05 mol/L HCl buffer (pH 1.2) and stomach homogenates. Negligible hydrolysis was observed in phosphate buffer and intestinal homogenates. Substantial release (55%-72% and 68%-86%) of BBA was achieved in rat fecal matter and homogenates of colon. In vivo studies of BBA with L-tryptophan (BT) authenticated colon-specific release of BBA. But, surprisingly substantial concentration of BBA was seen to reach the systemic circulation due to probable absorption through colonic mucosa. Site-specifically enhanced bioavailability of BBA could be achieved in colon, which resulted in demonstration of significant mitigating effect on TNBS-induced colitis in rats without inducing any adverse effects on stomach, liver and pancreas. Prodrug of BT was found to be 1.7% (P < 0.001) superior than sulfasalazine in reducing the inflammation to colon among all prodrugs tested. CONCLUSION The outcome of this study strongly suggests that these prodrugs might have dual applicability to inflammatory bowel disease and chronotherapy of rheumatoid arthritis. PMID:28275295

  8. ZnO Nanoparticles Protect RNA from Degradation Better than DNA.

    PubMed

    McCall, Jayden; Smith, Joshua J; Marquardt, Kelsey N; Knight, Katelin R; Bane, Hunter; Barber, Alice; DeLong, Robert K

    2017-11-08

    Gene therapy and RNA delivery require a nanoparticle (NP) to stabilize these nucleic acids when administered in vivo. The presence of degradative hydrolytic enzymes within these environments limits the nucleic acids' pharmacologic activity. This study compared the effects of nanoscale ZnO and MgO in the protection afforded to DNA and RNA from degradation by DNase, serum or tumor homogenate. For double-stranded plasmid DNA degradation by DNase, our results suggest that the presence of MgO NP can protect DNA from DNase digestion at an elevated temperature (65 °C), a biochemical activity not present in ZnO NP-containing samples at any temperature. In this case, intact DNA was remarkably present for MgO NP after ethidium bromide staining and agarose gel electrophoresis where these same stained DNA bands were notably absent for ZnO NP. Anticancer RNA, polyinosinic-polycytidylic acid (poly I:C) is now considered an anti-metastatic RNA targeting agent and as such there is great interest in its delivery by NP. For it to function, the NP must protect it from degradation in serum and the tumor environment. Surprisingly, ZnO NP protected the RNA from degradation in either serum-containing media or melanoma tumor homogenate after gel electrophoretic analysis, whereas the band was much more diminished in the presence of MgO. For both MgO and ZnO NP, buffer-dependent rescue from degradation occurred. These data suggest a fundamental difference in the ability of MgO and ZnO NP to stabilize nucleic acids with implications for DNA and RNA delivery and therapy.

  9. Peak shapes of acids and bases under overloaded conditions in reversed-phase liquid chromatography, with weakly buffered mobile phases of various pH: A thermodynamic interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    We measured overloaded band profiles for a series of nine compounds (phenol, caffeine, 3-phenyl 1-propanol, 2-phenylbutyric acid, amphetamine, aniline, benzylamine, p-toluidine, and procainamidium chloride) on columns packed with four different C{sub 18}-bonded packing materials: XTerra-C{sub 18}, Gemini-C{sub 18}, Luna-C{sub 18}(2), and Halo-C{sub 18}, using buffered methanol-water mobile phases. The {sub W}{sup S}pH of the mobile phase was increased from 2.6 to 11.3. The buffer concentration (either phosphate, acetate, or carbonate buffers) was set constant at values below the maximum concentration of the sample in the band. The influence of the surface chemistry of the packing material on the retention andmore » the shape of the peaks was investigated. Adsorbents having a hybrid inorganic/organic structure tend to give peaks exhibiting moderate or little tailing. The retention and the shape of the band profiles can easily be interpreted at {sub W}{sup S}pHs that are well above or well below the {sub W}{sup S}pK{sub a} of the compound studied. In contrast, the peak shapes in the intermediary pH range (i.e., close to the compound {sub W}{sup S}pK{sub a}) have rarely been studied. These shapes reveal the complexity of the competitive adsorption behavior of couples of acido-basic conjugated compounds at {sub W}{sup S}pHs that are close to their {sub W}{sup S}pK{sub a}. They also reveal the role of the buffer capacity on the resulting peak shape. With increasing {sub W}{sup S}pH, the overloaded profiles are first langmuirian (isotherm type I) at low {sub W}{sup S}pHs, they become S-shaped (isotherm type II), then anti-langmuirian (isotherm type III), S-shaped again at intermediate {sub W}{sup S}pHs, and finally return to a langmuirian shape at high {sub W}{sup S}pHs. A new general adsorption isotherm model that takes into account the dissociation equilibrium of conjugated acidic and basic species in the bulk mobile phase accounts for these transient band shapes. An excellent agreement was achieved between experimental profiles and those calculated with a two-sites adsorption isotherm model at all {sub W}{sup S}pHs. The neutral species adsorbs strongly on a first type of sites that have a high density while the ionic species adsorb preferentially on a second type of sites that have a very low density. The evolution of the peak shape when the {sub W}{sup S}pH changes from acidic to basic is well explained by the weak buffer capacity of the mobile phase used compared to the concentration of the eluted compounds.« less

  10. Effect of Buffered 4% Lidocaine on the Success of the Inferior Alveolar Nerve Block in Patients with Symptomatic Irreversible Pulpitis: A Prospective, Randomized, Double-blind Study.

    PubMed

    Schellenberg, Jared; Drum, Melissa; Reader, Al; Nusstein, John; Fowler, Sara; Beck, Mike

    2015-06-01

    Medical studies have suggested that buffering local anesthetic may increase the ability to achieve anesthesia. The purpose of this study was to determine the effect of 4% buffered lidocaine on the anesthetic success of the inferior alveolar nerve (IAN) block in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth randomly received a conventional IAN block using either 2.8 mL 4% lidocaine with 1:100,000 epinephrine or 2.8 mL 4% lidocaine with 1:100,000 epinephrine buffered with sodium bicarbonate in a double-blind manner. For the buffered solution, each cartridge was buffered with 8.4% sodium bicarbonate using the OnPharma (Los Gatos, CA) system to produce a final concentration of 0.18 mEq/mL sodium bicarbonate. Fifteen minutes after administration of the IAN block, profound lip numbness was confirmed, and endodontic access was initiated. Success was defined as no or mild pain (≤54 mm on a 170-mm visual analog scale) on access or instrumentation of the root canal. The success rate for the IAN block was 32% for the buffered group and 40% for the nonbuffered group, with no significant difference (P = .4047) between the groups. Injection pain ratings for the IAN block were not significantly (P = .9080) different between the 2 formulations. For mandibular posterior teeth, a 4% buffered lidocaine formulation did not result in a statistically significant increase in the success rate or a decrease in injection pain of the IAN block in patients with symptomatic irreversible pulpitis. Copyright © 2015. Published by Elsevier Inc.

  11. Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability

    PubMed Central

    Zhao, Wenchao; Ye, Long; Zhang, Shaoqing; Fan, Bin; Sun, Mingliang; Hou, Jianhui

    2014-01-01

    Interfacial buffer layers often attribute the improved device performance in organic optoelectronic device. Herein, a water-soluble hydrochloric acid doped polyanilines (HAPAN) were utilized as p-type electrode buffer layer in highly efficient polymer solar cells (PSC) based on PBDTTT-EFT and several representative polymers. The PBDTTT-EFT-based conventional PSC featuring ultrathin HAPAN (1.3 nm) delivered high PCE approximately 9%, which is one of the highest values among conventional PSC devices. Moreover, ultrathin HAPAN also exhibited wide applicability in a variety of efficient photovoltaic polymers including PBDTTT-C-T, PTB7, PBDTBDD, PBTTDPP-T, PDPP3T and P3HT. The excellent performances were originated from the high transparency, small film roughness and suitable work function. PMID:25300365

  12. High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules

    NASA Astrophysics Data System (ADS)

    Tokunaga, S. K.; Hendricks, R. J.; Tarbutt, M. R.; Darquié, B.

    2017-05-01

    We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers is measurable. The molecules are produced with a rotational temperature of approximately 6 K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2 μm antisymmetric Re=O stretching mode of MTO with a resolution of 8 MHz and a frequency accuracy of 30 MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state. Our ability to produce dense samples of complex molecules of this type at low temperatures represents a key step towards a precision measurement of parity violation in a chiral species.

  13. Crystallization of calcium oxalate dihydrate in a buffered calcium-containing glucose solution by irradiation with non-equilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Ikehara, Yuzuru; Hori, Masaru

    2017-10-01

    Oxalate was synthesized in the glucose solution by irradiation with non-equilibrium atmospheric pressure plasma (NEAPP), in which the NEAPP plume contacted the solution surface, via the generation of several intermediate organic products such as gluconic acid. A thermodynamically unstable phase of calcium oxalate dihydrate crystallized rapidly during incubation of a NEAPP-irradiated glucose solution that contained calcium ions and was buffered at neutral pH. Longer irradiation times increased the growth rate and the number of seed crystals.

  14. Design, synthesis and in vitro kinetic study of tranexamic acid prodrugs for the treatment of bleeding conditions

    NASA Astrophysics Data System (ADS)

    Karaman, Rafik; Ghareeb, Hiba; Dajani, Khuloud Kamal; Scrano, Laura; Hallak, Hussein; Abu-Lafi, Saleh; Mecca, Gennaro; Bufo, Sabino A.

    2013-07-01

    Based on density functional theory (DFT) calculations for the acid-catalyzed hydrolysis of several maleamic acid amide derivatives four tranexamic acid prodrugs were designed. The DFT results on the acid catalyzed hydrolysis revealed that the reaction rate-limiting step is determined on the nature of the amine leaving group. When the amine leaving group was a primary amine or tranexamic acid moiety, the tetrahedral intermediate collapse was the rate-limiting step, whereas in the cases by which the amine leaving group was aciclovir or cefuroxime the rate-limiting step was the tetrahedral intermediate formation. The linear correlation between the calculated DFT and experimental rates for N-methylmaleamic acids 1- 7 provided a credible basis for designing tranexamic acid prodrugs that have the potential to release the parent drug in a sustained release fashion. For example, based on the calculated B3LYP/6-31G(d,p) rates the predicted t1/2 (a time needed for 50 % of the prodrug to be converted into drug) values for tranexamic acid prodrugs ProD 1- ProD 4 at pH 2 were 556 h [50.5 h as calculated by B3LYP/311+G(d,p)] and 6.2 h as calculated by GGA: MPW1K), 253 h, 70 s and 1.7 h, respectively. Kinetic study on the interconversion of the newly synthesized tranexamic acid prodrug ProD 1 revealed that the t1/2 for its conversion to the parent drug was largely affected by the pH of the medium. The experimental t1/2 values in 1 N HCl, buffer pH 2 and buffer pH 5 were 54 min, 23.9 and 270 h, respectively.

  15. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum

    PubMed Central

    2013-01-01

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h−1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production. PMID:23294525

  16. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum.

    PubMed

    Yang, Xuepeng; Tu, Maobing; Xie, Rui; Adhikari, Sushil; Tong, Zhaohui

    2013-01-07

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h-1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production.

  17. Formulation of bi-layer matrix tablets of tramadol hydrochloride: Comparison of rate retarding ability of the incorporated hydrophilic polymers.

    PubMed

    Arif, Hasanul; Al-Masum, Abdullah; Sharmin, Florida; Reza, Selim; Sm Islam, Sm Ashraful

    2015-05-01

    Bi-layer tablets of tramadol hydrochloride were prepared by direct compression technique. Each tablet contains an instant release layer with a sustained release layer. The instant release layer was found to release the initial dose immediately within minutes. The instant release layer was combined with sustained release matrix made of varying quantity of Methocel K4M, Methocel K15MCR and Carbomer 974P. Bi-layer tablets were evaluated for various physical tests including weight variation, thickness and diameter, hardness and percent friability. Drug release from bi-layer tablet was studied in acidic medium and buffer medium for two and six hours respectively. Sustained release of tramadol hydrochloride was observed with a controlled fashion that was characteristic to the type and extent of polymer used. % Drug release from eight-hour dissolution study was fitted with several kinetic models. Mean dissolution time (MDT) and fractional dissolution values (T25%, T50% and T80%) were also calculated as well, to compare the retarding ability of the polymers. Methocel K15MCR was found to be the most effective in rate retardation of freely water-soluble tramadol hydrochloride compared to Methocel K4M and Capbomer 974P, when incorporated at equal ratio in the formulation.

  18. Regulation of Breast Carcinoma Growth and Neovascularization by Peptide Sequences in Thromospondin

    DTIC Science & Technology

    1999-10-01

    buffer [0.5 ml; containing 5 m guanidine thiocyanate, 25 Okadaic acid, TPA, fumonisin B I, herbimycin A, and sodium vanadate mM sodium citrate (pH 7.0...of okadaic acid, phorbol, promote cell adhesion, were used instead of free peptides in the herbimycin, fumonisin BI, or TPA on proliferation, the...KRFKQDGGWSHWSPWSSC-conj. (pM) /lM vanadate (narrow stripes), 5 nM okadaic acid (wide stripes), or 25 nM fumonisin B1 (D). The indicated peptides or

  19. Smart Pixels for Optical Processing and Communications: Design, Models, Fabrication and Test

    DTIC Science & Technology

    1998-06-01

    11.3 Mobility-Lifetime Product 115 11.4 P-IforVCSEL 116 Chapter 12: Developing a Reliable Etch 12.1 Etch Rates and Selectivity for Citric Acid 126...eGa0.4As etch-stop layer beneath the GaAs buffer. The gate recess was performed with a timed citric acid / hydrogen peroxide wet etch. The conducting...alkalinity. The wet etchant tested in this effort was a citric acid / hydrogen peroxide mixture,8൓ due to its availability, ease of preparation

  20. Fast Hydrazone Reactants: Electronic and Acid/Base Effects Strongly Influence Rate at Biological pH

    PubMed Central

    Kool, Eric T.; Park, Do-Hyoung; Crisalli, Pete

    2013-01-01

    Kinetics studies with structurally varied aldehydes and ketones in aqueous buffer at pH 7.4 reveal that carbonyl compounds with neighboring acid/base groups form hydrazones at accelerated rates. Similarly, tests of a hydrazine with a neighboring carboxylic acid group show that it also reacts at an accelerated rate. Rate constants for the fastest carbonyl/hydrazine combinations are 2–20 M−1sec−1, which is faster than recent strain-promoted cycloaddition reactions. PMID:24224646

  1. A GIS and statistical approach to identify variables that control water quality in hydrothermally altered and mineralized watersheds, Silverton, Colorado, USA

    USGS Publications Warehouse

    Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.

    2013-01-01

    Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.

  2. Direct, rapid, and label-free detection of enzyme-substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors.

    PubMed

    Mu, Luye; Droujinine, Ilia A; Rajan, Nitin K; Sawtelle, Sonya D; Reed, Mark A

    2014-09-10

    We demonstrate the versatility of Al2O3-passivated Si nanowire devices ("nanoribbons") in the analysis of enzyme-substrate interactions via the monitoring of pH change. Our approach is shown to be effective through the detection of urea in phosphate buffered saline (PBS), and penicillinase in PBS and urine, at limits of detection of <200 μM and 0.02 units/mL, respectively. The ability to extract accurate enzyme kinetics and the Michaelis-Menten constant (Km) from the acetylcholine-acetylcholinesterase reaction is also demonstrated.

  3. Partial purification and kinetic characterization of acid phosphatase from garlic seedling.

    PubMed

    Yenigün, Begüm; Güvenilir, Yüksel

    2003-01-01

    The objective of this study was to obtain purer acid phosphatases than produced by prior art by operating under conditions that improve the final product. The study features are the use of a mild nonionic detergent, 40-80% saturation with (NH4)2SOm4, maintained at low temperature to remove impurity, and the use of chromatografic columns to concentrate the acid phosphatase and remove non-acid phosphatase proteins with lower or higher molecular weights. Acid phosphatase was isolated and purified from garlic seedlings by a streamline method without the use of proteolytic and lipolytic enzymes, butanol, or other organic solvents. Grown garlic seedlings of 10- 15 cm height were homogenized with 0.1 M acetate buffer containing 0.1 M NaCl and 0.1% Triton X-100. After homogenization, the supernatant was filtered with paper filters. Filtrated supernatant was cooled to 4 degrees C, followed by a threestep fractionation of the proteins with ammonium sulfate. The crude enzyme was isolated as a green precipitate that was dissolved in a small amount of 0.1 M acetate buffer containing 0.1 M NaCl and 0.1% Triton X-100. Garlic seedling acid phosphatase was purified with ion-exchange chromatography (DEAE cellulose). The column was equilibrated with 0.1 M acetate buffer. Acid phosphatase was purified 40-fold from the starting material. The specific activity of the pure enzyme was 168 U/mg. A variety of stability and activity profiles were determined for the purified garlic seedling acid phosphatase: optimum pH, optimum temperature, pH stability, temperature stability, thermal inactivation, substrate specificity, effect of enzyme concentration, effect of substrate concentration, activation energy, and effect of inhibitor and activator. The molecular mass of acid phosphatase was estimated to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH was 5.7 and the optimum temperature was 50 degrees C. The enzyme was stable at pH 4.0-10.0 and 40-60 degrees C. Activation energy was between 10 and 20 kcal, and as Michaelis Menten coefficients, Vm values were 100 and 20 mM/s and Km values were 21.27 and 8.33 mM for paranitrophenylphosphate and paranitrophenyl, respectively. Studies of the effect of metal ions on enzyme activity showed both an activating and a deactivating effect. While Cu, Mo, and Mn showed strong inhibitory effects, Na, Ca, and K were the significant activators of acid phosphatase.

  4. Approaching Mars-like geochemical conditions in the laboratory: omission of artificial buffers and reductants in a study of biogenic methane production on a smectite clay.

    PubMed

    Chastain, Brendon K; Kral, Timothy A

    2010-11-01

    Methanogens have not been shown to metabolize in conditions exactly analogous to those present in Mars' subsurface. In typical studies of methanogenic metabolism, nutrient-rich buffered media and reducing agents are added to the cultures in an attempt to optimize the environment for methanogen survival and growth. To study methanogens in more Mars-relevant laboratory conditions, efforts should be made to eliminate artificial media, buffers, and reducing agents from investigations of methanogenic metabolism. After preliminary work to compare methanogen viability on montmorillonite clay and JSC Mars-1 regolith simulant, a study was conducted to determine whether biological methanogenesis could occur in non-reduced, non-buffered environments containing only H(2), CO(2), montmorillonite, and the liquid fraction extracted from a montmorillonite/deionized water suspension. Biogenic methane was observed in the microenvironments despite the omission of traditional media, buffers, and reducing agents. Mean headspace methane concentration after 96 days of observation was 10.23% ± 0.64% (% vol ± SEM, n = 4). However, methane production was severely decreased with respect to reduced, buffered microenvironments (Day 28: 31.98% ± 0.19%, n = 3). Analysis of results and comparison to previous work indicate that montmorillonite clay has a strong ability to supply micronutrients necessary for methanogenic metabolism, and the liquid fraction from a montmorillonite/deionized water slurry can successfully be used as an alternative to reduced and buffered nutritive media in Mars-relevant studies of methanogenic metabolism.

  5. Digestibility by lambs offered alfalfa hay treated with a propionic acid hay preservative and baled at different concentrations of moisture

    USDA-ARS?s Scientific Manuscript database

    Eighteen crossbred wether lambs (76.1 ± 8.18 lb initial BW) were used for a 2 period digestion study to evaluate the effect of hay preservative concentration (0, 0.56, or 0.98% buffered propionic acid) and hay moisture concentration at baling (19.6, 23.8, or 27.4% moisture) on digestibility of alfal...

  6. Immobilization of folic acid on Eu3+-doped nanoporous silica spheres.

    PubMed

    Tagaya, Motohiro; Ikoma, Toshiyuki; Yoshioka, Tomohiko; Xu, Zhefeng; Tanaka, Junzo

    2011-08-07

    Folic acid (FA) was immobilized on Eu(3+)-doped nanoporous silica spheres (Eu:NPSs) through mediation of the 3-aminopropyltriethoxysilane adlayer. The ordered nanopores of Eu:NPS were preserved by the immobilization. The FA-immobilized Eu:NPSs showed the characteristic photoluminescence peak due to interactions between the FA molecules and Eu(3+) ions, and highly dispersed stability in phosphate buffered saline.

  7. Biomarkers of Alpha Particle Radiation Exposure

    DTIC Science & Technology

    2014-04-01

    Total Protein (TP) g/dL 7.3 7.2 7 7.1 TRIG mg/dL 203 198 203 194 Uric Acid (UA) mg/dL 4 4.1 4.1 4.1 VLDL mg/dL 41 40 41 39 3.1.4 PBMN and WBC...Quantitative Real-Time PCR Radiological Dispersal Device Linear Energy Transfer Deoxyribo Nucleic Acid Fetal Bovine Serum Phosphate Buffered Saline

  8. The position of lysosomes within the cell determines their luminal pH.

    PubMed

    Johnson, Danielle E; Ostrowski, Philip; Jaumouillé, Valentin; Grinstein, Sergio

    2016-03-14

    We examined the luminal pH of individual lysosomes using quantitative ratiometric fluorescence microscopy and report an unappreciated heterogeneity: peripheral lysosomes are less acidic than juxtanuclear ones despite their comparable buffering capacity. An increased passive (leak) permeability to protons, together with reduced vacuolar H(+)-adenosine triphosphatase (V-ATPase) activity, accounts for the reduced acidifying ability of peripheral lysosomes. The altered composition of peripheral lysosomes is due, at least in part, to more limited access to material exported by the biosynthetic pathway. The balance between Rab7 and Arl8b determines the subcellular localization of lysosomes; more peripheral lysosomes have reduced Rab7 density. This in turn results in decreased recruitment of Rab-interacting lysosomal protein (RILP), an effector that regulates the recruitment and stability of the V1G1 component of the lysosomal V-ATPase. Deliberate margination of lysosomes is associated with reduced acidification and impaired proteolytic activity. The heterogeneity in lysosomal pH may be an indication of a broader functional versatility. © 2016 Johnson et al.

  9. The position of lysosomes within the cell determines their luminal pH

    PubMed Central

    Johnson, Danielle E.; Ostrowski, Philip; Jaumouillé, Valentin

    2016-01-01

    We examined the luminal pH of individual lysosomes using quantitative ratiometric fluorescence microscopy and report an unappreciated heterogeneity: peripheral lysosomes are less acidic than juxtanuclear ones despite their comparable buffering capacity. An increased passive (leak) permeability to protons, together with reduced vacuolar H+–adenosine triphosphatase (V-ATPase) activity, accounts for the reduced acidifying ability of peripheral lysosomes. The altered composition of peripheral lysosomes is due, at least in part, to more limited access to material exported by the biosynthetic pathway. The balance between Rab7 and Arl8b determines the subcellular localization of lysosomes; more peripheral lysosomes have reduced Rab7 density. This in turn results in decreased recruitment of Rab-interacting lysosomal protein (RILP), an effector that regulates the recruitment and stability of the V1G1 component of the lysosomal V-ATPase. Deliberate margination of lysosomes is associated with reduced acidification and impaired proteolytic activity. The heterogeneity in lysosomal pH may be an indication of a broader functional versatility. PMID:26975849

  10. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases.

    PubMed

    Karmakar, Saswata; Harcourt, Emily M; Hewings, David S; Scherer, Florian; Lovejoy, Alexander F; Kurtz, David M; Ehrenschwender, Thomas; Barandun, Luzi J; Roost, Caroline; Alizadeh, Ash A; Kool, Eric T

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  11. Organocatalytic Removal of Formaldehyde Adducts from RNA and DNA Bases

    PubMed Central

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-01-01

    Formaldehyde is universally employed to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, and avoiding high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5–2.4 fold using a catalyst under optimized conditions, and by 7–25 fold compared to a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens. PMID:26291948

  12. Acidification of forest soil in Russia: From 1893 to present

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.

    2003-01-02

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations similar to 100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases inmore » precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place.« less

  13. Acidification of forest soil in Russia: From 1893 to present

    USGS Publications Warehouse

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  14. Chiral separation with gradient elution isotachophoresis for future in situ extraterrestrial analysis.

    PubMed

    Danger, Grégoire; Ross, David

    2008-10-01

    The first results of chiral separations with the gradient elution isotachophoresis method are presented. As previously described, citrate is used in the run buffer as the leading ion and borate in the sample buffer as the terminating ion. Modulation of parameters such as electrolyte pH, pressure scan rate, chiral selector concentration, combinations of CD or the percentage of ampholytes provides an easy optimization of the separations. To perform fluorescent detection 5-carboxyfluorescein succinimidyl ester and two fluorogenic-labeling agents, fluorescamine (Fluram) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, are used to label amino acids. With the 5-carboxyfluorescein amino acids, chiral separations are easily obtained using a neutral CD ((2-hydroxypropyl)-beta-CD) at a low concentration (2 mmol/L). With Fluram amino acids, the situation is more complicated due to the formation of diastereoisomers and due to weak interactions with the different CDs used. The use of the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde-labeling agent solves the problems observed with the Fluram agent while retaining the fluorogenic properties. These first results demonstrate the simplicity and the feasibility of gradient elution isotachophoresis for chiral separations.

  15. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    PubMed

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-05

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode.

    PubMed

    Deng, Chunyan; Chen, Jinhua; Chen, Xiaoli; Xiao, Chunhui; Nie, Lihua; Yao, Shouzhuo

    2008-03-14

    Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.

  17. Purification and Characterization of [NiFe]-Hydrogenase of Shewanella oneidensis MR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Liang; Belchik, Sara M.; Plymale, Andrew E.

    2011-08-02

    The γ-proteobacterium Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H2ase) that was implicated in both H2 production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H2ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H2ase were cloned into a protein expression vector. The resulting plasmid was transformed into a MR-1 mutant deficient in H2 formation. Expression of MR-1 [NiFe]-H2ase in trans restored the mutant’s ability to produce H2 at 37% of that for wild type. Following expression, MR-1 [NiFe]-H2ase was purified to near homogeneity. The purified MR-1 [NiFe]-H2ase could couplemore » H2 oxidation to reduction of Tc(VII) and methyl viologen directly. Change of the buffers used affected MR-1 [NiFe]-H2ase-mediated Tc(VII) but not methyl viologen reductions. Under the conditions tested, Tc(VII) reduction was complete in Tris buffer but not in HEPES buffer. The reduced Tc(IV) was soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc(IV) precipitates formed in HEPES buffer were packed with crystallites. Although X-ray absorption near-edge spectroscopy measurements confirmed that the reduction products found in both buffers were Tc(IV), extended X-ray adsorption fine-structure measurements revealed that these products were very different. While the product in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O2•nH2O. These results shows for the first time that MR-1 [NiFe]-H2ase is a bidirectional enzyme that catalyzes both H2 formation and oxidation as well as Tc(VII) reduction directly by coupling H2 oxidation.« less

  18. Thorough investigation of the retention mechanisms and retention behavior of amides and sulfonamides on amino column in hydrophilic interaction liquid chromatography.

    PubMed

    Jovanović, Marko; Stojanović, Biljana Jančić

    2013-08-02

    In this paper detailed analysis of a mixture of four amides (tropicamide, nicotinamide, tiracetam, and piracetam) and six sulfonamides (sulfanilamide, sulfacetamide, sulfamethoxazole, sulfafurazole, furosemide, and bumetanide) on aminopropyl column in hydrophilic interaction chromatography (HILIC) was carried out. Since, there are no papers on the topic of the assessment of the contribution of ion-exchange retention mechanism involved in the separation of the acidic compounds on aminopropyl column in HILIC mode, the authors utilized the retention data of the acidic sulfonamides for this purpose. Next, broad range of the aqueous buffer concentrations in the mobile phase was examined providing the separation under either HILIC or RP conditions. Turning points between these two mechanisms were determined and then the fitting of the experimental data in the localized and non-localized adsorption models in both RP and HILIC regions was assessed. Since not many papers in the literature were dealing with the estimation of factor influence on the retention behavior of neutral and acidic compounds on aminopropyl column in HILIC, Box-Behnken design and Response Surface Methodology were applied. On the basis of the obtained data, ten quadratic models were proposed and their adequacy was confirmed using ANOVA test. Furthermore, retention data was graphically evaluated by the construction of 3D response surface plots. Finally, good predictive ability of the suggested models was proved with five additional verification experiments. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Buffer capacity of 4% succinylated gelatin does not provide any advantages over acidic 6% hydroxyethyl starch 130/0.4 for acid-base balance during experimental mixed acidaemia in a porcine model.

    PubMed

    Esche, V; Russ, M; Melzer, S; Grossmann, B; Boemke, W; Unger, J K

    2008-11-01

    Four percent gelatine is an alkaline compound due to NH2 groups, whereas 6% hydroxyethyl starch 130/0.4 (HES130) has acidic features. We investigated whether these solutions lead to differences in acid-base balance in pigs during acidaemia and correction of pH. Anaesthetized pigs were randomized to HES130 or gelatine infusion (n = 5 per group). Animals received acid infusion (0.4 M solution of lactic acid and HCl diluted in normal saline) and low tidal volume ventilation (6-7 mL kg(-1), PaCO2 of 80-85 mmHg, pH 7.19-7.24). Measurements were made before and after induction of acidaemia, before and after correction of pH with haemofiltration (continuous venovenous haemofiltration) and tris-hydroxymethylaminomethane infusion. We measured parameters describing acid-base balance according to Stewart's approach, ketone body formation, oxygen delivery, haemodynamics, diuresis and urinary pH. Acid-base balance did not differ significantly between the groups. In HES130-treated pigs, the haemodilution-based drop of haemoglobin (1.4 +/- 1.0 g dL(-1), median +/- SD) was paralleled by an increase in the cardiac output (0.5 +/- 0.4 L min(-1). Lacking increases in cardiac output, gelatine-treated pigs demonstrated a reduction in oxygen delivery (149.4 +/- 106.0 mL min(-1)). Tris-hydroxymethylaminomethane volumes required for pH titration to desired values were significantly higher in the gelatine group (0.7 +/- 0.1 mL kg(-1) h(-1) vs. HES130: 0.5 +/- 0.2 mL kg(-1) h(-1)). The buffer capacity of gelatine did not lead to favourable differences in acid-base balance in comparison to HES130.

  20. Effects of organic acids on thermal inactivation of acid and cold stressed Enterococcus faecium.

    PubMed

    Fernández, Ana; Alvarez-Ordóñez, Avelino; López, Mercedes; Bernardo, Ana

    2009-08-01

    In this study the adaptative response to heat (70 degrees C) of Enterococcus faecium using fresh and refrigerated (at 4 degrees C for up to 1 month) stationary phase cells grown in Brain Heart Infusion (BHI) buffered at pH 7.4 (non-acid-adapted cells) and acidified BHI at pH values of 6.4 and 5.4 with acetic, ascorbic, citric, lactic, malic and hydrochloric acids (acid-adapted cells) was evaluated. In all cases, the survival curves obtained were concave upward. A mathematical model based on the Weibull distribution accurately described the inactivation kinetic. The results indicate that previous adaptation to a low pH increased the bacterial heat resistance, whereas the subsequent cold storage of cells reduced E. faecium thermal tolerance. Fresh acid-adapted cells showed t(2.5)-values (time needed to obtain an inactivation level of 2.5 log10 cycles) ranging from 2.57 to 9.51 min, while non-acid-adapted cells showed t(2.5)-values of 1.92 min. The extent of increased heat tolerance varied with the acid examined, resulting in the following order: citric > or = acetic > malic > or = lactic > hydrochloric > or = ascorbic. In contrast, cold storage progressively decreased E. faecium thermal resistance. The t(2.5) values found at the end of the period studied were about 2-3-fold lower than those corresponding to non-refrigerated cells, although this decrease was more marked (about 5-fold) when cells were grown in buffered BHI and BHI acidified at pH 5.4 with hydrochloric acid. These findings highlight the need for a better understanding of microbial response to various preservation stresses in order to increase the efficiency of thermal processes and to indicate the convenience of counterbalancing the benefits of the hurdle concept.

Top